WorldWideScience

Sample records for cultured embryonic rat

  1. Rat embryonic palatal shelves respond to TCDD in organ culture

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.D.; Birnbaum, L.S. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA))

    1990-05-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a highly toxic environmental contaminant, is teratogenic in mice, inducing cleft palate (CP) and hydronephrosis at doses which are not overtly maternally or embryo toxic. Palatal shelves of embryonic mice respond to TCDD, both in vivo and in organ culture, with altered differentiation of medial epithelial cells. By contrast, in the rat TCDD produces substantial maternal, embryonic, and fetal toxicity, including fetal lethality, with few malformations. In this study the possible effects of maternal toxicity on induction of cleft palate were eliminated by exposure of embryonic rat palatal shelves in organ culture. The shelves were examined for specific TCDD-induced alterations in differentiation of the medial cells. On Gestation Day (GD) 14 or 15 palatal shelves from embryonic F344 rats were placed in organ culture for 2 to 3 days (IMEM:F12 medium, 5% FBS, 0.1% DMSO) containing 0, 1 x 10(-8), 1 x 10(-9), 1 x 10(-10), or 5 x 10(-11) M TCDD. The medial epithelial peridermal cells degenerated on shelves exposed to control media or 5 x 10(-11) M TCDD. Exposure to 10(-10), 10(-9), and 10(-8) M TCDD inhibited this degeneration in 20, 36, and 60% of the shelves, respectively, and was statistically significant at the two highest doses. A normally occurring decrease in (3H)TdR incorporation was inhibited in some GD 15 shelves cultured with 10(-10) and 10(-9) M TCDD. The medial cells of TCDD-exposed shelves continued to express high levels of immunohistochemically detected EGF receptors. The altered differentiation of rat medial epithelium is similar to that reported for TCDD-exposed mouse medial cells in vivo and in vitro. However, in order to obtain these responses, the cultured rat shelves require much higher concentrations of TCDD than the mouse shelves.

  2. Differentiation of rat embryonic neural stem cells promoted by co-cultured Schwann cells

    Institute of Scientific and Technical Information of China (English)

    万虹; 安沂华; 张泽舜; 张亚卓; 王忠诚

    2003-01-01

    Objective To explore the factors which induce differentiation of embryonic neural stem cells. Methods Rat embryonic neural stem cells were co-cultured with newborn rat Schwann cells in serum-free medium. The phenotype and specific-markers including tubulin-β, glial fibrillary acidic protein (GFAP) and galactorcerebroside (GalC), were domonstrated by phase contrast microscopy and double immunofluorescence staining. Results Overall, 80%±5% of neural stem cells protruded several elongated processes and expressed tubulin-β antigen at high levels, while 20±3% of them protruded several short processes and were GalC or GFAP positive. Conclusion The factors secreted by Schwann cells could induce rat embryonic neural stem cell to differentiate.

  3. Transplantation of primary cultured embryonic mesencephalic neural precursor cells for treating Parkinsonian rats

    Institute of Scientific and Technical Information of China (English)

    Li Fei; Chengchuan Jiang; Linyin Feng; Yaodong Ji; Zhongliang Ding

    2006-01-01

    BACKGROUND: Choosing proper donor cells is one of keys in experimental and clinical studies on cell replacement therapy (CRT) for treating Parkinson disease (PD). Embryonic mesencephalic precursor cells (MPCs) can stably differentiate into dopaminergic neuron after in vitro proliferated culture. As compared with embryonic stem cell and neural stem cell strains, cell composition of embryonic MPCs after primary culture is also the most close to that of embryonic mesencephalic ventral cell suspension without proliferated culture. Successful experience accumulated in the latter suggests that primary cultured embryonic MPCs might be the most potential donor cells in clinical application with CRT for treating PD so far.OBJECTIVE: To investigate the feasibility of primary cultured embryonic precursor cells cultured primarily as donor cells in CRT for treating PD in rats.DESIGN: A randomized and controlled trial taking SD rats as experimental animals.SETTING: Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University.MATERIALS: This experiment was carried out at the Institute of Neuroscience, Shanghai Institute for Biological Science, Chinese Academy of Sciences from July 2003 to June 2004. Totally 26 female SD rats,with body mass of 200 to 220 g, were provided by Shanghai Experimental Animal Center of Chinese Academy of Sciences.METHODS: Stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle were perfored to develop PD model rat. Among 26 SD rats, 20 rats achieved a more than 5 turns/min in apomorphine induced rotation test, reaching the standard of PD model rats. Immunohistochemical detection was performed on 1out of 20 model rats after execution, and the other 19 rats were randomly divided into control group (n=5),sham transplantation group (n=5)and cell grafted group (n=9). Primary cultured E12 MPC cell suspension (1.2×1011 L-1)were used as donor cells. 4 μL primary cultured E12 MPC cell suspension prepared freshly was injected

  4. Electrophysiology of embryonic, adult and aged rat hippocampal neurons in serum-free culture.

    Science.gov (United States)

    Evans, M S; Collings, M A; Brewer, G J

    1998-01-31

    Methods were recently developed for culturing neurons from adult rat hippocampus using the serum-free medium Neurobasal with B27 supplement. To determine whether adult cultured neurons have normal electrical properties, we studied cultures from rats of three age groups: (1) embryonic; (2) 10-11 months old and (3) 35-36 months old. Neurons had a polarized morphology with a large branching apical dendrite and small basal dendrites. Mean resting potentials were similar in the three age groups. All neurons had nonlinear current-voltage relationships, indicating the presence of voltage-sensitive ion channels. Most neurons had a voltage-sensitive inward current followed by a sustained voltage-sensitive outward current. Tetrodotoxin blocked the inward current, which is likely to be a sodium current. The sustained outward current, which is likely to be a potassium current, reversed at -71 mV. Most neurons exhibited anomalous rectification. Calcium currents were present in both embryonic and adult neurons. Embryonic neurons would sometimes fire multiple action potentials but adult neurons fired only single action potentials. Our results indicate that both embryonic and adult cultured neurons retain a clearly neuronal electrophysiological phenotype in Neurobasal/B27 serum-free medium.

  5. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  6. STUDY ON DIFFERENTIATION OF RATS EMBRYONIC STEM CELLS CULTURED IN BRL-CM INTO NEURAL PRECURSOR CELLS

    Institute of Scientific and Technical Information of China (English)

    张晓智; 李旭; 徐海伟; 陈葳

    2003-01-01

    Objective To investigate whether buffalo rat liver cell-conditioned medium (BRL-CM) can be used as the culture medium of embryonic stem (ES) cells, and to get relatively pure neural precursor cells (NPCs) for treatment aim. Methods Mouse ES cells were cultured in BRL-CM and medium contain leukemia inhibitory factor (LIF), respectively. NPCs were selectively cultured in serum-free medium. Alkaline phosphatase activity was visualized with NBT/BCIP and nestin antigen was detected with immunocytochemical methods. Results BRL-CM could be used as an efficiency culture condition instead of LIF in ES cells culture. About 86% of cells derived from ES cells in the serum-free culture were NPCs. Conclusion BRL-CM can replace LIF to use in ES cell culture. High purity of NPC can be induced from ES cells with serum-free culture method.

  7. Dihydroartemisinin (DHA) treatment causes an arrest of cell division and apoptosis in rat embryonic erythroblasts in whole embryo culture.

    Science.gov (United States)

    Posobiec, Lorraine M; Clark, Robert L; Bushdid, Paul B; Laffan, Susan B; Wang, Kai-Fen; White, Tacey E K

    2013-12-01

    Within 24 hr after oral administration of the antimalarial artesunate to rats on Day 10 or 11 postcoitum (pc), there is depletion of embryonic erythroblasts (EEbs), leading to embryo malformation and death. The proximate agent is dihydroartemisinin (DHA), the primary metabolite. We investigated the causes of EEb depletion by evaluating effects of DHA on EEbs in whole embryo culture (WEC). Rat embryos cultured starting on Day 9 pc were treated with 1 or 7 μM DHA for 24 hr starting after 19 hr of culture (∼Day 10 pc) and for 2 to 12 hr starting after 43 hr of culture (∼Day 11 pc). DHA effects indicating the depletion of EEbs were paling of the visceral yolk sac and reductions in visible blood cells, H&E-stained normal (Type II or III) EEbs, and dividing (BrdU-stained) EEbs. DHA-induced abnormal cell division was indicated by increases in symmetric and asymmetric binuclear cells. DHA-induced apoptosis was indicated by increases in TUNEL- and Caspase-3-positive cells and EEbs with fragmented nuclei. In addition, although the overall number of EEbs was decreasing, DHA caused increases in the numbers of circulating early-stage (Type I or earlier) EEbs that could not be accounted for by cell division, suggesting the release of new, less sensitive erythroblasts from the yolk sac. In summary, treatment of Day 10 or 11 pc rat embryos with DHA in WEC resulted in defective and arrested cell division in EEbs followed by apoptosis, suggesting a mechanism for their depletion after artesunate treatment in vivo.

  8. Achyranthes bidentata Blume extract promotes neuronal growth in cultured embryonic rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Xin Tang; Yiren Chen; Xiaosong Gu; Fei Ding

    2009-01-01

    We have prepared an aqueous extract of Achyranthes bidentata Blume,a commonly prescribed Chinese medicinal herb,and reported,in previous studies,that A.bidentata extract benefits nerve growth and prevents neuron apoptosis.In this study,we investigated the actions of ,4.bidentata extract on survival and growth of primarily cultured rat hippocampal neurons.The morphological observation revealed that neurite growth from hippocampal neurons was significantly enhanced by A.bidentata extract with similar effects to those induced by nerve growth factor (NGF),and the greatest neurite growth appeared on treatment with A.bidentata extract at 1 ttg/ml for 24 h.DNA microarray analysis indicated that there were 25 upregulated genes and 47 downregulated genes exhibiting significantly differential expression in hippocampal neurons treated with A.bidentata extract at 1 μg/ml for 6 h when compared to those in untreated hippocampal neurons.Real-time quantitative RT-PCR and Western blot analysis demonstrated that the expression of growth-associated protein-43 in hippocampal neurons was upregulated at both mRNA and protein levels after treatment with A.bidentata extract,and the optimal dosage of the extract was also 1 μg/ml.These data confirm that A.bidentata extract could promote in vitro hippocampal neuronal growth in a dose- and time-dependent manner.(C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  9. Effects of glutamate and nimodipine on survival rate of embryonic rat neuronal stem cells cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Lü; Hailong Fu; Qiang Sun; Li Cui; Dihui Ma; Weihong Lin

    2008-01-01

    BACKGROUND: At least three types of calcium ion channel (T, N, and L) have been recognized in nerve cells, but only the L type of channel is sensitive to drugs. Theoretically, nimodipine can lead to L-type channel inactivation and prevent calcium ion inflow, thereby exhibiting protective effects on nerve cells.OBJECTIVE: To observe the protective effects of nimodipine on glutamate-induced injury to embryonic rat neural stem cells, and to make a comparison with MK-801, a nonselective glutamate receptor antagonist.DESIGN, TIME AND SETTING: The present in vitro experiment pertaining to neural stem cells was performed at the Department of Neurology, First Hospital, Jilin University between January 2005 and December 2006.MATERIALS: Glutamate was sourced from the Shanghai Biological Research Institute of the Chinese Academy of Sciences. Nimodipine was provided by Bayer Company, Germany. Brain tissue was taken from Wistar rats on day 15 of gestation for isolation and culture of neural stem cells.METHODS: Passage 2 neural stem cell spheres were taken for preparation of single cell suspension. The prepared single cell suspension was divided into 4 groups: (1) Normal control, normally cultured. (2)Glutamate, cultured with 50, 100, 200, 500, and 1000 μ mol/L glutamate. (3) Nimodipine, received a 30-minute nimodipine [1 ×(10-8-10-2) g/L] culture followed by a glutamate (200 μ mol/L) treatment step. (4)MK-801, given as 30- minute MK-801 (100 μ mol/L) culture, followed by a glutamate (200 μ mol/L)treatment step.MAIN OUTCOME MEASURES: Determination of glutamate-induced cell death by methyl thiazolyl tetrazolium (MTT) assay; calculation of neural stem cell survival rate following addition of nimodipine.RESULTS: The survival rate of neural stem cells was approximately 25.26% following 24 hour 50 μ mol/L glutamate culture and gradually decreased as the glutamate dose increased (P < 0.05 0.01). Only 9.27% of neural stem cells survived when the glutamate dose was 1 000 μ mol

  10. Culturing rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  11. Embryonic Stem Cells: Isolation, Characterization and Culture

    Science.gov (United States)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  12. Exogenous Fibroblast Growth Factor-10 Induces Cystic Lung Development with Altered Target Gene Expression in the Presence of Heparin in Cultures of Embryonic Rat Lung

    Science.gov (United States)

    Hashimoto, Shuichi; Nakano, Hiroshi; Suguta, Yuko; Irie, Seiko; Jianhua, Luo; Katyal, Sikardar L.

    2012-01-01

    Objectives Signaling by fibroblast growth factor (FGF) receptor (FGFR) 2IIIb regulates branching morphogenesis in the mammalian lung. FGFR2IIIb is primarily expressed in epithelial cells, whereas its ligands, FGF-10 and keratinocyte growth factor (KGF; FGF-7), are expressed in mesenchymal cells. FGF-10 null mice lack lungs, whereas KGF null animals have normal lung development, indicating that FGF-10 regulates lung branching morphogenesis. In this study, we determined the effects of FGF-10 on lung branching morphogenesis and accompanying gene expression in cultures of embryonic rat lungs. Methods Embryonic day 14 rat lungs were cultured with FGF-10 (0–250 ng/ml) in the absence or presence of heparin (30 ng/ml) for 4 days. Gene expression profiles were analyzed by Affymetrix microchip array including pathway analysis. Some of these genes, functionally important in FGF-10 signaling, were further analyzed by Northern blot, real-time PCR, in situ hybridization and immunohistochemistry. Results Exogenous FGF-10 inhibited branching and induced cystic lung growth only in cultures containing heparin. In total, 252 upregulated genes and 164 downregulated genes were identified, and these included Spry1 (Sprouty-1), Spry2 (Sprouty-2), Spred-1, Bmp4 (bone morphogenetic protein-4, BMP-4), Shh(sonic hedgehog, SHH), Pthlh (parathyroid hormone-related protein, PTHrP), Dusp6 (MAP kinase phosphatase-3, MKP-3) and Clic4 (chloride intracellular channel-4, CLIC-4) among the upregulated genes and Igf1 (insulin-like growth factor-1, IGF-1), Tcf21 (POD), Gyg1 (glycogenin 1), Sparc (secreted protein acidic and rich in cysteine, SPARC), Pcolce (procollagen C-endopeptidase enhancer protein, Pro CEP) and Lox (lysyl oxidase) among the downregulated genes. Gsk3β and Wnt2, which are involved in canonical Wnt signaling, were up- and downregulated, respectively. Conclusions Unlike FGF-7, FGF-10 effects on lung branching morphogenesis are heparin-dependent. Sprouty-2, BMP-4, SHH, IGF-1, SPARC

  13. Organotypic slice culture of embryonic brain tissue.

    Science.gov (United States)

    Daza, Ray A M; Englund, Chris; Hevner, Robert F

    2007-12-01

    INTRODUCTIONThis protocol describes how to dissect, assemble, and cultivate mouse embryonic (E) brain tissue from age E11.5 to E18.5 (days) for organotypic slice culture. These preparations can be used for a variety of assays and studies including coculture of different brain regions, cell migration assays, axon guidance assays, and DNA electroporation experiments. During electroporation, an electric current is applied to the surface of a specific target area of the brain slice in order to open holes in the plasma membrane and introduce a plasmid of coding DNA. The floating slice-on-membrane construct helps to preserve the structural integrity of the brain slices, while maintaining easy experimental access and optimal viability. Experiments can be monitored in living slices (e.g., with confocal imaging), and further studies can be completed using slices that have been fixed and cryosectioned at the end of the experiment. Any region of embryonic brain or spinal tissue can be used in this protocol.

  14. Establishment of rat embryonic stem cells and making of chimera rats.

    Directory of Open Access Journals (Sweden)

    Shinobu Ueda

    Full Text Available The rat is a reference animal model for physiological studies and for the analysis of multigenic human diseases such as hypertension, diabetes, neurological disorders, and cancer. The rats have long been used in extensive chemical carcinogenesis studies. Thus, the rat embryonic stem (rES cell is an important resource for the study of disease models. Attempts to derive ES cells from various mammals, including the rat, have not succeeded. Here we have established two independent rES cells from Wister rat blastocysts that have undifferentiated characters such as Nanog and Oct3/4 genes expression and they have stage-specific embryonic antigen (SSEA -1, -3, -4, and TRA-1-81 expression. The cells were successfully cultured in an undifferentiated state and can be possible over 18 passages with maintaining more than 40% of normal karyotype. Their pluripotent potential was confirmed by the differentiation into derivatives of the endoderm, mesoderm, and ectoderm. Most importantly, the rES cells are capable of producing chimera rats. Therefore, we established pluripotent rES cell lines that are widely used to produce genetically modified experimental rats for study of human diseases.

  15. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel locations in dorsal lingual epithelium.

    Science.gov (United States)

    Mistretta, Charlotte M; Liu, Hong-Xiang; Gaffield, William; MacCallum, Donald K

    2003-02-01

    From time of embryonic emergence, the gustatory papilla types on the mammalian tongue have stereotypic anterior and posterior tongue locations. Furthermore, on anterior tongue, the fungiform papillae are patterned in rows. Among the many molecules that have potential roles in regulating papilla location and pattern, Sonic hedgehog (Shh) has been localized within early tongue and developing papillae. We used an embryonic, tongue organ culture system that retains temporal, spatial, and molecular characteristics of in vivo taste papilla morphogenesis and patterning to study the role of Shh in taste papilla development. Tongues from gestational day 14 rat embryos, when papillae are just beginning to emerge on dorsal tongue, were maintained in organ culture for 2 days. The steroidal alkaloids, cyclopamine and jervine, that specifically disrupt the Shh signaling pathway, or a Shh-blocking antibody were added to the standard culture medium. Controls included tongues cultured in the standard medium alone, and with addition of solanidine, an alkaloid that resembles cyclopamine structurally but that does not disrupt Shh signaling. In cultures with cyclopamine, jervine, or blocking antibody, fungiform papilla numbers doubled on the dorsal tongue with a distribution that essentially eliminated inter-papilla regions, compared with tongues in standard medium or solanidine. In addition, fungiform papillae developed on posterior oral tongue, just in front of and beside the single circumvallate papilla, regions where fungiform papillae do not typically develop. The Shh protein was in all fungiform papillae in embryonic tongues, and tongue cultures with standard medium or cyclopamine, and was conspicuously localized in the basement membrane region of the papillae. Ptc protein had a similar distribution to Shh, although the immunoproduct was more diffuse. Fungiform papillae did not develop on pharyngeal or ventral tongue in cyclopamine and jervine cultures, or in the tongue midline

  16. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...

  17. GABAERGIC COMPONENT OF RAT EMBRYONIC VENTRAL MESENCEPHALIC GRAFTS - AN INVITRO STUDY

    NARCIS (Netherlands)

    COPRAY, JCVM; VINCENT, AJPE; VANROON, W; TOMASINI, R; STAAL, MJ

    In order to establish the number, the viability and the developmental potential of GABAergic neurons present in dopaminergic ventral mesencephalic (VM) grafts from embryonic rat, we have studied the survival and development of these neurons in culture. The GABAergic fraction demonstrated a highly

  18. GABAERGIC COMPONENT OF RAT EMBRYONIC VENTRAL MESENCEPHALIC GRAFTS - AN INVITRO STUDY

    NARCIS (Netherlands)

    COPRAY, JCVM; VINCENT, AJPE; VANROON, W; TOMASINI, R; STAAL, MJ

    1993-01-01

    In order to establish the number, the viability and the developmental potential of GABAergic neurons present in dopaminergic ventral mesencephalic (VM) grafts from embryonic rat, we have studied the survival and development of these neurons in culture. The GABAergic fraction demonstrated a highly di

  19. Rat embryonic stem cells create new era in development of genetically manipulated rat models

    Institute of Scientific and Technical Information of China (English)

    Kazushi; Kawaharada; Masaki; Kawamata; Takahiro; Ochiya

    2015-01-01

    Embryonic stem(ES) cells are isolated from theinner cell mass of a blastocyst, and are used for the generation of gene-modified animals. In mice, the transplantation of gene-modified ES cells into recipient blastocysts leads to the creation of gene-targeted mice such as knock-in and knock-out mice; these gene-targeted mice contribute greatly to scientific development. Although the rat is considered a useful laboratory animal alongside the mouse, fewer genemodified rats have been produced due to the lack of robust establishment methods for rat ES cells. A new method for establishing rat ES cells using signaling inhibitors was reported in 2008. By considering the characteristics of rat ES cells, recent research has made progress in improving conditions for the stable culture of rat ES cells in order to generate gene-modified rats efficiently. In this review, we summarize several advanced methods to maintain rat ES cells and generate gene-targeted rats.

  20. Rat fetal ventral mesencephalon grown as solid tissue cultures

    DEFF Research Database (Denmark)

    Höglinger, G U; Sautter, J; Meyer, Morten;

    1998-01-01

    Free-floating roller tube (FFRT) cultures of fetal rat and human nigral tissue are a means for tissue storage prior to grafting in experimental Parkinson's disease. In the present study, FFRT cultures prepared from embryonic-day-14 rat ventral mesencephalon were maintained for 4, 8, 12, or 16 days...

  1. Differentiation of embryonic versus adult rat neural stem cells into dopaminergic neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    Chunlong Ke; Baili Chen; Shaolei Guo; Chao Yang

    2008-01-01

    BACKGROUND: It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson's disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats.OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro.DESIGN: Randomized grouping design.SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University.MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-scn University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male,Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University.METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1 ct, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry.MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells.RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylasc. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2

  2. LIF-Free Embryonic Stem Cell Culture in Simulated Microgravity

    OpenAIRE

    Yumi Kawahara; Tomotaka Manabe; Masaya Matsumoto; Teruyuki Kajiume; Masayasu Matsumoto; Louis Yuge

    2009-01-01

    BACKGROUND: Leukemia inhibitory factor (LIF) is an indispensable factor for maintaining mouse embryonic stem (ES) cell pluripotency. A feeder layer and serum are also needed to maintain an undifferentiated state, however, such animal derived materials need to be eliminated for clinical applications. Therefore, a more reliable ES cell culture technique is required. METHODOLOGY/PRINCIPAL FINDINGS: We cultured mouse ES cells in simulated microgravity using a 3D-clinostat. We used feeder-free and...

  3. LIF-free embryonic stem cell culture in simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Yumi Kawahara

    Full Text Available BACKGROUND: Leukemia inhibitory factor (LIF is an indispensable factor for maintaining mouse embryonic stem (ES cell pluripotency. A feeder layer and serum are also needed to maintain an undifferentiated state, however, such animal derived materials need to be eliminated for clinical applications. Therefore, a more reliable ES cell culture technique is required. METHODOLOGY/PRINCIPAL FINDINGS: We cultured mouse ES cells in simulated microgravity using a 3D-clinostat. We used feeder-free and serum-free media without LIF. CONCLUSIONS/SIGNIFICANCE: Here we show that simulated microgravity allows novel LIF-free and animal derived material-free culture methods for mouse ES cells.

  4. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles.

    Science.gov (United States)

    de Jong, Esther; Barenys, Marta; Hermsen, Sanne A B; Verhoef, Aart; Ossendorp, Bernadette C; Bessems, Jos G M; Piersma, Aldert H

    2011-06-01

    The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds,(1) flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R;

    2003-01-01

    A streamlined, simple technique for primary cell culture from E17 rat tissue is presented. In an attempt to standardize culturing methods for all neuronal cell types in the embryo, we evaluated a commercial medium without serum and used similar times for trypsinization and tested different surfaces...... for plating. In 1 day, using one method and a single medium, it is possible to produce robust E17 cultures of dorsal root ganglia (DRG), cerebellum, and enteric plexi. Allowing the endogenous glial cells to repopulate the cultures saves time compared with existing techniques, in which glial cells are added...... to cultures first treated with antimitotic agents. It also ensures that all the cells present in vivo will be present in the culture. Myelination commences after approximately 2 weeks in culture for dissociated DRG and 3-4 weeks in cerebellar cultures. In enteric cultures, glial wrapping of the enteric...

  6. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  7. Biological effect of velvet antler polypeptides on neural stem cells from embryonic rat brain

    Institute of Scientific and Technical Information of China (English)

    LU Lai-jin; CHEN Lei; MENG Xiao-ting; YANG Fan; ZHANG Zhi-xin; CHEN Dong

    2005-01-01

    Background Velvet antler polypeptides (VAPs), which are derived from the antler velvets, have been reported to maintain survival and promote growth and differentiation of neural cells and, especially the development of neural tissues. This study was designed to explore the influence of VAPs on neural stem cells in vitro derived from embryonic rat brain. Methods Neural stem cells derived from E12-14 rat brain were isolated, cultured, and expanded for 7 days until neural stem cell aggregations and neurospheres were generated. The neurospheres were cultured under the condition of different concentration of VAPs followed by immunocytochemistry to detect the differentiation of neural stem cells. Results VAPs could remarkablely promote differentiation of neural stem cells and most neural stem cells were induced to differentiate towards the direction of neurons under certain concentration of VAPs.Conclusion Neural stem cells can be successfully induced into neurons by VAPs in vitro, which could provide a basis for regeneration of the nervous system.

  8. Immunohistochemical evidence of Muc1 expression during rat embryonic development

    Directory of Open Access Journals (Sweden)

    E. Lacunza

    2010-11-01

    Full Text Available During embryonic development, studies on mouse and human embryos have established that Muc1/MUC1 expression coincides with the onset of epithelial sheet and glandular formation. This study aimed therefore at evaluating the temporal and spatial expression of Muc1 at different stages of rat development. In this experiment, 80 animals were included: 64 rat foetuses at 13, 14, 15, 16, 17, 18, 19 and 20 days of gestation from pregnant females (WKAH/Hok, 8 embryos each stage. Standard immunohistochemistry was performed using anti-MUC1 cytoplasmic tail polyclonal antibody (CT33. The reaction was considered positive when more than 5% of the cells were stained; reaction patterns were: L = linear, membrane, C = cytoplasmic and M = mixed; nuclear staining was also recorded. Intensity was graded as negative (-, low (+, moderate (++ and strong (+++. Muc1 expression was observed with a low intensity on 13th day (13 d in the stomach, lung and kidney; at 14 d, small intestine and pancreas were also reactive; at 16 d, liver and esophagus and at 18 d, trachea and salivary glands. During the development, intensity increased while the pattern of expression changed: at the first days of gestation, it was predominantly linear and apical while during further development an increase in cytoplasmic expression was observed. Trachea, stomach, kidney and lung epithelia were the more reactive tissues. In specimens belonging to neonates and adults, all tissues analyzed showed similar Muc1 expression. The findings of this study assess that Muc1 is highly expressed in the epithelial rat embryonic development.

  9. Transplantation of human neonatal foreskin stromal cells in ex vivo organotypic cultures of embryonic chick femurs

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Vishnubalaji, Radhakrishnan

    2017-01-01

    NSSCs in ex vivo organotypic cultures of embryonic chick femurs. Isolated embryonic chick femurs (E10 and E11) were cultured for 10 days together with micro-mass cell pellets of hNSSCs, human umbilical vein endothelial cells (HUVEC) or a combination of the two cell types. Changes in femurs gross morphology...

  10. Coculture of rat embryonic proprioceptive sensory neurons and myotubes

    NARCIS (Netherlands)

    Copray, S; Liem, R; MantinghOtter, [No Value; Brouwer, N

    1996-01-01

    With the aim to study the cellular mechanisms underlying the process of muscle spindle (re)generation, dorsal root ganglia (DRG) neurons derived from 16-day rat embryos were cocultured with developing myotubes in a compartmentalized culture device. To accomplish the selective survival and neurite fo

  11. Transplantation of embryonic porcine neocortical tissue into newborn rats

    DEFF Research Database (Denmark)

    Castro, Anthony J; Meyer, Morten; Møller Dall, Annette

    2003-01-01

    Several previous studies, suggesting the potential use of embryonic xenografts in the treatment of neurological disorders, indicate that neural growth and axonal guidance factors may function across species. In this light, blocks of fetal porcine neocortex were grafted into small cortical lesion...... cavities made in newborn rats. Sacrifice at 3-12.5 weeks posttransplantation revealed healthy looking grafts in several animals. Apparent graft rejection evidenced by areas of necrosis and OX1 reactivity was observed in some of the older transplants. Treatment of nursing mothers or of postweaning newborns...... with cyclosporin A did not appear to promote graft survival. Some transplants grew to extremely large proportions and were characterized by bands of cells and bundles of axons as observed using immunohistochemical staining for pig neurofilament. Neurofilament-positive axons projected from several of the grafts...

  12. 靶向Wnt10b的小干扰RNA抑制胚胎皮肤毛囊发育的初步研究%Preliminary study on inhibition of the hair follicle development by siRNA targeting Wnt10b in the cultured rat embryonic skin

    Institute of Scientific and Technical Information of China (English)

    纪影畅; 李宇; 鲁峰; 胡志奇; 王森; 林常敏; 高建华

    2012-01-01

    Objective To investigate whether the suppression of Wnt10b by siRNA could prevent the development of hair follicle in the cultured rat embryonic skin. Methods siRNA-Wnt10b was synthesized by chemosynthesis method.The dorsal skin of SD rat at embryos were cultured in DMEM in the presence of different percentage of interfering RNA targeting Wnt10b. Wnt10b/β-catenin expression was analyzed by real-time PCR everyday and by Western blot on the third day. The cultured embryonic skin underwent paraffin embedding,section,HE staining on the third day,in which the number of de novo hair follicle was calculated and statistically analyzed. Results Wnt10b gene in the cultured embryonic skin could be knocked down with the siRNA-based method.β-catenin mRNA was not greatly influenced by the downregulation of Wnt10b mRNA.The number of de novo hair follicle placode in cultured embryonic skin decreased,along with the downregulation of Wnt10b and β-catenin proteins expression.Conclusions The downregulation of Wnt10b mRNA and protein by siRNA reduces the number of de novo hair follicle placode in the cultured rat embryonic skin.Wnt10b may control cytoplasm β-catenin concentration at the protein level.%目的 利用小干扰RNA(siRNA)抑制皮肤Wnt10b基因的表达,观察Wnt10b基因沉默能否抑制毛囊的发育并探讨其潜在机制.方法 化学合成siRNA-Wnt10b,将siRNA转染体外培养的胎鼠背部皮肤,荧光定量PCR检测转染后不同时间段皮肤组织Wnt10b和p-连环蛋白(β-catenin) mRNA的表达,Western blot检测转染后72 h皮肤组织的Wnt10b和β-catenin蛋白含量.将转染后72 h的皮肤组织石蜡包埋、切片,HE染色,镜下观察各组毛囊发育情况并做统计学处理.结果 siRNA-Wnt10b转染后的24、48 h,胎鼠背部皮肤Wnt10b mRNA的表达呈不同程度下降;但β-catenin mRNA表达未随Wnt10b mRNA水平的起伏而明显波动;转染后72 h,Wnt10b蛋白和β-catenin的蛋白表达同时减少,新形成

  13. The role of culture media on embryonation and subsequent infectivity of Capillaria obsignata eggs.

    Science.gov (United States)

    Tiersch, K M; Daş, G; Samson-Himmelstjerna, G V; Gauly, M

    2013-01-01

    This study investigated whether infectivity of Capillaria obsignata eggs depends on media culture used for embryonation. Intact female worms were kept in one of following four media: 0.5 % formalin, 2 % formalin, 0.1 % potassium dichromate and 0.1 N sulfuric acid. Embryonation rates of the eggs were quantified either daily in intact females for 16 days, or weekly in disrupted females. Infectivity of the embryonated eggs was tested through an experimental infection of chickens with a single dose of 250 eggs/ bird. The vast majority of the eggs (>82 %) in the first two thirds of the uteri was able to complete embryonation, irrespective of the culture media used for incubation. However, only 32.6 % of total eggs could be harvested after disruption of the intact females. Embryonation rates of the eggs from disrupted worms were different among four culture media, with 0.1 N sulfuric acid resulting in the highest embryonation rate (44.2 %). All the experimentally infected birds harboured mature worms, with varying establishment rates depending on the culture media (P media. However, disruption of the intact females results in lower number of harvestable embryonated eggs, with a considerable variation due to culture media used. With the exception of 0.1 % potassium dichromate, any of the three media, particularly 0.1 N sulfuric acid, can be suggested for embryonation of C. obsignata eggs.

  14. Contested embryonic culture in Japan--public discussion, and human embryonic stem cell research in an aging welfare society.

    Science.gov (United States)

    Sleeboom-Faulkner, Margaret

    2010-01-01

    This article explores the reasons for the lack of a broad discussion on bioethical regulation of human embryonic stem cell research (hESR) in Japan and asks why scientists experience difficulties accessing resources for hESR despite the acclaimed indifference of dominant Japanese culture to embryo research. The article shows how various social actors express their views on the embryo and oocyte donation in terms of dominant Japanese culture, foiled against what is regarded as Western culture. Second, it shows how the lack of concern with hESR should be understood in the context of public health policies and communications and bioethics decision making in Japan. Finally, it interprets the meaning of the embryo in the context of Japan as an aging modern welfare society, explaining how policymakers have come to emphasize the urgency of infertility problems over issues around abortion and embryonic life.

  15. Effects of exposing rat embryos in utero to physical or chemical teratogens are expressed later as enhanced induction of heat-shock proteins when embryonic hearts are cultured in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Higo, H.; Higo, K.; Lee, J.Y.; Hori, H.; Satow, Y.

    1988-01-01

    In order to get more insight into the effects of teratogens on developing embryos, we investigated the protein synthesis patterns of the target organs isolated from teratogen-treated embryos. Rat embryos were either irradiated in utero with either 252Cf fission neutrons or 60Co gamma rays on day 8 of gestation or treated in utero with a bis(dichloroacetyl)diamine (a chemical teratogen) on days 9 and 10. Hearts were removed from the embryos on day 12 and were incubated in vitro at 37 degrees C in the presence of (35S)methionine for up to 8 hr. The newly synthesized labeled proteins were then analyzed qualitatively by two-dimensional polyacrylamide gel electrophoresis. Enhanced and prolonged induction of a family of heat-shock (stress) proteins with a molecular weight of about 70,000 (SP70s) was observed as compared with those of controls. Among the teratogen-treated hearts, those with gross malformations already detectable at this early stage showed especially higher inductions of SP70s than did the others. The abnormal expression of SP70s observed in the present study appears to be a reflection of persisting cellular (tissue) damage inflicted by the teratogens, and the extent of the induction may be indicative of the degree and/or type of the damage. Such persisting defects in surviving cells, manifested by abnormal induction of SP70s in the present study, might be related to malformation of embryonic hearts.

  16. Differences in nutrient uptake between the fat body and embryonic primary cultures of silkworm (Bombyx mori)

    Institute of Scientific and Technical Information of China (English)

    LEILA MATINDOOST; JALAL J. SENDI; HOORIEH SOLEIMAN JAHI; KAYVAN ETEBARI

    2006-01-01

    Nutrition utilization and by-product formation in cultured insect cells has been investigated in several insect cells and has been of great interest to cell culturists and physiologists. In this research the biochemical changes in embryonic and fat body primary cultures of silkworm, Bombyx mori, have been compared. TC-100 medium supplemented with 10% and 20% FBS was used in embryonic and fat body primary cultures, respectively.Medium was renewed every week and the amount of glucose, uric acid, urea, total protein and alkaline phosphatase were measured in the samples from medium of primary cultures using spectrophotometeric methods. All biochemical macromolecules except uric acid showed significant changes. Glucose decreased in embryonic tissues, while in fat body culture its amount increased. Urea accumulation in embryonic culture was higher than in the fat body cultures. Since urea is a by-product, this accumulation could be due to higher utilization of amino acids. Total protein showed considerable changes and was consumed by embryonic culture more than the fat body' s. Alkaline phosphatase showed stronger activity in embryonic cells.

  17. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs.

    Science.gov (United States)

    Chen, Wenchuan; Liu, Xian; Chen, Qianmin; Bao, Chongyun; Zhao, Liang; Zhu, Zhimin; Xu, Hockin H K

    2017-01-18

    Angiogenesis is a limiting factor in regenerating large bone defects. The objective of this study was to investigate angiogenic and osteogenic effects of co-culture on calcium phosphate cement (CPC) scaffold using human umbilical vein endothelial cells (hUVECs) and mesenchymal stem cells (MSCs) from different origins for the first time. hUVECs were co-cultured with four types of cell: human umbilical cord MSCs (hUCMSCs), human bone marrow MSCs (hBMSCs) and MSCs from induced pluripotent stem cells (hiPSC-MSCs) and embryonic stem cells (hESC-MSCs). Constructs were implanted in 8 mm cranial defects of rats for 12 weeks. CPC without cells served as control 1. CPC with hBMSCs served as control 2. Microcapillary-like structures were successfully formed on CPC in vitro in all four co-cultured groups. Microcapillary lengths increased with time (p cultured cells increased with time (p cultured groups were much greater than controls (p animal study. hUVECs co-cultured with hUCMSCs, hiPSC-MSCs and hESC-MSCs achieved new bone and vessel density similar to hUVECs co-cultured with hBMSCs (p > 0.1). Therefore, hUCMSCs, hiPSC-MSCs and hESC-MSCs could serve as alternative cell sources to hBMSCs, which require an invasive procedure to harvest. In conclusion, this study showed for the first time that co-cultures of hUVECs with hUCMSCs, hiPSC-MSCs, hESC-MSCs and hBMSCs delivered via CPC scaffold achieved excellent osteogenic and angiogenic capabilities in vivo. The novel co-culture constructs are promising for bone reconstruction with improved angiogenesis for craniofacial/orthopaedic applications. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Effects of nanostructures and mouse embryonic stem cells on in vitro morphogenesis of rat testicular cords.

    Science.gov (United States)

    Pan, Fei; Chi, Lifeng; Schlatt, Stefan

    2013-01-01

    Morphogenesis of tubular structures is a common event during embryonic development. The signals providing cells with topographical cues to define a cord axis and to form new compartments surrounded by a basement membrane are poorly understood. Male gonadal differentiation is a late event during organogenesis and continues into postnatal life. The cellular changes resemble the mechanisms during embryonic life leading to tubular structures in other organs. Testicular cord formation is dependent on and first recognized by SRY-dependent aggregation of Sertoli cells leading to the appearance of testis-specific cord-like structures. Here we explored whether testicular cells use topographical cues in the form of nanostructures to direct or stimulate cord formation and whether embryonic stem cells (ES) or soluble factors released from those cells have an impact on this process. Using primary cell cultures of immature rats we first revealed that variable nanogratings exerted effects on peritubular cells and on Sertoli cells (at less than cells/mm(2)) by aligning the cell bodies towards the direction of the nanogratings. After two weeks of culture testicular cells assembled into a network of cord-like structures. We revealed that Sertoli cells actively migrate towards existing clusters. Contractions of peritubular cells lead to the transformation of isolated clusters into cord-like structures. The addition of mouse ES cells or conditioned medium from ES cells accelerated this process. Our studies show that epithelial (Sertoli cell) and mesenchymal (peritubular cells) cells crosstalk and orchestrate the formation of cords in response to physical features of the underlying matrix as well as secretory factors from ES cells. We consider these data on testicular morphogenesis relevant for the better understanding of mechanisms in cord formation also in other organs which may help to create optimized in vitro tools for artificial organogenesis.

  19. Dimethadione embryotoxicity in the rat is neither correlated with maternal systemic drug concentrations nor embryonic tissue levels.

    Science.gov (United States)

    Ozolinš, Terence R S; Weston, Andrea D; Perretta, Anthony; Thomson, Jason J; Brown, Nigel A

    2015-11-15

    Pregnant rats treated with dimethadione (DMO), the N-demethylated metabolite of the anticonvulsant trimethadione, produce offspring having a 74% incidence of congenital heart defects (CHD); however, the incidence of CHD has high inter-litter variability (40-100%) that presents a challenge when studying the initiating events prior to the presentation of an abnormal phenotype. We hypothesized that the variability in CHD incidence was the result of differences in maternal systemic concentrations or embryonic tissue concentrations of DMO. To test this hypothesis, dams were administered 300 mg/kg DMO every 12h from the evening of gestational day (GD) 8 until the morning of GD 11 (six total doses). Maternal serum levels of DMO were assessed on GD 11, 12, 13, 14, 15, 18 and 21. Embryonic tissue concentrations of DMO were assessed on GD 11, 12, 13 and 14. In a separate cohort of GD 12 embryos, DMO concentrations and parameters of growth and development were assessed to determine if tissue levels of DMO were correlated with these endpoints. Embryos were exposed directly to different concentrations of DMO with whole embryo culture (WEC) and their growth and development assessed. Key findings were that neither maternal systemic concentrations nor tissue concentrations of DMO identified embryos that were sensitive or resistant to DMO in vivo. Direct exposure of embryos to DMO via WEC also failed to show correlations between embryonic concentrations of DMO with developmental outcomes in vitro. We conclude that neither maternal serum nor embryonic tissue concentrations of DMO predict embryonic outcome.

  20. In vitro culture of embryonic hearts from guppy fish (Poecilia reticulata )

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Forty embryonic hearts were taken out byanatomical needle from denuded embryos of the ovovivipar ity guppy fish that were dechorioned by mechanic method or by trypsin digestion, and were in vitro cultured. In the cul tured hearts, 80% have maintained beating in vitro for 4weeks, and the longest record for beating was 142 d. Owing to fish embryo transparency, beating frequency and blood color changes are easily viewed from the embryonic hearts under a dissecting microscope. The current study established the in vitro culture method of embryonic hearts in guppy fish,which can be used as a model for the study of heart and car diovascular system in vertebrates.

  1. Spaceflight effects on cultured embryonic chick bone cells

    Science.gov (United States)

    Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.

    2000-01-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the

  2. The role of apoptosis in early embryonic development of the adenohypophysis in rats

    OpenAIRE

    Gedrange Tomas; Kleinheinz Johannes; Driemel Oliver; Faltermeier Andreas; Lotz Kristina; Weingärtner Jens; Proff Peter

    2008-01-01

    Abstract Background Apoptosis is involved in fundamental processes of life, like embryonic development, tissue homeostasis, or immune defense. Defects in apoptosis cause or contribute to developmental malformation, cancer, and degenerative disorders. Methods The developing adenohypophysis area of rat fetuses was studied at the embryonic stage 13.5 (gestational day) for apoptotic and proliferative cell activities using histological serial sections. Results A high cell proliferation rate was ob...

  3. AN EMBRYONIC CHICK PANCREAS ORGAN CULTURE MODEL: CHARACTERIZATION AND NEURAL CONTROL OF EXOCRINE RELEASE

    Science.gov (United States)

    An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...

  4. AN EMBRYONIC CHICK PANCREAS ORGAN CULTURE MODEL: CHARACTERIZATION AND NEURAL CONTROL OF EXOCRINE RELEASE

    Science.gov (United States)

    An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...

  5. Embryonic mouse STO cell-derived xenografts express hepatocytic functions in the livers of nonimmunosuppressed adult rats.

    Science.gov (United States)

    Zhang, Mingjun; Joseph, Brigid; Gupta, Sanjeev; Guest, I; Xu, Meng; Sell, Stewart; Son, Kyung-Hwa; Koch, Katherine S; Leffert, Hyam L

    2005-02-01

    Cells derived from embryonic mouse STO cell lines differentiate into hepatocytes when transplanted into the livers of nonimmunosuppressed dipeptidylpeptidase IV (DPPIV)-negative F344 rats. Within 1 day after intrasplenic injection, donor cells moved rapidly into the liver and were found in intravascular and perivascular sites; by 1 month, they were intrasinusoidal and also integrated into hepatic plates with approximately 2% efficiency and formed conjoint bile canaliculi. Neither donor cell proliferation nor host inflammatory responses were observed during this time. Detection of intrahepatic mouse COX1 mitochondrial DNA and mouse albumin mRNA in recipient rats indicated survival and differentiation of donor cells for at least 3 months. Mouse COX1 targets were also detected intrahepatically 4-9 weeks after STO cell injection into nonimmunosuppressed wild-type rats. In contrast to STO-transplanted rats, mouse DNA or RNA was not detectable in untreated or mock-transplanted rats or in rats injected with donor cell DNA. In cultured STO donor cells, DPPIV and glucose-6-phosphatase activities were observed in small clusters; in contrast, mouse major histocompatibility complex class I H-2Kq, H-2Dq, and H-2Lq and class II I-Aq markers were undetectable in vitro before or after interferon gamma treatment. Together with H-2K allele typing, which confirmed the Swiss mouse origin of the donor cells, these observations indicate that mouse-derived STO cell lines can differentiate along hepatocytic lineage and engraft into rat liver across major histocompatibility barriers.

  6. Culture of cryopreserved rat hepatocyte

    Institute of Scientific and Technical Information of China (English)

    Haitao Yin; Gaojun Teng; Lifeng Wang; Baorui Liu; Xiaoping Qian

    2006-01-01

    Objective: To study the method of cryopreserving rat hepatocytes and double collagen gel culture measurement after its cryopreservation. Methods: Rat hepatocytes, isolated by two-step perfusion with collagenase using an extra corporeal perfusion apparatus, were cryopreserved in double collagen gel with culture medium added by epidermal growth factor(EGF).The expression of cell function and cellular morphology were examined during culture. Results: The hepatocytes cryopreserved in double collagen gel concluding EGF showed good morphology and biological characteristics. After thawing, the MTT metabolism and protein synthesis of hepatocytes in sandwich ± EGF groups were better than those in control group. And the morphology and function of hepatocytes in sandwich group was better than that in EGF group(P < 0.05). Conclusion: Double collagen gel culture can keep hepatocyte's activities. Thawed hepatocytes can be cultivated with collagenous matrix, which provides an environment that more closely resembles that in vivo and maintain the expression of certain liver-specific function of hepatocytes.

  7. Effects of Silver Nanoparticles on Human and Rat Embryonic Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Fang eLiu

    2015-04-01

    Full Text Available Silver nano-particles (Ag-NPs are becoming increasingly prevalent in consumer products as antibacterial agents. The increased use of Ag NP-enhanced products will almost certainly increase environmental silver levels, resulting in increased exposures and the potential for increased adverse reactions including neurotoxic effects. In the present study, embryonic neural stem cells (NSCs from human and rat fetuses (gestational day-16 were used to determine whether Ag-NPs are capable of causing developmental neurotoxicity. The NSCs were cultured in serum free medium supplemented with appropriate growth factors. On the eighth day in vitro (DIV 8, the cells were exposed to Ag-NPs at concentrations of 1, 5, 10, and 20 µg/ml for 24 hours. The cultured cells then were characterized by NSC markers including nestin and SOX2 and a variety of assays were utilized to determine the effects of Ag-NPs on NSC proliferation and viability and the underlying mechanisms associated with these effects. The results indicate that mitochondrial viability (MTT metabolism was substantially attenuated and LDH release was increased significantly in a dose-dependent manner. Ag-NPs-induced neurotoxicity was further confirmed by up-regulated Bax protein expression, an increased number of TUNEL-positively stained cells, and elevated reactive oxygen species (ROS. NSC proliferation was also significantly decreased by Ag-NPs. Co-administration of acetyl-L-carnitine, an antioxidant agent, effectively blocked the adverse effects associated with Ag-NP exposure.

  8. Teratological research using in vitro systems. III. Embryonic organs in culture.

    OpenAIRE

    Whitby, K E

    1987-01-01

    A search of literature published through the spring of 1986 yielded approximately 95 citations for the following embryonic organs in culture: kidney, pancreas, skin, palate, craniofacial tissue, tooth, lens, bones, digits, and liver. However, only the in vitro organ culture of the palate and tooth are reviewed in this paper. The other organ culture systems were not reported as teratogenic screens. Although some organs may have the potential for such use, many are currently used for evaluation...

  9. Transplantation of embryonic porcine neocortical tissue into newborn rats

    DEFF Research Database (Denmark)

    Castro, Anthony J; Meyer, Morten; Møller Dall, Annette

    2003-01-01

    Several previous studies, suggesting the potential use of embryonic xenografts in the treatment of neurological disorders, indicate that neural growth and axonal guidance factors may function across species. In this light, blocks of fetal porcine neocortex were grafted into small cortical lesion...

  10. A Low Ethanol Dose Affects all Types of Cells in Mixed Long-Term Embryonic Cultures of the Cerebellum

    DEFF Research Database (Denmark)

    Pickering, Chris; Wicher, Grzegorz; Rosendahl, Sofi

    2010-01-01

    The beneficial effect of the '1-drink-a-day' lifestyle is suggested by studies of cardiovascular health, and this recommendation is increasingly followed in many countries. The main objective of this study was to determine whether this pattern of ethanol use would be detrimental to a pregnant woman....... We exposed a primary culture of rat cerebellum from embryonic day 17 (corresponding to second trimester in humans) to ethanol at a concentration of 17.6 mM which is roughly equivalent to one glass of wine. Acutely, there was no change in cell viability after 5 or 8 days of exposure relative...... to control. By 11 days, a reduction in the number of viable cells was observed without an accompanying change in caspase-3 activity (marker of apoptotic cell death), suggesting changes in cell proliferation. As the proportion of nestin-positive cells was higher in the ethanol-treated cultures after 5 days...

  11. Rapid and Cost-Effective Gene Targeting in Rat Embryonic Stem Cells by TALENs

    Institute of Scientific and Technical Information of China (English)

    Chang Tong; Guanyi Huang; Charles Ashton; Hongping Wu; Hexin Yan; Qi-Long Ying

    2012-01-01

    The rat is the preferred animal model in many areas of biomedical research and drug development.Genetic manipulation in rats has lagged behind that in mice due to the lack of efficient gene targeting tools.Previously,we generated a knockout rat via conventional homologous recombination in rat embryonic stem (ES) cells.Here,we show that efficient gene targeting in rat ES cells can be achieved quickly through transcription activator-like effector nuclease (TALEN)-mediated DNA double-strand breaks.Using the Golden Gate cloning technique,we constructed a pair of TALEN targeting vectors for the gene of interest in 5 days.After gene transfection,the targeted rat ES cell colonies were isolated,screened,and confirmed by PCR without the need of drug selection.Our results suggest that TALEN-mediated gene targeting is a superior means of establishing genetically modified rat ES cell lines with high efficiency and short turnaround time.

  12. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A;

    2016-01-01

    Embryonic stem cells (ESCs) are cell lines derived from the mammalian pre-implantation embryo. Here we assess the impact of derivation and culture conditions on both functional potency and ESC transcriptional identity. Individual ESCs cultured in either two small-molecule inhibitors (2i....... Conversely, the transcriptome of serum-cultured ESCs correlated with later stages of development (E4.5), at which point embryonic cells are more restricted in their developmental potential. Thus, ESC culture systems are not equivalent, but support cell types that resemble distinct developmental stages. Cells......) or with knockout serum replacement (KOSR), but not serum, can generate high-level chimeras regardless of how these cells were derived. ESCs cultured in these conditions showed a transcriptional correlation with early pre-implantation embryos (E1.5-E3.5) and contributed to development from the 2-cell stage...

  13. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A

    2016-01-01

    Embryonic stem cells (ESCs) are cell lines derived from the mammalian pre-implantation embryo. Here we assess the impact of derivation and culture conditions on both functional potency and ESC transcriptional identity. Individual ESCs cultured in either two small-molecule inhibitors (2i....... Conversely, the transcriptome of serum-cultured ESCs correlated with later stages of development (E4.5), at which point embryonic cells are more restricted in their developmental potential. Thus, ESC culture systems are not equivalent, but support cell types that resemble distinct developmental stages. Cells......) or with knockout serum replacement (KOSR), but not serum, can generate high-level chimeras regardless of how these cells were derived. ESCs cultured in these conditions showed a transcriptional correlation with early pre-implantation embryos (E1.5-E3.5) and contributed to development from the 2-cell stage...

  14. Cryopreserved hepatic progenitor cells derived from human embryonic stem cells can arrest progression of liver fibrosis in rats.

    Science.gov (United States)

    Mandal, Arundhati; Raju, Sheena; Viswanathan, Chandra

    2016-10-01

    Hepatocytes generated from human embryonic stem cells (hESCs) are considered to be an excellent candidate for restoring the liver function deficiencies. We have earlier standardized a three-step differentiation protocol to generate functional hepatocyte-like cells (HLCs) from hESCs, which expressed the major hepatic markers. We have also found that the HLCs remain stable and functional even after extended period of in vitro culture and cryopreservation. In the present study, we have aimed to investigate the therapeutic potential of cryopreserved-thawed hESC-derived hepatic progenitor cells following transplantation in carbon tetrachloride-induced fibrotic rat livers. Significant therapeutic effects, including improved hepatic histology and normal serum biochemistry of hepatic enzymes along with increased survival rate, were observed in the cell transplanted rats. This result is an encouraging indication to develop methods for clinical application of hESC-derived hepatic lineage cells.

  15. The culture of human embryonic stem cells in microchannel perfusion bioreactors

    Science.gov (United States)

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri; Levenberg, Shulamit

    2007-12-01

    The culture of human Embryonic Stem (ES) cells in microchannel bioreactors can be highly beneficial for ES cell biology studies and ES tissue engineering applications. In the present study we examine the use of Human Foreskin Fibroblasts (HFF) cells as feeder cells for human ES culture in a microchannel perfusion bioreactor. PDMS microchannels (depth:130 micron) were fabricated using conventional soft-lithography techniques. The channels were sterilized, coated with a human fibronectin solution and seeded with cells. Following a period of static incubation, culture medium was perfused through the channels at various flow rates and cell growth was monitored throughout the culture process. Mass transport and fluid mechanics models were used to evaluate the culture conditions (shear stress, oxygen levels within the micro-bioreactor as a function of the medium flow rate. The conditions for successful long-term culture (>7 days) of HFF under flow were established. Experiments with human embryonic stem cells cultured in microchannels show that the conditions essential to co-culture human ES cell on HFF cells under perfusion differ from the conditions necessary for HFF cell culture. Human ES cells were found to be highly sensitive to flow and culture conditions and did not grow under flow rates which were suitable for HFF long-term culture. Successful culture of undifferentiated human ES cell colonies in a perfusion micro-bioreactor is a basic step towards utilizing microfluidic techniques to explore stem cell biology.

  16. Genomic instability of human embryonic stem cell lines using different passaging culture methods.

    Science.gov (United States)

    Tosca, Lucie; Feraud, Olivier; Magniez, Aurélie; Bas, Cécile; Griscelli, Frank; Bennaceur-Griscelli, Annelise; Tachdjian, Gérard

    2015-01-01

    Human embryonic stem cells exhibit genomic instability that can be related to culture duration or to the passaging methods used for cell dissociation. In order to study the impact of cell dissociation techniques on human embryonic stem cells genomic instability, we cultured H1 and H9 human embryonic stem cells lines using mechanical/manual or enzymatic/collagenase-IV dissociation methods. Genomic instability was evaluated at early (p60) passages by using oligonucleotide based array-comparative genomic hybridization 105 K with a mean resolution of 50 Kb. DNA variations were mainly located on subtelomeric and pericentromeric regions with sizes <100 Kb. In this study, 9 recurrent genomic variations were acquired during culture including the well known duplication 20q11.21. When comparing cell dissociation methods, we found no significant differences between DNA variations number and size, DNA gain or DNA loss frequencies, homozygous loss frequencies and no significant difference on the content of genes involved in development, cell cycle tumorigenesis and syndrome disease. In addition, we have never found any malignant tissue in 4 different teratoma representative of the two independent stem cell lines. These results show that the occurrence of genomic instability in human embryonic stem cells is similar using mechanical or collagenase IV-based enzymatic cell culture dissociation methods. All the observed genomic variations have no impact on the development of malignancy.

  17. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    Science.gov (United States)

    Morgani, Sophie M.; Canham, Maurice A.; Nichols, Jennifer; Sharov, Alexei A.; Migueles, Rosa Portero; Ko, Minoru S.H.; Brickman, Joshua M.

    2013-01-01

    Summary Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought to represent an embryonically restricted ground state. However, we observed heterogeneous expression of the extraembryonic endoderm marker Hex in 2i-cultured embryos, suggesting that 2i blocked development prior to epiblast commitment. Similarly, 2i ESC cultures were heterogeneous and contained a Hex-positive fraction primed to differentiate into trophoblast and extraembryonic endoderm. Single Hex-positive ESCs coexpressed epiblast and extraembryonic genes and contributed to all lineages in chimeras. The cytokine LIF, necessary for ESC self-renewal, supported the expansion of this population but did not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants. PMID:23746443

  18. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    Directory of Open Access Journals (Sweden)

    Sophie M. Morgani

    2013-06-01

    Full Text Available Embryonic stem cells (ESCs are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i are thought to represent an embryonically restricted ground state. However, we observed heterogeneous expression of the extraembryonic endoderm marker Hex in 2i-cultured embryos, suggesting that 2i blocked development prior to epiblast commitment. Similarly, 2i ESC cultures were heterogeneous and contained a Hex-positive fraction primed to differentiate into trophoblast and extraembryonic endoderm. Single Hex-positive ESCs coexpressed epiblast and extraembryonic genes and contributed to all lineages in chimeras. The cytokine LIF, necessary for ESC self-renewal, supported the expansion of this population but did not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants.

  19. Maintenance of human embryonic stem cells in animal serum- and feeder layer-free culture conditions.

    Science.gov (United States)

    Amit, Michal; Itskovitz-Eldor, Joseph

    2006-01-01

    The availability of human embryonic stem cells (hESCs) reflects their outstanding potential for research areas such as human developmental biology, teratology, and cell-based therapies. To allow their continuous growth as undifferentiated cells, isolation and culturing were traditionally conducted on mouse embryonic fibroblast feeder layers, using medium supplemented with fetal bovine serum. However, these conditions allow possible exposure of the cells to animal pathogens. Because both research and future clinical application require an animal-free and well-defined culture system for hESCs, these conventional conditions would prevent the use of hESCs in human therapy. This chapter describes optional culture conditions based on either animal-free or feeder-free culture methods for hESCs.

  20. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification.

    Science.gov (United States)

    Braam, Stefan R; Denning, Chris; Matsa, Elena; Young, Lorraine E; Passier, Robert; Mummery, Christine L

    2008-01-01

    Realizing the potential of human embryonic stem cells (hESCs) in research and commercial applications requires generic protocols for culture, expansion and genetic modification that function between multiple lines. Here we describe a feeder-free hESC culture protocol that was tested in 13 independent hESC lines derived in five different laboratories. The procedure is based on Matrigel adaptation in mouse embryonic fibroblast conditioned medium (CM) followed by monolayer culture of hESC. When combined, these techniques provide a robust hESC culture platform, suitable for high-efficiency genetic modification via plasmid transfection (using lipofection or electroporation), siRNA knockdown and viral transduction. In contrast to other available protocols, it does not require optimization for individual lines. hESC transiently expressing ectopic genes are obtained within 9 d and stable transgenic lines within 3 weeks.

  1. Oxidative stress status and placental implications in diabetic rats undergoing swimming exercise after embryonic implantation.

    Science.gov (United States)

    Volpato, Gustavo Tadeu; Damasceno, Débora Cristina; Sinzato, Yuri Karen; Ribeiro, Viviane Maria; Rudge, Marilza Vieira Cunha; Calderon, Iracema Mattos Paranhos

    2015-05-01

    The potential benefits and risks of physical exercise on fetal development during pregnancy remain unclear. The aim was to analyze maternal oxidative stress status and the placental morphometry to relate to intrauterine growth restriction (IUGR) from diabetic female rats submitted to swimming program after embryonic implantation. Pregnant Wistar rats were distributed into 4 groups (11 animals/group): control-nondiabetic sedentary rats, control exercised-nondiabetic exercised rats, diabetic-diabetic sedentary rats, and diabetic exercised-diabetic exercised rats. A swimming program was used as an exercise model. At the end of pregnancy, the maternal oxidative stress status, placental morphology, and fetal weight were analyzed. The swimming program was not efficient to reduce the hyperglycemia-induced oxidative stress. This fact impaired placental development, resulting in altered blood flow and energy reserves, which contributed to a deficient exchange of nutrients and oxygen for the fetal development, leading to IUGR. © The Author(s) 2014.

  2. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells.

    OpenAIRE

    Nagy, A.; Rossant, J.; Nagy, R.; Abramow-Newerly, W; Roder, J C

    1993-01-01

    Several newly generated mouse embryonic stem (ES) cell lines were tested for their ability to produce completely ES cell-derived mice at early passage numbers by ES cell tetraploid embryo aggregation. One line, designated R1, produced live offspring which were completely ES cell-derived as judged by isoenzyme analysis and coat color. These cell culture-derived animals were normal, viable, and fertile. However, prolonged in vitro culture negatively affected this initial totipotency of R1, and...

  3. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    Science.gov (United States)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  4. Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation is Essential for Functional Regeneration

    Directory of Open Access Journals (Sweden)

    Anne Tscherter

    2016-09-01

    Full Text Available Presently there exists no cure for spinal cord injury. However, transplantation of embryonic tissue into spinal cord lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated spinal cord circuits. We tested the two hypotheses in an in vitro spinal cord lesion model that is based on propagation of activity between two rat organotypic spinal cord slices in culture. Transplantation of dissociated cells from E14 rat spinal cord or forebrain re-established the relay of activity over the lesion site and, thus, provoked functional regeneration. Combining patch-clamp recordings from transplanted cells with network activity measurements from the host tissue on multi-electrode arrays we here show that neurons differentiate from the grafted cells and integrate into the host circuits. Optogenetic silencing of neurons developed from transplanted embryonic mouse forebrain cells provides clear evidence that they replace the lost neuronal connections to relay and synchronize activity between the separated spinal cord circuits. In contrast, transplantation of neurospheres induced neither the differentiation of mature neurons from the grafts nor an improvement of functional regeneration. Together these findings suggest, that the formation of neuronal relays from grafted embryonic cells is essential to re-connect segregated spinal cord circuits.

  5. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells.

    Science.gov (United States)

    Akopian, Veronika; Andrews, Peter W; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B; Ludwig, Tenneille E; McKay, Ronald D G; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K W; Pera, Martin F; Rossant, Janet; Stacey, Glyn N; Suemori, Hirofumi

    2010-04-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories.

  6. Isolation and culture of neural crest cells from embryonic murine neural tube.

    Science.gov (United States)

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  7. Global expression analysis during late stage of embryonic pancreatic development of rats with microarray technique

    Institute of Scientific and Technical Information of China (English)

    Qingxin Yuan; Chao Liu; Yan Zhong; Cuiping Liu; Li Yuan; Jinyong Zhou; Li-ping Teng; Jingjing Hu; Wei De

    2006-01-01

    Objective: To define gene expression profiles during late stage of embryonic pancreatic development of rats and to find out key genes in rat pancreatic functional development. Methods: Pancreata of rats in embryonic day 15.5(E15.5) and 18.5(E18.5)were dissected under microscope respectively. Genechips from Affymetrix company were applied to study gene expression profiles. Some differentially expressed genes were verified by RT-PCR. Results: Comparing El8.5 to El5.5, 8.3% genes were expressed differently 2-fold above, in which, 50.3% were up-regulated, including transcriptions related to metabolic development and various kinds of enzymes and hormones (both endocrine and exocrine) and 49.7% were down-regulated, including transcriptions related to cell differentiation. The percentage of genes having definite function was 63%, and that of expressed sequence tag(EST) was 37%. The result of RT-PCR is accordant to that of genechips. Conclusion: The metabolic function of rat pancreas may be further accomplished during late stage of embryonic day.

  8. Derivation of Transgene-Free Rat Induced Pluripotent Stem Cells Approximating the Quality of Embryonic Stem Cells.

    Science.gov (United States)

    Li, Shuping; Lan, He; Men, Hongsheng; Wu, Yuanyuan; Li, Ning; Capecchi, Mario R; Bryda, Elizabeth C; Wu, Sen

    2016-09-13

    : Although a variety of reprogramming strategies have been reported to create transgene-free induced pluripotent stem (iPS) cells from differentiated cell sources, a fundamental question still remains: Can we generate safe iPS cells that have the full spectrum of features of corresponding embryonic stem (ES) cells? Studies in transgene-free mouse iPS cells have indicated a positive answer to this question. However, the reality is that no other species have a derived transgene-free iPS cell line that can truly mimic ES cell quality. Specifically, critical data for chimera formation and germline transmission are generally lacking. To date, the rat is the only species, other than the mouse, that has commonly recognized authentic ES cells that can be used for direct comparison with measure features of iPS cells. To help find the underlying reasons of the current inability to derive germline-competent ES/iPS cells in nonrodent animals, we first used optimized culture conditions to isolate and establish rat ES cell lines and demonstrated they are fully competent for chimeric formation and germline transmission. We then used episomal vectors bearing eight reprogramming genes to improve rat iPS (riPS) cell generation from Sprague-Dawley rat embryonic fibroblasts. The obtained transgene-free riPS cells exhibit the typical characteristics of pluripotent stem cells; moreover, they are amenable to subsequent genetic modification by homologous recombination. Although they can contribute significantly to chimeric formation, no germline transmission has been achieved. Although this partial success in achieving competency is encouraging, it suggests that more efforts are still needed to derive ground-state riPS cells. To date, no species other than the mouse have derived transgene-free induced pluripotent stem (iPS) cells that can truly mimic ES cell quality. In the current study, episomal vectors were used to obtain rat transgene-free iPS cells, which contributed to chimeric

  9. Pancreas development ex vivo: culturing embryonic pancreas explants on permeable culture inserts, with fibronectin-coated glass microwells, or embedded in three-dimensional Matrigel™.

    Science.gov (United States)

    Shih, Hung Ping; Sander, Maike

    2014-01-01

    Pancreas development is a complex and dynamic process orchestrated by cellular and molecular events, including morphogenesis and cell differentiation. As a result of recent explorations into possible cell-therapy-based treatments for diabetes, researchers have made significant progress in deciphering the developmental program of pancreas formation. In vitro pancreas organ culture systems provide a valuable tool for exploring the mechanisms of gene regulation, cellular behaviors, and cell differentiation. In this chapter, we review three common techniques for culturing embryonic pancreas explants. Each technique is suitable for different applications. Specifically, culturing embryonic pancreas on culture inserts provides an excellent platform to test the effects of chemical compounds. Conversely, when the embryonic pancreas is cultured in fibronectin-coated glass microwells, the system provides unique culture conditions to monitor organ growth and cellular dynamic events. Lastly, when the embryonic pancreas is embedded in Matrigel, organogenesis can be studied in a three-dimensional environment instead of limiting the analysis to one plane.

  10. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain.

    Directory of Open Access Journals (Sweden)

    Anke Popp

    Full Text Available BACKGROUND: GABA (gamma-aminobutyric acid, the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD. GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. METHODOLOGY/PRINCIPAL FINDINGS: QPCR was used to precisely investigate the postnatal expression level of GAD related mRNAs in cortex, hippocampus, cerebellum, and olfactory bulb of rats from P1 throughout adulthood. Within the first three postnatal weeks the expression of both GAD65 and GAD67 mRNAs reached adult levels in hippocampus, cortex, and cerebellum. The olfactory bulb showed by far the highest expression of GAD65 as well as GAD67 transcripts. Embryonic GAD67 splice variants were still detectable at birth. They continuously declined to barely detectable levels during postnatal development in all investigated regions with exception of a comparatively high expression in the olfactory bulb. Radioactive in situ hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream. CONCLUSIONS/SIGNIFICANCE: Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or

  11. Effect of Qingkailing injection on rat embryonic neuronal apoptosis and mitochondrial membrane potential

    Institute of Scientific and Technical Information of China (English)

    He Pang; Lingqun Zhu; Shuoren Wang; Fuing Niu; Wei Cui

    2006-01-01

    BACKGROUND:The decrease of mitochondrial membrane potential(MMP)is an irreversible marker of neuronal apoptosis during ischemla/reperfusion(I/R)injury of brain tissue.Qingkaiing injection is proved to have protective effect on neuronal ischemic injury.Whether inhibiting the decrease of MMP can inhibit apoptosis when I/R injury of brain tissue occurs is unclear.OBJECTIVE:To observe the effect of Qingkaiing injection on rat embryonic hippocampal neuronal apoptosis,MMP and mitochondroal activity after hypoxia/hypoglycamia and reoxygenation,and make a comparison of therapeutic effect on I/R injury between Oingkaiing injection and nimodipine.DESIGN:Observation and controlled trial.SETTING:Peropheral Vascular Center,Dongzhimen Hospital, Beijing University of Chinese Medicine;the Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing Key Laboratory.Dongzhimen Hospital,Beijing University of Chinese Medicine.MATERIALS:Eight Wistar rats at embryonic 18 days,provided by Breeding Farm of Experimental Animals,Chinese Academy of Medical Sciences(Permission No.SCXK-11-00-0006) were employed in this trial.Qingkaiing injection (Pharmaceutical Factory of Beijing University of Chinese Medicine,Batch No.213710A,10 Ml each,baicalin 50 g and total nitrogen 25 mg included)and nimodipine(ICN company,USA)were also used.METHODS:This experiment was carried out in the Key Laboratory of Chinese Internal Medicine of Ministry of Education,Dongzhimen Hospital,Beijing University of Chinese Medicine and Beijing Key Laboratory from January 2003 to December 2005.①The pregnant rats were anesthetized and fetal rats were isolated for culturong fetal rat hippocampal neurons.The neurons cultured for 10 days were used for expedment.The neurons were divided into 5 groups:model group,control group,nimodipine group.Qingkailing high-dose group and Oingkailing low-dose group.Hypoxia/hypoglycemia and reoxygenation models served as model group,and they were used to simulate reperfusion

  12. Establishment of an exogenous LIF-free culture system for mouse embryonic stem cells.

    Science.gov (United States)

    Feng, Shumei; Mo, Lijuan; Wu, Rongrong; Chen, Xiaopan; Zhang, Ming

    2009-09-01

    Mouse embryonic stem cells (mESCs) have played a key role in the newly emerging fields of stem cell research. The traditional derivation and culture of mESCs have been based on the use of mouse embryonic fibroblasts (MEFs) treated with exogenous leukemia inhibitory factor (LIF). However, the rapid senescence of MEFs, coupled with the high cost of LIF, has significantly hampered the widespread use of mESCs in stem cell research. Thus, we present a novel exogenous LIF-free culture system for general mESCs applications, comprising fibroblast-like cells derived from the rabbit spleen (RSFs). We demonstrated that mESCs cultured on RSFs (mESCs-RSFs) maintained all mESC features after prolonged LIF-free culture, including alkaline phosphatase, cell surface markers (SSEA-1), molecular markers (OCT-4, NANOG, TERT, REX-1), karyotype, and pluripotency. The high expression level of both LIF and WNT3A in the RSFs may account for their ability to maintain mESCs without exogenous LIF. Moreover, this exogenous LIF-free culture system was verified to be of microbiological quality through analysis with electron transmission microscopy.

  13. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se [Department of Pharmaceutical Biosciences, Uppsala University (Sweden); Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma [AstraZeneca R and D Södertälje (Sweden); Cebers, Gvido [AstraZeneca R and D, iMed, 141 Portland Street, Cambridge, MA 02139 (United States); Hellmold, Heike; Gustafson, Anne-Lee [AstraZeneca R and D Södertälje (Sweden); Webster, William S [Department of Anatomy and Histology, University of Sydney (Australia)

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.

  14. A comparative study of protocols for mouse embryonic stem cell culturing.

    Directory of Open Access Journals (Sweden)

    Christoffer Tamm

    Full Text Available Most stem cell laboratories still rely on old culture methods to support the expansion and maintenance of mouse embryonic stem (ES cells. These involve growing cells on mouse embryonic fibroblast feeder cells or on gelatin in media supplemented with fetal bovine serum and leukemia inhibitory factor (LIF. However, these techniques have several drawbacks including the need for feeder-cells and/or use of undefined media containing animal derived components. Culture of stem cells under undefined conditions can induce spontaneous differentiation and reduce reproducibility of experiments. In recent years several new ES cell culture protocols, using more well-defined conditions, have been published and we have compared the standard culture protocols with two of the newly described ones: 1 growing cells in semi-adherence in a medium containing two small molecule inhibitors (CHIR99021, PD0325901 and; 2 growing cells in a spheroid suspension culture in a defined medium containing LIF and bFGF. Two feeder-dependent mouse ES (mES cell lines and two cell lines adapted to feeder-independent growth were used in the study. The overall aim has not only been to compare self-renewal and differentiation capacity, but also ease-of-use and cost efficiency. We show that mES cells when grown adherently proliferate much faster than when grown in suspension as free-floating spheres, independent of media used. Although all the tested culture protocols could maintain sustained pluripotency after prolonged culturing, our data confirm previous reports showing that the media containing two chemical inhibitors generate more pure stem cell cultures with negligible signs of spontaneous differentiation as compared to standard mES media. Furthermore, we show that this medium effectively rescues and cleans up cultures that have started to deteriorate, as well as allow for effective adaption of feeder-dependent mES cell lines to be maintained in feeder-free conditions.

  15. Improved Isolation and Culture of Embryonic Stem Cells from Chinese Miniature Pig

    Institute of Scientific and Technical Information of China (English)

    MingLI; WeiMA; YiHOU; Xiao-FangSUN; Qing-YuanSUN; Wei-HuaWANG

    2005-01-01

    Pigs serve as a better research model for human beings than other species. The Chinese laboratory miniature pig is a new laboratory animal and is expected to be applicable in many medical research fields. This study was to establish effective technologies to isolate and culture ES cells in Chinese miniature pigs. For isolation of the inner cell mass from blastocysts, an enzyme-digestive method was compared with the traditional immunosurgery. Isolated ICM were cultured in three feeder cell layers: mouse embryonic fibroblasts (MEF), porcine embryonic fibroblasts (PEF) and a continuous cell line of mouse embryonic fibroblasts (STO). Microtubule activity of the three feeder cells was further examined by immunofluorescence. ICM were successfully isolated from 85% of blastocysts by the enzyme-digestive method, compared to only 40% by immunosurgery. When ICM were cultured in three feeder layers for two to three days, 75%, 65% and 20% of ICMs formed primary cell colonies in MEF, PEF and STO, respectively. Colonies were also formed during subcultures after 9, 5 and 1 passage in MEF, PEF and STO, respectively. Microtubules in STO cells were significantly fewer than those in MEF and PEF. When the ES-like cells were cultured in a differentiation medium,they differentiated to neuron-like cells and other types of cells. These results indicate that healthier ICM can be obtained with the enzyme-digestive method. Successful culture of ICM to ES-like cells has been achieved not only in MEF, but also in homologous (pig) feeder layer. The ES cells obtained in the present study were pluripotent.

  16. Pathway for interferon-gamma to promote the differentiation of cholinergic neurons in rat embryonic basal forebrain/septal nuclei

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: The supernatant of interferon-gamma (IFN γ ) co-cultured with neonatal rat cortical glia can promote the cells in embryonic basal forebrain/septal nuclei to differentiate into cholinergic neurons, but the mechanism is still unclear.OBJECTIVE: To analyze the pathways for IFN γ to promote the differentiation of primarily cultured cholinergic neurons in rat embryonic basal forebrain/septal nuclei through culture in different conditioned medium.DESIGN: A controlled experiment taking cells as the observational target.SETTINGS: Department of Biochemistry and Molecular Biology, Youjiang Medical College for Nationalities; Department of Cell Biology, Beijing University Health Science Center.MATERIALS: Sixty-four pregnant Wistar rats for 16 days (250 - 350 g) and 84 Wistar rats (either male or female, 5 - 7 g) of 0 - 1 day after birth were provided by the experimental animal department of Beijing University Health Science Center. Rat IFN γ were provided by Gibco Company; Glial fibrillary acidic protein by Huamei Company.METHODS: The experiments were carried out in the Department of Cell Biology, Beijing University Health Science Center and Daheng Image Company of Chinese Academy of Science from July 1995 to December 2002. ① Interventions: The nerve cells in the basal forebrain/septal nuclei of the pregnant Wistar rats for 16 days were primarily cultured, and then divided into four groups: Blank control group (not any supernatant and medium was added); Control group (added by mixed glial cell or astrocyte conditioned medium); IFN γ group (added by mixed glial cell or astrocyte conditioned medium+IFN γ ). Antibody group (added by mixed glial cell or astrocyte conditioned medium+IFN γ +Ab-IFN γ ). Mixed glial cell or astrocyte conditioned medium was prepared using cerebral cortex of Wistar rats of 0 - 1 day after birth. ② Evaluation: The immunohistochemical method was used to perform the choline acetyltransferase (ChAT) staining of cholinergic neurons

  17. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  18. Derivation and characterization of human embryonic germ cells: serum-free culture and differentiation potential.

    Science.gov (United States)

    Hua, Jinlian; Yu, Haisheng; Liu, Sheng; Dou, Zhongying; Sun, Yadong; Jing, Xiaoqi; Yang, Chunrong; Lei, Anmin; Wang, Huayan; Gao, Zhimin

    2009-08-01

    This study examined the effects of a chemically defined culture medium supplement, knock-out serum replacement (KSR), on the growth and differentiation of human embryonic germ cells (hEgc) and found that the efficiency of the initial establishment of hEGC lines in KSR medium was significantly higher than in fetal calf serum (FCS) medium. The percentage of undifferentiated hEGC colonies growing in KSR medium was significantly higher than in FCS-based medium (P embryonic germ cell-like morphology. They showed normal and stable diploid karyotype and expressed alkaline phosphatase (AP), stage-specific embryonic antigens (SSEA) and other specific markers of pluripotent cells. In addition, hEGC could form simple and cystic embryoid bodies (EB) that consisted of various cell types including neural, epithelial and rhythmically beating cardiac cells, even sperm-like and oocyte-like cells. Tumour-like outgrowths were formed in nude mice and found to contain a variety of cell types, including uterine epithelium, adipocytes, squamous tissue and skin structures. In conclusion, an appropriate serum-free culture system has been developed for the establishment of hEGC lines. This may provide an in-vitro model to study differentiation and can be used as a potential source of therapy for infertility and regenerative medicine.

  19. Ability of tetraploid rat blastocysts to support fetal development after complementation with embryonic stem cells.

    Science.gov (United States)

    Hirabayashi, Masumi; Tamura, Chihiro; Sanbo, Makoto; Goto, Teppei; Kato-Itoh, Megumi; Kobayashi, Toshihiro; Nakauchi, Hiromitsu; Hochi, Shinichi

    2012-06-01

    This study was undertaken to generate rat offspring via tetraploid blastocyst complementation with embryonic stem (ES) cells. Tetraploid blastocysts were prepared by electrofusion of blastomeres from two-cell stage embryos, and subsequent in vivo culture for 4 days. Microinjection into the tetraploid blastocoel of an inner cell mass isolated by immunosurgery resulted in the generation of rat offspring, suggesting the successful contribution of tetraploid blastocysts to their placenta. Tetraploid blastocyst complementation was attempted with a total of 4 ES cell lines (2 lines of female karyotype and 2 lines of male karyotype). In the rESWIv-3i-5 (XX) cell line, normal-sized fetuses with heartbeats were harvested on E11.5 (12.1%), E12.5 (9.5%), and E13.5 (9.1%), but no viable fetuses were detected on E14.5. Similarly, use of the rESWIv-3i-1 (XX) cell line resulted in no viable fetus production on E14.5. Using the rESBLK2i-1 (XY) cell line, viable fetuses were harvested not only on E11.5-E13.5 (2.6-5.5%), but also on E14.5 (3.0%). The transfer of a total of 487 tetraploid blastocysts complemented with rESBLK2i-1 cells resulted in 256 implantation sites (52.6%) on E21.5, but no viable offspring was detected. Use of the rESBLK2i-1/huKO (XY) cell line also resulted in no viable offspring production on E21.5. Analyses of the methylation pattern in differentially methylated regions and transcript level of genes that are imprinted in mice (H19, Meg3, Igf2r, Peg5, and Peg10) in the E14.5 conceptuses indicated a marked difference between the ES cell-derived and control normal fetuses, but not between the tetraploid and control diploid placenta.

  20. A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells.

    Science.gov (United States)

    Green, Holly F; Treacy, Eimear; Keohane, Aoife K; Sullivan, Aideen M; O'Keeffe, Gerard W; Nolan, Yvonne M

    2012-03-01

    Neurogenesis occurs in the hippocampus of the developing and adult brain due to the presence of multipotent stem cells and restricted precursor cells at different stages of differentiation. It has been proposed that they may be of potential benefit for use in cell transplantation approaches for neurodegenerative disorders and trauma. Prolonged release of interleukin-1β (IL-1β) from activated microglia has a deleterious effect on hippocampal neurons and is implicated in the impaired neurogenesis and cognitive dysfunction associated with aging, Alzheimer's disease and depression. This study assessed the effect of IL-1β on the proliferation and differentiation of embryonic rat hippocampal NPCs in vitro. We show that IL-1R1 is expressed on proliferating NPCs and that IL-1β treatment decreases cell proliferation and neurosphere growth. When NPCs were differentiated in the presence of IL-1β, a significant reduction in the percentages of newly-born neurons and post-mitotic neurons and a significant increase in the percentage of astrocytes was observed in these cultures. These effects were attenuated by IL-1 receptor antagonist. These data reveal that IL-1β exerts an anti-proliferative, anti-neurogenic and pro-gliogenic effect on embryonic hippocampal NPCs, which is mediated by IL-1R1. The present results emphasise the consequences of an inflammatory environment during NPC development, and indicate that strategies to inhibit IL-1β signalling may be necessary to facilitate effective cell transplantation approaches or in conditions where endogenous hippocampal neurogenesis is impaired.

  1. Teratogens induce a subset of small heat shock proteins in Drosophila primary embryonic cell cultures.

    Science.gov (United States)

    Buzin, C H; Bournias-Vardiabasis, N

    1984-01-01

    Drosophila embryonic cells placed into culture just after gastrulation differentiate in vitro over the next 24 hr. A number of drugs that are teratogenic in mammalian systems have been found to inhibit muscle or neuron differentiation (or both) in these developing cultures. We have examined, by two-dimensional gel electrophoresis, the effects of these drugs on protein synthesis in embryonic cells. For nine teratogens tested, cells treated for 20 hr with the drug show a dramatic induction of three proteins of about 20 kilodaltons, in addition to the normal proteins synthesized by untreated cells. Three teratogens as well as all eight nonteratogens tested did not show this induction. The induced proteins appear to be identical to three of the heat shock proteins (hsp 23, 22a, and 22b), as shown by electrophoretic mobilities and peptide mapping by partial proteolysis. A 37 degrees C heat shock of the embryonic cells produces the full complement of heat shock proteins, whereas drug-treated cells induce only the subset hsp 23, 22a, and 22b but not hsp 26 or 27. beta-Ecdysterone, the Drosophila molting hormone, also inhibits embryonic differentiation and induces hsp 23, 22a, and 22b, a partial subset of the heat shock proteins (hsp 22, 23, 26, and 27) induced by the hormone in imaginal discs and some Drosophila continuous cell lines. Dose-response studies of several drugs show a correlation between the degree of inhibition of differentiation and the level of induction of hsp 23, 22a, and 22b. The induction of heat shock proteins by drugs may reflect specific types of stress that can also give rise to teratogenesis. Images PMID:6588379

  2. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation.

    Science.gov (United States)

    Gokhale, Paul J; Au-Young, Janice K; Dadi, SriVidya; Keys, David N; Harrison, Neil J; Jones, Mark; Soneji, Shamit; Enver, Tariq; Sherlock, Jon K; Andrews, Peter W

    2015-01-01

    We have used single cell transcriptome analysis to re-examine the substates of early passage, karyotypically Normal, and late passage, karyotypically Abnormal ('Culture Adapted') human embryonic stem cells characterized by differential expression of the cell surface marker antigen, SSEA3. The results confirmed that culture adaptation is associated with alterations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-) Normal cells appear to have differentiated. However, the single cell data reveal that these substates are characterized by further heterogeneity that changes on culture adaptation. Notably the Adapted population includes cells with a transcriptome substate suggestive of a shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Further, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differentiation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and NANOG, whereas such apparently lineage-primed cells are absent from the Adapted population. These results suggest that the selective growth advantage gained by genetically variant, culture adapted human embryonic stem cells may derive in part from a changed substate structure that influences their propensity for differentiation.

  3. Locust bean gum as an alternative polymeric coating for embryonic stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Perestrelo, Ana Rubina [Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve (Portugal); IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Universidade do Algarve (Portugal); PhD Program in Biomedical Sciences, Universidade do Algarve (Portugal); Grenha, Ana [IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Universidade do Algarve (Portugal); Rosa da Costa, Ana M. [Centro de Investigação em Química do Algarve (CIQA) and Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve (Portugal); Belo, José António, E-mail: jose.belo@fcm.unl.pt [Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve (Portugal); IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Universidade do Algarve (Portugal); Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa (Portugal)

    2014-07-01

    Pluripotent embryonic stem cells (ESCs) have self-renewal capacity and the potential to differentiate into any cellular type depending on specific cues (pluripotency) and, therefore, have become a vibrant research area in the biomedical field. ESCs are usually cultured in gelatin or on top of a monolayer of feeder cells such as mitotically inactivated mouse embryonic fibroblasts (MEFsi). The latter is the gold standard support to maintain the ESCs in the pluripotent state. Examples of versatile, non-animal derived and inexpensive materials that are able to support pluripotent ESCs are limited. Therefore, our aim was to find a biomaterial able to support ESC growth in a pluripotent state avoiding laborious and time consuming parallel culture of MEFsi and as simple to handle as gelatin. Many of the new biomaterials used to develop stem cell microenvironments are using natural polymers adsorbed or covalently attached to the surface to improve the biocompatibility of synthetic polymers. Locust beam gum (LBG) is a natural, edible polymer, which has a wide range of potential applications in different fields, such as food and pharmaceutical industry, due to its biocompatibility, adhesiveness and thickening properties. The present work brings a natural system based on the use of LBG as a coating for ESC culture. Undifferentiated mouse ESCs were cultured on commercially available LBG to evaluate its potential in maintaining pluripotent ESCs. In terms of morphology, ESC colonies in LBG presented the regular dome shape with bright borders, similar to the colonies obtained in co-cultures with MEFsi and characteristic of pluripotent ESC colonies. In short-term cultures, ESC proliferation in LBG coating was similar to ESC cultured in gelatin and the cells maintained their viability. The activity of alkaline phosphatase and Nanog, Sox2 and Oct4 expression of mouse ESCs cultured in LBG were comparable or in some cases higher than in ESCs cultured in gelatin. An in vitro

  4. Characterization of organotypic ventral mesencephalic cultures from embryonic mice and protection against MPP toxicity by GDNF

    DEFF Research Database (Denmark)

    Jakobsen, B; Gramsbergen, J B; Møller Dall, A;

    2005-01-01

    We characterized organotypic ventral mesencephalic (VM) cultures derived from embryonic day 12 (E12) mice (CBL57/bL6) in terms of number of dopaminergic neurons, cell soma size and dopamine production in relation to time in vitro and tested the effects of 1-methyl-4-phenylpyridinium (MPP...... with dopamine contents reaching control levels and number of tyrosine hydroxylase (TH)(+) cells up to 80% of control, but in three-week-old cultures (10 microm MPP(+), 2 days) the protective potential of GDNF was markedly reduced. Long recovery periods after MPP(+) exposure are required to distinguish between......(+)) and glial derived neurotrophic factor (GDNF) to validate this novel culture model. Dopamine production and dopaminergic neuron soma size increased dramatically with time in vitro, whereas the number of dopamine neurons declined by approximately 30% between week 1 and week 2, which was further reduced after...

  5. Generation of embryoid bodies from mouse embryonic stem cells cultured on STO feeder cells.

    Science.gov (United States)

    Zhou, Qing-Jun; Shao, Jian-Zhong; Xiang, Li-Xin; Hu, Ruo-Zhen; Lu, Yong-Liang; Yao, Hang; Dai, Li-Cheng

    2005-09-01

    Embryoid bodies, which are similar to post-implantation egg-cylinder stage embryos, provide a model for the study of embryo development and stem cell differentiation. We describe here a novel method for generating embryoid bodies from murine embryonic stem (ES) cells cultured on the STO feeder layer. The ES cells grew into compact aggregates in the first 3 days of coculture, then became simple embryoid bodies (EBs) possessing primitive endoderm on the outer layer. They finally turned into cystic embryoid bodies after being transferred to Petri dishes for 1-3 days. Evaluation of the EBs in terms of morphology and differentiating potential indicates that they were typical in structure and could generate cells derived from the three germ layers. The results show that embryoid bodies can form not only in suspension culture but also directly from ES cells cultured on the STO feeder layer.

  6. Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Dean O Smith

    Full Text Available BACKGROUND: Because of the importance of voltage-activated K(+ channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ. Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. METHODOLOGY/PRINCIPAL FINDINGS: Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and betaIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. CONCLUSIONS/SIGNIFICANCE: We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K(+ currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells.

  7. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems.

    Science.gov (United States)

    Desai, Nina; Rambhia, Pooja; Gishto, Arsela

    2015-02-22

    Human embryonic stem cells (hESC) have emerged as attractive candidates for cell-based therapies that are capable of restoring lost cell and tissue function. These unique cells are able to self-renew indefinitely and have the capacity to differentiate in to all three germ layers (ectoderm, endoderm and mesoderm). Harnessing the power of these pluripotent stem cells could potentially offer new therapeutic treatment options for a variety of medical conditions. Since the initial derivation of hESC lines in 1998, tremendous headway has been made in better understanding stem cell biology and culture requirements for maintenance of pluripotency. The approval of the first clinical trials of hESC cells for treatment of spinal cord injury and macular degeneration in 2010 marked the beginning of a new era in regenerative medicine. Yet it was clearly recognized that the clinical utility of hESC transplantation was still limited by several challenges. One of the most immediate issues has been the exposure of stem cells to animal pathogens, during hESC derivation and during in vitro propagation. Initial culture protocols used co-culture with inactivated mouse fibroblast feeder (MEF) or human feeder layers with fetal bovine serum or alternatively serum replacement proteins to support stem cell proliferation. Most hESC lines currently in use have been exposed to animal products, thus carrying the risk of xeno-transmitted infections and immune reaction. This mini review provides a historic perspective on human embryonic stem cell culture and the evolution of new culture models. We highlight the challenges and advances being made towards the development of xeno-free culture systems suitable for therapeutic applications.

  8. Stable isotope labelling with amino acids in cell culture for human embryonic stem cell proteomic analysis

    DEFF Research Database (Denmark)

    Harkness, Linda; Prokhorova, Tatyana A; Kassem, Moustapha

    2012-01-01

    The identification and quantitative measurements of proteins in human embryonic stem cells (hESC) is a fast growing interdisciplinary area with an enormous impact on understanding the biology of hESC and the mechanism controlling self-renewal and differentiation. Using a quantitative mass...... spectroscopic method of stable isotope labelling with amino acids during cell culture (SILAC), we are able to analyse differential expression of proteins from different cellular compartments and to identify intracellular signalling pathways involved in self-renewal and differentiation. In this chapter, we...

  9. Cadmium inhibition of vitamin D-mediated responses in organ-cultured embryonic chick duodenum

    Energy Technology Data Exchange (ETDEWEB)

    Corradino, R.A.

    1979-01-01

    When added to the medium, cadmium inhibits 1..cap alpha..,25-dihydroxycholecalciferol-mediated responses in the organ-cultured embryonic chick duodenum: decreases induction of a specific calcium-binding protein (CaBP), prevents the elevation of alkaline phosphatase activity, and reduces the ability of the tissue to absorb radiocalcium at the mucosal surface. The cadmium effect is clearly not generalized cytotoxicity. These results may be taken as evidence that cadmium can interfere with vitamin D action at the level of the target organ itself and is not necessarily secondary to alteration in vitamin D metabolism.

  10. Regulation of embryonic size in early mouse development in vitro culture system.

    Science.gov (United States)

    Hisaki, Tomoka; Kawai, Ikuma; Sugiura, Koji; Naito, Kunihiko; Kano, Kiyoshi

    2014-08-01

    Mammals self-regulate their body size throughout development. In the uterus, embryos are properly regulated to be a specific size at birth. Previously, size and cell number in aggregated embryos, which were made from two or more morulae, and half embryos, which were halved at the 2-cell stage, have been analysed in vivo in preimplantation and post-implantation development in mice. Here, we examined whether or not the mouse embryo has the capacity to self-regulate growth using an in vitro culture system. To elucidate embryonic histology, cells were counted in aggregated or half embryos in comparison with control embryos. Both double- and triple-aggregated embryos contained more cells than did control embryos during all culture periods, and the relative growth ratios showed no growth inhibition in an in vitro culture system. Meanwhile, half embryos contained fewer cells than control embryos, but the number grew throughout the culture period. Our data suggest that the growth of aggregated embryos is not affected and continues in an in vitro culture system. On the other hand, the growth of half embryos accelerates and continues in an in vitro culture system. This situation, in turn, implied that post-implantation mouse embryos might have some potential to regulate their own growth and size as seen by using an in vitro culture system without uterus factors. In conclusion, our results indicated that embryos have some ways in which to regulate their own size in mouse early development.

  11. Differentiation patterns of embryonic stem cells in two- versus three-dimensional culture.

    Science.gov (United States)

    Pineda, Emma T; Nerem, Robert M; Ahsan, Tabassum

    2013-01-01

    Pluripotent stem cells are attractive candidates as a cell source for regenerative medicine and tissue engineering therapies. Current methods of differentiation result in low yields and impure populations of target phenotypes, with attempts for improved efficiency often comparing protocols that vary multiple parameters. This basic science study focused on a single variable to understand the effects of two-dimensional (2D) versus three-dimensional (3D) culture on directed differentiation. We compared mouse embryonic stem cells (ESCs) differentiated on collagen type I-coated surfaces (SLIDEs), embedded in collagen type I gels (GELs), and in suspension as embryoid bodies (EBs). For a systematic analysis in these studies, key parameters were kept identical to allow for direct comparison across culture configurations. We determined that all three configurations supported differentiation of ESCs and that the kinetics of differentiation differed greatly for cells cultured in 2D versus 3D. SLIDE cultures induced overall differentiation more quickly than 3D configurations, with earlier expression of cytoskeletal and extracellular matrix proteins. For 3D culture as GELs or EBs, cells clustered similarly, formed complex structures and promoted differentiation towards cardiovascular phenotypes. GEL culture, however, also allowed for contraction of the collagen matrix. For differentiation towards fibroblasts and smooth muscle cells which actively remodel their environment, GEL culture may be particularly beneficial. Overall, this study determined the effects of dimensionality on differentiation and helps in the rational design of protocols to generate phenotypes needed for tissue engineering and regenerative medicine.

  12. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    Science.gov (United States)

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  13. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...... collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon.......Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts...... to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned...

  14. Differentiation of cartilaginous anlage in entire embryonic mouse limbs cultured in a rotating bioreactor.

    Science.gov (United States)

    Duke, P.; Oakley, C.; Montufar-Solis, D.

    The embryonic mammalian limb is sensitive both in vivo and in vitro to changes in gravitational force. Hypergravity of centrifugation and microgravity of space decreased size of elements due to precocious or delayed chondrogenesis respectively. In recapitulating spaceflight experiments, premetatarsals were cultured in suspension in a low stress, low sheer rotating bioreactor, and found to be shorter than those cultured in standard culture dishes, and cartilage development was delayed. This study only measured length of the metatarsals, and did not account for possible changes in width and/or in form of the skeletal elements. Shorter cartilage elements in limbbuds cultured in the bioreactor may be due to the ability of the system to reproduce a more in vivo 3D shape than traditional organ cultures. Tissues subjected to traditional organ cultures become flattened by their own weight, attachment to the filter, and restrictions imposed by nutrient diffusion. The purpose of the current experiment was to determine if entire limb buds could be successfully cultured in the bioreactor, and to compare the effects on 3D shape with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were placed either in the bioreactor, in Trowell culture, or fixed as controls. Limbbuds were cultured for six days, fixed, and processed either as whole mounts or embedded for histology. Qualitative analysis revealed that the Trowell culture specimens were flattened, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections of limbbuds from both types of cultures had excellent cartilage differentiation, with apparently more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Morphometric quantitation of the cartilaginous elements for comparisons of the two culture systems was complicated due to some limb buds fusing together during culture. This problem was especially noticeable in the younger limbs, and

  15. Directed differentiation into neural lineages and therapeutic potential of porcine embryonic stem cells in rat Parkinson's disease model.

    Science.gov (United States)

    Yang, Jenn-Rong; Liao, Chia-Hsin; Pang, Cheng-Yoong; Huang, Lynn Ling-Huei; Lin, Yu-Ting; Chen, Yi-Ling; Shiue, Yow-Ling; Chen, Lih-Ren

    2010-08-01

    This study was conducted to direct porcine embryonic stem (pES) cells differentiating into neural lineages and to investigate therapeutic potential of GFP-expressing pES (pES/GFP(+)) in the rat model of Parkinson's disease (PD). Directed differentiation of pES into neural lineages was induced by suspension culture in medium containing RA, SHH, and FGF combinations without going through embryoid body formation. A high yield of nestin-expressing neural precursors was found in all treatments on day 2 after the 12-day induction. On day 6 after replating, more than 86.2 and 83.4% of the differentiated cells stained positively for NFL and MAP2, respectively. The expression of TH, ChAT, and GABA specific markers were also observed in these NFL-positive neural cells. The undifferentiated pES/GFP(+) cells and their neuronal differentiation derivatives were transplanted into the Sprague-Dawley (SD) rat's brain, and their survival and development was determined by using live animal fluorescence optical imaging system every 15 days. The results showed that fluorescent signals from the injection site of SD rats' brain could be detected through the experimental period of 3 months. The level of fluorescent signal detected in the treatment group was twofold that of the control group. The results of behavior analysis showed that PD rats exhibited stably decreased asymmetric rotations after transplantation with pES/GFP(+)-derived D18 neuronal progenitors. The dopaminergic differentiation of grafted cells in the brain was further confirmed by immunohistochemical staining with anti-TH, anti-DA, and anti-DAT antibodies. These results suggested that the differentiation approach we developed would direct pES cells to differentiate into neural lineages and benefit the development of novel therapeutics involving stem cell transplantation.

  16. Differentiation and selection of hepatocyte precursors in suspension spheroid culture of transgenic murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Elke Gabriel

    Full Text Available Embryonic stem cell-derived hepatocyte precursor cells represent a promising model for clinical transplantations to diseased livers, as well as for establishment of in vitro systems for drug metabolism and toxicology investigations. This study aimed to establish an in vitro culture system for scalable generation of hepatic progenitor cells. We used stable transgenic clones of murine embryonic stem cells possessing a reporter/selection vector, in which the enhanced green fluorescent protein- and puromycin N-acetyltransferase-coding genes are driven by a common alpha-fetoprotein gene promoter. This allowed for "live" monitoring and puromycin selection of the desired differentiating cell type possessing the activated alpha-fetoprotein gene. A rotary culture system was established, sequentially yielding initially partially selected hepatocyte lineage-committed cells, and finally, a highly purified cell population maintained as a dynamic suspension spheroid culture, which progressively developed the hepatic gene expression phenotype. The latter was confirmed by quantitative RT-PCR analysis, which showed a progressive up-regulation of hepatic genes during spheroid culture, indicating development of a mixed hepatocyte precursor-/fetal hepatocyte-like cell population. Adherent spheroids gave rise to advanced differentiated hepatocyte-like cells expressing hepatic proteins such as albumin, alpha-1-antitrypsin, cytokeratin 18, E-cadherin, and liver-specific organic anion transporter 1, as demonstrated by fluorescent immunostaining. A fraction of adherent cells was capable of glycogen storage and of reversible up-take of indocyanine green, demonstrating their hepatocyte-like functionality. Moreover, after transplantation of spheroids into the mouse liver, the spheroid-derived cells integrated into recipient. These results demonstrate that large-scale hepatocyte precursor-/hepatocyte-like cultures can be established for use in clinical trials, as well as in

  17. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.

    Science.gov (United States)

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance.

  18. Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study

    Directory of Open Access Journals (Sweden)

    Norman Ruthven Saunders

    2015-04-01

    Full Text Available The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analysed by functional groups of influx transporters, particularly solute carrier (SLC transporters. RNA-Seq was performed at embryonic day (E 15 and adult with additional data obtained at intermediate ages from microarray analysis. The largest represented functional group in the embryo was amino acid transporters (twelve with expression levels 2-98 times greater than in the adult. In contrast, in the adult only six amino acid transporters were up-regulated compared to the embryo and at more modest enrichment levels (<5-fold enrichment above E15. In E15 plexus five glucose transporters, in particular Glut-1, and only one monocarboxylate transporter were enriched compared to the adult, whereas only two glucose transporters but six monocarboxylate transporters in the adult plexus were expressed at higher levels than in embryos. These results are compared with earlier published physiological studies of amino acid and monocarboxylate transport in developing rodents. This comparison shows correlation of high expression of some transporters in the developing brain with higher amino acid transport activity reported previously. Data for divalent metal transporters are also considered. Immunohistochemistry of several transporters (e.g. Slc16a10, a thyroid hormone transporter gene products was carried out to confirm translational activity and to define cellular distribution of the proteins. Overall the results show that there is substantial expression of numerous influx transporters in the embryonic choroid plexus, many at higher levels than in the adult. This, together with immunohistochemical evidence and data from published physiological transport studies suggests that the choroid plexus in embryonic brain plays a major role in supplying the developing brain with essential nutrients.

  19. Pharmacological and molecular characterization of functional P2 receptors in rat embryonic cardiomyocytes.

    Science.gov (United States)

    Cheung, Kwok-Kuen; Marques-da-Silva, Camila; Vairo, Leandro; dos Santos, Danúbia Silva; Goldenberg, Regina; Coutinho-Silva, Robson; Burnstock, Geoffrey

    2015-03-01

    Purinergic receptors activated by extracellular nucleotides (adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP)) are well known to exert physiological effects on the cardiovascular system, whether nucleotides participate functionally in embryonic heart development is not clear. The responsiveness of embryonic cardiomyocytes (E) 12 to P2 receptor agonists by measuring Ca(2+) influx did not present response to ATP, but responses to P2 agonists were detected in cardiomyocytes taken from E14 and E18 rats. Photometry revealed that the responses to ATP were concentration-dependent with an EC50 of 1.32 μM and 0.18 μM for E14 and E18 cardiomyocytes, respectively. In addition, other P2 agonists were also able to induce Ca(2+) mobilization. RT-PCR showed the presence of P2X2 and P2X4 receptor transcripts on E14 cardiomyocytes with a lower expression of P2X3 and P2X7 receptors. P2X1 and a low level of P2X5 receptor messenger RNA (mRNA) were also expressed at E18. Immunofluorescence data indicated that only P2X2 and P2X4 receptor proteins were expressed in E14 cardiomyocytes while protein for all the P2X receptor subtypes was expressed in E18, except for P2X3 and P2X6. Responses mediated by agonists specific for P2Y receptors subtypes showed that P2Y receptors (P2Y1, P2Y2, P2Y4 and P2Y6) were also present in both E14 and E18 cardiomyocytes. Dye transfer experiments showed that ATP induces coupling of cells at E12, but this response is decreased at E14 and lost at E18. Conversely, UTP induced coupling with five or more cells in most cells from E12 to E18. Our results show that specific P2 receptor subtypes are present in embryonic rat cardiomyocytes, including P2X7 and P2Y4 receptors that have not been identified in adult rat cardiomyocytes. The responsiveness to ATP stimulation even before birth, suggests that ATP may be an important messenger in embryonic as well as in adult hearts.

  20. Peculiarities of Embryonic and Post-Embryonic Development of Оesophagostomum dentatum (Nematoda, Strongylidae Larvae Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Yevstafieva V. А.

    2017-02-01

    Full Text Available Morphometric peculiarities of the development of Оesophagostomum dentatum Rudolphi, 1803 from egg to infective larva were studied under laboratory conditions at various temperatures. The determined optimum temperature for embryonic and post-embryonic development of О. dentatum larvae from domestic pig (Sus scrofa domesticus Linnaeus, 1758 is 22 °С. At this temperature, 81 % of larvae develop to the third stage (L3 on the 10th day. Temperatures of 24 °С and 20 °С are less favorable for the development of the nematode, at those temperatures only 67 and 63 % of larvae, respectively, reached infective stage by the 10th day of cultivation. Embryonic development of О. dentatum eggs is characterized by their lengthening (by 8.87-9.50 %, р < 0.01 and widening (by 6.77-9.35 %, р < 0.05-0.01, and post-embryonic larval development is associated with lengthening (by 4.59-17.33 %, р < 0.01-0.001.

  1. Low immunogenicity of endothelial derivatives from rat embryonic stem cell-like cells

    Institute of Scientific and Technical Information of China (English)

    Juliane Ladhoff; Michael Bader; Sabine Br(o)sel; Elke Effenberger; Dirk Westermann; Hans-Dieter Volk; Martina Seifert

    2009-01-01

    Embryonic stem cells (ESC) are suggested to be immune-privileged, but they carry the risk of uncontrolled expansion and malignancy. Upon differentiation they lose their tumor-forming capacity, but they become immunogenic by the expression of a normal set of MHC molecules. This immunogenicity might trigger rejection after application in regenerative therapies. In this study MHC expression of and immune responses to endothelial derivatives of rat embryonic stem cell-like cells (RESC) under inflammatory conditions were determined in comparison to primary rat aortic endothelial cells (ECs). Cellular as well as humoral allo-recognition was analyzed in vitro. In addition, immune reactions in vivo were assessed by allo-antibody production and determination of interferon-γ (IFNγ)-secreting allo-reactive T cells. RESC derivatives expressed low but significant levels of MHC class I, and no MHC class II. In response to IFNγ MHC class I expression was enhanced, while class II transactivator induction failed completely in these cells; MHC class II expression remained consistently absent. Functionally, the RESC derivatives showed a reduced allo-stimulatory capacity, protection against humoral allo-recognition in vitro and a slightly diminished susceptibility to cytotoxic T cell lysis. Furthermore, in vivo experiments demonstrated that these cells do not trigger host immune reactions, characterized by no allo-antibody production and no induction of allo-reactive memory T cells. Our results show that endothelial derivatives of RESC have a distinctive reduced immunogenic potency even under inflammatory conditions.

  2. Prescreening for environmental teratogens using cultured mesenchymal cells from the human embryonic palate

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.M.; Grove, R.I.; Willis, W.D.

    1982-01-01

    Mesenchymal cells from the prefusion human embryonic palate have been established in culture and can be grown in either a serum-free hormone-supplemented medium or a serum-containing medium. The growth of these cells is quite rapid in culture and inhibited in a dose-dependent manner by most teratogens thus far tested, such as dexamethasone. These cells are highly sensitive to a variety of DNA synthetic and mitotic inhibitors. The responses of these cells are complementary to the ovarian tumor cell attachment assay of Braun et al (1, and in this volume). When used in conjunction with the tumor cells, the overall reliability is greater than 90% with only one false-negative, allopurinol.

  3. Improved Isolation and Culture of Embryonic Germ Cells from Guanzhong Dairy Goat

    Institute of Scientific and Technical Information of China (English)

    YANG Wei-feng; GE Xiu-guo; HUA Jin-lian; SHEN Wen-zheng; DOU Zhong-ying

    2006-01-01

    A total of 219 embryonic-germ-cell-like (EG-like) clumps were derived from 15 selected goat fetuses. Isolation of primordial germ cells (PGCs) based on co-culture with primary goat embryonic fibroblast showed no difference from traditional feeder layer-based culture method used in mouse and human. The putative primary EG colonies were multilayer clumps of compact cells with unclear cell-cell boundaries. Three subculture methods of goat EG-like colony, traditional enzymatic digestion, mechanical cutting and combination of the both, were compared in this study. As a result, EG-like colonies traditionally disassociated with collagenase Ⅳ could be subcultured for up to 4 passages. And the mechanically disaggregated EG-like colonies were successfully maintained 9-12 passages with or without enzymatic treatment. The pluripotency of the EG-like colonies was identified by their specific marker staining, spontaneous differentiation and embryoid bodies (EBs) formation in vitro. Most goat EG-like colonies (> 80%) were AKP positive and immunocytochemically characterized with positive SSEA-1, Oct-4 and c-kit staining but SSEA-4. Under the condition of delaying passage, goat EG-like cells could differentiate into fibroblast-like, epithelium-like, and neuron-like cells. In addition, EBs could be obtained successfully in routine hanging drop culture. The serum free culture system (feeder layer-based) used in this study was suitable for keeping PGCs and EG-like cells in their undifferentiated condition, but failed to converse them to immortal cells. These results indicated that mechanical cutting is an effective method for passaging goat EG cell colonies.However, the microenvironment of conversing EG cells to immortal cells is still unclear.

  4. Germ-cell culture conditions facilitate the production of mouse embryonic stem cells.

    Science.gov (United States)

    Ramos-Ibeas, Priscila; Pericuesta, Eva; Fernández-González, Raúl; Gutiérrez-Adán, Alfonso; Ramírez, Miguel Ángel

    2014-09-01

    The derivation of embryonic stem-cell (ESC) lines from blastocysts is a very inefficient process. Murine ESCs are thought to arise from epiblast cells that are already predisposed to a primordial-germ-cell fate. During the process of ESC derivation from B6D2 F1 hybrid mice, if we first culture the embryo from the two-cell stage in medium supplemented with LIF, we improve the quality of the blastocyst. When the blastocyst is then cultured in a germ-line stem-cell culture medium (GSCm), we are able to more efficiently (28.3%) obtain quality ESC lines that have a normal karyotype, proper degree of chimerism, and exhibit germ-line transmission when microinjected into blastocysts. Although germ-cell-specific genes were expressed in all culture medium conditions, GSCm did not shift the transcriptome towards germ-cell specification. A correlation was further observed between ESC derivation efficiency and the expression of some imprinted genes and retrotransposable elements. In conclusion, the combination of LIF supplementation followed by culture in GSCm establishes a higher efficiency method for ESC derivation.

  5. Sustained embryoid body formation and culture in a non-laborious three dimensional culture system for human embryonic stem cells.

    Science.gov (United States)

    Stenberg, Johan; Elovsson, Maria; Strehl, Raimund; Kilmare, Eva; Hyllner, Johan; Lindahl, Anders

    2011-05-01

    Pluripotent human embryonic stem cell (hESC) lines are a promising model system in developmental and tissue regeneration research. Differentiation of hESCs towards the three germ layers and finally tissue specific cell types is often performed through the formation of embryoid bodies (EBs) in suspension or hanging droplet culture systems. However, these systems are inefficient regarding embryoid body (EB) formation, structural support to the EB and long term differentiation capacity. The present study investigates if agarose, as a semi solid matrix, can facilitate EB formation and support differentiation of hESC lines. The results showed that agarose culture is able to enhance EB formation efficiency with 10% and increase EB growth by 300%. The agarose culture system was able to maintain expression of the three germ layers over 8 weeks of culture. All of the four hESC lines tested developed EBs in the agarose system although with a histological heterogeneity between cell lines as well as within cell lines. In conclusion, a 3-D agarose culture of spherical hESC colonies improves EB formation and growth in a cost effective, stable and non-laborious technique.

  6. Human serum teratogenicity studies using in vitro cultures of rat embryos

    Energy Technology Data Exchange (ETDEWEB)

    Klein, N.W.; Chatot, C.L.; Plenefisch, J.D.; Carey, S.W.

    1982-01-01

    Those conditions that constitute reproductive risks to man are being analyzed. Particular concern is with those conditions that cannot be or have not been identified by present methodologies. These conditions constitute the majority of factors causing fetal wastages and birth defects. The test system uses intact rat embryos that are cultured in vitro for 2 days. Findings to date suggest that this system may have a number of distinct advantages: (1) whole-embryo culture provides the test with the entire repertoire of processes involved in embryonic development; (2) whole-rat embryos can be cultured on high levels of blood serum; and (3) they can be cultured on serum from human subjects, which provides a direct and unique evaluation of the principal organism of concern. In regard to this last point, it is important to recognize that there is a large range of teratogenic responses and sensitivities to teratogens dependent upon both individual and species differences. (ERB)

  7. Simplified three-dimensional culture system for long-term expansion of embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Christina; McKee; Mick; Perez-Cruet; Ferman; Chavez; G; Rasul; Chaudhry

    2015-01-01

    AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS: Mouse embryonic stem cells(ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional(3-D) self-assembling scaffolds and compared with traditional two-dimentional(2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate(PEG-4-Acr) and thiolfunctionalized dextran(Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoB lue(PB) assays. Genetic expression of pluripotency markers(Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D cultureconditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining(Oct4 and Nanog) and western blot analysis(Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers. RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH(1:1 v/v) to a final concentration of 5%(w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as

  8. In vitro differentiation of rat embryonic stem cells into functional cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Nan Cao; Jing Liao; Zumei Liu; Wen min Zhu; Jia Wang; Lijun Liu; Lili Yu

    2011-01-01

    The recent breakthrough in the generation of rat embryonic stem cells (rESCs) opens the door to application of gene targeting to create models for the study of human diseases.In addition,the in vitro differentiation system from rESCs into derivatives of three germ layers will serve as a powerful tool and resource for the investigation of mammalian development,cell function,tissue repair,and drug discovery.However,these uses have been limited by the difficulty of in vitro differentiation.The aims of this study were to establish an in vitro differentiation system from rESCs and to investigate whether rESCs are capable of forming terminal-differentiated cardiomyocytes.Using newly established rESCs,we found that embryoid body (EB)-based method used in mouse ESC (mESC) differentiation failed to work for the serum-free cultivated rESCs.We then developed a protocol by combination of three chemical inhibitors and feeder-conditioned medium.Under this condition,rESCs formed EBs,propagated and differentiated into three embryonic germ layers.Moreover,rESC-formed EBs could differentiate into spontaneously beating cardiomyocytes after plating.Analyses of molecular,structural,and functional properties revealed that rESC-derived cardiomyocytes were similar to those derived from fetal rat hearts and mESCs.In conclusion,we successfully developed an in vitro differentiation system for rESCs through which functional myocytes were generated and displayed phenotypes of rat fetal cardiomyocytes.This unique cellular system will provide a new approach to study the early development and cardiac function,and serve as an important tool in pharmacological testing and cell therapy.

  9. Reproducible culture and differentiation of mouse embryonic stem cells using an automated microwell platform.

    Science.gov (United States)

    Hussain, Waqar; Moens, Nathalie; Veraitch, Farlan S; Hernandez, Diana; Mason, Chris; Lye, Gary J

    2013-08-15

    The use of embryonic stem cells (ESCs) and their progeny in high throughput drug discovery and regenerative medicine will require production at scale of well characterized cells at an appropriate level of purity. The adoption of automated bioprocessing techniques offers the possibility to overcome the lack of consistency and high failure rates seen with current manual protocols. To build the case for increased use of automation this work addresses the key question: "can an automated system match the quality of a highly skilled and experienced person working manually?" To answer this we first describe an integrated automation platform designed for the 'hands-free' culture and differentiation of ESCs in microwell formats. Next we outline a framework for the systematic investigation and optimization of key bioprocess variables for the rapid establishment of validatable Standard Operating Procedures (SOPs). Finally the experimental comparison between manual and automated bioprocessing is exemplified by expansion of the murine Oct-4-GiP ESC line over eight sequential passages with their subsequent directed differentiation into neural precursors. Our results show that ESCs can be effectively maintained and differentiated in a highly reproducible manner by the automated system described. Statistical analysis of the results for cell growth over single and multiple passages shows up to a 3-fold improvement in the consistency of cell growth kinetics with automated passaging. The quality of the cells produced was evaluated using a panel of biological markers including cell growth rate and viability, nutrient and metabolite profiles, changes in gene expression and immunocytochemistry. Automated processing of the ESCs had no measurable negative effect on either their pluripotency or their ability to differentiate into the three embryonic germ layers. Equally important is that over a 6-month period of culture without antibiotics in the medium, we have not had any cases of

  10. Regulation of phosphatidylcholine biosynthesis in cultured chick embryonic muscle treated with phospholipase C.

    Science.gov (United States)

    Sleight, R; Kent, C

    1980-11-25

    Cultures of embryonic chick muscle cells grown in medium containing phospholipase C from Clostridium perfringens incorporated [3H]choline into lipid at a rate 3- to 5-fold higher than control cultures. To determine the mechanism by which stimulation of phosphatidylcholine synthesis occurred in phospholipase C-treated cells, activities of enzymes and levels of intermediates in the biosynthetic pathway for phosphatidylcholine were examined. Activities of choline kinase, choline phosphotransferase, glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate acyltransferase, acylglycerol-3-phosphate acyltransferase, and phosphatidic acid phosphatase in phospholipase C-treated cells were the same or only slightly higher than in control cells. CTP:phosphocholine cytidylyltransferase, on the other hand, was 3 times as active in homogenates from phospholipase C-treated cells. Levels of phosphocholine decreased and levels of CDP-choline increased in phospholipase C-treated cells, and a calculation of the disequilibrium ratio indicated that the cytidylyltransferase reaction was not at equilibrium. The cytidylyltransferase was, thus, identified as the regulatory enzyme for choline flux in these cells. The cytidylyltransferase was located in both the cytosolic and particulate fractions from cultured muscle cells and a much larger portion of enzyme activity was associated with the particulate fraction in cells treated with phospholipase C. Sonicated preparations of total chick lipids, phosphatidylethanolamine, and phosphatidylserine greatly stimulated the cytosolic cytidylyltransferase activity but had no effect on the particulate enzyme. Neither stimulation of incorporation of [3H]choline into lipid nor activation of the cytidylyltransferase was dependent on protein synthesis. A model for the mechanism of regulation of phosphatidylcholine synthesis in embryonic chick muscle is presented.

  11. Spheroid culture for enhanced differentiation of human embryonic stem cells to hepatocyte-like cells.

    Science.gov (United States)

    Subramanian, Kartik; Owens, Derek Jason; Raju, Ravali; Firpo, Meri; O'Brien, Timothy D; Verfaillie, Catherine M; Hu, Wei-Shou

    2014-01-15

    Stem cell-derived hepatocyte-like cells hold great potential for the treatment of liver disease and for drug toxicity screening. The success of these applications hinges on the generation of differentiated cells with high liver specific activities. Many protocols have been developed to guide human embryonic stem cells (hESCs) to differentiate to the hepatic lineage. Here we report cultivation of hESCs as three-dimensional aggregates that enhances their differentiation to hepatocyte-like cells. Differentiation was first carried out in monolayer culture for 20 days. Subsequently cells were allowed to self-aggregate into spheroids. Significantly higher expression of liver-specific transcripts and proteins, including Albumin, phosphoenolpyruvate carboxykinase, and asialoglycoprotein receptor 1 was observed. The differentiated phenotype was sustained for more than 2 weeks in the three-dimensional spheroid culture system, significantly longer than in monolayer culture. Cells in spheroids exhibit morphological and ultrastructural characteristics of primary hepatocytes by scanning and transmission electron microscopy in addition to mature functions, such as biliary excretion of metabolic products and cytochrome P450 activities. This three-dimensional spheroid culture system may be appropriate for generating high quality, functional hepatocyte-like cells from ESCs.

  12. Effects of 3D microwell culture on initial fate specification in human embryonic stem cells.

    Science.gov (United States)

    Hsiao, Cheston; Tomai, Matthew; Glynn, Jeremy; Palecek, Sean P

    2014-04-01

    Several studies have demonstrated that 3D culture systems influence human embryonic stem cell (hESC) phenotypes and fate choices. However, the effect that these microenvironmental changes have on signaling pathways governing hESC behaviors is not well understood. Here, we have used a 3D microwell array to investigate differences in activation of developmental pathways between 2D and 3D cultures of both undifferentiated hESCs and hESCs undergoing initial differentiation in embryoid bodies (EBs). We observed increased induction into mesoderm and endoderm and differences in expression of genes from multiple signaling pathways that regulate development, including Wnt/β-catenin, TGF-β superfamily, Notch and FGF during EB-mediated differentiation, in 3D microwells as compared with the 2D substrates. In undifferentiated hESCs, we also observed differences in epithelial-mesenchymal transition phenotypes and the TGFβ/BMP pathway between cultures in 3D and 2D. These results illustrate that 3D culture influences multiple pathways that may regulate the differentiation trajectories of hESCs.

  13. The impact of caffeine on connexin expression in the embryonic chick cardiomyocyte micromass culture system.

    Science.gov (United States)

    Ahir, Bhavesh K; Pratten, Margaret K

    2016-07-01

    Cardiomyocytes are electrically coupled by gap junctions, defined as clusters of low-resistance multisubunit transmembrane channels composed of connexins (Cxs). The expression of Cx40, Cx43 and Cx45, which are present in cardiomyocytes, is known to be developmentally regulated. This study investigates the premise that alterations in gap junction proteins are one of the mechanisms by which teratogens may act. Specifically, those molecules known to be teratogenic in humans could cause their effects via disruption of cell-to-cell communication pathways, resulting in an inability to co-ordinate tissue development. Caffeine significantly inhibited contractile activity at concentrations above and including 1500 μm (P caffeine on key cardiac gap junction protein (Cx40, Cx43 and Cx45) expression were analysed using immunocytochemistry and in-cell Western blotting. The results indicated that caffeine altered the expression pattern of Cx40, Cx43 and Cx45 at non-cytotoxic concentrations (≥2000 μm), i.e., at concentrations that did not affect total cell protein and cell viability. In addition the effects of caffeine on cardiomyocyte formation and function (contractile activity score) were correlated with modulation of Cxs (Cx40, Cx43 and Cx45) expression, at above and including 2000 μm caffeine concentrations (P < 0.05). These experiments provide evidence that embryonic chick cardiomyocyte micromass culture may be a useful in vitro method for mechanistic studies of perturbation of embryonic heart development. Copyright © 2015 John Wiley & Sons, Ltd.

  14. The rat whole embryo culture assay using the Dysmorphology Score system.

    Science.gov (United States)

    Zhang, Cindy; Panzica-Kelly, Julie; Augustine-Rauch, Karen

    2013-01-01

    The rat whole embryo culture (WEC) system has been used extensively for characterizing teratogenic properties of test chemicals. In this chapter, we describe the methodology for culturing rat embryos as well as a new morphological score system, the Dysmorphology Score (DMS) system for assessing morphology of mid gestation (gestational day 11) rat embryos. In contrast to the developmental stage focused scoring associated with the Brown and Fabro score system, this new score system assesses the respective degree of severity of dysmorphology, which delineates normal from abnormal morphology of specific embryonic structures and organ systems. This score system generates an approach that allows rapid identification and quantification of adverse developmental findings, making it conducive for characterization of compounds for teratogenic properties and screening activities.

  15. The role of apoptosis in early embryonic development of the adenohypophysis in rats

    Directory of Open Access Journals (Sweden)

    Gedrange Tomas

    2008-07-01

    Full Text Available Abstract Background Apoptosis is involved in fundamental processes of life, like embryonic development, tissue homeostasis, or immune defense. Defects in apoptosis cause or contribute to developmental malformation, cancer, and degenerative disorders. Methods The developing adenohypophysis area of rat fetuses was studied at the embryonic stage 13.5 (gestational day for apoptotic and proliferative cell activities using histological serial sections. Results A high cell proliferation rate was observed throughout the adenohypophysis. In contrast, apoptotic cells visualized by evidence of active caspase-3, were detected only in the basal epithelial cones as an introducing event for fusion and closure of the pharyngeal roof. Conclusion We can clearly show an increasing number of apoptotic events only at the basic fusion sides of the adenohypophysis as well as in the opening region of this organ. Apoptotic destruction of epithelial cells at the basal cones of the adenohypophysis begins even before differentiation of the adenohypophyseal cells and their contact with the neurohypophysis. In early stages of development, thus, apoptotic activity of the adenohypophysis is restricted to the basal areas mentioned. In our test animals, the adenohypophysis develops after closure of the anterior neuroporus.

  16. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  17. Preliminary study on human fibroblasts as feeder layer for human embryonic stem cells culture in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblastswith human fibroblasts as the feeder layer to maintain human embryonic stem cells growth in the undifferentiated state. We successfully use human fibroblasts derived from aborted fetus and adult prepuce as feeder layer to maintain human embryonic stem cells growth. During the passage and growth on this feeder layer, the human embryonic stem cells can keep their undifferentiated state.

  18. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    DEFF Research Database (Denmark)

    Morgani, Sophie M; Canham, Maurice A; Nichols, Jennifer

    2013-01-01

    Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought...... not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants....

  19. Molecular composition of staufen2-containing ribonucleoproteins in embryonic rat brain.

    Directory of Open Access Journals (Sweden)

    Marjolaine Maher-Laporte

    Full Text Available Messenger ribonucleoprotein particles (mRNPs are used to transport mRNAs along neuronal dendrites to their site of translation. Numerous mRNA-binding and regulatory proteins within mRNPs finely regulate the fate of bound-mRNAs. Their specific combination defines different types of mRNPs that in turn are related to specific synaptic functions. One of these mRNA-binding proteins, Staufen2 (Stau2, was shown to transport dendritic mRNAs along microtubules. Its knockdown expression in neurons was shown to change spine morphology and synaptic functions. To further understand the molecular mechanisms by which Stau2 modulates synaptic function in neurons, it is important to identify and characterize protein co-factors that regulate the fate of Stau2-containing mRNPs. To this end, a proteomic approach was used to identify co-immunoprecipitated proteins in Staufen2-containing mRNPs isolated from embryonic rat brains. The proteomic approach identified mRNA-binding proteins (PABPC1, hnRNP H1, YB1 and hsc70, proteins of the cytoskeleton (alpha- and beta-tubulin and RUFY3 a poorly characterized protein. While PABPC1 and YB1 associate with Stau2-containing mRNPs through RNAs, hsc70 is directly bound to Stau2 and this interaction is regulated by ATP. PABPC1 and YB1 proteins formed puncta in dendrites of embryonic rat hippocampal neurons. However, they poorly co-localized with Stau2 in the large dendritic complexes suggesting that they are rather components of Stau2-containing mRNA particles. All together, these results represent a further step in the characterization of Stau2-containing mRNPs in neurons and provide new tools to study and understand how Stau2-containing mRNPs are transported, translationally silenced during transport and/or locally expressed according to cell needs.

  20. Optimization of a serum-free culture medium for mouse embryonic stem cells using design of experiments (DoE) methodology

    OpenAIRE

    Knöspel, Fanny; Schindler, Rudolf K.; Lübberstedt, Marc; Petzolt, Stephanie; Gerlach, Jörg C.; Zeilinger, Katrin

    2010-01-01

    The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analy...

  1. Ibuprofen augments bilirubin toxicity in rat cortical neuronal culture.

    Science.gov (United States)

    Berns, Monika; Toennessen, Margit; Koehne, Petra; Altmann, Rodica; Obladen, Michael

    2009-04-01

    Premature infants are at risk for bilirubin-associated brain damage. In cell cultures bilirubin causes neuronal apoptosis and necrosis. Ibuprofen is used to close the ductus arteriosus, and is often given when hyperbilirubinemia is at its maximum. Ibuprofen is known to interfere with bilirubin-albumin binding. We hypothesized that bilirubin toxicity to cultured rat embryonic cortical neurons is augmented by coincubation with ibuprofen. Incubation with ibuprofen above a concentration of 125 microg/mL reduced cell viability, measured by methylthiazole tetrazolium reduction, to 68% of controls (p < 0.05). Lactate dehydrogenase (LDH) release increased from 29 to 38% (p < 0.01). The vehicle solution did not affect cell viability. Coincubation with 10 microM unconjugated bilirubin (UCB)/human serum albumin in a molar ratio of 3:1 and 250 microg/mL ibuprofen caused additional loss of cell viability and increased LDH release (p < 0.01), DNA fragmentation, and activated caspase-3. Preincubation with the pan-caspase inhibitor z-val-ala-asp-fluoromethyl ketone abolished ibuprofen- and UCB-induced DNA fragmentation. The study demonstrates that bilirubin in low concentration of 10 microM reduces neuron viability and ibuprofen increases this effect. Apoptosis is the underlying cell death mechanism.

  2. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens.

    Science.gov (United States)

    Naito, Mitsuru; Harumi, Takashi; Kuwana, Takashi

    2015-02-01

    Production of germline chimaeric chickens by the transfer of cultured primordial germ cells (PGC) is a useful system for germline manipulation. A novel culture system was developed for chicken PGC isolated from embryonic blood. The isolated PGC were cultured on feeder cells derived from chicken embryonic fibroblast. The cultured PGC formed colonies and they proliferated about 300-times during the first 30 days. The cultured PGC retained the ability to migrate to recipient gonads and were also chicken VASA homologue (CVH)-positive. Female PGC were present in the mixed-sex PGC populations cultured for more than 90 days and gave rise to viable offspring efficiently via germline chimaeric chickens. Male cultured PGC were transferred to recipient embryos and produced putative chimaeric chickens. The DNA derived from the cultured PGC was detected in the sperm samples of male putative chimaeric chickens, but no donor derived offspring were obtained. Donor-derived offspring were also obtained from germline chimaeric chickens by the transfer of frozen-thawed cultured PGC. The culture method for PGC developed in the present study is useful for manipulation of the germline in chickens, such as preservation of genetic resources and gene transfer.

  3. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes

    Science.gov (United States)

    2011-01-01

    Background Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs) and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin) was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC differentiation protocols within

  4. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Shafa Mehdi

    2011-12-01

    Full Text Available Abstract Background Embryonic stem cells (ESCs can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs. However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC

  5. Neural differentiation of mouse embryonic stem cells in serum-free monolayer culture.

    Science.gov (United States)

    Wongpaiboonwattana, Wikrom; Stavridis, Marios P

    2015-05-14

    The ability to differentiate mouse embryonic stem cells (ESC) to neural progenitors allows the study of the mechanisms controlling neural specification as well as the generation of mature neural cell types for further study. In this protocol we describe a method for the differentiation of ESC to neural progenitors using serum-free, monolayer culture. The method is scalable, efficient and results in production of ~70% neural progenitor cells within 4 - 6 days. It can be applied to ESC from various strains grown under a variety of conditions. Neural progenitors can be allowed to differentiate further into functional neurons and glia or analyzed by microscopy, flow cytometry or molecular techniques. The differentiation process is amenable to time-lapse microscopy and can be combined with the use of reporter lines to monitor the neural specification process. We provide detailed instructions on media preparation and cell density optimization to allow the process to be applied to most ESC lines and a variety of cell culture vessels.

  6. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    Science.gov (United States)

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  7. Efficient definitive endoderm induction from mouse embryonic stem cell adherent cultures: A rapid screening model for differentiation studies

    Directory of Open Access Journals (Sweden)

    Josué Kunjom Mfopou

    2014-01-01

    Full Text Available Definitive endoderm (DE differentiation from mouse embryonic stem cell (mESC monolayer cultures has been limited by poor cell survival or low efficiency. Recently, a combination of TGFβ and Wnt activation with BMP inhibition improved DE induction in embryoid bodies cultured in suspension. Based on these observations we developed a protocol to efficiently induce DE cells in monolayer cultures of mESCs. We obtained a good cell yield with 54.92% DE induction as shown by Foxa2, Sox17, Cxcr4 and E-Cadherin expression. These DE-cells could be further differentiated into posterior foregut and pancreatic phenotypes using a culture protocol initially developed for human embryonic stem cell (hESC differentiation. In addition, this mESC-derived DE gave rise to hepatocyte-like cells after exposure to BMP and FGF ligands. Our data therefore indicate a substantial improvement of monolayer DE induction from mESCs and support the concept that differentiation conditions for mESC-derived DE are similar to those for hESCs. As mESCs are easier to maintain and manipulate in culture compared to hESCs, and considering the shorter duration of embryonic development in the mouse, this method of efficient DE induction on monolayer will promote the development of new differentiation protocols to obtain DE-derivatives, like pancreatic beta-cells, for future use in cell replacement therapies.

  8. Characterization of p75{sup +} ectomesenchymal stem cells from rat embryonic facial process tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Zhang, Li; Liu, Rui; Xing, Yongjun; Zhou, Xia [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China); Nie, Xin, E-mail: dr.xinnie@gmail.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Ectomesenchymal stem cells (EMSCs) were found to migrate to rat facial processes at E11.5. Black-Right-Pointing-Pointer We successfully sorted p75NTR positive EMSCs (p75{sup +} EMSCs). Black-Right-Pointing-Pointer p75{sup +} EMSCs up to nine passages showed relative stable proliferative activity. Black-Right-Pointing-Pointer We examined the in vitro multilineage potential of p75{sup +} EMSCs. Black-Right-Pointing-Pointer p75{sup +}EMSCs provide an in vitro model for tooth morphogenesis. -- Abstract: Several populations of stem cells, including those from the dental pulp and periodontal ligament, have been isolated from different parts of the tooth and periodontium. The characteristics of such stem cells have been reported as well. However, as a common progenitor of these cells, ectomesenchymal stem cells (EMSCs), derived from the cranial neural crest have yet to be fully characterized. The aim of this study was to better understand the characteristics of EMSCs isolated from rat embryonic facial processes. Immunohistochemical staining showed that EMSCs had migrated to rat facial processes at E11.5, while the absence of epithelial invagination or tooth-like epithelium suggested that any epithelial-mesenchymal interactions were limited at this stage. The p75 neurotrophin receptor (p75NTR), a typical neural crest marker, was used to select p75NTR-positive EMSCs (p75{sup +} EMSCs), which were found to show a homogeneous fibroblast-like morphology and little change in the growth curve, proliferation capacity, and cell phenotype during cell passage. They also displayed the capacity to differentiate into diverse cell types under chemically defined conditions in vitro. p75{sup +} EMSCs proved to be homogeneous, stable in vitro and potentially capable of multiple lineages, suggesting their potential for application in dental or orofacial tissue engineering.

  9. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems

    Science.gov (United States)

    Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid

    2003-01-01

    In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.

  10. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    Science.gov (United States)

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models.

  11. Influence of interferon-gamma on the differentiation of cholinergic neurons in rat embryonic basal forebrain and septal nuclei

    Institute of Scientific and Technical Information of China (English)

    Yanhong Luo; Lin An

    2006-01-01

    BACKGROUND: Interferon-gamma (IFN-γ) can make neurons in basal forebrain and septal nuclei differentiate into cholinergic neurons by treating the cells in cerebral cortex of newborn rats, without the inhibition from IFN-γ antibody. The important effect of IFN-γ on the development and differentiation of neurons has been found by some scholars.OBJ ECTIVE:To investigate whether IFN-γ has differentiational effect on cholinergic neurons in basal forebrain and septal nuclei, and make clear that the increased number of cholinergic neurons is resulted by cell differentiation or cell proliferation.DESIGN: Controlled observation trial.SETTING: Department of Cell Biology, Medical School, Beijing University.MATERIALS: Sixty-eight female Wistar rats at embryonic 16 days, weighing 250 to 350 g, were enrolled in this study, and they were provided by the Experimental Animal Center, Medical School, Beijing University.IFN-γ was the product of Gibco Company.METHODS: This study was carried out in the Department of Cell Biology, Medical School, Beijing University and Daheng Image Company of Chinese Academy of Sciences during September 1995 to December 2002.The female Wistar rats at embryonic 16 days were sacrificed, and their fetuses were taken out. Primary culture of the isolated basal forebrain and septal nuclei was performed. The cultured nerve cells were assigned into 3 groups: control group (nothing added), IFN-γ group(1×105 U/L interferon), IFN-γ+ IFN-γ antibody group (1 ×105 U/L IFN-γ± IFN-γ antibody). The specific marker enzyme (choline acetyl transferase) of cholinergic neuron was stained with immunohistochemical method. Choline acetyl transferase positive cells were counted, and 14C-acetyl CoA was used as substrate to detect the activity of choline acetyl transferase, so as to reflect the differentiational effect of IFN-γ on cholinergic neuron in basal forebrain and septal nuclei. Flow cytometry was used to analyze cell circle and detect the proliferation of

  12. Bilaminar co-culture of primary rat cortical neurons and glia.

    Science.gov (United States)

    Shimizu, Saori; Abt, Anna; Meucci, Olimpia

    2011-11-12

    This video will guide you through the process of culturing rat cortical neurons in the presence of a glial feeder layer, a system known as a bilaminar or co-culture model. This system is suitable for a variety of experimental needs requiring either a glass or plastic growth substrate and can also be used for culture of other types of neurons. Rat cortical neurons obtained from the late embryonic stage (E17) are plated on glass coverslips or tissue culture dishes facing a feeder layer of glia grown on dishes or plastic coverslips (known as Thermanox), respectively. The choice between the two configurations depends on the specific experimental technique used, which may require, or not, that neurons are grown on glass (e.g. calcium imaging versus Western blot). The glial feeder layer, an astroglia-enriched secondary culture of mixed glia, is separately prepared from the cortices of newborn rat pups (P2-4) prior to the neuronal dissection. A major advantage of this culture system as compared to a culture of neurons only is the support of neuronal growth, survival, and differentiation provided by trophic factors secreted from the glial feeder layer, which more accurately resembles the brain environment in vivo. Furthermore, the co-culture can be used to study neuronal-glial interactions(1). At the same time, glia contamination in the neuronal layer is prevented by different means (low density culture, addition of mitotic inhibitors, lack of serum and use of optimized culture medium) leading to a virtually pure neuronal layer, comparable to other established methods(1-3). Neurons can be easily separated from the glial layer at any time during culture and used for different experimental applications ranging from electrophysiology(4), cellular and molecular biology(5-8), biochemistry(5), imaging and microscopy(4,6,7,9,10). The primary neurons extend axons and dendrites to form functional synapses(11), a process which is not observed in neuronal cell lines, although some

  13. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures.

    Science.gov (United States)

    Lepsch, Lucilia B; Planeta, Cleopatra S; Scavone, Critoforo

    2015-01-01

    To study cocaine's toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2) and/or neuronal nucleus protein (NeuN) staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mechanism, confirmed by TUNEL assay. Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following prenatal exposure to cocaine.

  14. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures

    Directory of Open Access Journals (Sweden)

    Lucilia B. Lepsch

    2015-01-01

    Full Text Available To study cocaine’s toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2 and/or neuronal nucleus protein (NeuN staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mechanism, confirmed by TUNEL assay. Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following prenatal exposure to cocaine.

  15. Failure of zinc to prevent dysmorphogenesis of cultured rat conceptuses by anti-yolk sac antiserum

    Energy Technology Data Exchange (ETDEWEB)

    Marlow, R.; Freeman, S.J.

    1989-01-01

    Day 10 rat conceptuses were cultured for 48h in the presence of either cadmium or anti-vesceral yolk sac antiserum (AVYS). Cadmium was embryotoxic at concentrations exceeding 0.25 ug/ml while AVYS caused embryonic dysmorphogenesis, particularly affecting the optic vesicles, at concentrations of 2 ul/ml and above. The effect of pretreatment with zinc on embryotoxicity caused by cadmium or AVYS was studied. Zinc ameliorated the effects of cadmium but had no effect on AVYS-induced embryonic abnormalities. In a second set of experiments inhibition of /sup 125/I-labelled PVP uptake by the yolk sac of cultured whole conceptuses was studied. Cadmium and AVYS both inhibited uptake compared to control cultures. Zinc again ameliorated the effect of cadmium but had no action against AVYS-induced inhibition. These results are in contrast to their previous findings using isolated cultured yolk sacs in which zinc ameliorated the inhibitory effects on /sup 125/I-labelled PVP uptake of both cadmium and AVYS. These data show that in experiments using the isolated cultured yolk sac and the intact cultured conceptus, a qualitatively different response in yolk sac behavior is observed under similar experimental conditions.

  16. Bioprotective effect of zinc in macro- and nanoaquachelate form on embryonal development of rats in conditions of lead intoxication

    Directory of Open Access Journals (Sweden)

    Beletskaya E.M.

    2013-06-01

    Full Text Available The article presents results of studied influence of low doses of lead and zinc (nanozinc on embryonal development in a la¬boratory experiment on rats. Negative influence of lead on pregnancy of laboratory animals, manifested in violation of the physiological dynamics of the rectal temperature and decrease in body weight gain was revealed. Embryotoxic effect of low doses of lead results in increased fetal mortality by 2.16 times compared to the control group of animals, de¬terioration of the morphometric indices of fetuses, violation of placentogenesis. Simultaneous injections of zinc on back¬ground of lead intoxication causes a protective effect on the body of pregnant rats and embryonal development of the offspring, more pronounced for zinc citrate, received by using aquananotehnology, as compared to zinc chloride. Thus, by morphometry indices, male fetuses were more sensitive to prenatal lead exposure in comparison to female fetuses.

  17. [Effect of embryonic anlage allografts of the rat spinal cord on growth of regenerating fibers of the recipient nerve].

    Science.gov (United States)

    Petrova, E S; Isaeva, E N

    2014-01-01

    A comparative study of the effect of tissue and suspension allografts of an embryonic spinal cord on regeneration of nerve fibers of impaired (by application of a ligature) sciatic nerve in rats was conducted. It was demonstrated that unlike tissue grafts that reach a large volume 21 and 60 days after transplantation, suspension grafts do not inhibit the growth of axons of the recipient to the periphery. It was established that introduction of a suspension of dissociated cells of the spinal cord embryonic anlages (but not fragments of these anlages) into the impaired sciatic nerve in rats results in an increase in the amount of myelinated regenerating nerve fibers of the recipient 60 days after the operation.

  18. Involvement of GSK3 in the formation of the leading process and migration of neurons from the embryonic rat medial ganglionic eminence in vitro.

    Science.gov (United States)

    Niimura, Yuri; Aminaka, Yuichi; Hayashi, Kensuke

    2015-03-04

    Migrating neurons have leading processes that direct cell movement in response to guidance cues. We investigated the involvement of glycogen synthase kinase 3 (GSK3) in the formation of leading processes and migration of neurons in vitro. We used embryonic rat medial ganglionic eminence (MGE) neurons, which are precursors of inhibitory neurons that migrate into the cerebral cortex. When MGE neurons were placed on an astrocyte layer, they migrated freely with the highest speed among neurons from other parts of the embryonic forebrain. When they were cultured alone, they showed bipolar morphology and extended leading processes within 20 h. Their leading processes had large growth cones, but did not elongate during 3 days in culture, indicating that leading processes are distinct from short axons. Next, we examined the effect of GSK3 inhibitors on leading processes and the migratory behavior of MGE neurons. MGE neurons treated with GSK3 inhibitors showed multipolar morphology and altered process shapes. Moreover, migration of MGE neurons on the astrocyte layer was significantly decreased in the presence of GSK3 inhibitors. These data suggest that GSK3 is involved in the formation of leading processes and in the migration of MGE neurons.

  19. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension.

    Science.gov (United States)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E; Qvortrup, Klaus; Baar, Keith; Svensson, René B; Magnusson, S Peter; Krogsgaard, Michael; Koch, Manuel; Kjaer, Michael

    2010-06-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned along the axis of tension. The fibrils had a homogeneous narrow diameter that was similar to collagen fibrils occurring in embryonic tendon. Immunostaining showed colocalization of collagen type I with collagen III, XII and XIV. A fibronectin network was formed in parallel with the collagen, and fibroblasts stained positive for integrin alpha(5). Finally, the presence of cell extensions into the extracellular space with membrane-enclosed fibrils in fibripositors indicated characteristics of embryonic tendon. We conclude that mature human tendon fibroblasts retain an intrinsic capability to perform collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Tumorigenesis of nuclear transfer-derived embryonic stem cells is reduced through differentiation and enrichment following transplantation in the infarcted rat heart.

    Science.gov (United States)

    Fu, Qiang; Su, Dechun; Wang, Ke; Zhao, Yingjun

    2016-06-01

    The aim of the present study was to evaluate the tumorigenic potential of nuclear transfer-derived (nt) mouse embryonic stem cells (mESCs) transplanted into infarcted rat hearts. The nt‑mESCs were cultured using a bioreactor system to develop embryoid bodies, which were induced with 1% ascorbic acid to differentiate into cardiomyocytes. The nt‑mESC‑derived cardiomyocytes (nt‑mESCs‑CMs) were enriched using Percoll density gradient separation to generate nt‑mESCs‑percoll‑enriched (PE)‑CMs. Ischemia was induced by ligating the left anterior descending coronary artery in female Sprague‑Dawley rats. Immunosuppressed rats (daily intraperitoneal injections of cyclosporine A and methylprednisolone) were randomly assigned to receive an injection containing 5x106 mESCs, nt‑mESCs, nt‑mESC‑CMs or nt‑mESC‑PE‑CMs. Analysis performed 8 weeks following transplantation revealed teratoma formation in 80, 86.67 and 33.33% of the rats administered with the mESCs, nt‑mESCs and nt‑mESC‑CMs, respectively, indicating no significant difference between the mESCs and nt‑mESCs; but significance (P0.05 mESCs, vs. nt‑mESCs; P<0.05 nt‑mESC‑CMs, vs. nt‑mESCs). By contrast, no teratoma formation was detected in the rats, which received nt‑mESC‑PE‑CMs. Octamer‑binding transcription factor‑4, a specific marker of undifferentiated mESCs, was detected using polymerase chain reaction in the rats, which received nt‑mESCs and nt‑mESC‑CMs, but not in rats administered with nt‑mESC‑PE‑CMs. In conclusion, nt‑mESCs exhibited the same pluripotency as mESCs, and teratoma formation following nt‑mESC transplantation was reduced by cell differentiation and enrichment.

  1. Assessment of developmental cardiotoxic effects of some commonly used phytochemicals in mouse embryonic D3 stem cell differentiation and chick embryonic cardiomyocyte micromass culture models.

    Science.gov (United States)

    Mohammed, Omar J; McAlpine, Roseanna; Chiewhatpong, Phasawee; Latif, Muhammad Liaque; Pratten, Margaret K

    2016-09-01

    Pregnant women often use herbal medicines to alleviate symptoms of pregnancy. The active phytochemicals eugenol (from holy basil) and α-bisabolol (from chamomile) are recommended to promote calmness and reduce stress. There is evidence that both eugenol and α-bisabolol possess pro-apoptotic and anti-proliferative effects and induce reactive oxygen species. The potential effect was examined by monitoring cardiomyocyte contractile activity (differentiation), cell activity, protein content and ROS production for mouse D3 embryonic stem cell and ‎chick embryonic micromass culture. The results showed that eugenol (0.01-80μM) demonstrated effects on cell activity (both systems) and ROS production (stem cell system only), as well as decreasing the contractile activity and protein content at high concentrations in both systems. Additionally, α-bisabolol (0.01-80μM) at high concentrations decreased the contractile activity and cell activity and in the stem cell system induced ROS production and decreased protein content. The results suggest only low concentrations should be ingested in pregnancy.‎.

  2. Leu-7 immunoreactivity in human and rat embryonic hearts, with special reference to the development of the conduction tissue.

    Science.gov (United States)

    Ikeda, T; Iwasaki, K; Shimokawa, I; Sakai, H; Ito, H; Matsuo, T

    1990-01-01

    The distribution pattern of Leu-7 (HNK-1) in developing human embryonic hearts and rat hearts was studied by immunohistochemistry. Human and rat embryos at Streeter's stages XIII approximately XX and fetus stage I were used. Leu-7, which is absent in the newborn rat heart, is expressed transiently in the embryo and fetus I stages. The earliest embryonic heart shows two incomplete circular structures with immunoreactivity in the myocardium along the primitive atrioventricular cushion and bulboventricular canal. These two structures become localized topographically in the definitive atrioventricular node and atrioventricular bundle after rearrangement and partial disappearance during embryonic development. At Streeter's stages XVIII approximately XX, Leu-7 immunoreactivity appears to localize topographically in almost all the pathways of the conduction system, although some discontinuities are observed in the atrioventricular junction and atrial internodal tracts. Thereafter, immunoreactivity decreases gradually and differentially by site and stage. The precise nature of Leu-7 immunoreactive cells, that is, whether or not they are neurogenic or myogenic, is not revealed by this study. The present observations are discussed in connection with the hypothesis that specialized ring tissue is the primordium of the conduction system.

  3. Hyaluronate degradation affects ventricular function of the early postlooped embryonic rat heart in situ.

    Science.gov (United States)

    Baldwin, H S; Lloyd, T R; Solursh, M

    1994-02-01

    Hyaluronic acid is the major glycosaminoglycan of the early cardiac extracellular matrix or "cardiac jelly," yet little is known about its role in the ontogeny of early ventricular performance. To investigate the in situ effect of hyaluronate degradation on ventricular function, whole rat embryos were cultured in rat serum alone (control embryos) or rat serum plus 20 TRU/mL of Streptomyces hyaluronidase (treatment embryos) from gestational day 9.5 (before formation of the heart tube) through initial looping of the heart. Cardiac function was measured before looping (24 hours in culture) and immediately after looping (36 hours in culture) by video motion analysis of the external wall motion of the bulbus cordis and primitive ventricle. Degradation of hyaluronic acid in the treated embryos was confirmed by Alcian blue staining at pH 2.5. Significant increases in heart rate, circumferential shortening fraction, maximum velocity of circumferential contraction, and maximum velocity of circumferential relaxation were observed with looping in both control and treatment embryos. Although there was minimal difference in ventricular performance between control and treatment embryos before looping, there was a significant increase in all parameters of ventricular performance in the hyaluronidase-treated embryos immediately after looping of the heart. Endocardial cushions were absent in hyaluronidase-treated embryos, and an additional group of embryos cultured in the presence of Streptomyces hyaluronidase for 48 to 72 hours failed to develop endocardial cushions. These experiments are the first to (1) document a quantifiable increase in ventricular performance during early cardiac looping and (2) demonstrate that hyaluronate degradation results in abnormal endocardial cushion formation and altered ventricular performance of the postlooped heart.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system.

    Science.gov (United States)

    Lee, Nayeon; Park, Jae Woo; Kim, Hyung Joon; Yeon, Ju Hun; Kwon, Jihye; Ko, Jung Jae; Oh, Seung-Hun; Kim, Hyun Sook; Kim, Aeri; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2014-06-01

    Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

  5. Embryonic and postnatal development of the layer I-directed ("matrix") thalamocortical system in the rat.

    Science.gov (United States)

    Galazo, Maria J; Martinez-Cerdeño, Verónica; Porrero, César; Clascá, Francisco

    2008-02-01

    Inputs to the layer I apical dendritic tufts of pyramidal cells are crucial in "top-down" interactions in the cerebral cortex. A large population of thalamocortical cells, the "matrix" (M-type) cells, provides a direct robust input to layer I that is anatomically and functionally different from the thalamocortical input to layer VI. The developmental timecourse of M-type axons is examined here in rats aged E (embryonic day) 16 to P (postnatal day) 30. Anterograde techniques were used to label axons arising from 2 thalamic nuclei mainly made up of M-type cells, the Posterior and the Ventromedial. The primary growth cones of M-type axons rapidly reached the subplate of dorsally situated cortical areas. After this, interstitial branches would sprout from these axons under more lateral cortical regions to invade the overlying cortical plate forming secondary arbors. Moreover, retrograde labeling of M-type cell somata in the thalamus after tracer deposits confined to layer I revealed that large numbers of axons from multiple thalamic nuclei had already converged in a given spot of layer I by P3. Because of early ingrowth in such large numbers, interactions of M-type axons may significantly influence the early development of cortical circuits.

  6. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  7. [The combined effect of lead and zinc on the embryonic development of laboratory rats].

    Science.gov (United States)

    Bezetskaia, E N; Onul, N M

    2014-01-01

    In the article there are presented the results of the study of the impact of inorganic lead and zinc compounds, as well as their organic forms produced with the use of nanotechnoloy, on the embryonic development of laboratory rats. Metals were orally administered daily during 19 days of gestation at the doses of 0.05 mg/kg of lead, and 1.5 mg/kg of zinc. The impact of the test substances was evaluated by integral and specific indices with the use of physiological, morphological and quantitative methods of analysis. Lead in a dose of 0.05 mg/kg was established to disturb the antenatal development of the offspring of experimental animals, which is pronounced in the increased embryo lethality rate, deterioration of somatometric indices of male fetuses in the litter as compared with the control group, and compared with females. In permits to suggest the greater sensitivity of male fetuses to exposure to lead. The isolated impact of zinc in the dose of 1.5 mg/kg body weight does not influence on the levels of embrio mortality rate, as well as somatometric indices of fetuses. However, the combined administration of the compounds of zinc and lead weakens the embryotoxic effect of the latter in terms of embrio lethality and the amount of live fetuses in the litter with more effective bioprotection for zinc in the nanoaquachelate form.

  8. Embryonic tongue morphogenesis in an organ culture model of mouse mandibular arches: blocking Sonic hedgehog signaling leads to microglossia.

    Science.gov (United States)

    Torii, Daisuke; Soeno, Yuuichi; Fujita, Kazuya; Sato, Kaori; Aoba, Takaaki; Taya, Yuji

    2016-01-01

    Mouse tongue development is initiated with the formation of lateral lingual swellings just before fusion between the mediodorsal surfaces of the mandibular arches at around embryonic day 11.0. Here, we investigated the role of Sonic hedgehog (Shh) signaling in embryonic mouse tongue morphogenesis. For this, we used an organ culture model of the mandibular arches from mouse embryos at embryonic day 10.5. When the Shh signaling inhibitor jervine was added to the culture medium for 24-96 h, the formation of lateral lingual swellings and subsequent epithelial invagination into the mesenchyme were impaired markedly, leading to a hypoplastic tongue with an incomplete oral sulcus. Notably, jervine treatment reduced the proliferation of non-myogenic mesenchymal cells at the onset of forming the lateral lingual swellings, whereas it did not affect the proliferation and differentiation of a myogenic cell lineage, which created a cell community at the central circumferential region of the lateral lingual swellings as seen in vivo and in control cultures lacking the inhibitor. Thus, epithelium-derived Shh signaling stimulates the proliferation of non-myogenic mesenchymal cells essential for forming lateral lingual swellings and contributes to epithelial invagination into the mesenchyme during early tongue development.

  9. Antioxidative effects of proteoglycans of embryonic genesis in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Vahedian V

    2013-01-01

    Full Text Available Vahid Vahedian,1 Yelena M Aghajanova,2 Gevorg A Kevorkian,3 Maxim A Simonyan31Department of Biochemistry, 2Department of Endocrinology, Yerevan State Medical University after M Heratsi, Yerevan, Armenia, 3Buniatyan Institute of Biochemistry, National Academy of Science, Yerevan, ArmeniaIntroduction: It is well accepted that oxidative stress plays a significant role in the pathogenesis of diabetes mellitus. The objective of this study was to investigate the effect of proteoglycans of embryonic genesis (PEG on concentrations and activity of prooxidative and antioxidative metalloproteins in streptozotocin (STZ-induced diabetes in rats.Methods: Study groups were as follows: vehicle control group (Group 1, STZ-induced diabetes (55 mg/kg, intraperitoneal injection [Group 2], STZ-induced diabetes with prophylactic injection of PEG (0.5 mg/kg intraperitonealy injected 1 week prior to STZ injection (Group 3. The following prooxidative metalloproteins were studied: levels of nicotinamide adenine dinucleotide phosphate (NADPH oxidase (Nox isoforms (extracellular Nox [eNox] in serum; erythrocyte membranes; and spleen cell membranes, nucleus and mitochondria, as well as serum levels of superoxide-producing lipoprotein (suprol; cytochrome (cyt b5 from cytosol of erythrocytes; and cyt c from spleen cell cytosol. The antioxidative metalloproteins, particularly superoxide dismutase and catalase from erythrocyte and from spleen cell cytosol were studied.Results: Results demonstrated the significant (P < 0.05 increase in the level and activity of NADPH-dependent, O2--producing eNox activity in Group 2 in comparison with the control Group and decrease of the ferrihemoglobin-reducing activities of these Nox, as well as a significant increase in O2--producing activity of suprol. In Group 2, there was a significant elevation of the level of cyt c, and decreased cyt b5 level, as well as inhibition of superoxide dismutase and catalase activity.Conclusion: The

  10. The establishment of 20 different human embryonic stem cell lines and subclones; a report on derivation, culture, characterisation and banking.

    Science.gov (United States)

    Englund, Mikael C O; Caisander, Gunilla; Noaksson, Karin; Emanuelsson, Katarina; Lundin, Kersti; Bergh, Christina; Hansson, Charles; Semb, Henrik; Strehl, Raimund; Hyllner, Johan

    2010-04-01

    This report summarises our efforts in deriving, characterising and banking of 20 different human embryonic stem cell lines. We have derived a large number of human embryonic stem cell lines between 2001 and 2005. One of these cell lines was established under totally xeno-free culture conditions. In addition, several subclones have been established, including a karyoptypical normal clone from a trisomic mother line. A master cell banking system has been utilised in concert with an extensive characterisation programme, ensuring a supply of high quality pluripotent stem cells for further research and development. In this report we also present the first data on a proprietary novel antibody, hES-Cellect, that exhibits high specificity for undifferentiated hES cells. In addition to the traditional manual dissection approach of propagating hES cells, we here also report on the successful approaches of feeder-free cultures as well as single cell cultures based on enzymatic digestion. All culture systems used as reported here have maintained the hES cells in a karyotypical normal and pluripotent state. These systems also have the advantage of being the principal springboards for further scale up of cultures for industrial or clinical applications that would require vastly more cells that can be produced by mechanical means.

  11. A novel method for generating xeno-free human feeder cells for human embryonic stem cell culture.

    Science.gov (United States)

    Meng, Guoliang; Liu, Shiying; Krawetz, Roman; Chan, Michael; Chernos, Judy; Rancourt, Derrick E

    2008-06-01

    Long-term cultures of human embryonic stem (hES) cells require a feeder layer for maintaining cells in an undifferentiated state and increasing karyotype stability. In routine hES cell culture, mouse embryonic fibroblast (MEF) feeders and animal component-containing media (FBS or serum replacement) are commonly used. However, the use of animal materials increases the risk of transmitting pathogens to hES cells and therefore is not optimal for use in cultures intended for human transplantation. There are other limitations with conventional feeder cells, such as MEFs, which have a short lifespan and can only be propagated five to six passages before senescing. Several groups have investigated maintaining existing hES cell lines and deriving new hES cell lines on human feeder layers. However, almost all of these human source feeder cells employed in previous studies were derived and cultured in animal component conditions. Even though one group previously reported the derivation and culture of human foreskin fibroblasts (HFFs) in human serum-containing medium, this medium is not optimal because HFFs routinely undergo senescence after 10 passages when cultured in human serum. In this study we have developed a completely animal-free method to derive HFFs from primary tissues. We demonstrate that animal-free (AF) HFFs do not enter senescence within 55 passages when cultured in animal-free conditions. This methodology offers alternative and completely animal-free conditions for hES cell culture, thus maintaining hES cell morphology, pluripotency, karyotype stability, and expression of pluripotency markers. Moreover, no difference in hES cell maintenance was observed when they were cultured on AF-HFFs of different passage number or independent derivations.

  12. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    Science.gov (United States)

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (pcatalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (pcatalase is a determinant of risk for EtOH embryopathies.

  13. Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation

    Directory of Open Access Journals (Sweden)

    Meyer Ulrich

    2011-07-01

    Full Text Available Abstract Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and ß-glycerolphosphate (DAG. After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin.

  14. Spontaneously differentiated GATA6-positive human embryonic stem cells represent an important cellular step in human embryonic development; they are not just an artifact of in vitro culture.

    Science.gov (United States)

    Lee, Jun Ho; Hong, Ki Sung; Mantel, Charlie; Broxmeyer, Hal E; Lee, Man Ryul; Kim, Kye-Seong

    2013-10-15

    In this study, we isolated and characterized spontaneously differentiated human embryonic stem cells (SD-hESCs) found in hESC colonies in comparison to the morphologically premature ESCs in the colonies to investigate the potential role of SD-hESCs in embryogenesis. SD-hESCs were distinguished from undifferentiated hESCs by their higher expression of GATA6, a marker for primitive endoderm and transthyretin, a marker visceral endoderm in embryoid bodies (EBs). SD-hESCs expressed OCT4 and NANOG, markers for pluripotent stem cells, at significantly lower levels than undifferentiated hESCs. EBs derived from isolated SD-hESCs were morphologically distinct from cells directly derived from the undifferentiated hESCs; they contained higher number of cysts compared to EBs from undifferentiated hESC-derived EBs (42% vs. 20%). Furthermore, the extracellular signal molecule, BMP2/4, induced a higher GATA4/6 expression and cystic EB formation than control and noggin-treated EBs. Since cystic formation in EBs play a role in primitive endoderm formation during embryogenesis, the SD-hESC may be a relevant cell type equipped to differentiate into primitive endoderm. Our results suggest that SD-ESCs generated during routine hESC culture are not just an artifact of in vitro culture and these cells could serve as a useful model to study the process of embryogenesis.

  15. High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids.

    Science.gov (United States)

    Peirouvi, T; Yekani, F; Azarnia, M; Massumi, M

    2015-01-01

    Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic cerebrospinal fluid (E-CSF) including E13.5, E17-CSF and the adult cerebrospinal fluid (A-CSF), all extracted from rats. CSF samples were selected based on their effects on cell behavioral parameters. Primary cell culture was performed in the presence of either normal or high levels of KCL in a culture medium. High levels of KCL cause cell depolarization, and thus the activation of quiescent NSCs. Results from immunocytochemistry (ICC) and semi-quantitative RT-PCR (sRT-PCR) techniques showed that in E-CSF-treated groups, neuronal differentiation increased (E17>E13.5). In contrast, A-CSF decreased and increased neuronal and astroglial differentiations, respectively. Cell survivability and/or proliferation (S/P), evaluated by an MTT assay, increased by E13.5 CSF, but decreased by both E17 CSF and A-CSF. Based on the results, it is finally concluded that adult rat hippocampal proliferative cells are not restricted progenitors but rather show high plasticity in neuronal/astroglial differentiation according to the effects of CSF samples. In addition, using high concentrations of KCL in the primary cell culture led to an increase in the number of NSCs, which in turn resulted in the increase in neuronal or astroglial differentiations after CSF treatment.

  16. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    Science.gov (United States)

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  17. mRNA Fragments in In-Vitro Culture Media are Associated with Bovine Preimplantation Embryonic Development

    Directory of Open Access Journals (Sweden)

    Jenna eKropp

    2015-08-01

    Full Text Available In vitro production (IVP systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerated conditioned media. Differential expression was confirmed by quantitative real-time PCR for

  18. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Miller-Pinsler, Lutfiya [Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Wells, Peter G., E-mail: pg.wells@utoronto.ca [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada)

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  19. Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor.

    Science.gov (United States)

    Roberts, Iwan; Baila, Stefano; Rice, R Brent; Janssens, Michiel Etienne; Nguyen, Kim; Moens, Nathalie; Ruban, Ludmila; Hernandez, Diana; Coffey, Pete; Mason, Chris

    2012-12-01

    The commercialisation of human embryonic stem cell derived cell therapies for large patient populations is reliant on both minimising expensive and variable manual-handling methods whilst realising economies of scale. The Quantum Cell Expansion System, a hollow fibre bioreactor (Terumo BCT), was used in a pilot study to expand 60 million human embryonic stem cells to 708 million cells. Further improvements can be expected with optimisation of media flow rates throughout the run to better control the cellular microenvironment. High levels of pluripotency marker expression were maintained on the bioreactor, with 97.7 % of cells expressing SSEA-4 when harvested.

  20. MDMA (Ecstasy) Decreases the Number of Neurons and Stem Cells in Embryonic Cortical Cultures

    DEFF Research Database (Denmark)

    Kindlundh-Högberg, Anna M S; Pickering, Chris; Wicher, Grzegorz

    2010-01-01

    Ecstasy, 3,4-methylenedioxymetamphetamine (MDMA), is a recreational drug used among adolescents, including young pregnant women. MDMA passes the placental barrier and may therefore influence fetal development. The aim was to investigate the direct effect of MDMA on cortical cells using dissociated...... CNS cortex of rat embryos, E17. The primary culture was exposed to a single dose of MDMA and collected 5 days later. MDMA caused a dramatic, dose-dependent (100 and 400 muM) decrease in nestin-positive stem cell density, as well as a significant reduction (400 muM) in NeuN-positive cells. By q......PCR, MDMA (200 muM) caused a significant decrease in mRNA expression of the 5HT3 receptor, dopamine D(1) receptor, and glutamate transporter EAAT2-1, as well as an increase in mRNA levels of the NMDA NR1 receptor subunit and the 5HT(1A) receptor. In conclusion, MDMA caused a marked reduction in stem cells...

  1. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery

    DEFF Research Database (Denmark)

    Kiprilov, Enko N; Awan, Aashir; Desprat, Romain

    2008-01-01

    Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human h...

  2. Evaluation of a hybrid artificial liver module based on a spheroid culture system of embryonic stem cell-derived hepatic cells.

    Science.gov (United States)

    Mizumoto, Hiroshi; Hayashi, Shunsuke; Matsumoto, Kinya; Ikeda, Kaoru; Kusumi, Tomoaki; Inamori, Masakazu; Nakazawa, Kohji; Ijima, Hiroyuki; Funatsu, Kazumori; Kajiwara, Toshihisa

    2012-01-01

    Hybrid artificial liver (HAL) is an extracorporeal circulation system comprised of a bioreactor containing immobilized functional liver cells. It is expected to not only serve as a temporary liver function support system, but also to accelerate liver regeneration in recovery from hepatic failure. One of the most difficult problems in developing a hybrid artificial liver is obtaining an adequate cell source. In this study, we attempt to differentiate embryonic stem (ES) cells by hepatic lineage using a polyurethane foam (PUF)/spheroid culture in which the cultured cells spontaneously form spherical multicellular aggregates (spheroids) in the pores of the PUF. We also demonstrate the feasibility of the PUF-HAL system by comparing ES cells to primary hepatocytes in in vitro and ex vivo experiments. Mouse ES cells formed multicellular spheroids in the pores of PUF. ES cells expressed liver-specific functions (ammonia removal and albumin secretion) after treatment with the differentiation-promoting agent, sodium butyrate (SB). We designed a PUF-HAL module comprised of a cylindrical PUF block with many medium-flow capillaries for hepatic differentiation of ES cells. The PUF-HAL module cells expressed ammonia removal and albumin secretion functions after 2 weeks of SB culture. Because of high proliferative activity of ES cells and high cell density, the maximum expression level of albumin secretion function per unit volume of module was comparable to that seen in primary mouse hepatocyte culture. In the animal experiments with rats, the PUF-HAL differentiating ES cells appeared to partially contribute to recovery from liver failure. This outcome indicates that the PUF module containing differentiating ES cells may be a useful biocomponent of a hybrid artificial liver support system.

  3. Pure populations of murine macrophages from cultured embryonic stem cells. Application to studies of chemotaxis and apoptotic cell clearance.

    Science.gov (United States)

    Zhuang, Lihui; Pound, John D; Willems, Jorine J L P; Taylor, A Helen; Forrester, Lesley M; Gregory, Christopher D

    2012-11-30

    Embryonic stem cells provide a potentially convenient source of macrophages in the laboratory. Given the propensity of macrophages for plasticity in phenotype and function, standardised culture and differentiation protocols are required to ensure consistency in population output and activity in functional assays. Here we detail the development of an optimised culture protocol for the production of murine embryonic stem cell-derived macrophages (ESDM). This protocol provides improved yields of ESDM and we demonstrate that the cells are suitable for application to the study of macrophage responses to apoptotic cells. ESDM so produced were of higher purity than commonly used primary macrophage preparations and were functional in chemotaxis assays and in phagocytosis of apoptotic cells. Maturation of ESDM was found to be associated with reduced capacity for directed migration and increased capacity for phagocytic clearance of apoptotic cells. These results show ESDM to be functionally active in sequential phases of interaction with apoptotic cells and establish these macrophage populations as useful models for further study of molecular mechanisms underlying the recognition and removal of apoptotic cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Ultrastructural identification of Ricinus communis agglutinin-1 positive cells in primary dissociated cell cultures of human embryonic brain.

    Science.gov (United States)

    Bobryshev, Y; Ashwell, K

    1994-12-01

    While Ricinus communis agglutinin 1 (RCA-1) can be used as a specific marker to study the development and differentiation of microglial cells in human embryogenesis, little is known about the structural heterogeneity and nature of RCA-1+ cells. To analyse the structural peculiarities of RCA-1+ cells, we have used primary dissociated cultures of human embryonic brain. These have been used as models for investigating many of the aspects of central nervous system (CNS) HIV infection. We have shown that primary dissociated cultures from human embryos as young as 10 weeks gestation contain RCA-1+ cells. The RCA-1+ cells exist in two forms, those without (type I) and those with (type II) processes. The former have a poorly developed ultrastructure, while the latter have well developed ultrastructural features, such as rough endoplasmic reticulum with short cisternae, abundant ribosomes, mitochondria, lysosomes and vacuoles. Furthermore, some of these cells with processes have well developed cytoskeletal features. In this paper, the classification of RCA-1+ cells of embryonic human brain is considered and their morphology compared to microglia identified in rodent CNS.

  5. Oogenesis, fertilisation and early embryonic development in rats. I: Dose-dependent effects of pregnant mare serum gonadotrophins.

    Science.gov (United States)

    Goh, H H; Yang, X F; Tain, C F; Liew, L P; Ratnam, S S

    1992-07-01

    Five hundred and eight mature female Wistar rats divided into 35 different groups were stimulated with pregnant mare serum gonadotrophins (PMSG) (0, 5, 10, 20 & 40 IU) at the late diestrus stage to induce multiple follicular development. No chorionic gonadotrophin (CG) was used for ovulation induction. The quality of oocytes and their in vitro fertilisability, quality of Day 2-embryos, viability of pregnancy and status of fetuses on Day 14 of gestation and status of embryos retrieved on Day 2, 3, 4 and 5 of pregnancy in different subgroups of rats were examined. Results showed that more oocytes and embryos fertilised in in vivo were retrieved from rats supraphysiologically stimulated with 20 IU of PMSG. However, concurrent with the larger number, higher proportions of abnormal oocytes and embryos were found. High doses of PMSG caused lower in vitro fertilisability of oocytes and greater degrees of embryonic degeneration. Although, the number of oocytes and Day 2-embryos were higher in the 20PMGS dose group, the pregnancy rate was significantly reduced to 27%. In the 40PMSG group no viable pregnancy was noted. Most embryo demise occurred by day 3-5 of pregnancy, probably within the oviducts and before the implantation stage. In rats supraphysiologically stimulated with 20 and 40 IU of PMSG, the number of morphologically normal looking embryos was greatly reduced by Day 3-5 of pregnancy. In the 40PMSG group, there were no embryos retrieved by Day 4 and 5.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. ACTIONS OF THE ENDOCRINE DISRUPTOR METHOXYCHLOR AND ITS ESTROGENIC METABOLITE ON IN VITRO EMBRYONIC RAT SEMINIFEROUS CORD FORMATION AND PERINATAL TESTIS GROWTH. (R827405)

    Science.gov (United States)

    AbstractThe current study examines the actions of methoxychlor and its estrogenic metabolite, 2, 2-bis-(p-hydroxyphenyl)-1, 1, 1-trichloroethane (HPTE), on seminiferous cord formation and growth of the developing rat testis. The developing testis in the embryonic and ...

  7. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions.

    Directory of Open Access Journals (Sweden)

    Ibon Garitaonandia

    Full Text Available The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs make them a promising source of material for cell transplantation therapy, drug development, and studies of cellular differentiation and development. However, the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures, a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging, and feeder-free vs. mouse embryonic fibroblast feeder substrate, on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages, we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability, higher rates of cell proliferation, and persistence of OCT4/POU5F1-positive cells in teratomas, with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers, we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53, which was associated with decreased mRNA expression of TP53, as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures, we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies.

  8. CHARACTERIZING CALCIUM INFLUX VIA VOLTAGE- AND LIGAND-GATED CALCIUM CHANNELS IN EMBRYONIC ALLIGATOR NEURONS IN CULTURE

    Science.gov (United States)

    Ju, Weina; Wu, Jiang; Pritz, Michael B.; Khanna, Rajesh

    2013-01-01

    Vertebrate brains share many features in common. Early in development, both the hindbrain and diencephalon are built similarly. Only later in time do differences in morphology occur. Factors that could potentially influence such changes include certain physiological properties of neurons. As an initial step to investigate this problem, embryonic Alligator brain neurons were cultured and calcium responses were characterized. The present report is the first to document culture of Alligator brain neurons in artificial cerebrospinal fluid (ACSF) as well as in standard mammalian tissue culture medium supplemented with growth factors. Alligator brain neuron cultures were viable for at least 1 week with unipolar neurites emerging by 24 hours. Employing Fura-2 AM, robust depolarization-induced calcium influx, was observed in these neurons. Using selective blockers of the voltage-gated calcium channels, the contributions of N-, P/Q-, R-, T-, and L-type channels in these neurons were assessed and their presence documented. Lastly, Alligator brain neurons were challenged with an excitotoxic stimulus (glutamate + glycine) where delayed calcium deregulation could be prevented by a classical NMDA receptor antagonist. PMID:24260711

  9. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    Science.gov (United States)

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies.

  10. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture.

    Science.gov (United States)

    Hongisto, Heidi; Vuoristo, Sanna; Mikhailova, Alexandra; Suuronen, Riitta; Virtanen, Ismo; Otonkoski, Timo; Skottman, Heli

    2012-01-01

    Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2010-01-01

    Full Text Available The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.

  12. Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture

    DEFF Research Database (Denmark)

    Liberski, A. R.; Al-Noubi, M. N.; Rahman, Z. H.

    2013-01-01

    developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison, WI) licensed to STEMCELL Technologies (Vancouver, Canada)]. This medium, together with adjustments to the culturing protocol, facilitates reproducible labeling that is easily scalable to the protein......Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only...... rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino...

  13. Proteomic analysis of ethanol-induced embryotoxicity in cultured post-implantation rat embryos.

    Science.gov (United States)

    Usami, Makoto; Mitsunaga, Katsuyoshi; Irie, Tomohiko; Miyajima, Atsuko; Doi, Osamu

    2014-04-01

    Protein expression changes were examined in day 10.5 rat embryos cultured for 24 hr in the presence of ethanol by using two-dimensional electrophoresis and mass spectrometry. Exposure to ethanol resulted in quantitative changes in many embryonic protein spots (16 decreased and 28 increased) at in vitro embryotoxic concentrations (130 and 195 mM); most changes occurred in a concentration-dependent manner. For these protein spots, 17 proteins were identified, including protein disulfide isomerase A3, alpha-fetoprotein, phosphorylated cofilin-1, and serum albumin. From the gene ontology classification and pathway mapping of the identified proteins, it was found that ethanol affected several biological processes involving oxidative stress and retinoid metabolism.

  14. Production of compartmented cultures of rat sympathetic neurons.

    Science.gov (United States)

    Campenot, Robert B; Lund, Karen; Mok, Sue-Ann

    2009-01-01

    The compartmented culture, in which primary neurons plated in a proximal compartment send their axons under silicone grease barriers and into left and right distal compartments, has enhanced the experimental capabilities of neuronal cultures. Treatments can be applied separately to cell bodies/proximal axons or distal axons, and cell bodies/proximal axons and distal axons can be separately harvested and analyzed. Distal axons can be axotomized, and the neurons can be studied while their axons regenerate. Construction of the culture dishes requires 3 h for 48 cultures, and preparing the neurons also requires 3 h. Compartmented cultures provide enough cellular material for biochemical analyses such as immunoblotting. The uses of compartmented cultures have included studies of neurotrophic factor retrograde signaling, axonal transport, and axonal protein and lipid biosynthesis. Here we focus on sympathetic neurons cultured from neonatal rats and provide protocols for the production and some of the uses of compartmented cultures.

  15. Cryopreservation of Quercus suber and Quercus ilex embryonic axes: in vitro culture, desiccation and cooling factors.

    Science.gov (United States)

    Gonzalez-Benito, M Elena; Prieto, Roberto-Moreno; Herradon, Esther; Martin, Carmen

    2002-01-01

    This study examines different factors included in the cryopreservation protocols for Quercus ilex and Q. suber embryonic axes. In vitro incubation temperature played an important role in the appropriate development of Q. ilex axes, as 15 degrees C was superior to 25 degrees C. Q. suber axes proved to be more sensitive to desiccation and cooling. Poor survival (35%) was observed when axes were included into cryovials and then in liquid nitrogen, and none when immersed in sub-cooled liquid nitrogen (-210 degrees C). Q. ilex axes showed poorly organised development in vitro (c. 50% of non-cooled axes showed shoot development). However, c. 80% survival was observed after cryopreservation (either in liquid nitrogen or sub-cooled liquid nitrogen at 0.34 g water / g dry weight), of which c. 15% showed shoot development.

  16. Assessment of 'one-step' versus 'sequential' embryo culture conditions through embryonic genome methylation and hydroxymethylation changes.

    Science.gov (United States)

    Salvaing, J; Peynot, N; Bedhane, M N; Veniel, S; Pellier, E; Boulesteix, C; Beaujean, N; Daniel, N; Duranthon, V

    2016-11-01

    In comparison to in vivo development, how do different conditions of in vitro culture ('one step' versus 'sequential medium') impact DNA methylation and hydroxymethylation in preimplantation embryos? Using rabbit as a model, we show that DNA methylation and hydroxymethylation are both affected by in vitro culture of preimplantation embryos and the effect observed depends on the culture medium used. Correct regulation of DNA methylation is essential for embryonic development and DNA hydroxymethylation appears more and more to be a key player. Modifications of the environment of early embryos are known to have long term effects on adult phenotypes and health; these probably rely on epigenetic alterations. The study design we used is both cross sectional (control versus treatment) and longitudinal (time-course). Each individual in vivo experiment used embryos flushed from the donor at the 2-, 4-, 8-, 16- or morula stage. Each stage was analyzed in at least two independent experiments. Each individual in vitro experiment used embryos flushed from donors at the 1-cell stage (19 h post-coïtum) which were then cultured in parallel in the two tested media until the 2-, 4-, 8- 16-cell or morula stages. Each stage was analyzed in at least three independent experiments. In both the in vivo and in vitro experiments, 4-cell stage embryos were always included as an internal reference. Immunofluorescence with antibodies specific for 5-methylcytosine (5meC) and 5-hydroxymethylcytosine (5hmeC) was used to quantify DNA methylation and hydroxymethylation levels in preimplantation embryos. We assessed the expression of DNA methyltransferases (DNMT), of ten eleven translocation (TET) dioxigenases and of two endogenous retroviral sequences (ERV) using RT-qPCR, since the expression of endogenous retroviral sequences is known to be regulated by DNA methylation. Three repeats were first done for all stages; then three additional repetitions were performed for those stages showing

  17. Studies on the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rat

    OpenAIRE

    2011-01-01

    Objective To evaluate the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rats.Methods A total of 100female SD rats were randomly divided into negative control,low-,medium-,high-dose group and intervention group(20each).Rats in low-,medium-and high-dose group were fed daily with the sustained release drug at 1,4,and 8g/kg respectively;those in negative control group were fed daily with distilled water from ...

  18. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  19. Optimization of a serum-free culture medium for mouse embryonic stem cells using design of experiments (DoE) methodology.

    Science.gov (United States)

    Knöspel, Fanny; Schindler, Rudolf K; Lübberstedt, Marc; Petzolt, Stephanie; Gerlach, Jörg C; Zeilinger, Katrin

    2010-12-01

    The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis according to Plackett-Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence on the proliferation activity of the cells, while zinc and L: -cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media for human embryonic stem cells (hESC).

  20. In vitro culture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes

    Directory of Open Access Journals (Sweden)

    Hornsey Mark A

    2006-05-01

    Full Text Available Abstract Background Study of the normal development of the intestinal epithelium has been hampered by a lack of suitable model systems, in particular ones that enable the introduction of exogenous genes. Production of such a system would advance our understanding of normal epithelial development and help to shed light on the pathogenesis of intestinal neoplasia. The criteria for a reliable culture system include the ability to perform real time observations and manipulations in vitro, the preparation of wholemounts for immunostaining and the potential for introducing genes. Results The new culture system involves growing mouse embryo intestinal explants on fibronectin-coated coverslips in basal Eagle's medium+20% fetal bovine serum. Initially the cultures maintain expression of the intestinal transcription factor Cdx2 together with columnar epithelial (cytokeratin 8 and mesenchymal (smooth muscle actin markers. Over a few days of culture, differentiation markers appear characteristic of absorptive epithelium (sucrase-isomaltase, goblet cells (Periodic Acid Schiff positive, enteroendocrine cells (chromogranin A and Paneth cells (lysozyme. Three different approaches were tested to express genes in the developing cultures: transfection, electroporation and adenoviral infection. All could introduce genes into the mesenchyme, but only to a small extent into the epithelium. However the efficiency of adenovirus infection can be greatly improved by a limited enzyme digestion, which makes accessible the lateral faces of cells bearing the Coxsackie and Adenovirus Receptor. This enables reliable delivery of genes into epithelial cells. Conclusion We describe a new in vitro culture system for the small intestine of the mouse embryo that recapitulates its normal development. The system both provides a model for studying normal development of the intestinal epithelium and also allows for the manipulation of gene expression. The explants can be cultured for up

  1. GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells.

    Science.gov (United States)

    Christensen, David R; Calder, Philip C; Houghton, Franchesca D

    2015-12-07

    Human embryonic stem cells (hESCs) have the capacity to differentiate into all cell types and thus have great potential for regenerative medicine. hESCs cultured at low oxygen tensions are more pluripotent and display an increased glycolytic rate but how this is regulated is unknown. This study therefore aimed to investigate the regulation of glucose metabolism in hESCs and whether this might impact OCT4 expression. In contrast to the glucose transporter GLUT1, GLUT3 was regulated by environmental oxygen and localised to hESC membranes. Silencing GLUT3 caused a reduction in glucose uptake and lactate production as well as OCT4 expression. GLUT3 and OCT4 expression were correlated suggesting that hESC self-renewal is regulated by the rate of glucose uptake. Surprisingly, PKM2, a rate limiting enzyme of glycolysis displayed a nuclear localisation in hESCs and silencing PKM2 did not alter glucose metabolism suggesting a role other than as a glycolytic enzyme. PKM2 expression was increased in hESCs cultured at 5% oxygen compared to 20% oxygen and silencing PKM2 reduced OCT4 expression highlighting a transcriptional role for PKM2 in hESCs. Together, these data demonstrate two separate mechanisms by which genes regulating glucose uptake and metabolism are involved in the hypoxic support of pluripotency in hESCs.

  2. Pluripotent stem cells isolated from umbilical cord form embryonic like bodies in a mesenchymal layer culture.

    Science.gov (United States)

    Tsagias, Nikos; Kouzi-Koliakos, Kokkona; Karagiannis, Vasileios; Tsikouras, P; Koliakos, George G

    2015-03-01

    Recently the matrix of umbilical cord began to use as an alternative source of stem cells additionally to the blood of umbilical cord. Umbilical cord has been used mainly for mesenchymal stem cell banking. The immunological characteristics of mesenchymal stem cells in combination with their ability to avoid rejection make them an attractive biological material for transplantations. In this study the isolation of small in size pluripotent stem cells from umbilical cord expressing early transcription factors with characteristics that resemble to embryonic stem cells is investigated. Pluripotent stem cells were isolated from human umbilical cords, by a new strategy method based on unique characteristics such as the small size and the positivity on early transcription factors OCT and Nanog. An enriched population of CXCR4(+) OCT(+) Nanog(+) CD45(-) small stem cells from the cord was isolated. This fraction was able to create alkaline phosphatase positive like spheres forms in a mesenchymal layer with multilineage differentiation capacity. Our results were assessed by RT PCR and electophoresis for the pluripotent genes. These data suggest that umbilical cord provides an attractive source not only of mesenchymal stem cells but moreover of pluripotent stem cells. The method described herein should be applied in the field of stem cell banking in addition to the classical umbilical cord harvesting method. Isolation of a population of cells with pluripotent characteristics from umbilical cord. Adoption of a second centrifugation step for the pluripotent stem isolation. Increasing the value of the cord and explaining the pluripotency. This work will enhance the value of umbilical cord harvesting.

  3. Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mykyta V., E-mail: sokolovm@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Irina V., E-mail: ipanyutinv@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Igor G., E-mail: igorp@helix.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Neumann, Ronald D., E-mail: rneumann@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States)

    2011-05-10

    One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1 Gy of gamma-radiation at 2 h and 16 h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2 h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16 h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.

  4. Kinetics of lactate and pyruvate transport in cultured rat myotubes

    DEFF Research Database (Denmark)

    von Grumbckow, Lena; Elsner, Peter; Hellsten, Ylva;

    1999-01-01

    Skeletal muscle transport of lactate and pyruvate was studied in primary cultures of rat myotubes, applying the pH-sensitive fluorescent indicator 2', 7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. The initial rate of decrease in intracellular pH (pHi) upon lactate or pyruvate incubation was used...

  5. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.

    Science.gov (United States)

    Hara, Jared; Tottori, Jordan; Anders, Megan; Dadhwal, Smritee; Asuri, Prashanth; Mobed-Miremadi, Maryam

    2017-05-01

    Post cryopreservation viability of human embryonic kidney (HEK) cells under two-dimensional (2D) and three-dimensional (3D) culture conditions was studied using trehalose as the sole cryoprotective agent. An L9 (3(4)) Taguchi design was used to optimize the cryoprotection cocktail seeding process prior to slow-freezing with the specific aim of maximizing cell viability measured 7 days post thaw, using the combinatorial cell viability and in-vitro cytotoxicity WST assay. At low (200 mM) and medium (800 mM) levels of trehalose concentration, encapsulation in alginate offered a greater protection to cryopreservation. However, at the highest trehalose concentration (1200 mM) and in the absence of the pre-incubation step, there was no statistical difference at the 95% CI (p = 0.0212) between the viability of the HEK cells under 2D and 3D culture conditions estimated to be 17.9 ± 4.6% and 14.0 ± 3.6%, respectively. A parallel comparison between cryoprotective agents conducted at the optimal levels of the L9 study, using trehalose, dimethylsulfoxide and glycerol in alginate microcapsules yielded a viability of 36.0 ± 7.4% for trehalose, in average 75% higher than the results associated with the other two cell membrane-permeating compounds. In summary, the effectiveness of trehalose has been demonstrated by the fact that 3D cell cultures can readily be equilibrated with trehalose before cryopreservation, thus mitigating the cytotoxic effects of glycerol and dimethylsulfoxide.

  6. Acetaminophen metabolism, cytotoxicity, and genotoxicity in rat primary hepatocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Milam, K.M.; Byard, J.L.

    1985-06-30

    Acetaminophen (APAP) metabolism, cytotoxicity, and genotoxicity were measured in primary cultures of rat hepatocytes. Although 3 mM APAP caused a slight increase in cellular release of lactate dehydrogenase into the culture medium, cellular glutathione concentration (an index of APAP metabolism) was reduced by 50%. APAP at 7 mM was significantly more toxic to these hepatocytes and had a similar but more marked effect on glutathione concentrations. In spite of its cytotoxicity, neither dose of APAP stimulated DNA repair synthesis when monitored by the rate of incorporation of (/sup 3/H)thymidine into DNA following exposure to APAP. Thus, although APAP has been shown to be both hepato- and nephrotoxic in several in vivo and in vitro systems, the reactive toxic metabolite of APAP is not genotoxic in rat primary hepatocyte cultures.

  7. Long-term organ culture of adult rat colon

    DEFF Research Database (Denmark)

    1978-01-01

    . The effect of in vivo carcinogen pretreatment was also studied. The explant culture from control untreated animals showed good epithelial differentiation with crypts until 6 weeks. In contrast, the explants from animals pretreated with 4 weekly doses of azoxymethane consistently showed epithelial......Colon explants from adult rats were maintained in culture for over 3 months in our laboratories with good epithelial preservation and cellular differentiation. The light and transmission electron microscopic features of rat colon mucosa during the culture period are described. In all the explants...... that remained viable, there was an initial phase of degeneration of the surface and crypt cells, later these areas were repopulated in one week, showing well-formed crypts, goblet cells, and ultrastructural features such as extensive lateral interdigitations, microvilli and glycocalyx--typical of colon...

  8. Comparison of gene expression profile in embryonic mesencephalon and neuronal primary cultures.

    Directory of Open Access Journals (Sweden)

    Dario Greco

    Full Text Available In the mammalian central nervous system (CNS an important contingent of dopaminergic neurons are localized in the substantia nigra and in the ventral tegmental area of the ventral midbrain. They constitute an anatomically and functionally heterogeneous group of cells involved in a variety of regulatory mechanisms, from locomotion to emotional/motivational behavior. Midbrain dopaminergic neuron (mDA primary cultures represent a useful tool to study molecular mechanisms involved in their development and maintenance. Considerable information has been gathered on the mDA neurons development and maturation in vivo, as well as on the molecular features of mDA primary cultures. Here we investigated in detail the gene expression differences between the tissue of origin and ventral midbrain primary cultures enriched in mDA neurons, using microarray technique. We integrated the results based on different re-annotations of the microarray probes. By using knowledge-based gene network techniques and promoter sequence analysis, we also uncovered mechanisms that might regulate the expression of CNS genes involved in the definition of the identity of specific cell types in the ventral midbrain. We integrate bioinformatics and functional genomics, together with developmental neurobiology. Moreover, we propose guidelines for the computational analysis of microarray gene expression data. Our findings help to clarify some molecular aspects of the development and differentiation of DA neurons within the midbrain.

  9. Neurotrophic requirements of rat embryonic catecholaminergic neurons from the rostral ventrolateral medulla

    NARCIS (Netherlands)

    Copray, JCVM; Gibbons, H; van Roon, WMC; Comer, AM; Lipski, J

    1999-01-01

    The factors that regulate the ontogeny and differentiation of C1 adrenergic neurons located in the rostral ventrolateral medulla (RVLM) are completely unknown. In the present study, we have investigated the effects of a number of neurotrophic factors on the survival of E18-19 rat C1 adrenergic neuro

  10. Isolation and Primary Culture of Rat Hepatocytes Using Kiwifruit Actinidin

    Directory of Open Access Journals (Sweden)

    Z. Shirvani Farsani

    2007-07-01

    Full Text Available Introduction & Objective: Isolation of cells from different tissues rely on proteolytic enzymes mainly collagenases that selectively digest collagen fibers of extra-cellular matrix. It is important to find new and proper collagenases from plant sources. In the present research actinidin, a cysteine protease abundant in Kiwifruit, was used to isolate and culture of rat hepatocytes. Materials & Methods: Different concentrations of actinidin was used to isolate rat hepatocytes by one or two-step perfusion method. The viability of the separated cells was examined by the trypan blue test. The isolated rat hepatocytes were cultured on collagen coated plates in William´s E medium. The morphology of hepatocytes was examined microscopically after staining with the Papanicolaou method.Results: Actinidin in the concentration of 0.4 mg/ml in two-step perfusion method properly isolated hepatocytes from rat liver. The viability of isolated hepatocytes that successfully cultured in collagen coated plates was 90-95 percent.Conclusion: These results showed that actinidin is a proper protease for isolation of hepatocytes. In addition, purification of this enzyme is simpler than the collagenases.

  11. Progenitor cells from the CA3 region of the embryonic day 19 rat hippocampus generate region-specific neuronal phenotypes in vitro.

    Science.gov (United States)

    Shetty, Ashok K

    2004-01-01

    Progenitor cells that endure in different regions of the CNS after the initial neurogenesis can be expanded in culture and used as a source of donor tissue for grafting in neurodegenerative diseases. However, the proliferation and differentiation characteristics of residual neural progenitor cells from distinct regions of the CNS are mostly unknown. This study elucidated the characteristics of progenitor cells that endure in the CA3 region of the hippocampus after neurogenesis, by in vitro analyses of cells that are responsive to epidermal growth factor (EGF) or fibroblast growth factor-2 (FGF-2) in the embryonic day 19 (E19) rat hippocampus. Isolated cells from the E19 CA3 region formed neurospheres in the presence of either EGF or FGF-2, but the yield of neurospheres was greater with FGF-2 exposure, Differentiation cultures revealed a greater yield of neurons from FGF-2 neurospheres (60%) than from EGF neurospheres (35%). Exposure to brain-derived neurotrophic factor (BDNF) enhanced the yield of neurons from EGF neurospheres but had no consequence on FGF-2 neurospheres. A large number of neurons from EGF/FGF-2 neurospheres demonstrated clearly palpable morphological features of CA3 pyramidal neurons and lacked gamma-aminobutyric acid (GABA) expression. However, a fraction of neurons (17-20%) from EGF/FGF-2 neurospheres expressed GABA, and exposure to BDNF increased the number of GABAergic neurons (30%) from EGF neurospheres. Neurons from EGF/FGF-2 neurospheres also contained smaller populations of calbindin- and calretinin-positive interneuron-like cells. Thus, progenitor cells responsive to FGF-2 are prevalent in the CA3 region of the E19 rat hippocampus and give rise to a greater number of neurons than progenitor cells responsive to EGF. However, both FGF-2- and EGF-responsive progenitor cells from E19 CA3 region are capable of giving rise to CA3 field-specific phenotypic neurons. These results imply that progenitor cells that persist in the hippocampus after

  12. Folic Acid Supplementation Stimulates Notch Signaling and Cell Proliferation in Embryonic Neural Stem Cells

    OpenAIRE

    Liu,Huan; Huang, Guo-Wei; Zhang, Xu-Mei; Ren, Da-lin; X. Wilson, John

    2010-01-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14–16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation ...

  13. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  14. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain.

    Science.gov (United States)

    Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena

    2015-02-01

    A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies. © 2014 AlphaMed Press.

  15. MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model.

    Directory of Open Access Journals (Sweden)

    Eun-Gyung Cho

    Full Text Available Human embryonic stem cells (hESCs can potentially differentiate into any cell type, including dopaminergic neurons to treat Parkinson's disease (PD, but hyperproliferation and tumor formation must be avoided. Accordingly, we use myocyte enhancer factor 2C (MEF2C as a neurogenic and anti-apoptotic transcription factor to generate neurons from hESC-derived neural stem/progenitor cells (NPCs, thus avoiding hyperproliferation. Here, we report that forced expression of constitutively active MEF2C (MEF2CA generates significantly greater numbers of neurons with dopaminergic properties in vitro. Conversely, RNAi knockdown of MEF2C in NPCs decreases neuronal differentiation and dendritic length. When we inject MEF2CA-programmed NPCs into 6-hydroxydopamine-lesioned parkinsonian rats in vivo, the transplanted cells survive well, differentiate into tyrosine hydroxylase-positive neurons, and improve behavioral deficits to a significantly greater degree than non-programmed cells. The enriched generation of dopaminergic neuronal lineages from hESCs by forced expression of MEF2CA in the proper context may prove valuable in cell-based therapy for CNS disorders such as PD.

  16. Assessment of ‘one-step’ versus ‘sequential’ embryo culture conditions through embryonic genome methylation and hydroxymethylation changes

    Science.gov (United States)

    Salvaing, J.; Peynot, N.; Bedhane, M. N.; Veniel, S.; Pellier, E.; Boulesteix, C.; Beaujean, N.; Daniel, N.; Duranthon, V.

    2016-01-01

    STUDY QUESTION In comparison to in vivo development, how do different conditions of in vitro culture (‘one step’ versus ‘sequential medium’) impact DNA methylation and hydroxymethylation in preimplantation embryos? SUMMARY ANSWER Using rabbit as a model, we show that DNA methylation and hydroxymethylation are both affected by in vitro culture of preimplantation embryos and the effect observed depends on the culture medium used. WHAT IS KNOWN ALREADY Correct regulation of DNA methylation is essential for embryonic development and DNA hydroxymethylation appears more and more to be a key player. Modifications of the environment of early embryos are known to have long term effects on adult phenotypes and health; these probably rely on epigenetic alterations. STUDY DESIGN SIZE, DURATION The study design we used is both cross sectional (control versus treatment) and longitudinal (time-course). Each individual in vivo experiment used embryos flushed from the donor at the 2-, 4-, 8-, 16- or morula stage. Each stage was analyzed in at least two independent experiments. Each individual in vitro experiment used embryos flushed from donors at the 1-cell stage (19 h post-coïtum) which were then cultured in parallel in the two tested media until the 2-, 4-, 8- 16-cell or morula stages. Each stage was analyzed in at least three independent experiments. In both the in vivo and in vitro experiments, 4-cell stage embryos were always included as an internal reference. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence with antibodies specific for 5-methylcytosine (5meC) and 5-hydroxymethylcytosine (5hmeC) was used to quantify DNA methylation and hydroxymethylation levels in preimplantation embryos. We assessed the expression of DNA methyltransferases (DNMT), of ten eleven translocation (TET) dioxigenases and of two endogenous retroviral sequences (ERV) using RT-qPCR, since the expression of endogenous retroviral sequences is known to be regulated by DNA methylation

  17. Developmental cues for bone formation from parathyroid hormone and parathyroid hormone-related protein in an ex vivo organotypic culture system of embryonic chick femora.

    Science.gov (United States)

    Smith, Emma L; Kanczler, Janos M; Roberts, Carol A; Oreffo, Richard O C

    2012-12-01

    Enhancement and application of our understanding of skeletal developmental biology is critical to developing tissue engineering approaches to bone repair. We propose that use of the developing embryonic femur as a model to further understand skeletogenesis, and the effects of key differentiation agents, will aid our understanding of the developing bone niche and inform bone reparation. We have used a three-dimensional organotypic culture system of embryonic chick femora to investigate the effects of two key skeletal differentiation agents, parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP), on bone and cartilage development, using a combination of microcomputed tomography and histological analysis to assess tissue formation and structure, and cellular behavior. Stimulation of embryonic day 11 (E11) organotypic femur cultures with PTH and PTHrP initiated osteogenesis. Bone formation was enhanced, with increased collagen I and STRO-1 expression, and cartilage was reduced, with decreased chondrocyte proliferation, collagen II expression, and glycosaminoglycan levels. This study demonstrates the successful use of organotypic chick femur cultures as a model for bone development, evidenced by the ability of exogenous bioactive molecules to differentially modulate bone and cartilage formation. The organotypic model outlined provides a tool for analyzing key temporal stages of bone and cartilage development, providing a paradigm for translation of bone development to improve scaffolds and skeletal stem cell treatments for skeletal regenerative medicine.

  18. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures.

    Science.gov (United States)

    Hernández-Ibáñez, Naiara; García-Cruz, Leticia; Montiel, Vicente; Foster, Christopher W; Banks, Craig E; Iniesta, Jesús

    2016-03-15

    l-lactate is an essential metabolite present in embryonic cell culture. Changes of this important metabolite during the growth of human embryo reflect the quality and viability of the embryo. In this study, we report a sensitive, stable, and easily manufactured electrochemical biosensor for the detection of lactate within embryonic cell cultures media. Screen-printed disposable electrodes are used as electrochemical sensing platforms for the miniaturization of the lactate biosensor. Chitosan/multi walled carbon nanotubes composite have been employed for the enzymatic immobilization of the lactate oxidase enzyme. This novel electrochemical lactate biosensor analytical efficacy is explored towards the sensing of lactate in model (buffer) solutions and is found to exhibit a linear response towards lactate over the concentration range of 30.4 and 243.9 µM in phosphate buffer solution, with a corresponding limit of detection (based on 3-sigma) of 22.6 µM and exhibits a sensitivity of 3417 ± 131 µAM(-1) according to the reproducibility study. These novel electrochemical lactate biosensors exhibit a high reproducibility, with a relative standard deviation of less than 3.8% and an enzymatic response over 82% after 5 months stored at 4 °C. Furthermore, high performance liquid chromatography technique has been utilized to independently validate the electrochemical lactate biosensor for the determination of lactate in a commercial embryonic cell culture medium providing excellent agreement between the two analytical protocols.

  19. Triptolide upregulates NGF synthesis in rat astrocyte cultures.

    Science.gov (United States)

    Xue, Bing; Jiao, Jian; Zhang, Lei; Li, Kai-Rong; Gong, Yun-Tao; Xie, Jun-Xia; Wang, Xiao-Min

    2007-07-01

    Triptolide (T10), an extract from the traditional Chinese herb, Tripterygium wilfordii Hook F (TWHF), has been shown to attenuate the rotational behavior induced by D: -amphetamine and prevent the loss of dopaminergic neurons in the substantia nigra in rat models of Parkinson's disease. To examine if the neuroprotective effect is mediated by its stimulation of production of neurotrophic factors from astrocytes, we investigated the effect of T10 on synthesis and release of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in rat astrocyte cultures. T10 did not affect the synthesis and release of either BDNF or GDNF. However, it significantly increased NGF mRNA expression. It also increased both intracellular NGF and NGF level in culture medium. These results indicate that the neuroprotective effect of T10 might be mediated, at least in part, via a stimulation of the production and release of NGF in astrocytes.

  20. Proteomic analysis of indium embryotoxicity in cultured postimplantation rat embryos.

    Science.gov (United States)

    Usami, Makoto; Nakajima, Mikio; Mitsunaga, Katsuyoshi; Miyajima, Atsuko; Sunouchi, Momoko; Doi, Osamu

    2009-12-01

    Indium embryotoxicity was investigated by proteomic analysis with two-dimensional electrophoresis of rat embryos cultured from day 10.5 of gestation for 24h in the presence of 50 microM indium trichloride. In the embryo proper, indium increased quantity of several protein spots including those identified as serum albumin, phosphorylated cofilin 1, phosphorylated destrin and tyrosyl-tRNA synthetase. The increased serum albumin, derived from the culture medium composed of rat serum, may decrease the toxicity of indium. The increase of phosphorylated cofilin 1 might be involved in dysmorphogenicity of indium through perturbation of actin functions. In the yolk sac membrane, indium induced quantitative and qualitative changes in the protein spots. Proteins from appeared spots included stress proteins, and those from decreased or disappeared spots included serum proteins, glycolytic pathway enzymes and cytoskeletal proteins, indicating yolk sac dysfunction. Thus, several candidate proteins that might be involved in indium embryotoxicity were identified.

  1. Direct localised measurement of electrical resistivity profile in rat and embryonic chick retinas using a microprobe

    Directory of Open Access Journals (Sweden)

    Harald van Lintel

    2010-01-01

    Full Text Available We report an alternative technique to perform a direct and local measurement of electrical resistivities in a layered retinal tissue. Information on resistivity changes along the depth in a retina is important for modelling retinal stimulation by retinal prostheses. Existing techniques for resistivity-depth profiling have the drawbacks of a complicated experimental setup, a less localised resistivity probing and/or lower stability for measurements. We employed a flexible microprobe to measure local resistivity with bipolar impedance spectroscopy at various depths in isolated rat and chick embryo retinas for the first time. Small electrode spacing permitted high resolution measurements and the probe flexibility contributed to stable resistivity profiling. The resistivity was directly calculated based on the resistive part of the impedance measured with the Peak Resistance Frequency (PRF methodology. The resistivity-depth profiles for both rat and chick embryo models are in accordance with previous mammalian and avian studies in literature. We demonstrate that the measured resistivity at each depth has its own PRF signature. Resistivity profiles obtained with our setup provide the basis for the construction of an electric model of the retina. This model can be used to predict variations in parameters related to retinal stimulation and especially in the design and optimisation of efficient retinal implants.

  2. Evaluation of embryonic alcoholism from auditory event-related potential in fetal rats

    Institute of Scientific and Technical Information of China (English)

    梁勇; 王正敏; 屈卫东

    2004-01-01

    @@ Auditory event-related potential (AERP) is a kind of electroencephalography that measures the responses of perception, memory and judgement to special acoustic stimulation in the auditory cortex. AERP can be recorded with not only active but also passive mode. The active and passive recording modes of AERP have been shown a possible application in animals.1,2 Alcohol is a substance that can markedly affect the conscious reaction of human. Recently, AERP has been applied to study the effects of alcohol on the auditory centers of the brain. Some reports have shown dose-dependent differences in latency, amplitude, responsibility and waveform of AERP between persons who have and have not take in alcohol.3,4 The epidemiological investigations show that the central nervous function of the offspring of alcohol users might be also affected.5,6 Because the clinic research is limited by certain factors, several animal models have been applied to examine the influences of alcohol on consciousness with AERP. In the present study, young rats were exposed to alcohol during fetal development and AERP as indicator was recorded to monitor the central auditory function, and its mechanisms and characteristics of effects of the fetal alcoholism on auditory center function in rats were analyzed and discussed.

  3. Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions.

    Science.gov (United States)

    Gad, Ahmed; Hoelker, Michael; Besenfelder, Urban; Havlicek, Vitezslav; Cinar, Ulas; Rings, Franca; Held, Eva; Dufort, Isabelle; Sirard, Marc-André; Schellander, Karl; Tesfaye, Dawit

    2012-10-01

    Understanding gene expression patterns in response to altered environmental conditions at different time points of the preimplantation period would improve our knowledge on regulation of embryonic development. Here we aimed to examine the effect of alternative in vivo and in vitro culture conditions at the time of major embryonic genome activation (EGA) on the development and transcriptome profile of bovine blastocysts. Four different blastocyst groups were produced under alternative in vivo and in vitro culture conditions before or after major EGA. Completely in vitro- and in vivo-produced blastocysts were used as controls. We compared gene expression patterns between each blastocyst group and in vivo blastocyst control group using EmbryoGENE's bovine microarray. The data showed that changing culture conditions from in vivo to in vitro or vice versa, either before or after the time of major EGA, had no effect on the developmental rates; however, in vitro conditions during that time critically influenced the transcriptome of the blastocysts produced. The source of oocyte had a critical effect on developmental rates and the ability of the embryo to react to changing culture conditions. Ontological classification highlighted a marked contrast in expression patterns for lipid metabolism and oxidative stress response between blastocysts generated in vivo versus in vitro, with opposite trends. Molecular mechanisms and pathways that are influenced by altered culture conditions during EGA were defined. These results will help in the development of new strategies to modify culture conditions at this critical stage to enhance the development of competent blastocysts.

  4. A voltage-sensitive dye-based assay for the identification of differentiated neurons derived from embryonic neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Richardson N Leão

    Full Text Available BACKGROUND: Pluripotent and multipotent stem cells hold great therapeutical promise for the replacement of degenerated tissue in neurological diseases. To fulfill that promise we have to understand the mechanisms underlying the differentiation of multipotent cells into specific types of neurons. Embryonic stem cell (ESC and embryonic neural stem cell (NSC cultures provide a valuable tool to study the processes of neural differentiation, which can be assessed using immunohistochemistry, gene expression, Ca(2+-imaging or electrophysiology. However, indirect methods such as protein and gene analysis cannot provide direct evidence of neuronal functionality. In contrast, direct methods such as electrophysiological techniques are well suited to produce direct evidence of neural functionality but are limited to the study of a few cells on a culture plate. METHODOLOGY/PRINCIPAL FINDINGS: In this study we describe a novel method for the detection of action potential-capable neurons differentiated from embryonic NSC cultures using fast voltage-sensitive dyes (VSD. We found that the use of extracellularly applied VSD resulted in a more detailed labeling of cellular processes compared to calcium indicators. In addition, VSD changes in fluorescence translated precisely to action potential kinetics as assessed by the injection of simulated slow and fast sodium currents using the dynamic clamp technique. We further demonstrate the use of a finite element model of the NSC culture cover slip for optimizing electrical stimulation parameters. CONCLUSIONS/SIGNIFICANCE: Our method allows for a repeatable fast and accurate stimulation of neurons derived from stem cell cultures to assess their differentiation state, which is capable of monitoring large amounts of cells without harming the overall culture.

  5. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    Directory of Open Access Journals (Sweden)

    Shahla Shojaei

    2015-12-01

    Full Text Available We aimed to compare the effects of oral ethanol (Eth alone or combined with the phytoestrogen resveratrol (Rsv on the expression of various brain-derived neurotrophic factor (BDNF transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW/day dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.

  6. [Overgrowth and DNA synthesis of neuroepithelium in embryonic stages of induced Long-Evans rat myeloschisis].

    Science.gov (United States)

    Chono, Y

    1993-01-01

    Overgrowth of the myeloschisis, namely the excessive amount of the neural plate tissue, has been reported in the human myeloschisis. However, it is still debatable how the overgrowth develops and whether the overgrowth is the cause, or the secondary effect of spinal dysraphism. The author induced myeloschisis in the fetuses of Long-Evans rats by the administration of ethylenethiourea (ETU) to pregnant rats on day 10 of gestation. The fetuses were removed 1 hour after the treatment with bromodeoxyuridine (BrdU) to the dams on day 14 and 21. The fetuses were fixed in alcohol and embedded in paraffin. H-E staining and the immunohistologic examination were performed on the staining patterns to anti-neurofilament (NFP), anti-glial fibrillary acidic protein (GFAP) and anti-BrdU antibody by ABC method. On day 14, the lateral portion of everted neural plate showed a loose arrangement of cells and there was rosette formation in the mesoderm. On day 21, cell necrosis was observed at the dorsolateral portion of myeloschisis, although the ventral portion showed almost normal cytoarchitecture and was positive to NFP and GFAP. The cause of myeloschisis in this model is supposed to be the local and direct cytotoxic effect of ETU to neuro-ectodermal junction. On day 14, control animals contained few BrdU-incorporated cells at the basal plate of neural tube. In contrast, everted neural plate showed an active uptake of BrdU diffusely in the subependymal matrix layer cells. Overgrowth was not yet identified. On day 21, overgrowth of myeloschisis was found in spite of a few positive cells to BrdU which was identical to the control animals. These findings seem to suggest that cells in the myeloschisis retain their ability of DNA synthesis for longer periods of development and overgrowth found on day 21 is possibly a secondary effect of spinal dysraphism in this model.

  7. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha.

    Science.gov (United States)

    Ji, Lei; Liu, Yu-xiao; Yang, Chao; Yue, Wen; Shi, Shuang-shuang; Bai, Ci-xian; Xi, Jia-fei; Nan, Xue; Pei, Xue-Tao

    2009-10-01

    Human embryonic stem (hES) cells are typically maintained on mouse embryonic fibroblast (MEF) feeders or with MEF-conditioned medium. However, these xenosupport systems greatly limit the therapeutic applications of hES cells because of the risk of cross-transfer of animal pathogens. The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Recent evidence suggests that stem cells are localized in the microenvironment of low oxygen. We hypothesized that hypoxia could maintain the undifferentiated phenotype of embryonic stem cells. We have co-cultured a human embryonic cell line with human fetal liver stromal cells (hFLSCs) feeder cells stably expressing hypoxia-inducible factor-1 alpha (HIF-1alpha), which is known as the key transcription factor in hypoxia. The results suggested HIF-1alpha was critical for preventing differentiation of hES cells in culture. Consistent with this observation, hypoxia upregulated the expression of Nanog and Oct-4, the key factors expressed in undifferentiated stem cells. We further demonstrated that HIF-1alpha could upregulate the expression of some soluble factors including bFGF and SDF-1alpha, which are released into the microenvironment to maintain the undifferentiated status of hES cells. This suggests that the targets of HIF-1alpha are secreted soluble factors rather than a cell-cell contact mechanism, and defines an important mechanism for the inhibition of hESCs differentiation by hypoxia. Our findings developed a transgene feeder co-culture system and will provide a more reliable alternative for future therapeutic applications of hES cells.

  8. Transcriptional responses of cultured rat sympathetic neurons during BMP-7-induced dendritic growth.

    Directory of Open Access Journals (Sweden)

    Michelle M Garred

    Full Text Available BACKGROUND: Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition of bone morphogenetic proteins (BMPs triggers these neurons to extend multiple dendrites without altering axonal growth or cell survival. We used this culture system to examine differential gene expression patterns in naïve vs. BMP-treated sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis. METHODOLOGY/PRINCIPAL FINDINGS: To determine the critical transcriptional window during BMP-induced dendritic growth, morphometric analysis of microtubule-associated protein (MAP-2-immunopositive processes was used to quantify dendritic growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7. BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental conditions: (1 no BMP-7 treatment; (2 treatment with BMP-7 for 6 hr; and (3 treatment with BMP-7 for 24 hr. Affymetrix oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7 significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both established and novel genes and signaling pathways in primary dendritogenesis. CONCLUSIONS/SIGNIFICANCE: This study provides a unique dataset that will be useful in generating testable hypotheses regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth in

  9. Characteristics of glycine receptors expressed by embryonic rat brain mRNAs

    Science.gov (United States)

    García-Alcocer, Guadalupe; García-Colunga, Jesús; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2001-01-01

    A study was made of glycine (Gly) and γ-aminobutyric acid (GABA) receptors expressed in Xenopus oocytes injected with rat mRNAs isolated from the encephalon, midbrain, and brainstem of 18-day-old rat embryos. In oocytes injected with encephalon, midbrain, or brainstem mRNAs, the Gly-current amplitudes (membrane current elicited by Gly; 1 mM Gly) were respectively 115 ± 35, 346 ± 28, and 389 ± 22 nA, whereas the GABA-currents (1 mM GABA) were all ≤40 nA. Moreover, the Gly-currents desensitized faster in oocytes injected with encephalon or brainstem mRNAs. The EC50 for Gly was 611 ± 77 μM for encephalon, 661 ± 28 μM for midbrain, and 506 ± 18 μM for brainstem mRNA-injected oocytes, and the corresponding Hill coefficients were all ≈2. Strychnine inhibited all of the Gly-currents, with an IC50 of 56 ± 3 nM for encephalon, 97 ± 4 nM for midbrain, and 72 ± 4 nM for brainstem mRNAs. During repetitive Gly applications, the Gly-currents were potentiated by 1.6-fold for encephalon, 2.1-fold for midbrain, and 1.3-fold for brainstem RNA-injected oocytes. Raising the extracellular Ca2+ concentration significantly increased the Gly-currents in oocytes injected with midbrain and brainstem mRNAs. Reverse transcription–PCR studies showed differences in the Gly receptor (GlyR) α-subunits expressed, whereas the β-subunit was present in all three types of mRNA. These results indicate differential expression of GlyR mRNAs in the brain areas examined, and these mRNAs lead to the expression of GlyRs that have different properties. The modulation of GlyRs by Ca2+ could play important functions during brain development. PMID:11226317

  10. Horseradish peroxidase dye tracing and embryonic statoacoustic ganglion cell transplantation in the rat auditory nerve trunk.

    Science.gov (United States)

    Palmgren, Björn; Jin, Zhe; Jiao, Yu; Kostyszyn, Beata; Olivius, Petri

    2011-03-04

    At present severe damage to hair cells and sensory neurons in the inner ear results in non-treatable auditory disorders. Cell implantation is a potential treatment for various neurological disorders and has already been used in clinical practice. In the inner ear, delivery of therapeutic substances including neurotrophic factors and stem cells provide strategies that in the future may ameliorate or restore hearing impairment. In order to describe a surgical auditory nerve trunk approach, in the present paper we injected the neuronal tracer horseradish peroxidase (HRP) into the central part of the nerve by an intra cranial approach. We further evaluated the applicability of the present approach by implanting statoacoustic ganglion (SAG) cells into the same location of the auditory nerve in normal hearing rats or animals deafened by application of β-bungarotoxin to the round window niche. The HRP results illustrate labeling in the cochlear nucleus in the brain stem as well as peripherally in the spiral ganglion neurons in the cochlea. The transplanted SAGs were observed within the auditory nerve trunk but no more peripheral than the CNS-PNS transitional zone. Interestingly, the auditory nerve injection did not impair auditory function, as evidenced by the auditory brainstem response. The present findings illustrate that an auditory nerve trunk approach may well access the entire auditory nerve and does not compromise auditory function. We suggest that such an approach might compose a suitable route for cell transplantation into this sensory cranial nerve. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Influence of mefloquine administration during early pregnancy on rat embryonic development.

    Science.gov (United States)

    El-Dakdoky, Mai Helmy

    2015-02-01

    Mefloquine (MQ) is a potent effective antimalarial drug against multiple drug-resistant Plasmodium falciparum. It has been proved that MQ can be given safely during the second and third trimesters. However, there is very limited information on the drug safety during the first trimester. The aim of the present work was to investigate the embryotoxicity and teratogenicity of MQ during critical periods of early development. Wistar rats were orally administered with a single dose of MQ (45 mg/kg bwt or 187 mg/kg bwt) on the 1st, 6th or 13th days of pregnancy. Cyclophosphamide (CPA) was chosen as a positive control. On the 21st day of gestation, standard parameters of reproductive performance and fetal examination were estimated. Malondialdehyde (MDA) level, glutathione reductase activity and glutathione (GSH) content were evaluated in placenta and liver homogenates of mothers and fetuses. The results indicated that MQ did not adversely affect the number of implantation, resorption, litter size and fetal body weight and length. Only groups treated with MQ on the 1st day of gestation exhibited significant decrease in fetal body weight. Examination of fetuses for external, visceral and skeletal changes showed minimal variations involving extension of lateral brain ventricles and renal pelvis and signs of delayed ossification. These variations were accompanied with significant elevation of MDA level and reduction of GSH content of fetal liver. Prenatal exposure to MQ at early pregnancy did not cause any embryolethal or teratogenic effect. It could slightly exacerbate minor variations.

  12. Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1984-01-01

    on the binding distribution of [125I]EGF, representing the tissue localization of available EGF receptors, during embryonic rat skin development including hair follicle formation and the adult hair growth cycle. At 16 days embryonic development a relatively low receptor density is seen over all the epidermal...... condensates marking the first stage of hair follicle development. This restricted and temporary loss of EGF receptors above these specialized mesenchymal condensates implies a role for the EGF receptor and possibly EGF or an EGF-like ligand in stimulating the epithelial downgrowth required for hair follicle...... development. In the anagen hair bulb, receptors for EGF are detected over the outer root sheath and the epithelial cell layers at the base of the follicle and show a correlation with the areas of epithelial proliferation in the hair bulb. During the catagen and telogen phases of the hair cycle, receptors...

  13. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model for neurotoxico......The neurotoxic effects of trimethyltin (TMT) on the hippocampus have been extensively studied in vivo. In this study, we examined whether the toxicity of TMT to hippocampal neurons could be reproduced in organotypic brain slice cultures in order to test the potential of this model...... for neurotoxicological studies, including further studies of neurotoxic mechanisms of TMT. Four-week-old cultures, derived from 7-day-old donor rats and grown in serum-free medium, were exposed to TMT (0.5-100 microM) for 24 h followed by 24 h in normal medium. TMT-induced neurodegeneration was then monitored by (a...... of TMT neurotoxicity....

  14. Transformation of adult rat cardiac myocytes in primary culture.

    Science.gov (United States)

    Banyasz, Tamas; Lozinskiy, Ilya; Payne, Charles E; Edelmann, Stephanie; Norton, Byron; Chen, Biyi; Chen-Izu, Ye; Izu, Leighton T; Balke, C William

    2008-03-01

    We characterized the morphological, electrical and mechanical alterations of cardiomyocytes in long-term cell culture. Morphometric parameters, sarcomere length, T-tubule density, cell capacitance, L-type calcium current (I(Ca,L)), inward rectifier potassium current (I(K1)), cytosolic calcium transients, action potential and contractile parameters of adult rat ventricular myocytes were determined on each day of 5 days in culture. We also analysed the health of the myocytes using an apoptotic/necrotic viability assay. The data show that myocytes undergo profound morphological and functional changes during culture. We observed a progressive reduction in the cell area (from 2502 +/- 70 microm(2) on day 0 to 1432 +/- 50 microm(2) on day 5), T-tubule density, systolic shortening (from 0.11 +/- 0.02 to 0.05 +/- 0.01 microm) and amplitude of calcium transients (from 1.54 +/- 0.19 to 0.67 +/- 0.19) over 5 days of culture. The negative force-frequency relationship, characteristic of rat myocardium, was maintained during the first 2 days but diminished thereafter. Cell capacitance (from 156 +/- 8 to 105 +/- 11 pF) and membrane currents were also reduced (I(Ca,L), from 3.98 +/- 0.39 to 2.12 +/- 0.37 pA pF; and I(K1), from 34.34p +/- 2.31 to 18.00 +/- 5.97 pA pF(-1)). We observed progressive depolarization of the resting membrane potential during culture (from 77.3 +/- 2.5 to 34.2 +/- 5.9 mV) and, consequently, action potential morphology was profoundly altered as well. The results of the viability assays indicate that these alterations could not be attributed to either apoptosis or necrosis but are rather an adaptation to the culture conditions over time.

  15. Cholesterol induces fetal rat enterocyte death in culture

    Directory of Open Access Journals (Sweden)

    Gazzola J.

    2004-01-01

    Full Text Available The effect of cholesterol on fetal rat enterocytes and IEC-6 cells (line originated from normal rat small intestine was examined. Both cells were cultured in the presence of 20 to 80 µM cholesterol for up to 72 h. Apoptosis was determined by flow cytometric analysis and fluorescence microscopy. The expression of HMG-CoA reductase and peroxisome proliferator-activated receptor gamma (PPARgamma was measured by RT-PCR. The addition of 20 µM cholesterol reduced enterocyte proliferation as early as 6 h of culture. Reduction of enterocyte proliferation by 28 and 41% was observed after 24 h of culture in the presence and absence of 10% fetal calf serum, respectively, with the effect lasting up to 72 h. Treatment of IEC-6 cells with cholesterol for 24 h raised the proportion of cells with fragmented DNA by 9.7% at 40 µM and by 20.8% at 80 µM. When the culture period was extended to 48 h, the effect of cholesterol was still more pronounced, with the percent of cells with fragmented DNA reaching 53.5% for 40 µM and 84.3% for 80 µM. Chromatin condensation of IEC-6 cells was observed after treatment with cholesterol even at 20 µM. Cholesterol did not affect HMG-CoA reductase expression. A dose-dependent increase in PPARgamma expression in fetal rat enterocytes was observed. The expression of PPAR-gamma was raised by 7- and 40-fold, in the presence and absence of fetal calf serum, respectively, with cholesterol at 80 mM. The apoptotic effect of cholesterol on enterocytes was possibly due to an increase in PPARgamma expression.

  16. Isolating highly pure rat spermatogonial stem cells in culture.

    Science.gov (United States)

    Hamra, F Kent; Chapman, Karen M; Wu, Zhuoru; Garbers, David L

    2008-01-01

    Methods are detailed for isolating highly pure populations of spermatogonial stem cells from primary cultures of testis cells prepared from 22- to 24-day-old rats. The procedure is based on the principle that testicular somatic cells bind tightly to plastic and collagen matrices when cultured in serum-containing medium, whereas spermatogonia and spermatocytes do not bind to plastic or collagen when cultured in serum-containing medium. The collagen-non-binding testis cells obtained using these procedures are thus approx. 97% pure spermatogenic cells. Stem spermatogonia are then easily isolated from the purified spermatogenic population during a short incubation step in culture on laminin matrix. The spermatogenic cells that bind to laminin are more than 90% undifferentiated, type A spermatogonia and are greatly enriched in genetically modifiable stem cells that can develop into functional spermatozoa. This method does not require flow cytometry and can also be applied to obtain enriched cultures of mouse spermatogonial stem cells. The isolated spermatogonia provide a highly potent and effective source of stem cells that have been used to initiate in vitro and in vivo culture studies on spermatogenesis.

  17. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    Science.gov (United States)

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(Pculture method group,and (74.50±4.23)% in the explants-culture method group(Pculture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration.

  18. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.

    Science.gov (United States)

    van der Meer, Andries D; Orlova, Valeria V; ten Dijke, Peter; van den Berg, Albert; Mummery, Christine L

    2013-09-21

    Organs-on-chips are microengineered in vitro tissue structures that can be used as platforms for physiological and pathological research. They provide tissue-like microenvironments in which different cell types can be co-cultured in a controlled manner to create synthetic organ mimics. Blood vessels are an integral part of all tissues in the human body. Development of vascular structures is therefore an important research topic for advancing the field of organs-on-chips since generated tissues will require a blood or nutrient supply. Here, we have engineered three-dimensional constructs of vascular tissue inside microchannels by injecting a mixture of human umbilical vein endothelial cells, human embryonic stem cell-derived pericytes (the precursors of vascular smooth muscle cells) and rat tail collagen I into a polydimethylsiloxane microfluidic channel with dimensions 500 μm × 120 μm × 1 cm (w × h × l). Over the course of 12 h, the cells organized themselves into a single long tube resembling a blood vessel that followed the contours of the channel. Detailed examination of tube morphology by confocal microscopy revealed a mature endothelial monolayer with complete PECAM-1 staining at cell-cell contacts and pericytes incorporated inside the tubular structures. We also demonstrated that tube formation was disrupted in the presence of a neutralizing antibody against transforming growth factor-beta (TGF-β). The TGF-β signaling pathway is essential for normal vascular development; deletion of any of its components in mouse development results in defective vasculogenesis and angiogenesis and mutations in humans have been linked to multiple vascular genetic diseases. In the engineered microvessels, inhibition of TGF-β signaling resulted in tubes with smaller diameters and higher tortuosity, highly reminiscent of the abnormal vessels observed in patients with one particular vascular disease known as hereditary hemorrhagic telangiectasia (HHT). In summary, we have

  19. Mycelial culture of Phellinus linteus protects primary cultured rat hepatocytes against hepatotoxins.

    Science.gov (United States)

    Kim, S H; Lee, H S; Lee, S; Cho, J; Ze, K; Sung, J; Kim, Y C

    2004-12-01

    Hepatoprotective activity of Phellinus linteus was studied using H(2)O(2)- or galactosamine-injured primary cultures of rat hepatocytes as screening systems. The methanolic extract of the mycelial culture of Phellinus linteus significantly protected against hepatotoxins-induced toxicity in primary cultured rat hepatocytes as seen from the decreased level of glutamic pyruvic transaminase released from the injured hepatocytes. The methanolic extract of the mycelial culture of Phellinus linteus was subsequently fractionated with n-hexane, ethyl acetate, n-butanol and water. Among these fractions, 100 microg/mL of the ethyl acetate fraction was the most active one. The relative protections were 68.9 +/- 5.3% in H(2)O(2)-injured hepatocytes and 46.8 +/- 3.9% in galactosamine-injured hepatocytes, respectively. The ethyl acetate fraction appeared to maintain the glutathione level which was decreased by the treatment of H(2)O(2) or galactosamine and restored the level of RNA synthesis more than two times compared to galactosamine-injured hepatocytes. These results suggest that the ethyl acetate fraction of the mycelial culture of Phellinus linteus protects hepatocytes from H(2)O(2)- or galactosamine-induced injury by maintaining hepatic glutathione level and RNA synthesis as well.

  20. A Modified Technique for Culturing Primary Fetal Rat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Sui-Yi Xu

    2012-01-01

    Full Text Available The study explored a modified primary culture system for fetal rat cortical neurons. Day E18 embryos from pregnant Sprague Dawley rats were microdissected under a stereoscope. To minimize enzymatic damage to the cultured neurons, we applied a sequential digestion protocol using papain and Dnase I. The resulting sifted cell suspension was seeded at a density of 50,000 cells per cm2 onto 0.1 mg/mL L-PLL-covered vessels. After a four-hour incubation in high-glucose Dulbecco’s Modified Eagle’s Medium (HG-DMEM to allow the neurons to adhere, the media was changed to neurobasal medium that was refreshed by changing half of the volume after three days followed by a complete medium change every week. The cells displayed progressively robust neurite extension, and nonneuronal-like cells could barely be detected by five days in vitro (DIV; cell growth was still substantial at 14 DIV. Neurons were identified by β-tubulin III immunofluorescence, and neuronal purity within the cultures was assessed at over 95% by both flow cytometry and by dark-field counting of β-tubulin III-positive cells. These results suggest that the protocol was successful and that the high purity of neurons in this system could be used as the basis for generating various cell models of neurological disease.

  1. [Changes in the prekeratin set and in the intracellular distribution of intermediate filaments during the embryonic development of the liver in the rat].

    Science.gov (United States)

    Chipysheva, T A; Gel'shteĭn, V I; Troianovskiĭ, S M; Bannikov, G A

    1988-01-01

    Monoclonals against three individual proteins of the epithelial intermediate filaments, prekeratins (PK40, PK49, PK55), were used for immunofluorescence studies of the cryostat sections of the rat embryonic liver. The dynamics of expression and intracellular distribution of prekeratins reflects that of morphological rearrangement of the liver. The development of the system of liver beams was accompanied by changes in the expression and intracellular distribution of PK49 and PK55 and the development of the system of bile ducts by changes in all three PKs. From day 20-21 of embryogenesis all three PKs are expressed in cholangiocytes, while PK49 and PK55 in hepatocytes only.

  2. In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good manufacturing practice.

    Science.gov (United States)

    Amps, K J; Jones, M; Baker, D; Moore, H D

    2010-06-01

    The development of efficient and robust methods for the cryopreservation of human embryonic stem cells (hESCs) is important for the production of master and working cell banks for future clinical applications. Such methods must meet requirements of good manufacturing practice (GMP) and maintain genetic stability of the cell line. We investigated the culture of four Shef hESC lines in gas permeable 'culture cassettes' which met GMP compliance. hESCs adhered rapidly to the membrane and colonies displayed good proliferation and expansion. After 5-7 days of culture, hESCs were cryopreserved in situ using 10% dimethyl sulphoxide in foetal calf serum at approximately 1 degrees C/min. This method was compared with a control of standard flask culture and cryopreservation in vials. Post-thaw cassette culture displayed relative proliferation ratios (fold increase above flask/cryovial culture) of 114 (Shef 4), 8.2 (Shef 5), 195 (shef 6) and 17.5 (Shef 7). The proportion of cells expressing pluripotency markers after cryopreservation was consistently greater in cassette culture than for the control with the markers SSEA3 and SSEA4 exhibiting a significant increase (P> or =0.05). The efficiency of cell line culture in cassette was associated with the overall passage number of the cell line. The procedure enables cryopreservation of relatively large quantities of hESCs in situ, whilst returning high yields of viable, undifferentiated stem cells, thereby increasing capacity to scale up with greater efficacy.

  3. Study of embryotoxicity of Fusarium mycotoxin butenolide using a whole rat embryo culture model.

    Science.gov (United States)

    Guo, Jun; Zhang, Li-Shi; Wang, Yi-Mei; Yan, Chang-Hui; Huang, Wen-Peng; Wu, Jing; Yuan, Hai-Tao; Lin, Bing-Wu; Shen, Jun-Ling; Peng, Shuang-Qing

    2011-12-01

    Butenolide, a mycotoxin elaborated by several toxigenic Fusarium species, has been implicated as an etiological factor of Kashin-Beck disease and it is always detected in food from endemic Kashin-Beck disease areas. Although butenolide is considered as a potential health risk to humans and animals, its toxicity targets and mechanism of action have not been fully understood and the knowledge of its developmental toxicity is absent. The present study investigated butenolide embryotoxicity via an in vitro whole embryo culture system using rat embryos. Embryos exposed to butenolide at a concentration of 0.625 mg/L showed and differentiation similar to that of the control embryos (=no observed adverse effect concentration; NOAECwec). The embryonic growth and differentiation were affected, represented as reduced crown-rump length and head length, and decreased number of somites from 1.25 mg/L. Total morphological scores decreased significantly at the concentration of butenolide of 2.5 mg/L. All embryos were malformed at 3.75 mg/L and above (=ICMaxWEC), presenting growth retardation with flexion failure and irregular somite differentiation. The IC503T3 of butenolide as calculated from the balb/c 3T3 cytotoxicity test is 6.45 mg/L. Our study shows that butenolide exerts detrimental effects on embryo development in vitro by inducing growth retardation and differentiation inhibition, and the embryotoxicity effect of butenolide should be treated with caution.

  4. Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes.

    Science.gov (United States)

    Codeluppi, Simone; Gregory, Ebba Norsted; Kjell, Jacob; Wigerblad, Gustaf; Olson, Lars; Svensson, Camilla I

    2011-04-15

    Primary astrocyte cell cultures have become a valuable tool for studies of signaling pathways that regulate astrocyte physiology, reactivity, and function; however, differences in culture preparation affect data reproducibility. The aim of this work was to define optimal conditions for obtaining primary astrocytes from adult rat spinal cord with an expression profile most similar to adult human spinal cord astrocytes. Hence, we examined whether different Sprague-Dawley substrains and culture conditions affect astrocyte culture quality. Medium supplemented with fetal bovine serum from three sources (Sigma, Gibco, Hyclone) or a medium with defined composition (AM medium) was used to culture astrocytes isolated from spinal cords of adult Harlan and Charles River Spraque-Dawley rats. Purity was significantly different between cultures established in media with different sera. No microglia were detected in AM or Hyclone cultures. Gene expression was also affected, with AM cultures expressing the highest level of glutamine synthetase, connexin-43, and glutamate transporter-1. Interestingly, cell response to starvation was substrain dependent. Charles River-derived cultures responded the least, while astrocytes derived from Harlan rats showed a greater decrease in Gfap and glutamine synthetase, suggesting a more quiescent phenotype. Human and Harlan astrocytes cultured in AM media responded similarly to starvation. Taken together, this study shows that rat substrain and growth medium composition affect purity, expression profile and response to starvation of primary astrocytes suggesting that cultures of Harlan rats in AM media have optimal astrocyte characteristics, purity, and similarity to human astrocytes.

  5. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    Science.gov (United States)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  6. Development of a 3D co-culture model using human stem cells for studying embryonic palatal fusion.

    Science.gov (United States)

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelv...

  7. Multidisciplinary Inquiry-Based Investigation Learning Using an Ex Ovo Chicken Culture Platform: Role of Vitamin A on Embryonic Morphogenesis

    Science.gov (United States)

    Buskohl, Philip R.; Gould, Russell A.; Curran, Susan; Archer, Shivaun D.; Butcher, Jonathan T.

    2012-01-01

    Embryonic development offers a unique perspective on the function of many biological processes because of embryos' heightened sensitivity to environmental factors. This hands-on lesson investigates the effects of elevated vitamin A on the morphogenesis of chicken embryos. The active form of vitamin A (retinoic acid) is applied to shell-less (ex…

  8. Feeder-free monolayer cultures of human embryonic stem cells express an epithelial plasma membrane protein profile.

    NARCIS (Netherlands)

    van Hoof, D.; Braam, S.R.; Dormeyer, W.; Ward-van Oostwaard, D.; Heck, A.; Krijgsveld, J.; Mummery, C.L.

    2008-01-01

    Human embryonic stem cells (hESCs) are often cocultured on mitotically inactive fibroblast feeder cells to maintain their undifferentiated state. Under these growth conditions, hESCs form multilayered colonies of morphologically heterogeneous cells surrounded by flattened mesenchymal cells. In contr

  9. Development of a 3D co-culture model using human stem cells for studying embryonic palatal fusion.

    Science.gov (United States)

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelv...

  10. Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Mehdi Forouzandeh-Moghadam

    2009-01-01

    Full Text Available Background: Specific growth factors and feeder layers seem to have important roles in in vitroembryonic stem cells (ESCs differentiation. In this study,the effects of bone morphogenetic protein4 (BMP4 and mouse embryonic fibroblasts (MEFs co-culture system on germ cell differentiationfrom mouse ESCs were studied.Materials and Methods: Cell suspension was prepared from one-day-old embryoid body (EBand cultured for four days in DMEM medium containing 20% fetal bovine serum (FBS in thefollowing groups: simple culture (SC, simple culture with BMP4 (SCB, co-culture (CO-C andco-culture with BMP4 (CO-CB. Expression of piwi-like homolog 2 (Piwil2, the germ cell-specificgene, was evaluated in the different study groups by using quantitative real time polymerase chainreaction (RT-PCR. Testis was used as a positive control.Results: The maximum and minimum Piwil2 expression was observed in SC and SCB groups,respectively. A significant difference was observed in Piwil2 expression between SCB and otherstudy groups (p<0.05.Conclusion: The findings of this study showed that neither the addition of BMP4 in culture mediumnor the use of MEFs as a feeder layer have a positive effect on late germ cell induction from mouseESCs.

  11. Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality.

    Science.gov (United States)

    Ramasamy, Thamil Selvee; Yu, Jason S L; Selden, Clare; Hodgson, Humphery; Cui, Wei

    2013-02-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of human hepatocytes, owing to their indefinite self-renewal and pluripotent properties. Both hESC-/iPSC-derived hepatocytes hold great promise in treating liver diseases as potential candidates for cell replacement therapies or as an in vitro platform to conduct new drug trials. It has been previously demonstrated that the initiation of hESC differentiation in monolayer cultures increases the generation of definitive endoderm (DE) and subsequently of hepatocyte differentiation. However, monolayer culture may hinder the maturation of hESC-derived hepatocytes, since such two-dimensional (2D) conditions do not accurately reflect the complex nature of three-dimensional (3D) hepatocyte specification in vivo. Here, we report the sequential application of 2D and 3D culture systems to differentiate hESCs to hepatocytes. Human ESCs were initially differentiated in a monolayer culture to DE cells, which were then inoculated into Algimatrix scaffolds. Treatments of hESC-DE cells with a ROCK inhibitor before and after inoculation dramatically enhanced their survival and the formation of spheroids, which are distinct from HepG2 carcinoma cells. In comparison with monolayer culture alone, sequential 2D and 3D cultures significantly improved hepatocyte differentiation and function. Our results demonstrate that hESC-DE cells can be incorporated into Algimatrix 3D culture systems to enhance hepatocyte differentiation and function.

  12. Rhynchophylline Protects Cultured Rat Neurons against Methamphetamine Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dan Dan Xu

    2012-01-01

    Full Text Available Rhynchophylline (Rhy is an active component isolated from species of the genus Uncaria which has been used for the treatment of ailments to the central nervous system in traditional Chinese medicine. Besides acting as a calcium channel blocker, Rhy was also reported to be able to protect against glutamate-induced neuronal death. We thus hypothesize that Rhy may have neuroprotective activity against methamphetamine (MA. The primary neurons were cultured directly from the cerebral cortex of neonatal rats, acting as in vitro model in the present study. The neurotoxicity of MA and the protective effect of Rhy were evaluated by MTT assay. The effects of MA, Rhy or their combination on intracellular free calcium concentration ([Ca2+]i were determined in individual neocortical neurons by the Fluo-3/AM tracing method. The MTT assay demonstrated that MA has a dose-dependent neurotoxicity in neuronal cultures. The addition of Rhy prior to the exposure to MA prevented neuronal death. Time course studies with the Fluo-3/AM probe showed that Rhy significantly decreased neuronal [Ca2+]i which was elevated by the exposure to MA. Our results suggested that Rhy can protect the neuronal cultures against MA exposure and promptly attenuate intracellular calcium overload triggered by MA challenge. This is the first report demonstrating an inhibitory effect of Rhy against MA impairment in cultured neurons in vitro.

  13. [Metabolic characterization of rat sertoli cell in vitro culture].

    Science.gov (United States)

    Shi, Bingyang; Zhang, Shuxiang; Guo, Meijin; Wang, Yonghong; Zhang, Siliang; Shi, Xiaolin

    2009-05-01

    Sertoli cell (SC) is intrinsic to the testis and provides an appropriate growth environment for the germ cells. It was separated from rat's testis and identified by hematoxylin and eosin staining(HE) and immunocytochemical reaction, then cultivated in vitro. Culture conditions such as pH, osmotic pressure and metabolic parameters that include consumption rates of glucose, glutamine, amino acids and formation rates of lactic acid, ammonium ion were investigated. It was showed that adhesion process of SCs was accomplished within 2-4 hours after inoculation. It was also observed that the SCs entered into the decline phase when the concentration of ammonium ion and lactic acid were above 2.3 mmol/L and 14 mmol/L, respectively, which caused osmotic pressure above 326 mosm/kg and pH below 6.8 in the medium. As the changes of amino acids during culture were concerned, Glu and Ala accumulated rapidly, while Val, Leu, Ile reduced slightly and at the same time Ser, Arg, and Gly were stable. The restrict factors for SCs grown in static culture might be high osmotic pressure and low pH, which were generated when glutamine and glucose were metabolized into lactic acid. The findings could be fundamental in the process optimization of large scale Sertoli cells in vitro culture.

  14. Characterization of glucose uptake by cultured rat podocytes.

    Science.gov (United States)

    Lewko, Barbara; Bryl, Ewa; Witkowski, Jacek M; Latawiec, Elzbieta; Gołos, Magdalena; Endlich, Nicole; Hähnel, Brunhilde; Koksch, Claudia; Angielski, Stefan; Kriz, Wilhelm; Stepinski, Jan

    2005-01-01

    The nonmetabolizable glucose analogue [(3)H]-2-deoxy-D-glucose ((3)H-2DG) was used to study glucose transport in cultured rat podocytes. Intracellular accumulation of (3)H-2DG was linear up to 20 min and was inhibited by cytochalasin B (80% inhibition) and by phlorizin (20% inhibition). Pretreatment with insulin stimulated the (3)H-2DG uptake 1.5-fold. A Hill analysis of the rate of glucose transport yielded a V(max) value of approximately 10 mM and S(0.5)of 7.8 mM. The value h = 1.0 for a Hill coefficient confirmed that glucose uptake exhibited a Michaelis-Menten kinetics. Transporters GLUT2 and GLUT4 were expressed in over 90% podocytes. Of the GLUT2- and GLUT4-expressing cells, approximately one-fourth expressed the membrane-bound fraction. We conclude that cultured rat podocytes possess a differentiated glucose transport system consisting chiefly of facilitative GLUT2 and GLUT4 transporters. It seems likely that a sodium-dependent glucose cotransporter may also be present in these cells.

  15. Growth-promoting effects of different fractions of extra-embryonic coelomic fluid on embryonic development.

    Science.gov (United States)

    Karabulut, A K; Layfield, R; Pratten, M K

    2000-08-01

    In the early stages of embryonic development, many growth-promoting molecules must be provided by the maternal system. These factors may be supplied locally to the embryo, by the decidua, the placenta, or the yolk sac. In this study the growth-promoting potential of extra-embryonic coelomic fluid (EECF) and its fractions was investigated. The embryonic requirement of growth-promoting molecules may be studied by reducing the growth-supporting capacity of serum. Thus, ultrafiltration of rat serum was carried out for 8 h using Millipore filters with a molecular weight exclusion of 30 kDa. Rat embryos at 9.5 days of age were cultured for 8 days for anembryonic yolk sacs, and then EECF was collected and divided into three different molecular weight fractions by ultrafiltration. Rat embryos were cultured for 48 h in whole rat serum and the serum retenate (which has low growth-supporting capacity) in the presence and absence of EECF, its fractions, or in EECF only. Embryos grown in retenate showed severe growth retardation, and the addition of EECF significantly improved embryonic growth. The fraction which contained the molecules with molecular weight between 10 and 30 kDa had significantly more effect on embryonic development than the other fractions. This fraction of EECF was analysed by gel electrophoresis. Three of the four protein bands observed in this fraction were identified by amino-terminal sequencing as alpha-fetoprotein precursor (22 kDa), apolipoprotein A1 precursor (24 kDa) and fetal haemoglobin Y2 chain (14 kDa), none of which are likely to be responsible for the growth-promoting activity. To further investigate growth-promoting proteins, EECF was Western-blotted to nitrocellulose membranes and probed with antisera against rat prolactin, epidermal growth factor, insulin-like growth factors I and II and human placental lactogen. No immunoreactive bands were detected in the EECF, suggesting that either these proteins are not present or are present at levels

  16. [Developing of a new feeder-free system and characterization of human embryonic stem cell sublines derived in this system under autogenic and allogenic culturing].

    Science.gov (United States)

    Kol'tsova, A M; Voronkina, I V; Gordeeva, O F; Zenin, V V; Lifantseva, N V; Musorina, A S; Smagina, L V; Iakovleva, T K; Polianskaia, G G

    2012-01-01

    A new feeder-free culture system for human embryonic stem cells (hESC) was developed. It consist of extracellular matrix proteins synthesized by feeder cells--mesenchymal stem cell line SC5-MSC, which was derived from initial hESC line SC5. The major ECM proteins--fibronectin and laminin--that maintain hESC growth in feeder-free system were identified. An essential component of this system is a SC5-MSC-conditioned medium. Two hESC sublines were derived. The subline SC5-FF was cultured in autogenic and subline SC7-FF in allogenic system. Sublines SC5-FF and SC7-FF passed through more than 300 and 115 cell population doublings, retained normal diploid karyotype and an ability of in vitro differentiation into derivates of three germ layers. These sublines express markers of undifferentiated hESC: alkaline phosphatase, Oct-4, SSEA-4, TRA-1-81 and multidrug resistance transporter--ABCG2. The RT-PCR analysis revealed that undifferentiated cells SC5-FF subline, like cells of initial feeder-maintained hESC line SC5, expressed genes OCT4 and NANOG, and germ line specific genes such as DPPA3/STELLA and DAZL. An expression of OCT4, NANOG, DPPA3/STELLA ans DAZL was down-regulated during embryonic bodies differentiation, whereas expression of somatic lineages specific genes like GATA4 and AFP (extra embryonic and embryonic endoderm), PAX6 (neuroectoderm) and BRY (mesoderm) was up-regulated. The comparative analysis of some typical features (karyotype structure, the average population doubling time and the number of undifferentiated cells in populations) did not reveal essential differences between initial SC5 and SC7 lines and their sublines SC5-FF and SC7-FF. This shows that feeder-free culture systems, which are much more stable than any feeder systems, do not break main hESC features during long cultivation and can be recommended for fundamental, biomedicine and pharmacological investigations, using hESCs.

  17. Whole-blastocyst culture followed by laser drilling technology enhances the efficiency of inner cell mass isolation and embryonic stem cell derivation from good- and poor-quality mouse embryos: new insights for derivation of human embryonic stem cell lines.

    Science.gov (United States)

    Cortes, J L; Sánchez, L; Catalina, P; Cobo, F; Bueno, C; Martínez-Ramirez, A; Barroso, A; Cabrera, C; Ligero, G; Montes, R; Rubio, R; Nieto, A; Menendez, P

    2008-04-01

    The optimization of human embryonic stem (hES) cell line derivation methods is challenging because many worldwide laboratories have neither access to spare human embryos nor ethical approval for using supernumerary human embryos for hES cell derivation purposes. Additionally, studies performed directly on human embryos imply a waste of precious human biological material. In this study, we developed a new strategy based on the combination of whole-blastocyst culture followed by laser drilling destruction of the trophoectoderm for improving the efficiency of inner cell mass (ICM) isolation and ES cell derivation using murine embryos. Embryos were divided into good- and poor-quality embryos. We demonstrate that the efficiency of both ICM isolation and ES cell derivation using this strategy is significantly superior to whole-blastocyst culture or laser drilling technology itself. Regardless of the ICM isolation method, the ES cell establishment depends on a feeder cell growth surface. Importantly, this combined methodology can be successfully applied to poor-quality blastocysts that otherwise would not be suitable for laser drilling itself nor immunosurgery in an attempt to derive ES cell lines due to the inability to distinguish the ICM. The ES cell lines derived by this combined method were characterized and shown to maintain a typical morphology, undifferentiated phenotype, and in vitro and in vivo three germ layer differentiation potential. Finally, all ES cell lines established using either technology acquired an aneuploid karyotype after extended culture periods, suggesting that the method used for ES cell derivation does not seem to influence the karyotype of the ES cells after extended culture. This methodology may open up new avenues for further improvements for the derivation of hES cells, the majority of which are derived from frozen, poor-quality human embryos.

  18. Computational tool for morphological analysis of cultured neonatal rat cardiomyocytes.

    Science.gov (United States)

    Leite, Maria Ruth C R; Cestari, Idágene A; Cestari, Ismar N

    2015-08-01

    This study describes the development and evaluation of a semiautomatic myocyte edge-detector using digital image processing. The algorithm was developed in Matlab 6.0 using the SDC Morphology Toolbox. Its conceptual basis is the mathematical morphology theory together with the watershed and Euclidean distance transformations. The algorithm enables the user to select cells within an image for automatic detection of their borders and calculation of their surface areas; these areas are determined by adding the pixels within each myocyte's boundaries. The algorithm was applied to images of cultured ventricular myocytes from neonatal rats. The edge-detector allowed the identification and quantification of morphometric alterations in cultured isolated myocytes induced by 72 hours of exposure to a hypertrophic agent (50 μM phenylephrine). There was a significant increase in the mean surface area of the phenylephrine-treated cells compared with the control cells (p<;0.05), corresponding to cellular hypertrophy of approximately 50%. In conclusion, this edge-detector provides a rapid, repeatable and accurate measurement of cell surface areas in a standardized manner. Other possible applications include morphologic measurement of other types of cultured cells and analysis of time-related morphometric changes in adult cardiac myocytes.

  19. 体外MPP+诱导胚胎大鼠中脑多巴胺能神经元模型的建立%Establishment of the model of embryonic rat mesencephalic dopaminergic neurons induced by MPP+

    Institute of Scientific and Technical Information of China (English)

    龚超超; 郎娟; 熊中奎

    2012-01-01

    Objective To establish a cultured cell model of embryonic rat mesencephalic dopaminergic (DA) neurons induced by l-methyl-4-phenyl-l ,2,3,6-tetrahydropyridine( MPP + ) , and to lay foundation for the study of pathogenesis and drug intervention of Parkinson disease (PD). Methods The embryonic rat (E14-15) mesencephalic dopaminergic neurons cultured in vitro for 7 days were divided into experimental group and control group, and then were both cultured with serum-free DMEM/F12 including 1% B27, the former was induced by 10 (xmol/L of MPP+ at the same time for 48 hours. The number of tyrosine hydroxylase ( TH) positive neurons and neurite length were determined by immunocytochemical examination. Results Under the magnification field of 100 times ,TH ( + ) neurons was 538.0 ±58. 7 in control group, and 351. 5 ±32. 7 in experimental group, P <0. 01; Under the magnification field of 200 times, the neurite length was (246. 9 ±11.3) p,m in control group, and (121.6 ±6. 1 ) u,m in MPP+ group( P <0.001). Conclusions The model of embryonic rat mesencephalic dopaminergic neurons can be successfully induced by MPP* , which could be a reliable means for latter study on pathological mechanism and drug intervention for PD.%目的 建立一种体外1-甲基-4-苯基-1,2,3,6-四氢吡啶离子(MPP+)诱导的胚胎大鼠中脑多巴胺(DA)能神经元模型,为帕金森病(PD)发病机制和药物干预研究奠定基础.方法 体外培养胚胎SD大鼠(孕14~15 d)中脑DA神经元7d后随机分为实验组和对照组,均以含1% B27的无血清DMEM/F12培养基培养,在此基础上前者加入MPP+使终浓度达到10 μmol/L,均继续培养48 h.采用免疫组化染色法检测酪氨酸羟化酶(TH)阳性神经元数量和突起长度.结果 在放大倍数(×100)视野下,实验组和对照组中脑TH阳性神经元数量分别为(351.5±32.7)、(538.0 ±58.7)个,P<0.01;在放大倍数(×200)视野下,实验组和对照组中脑TH阳性神经元突起长度分别为(121

  20. Separation、culture、differentiation and identification of neural stem cells from embryonic rat Hippocampus%胚胎大鼠海马源性神经干细胞的分离、培养、分化和鉴定

    Institute of Scientific and Technical Information of China (English)

    潘松; 付勇; 刘强; 刘杰; 刘立思

    2011-01-01

    Objective: To investigate the method of separation、 culture、 differentiation and identification of neural stem cell(NSC) from embryonic rat hippocampus. Methods: The cells mechanically seprated from embryonic rat hippocampus zone were cultured using serum free medium,then were induced to differentiate using serum medium; morphologic character of the cells were observed by microscope,the surface markers of NSC and cells induced from NSC were tested using reverse trscription polymerase chain reaction (RT-PCR) and immunocytochemical fluorescent staining. Results : The cells cultured by serum free medium grew suspendedly and easily accumulated to become neurospheres, the expression of Nestin whicb was the surface marker of NSC could be detected using RT-PCR and immunocytochemical fluorescent staining;the cells differentiated by serum medium grew adherently,the body of the cells became dendric process and spindle shape,the expression of Neuron Specific Enolase (NSE) which was the surface marker of neural cells and Glial Fibrillary Acidic Protein (GFAP) which was the surface marker of astrocyte cells could be detected using RTPCR and immunocytochemical fluorescent staining. Conclusion: The cells seprated from embryonic rat hippocampus zone have the character of NSC and can be cultured to keep their differentiation potential by serum free medium containing special growth factors, which provides the foundation for further research on NSC.%目的:探讨胚胎大鼠海马源性神经干细胞(NSC)的分离、培养、分化和鉴定的方法.方法:机械分离出胚胎大鼠海马区细胞,以无血清培养基培养,再以血清培养基诱导其分化;在显微镜下观察其形态学特征,逆转录PCR(RT-PCR)和免疫荧光化学法检测神经干细胞和其诱导后细胞的表面标志物.结果:无血清培养基条件下培养的细胞在光镜下可见呈悬浮生长,易聚集成神经球,RT-PCR和免疫荧光化学法可检测到NSC表面标志物Nestin的

  1. Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters.

    Science.gov (United States)

    Hunt, Megan M; Meng, Guoliang; Rancourt, Derrick E; Gates, Ian D; Kallos, Michael S

    2014-01-01

    Traditional optimization of culture parameters for the large-scale culture of human embryonic stem cells (ESCs) as aggregates is carried out in a stepwise manner whereby the effect of varying each culture parameter is investigated individually. However, as evidenced by the wide range of published protocols and culture performance indicators (growth rates, pluripotency marker expression, etc.), there is a lack of systematic investigation into the true effect of varying culture parameters especially with respect to potential interactions between culture variables. Here we describe the design and execution of a two-parameter, three-level (3(2)) factorial experiment resulting in nine conditions that were run in duplicate 125-mL stirred suspension bioreactors. The two parameters investigated here were inoculation density and agitation rate, which are easily controlled, but currently, poorly characterized. Cell readouts analyzed included fold expansion, maximum density, and exponential growth rate. Our results reveal that the choice of best case culture parameters was dependent on which cell property was chosen as the primary output variable. Subsequent statistical analyses via two-way analysis of variance indicated significant interaction effects between inoculation density and agitation rate specifically in the case of exponential growth rates. Results indicate that stepwise optimization has the potential to miss out on the true optimal case. In addition, choosing an optimum condition for a culture output of interest from the factorial design yielded similar results when repeated with the same cell line indicating reproducibility. We finally validated that human ESCs remain pluripotent in suspension culture as aggregates under our optimal conditions and maintain their differentiation capabilities as well as a stable karyotype and strong expression levels of specific human ESC markers over several passages in suspension bioreactors.

  2. Detection of histidine decarboxylase in rat aorta and cultured rat aortic smooth muscle cells.

    Science.gov (United States)

    Tippens, A S; Davis, S V; Hayes, J R; Bryda, E C; Green, T L; Gruetter, C A

    2004-08-01

    Having previously demonstrated release of histamine from mast-cell-deficient rat aorta, the objective of this study was to determine and localize histamine synthesis capability in the aorta by detecting histidine decarboxylase (HDC), the enzyme that catalyzes histamine formation. Experiments were conducted with nested reverse transcription-polymerase chain reaction (nRT-PCR) to detect HDC mRNA and with immunofluorescence and western blot analysis to detect HDC protein in rat aorta, cultured rat aortic smooth muscle (RASMC) and endothelial cells (RAEC). Gel electrophoresis of nRT-PCR products indicated HDC mRNA in liver, aorta and RASMC but not in RAEC or kidney. Sequence analysis confirmed that the band observed in RASMC was the target HDC amplicon. Immunofluorescence indicated the presence of HDC protein in RASMC and not in RAEC. Western Blot analysis revealed HDC protein (55 kDa) in liver, aorta, RASMC but not in RAEC or kidney. The results of this study are the first to demonstrate the presence of HDC mRNA and protein in rat aorta and more specifically in RASMC, indicative of their capability to synthesize histamine. Copyright 2004 Birkhäuser Verlag, Basel

  3. Evaluation of embryonic age and the effects of different proteases on the isolation and primary culture of chicken intestinal epithelial cells in vitro.

    Science.gov (United States)

    Yuan, Chao; He, Qiang; Li, Jun-ming; Azzam, Mahmoud Mostafa; Lu, Jian-jun; Zou, Xiao-ting

    2015-06-01

    The present study evaluates the effects of embryonic age and proteolytic enzymes on the isolation and primary culture of chicken enterocyte and to establish an effective technique for chicken intestinal epithelial cell (IEC) cultivation. Fourteen-day-old, 16-day-old and 18-day-old embryos (average weight: 52.23 ± 0.76 g, 50.86 ± 0.99 g, 48.98 ± 1.03 g) were the source for preparation of enterocyte culture, and trypsin-ethylene diamine tetraacetic acid, collagenase, thermolysin and combination of collagenase and thermolysin were used for digestion medium. Optimal culture protocols were determined by qualitative assays of proliferation. Cells isolated by using 14-day-old embryo and collagenase obtain the best attachment and growth in culture, and the production of continuously growing IEC cultures. Thus, we conclude that the use of collagenase as a dissociating enzyme and 14-day-old embryo as a source can be advantageously applied to the isolation of chicken IEC and this method may be useful for various applications and basic studies of the intestinal tract concerning such objects as physiology, immunology and toxicology.

  4. Primary Bovine Extra-Embryonic Cultured Cells: A New Resource for the Study of In Vivo Peri-Implanting Phenotypes and Mesoderm Formation.

    Directory of Open Access Journals (Sweden)

    Isabelle Hue

    Full Text Available In addition to nourishing the embryo, extra-embryonic tissues (EETs contribute to early embryonic patterning, primitive hematopoiesis, and fetal health. These tissues are of major importance for human medicine, as well as for efforts to improve livestock efficiency, but they remain incompletely understood. In bovines, EETs are accessible easily, in large amounts, and prior to implantation. We took advantage of this system to describe, in vitro and in vivo, the cell types present in bovine EETs at Day 18 of development. Specifically, we characterized the gene expression patterns and phenotypes of bovine extra-embryonic ectoderm (or trophoblast; bTC, endoderm (bXEC, and mesoderm (bXMC cells in culture and compared them to their respective in vivo micro-dissected cells. After a week of culture, certain characteristics (e.g., gene expression of the in vitro cells were altered with respect to the in vivo cells, but we were able to identify "cores" of cell-type-specific (and substrate-independent genes that were shared between in vitro and in vivo samples. In addition, many cellular phenotypes were cell-type-specific with regard to extracellular adhesion. We evaluated the ability of individual bXMCs to migrate and spread on micro-patterns, and observed that they easily adapted to diverse environments, similar to in vivo EE mesoderm cells, which encounter different EE epithelia to form chorion, yolk sac, and allantois. With these tissue interactions, different functions arose that were detected in silico and corroborated in vivo at D21-D25. Moreover, analysis of bXMCs allowed us to identify the EE cell ring surrounding the embryonic disc (ED at D14-15 as mesoderm cells, which had been hypothesized but not shown prior to this study. We envision these data will serve as a major resource for the future in the analysis of peri-implanting phenotypes in response to the maternal metabolism and contribute to subsequent studies of placental/fetal development in

  5. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  6. Effects of electrostimulation on glycogenolysis in cultured rat myotubes

    DEFF Research Database (Denmark)

    Elsner, Peter; Grunnet, Niels; Quistorff, Bjørn

    2003-01-01

    A model for electrostimulation causing contractions of primary cultures of rat myotubes was established. The kinetics of glycogen degradation was investigated for a 2-h period to elucidate the coupling between contraction and glycogenolytic flux. Electrostimulation caused contraction and increased...... glycogenolytic flux, but had no effect on glycogen phosphorylase-a activity. Forskolin increased glycogenolytic flux more than electrostimulation, and caused a fast activation of glycogen phosphorylase, while it did not elicit contraction. The effects of electrostimulation and forskolin on glycogenolytic flux...... were partly additive. The metabolism of glucose and glycogen was almost equally anaerobic and aerobic. The ATP content remained constant during glycogenolysis, but phosphocreatine decreased with the largest decrease in electrostimulated cells. The calculated ATP turnover rate increased about 3 times...

  7. A proteome map of primary cultured rat Schwann cells

    Directory of Open Access Journals (Sweden)

    Shen Mi

    2012-03-01

    Full Text Available Abstract Background Schwann cells (SCs are the principal glial cells of the peripheral nervous system with a wide range of biological functions. SCs play a key role in peripheral nerve regeneration and are involved in several hereditary peripheral neuropathies. The objective of this study was to gain new insight into the whole protein composition of SCs. Results Two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D LC-MS/MS was performed to identify the protein expressions in primary cultured SCs of rats. We identified a total of 1,232 proteins, which were categorized into 20 functional classes. We also used quantitative real time RT-PCR and Western blot analysis to validate some of proteomics-identified proteins. Conclusion We showed for the first time the proteome map of SCs. Our data could serve as a reference library to provide basic information for understanding SC biology.

  8. [Kurloff's thymic inclusion : action on rat gonads in culture].

    Science.gov (United States)

    De Graeve, P; Vincent, M F; Amiel, S; Moatti, J P; Guilhem, A; Bimes, C

    1981-12-01

    Thymic and splenic extracts rich in FOA-KURLOFF (F.K.) body cells, obtained from guinea-pigs treated with oestrogen, were added to rat testis or ovaries in culture. Controls were prepared with extracts from thymus and spleen of non treated animals and from kidneys of treated or non treated animals. After five hours the level of sexual hormones and the germinal cells were studied. The F.K. substance has no effect on germinal cells and on progesterone and testosterone secretion. The F.K. substance induces a significative decrease of oestrogen secretion. In an other paper we established that F.K. bodies induced a hyperactivity of internal theca folliculi and of ovarian interstitial cells. It is a false image of activity in connection with a hypersecretion of FSH. The F.K. substance inhibits oestrogen synthesis.

  9. Effects of Fenvalerate on Steroidogenesis in Cultured Rat Granulosa Cells

    Institute of Scientific and Technical Information of China (English)

    JIAN-FENG CHEN; GUI-DONG DAI; XIN-RU WANG; HAI-YAN CHEN; RU LIU; JUN HE; LIN SONG; QIAN BIAN; LI-CHUN XU; JIAN-WEI ZHOU; HANG XIAO

    2005-01-01

    Objective This study was designed to examine the in vitro effects of fenvalerate on steroid production and steroidogenic enzymes mRNA expression level in rat granulosa cells. Methods Using primary cultured rat granulosa cells (rGCs) as model, fenvalerate of various concentrations (0, 1, 5, 25, 125, 625 μmol/L) was added to the medium for 24 h. In some cases, optimal concentrations of 22(R)-hydroxycholesterol (25 μmol/L), Follicle stimulating hormone (FSH, 2 mg/L), or 8-Bromo-cAMP (1 mmol/L) were provided. Concentrations of 17β-estradiol(E2) and progesterone (P4) in the medium from the same culture wells were measured by RIA and the steroidogenic enzyme mRNA level was quantified by semi-quantitative RT-PCR. Results Fenvalerate decreased both P4 and E2 production in a dose-dependent manner while it could significantly stimulate rGCs proliferation. This inhibition was stronger in the presence of FSH. Furthermore, it could not be reversed by 22(R)-hydroxycholesterol or 8-Bromo-cAMP. RT-PCR revealed that fenvalerate had no significant effect on 3β-HSD, but could increase the P450scc mRNA level. In addition, 17β-HSD mRNA level was dramatically reduced with the increase of fenvalerate dose after 24 h treatment. Conclusion Fenvalerate inhibits both P4 and E2 production in rGCs. These results support the view that fenvalerate is considered as a kind of endocrine-disrupting chemicals. The mechanism of its disruption may involve the effects on steroidogenesis signaling cascades and/or steroidogenic enzyme's activity.

  10. Aqueous humor enhances the proliferation of rat retinal precursor cells in culture, and this effect is partially reproduced by ascorbic acid

    DEFF Research Database (Denmark)

    Yang, Jing; Klassen, Henry; Pries, Mette

    2006-01-01

    Aqueous humor has been shown to influence the proliferation of various ocular cell types, but the effect on immature retinal cells is not known. Here, the effect of pig aqueous humor on the proliferation of rat retinal precursor cells (RPCs) was investigated. RPCs were prepared from embryonic day...... 19 Sprague-Dawley rats and cultured in the presence or absence of aqueous humor from healthy pigs along with a medium consisting of Dulbecco's modified Eagle's medium:Ham's F-12 medium, N2 supplement, and epidermal growth factor. Proliferation was quantified by [(3)H]thymidine incorporation under...... different treatment conditions, and any associated morphological changes were noted. Potential active components of porcine aqueous humor were partially characterized by gel filtration chromatography, and the effect on RPC proliferation was determined. Results showed that adding 20% aqueous humor increased...

  11. Xeno-free derivation and culture of human embryonic stem cells: current status,problems and challenges

    Institute of Scientific and Technical Information of China (English)

    Ting Lei; Sandrine Jacob; Imen Ajil-Zaraa; Jean-Bernard Dubuisson; Olivier Irion; Marisa Jaconi; Anis Feki

    2007-01-01

    Human embryonic stem cells (hESC) not only hold great promise for the treatment of degenerative diseases but also provide a valuable tool for developmental studies. However, the clinical applications of hESC are at present limited by xeno-contamination during the in vitro derivation and propagation of these cells. In this review, we summarize the current methodologies for the derivation and the propagation of hESC in conditions that will eventually enable the generation of clinical-grade cells for future therapeutic applications.

  12. Studies on the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rat

    Directory of Open Access Journals (Sweden)

    Zheng-mou DONG

    2011-01-01

    Full Text Available Objective To evaluate the toxic effects of periodontal sustained release drug containing ornidazole and pefloxacin mesylate on early embryonic development of SD rats.Methods A total of 100female SD rats were randomly divided into negative control,low-,medium-,high-dose group and intervention group(20each.Rats in low-,medium-and high-dose group were fed daily with the sustained release drug at 1,4,and 8g/kg respectively;those in negative control group were fed daily with distilled water from the 14th day before mating to the 7th day of pregnancy continuously,and those in intervention group received cyclophosphamide(40mg/kgby intraperitoneal injection for 5successive days.During this period,the general status,mating,pregnancy,coefficient of ovary and uterus,the numbers of corpus luteum,nidation,live births,stillbirths,absorbed embryo,prenidatory and postnidatory mortality,serum testosterone(Tand estradiol(E2were determined respectively.Histopathologic examination of the ovary and uterus,immunohistochemical observation of ovaries for proliferating cell nuclear antigen(PCNAand Bcl-2associated X protein(Baxwere also performed respectively.Results The general status of those rats was good except one in the low-dose group and one in the intervention group died on the 14th day of administration,and one in negative control and one in high dose group died on the 5th day of pregnancy,respectively.The body weight of animals decreased significantly(P 0.05.The serum T level in medium-and high-dose group and the E2level in high-dose group declined compared to that in negative control group(P < 0.05.Conclusions Although the periodontal sustained release drug containing ornidazole and pefloxacin mesylate shows no toxicity to the early embryonic development of SD rats,the high dose drug has certain toxicity to ovary.Declined serum concentrations of T and E2,reduced expression of PCNA,and increased Bax may be the causes of the toxicity.

  13. Ethanol induces heterotopias in organotypic cultures of rat cerebral cortex.

    Science.gov (United States)

    Mooney, Sandra M; Siegenthaler, Julie A; Miller, Michael W

    2004-10-01

    Abnormalities in the migration of cortical neurons to ectopic sites can be caused by prenatal exposure to ethanol. In extreme cases, cells migrate past the pial surface and form suprapial heterotopias or 'warts'. We used organotypic slice cultures from 17-day-old rat fetuses to examine structural and molecular changes that accompany wart formation. Cultures were exposed to ethanol (0, 200, 400 or 800 mg/dl) and maintained for 2-32 h. Fixed slices were sectioned and immunolabeled with antibodies directed against calretinin, reelin, nestin, GFAP, doublecortin, MAP-2 and NeuN. Ethanol promoted the widespread infiltration of the marginal zone (MZ) with neurons and the focal formation of warts. The appearance of warts is time- and concentration-dependent. Heterotopias comprised migrating neurons and were not detected in control slices. Warts were associated with breaches in the array of Cajal-Retzius cells and with translocation of reelin-immunoexpression from the MZ to the outer limit of the wart. Ethanol also altered the morphology of the radial glia. Thus, damage to the integrity of superficial cortex allows neurons to infiltrate the MZ, and if the pial-subpial glial barrier is also compromised these ectopic neurons can move beyond the normal cerebral limit to form a wart.

  14. 胚胎干细胞培养及建系方法探讨%Research of embryonic stem cells culture and cell line method

    Institute of Scientific and Technical Information of China (English)

    宋兴辉

    2014-01-01

    目的:探索人胚胎干细胞建系方法,为干细胞和再生医学领域的科学研究提供可靠的实验方法和技术。方法分别利用有饲养层和无饲养层培养体系培养人的胚胎干细胞,用免疫荧光法、逆转录聚合酶链式扩增( RT -PCR)法和体内形成畸胎瘤的方法鉴定其干细胞特征。结果培养的人胚胎干细胞,传代至33代时表达干细胞表面标志物 Oct -4,SSEA -3,Tra -1-60,Tra -1-81和全能型因子 C - MYC KLF -4 OCT -4 SOX -2,畸胎瘤组织切片中分别有消化腺内皮(内胚层)、脂肪组织(中胚层)和神经组织(外胚层)等组织形成,说明该胚胎干细胞形成的畸胎瘤有向三胚层分化的潜能。结论成功建立了人胚胎干细胞建系,所建立的培养人胚胎干细胞的方法可行。%Objective To investigate the method of human embryonic stem cells line,whether can provide a reliable cell research method and technology for study of stem cell and regenerative medicine field. Methods The feeder layer and no feeder layer system to culture human embryonic stem cells were applied respectively. And then immunofluorescence method,RT - PCR were used. These methods were used to identify its characteristic of stem cells of teratomas in vivo. Results The human embryonic stem cells express the stem cell surface marker, for example Oct - 4,SSEA - 3,Tra - 1 - 60,Tra - 1 - 81,and universal factors such as C - MYC KLF - 4 OCT - 4 SOX - 2,when culturing the human embryonic stem cells to thirty - three passages. The paraffin slice of teratomas can differentiate to digestive glands,fat tissue and nerve tissue,which originated from endoderm,mesoderm or ectodermal respectively. Therefore,the teratomas have the potential to differentiate to three germinal layer. Conclusion This result indicate that the human embryonic stem cells line is successful. The method of culturing the human stem cell is achievable.

  15. Effect of ETBE on reproductive steroids in male rats and rat Leydig cell cultures.

    Science.gov (United States)

    de Peyster, Ann; Stanard, Bradley; Westover, Christian

    2009-10-08

    These experiments were conducted to follow up on a report of testis seminiferous tubular degeneration in Fischer 344 rats treated with high doses of ethyl t-butyl ether (ETBE). Also, high doses of a related compound, methyl t-butyl ether (MTBE), had been shown to reduce circulating testosterone (T) in rats. Isolated rat Leydig cells were used to compare hCG-stimulated T production following exposure to ETBE, MTBE, and their common main metabolite, TBA. In addition, male Fischer 344 rats were gavaged daily with 600 mg/kg, 1200 mg/kg or 1800 mg/kg ETBE in corn oil (n=12) for 14 days, the 1200 mg/kg dose chosen for comparison with a prior 14-day MTBE gavage experiment. In cell culture experiments, TBA was more potent than either ETBE or MTBE, both of which caused similar inhibition of T production at equimolar concentrations. In the in vivo study, no significant plasma T reduction was seen 1h after the final 1200 mg/kg ETBE dose, whereas 1200 mg/kg MTBE had significantly lowered T when administered similarly to Sprague-Dawley rats. Some rats treated with 1800 mg/kg ETBE had noticeably lower T levels, and the group average T level was 66% of corn oil vehicle control (p>0.05) with high variability also evident in ETBE-treated rats. 17beta-Estradiol had been increased by 1200 mg/kg MTBE, and was elevated in the 1200 and 1800 mg/kg ETBE dose groups (p<0.05), both groups also experiencing significantly reduced body weight gain. None of these effects were seen with 600 mg/kg/day ETBE. No definitive evidence of androgen insufficiency was seen in accessory organ weights, and no testicular pathology was observed after 14 days in a small subset of 1800 mg/kg ETBE-treated animals. Like MTBE, ETBE appears to be capable of altering reproductive steroid levels in peripheral blood sampled 1h after treatment, but only with extremely high doses that inhibit body weight gain and may produce mortality.

  16. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement.

    Directory of Open Access Journals (Sweden)

    Kerry Wilson

    Full Text Available BACKGROUND: To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated a biological microelectromechanical system (BioMEMS based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT, the time to half relaxation ((1/2RT were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and (1/2RT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine. CONCLUSIONS/SIGNIFICANCE: The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery

  17. Effect of Co-Culturing of Mice Liver Cells and Embryonic Carcinomatous Stem Cells on the Rate of Differentiation to Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    AA Pourfatollah

    2005-10-01

    Full Text Available Introduction: Considering the importance of co-culture in differentiation of embryonic stem cells, the aim of this study was evaluation of the effect of co-culturing fetal liver stroma cells with P19 cells on the line of differentiation. Materials and Methods: For this purpose, P19 cells were cultured directly in semisolid medium. These cells proliferated and primarily differentiated to colonies know as embryoid bodies (EBs after 8-12 days. The Ebs cells were trypsinized and dissociated to single or double cells. Then these cells were co-cultured on the mouse fetal liver feeder layer in the absence of exogenous factors. After 14-18 days, the colonies were studied morphologically by benzidine and giemsa staining and also counted under invert microscope. Results: The percentages of benzidine positive (or erythroid and negative colonies were 94% and 6% respectively and also the cells of colonies were studied by Giemsa staining. Results showed that they were myeloid or lymphoid type cells. Thus, the results show that in the presence of mouse fetal liver feeder layer, the number of erythroid colonies was increased. Conclusions: Therefore, this technique may be effective for differentiation of stem cells from different sources into hematopoietic cells and can be used in future for human cell therapy.

  18. 人胚胎干细胞建系和培养的研究进展%Advances in Derivation and Culture of Human Embryonic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    徐兰; 李斌

    2012-01-01

    人胚胎干细胞(human embryonic stem cell,hESc)在再生医学、药物筛选和发育生物学等领域具有重要的研究和应用价值.本文对人胚胎干细胞建系方法的现状包括胚胎来源、内细胞团分离方法、以及人胚胎干细胞培养体系的改进作了介绍,讨论了与全能性维持和定向分化有关的信号通路的研究进展,以及胚胎干细胞研究中伦理问题的争议.%Human embryonic stem cells are considered to be a valuable resource for research in regenerative medicine, drug screening, and developmental studies. This article introduces the current status of methodology for hESc derivation, including the source of embryo and ICM isolation method, and the improvement of hESc culture system, and discusses the progress of signaling pathways and ethic issue in hESc research.

  19. Chronaxie Measurements in Patterned Neuronal Cultures from Rat Hippocampus.

    Science.gov (United States)

    Stern, Shani; Agudelo-Toro, Andres; Rotem, Assaf; Moses, Elisha; Neef, Andreas

    2015-01-01

    Excitation of neurons by an externally induced electric field is a long standing question that has recently attracted attention due to its relevance in novel clinical intervention systems for the brain. Here we use patterned quasi one-dimensional neuronal cultures from rat hippocampus, exploiting the alignment of axons along the linear patterned culture to separate the contribution of dendrites to the excitation of the neuron from that of axons. Network disconnection by channel blockers, along with rotation of the electric field direction, allows the derivation of strength-duration (SD) curves that characterize the statistical ensemble of a population of cells. SD curves with the electric field aligned either parallel or perpendicular to the axons yield the chronaxie and rheobase of axons and dendrites respectively, and these differ considerably. Dendritic chronaxie is measured to be about 1 ms, while that of axons is on the order of 0.1 ms. Axons are thus more excitable at short time scales, but at longer time scales dendrites are more easily excited. We complement these studies with experiments on fully connected cultures. An explanation for the chronaxie of dendrites is found in the numerical simulations of passive, realistically structured dendritic trees under external stimulation. The much shorter chronaxie of axons is not captured in the passive model and may be related to active processes. The lower rheobase of dendrites at longer durations can improve brain stimulation protocols, since in the brain dendrites are less specifically oriented than axonal bundles, and the requirement for precise directional stimulation may be circumvented by using longer duration fields.

  20. Chronaxie Measurements in Patterned Neuronal Cultures from Rat Hippocampus.

    Directory of Open Access Journals (Sweden)

    Shani Stern

    Full Text Available Excitation of neurons by an externally induced electric field is a long standing question that has recently attracted attention due to its relevance in novel clinical intervention systems for the brain. Here we use patterned quasi one-dimensional neuronal cultures from rat hippocampus, exploiting the alignment of axons along the linear patterned culture to separate the contribution of dendrites to the excitation of the neuron from that of axons. Network disconnection by channel blockers, along with rotation of the electric field direction, allows the derivation of strength-duration (SD curves that characterize the statistical ensemble of a population of cells. SD curves with the electric field aligned either parallel or perpendicular to the axons yield the chronaxie and rheobase of axons and dendrites respectively, and these differ considerably. Dendritic chronaxie is measured to be about 1 ms, while that of axons is on the order of 0.1 ms. Axons are thus more excitable at short time scales, but at longer time scales dendrites are more easily excited. We complement these studies with experiments on fully connected cultures. An explanation for the chronaxie of dendrites is found in the numerical simulations of passive, realistically structured dendritic trees under external stimulation. The much shorter chronaxie of axons is not captured in the passive model and may be related to active processes. The lower rheobase of dendrites at longer durations can improve brain stimulation protocols, since in the brain dendrites are less specifically oriented than axonal bundles, and the requirement for precise directional stimulation may be circumvented by using longer duration fields.

  1. [Noradrenaline and glycogen content and the activity of several enzymes of carbohydrate metabolism in normal, embryonic, and partly denervated livers and in hepatomas of the rat].

    Science.gov (United States)

    Iljin, S V; Shanigina, K I; Sydow, G; Parfhenova, N S

    1977-01-01

    The noradrenaline and glycogen contents as well as hexokinase, glucokinase and glucose-6-phosphatase activities were determined in normal, embryonic and partially denervated (bilateral dissection of the Nervus splanchnicus or Nervus vagus) rat liver and in two transplantable hepatomas. In embryonic liver and hepatomas a strong decrease or complete loss of noradrenaline and glycogen levels and glucokinase and glucose-6-phosphatase activities is demonstrable as compared to the livers of adult animals, while the hexokinase activity is enhanced. Following bilateral splanchnicotomy the glycogen content and hexokinase activity are enhanced; the glucose-6-phosphatase activity is reduced, and the liver does not contain any noradrenaline. Bilateral vagotomy causes decrease of the glycogen content, of the hexokinase and glucokinase activities and an enhancement of glucose-6-phosphatase activity. The results lend support to the idea of antagonistic action of the sympathetic and parasympathetic nervous systems upon several partial reactions of carbohydrate metabolism of liver. In addition, it can be assumed that the alterations of the carbohydrate metabolism demonstrable in hepatomas as compared to normal liver are not solely attributable to disturbance or breakdown of the nervous regulation.

  2. Concentration dependent survival and neural differentiation of murine embryonic stem cells cultured on polyethylene glycol dimethacrylate hydrogels possessing a continuous concentration gradient of n-cadherin derived peptide His-Ala-Val-Asp-Lle.

    Science.gov (United States)

    Lim, Hyun Ju; Mosley, Matthew C; Kurosu, Yuki; Smith Callahan, Laura A

    2016-12-01

    N-cadherin cell-cell signaling plays a key role in the structure and function of the nervous system. However, few studies have incorporated bioactive signaling from n-cadherin into tissue engineering matrices. The present study uses a continuous gradient approach in polyethylene glycol dimethacrylate hydrogels to identify concentration dependent effects of n-cadherin peptide, His-Ala-Val-Asp-Lle (HAVDI), on murine embryonic stem cell survival and neural differentiation. The n-cadherin peptide was found to affect the expression of pluripotency marker, alkaline phosphatase, in murine embryonic stem cells cultured on n-cadherin peptide containing hydrogels in a concentration dependent manner. Increasing n-cadherin peptide concentrations in the hydrogels elicited a biphasic response in neurite extension length and mRNA expression of neural differentiation marker, neuron-specific class III β-tubulin, in murine embryonic stem cells cultured on the hydrogels. High concentrations of n-cadherin peptide in the hydrogels were found to increase the expression of apoptotic marker, caspase 3/7, in murine embryonic stem cells compared to that of murine embryonic stem cell cultures on hydrogels containing lower concentrations of n-cadherin peptide. Increasing the n-cadherin peptide concentration in the hydrogels facilitated greater survival of murine embryonic stem cells exposed to increasing oxidative stress caused by hydrogen peroxide exposure. The combinatorial approach presented in this work demonstrates concentration dependent effects of n-cadherin signaling on mouse embryonic stem cell behavior, underscoring the need for the greater use of systematic approaches in tissue engineering matrix design in order to understand and optimize bioactive signaling in the matrix for tissue formation.

  3. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats.

    Science.gov (United States)

    Matveyenko, Aleksey V; Georgia, Senta; Bhushan, Anil; Butler, Peter C

    2010-11-01

    Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.

  4. [Heart tissue from embryonic stem cells].

    Science.gov (United States)

    Zimmermann, W-H

    2008-09-01

    Embryonic stem cells can give rise to all somatic cells, making them an attractive cell source for tissue engineering applications. The propensity of cells to form tissue-like structures in a culture dish has been well documented. We and others made use of this intrinsic property to generate bioartificial heart muscle. First proof-of-concept studies involved immature heart cells mainly from fetal chicken, neonatal rats and mice. They eventually provided evidence that force-generating heart muscle can be engineered in vitro. Recently, the focus shifted to the application of stem cells to eventually enable the generation of human heart muscle and reach following long-term goals: (1) development of a simplified in vitro model of heart muscle development; (2) generation of a human test-bed for drug screening and development; (3) allocation of surrogate heart tissue to myocardial repair applications. This overview will provide the background for cell-based myocardial repair, introduce the main myocardial tissue engineering concepts, discuss the use of embryonic and non-embryonic stem cells, and lays out the potential direct and indirect therapeutic use of human tissue engineered myocardium.

  5. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    Science.gov (United States)

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates.

  6. Long-term culture and cryopreservation does not affect the stability and functionality of human embryonic stem cell-derived hepatocyte-like cells.

    Science.gov (United States)

    Mandal, Arundhati; Raju, Sheena; Viswanathan, Chandra

    2016-02-01

    Human embryonic stem cells (hESCs) are predicted to be an unlimited source of hepatocytes which can pave the way for applications such as cell replacement therapies or as a model of human development or even to predict the hepatotoxicity of drug compounds. We have optimized a 23-d differentiation protocol to generate hepatocyte-like cells (HLCs) from hESCs, obtaining a relatively pure population which expresses the major hepatic markers and is functional and mature. The stability of the HLCs in terms of hepato-specific marker expression and functionality was found to be intact even after an extended period of in vitro culture and cryopreservation. The hESC-derived HLCs have shown the capability to display sensitivity and an alteration in the level of CYP enzyme upon drug induction. This illustrates the potential of such assays in predicting the hepatotoxicity of a drug compound leading to advancement of pharmacology.

  7. [The effect of the duration of culturing on the pluripotency of mouse embryonic stem (ES) cells in vitro and in vivo].

    Science.gov (United States)

    Mitalipov, Sh M; Mitallipova, M M; Ivanov, V I

    1994-01-01

    A comparative analysis of two clones of mouse embryonic stem cells (ES-D3) that underwent different number of passages was performed to determine their potencies for in vitro and in vivo development. Cells of both clones had similar morphology characteristic of undifferentiated ES cells and were capable of forming embryoid bodies in the suspension cultures. Specific alkaline phosphatase activity of ES cells was revealed by cytochemical staining. Karyotyping showed that the proportion of aneuploid ES cells increases with an increase in the number of passages. The results of experiments on chimera production using ES cells showed that the clone D3W (passage 17) is superior to the clone D3M (passage 42) in terms of both the proportion of chimeras produced and the degree of coat color chimerism in them.

  8. Expression and loss of alleles in cultured mouse embryonic fibroblasts and stem cells carrying allelic fluorescent protein genes

    Directory of Open Access Journals (Sweden)

    Stringer Saundra L

    2006-10-01

    Full Text Available Abstract Background Loss of heterozygosity (LOH contributes to many cancers, but the rate at which these events occur in normal cells of the body is not clear. LOH would be detectable in diverse cell types in the body if this event were to confer an obvious cellular phenotype. Mice that carry two different fluorescent protein genes as alleles of a locus would seem to be a useful tool for addressing this issue because LOH would change a cell's phenotype from dichromatic to monochromatic. In addition, LOH caused by mitotic crossing over might be discernable in tissues because this event produces a pair of neighboring monochromatic cells that are different colors. Results As a step in assessing the utility of this approach, we derived primary embryonic fibroblast populations and embryonic stem cell lines from mice that carried two different fluorescent protein genes as alleles at the chromosome 6 locus, ROSA26. Fluorescence activated cell sorting (FACS showed that the vast majority of cells in each line expressed the two marker proteins at similar levels, and that populations exhibited expression noise similar to that seen in bacteria and yeast. Cells with a monochromatic phenotype were present at frequencies on the order of 10-4 and appeared to be produced at a rate of approximately 10-5 variant cells per mitosis. 45 of 45 stably monochromatic ES cell clones exhibited loss of the expected allele at the ROSA26 locus. More than half of these clones retained heterozygosity at a locus between ROSA26 and the centromere. Other clones exhibited LOH near the centromere, but were disomic for chromosome 6. Conclusion Allelic fluorescent markers allowed LOH at the ROSA26 locus to be detected by FACS. LOH at this locus was usually not accompanied by LOH near the centromere, suggesting that mitotic recombination was the major cause of ROSA26 LOH. Dichromatic mouse embryonic cells provide a novel system for studying genetic/karyotypic stability and factors

  9. [Expression of TGFbeta family factors and FGF2 in mouse and human embryonic stem cells maintained in different culture systems].

    Science.gov (United States)

    Lifantseva, N V; Kol'tsova, A M; Polianskaia, G G; Gordeeva, O F

    2013-01-01

    Mouse and human embryonic stem cells are in different states of pluripotency (naive/ground and primed states). Mechanisms of signaling regulation in cells with ground and primed states of pluripotency are considerably different. In order to understand the contribution of endogenous and exogenous factors in the maintenance of a metastable state of the cells in different phases ofpluripotency, we examined the expression of TGFbeta family factors (ActivinA, Nodal, Leftyl, TGFbeta1, GDF3, BMP4) and FGF2 initiating the appropriate signaling pathways in mouse and human embryonic stem cells (mESCs, hESCs) and supporting feeder cells. Quantitative real-time PCR analysis of gene expression showed that the expression patterns of endogenous factors studied were considerably different in mESCs and hESCs. The most significant differences were found in the levels of endogenous expression of TGFbeta1, BMP4 and ActivinA. The sources of exogenous factors ActivnA, TGFbeta1, and FGF2 for hESCs are feeder cells (mouse and human embryonic fibroblasts) expressing high levels of these factors, as well as low levels of BMP4. Thus, our data demonstrated that the in vitro maintenance of metastable state of undifferentiated pluripotent cells is achieved in mESCs and hESCs using different schemes of the regulations of ActivinA/Nodal/Lefty/Smad2/3BMP/Smad1/5/8 endogenous branches of TGFbeta signaling. The requirement for exogenous stimulation or inhibition of these signaling pathways is due to different patterns of endogenous expression of TGFbeta family factors and FGF2 in the mESCs and hESCs. For the hESCs, enhanced activity of ActivinA/Nodal/Lefty/Smad2/3 signaling by exogenous factor stimulation is necessary to mitigate the effects of BMP/Smadl/5/8 signaling pathways that promote cell differentiation into the extraembryonic structures. Significant differences in endogenous FGF2 expression in the cells in the ground and primary states of pluripotency demonstrate diverse involvement of this

  10. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain; II. Correlation between positron emission tomography and reaching behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, S.B. [Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge (United Kingdom); Brooks, D.J.; Ashworth, S.; Opacka-Juffrey, J.; Myers, R.; Hume, S.P. [PET Methodology Group, Cyclotron Unit, MRC Clinical Science Centre, Hammersmith Hospital, London (United Kingdom); Torres, E.M.; Fricker, R.A. [Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, Cambridge (United Kingdom)

    1997-05-26

    Grafts of embryonic striatal primordia are able to elicit behavioural recovery in rats which have received an excitotoxic lesion to the striatum, and it is believed that the P zones or striatal-like tissue within the transplants play a crucial role in these functional effects. We performed this study to compare the effects of different donor stage of embryonic tissue on both the morphology (see accompanying paper) and function of striatal transplants. Both the medial and lateral ganglionic eminence was dissected from rat embryos of either 10 mm, 15 mm, 19 mm, or 23 mm crown-rump length, and implanted as a cell suspension into adult rats which had received an ibotenic acid lesion 10 days prior to transplantation. After four months the animals were tested on the 'staircase task' of skilled forelimb use. At 10-14 months rats from the groups which had received grafts from 10 mm or 15 mm donor embryos were taken for positron emission tomography scanning in a small diameter postiron emission tomography scanner, using ligands to the dopamine D{sub 1} and D{sub 2} receptors, [{sup 11}C]SCH 23390 and [{sup 11}C]raclopride, respectively. A lesion-alone group was also scanned with the same ligands for comparison. Animals which had received transplants from the 10 mm donors showed a significant recovery with their contralateral paw on the 'staircase test'. No other groups showed recovery on this task. Similarly, the animals with grafts from the youngest donors showed a significant increase in D{sub 1} and D{sub 2} receptor binding when compared to the lesion-alone group. No increase in signal was observed with either ligand in the group which had received grafts from 15 mm donors. Success in paw reaching showed a strong correlation to both the positron emission tomography signal obtained and the P zone volume of the grafts.These results suggest that striatal grafts from younger donors (10 mm CRL) give greater behavioural recovery than grafts preparedfrom

  11. The experimental study of the damage of environmental neurotoxins on the cultured rat dopaminergic neurons

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; LU Chuanzhen; JIANG Yuping

    2000-01-01

    Objective To establish the culture system of rat dopaminergic neurons. and to determine whether Paraquat and Dieldrin selectively destroy cultured rat dopaminergic neurons respectively. Methods The cultured rat dopaminergic neurons were treated for 24h with Paraquat and Dieldrin(0.001 to 100 μ mol/L) respectively, Data were expressed as percentage of surviving TH-positive(TH+) cells and other cells per culture dish. Results Paraquat was not effective in selectively destroying TH+ neurons. Dieldrin (1 μ mol/L) selectively decreased the number of TH+ neurons without affecting other cells. The EC50 of Dieldrin on TH+ neurons was 27.6 l mol/L. Conclusion: Paraquat can not selectively destroy dopaminergic neurons in culture. Dieldrin (1 μ mol/L) can selectively destroy the dopaminergic neurons in culture, which make it a potential etiological agent for PD. The possible parkinsonogenic effect of Dieldrin is deserved for further investigation.

  12. Directed Differentiation of Dopamine-Secreting Cells from Nurr1/GPX1 Expressing Murine Embryonic Stem Cells Cultured on Matrigel-Coated PCL Scaffolds.

    Science.gov (United States)

    Terraf, Panieh; Babaloo, Hamideh; Kouhsari, Shideh Montasser

    2017-03-01

    Parkinson's disease (PD) is a progressive neurological disorder characterized by a large number of motor and non-motor features and is known as the second most common neurodegenerative disorder after Alzheimer's disease. The hallmark pathology of PD is the damage and death of dopamine-producing neurons in the substantia-nigra of midbrain. Intrastriatal transplants of fetal mesencephalon derived DAergic neurons have provided proof-of-principle for the cell replacement strategy and have demonstrated reinnervation of the denervated striatum. However, ethical, technical, and practical limitations of deploying fetal DAergic neurons as the source for cell therapy in PD have ceased the spread of this procedure into clinical practice. Embryonic stem (ES) cells have emerged as a therapeutic alternative that can proliferate extensively and generate dopamine-producing neurons. To this extent and to surmount the obstacles related to embryonic neural cells, many investigations have focused on using pluripotent stem cells for the derivation of DAergic neurons. In the present study, a mouse embryonic stem (mES) R1 cell line was generated which could stably co-express Nurr1 (an essential transcription factor in DAergic neuron development) and GPX-1 (a neuroprotective enzyme against oxidative stress). The Nurr1/GPX-1-expressing ES cells (Nurr1/GPX-1-ES) were differentiated into DAergic-like cells via a three-dimensional culture environment consisting of Poly-ε-Caprolactone (PCL) nanofibrous scaffolds embedded by Matrigel (Mtg) in the presence of specific signaling molecules. DAergic neuron-specific genes were highly expressed in ES-derived DAergic neurons cultured and differentiated on PCL/Mtg scaffolds. Reverse-phase HPLC confirmed that the Nurr1/GPX-1-ES-cells differentiated on PCL/Mtg electrospun scaffolds could efficiently and exclusively secrete dopamine in response to stimulus. In conclusion, our results demonstrated that PCL/Matrigel nanofibrous scaffolds could efficiently

  13. Characterization of Three-Dimensional Retinal Tissue Derived from Human Embryonic Stem Cells in Adherent Monolayer Cultures

    Science.gov (United States)

    Singh, Ratnesh K.; Mallela, Ramya K.; Cornuet, Pamela K.; Reifler, Aaron N.; Chervenak, Andrew P.; West, Michael D.; Wong, Kwoon Y.; Nasonkin, Igor O.

    2015-01-01

    Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na+ and K+ currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue for

  14. Concise Review: No Breakthroughs for Human Mesenchymal and Embryonic Stem Cell Culture: Conditioned Medium, Feeder Layer, or Feeder‐Free; Medium with Fetal Calf Serum, Human Serum, or Enriched Plasma; Serum‐Free, Serum Replacement Nonconditioned Medium, or Ad Hoc Formula? All That Glitters Is Not Gold

    National Research Council Canada - National Science Library

    Mannello, Ferdinando; Tonti, Gaetana A

    2007-01-01

    The choice of an optimal strategy of stem cell culture is at the moment an impossible task, and the elaboration of a culture medium adapted to the production of embryonic and adult mesenchymal stem...

  15. PSA-NCAM(+) neural precursor cells from human embryonic stem cells promote neural tissue integrity and behavioral performance in a rat stroke model.

    Science.gov (United States)

    Kim, Han-Soo; Choi, Seong-Mi; Yang, Wonsuk; Kim, Dae-Sung; Lee, Dongjin R; Cho, Sung-Rae; Kim, Dong-Wook

    2014-12-01

    Recently, cell-based therapy has been highlighted as an alternative to treating ischemic brain damage in stroke patients. The present study addresses the therapeutic potential of polysialic acid-neural cell adhesion molecule (PSA-NCAM)-positive neural precursor cells (NPC(PSA-NCAM+)) derived from human embryonic stem cells (hESCs) in a rat stroke model with permanent middle cerebral artery occlusion. Data showed that rats transplanted with NPC(PSA-NCAM+) are superior to those treated with phosphate buffered saline (PBS) or mesenchymal stem cells (MSCs) in behavioral performance throughout time points. In order to investigate its underlying events, immunohistochemical analysis was performed on rat ischemic brains treated with PBS, MSCs, and NPC(PSA-NCAM+). Unlike MSCs, NPC(PSA-NCAM+) demonstrated a potent immunoreactivity against human specific nuclei, doublecortin, and Tuj1 at day 26 post-transplantation, implying their survival, differentiation, and integration in the host brain. Significantly, NPC(PSA-NCAM+) evidently lowered the positivity of microglial ED-1 and astrocytic GFAP, suggesting a suppression of adverse glial activation in the host brain. In addition, NPC(PSA-NCAM+) elevated α-SMA(+) immunoreactivity and the expression of angiopoietin-1 indicating angiogenic stimulation in the host brain. Taken together, the current data demonstrate that transplanted NPC(PSA-NCAM+) preserve brain tissue with reduced infarct size and improve behavioral performance through actions encompassing anti-reactive glial activation and pro-angiogenic activity in a rat stroke model. In conclusion, the present findings support the potentiality of NPC(PSA-NCAM+) as the promising source in the development of cell-based therapy for neurological diseases including ischemic stroke.

  16. Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum- and feeder-free defined culture condition

    Science.gov (United States)

    Tsuji, Yukiiko; Yoshimura, Naoko; Aoki, Hitomi; Sharov, Alexei A.; Ko, Minoru S.H.; Motohashi, Tsutomu; Kunisada, Takahiro

    2008-01-01

    The proven pluripotency of ES cells is expected to allow their therapeutic use for regenerative medicine. We present here a novel suspension culture method that facilitates the proliferation of pluripotent ES cells without feeder cells. The culture medium contains polyvinyl alcohol (PVA), free of either animal-derived or synthetic serum, and contains very low amounts of peptidic or proteinaceous materials, which are favorable for therapeutic use. ES cells showed sustained proliferation in the suspension culture, and their undifferentiated state and pluripotency were experimentally verified. DNA microarray analyses showed a close relationship between the elevated expression of genes related to cell adhesions. We suggest that this suspension culture condition provides a better alternative to the conventional attached cell culture condition, especially for possible therapeutic use, by limiting the exposure of ES cells to feeder cells and animal products. PMID:18624284

  17. Co-culture of primary rat hepatocytes with rat liver epithelial cells enhances interleukin-6-induced acute-phase protein response

    NARCIS (Netherlands)

    Peters, S.J.A.C.; Vanhaecke, T.; Papeleu, P.; Rogiers, V.; Haagsman, H.P.; Norren, van K.

    2010-01-01

    Three different primary rat hepatocyte culture methods were compared for their ability to allow the secretion of fibrinogen and albumin under basal and IL-6- stimulated conditions. These culture methods comprised the co-culture of hepatocytes with rat liver epithelial cells (CCRLEC), a collagen type

  18. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    Science.gov (United States)

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  19. Effects of drotaverine hydrochloride on viability of rat cultured cerebellar granulocytes.

    Science.gov (United States)

    Demushkin, V P; Zhavoronkova, E V; Khaspekov, L G

    2012-02-01

    The neurocytotoxic effect of drotaverine hydrochloride was studied in culture of rat cerebellar granulocytes. Incubation of cells with 100 and 250 μM drotaverine reduced neuronal survival to 60 and 4%, respectively.

  20. Glutamate enhances the expression of vascular endothelial growth factor in cultured SD rat astrocytes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To study the effect of glutamate on the expression of vascular endothelial growth factor (VEGF) mRNA and protein in cultured rat astrocytes. Methods Cultured rat astrocytes were randomly divided into 6 groups:control group (C),glutamate group (G),QA group (Q),DCG-IV group (D),L-AP4 group (L) and glutamate+MCPG group (G+M). Cells were cultured under nomoxic condition (95% air,5% CO2). RT-PCR and ELISA methods were used to detect the expression of VEGF mRNA and protein in cultured astrocytes,respect...

  1. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge; Loft, Anne; Hald, Finn

    2010-01-01

    women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In...

  2. In Vitro Study of Mutagenesis Induced by Crocidolite-Exposed Alveolar Macrophages NR8383 in Cocultured Big Blue Rat2 Embryonic Fibroblasts

    Directory of Open Access Journals (Sweden)

    Yves Guichard

    2010-01-01

    Full Text Available Asbestos-induced mutagenicity in the lung may involve reactive oxygen/nitrogen species (ROS/RNS released by alveolar macrophages. With the aim of proposing an alternative in vitro mutagenesis test, a coculture system of rat alveolar macrophages (NR8383 and transgenic Big Blue Rat2 embryonic fibroblasts was developed and tested with a crocidolite sample. Crocidolite exposure induced no detectable increase in ROS production from NR8383, contrasting with the oxidative burst that occurred following a brief exposure (1 hour to zymosan, a known macrophage activator. In separated cocultures, crocidolite and zymosan induced different changes in the gene expressions involved in cellular inflammation in NR8383 and Big Blue. In particular, both particles induced up-regulation of iNOS expression in Big Blue, suggesting the formation of potentially genotoxic nitrogen species. However, crocidolite exposure in separated or mixed cocultures induced no mutagenic effects whereas an increase in Big Blue mutants was detected after exposure to zymosan in mixed cocultures. NR8383 activation by crocidolite is probably insufficient to induce in vitro mutagenic events. The mutagenesis assay based on the coculture of NR8383 and Big Blue cannot be used as an alternative in vitro method to assess the mutagenic properties of asbestos fibres.

  3. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge; Loft, Anne; Hald, Finn;

    2010-01-01

    The effect on ploidy rate in donated human oocytes after in-vitro culture with recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF; 2 ng/ml) from fertilization until day 3 was examined in a multicentre, prospective placebo-controlled and double-blinded study including 73......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In-vitro...... women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE...

  4. Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum- and feeder-free defined culture condition

    OpenAIRE

    Tsuji, Yukiiko; Yoshimura, Naoko; Aoki, Hitomi; Sharov, Alexei A; Minoru S.H. Ko; Motohashi, Tsutomu; KUNISADA, Takahiro

    2008-01-01

    The proven pluripotency of ES cells is expected to allow their therapeutic use for regenerative medicine. We present here a novel suspension culture method that facilitates the proliferation of pluripotent ES cells without feeder cells. The culture medium contains polyvinyl alcohol (PVA), free of either animal-derived or synthetic serum, and contains very low amounts of peptidic or proteinaceous materials, which are favorable for therapeutic use. ES cells showed sustained proliferation in the...

  5. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina.

    Science.gov (United States)

    Gonzalez-Cordero, Anai; West, Emma L; Pearson, Rachael A; Duran, Yanai; Carvalho, Livia S; Chu, Colin J; Naeem, Arifa; Blackford, Samuel J I; Georgiadis, Anastasios; Lakowski, Jorn; Hubank, Mike; Smith, Alexander J; Bainbridge, James W B; Sowden, Jane C; Ali, Robin R

    2013-08-01

    Irreversible blindness caused by loss of photoreceptors may be amenable to cell therapy. We previously demonstrated retinal repair and restoration of vision through transplantation of photoreceptor precursors obtained from postnatal retinas into visually impaired adult mice. Considerable progress has been made in differentiating embryonic stem cells (ESCs) in vitro toward photoreceptor lineages. However, the capability of ESC-derived photoreceptors to integrate after transplantation has not been demonstrated unequivocally. Here, to isolate photoreceptor precursors fit for transplantation, we adapted a recently reported three-dimensional (3D) differentiation protocol that generates neuroretina from mouse ESCs. We show that rod precursors derived by this protocol and selected via a GFP reporter under the control of a Rhodopsin promoter integrate within degenerate retinas of adult mice and mature into outer segment-bearing photoreceptors. Notably, ESC-derived precursors at a developmental stage similar to postnatal days 4-8 integrate more efficiently compared with cells at other stages. This study shows conclusively that ESCs can provide a source of photoreceptors for retinal cell transplantation.

  6. Plasminogen binding to rat hepatocytes in primary culture and to thin slices of rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Gonias, S.L.; Braud, L.L.; Geary, W.A.; VandenBerg, S.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1989-08-01

    Human {sup 125}I-plasminogen bound readily to rat hepatocytes in primary culture at 4 {degree}C and at 37{degree}C. Binding was inhibited by lysine and reversed by lysine, epsilon-aminocaproic acid, or nonradiolabeled plasminogen. The Kd for binding of {sup 125}I-plasminogen to hepatocytes was 0.59 +/- 0.16 mumol/L, as determined from the saturation isotherm by nonlinear regression (r2 = 0.99) and the Scatchard transformation by linear regression (r2 = 0.93). The number of sites per cell was 14.1 +/- 1.1 x 10(6). Fibrinogen synthesis and secretion by hepatocytes was insufficient to account for the major fraction of plasminogen binding, as determined by enzyme-linked immunosorbent assay (ELISA). Polyacrylamide gel electrophoresis and trichloroacetic acid precipitation studies demonstrated that plasminogen is neither activated nor degraded when bound to hepatocytes at 37{degree}C. Thin slices of whole rat liver (500 microns), isolated and prepared totally at 4{degree}C, bound {sup 125}I-plasminogen. Binding was inhibited by lysine. {sup 125}I-albumin binding to liver slices was minimal and not inhibited by lysine. Activation of plasminogen by tissue plasminogen activator (t-PA) was enhanced by hepatocytes in primary culture. When lysine was included in the media, the enhanced rate of activation was no longer observed. After activation with t-PA, much of the plasmin remained associated with hepatocyte surfaces and was partially protected from inhibition by alpha 2-antiplasmin. These studies suggest that hepatocyte plasminogen binding sites may provide important surface anticoagulant activity.

  7. Metabolism of dehydroepiandrosterone by rat hippocampal cells in culture: possible role of aromatization and 7-hydroxylation in neuroprotection.

    Science.gov (United States)

    Jellinck, P H; Lee, S J; McEwen, B S

    2001-10-01

    The rate of metabolism of the multifunctional neurosteroid, dehydroepiandrosterone (DHEA), by embryonic rat hippocampal cells maintained in culture was compared to that of 4-androstenedione (AD), the immediate precursor of estrone (E1). The experiments were carried out to assess the relative contribution of DHEA, its 7-hydroxylated metabolites and estrogen on their reported effects on memory and neuroprotection. The 3H-labeled steroids of high specific radioactivity were incubated for 1, 8, 24 and 48 h and the putative metabolites extracted from the culture medium with acetone-ethyl acetate before separation by TLC for radioassay. [3H]DHEA (2.0 ng/5x10(5) cells) yielded primarily the 7alpha- and 7beta-hydroxylated steroids in an almost equal ratio under conditions that resembled those used by others to study the protection of neurons by hippocampal astrocytes against excitatory amino acid-induced toxicity. The rate of conversion of DHEA to AD, and particularly to E1, was much lower. With [3H]AD as substrate, significant aromatization to estrogen occurred only after 24 h when most of [3H]DHEA had already been converted to its 7-hydroxylated products and the hydroxylase and aromatase systems would no longer be competing for the same coenzyme (NADPH). The hippocampal cells were still viable after 48 h of incubation with the steroids and were able to oxidize estradiol (E2) to E1 and reduce E1 to E2 and AD to testosterone (T). It is suggested that 7alpha- and 7beta-OHDHEA, the main metabolites formed in the rat hippocampus, might be responsible for some of the functions previously ascribed to estrogens in the brain and the reasons for this proposal are discussed.

  8. Effects of trypan blue on rat and rabbit embryos cultured in vitro.

    Science.gov (United States)

    Ninomiya, H; Kishida, K; Ohno, Y; Tsurumi, K; Eto, K

    1993-11-01

    Mouse and rat whole embryo cultures are widely used in teratogenicity studies. We attempted to improve the technique of culturing rabbit embryo. Rabbit embryos of the Japanese White strain were explanted on day 9, 10 or 11 of gestation and cultured for 24 or 48 hr. Rabbit embryos on day 9 of gestation were cultured in 100% rabbit serum with a gas mixture containing 20% O(2) for the first 24 hr and 95% O(2) for the following 24 hr. Rabbit embryos on day 10 or 11 of gestation were cultured in 100, 80 or 60% rabbit serum with a gas mixture of 95% O(2) for 48 or 24 hr. The development of embryos cultured for 48 hr from day 9 or day 10 or for 24 hr from day 11 was nearly the same as that of embryos that had developed in vivo. These results indicate that rabbit embryo culture is a useful and promising technique in teratogenicity studies. We then examined the effects of trypan blue on cultured rat and rabbit embryos. Slc:SD rat embryos on day 9.5 of gestation were explanted and cultured in rat serum exposed to trypan blue (300-2700 mug/ml) for 48 hr. Rabbit embryos on day 9 or 10 of gestation were explanted and cultured in rabbit serum containing trypan blue (300-2700 mug/ml) for 48 or 24 hr. Cultured rat embryos exposed to trypan blue showed neural tube abnormalities, and all growth parameters were suppressed with increasing concentrations of trypan blue. However, trypan blue had no effect on cultured rabbit embryos. These results indicate that trypan blue has species-specific effects on embryos.

  9. Oogenesis, fertilisation and early embryonic development in rats. II: Dose-dependent effects of human chorionic gonadotrophin.

    Science.gov (United States)

    Goh, H H; Yang, X F; Tain, C F; Liew, L P; Ratnam, S S

    1992-07-01

    A total of 950 female Wistar rats in 81 groups were involved in this study. Different groups of rats were stimulated with PMSG (0, 10 & 20 IU) at diestrus followed, 48-52 hr later, by different doses of HCG (0, 10, 20, 30 & 40) for ovulation induction. The dose-dependent effects of HCG, either with or without the use of PMSG for stimulation of multiple follicular development, on the quality of oocytes and their in vitro fertilisability, quality of Day 2-embryos, viability of pregnancy and status of embryos retrieved on Day 2, 3, 4 or 5 of pregnancy in different subgroups of rats were examined. Results showed that more oocytes and embryos fertilised in vivo were retrieved from rats supraphysiologically stimulated with 20 IU of PMSG. The addition of HCG did not increase the number of ovulated oocytes or Day-2 embryos. In other words, the number of oocytes or embryos produced is dependent on the dose of PMSG administered during diestrus rather than on the dose of HCG given for ovulation induction. Hence, no increase in the amount of HCG is required to effectively ovulate bigger cohort of preovulatory follicles in supraphysiologically stimulated rats. As was shown earlier, in vitro and in vivo fertilisation rates were reduced when higher doses of PMSG were used. Similarly, these rates were reduced when increasing doses of HCG were used in rats not previously stimulated with PMSG. When higher doses of HCG were used in rats stimulated earlier with PMSG (10 and 20 IU), the in vitro but not the in vivo fertilisation rates were further reduced.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. IGF-1 mRNA expression of adult rat thyroid cell cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    HE Feng-ping(何凤屏); YIN Rui-xing(尹瑞兴); XUAN Su(冼苏); JEAN Joss

    2003-01-01

    Objective:To investigate the law of age-related changes of insulin-like growth factor-1(IGF-1)expression of rat thyroid cells cultured in vitro.Methods:Rat thyroid of different age(10,45,65,100,150 weeks)was isolated and thyrocytes cultured.Total RNA was extracted in different rat age group when thyroid cells had been cultured for two weeks,mRNA IGF-1 expression was measured with reverse-transcription polymerase chain reaction(RT-PCR)in each group and compared.Results:Quantity of total RNA in thyroid cells decreased with ageing when the rat thyroid cells had been cultured for 2 weeks.There is significant difference among groups(P < 0.05).Expression of IGF-1 mRNA could be detected in thyroid cells of different age cultured in vitro.Quantity of IGF-1 mRNA expression by RTPCR analysis increased from 10 to 45 weeks old,and then decreased with ageing.Conclusion:Rat thyroid cells from different age cultured in vitro can express IGF-1 mRNA.Quantity of total RNA in thyroid cells cultured in vitro decreased with aging.IGF-1 mRNA expression was correlated to age(r =0.401,P <0.05).

  11. A novel method for toxicology: in vitro culture system of a rat preantral follicle.

    Science.gov (United States)

    Wan Xuying; Zhu Jiangbo; Zhu Yuping; Xili, Ma; Liu Zhen; Wang Fei; Xu Guifeng; Zhang Tianbao

    2011-08-01

    Preantral follicle in vitro culture systems have been successfully or nearly successfully established for sheep, pig and mouse, and applied on follicle development and regulation research on reproductive biology and physiology. However, there have been few studies concerning rat preantral follicle in vitro development. The objective is to establish an in vitro culture system for rat preantral follicles which can be used for reproductive biology and toxicology research. Rat preantral follicles are mechanically separated, cultured in vitro in single follicle mode for continuous 12 days using 96-well plates, and then administrated ovulation induction. The observation on follicle development, hormone level, and ovum formation are recorded and assessed. Taking in vivo growth and in vitro maturation of oocytes group as control group, in vitro growth and maturation of oocytes group is assessed to see whether this in vitro culture method is successful. The conditions for rat follicle culture are determined based on the mouse pre-antral follicle culture. The in vitro culture system for rat preantral follicles established in this study is feasible and successful, and can serve as model for reproductive biology and toxicology research.

  12. Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture.

    Science.gov (United States)

    Sakakura, Eriko; Eiraku, Mototsugu; Takata, Nozomu

    2016-08-01

    The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM). Surprisingly, Wnt agonist facilitated eye field-like tissue specification in CDM. In contrast, the addition of Wnt antagonist diminished eye field tissue formation in GMEM+KSR. Furthermore, the morphological formation of the eye tissue anlage, including the optic vesicle, was accompanied by Wnt signaling activation. Additionally, using CDM culture, we developed an efficient method for generating Rax+/Chx10+ retinal progenitors, which could become fully stratified retina. Here we provide a new avenue for exploring the mechanisms of eye field specification in vitro.

  13. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells.

    Directory of Open Access Journals (Sweden)

    Kristiina Rajala

    Full Text Available BACKGROUND: The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the development of a fully defined xeno-free medium (RegES, capable of supporting the expansion of human embryonic stem cells (hESC, induced pluripotent stem cells (iPSC and adipose stem cells (ASC. We describe the use of the xeno-free medium in the derivation and long-term (>80 passages culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS, while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed. CONCLUSION/SIGNIFICANCE: Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation

  14. Comparing three methods of co-culture of retinal pigment epithelium with progenitor cells derived human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noushin Amirpour

    2013-01-01

    The adherent cells were morphologically examined using phase contrast microscopy and characterized by immunofluorescent staining and reverse transcription-polymerase chain reaction (RT-PCR Results: Evaluation of immunostaining showed that hESC, highly (>80% can be directed to the RPs fate. Upon co-culture of RPCs with RPE sheet using insert for 2 weeks or by the cell-to-cell contact, these cells differentiated to neural retina and expressed photoreceptor-specific markers. However, in direct co-culture, some mature photoreceptor markers like arrestin expressed in compare with indirect co-culture. Conclusions: The expression of late photoreceptor marker could be improved when RPE cells seeded on RPCs in compare with the use of insert.

  15. Embryonic skeleton development and neonatal learning and memory ability of rats anesthetized with pentobarbital sodium: Differences of administration occasion and time

    Institute of Scientific and Technical Information of China (English)

    Changling Peng; Yuhua Zhu; Ankang Hu; Xiaorong Zhu

    2006-01-01

    BACKGROUND : Generally speaking, anesthesia is often used in gravid body and it has been already proved that many kind of medicine can result in malformation.OBJECTIVE: To explore embryonic skeleton development and neonatal learning and memory of rats anesthetized with pentobarbital sodium in gravid rats.DESIGN: A randomized control trial.SETTING: Laboratory Animal Center of Xuzhou Medical College.MATERIALS: A total of 80 adult female SD rats, of clean grade and weighing 220-240 g, were selected in this study. The main reagents were detailed as follows: pentobarbital sodium (Shanghai Xingzhi Chemical Plant,batch number: 921019); MG-2 maze test apparatus (Zhangjiagang Biomedical Instrument Factory);somatotype microscope (Beijing Taike Instrument Co., Ltd.).METHODS: ① A total of 160 SD rats of half males and females were selected in this study. All rats were copulated. The day that the plug was checked out in the vagina next day was looked as the first day of pregnancy. Gravid rats were divided randomly into four groups, including early anesthesia group, second anesthesia group, late anesthesia group and control group with 20 in each group. Rats in the early anesthesia group were injected with 25 mg/kg soluble pentobarbitone on the 7th day of pregnancy for once; rats in the second anesthesia group were anesthetized with 25 mg/kg soluble pentobarbitone on the 7th and the 14th days of pregnancy for once; rats in the late anesthesia group were anesthetized with 25 mg/kg soluble pentobarbitone on the 14th day of pregnancy for once; rats in the control group did not treat with anything. The time of anesthetizing was controlled in 3 to 4 hours and ether was absorbed while the time was not enough. ②Half of each group was sacrificed on day 20th of pregnancy and the fetus was taken out to be stained with alizarin red S. After stained, the fetal skeleton was examined. The learning and memorizing of one-month rats that were given birth by the rest gravid rats were tested

  16. Ototoxicity of paclitaxel in rat cochlear organotypic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yang [Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Center for Hearing and Deafness, University at Buffalo, NY 14214 (United States); Ding, Dalian; Jiang, Haiyan [Center for Hearing and Deafness, University at Buffalo, NY 14214 (United States); Shi, Jian-rong [Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, NY 14214 (United States); Roth, Jerome A., E-mail: jaroth@buffalo.edu [Department of Pharmacology and Toxicology, University at Buffalo, NY 14214 (United States)

    2014-11-01

    Paclitaxel (taxol) is a widely used antineoplastic drug employed alone or in combination to treat many forms of cancer. Paclitaxel blocks microtubule depolymerization thereby stabilizing microtubules and suppressing cell proliferation and other cellular processes. Previous reports indicate that paclitaxel can cause mild to moderate sensorineural hearing loss and some histopathologic changes in the mouse cochlea; however, damage to the neurons and the underlying cell death mechanisms are poorly understood. To evaluate the ototoxicity of paclitaxel in more detail, cochlear organotypic cultures from postnatal day 3 rats were treated with paclitaxel for 24 or 48 h with doses ranging from 1 to 30 μM. No obvious histopathologies were observed after 24 h treatment with any of the paclitaxel doses employed, but with 48 h treatment, paclitaxel damaged cochlear hair cells in a dose-dependent manner and also damaged auditory nerve fibers and spiral ganglion neurons (SGN) near the base of the cochlea. TUNEL labeling was negative in the organ of Corti, but positive in SGN with karyorrhexis 48 h after 30 μM paclitaxel treatment. In addition, caspase-6, caspase-8 and caspase-9 labeling was present in SGN treated with 30 μM paclitaxel for 48 h. These results suggest that caspase-dependent apoptotic pathways are involved in paclitaxel-induced damage of SGN, but not hair cells in cochlea. - Highlights: • Paclitaxel was toxic to cochlear hair cells and spiral ganglion neurons. • Paclitaxel-induced spiral ganglion degeneration was apoptotic. • Paclitaxel activated caspase-6, -8 and -8 in spiral ganglion neurons.

  17. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated /sup 3/H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of /sup 3/H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture.

  18. Explant culture of rat colon: A model system for studying metabolism of chemical carcinogens

    DEFF Research Database (Denmark)

    Autrup, Herman; Stoner, G.D.; Jackson, F.

    1978-01-01

    An explant culture system has been developed for the long-term maintenance of colonic tissue from the rat. Explants of 1 cm2 in size were placed in tissue-culture dishes to which was added 2 ml of CMRL-1066 medium supplemented with glucose, hydrocortisone, beta-retinyl acetate, and either 2.5% bo...

  19. Embryonic stem cells: testing the germ-cell theory.

    Science.gov (United States)

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state.

  20. Explant culture of rat colon: A model system for studying metabolism of chemical carcinogens

    DEFF Research Database (Denmark)

    Autrup, Herman; Stoner, G.D.; Jackson, F.

    1978-01-01

    An explant culture system has been developed for the long-term maintenance of colonic tissue from the rat. Explants of 1 cm2 in size were placed in tissue-culture dishes to which was added 2 ml of CMRL-1066 medium supplemented with glucose, hydrocortisone, beta-retinyl acetate, and either 2....... The explants were incubated at 30 degrees C. The viability of the tissue was measured both by incorporation of specific precursors into cellular macromolecules and by monitoring of tissue morphology with light and electron microscopy. Cultured rat colon was able to metabolize benzo[alpha]pyrene, 7...

  1. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Arianne van Koppen

    Full Text Available Chronic kidney disease (CKD is a major health care problem, affecting more than 35% of the elderly population worldwide. New interventions to slow or prevent disease progression are urgently needed. Beneficial effects of mesenchymal stem cells (MSC have been described, however it is unclear whether the MSCs themselves or their secretome is required. We hypothesized that MSC-derived conditioned medium (CM reduces progression of CKD and studied functional and structural effects in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX combined with L-NNA and 6% NaCl diet in Lewis rats. Six weeks after SNX, CKD rats received either 50 µg CM or 50 µg non-CM (NCM twice daily intravenously for four consecutive days. Six weeks after treatment CM administration was functionally effective: glomerular filtration rate (inulin clearance and effective renal plasma flow (PAH clearance were significantly higher in CM vs. NCM-treatment. Systolic blood pressure was lower in CM compared to NCM. Proteinuria tended to be lower after CM. Tubular and glomerular damage were reduced and more glomerular endothelial cells were found after CM. DNA damage repair was increased after CM. MSC-CM derived exosomes, tested in the same experimental setting, showed no protective effect on the kidney. In a rat model of established CKD, we demonstrated that administration of MSC-CM has a long-lasting therapeutic rescue function shown by decreased progression of CKD and reduced hypertension and glomerular injury.

  2. Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition.

    Science.gov (United States)

    Ho, Sing Yee; Goh, Crystal Wei Pin; Gan, Jen Yang; Lee, Youn Sing; Lam, Millie Kuen Kuen; Hong, Ni; Hong, Yunhan; Chan, Woon Khiong; Shu-Chien, Alexander Chong

    2014-10-01

    Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.

  3. Three-dimensional culture of single embryonic stem-derived neural/stem progenitor cells in fibrin hydrogels: neuronal network formation and matrix remodelling.

    Science.gov (United States)

    Bento, Ana R; Quelhas, Pedro; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2016-12-29

    In an attempt to improve the efficacy of neural stem/progenitor cell (NSPC) based therapies, fibrin hydrogels are being explored to provide a favourable microenvironment for cell survival and differentiation following transplantation. In the present work, the ability of fibrin to support the survival, proliferation, and neuronal differentiation of NSPCs derived from embryonic stem (ES) cells under monolayer culture was explored. Single mouse ES-NSPCs were cultured within fibrin (fibrinogen concentration: 6 mg/ml) under neuronal differentiation conditions up to 14 days. The ES-NSPCs retained high cell viability and proliferated within small-sized spheroids. Neuronal differentiation was confirmed by an increase in the levels of βIII-tubulin and NF200 over time. At day 14, cell-matrix constructs mainly comprised NSPCs and neurons (46.5% βIII-tubulin(+) cells). Gamma-aminobutyric acid (GABA)ergic and dopaminergic/noradrenergic neurons were also observed, along with a network of synaptic proteins. The ES-NSPCs expressed matriptase and secreted MMP-2/9, with MMP-2 activity increasing along time. Fibronectin, laminin and collagen type IV deposition was also detected. Fibrin gels prepared with higher fibrinogen concentrations (8/10 mg/ml) were less permissive to neurite extension and neuronal differentiation, possibly owing to their smaller pore area and higher rigidity. Overall, it is shown that ES-NSPCs within fibrin are able to establish neuronal networks and to remodel fibrin through MMP secretion and extracellular matrix (ECM) deposition. This three-dimensional (3D) culture system was also shown to support cell viability, neuronal differentiation and ECM deposition of human ES-NSPCs. The settled 3D platform is expected to constitute a valuable tool to develop fibrin-based hydrogels for ES-NSPC delivery into the injured central nervous system. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Upregulation of endothelin ETB receptor-mediated vasoconstriction in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Eskesen, Karen; Edvinsson, Lars

    2006-01-01

    The aim of this study was to examine if endothelin ET(B) receptor-mediated contraction occurred in isolated segments of rat coronary arteries during organ culture. Presence of contractile endothelin ET(B) receptors was studied by measuring the change in isometric tension in rings of left anterior...... descending coronary arteries isolated from hearts of rats as response to application of the selective endothelin ET(B) receptor agonist, Sarafotoxin 6c and endothelin-1. In segments cultured 1 day in serum free Dulbecco's Modified Eagle's Medium, Sarafotoxin 6c induced a concentration dependent contraction......(+)-solution was not modified after 1 day in culture medium. The experiments indicate that organ culture of rat coronary arteries upregulate endothelin ET(B) receptor-mediated contraction by inducing synthesis of new protein....

  5. 刚地弓形虫感染对鼠胚胎神经干细胞的影响%Effect of Toxoplasma gondii Infection on the Embryonic Neural Stem Cells in Rats

    Institute of Scientific and Technical Information of China (English)

    孙秀宁; 刘志军; 管志玉; 梁瑞文; 张皓云; 吴晓燕; 于丽; 管英俊

    2012-01-01

    Objective To investigate the effect of Toxoplasma gondii infection on the proliferation, differentiation and migration of the embryonic neural stem cells (NSCs) in early pregnancy of rat. Methods Twelve pregnant Sprague-Dawley rats were randomly divided into control and infection groups. Rats in the infection group were each inoculated intraperitioneally with l×l05 T. gondii RH strain tachyzoites at day 1 (El day). Same amount of physiological saline was intraperitioneally injected for rats in control group. At E5 day, blood samples were taken from caudal vein and Giemsa staining of blood cells was performed to find T. gondii. At E9, E10 and Ell day, two rats in each group per time point were sacrificed and reverse transcription PCR (RT-PCR) was performed to detect Bl gene expression of T. gondii in amniotic fluid to confirm T. gondii infection. NSCs were cultured in vitro. The proliferation level was detected by methyl thiazolyl tetrazolium (MTT) assay. After differentiation culture of NSCs, the immunofluorescence assay was conducted to detect the expression of nestin, microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP) to calculate the ratio of NSCs which differentiated to neurons and astrocytes. The embryonic nerve tissues at E9, E10 and E11 day in each group were taken to make frozen sections. The immunofluorescence assay was carried out to detect the expression of neuronal cell adhesion molecule (NCAM) in the nerve tissues at different developmental stages. Results Both the results of blood smears and RT-PCR confirmed that the pregnant rats and embryos were all infected by T. gondii in infection group. The morphology of the cultured NSCs under microscope was consistent with the characteristics of the normal NSCs. In addition, the NSC biomarker nestin protein was stained positive. The MTT assay showed that the proliferation level was lower in infection group than that of the control, and statistical differences were found between

  6. Stimulation of Mucosal Mast Cell Growth in Normal and Nude Rat Bone Marrow Cultures

    Science.gov (United States)

    Haig, David M.; McMenamin, Christine; Gunneberg, Christian; Woodbury, Richard; Jarrett, Ellen E. E.

    1983-07-01

    Mast cells with the morphological and biochemical properties of mucosal mast cells (MMC) appear and proliferate to form the predominant cell type in rat bone marrow cultures stimulated with factors from antigen- or mitogen-activated lymphocytes. Conditioned media causing a selective proliferation of MMC were derived from mesenteric lymph node cells of Nippostrongylus brasiliensis-infected rats restimulated in vitro with specific antigen or from normal or infected rat mesenteric lymph node cells stimulated with concanavalin A. MMC growth factor is not produced by T-cell-depleted mesenteric lymph node cells or by the mesenteric lymph node cells of athymic rats. By contrast, MMC precursors are present in the bone marrow of athymic rats and are normally receptive to the growth factor produced by the lymphocytes of thymus-intact rats. The thymus dependence of MMC hyperplasia is thus based on the requirement of a thymus-independent precursor for a T-cell-derived growth promoter.

  7. Comparison of coumarin-induced toxicity between sandwich-cultured primary rat hepatocytes and rats in vivo: A toxicogenomics approach

    NARCIS (Netherlands)

    Kienhuis, A.S.; Wortelboer, H.M.; Hoflack, J.C.; Moonen, E.J.; Kleinjans, J.C.S.; Ommen, B. van; Delft, J.H.M. van; Stierum, R.H.

    2006-01-01

    Sandwich-cultured primary rat hepatocytes are often used as an in vitro model in toxicology and pharmacology. However, loss of liver-specific functions, in particular, the decline of cytochrome P450 (P450) enzyme activity, limits the value of this model for prediction of in vivo toxicity. In this st

  8. Comparison of coumarin-induced toxicity between sandwich-cultured primary rat hepatocytes and rats in vivo: a toxicogenomics approach.

    Science.gov (United States)

    Kienhuis, Anne S; Wortelboer, Heleen M; Hoflack, Jean-Christophe; Moonen, Edwin J; Kleinjans, Jos C S; van Ommen, Ben; van Delft, Joost H M; Stierum, Rob H

    2006-12-01

    Sandwich-cultured primary rat hepatocytes are often used as an in vitro model in toxicology and pharmacology. However, loss of liver-specific functions, in particular, the decline of cytochrome P450 (P450) enzyme activity, limits the value of this model for prediction of in vivo toxicity. In this study, we investigated whether a hepatic in vitro system with improved metabolic competence enhances the predictability for coumarin-induced in vivo toxicity by using a toxicogenomics approach. Therefore, primary rat hepatocytes were cultured in sandwich configuration in medium containing a mixture of low concentrations of P450 inducers, phenobarbital, dexamethasone, and beta-naphthoflavone. The toxicogenomics approach used enabled comparison of similar mechanistic end-points at the molecular level between in vitro and in vivo conditions, namely, compound-induced changes in multiple genes and signaling pathways. Toxicant-induced cytotoxic effects and gene expression profiles observed in hepatocytes cultured in modified medium and hepatocytes cultured in standard medium (without inducers) were compared with results from a rat in vivo study. Coumarin was used as a model compound because its toxicity depends on bioactivation by P450 enzymes. Metabolism of coumarin toward active metabolites, coumarin-induced cytotoxicity, and gene expression modulation were more pronounced in hepatocytes cultured in modified medium compared with hepatocytes cultured in standard medium. In addition, more genes and biological pathways were similarly affected by coumarin in hepatocytes cultured in modified medium and in vivo. In conclusion, these experiments showed that for coumarin-induced toxicity, sandwich-cultured hepatocytes maintained in modified medium better represent the situation in vivo compared with hepatocytes cultured in standard medium.

  9. Taenia taeniaeformis: inhibition of rat testosterone production by excretory-secretory product of the cultured metacestode.

    Science.gov (United States)

    Rikihisa, Y; Lin, Y C; Fukaya, T

    1985-06-01

    In 3- to 5-month-old male Sprague-Dawley rats infected with the hepatic metacestode, Taenia taeniaeformis, the serum testosterone level was significantly lower than in comparable uninfected controls. By transmission electron microscopy, testicular Leydig cells of infected rats had less smooth endoplasmic reticulum than control Leydig cells. Cultured metacestodes isolated from the hepatic cysts secreted or excreted substances into the incubation medium. The effect of the excretory-secretory product on testosterone concentration in the sera and testes of 15-day-old rats was examined. Subcutaneous injection of 50-200 micrograms of excretory-secretory product/0.1 ml saline/rat for 2 days significantly reduced human chorionic gonadotropin-stimulated serum and testicular testosterone concentrations. Furthermore, the effect of the excretory-secretory product on isolated rat Leydig cell testosterone production was examined. Rat Leydig cells produced testosterone in vitro and, in the presence of 50 IU human chorionic gonadotropin/ml incubation medium, they responded with approximately 100% increase in testosterone production. Addition of 2-10 micrograms excretory-secretory product protein/ml of culture medium significantly reduced the testosterone production by rat Leydig cells in vitro. These results indicate that excretory-secretory product of cultured T. taeniaeformis metacestodes has a direct inhibitory effect on Leydig cell testosterone production under stimulation with human chorionic gonadotropin.

  10. A Comparison between the Colony Formation of Adult Mouse Spermatogonial Stem Cells in Co cultures with Sertoli and STO (Mouse Embryonic Fibroblast Cell Line

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Koruji

    2010-01-01

    Full Text Available Objective: The aim of this study was to compare the colony formation of spermatogonialstem cells (SSCs on sertoli and STO (Mouse embryonic fibroblast cell line feeder celllayers during a two-week period.Materials and Methods: Initially, sertoli cells and SSCs were isolated from adultmouse testes using a two-step enzymatic digestion and lectin immobilization. Characteristicsof the isolated cells were immunocytochemically confirmed by examiningfor the presence of Oct-4, CDH1, promyelocytic leukaemia zinc finger factor (PLZF,SSC C-kit, and the distribution of Sertoli cell vimentin. SSCs were then cultured abovethe Sertoli, STO and the control (without co-culture separately for two weeks. In allthree groups, the number and diameter of colonies were evaluated using an invert microscopeon the 3rd, 7th, 10th and 14th day. β1 and α6-integrin m-RNA expressions wereassessed using a reverse transcription polymerase chain reaction (RT-PCR and realtimePCR. Furthermore, Oct-4 m RNA expression was assessed using real time PCR.Statistical analysis was performed using ANOVA; and the paired two-sample t test andTukey’s test were used as post-hoc tests for the data analysis of the three sertoli, STOand control cocultures.Results: At the four specified time points, our results showed significant differences (p<0.05in colony numbers and diameters among the sertoli, STO and control groups. The numberand diameter of colonies increased more rapidly in the sertoli coculture than in the othertwo Our results at all four time points also showed significant differences (p<0.05 in themean colony numbers and diameters between the three groups, with the Sertoli coculturehaving the highest mean values for colony numbers and diameters. The RT-PCR results,after two-weeks of culturing, showed that β1-integrin was expressed in all three groups cocultures,but α6-integrin was not expressed. Additionally, based on real time PCR results,the three genes (β1-integrin, α6-integrin

  11. ICR胎鼠成纤维细胞培养方法的优化%Optimization of the Culture Method of ICR Mouse Embryonic Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    王英; 刘石磊; 刘振伟; 刘云海; 倪和民; 邓桂馨; 郭勇

    2012-01-01

    Objective To investigate a most suitable method for harvesting mouse embryonic fibroblasts ( MEF) ). Methods Three different protocols including tissue only, cell-trypsin digestion, and tissue-trypsin digestion were applied for harvesting and culturing MEF. The MEF growth speed and cell morphology were also compared and analyzed respectively among the 3 methods. Results The cell proliferation was slow, cell size was small, but cells of other types were very few in the tissue only method, but the duration of purification was short. In the cell-trypsin digestion method, the cell proliferation was fast, cell size was somewhat large, but there were a little bit more cells of other types and the duration of purification was somehow longer. Finally, in the tissue-trypsin digestion method, the cell proliferation was very slow, cell size was very small, but there were also very few cells of other types. The duration of purification was very short. Conclusions Our findings indicate that the most efficient method for collecting and culturing mouse embryonic fibroblasts is the protocol of tissue-trypsin digestion.%目的 确定胎鼠成纤维细胞(mouse embryonic fibroblasts,MEF)最优制备方法,为MEF的制备节省时间与原材料.方法 取胎鼠组织,采用组织块培养法、胰酶消化培养法、胰酶消后组织块培养法进行分离培养MEF,比较观察MEF纯度、生长速度、细胞形态等指标,筛选最节省时间与原料的一种培养方法.结果 组织块培养法所得MEF生长速度慢,细胞体积小,杂细胞少,纯化所需传代次数少.胰酶消化培养法的MEF生长速度快,体积较大,杂细胞数量多,纯化所需传代次数较多.胰酶消化后组织块培养法的消化后组织块的成纤维细胞生长速度介于前两种方法之间,细胞体积和形态与组织块法培养结果相似,杂细胞数量较少,纯化所需传代次数少.结论 胰酶消化结合组织块培养法能最大限度的利用材料,在短

  12. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells.

    Science.gov (United States)

    Tyson, Jennifer A; Goldberg, Ethan M; Maroof, Asif M; Xu, Qing; Petros, Timothy J; Anderson, Stewart A

    2015-04-01

    Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups--those expressing somatostatin (SST) and those expressing parvalbumin (PV)--are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function.

  13. Mise au point d'une technique de culture in vitro d'embryons immatures de Phaseolus

    Directory of Open Access Journals (Sweden)

    Véronique Schmit

    1997-01-01

    Full Text Available Development of an in vitro culture technique for immature Phaseolus embryos. In the interspecific crosses Phaseolus polyanthus (or P. coccineus (i? x P. vulgaris, the hybrid embryos abort very early. Therefore, it is essentiel to develop an in vitro culture technique that allows the rescue of beau embryos at globular or early heart-shaped stages. After several trials conceming the salts composition, the sugar rate and the amino acid concentration of différent in vitro culture media, a technique has been developed for heart-shaped Phaseolus embryos. This technique consists of two stages. In a first step, embryos are cultivated under darkness until their germination on a medium containing the salts of Gamborg et al. (1968, 400 mg . 1` (5mM - 1 -' NHNO,, 1 mg . 1-' thiamine HCI, 5 mg . l` nicotinic acid, 0.5 mg - l` pyridoxine, 1,000 mg . l` -glutamine, 1,000 mg . l` casein hydrolysate, 100 mg . l` myo-inositol, 0.028 mg . P N6-benzyladenine, 30 g . l` sucrase, and 8 g -1-' DIFCO agar. After germination, the embryos are cultivated under light on a second medium that does not contain any NHNO, complément and is poorer in amino acids (100 mg • 1-' L-glutamine. Developed with six deys old heart-shaped embryos of the P. vulgaris Bico de Ouro (NI 637 variety, this technique has proved its efficiency with other P. vulgaris and P. polyanthus génotypes. It allows an average régénération rate of 30% from the total number of cultivated embryos.

  14. Adverse effects of advanced glycation end products on embryonal development

    Directory of Open Access Journals (Sweden)

    Hiramatsu,Yuji

    2008-04-01

    Full Text Available We studied the effects of advanced glycation end products (AGEs, which are known to accumulate in patients with diabetes, autoimmune diseases, or those who smoke, on embryonal development. Pronuclear (PN embryos were obtained by flushing the fallopian tubes of rats after superovulation and mating. The cleavage rate and blastocyst yield were evaluated at 24, 72, 96, and 120 h of culture. Glyoxal, an AGE-forming aldehyde, suppressed embryonal development at every stage from PN to blastocyst in a concentration-dependent manner. The cleavage rate of the embryo was also signifi cantly decreased by treatment with glyoxal at concentrations of 1 mM or higher. The blastocyst yield was significantly decreased by treatment with glyoxal at concentrations of 0.5 mM or higher. N-acetyl-L-cysteine (L-NAC at 1 mM significantly suppressed the glyoxal-induced embryonal toxicity. BSA-AGEs at 5 microg/ml or higher concentration signifi cantly reduced the cleavage rate and blastocyst yield compared to those for BSA-treated embryos. L-NAC at 1 mM significantly suppressed BSAAGE-induced embryonal toxicity. Because AGEs are embryo-toxic, AGE contamination may influence the pregnancy rate of in vitro fertilization and embryo transfer. AGEs, which are increased in women under pathological conditions, may also be involved in their infertility.

  15. Clearance and clearance inhibition of the HIV-1 protease inhibitors ritonavir and saquinavir in sandwich-cultured rat hepatocytes and rat microsomes

    NARCIS (Netherlands)

    Treijtel, N.; Eijkeren, J.C.H.v.; Nijmeijer, S.; Greef de - Sandt, I.C.J. van der; Freidig, A.P.

    2009-01-01

    The metabolism and active transport of ritonavir and saquinavir were studied using sandwich-cultured rat hepatoyctes and rat liver microsomes. For ritonavir four comparable metabolites were observed in the sandwich-culture and in microsomes. For saquinavir eight metabolites were observed in sandwich

  16. Clearance and clearance inhibition of the HIV-1 protease inhibitors ritonavir and saquinavir in sandwich-cultured rat hepatocytes and rat microsomes.

    NARCIS (Netherlands)

    Treijtel, N.; van Eijkeren, J.C.; Nijmeijer, S.; de Greef-van der Sandt, I.C.; Freidig, A.

    2009-01-01

    The metabolism and active transport of ritonavir and saquinavir were studied using sandwich-cultured rat hepatoyctes and rat liver microsomes. For ritonavir four comparable metabolites were observed in the sandwich-culture and in microsomes. For saquinavir eight metabolites were observed in sandwich

  17. Preliminary Study on Culture Condition in vitro of Kunming Mouse Embryonic Fibroblasts%昆明小鼠胚胎成纤维细胞体外培养条件初步研究

    Institute of Scientific and Technical Information of China (English)

    曹俊新; 宋学雄; 孙旺吾; 唐元凤

    2011-01-01

    To establish a stable culture system of mouse embryonic fibroblast(MEF), in order to construct of MEF feeder layers in vitro and somatic cell nuclear transfer technique nuclei donor build platform. The mouse primary embryonic fibroblasts were isolated from mouse fetus of Kunming white at different gestational ages. According to the influence of different serum and trypsin digestion time on MEF, the growth behavior and the characteristics of MEF were studied. Results showed that, in the form of four gestational ages 8. 5 d, 10. 5 d, 12. 5 d, 14. 5 d trials, the optimal gestational age for isolation of MEF was 12. 5 d;in the form of five serum concentrations 7%, 9%, 10%, 11%, 13% trials, add 11% tire bovine serum concentration was the best, multiplication factor from 3 to 5 stable at around 1. 35. These results indicated that the use of 12. 5 d fetal rats, trypsin digestion 5 to 10 min and in serum containing 11% DMEM medium MEF cells in training. The original generation and nestin was better. MEF (3 to 5 generations) were quite suited to be a feeder layer and somatic cell nuclear transfer technique nucleic donor.%本研究旨在探索影响小鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEF)分离培养的因素,建立有效的胚胎成纤维细胞培养体系,为构建饲养层细胞与体细胞核移植技术的细胞核供体建立平台.本研究用组织细胞培养液DMEM作为基础培养液,观察了不同胎龄、不同血清浓度及不同胰蛋白酶作用时间等因素对MEF分离培养的影响.结果显示,在所进行的4个胎龄8.5、10.5、12.5、14.5d的比较试验中,原代成纤维细胞分离培养的最适胎龄为12.5d,细胞贴壁迅速,12h已完全贴壁,增殖速度快;在所进行的不同时间5、10、15、30 min的胰蛋白酶消化中,最佳时间为5~10 min;在所进行的5个血清浓度7%、9%、10%、11%、13%的比较试验中,添加11%胎牛血清浓度培养效果最佳,从3~5代增殖倍数稳定在1

  18. Neonatal Desensitization Supports Long-Term Survival and Functional Integration of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Rat Joint Cartilage Without Immunosuppression

    Science.gov (United States)

    Zhang, Shufang; Jiang, Yang Zi; Zhang, Wei; Chen, Longkun; Tong, Tong; Liu, Wanlu; Mu, Qin; Liu, Hua; Ji, Junfeng; Ouyang, Hong Wei

    2013-01-01

    Immunological response hampers the investigation of human embryonic stem cells (hESCs) or their derivates for tissue regeneration in vivo. Immunosuppression is often used after surgery, but exhibits side effects of significant weight loss and allows only short-term observation. The purpose of this study was to investigate whether neonatal desensitization supports relative long-term survival of hESC-derived mesenchymal stem cells (hESC-MSCs) and promotes cartilage regeneration. hESC-MSCs were injected on the day of birth in rats. Six weeks after neonatal injection, a full-thickness cylindrical cartilage defect was created and transplanted with a hESC-MSC-seeded collagen bilayer scaffold (group d+s+c) or a collagen bilayer scaffold (group d+s). Rats without neonatal injection were transplanted with the hESC-MSC-seeded collagen bilayer scaffold to serve as controls (group s+c). Cartilage regeneration was evaluated by histological analysis, immunohistochemical staining, and biomechanical test. The role of hESC-MSCs in cartilage regeneration was analyzed by CD4 immunostaining, cell death detection, and visualization of human cells in regenerated tissues. hESC-MSCs expressed CD105, CD73, CD90, CD29, and CD44, but not CD45 and CD34, and possessed trilineage differentiation potential. Group d+s+c exhibited greater International Cartilage Repair Society (ICRS) scores than group d+s or group s+c. Abundant collagen type II and improved mechanical properties were detected in group d+s+c. There were less CD4+ inflammatory cell infiltration and cell death at week 1, and hESC-MSCs were found to survive as long as 8 weeks after transplantation in group d+s+c. Our study suggests that neonatal desensitization before transplantation may be an efficient way to develop a powerful tool for preclinical study of human cell-based therapies in animal models. PMID:22788986

  19. Hydrocortisone regulates arylsulfatase A (cerebroside-3-sulfate-3-sulfohydrolase) by decreasing the quantity of the enzyme in cultures of cells dissociated from embryonic mouse cerebra.

    Science.gov (United States)

    Marcelo, A J; Pieringer, R A

    1990-09-01

    Previous work from our laboratory (Biochem. J. 219:689-697 (1984] had shown that hydrocortisone stimulated the net accumulation of the myelin-specific sulfolipid in cultures of cells dissociated from embryonic mouse cerebra. This accumulation caused by hydrocortisone was shown to be due to a decrease of sulfolipid degradation by arylsulfatase A (ASA) and not due to a stimulation of its synthesis by a sulfotransferase. Both ASA activity and the turnover of sulfolipid were decreased by hydrocortisone to 60-62% of untreated cells. In current work the same decrease in enzyme activity was obtained and enzyme linked immunosorbent assays demonstrate that hydrocortisone decreased the number of ASA protein molecules to 61% of untreated cells [(-)hydrocortisone: 0.31 +/- 0.06 ng ASA/microgram protein; (+)hydrocortisone: 0.18 +/- 0.04 ng ASA/microgram protein]. This decrease in the number of ASA molecules correlates well with the decrease in both the enzyme activity and the sulfolipid turnover, which suggests that the major mode of inhibition of ASA activity by hydrocortisone involves a decrease in the concentration of ASA in the cells rather than some other mechanism of inhibition.

  20. CD133-enriched Xeno-Free human embryonic-derived neural stem cells expand rapidly in culture and do not form teratomas in immunodeficient mice

    Directory of Open Access Journals (Sweden)

    Daniel L. Haus

    2014-09-01

    Full Text Available Common methods for the generation of human embryonic-derived neural stem cells (hNSCs result in cells with potentially compromised safety profiles due to maintenance of cells in conditions containing non-human proteins (e.g. in bovine serum or on mouse fibroblast feeders. Additionally, sufficient expansion of resulting hNSCs for scaling out or up in a clinically relevant time frame has proven to be difficult. Here, we report a strategy that produces hNSCs in completely “Xeno-Free” culture conditions. Furthermore, we have enriched the hNSCs for the cell surface marker CD133 via magnetic sorting, which has led to an increase in the expansion rate and neuronal fate specification of the hNSCs in vitro. Critically, we have also confirmed neural lineage specificity upon sorted hNSC transplantation into the immunodeficient NOD-scid mouse brain. The future use or adaptation of these protocols has the potential to better facilitate the advancement of pre-clinical strategies from the bench to the bedside.

  1. Isolated Culture of Nuclear Transplantation Embryonic Stem Cells of Goat%山羊核移植胚胎干细胞的分离培养

    Institute of Scientific and Technical Information of China (English)

    葛秀国; 李吉霞; 窦忠英

    2011-01-01

    The isolated cultures of nuclear transplantation embryonic stem cells (NT-ESCs) from nuclear transplantation embryos of goats in different developmental stages were compared. The results showed that NT-ESCs could be isolated from nuclear transplantation embryos of goats in all developmental stages, among which the cloning efficiency of NT-ESCs from hatching embryos was highest, being 38%; it had significant difference from that of blastula, which was 26% and it had extremely significant difference from that of embryotic sphere, which was 18%. The shape of isolated NT-ESCs was similar to that of normal ESCs, both of them had alkaline phosphatase activities and could express pluripotency gene Oct-4 and surface marker antigen SSEA-1.%比较了不同发育阶段山羊核移植胚胎分离培养胚胎干细胞(NT-ESCs)的情况.结果表明,各阶段山羊核移植胚胎均可分离出NT-ESCs,其中孵化胚的NT-ESCs克隆形成率最高(38%),与囊胚(26%)差异显著,与桑葚胚(18%)差异极显著.所分离的NT-ESCs细胞形态与正常ESCs相似,均具有碱性磷酸酶活性,可表达多能性基因Oct-4和表面标志抗原SSEA-1.

  2. Characterization and culture of human embryonic stem cells%人胚胎干细胞体外培养及特性分析

    Institute of Scientific and Technical Information of China (English)

    孟瑛; 尹辉; 潘恒; 周玉珍

    2012-01-01

    Objective To explore the in vitro maintenance and characterization of human embryonic stem cells (hESCs). Methods hESCs were cultured on feeder layer with ES culture medium, which consists of 20% Knockout Serum Replacement, Knockout DMEM and 10 ng/mL bFCF. Undifferentiated status of hESCs was identified by cell morphology, and the expressions of cell surface marker SSEA-1, SSEA-3 and TRA-1-60. G banding technique was employed for cell karyotype analysis. Pluropotency of cells were analyzed via in vitro embyoid body (EB) formation and in vivo terotoma formation. Results Most of cells showed undifferentiated properties in cell morphology and normal karyotype throughout extended culture periods. They maintained undifferentiated status with positive immunoreactivity to SSEA-3 ,SSEA-4 and TRA-1-60. in vitro EB formation and in vioo) teratoma formation demonstrated the pluripotency of human ES cells. Conclusion The fundamental requirement to hESCs for research and clinical application were their undifferentiated status and pluropotency in culture . Our result demonstrated their potential for these purposes.%目的 探讨人胚胎干细胞(human embryonic stem cells,hESCs)的体外培养及其特性.方法 hESCs接种于饲养层细胞,培养液为含20% Knockout SR的Knockout DMEM,其中添加10ng/mL碱性成纤维细胞生长因子(bFGF),通过观察细胞形态、免疫细胞化学技术分析hESCs表面标志分子SSEA-3、SSEA-4、SSEA-1和TRA-1-60的表达,鉴定hESCs的未分化状态;G显带技术分析细胞染色体核型.同时,通过分析hESCs体外形成胚胎体、体内生成畸胎瘤的情况,鉴定hESCs的分化潜能.结果 hESCs在饲养层细胞上呈克隆生长,细胞为二倍体核型.hESCs表达SSEA-3、SSEA-4、以及TRA-1-60细胞表面特征性标志.体内、外分化实验证实hESCs具备多分化潜能.结论 hESCs在体外培养条件下能够保持未分化状态和发育的全能性,为进一步探索hESCs的诱导分化,以及hESCs

  3. A chimeric vitronectin: IGF-I protein supports feeder-cell-free and serum-free culture of human embryonic stem cells.

    Science.gov (United States)

    Manton, Kerry J; Richards, Sean; Van Lonkhuyzen, Derek; Cormack, Luke; Leavesley, David; Upton, Zee

    2010-09-01

    The therapeutic use of human embryonic stem (hES) cells is severely limited by safety concerns regarding their culture in media containing animal-derived or nondefined factors and on animal-derived feeder cells. Thus, there is a pressing need to develop culture techniques that are xeno-free, fully defined, and synthetic. Our laboratory has discovered that insulin-like growth factor (IGF) and vitronectin (VN) bind to each other resulting in synergistic short-term functional effects in several cell types, including keratinocytes and breast epithelial cells. We have further refined this complex into a single chimeric VN:IGF-I protein that functionally mimics the effects obtained upon binding of IGF-I to VN. The aim of the current study was to determine whether hES cells can be serially propagated in feeder-cell-free and serum-free conditions using medium containing our novel chimeric VN:IGF-I protein. Here we demonstrate that hES cells can be serially propagated and retain their undifferentiated state in vitro for up to 35 passages in our feeder-cell-free, serum-free, chemically defined media. We have utilized real-time polymerase chain reaction (PCR), immunofluorescence, and fluorescence-activated cell sorter (FACS) analysis to show that the hES cells have maintained an undifferentiated phenotype. In vitro differentiation assays demonstrated that the hES cells retain their pluripotent potential and the karyotype of the hES cells remains unchanged. This study demonstrates that the novel, fully defined, synthetic VN:IGF-I chimera-containing medium described herein is a viable alternative to media containing serum, and that in conjunction with laminin-coated plates facilitates feeder-cell-free and serum-free growth of hES.

  4. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang

    2011-01-01

    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  5. 胚胎体外培养及胚胎干细胞系的建立%In vitro culture of embryos and establishment of embryonic stem cell lines

    Institute of Scientific and Technical Information of China (English)

    王芳; 陈绍威

    2015-01-01

    BACKGROUND:The successful establishment of human embryonic stem cel lines in vitro is of great significance to human embryonic development mechanism and developmental biology, cel and tissue transplantation in the treatment of certain diseases. OBJECTIVE:To summarize the progress of in vitro culture of embryos and establishment of embryonic stem cel lines, to explore the influential factors for in vitro culture of embryos, and the methods of culturing human discarded embryos, isolating inner cel mass and establishing embryonic stem cel lines, as wel as the establishing conditions for embryonic stem cel lines. METHODS:With the key words of“embryo, embryonic stem cel s, coculture, sequential culture”, the first author searched CNKI and SCI databases for literatures concerning in vitro culture and transplantation of embryos and establishment of embryonic stem cel lines published from 2000 to 2014. Systematic evaluation was conducted. Final y, 58 literatures were retained for result analysis. RESULTS AND CONCLUSION:The culturing condition for embryos in vitro is the key factor affecting embryo transfer outcomes, including culture medium component and culture system. In previous studies, the component and application of culture medium have changed greatly, and the culture system has altered from single culture to coculture and sequential culture. Ethical issues and embryonic origin restrictions restrict the establishment of human embryonic stem cel lines. Clinical y discarded low-quality embryos can be used as one of the material sources to establish human embryonic stem cel lines, which can effectively lessen the problem of embryo shortage during the establishment of human embryonic stem cel lines and reduce ethical disputes.%背景:人类胚胎干细胞体外建系成功,对人类胚胎发育机制和发育生物学研究、细胞和组织移植治疗某些疾病等领域都有重大意义。目的:综述近年来关于胚胎体外

  6. Time-lapse Confocal Imaging of Migrating Neurons in Organotypic Slice Culture of Embryonic Mouse Brain Using In Utero Electroporation.

    Science.gov (United States)

    Wiegreffe, Christoph; Feldmann, Svenja; Gaessler, Simeon; Britsch, Stefan

    2017-07-25

    In utero electroporation is a rapid and powerful approach to study the process of radial migration in the cerebral cortex of developing mouse embryos. It has helped to describe the different steps of radial migration and characterize the molecular mechanisms controlling this process. To directly and dynamically analyze migrating neurons they have to be traced over time. This protocol describes a workflow that combines in utero electroporation with organotypic slice culture and time-lapse confocal imaging, which allows for a direct examination and dynamic analysis of radially migrating cortical neurons. Furthermore, detailed characterization of migrating neurons, such as migration speed, speed profiles, as well as radial orientation changes, is possible. The method can easily be adapted to perform functional analyses of genes of interest in radially migrating cortical neurons by loss and gain of function as well as rescue experiments. Time-lapse imaging of migrating neurons is a state-of-the-art technique that once established is a potent tool to study the development of the cerebral cortex in mouse models of neuronal migration disorders.

  7. Expression of GPR177 (Wntless/Evi/Sprinter), a highly conserved Wnt-transport protein, in rat tissues, zebrafish embryos, and cultured human cells.

    Science.gov (United States)

    Jin, Jay; Morse, Megan; Frey, Colleen; Petko, Jessica; Levenson, Robert

    2010-09-01

    GPR177 is an evolutionarily conserved transmembrane protein necessary for Wnt protein secretion. Little is currently known, however, regarding expression of GPR177, especially in vertebrate species. We have developed an antiserum against GPR177, and used it to examine expression of GPR177 in human tissue culture cells, adult mouse, and rat tissues, as well as developing zebrafish embryos. In rodents, GPR177 is expressed in virtually all tissue types and brain regions examined. In zebrafish, GPR177 polypeptides are expressed throughout embryogenesis, and are detectable as early as 1 hr post-fertilization. In situ hybridization analysis reveals that gpr177 mRNA expression is prominent in embryonic zebrafish brain and ear. Structural studies suggest that GPR177 is modified by N-linked sugars, and that the protein contains an even number of transmembrane segments. The relatively ubiquitous expression of GPR177 suggests that this protein may serve to regulate Wnt secretion in a variety of embryonic and adult tissue types.

  8. Leptin Modulates Norepinephrine-Mediated Melatonin Synthesis in Cultured Rat Pineal Gland

    OpenAIRE

    Rodrigo Antonio Peliciari-Garcia; Jéssica Andrade-Silva; José Cipolla-Neto; Carla Roberta de Oliveira Carvalho

    2013-01-01

    Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE (1 µM)...

  9. Evaluation of PFOS-mediated neurotoxicity in rat primary neurons and astrocytes cultured separately or in co-culture.

    Science.gov (United States)

    Li, Zhenwei; Liu, Qi; Liu, Chang; Li, Chunna; Li, Yachen; Li, Shuangyue; Liu, Xiaohui; Shao, Jing

    2017-02-01

    Perfluorooctane sulfonate (PFOS) is a potential neurotoxicant reported by epidemiological investigations and experimental studies, while the underlying mechanisms are still unclear. Astrocytes not only support for the construction of neurons, but also conduct neuronal functions through glutamate-glutamine cycle in astrocyte-neuron crosstalk. In the present study, the effect of PFOS exposure on rat primary hippocampal neurons or cortex astrocytes was evaluated. Then the role of the astrocytes in PFOS-induced toxic effect on neurons was explored with astrocyte-neuron co-culture system. Exposure of rat primary hippocampal neurons to PFOS has led to oxidation-antioxidation imbalance, increased apoptosis and abnormal autophagy. The adverse effect of PFOS on rat primary cortex astrocytes manifested in the form of altered extracellular glutamate and glutamine concentrations, decreased glutamine synthase activity, as well as decreased gene expression of glutamine synthase, glutamate transporters and glutamine transporters in the glutamate-glutamine cycle. Especially, the alleviation of PFOS-inhibited neurite outgrowth in neurons could be observed in astrocyte-neuron co-culture system, though the ability of astrocytes in fostering neurite outgrowth was affected by PFOS. These results indicated that both astrocytes and neurons might be the targets of PFOS-induced neurotoxicity, and astrocytes could protect against PFOS-inhibited neurite outgrowth in primary cultured neurons. Our research might render some information in explaining the mechanisms of PFOS-induced neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. TERATOGENIC EFFECTS OF TRANSPLACENTAL TRANSFUSION OF HETEROLOGOUS ANTISERA SIMULATED IN AN EXPERIMENTAL-MODEL USING INVITRO WHOLE RAT EMBRYO CULTURE

    NARCIS (Netherlands)

    VANDERZEE, DC; POELMANN, RE; ZWIERSTRA, RP; MENTINK, MMT; VERMEIJKEERS, C

    1991-01-01

    The effects of the transplacental transfusion of heterologous rabbit-anti-rat antiserum (RAR antiserum) and subsequent immunological interaction on the development of 9-10 days old rat embryos (stages 8-10 somites) were studied using an in vitro whole rat embryo culture. Transplacental transfusion w

  11. Culture of mouse embryonic stem cells with serum but without exogenous growth factors is sufficient to generate functional hepatocyte-like cells.

    Science.gov (United States)

    Pauwelyn, Karen; Roelandt, Philip; Notelaers, Tineke; Sancho-Bru, Pau; Fevery, Johan; Verfaillie, Catherine M

    2011-01-01

    Mouse embryonic stem cells (mESC) have been used to study lineage specification in vitro, including towards a hepatocyte-like fate, and such investigations guided lineage differentiation protocols for human (h)ESC. We recently described a four-step protocol to induce hepatocyte-like cells from hESC which also induced hepatocyte-like cell differentiation of mouse induced pluripotent stem cells. As ESC also spontaneously generate hepatocyte-like cells, we here tested whether the growth factors and serum used in this protocol are required to commit mESC and hESC to hepatocyte-like cells. Culture of mESC from two different mouse strains in the absence of serum and growth factors did not induce primitive streak/definitive endoderm genes but induced default differentiation to neuroectoderm on day 6. Although Activin-A and Wnt3 induced primitive streak/definitive endoderm transcripts most robustly in mESC, simple addition of serum also induced these transcripts. Expression of hepatoblast genes occurred earlier when growth factors were used for mESC differentiation. However, further maturation towards functional hepatocyte-like cells was similar in mESC progeny from cultures with serum, irrespective of the addition of growth factors, and irrespective of the mouse strain. This is in contrast to hESC, where growth factors are required for specification towards functional hepatocyte-like cells. Culture of mESC with serum but without growth factors did not induce preferential differentiation towards primitive endoderm or neuroectoderm. Thus, although induction of primitive streak/definitive endoderm specific genes and proteins is more robust when mESC are exposed to a combination of serum and exogenous growth factors, ultimate generation of hepatocyte-like cells from mESC occurs equally well in the presence or absence of exogenous growth factors. The latter is in contrast to what we observed for hESC. These results suggest that differences exist between lineage specific

  12. Culture of mouse embryonic stem cells with serum but without exogenous growth factors is sufficient to generate functional hepatocyte-like cells.

    Directory of Open Access Journals (Sweden)

    Karen Pauwelyn

    Full Text Available Mouse embryonic stem cells (mESC have been used to study lineage specification in vitro, including towards a hepatocyte-like fate, and such investigations guided lineage differentiation protocols for human (hESC. We recently described a four-step protocol to induce hepatocyte-like cells from hESC which also induced hepatocyte-like cell differentiation of mouse induced pluripotent stem cells. As ESC also spontaneously generate hepatocyte-like cells, we here tested whether the growth factors and serum used in this protocol are required to commit mESC and hESC to hepatocyte-like cells. Culture of mESC from two different mouse strains in the absence of serum and growth factors did not induce primitive streak/definitive endoderm genes but induced default differentiation to neuroectoderm on day 6. Although Activin-A and Wnt3 induced primitive streak/definitive endoderm transcripts most robustly in mESC, simple addition of serum also induced these transcripts. Expression of hepatoblast genes occurred earlier when growth factors were used for mESC differentiation. However, further maturation towards functional hepatocyte-like cells was similar in mESC progeny from cultures with serum, irrespective of the addition of growth factors, and irrespective of the mouse strain. This is in contrast to hESC, where growth factors are required for specification towards functional hepatocyte-like cells. Culture of mESC with serum but without growth factors did not induce preferential differentiation towards primitive endoderm or neuroectoderm. Thus, although induction of primitive streak/definitive endoderm specific genes and proteins is more robust when mESC are exposed to a combination of serum and exogenous growth factors, ultimate generation of hepatocyte-like cells from mESC occurs equally well in the presence or absence of exogenous growth factors. The latter is in contrast to what we observed for hESC. These results suggest that differences exist between

  13. Organ explant culture of neonatal rat ventricles: a new model to study gene and cell therapy.

    Directory of Open Access Journals (Sweden)

    A Dénise den Haan

    Full Text Available Testing cardiac gene and cell therapies in vitro requires a tissue substrate that survives for several days in culture while maintaining its physiological properties. The purpose of this study was to test whether culture of intact cardiac tissue of neonatal rat ventricles (organ explant culture may be used as a model to study gene and cell therapy. We compared (immuno histology and electrophysiology of organ explant cultures to both freshly isolated neonatal rat ventricular tissue and monolayers. (Immuno histologic studies showed that organ explant cultures retained their fiber orientation, and that expression patterns of α-actinin, connexin-43, and α-smooth muscle actin did not change during culture. Intracellular voltage recordings showed that spontaneous beating was rare in organ explant cultures (20% and freshly isolated tissue (17%, but common (82% in monolayers. Accordingly, resting membrane potential was -83.9±4.4 mV in organ explant cultures, -80.5±3.5 mV in freshly isolated tissue, and -60.9±4.3 mV in monolayers. Conduction velocity, measured by optical mapping, was 18.2±1.0 cm/s in organ explant cultures, 18.0±1.2 cm/s in freshly isolated tissue, and 24.3±0.7 cm/s in monolayers. We found no differences in action potential duration (APD between organ explant cultures and freshly isolated tissue, while APD of monolayers was prolonged (APD at 70% repolarization 88.8±7.8, 79.1±2.9, and 134.0±4.5 ms, respectively. Organ explant cultures and freshly isolated tissue could be paced up to frequencies within the normal range for neonatal rat (CL 150 ms, while monolayers could not. Successful lentiviral (LV transduction was shown via Egfp gene transfer. Co-culture of organ explant cultures with spontaneously beating cardiomyocytes increased the occurrence of spontaneous beating activity of organ explant cultures to 86%. We conclude that organ explant cultures of neonatal rat ventricle are structurally and electrophysiologically similar

  14. Induction of lymphokine-activated killer activity in rat splenocyte cultures: The importance of 2-mercaptoethanol and indomethacin

    NARCIS (Netherlands)

    P.J.K. Kuppen (P. J K); A.M.M. Eggermont (Alexander); A.W. Marinelli (Andreas); E. de Heer (Emile); C.J.H. van de Velde (Cornelis); G.J. Fleuren (G.)

    1991-01-01

    textabstractThe role of 2-mercaptoethanol and indomethacin in the induction of lymphokine-activated killer (LAK) activity by interleukin-2 (IL-2) in rat splenocyte cultures was investigated. Spleens from 4-month-old male rats of five different strains were tested. Splenocytes were cultured for 3-5 d

  15. An Optimized Culture Method of Rat Dorsal Root Ganglion Neurons

    Institute of Scientific and Technical Information of China (English)

    LIUYin; CHENJing-Hong; GONGZe-Hui

    2004-01-01

    AIM: To establish a primary culture technique of acutely isolated dorsal root ganglion (DRG) neurons, and provide a simple & useful in vitro model for study of analgesia. Methods: Acutely isolated dorsal root ganglion (DRG) neurons were planted and cultured; the configuration and growth characters of DRG neurons were observed through inverted microscope.

  16. Effect of Microcystin-LR on Cultured Rat Endothelial Cells

    Science.gov (United States)

    1990-02-26

    mmol, New England Nuclear Corp., Boston, MA), tissue culture media and fetal bovine serum albumin (Gibco, Grand Island, NY), tissue culture ware (Becton...WAGNER, H. AND FIEBIG, M. (1984) Actions of flavonoligans from silybum marianum fruits. Planta Med. 50, 248-250. JACKSON, A. R., RUNNEGAR, M. T

  17. Selection of medium for serum-free primary culture of adult rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Miyazaki,Masahiro

    1990-02-01

    Full Text Available To select a suitable medium for serum-free primary culture of adult rat hepatocytes, ten commercially-available synthetic media were compared for their ability to maintain the cells under serum-free and serum-supplemented conditions with special reference to attachment, survival and albumin secretion. It was found that Williams' medium E and DM-160 medium were the best among the ten media for maintaining hepatocytes under serum-free conditions in primary culture.

  18. Stimulation of DNA and Collagen Synthesis by Autologous Growth Factor in Cultured Fetal Rat Calvaria

    Science.gov (United States)

    Canalis, Ernesto; Peck, William A.; Raisz, Lawrence G.

    1980-11-01

    Conditioned medium derived from organ or cell cultures prepared from 19- to 21-day fetal rat calvaria stimulated the incorporation of [3H]proline into collagen and of [3H]thymidine into DNA in organ cultures of the same tissue. Addition of cortisol enhanced the effect on collagen but not on DNA synthesis. These effects appeared to be due to a nondialyzable and heat-stable growth factor.

  19. 人胚神经干细胞植入脑损伤大鼠的存活和分化状态%Survival and differentiation of human embryonic neural stem cells in rats with brain injury

    Institute of Scientific and Technical Information of China (English)

    张泽舜; 万虹; 历俊华; 翟晶; 王忠诚

    2007-01-01

    .结论:人胚神经干细胞能够存活于脑损伤区域,移植后逐渐分化为星形胶质细胞,且易被内皮吞噬细胞所消化.提示免疫排斥反应可能影响人胚神经干细胞的存活.%BACKGROUND:Finding of neural stem cells(NSCs)brings new hope for repairing central nervous system(CNS)injury.However,the influence of internal environment after brain injury on the survival and differentiation of NSCs is a complexand variable process.OBJECTIVE:To observe the survival and differentiation of human embryonic NSCs following implantation into rats with fluid percussion brain injury.DESIGN:Open experiment.SETTING:Department of Neurosurgery,Guangdong Provincial Hospital of Traditional Chinese Medicine;Beijing Institute of Neurosurgery.MATERIALS:This experiment was carried out In the Laboratory of Neural Stem Cells,Beijing Institute of Neurosurgery from September 2002 to March 2003.Twenty-four female SD rats,aged 7 weeks,with body mass of(250±10)g,were provided by the Experimental Animal lnstitute, Chinese Academy of Medical Sciences[License Nd. SCXK(Jing)2002-2003]. Cerebrum of 8-week aborted fetus was obtained (Informed consents were obtained from parturients and their relatives). Fetal survival was monitored by B ultrasonic wave during abortion. BrdU monoclonal antibody(Sigma Company),rabbit anti-nidogen polyclonal antibody(Chemicon Company),mouse anti-microtubule-associated protein 2 (MAP-2)monoclonal antibody(Neomarkers Company),rabbit anti-gliaI fibrillary acidic protein(GFAP)polyclonal antibody (Biogenex Company).METHODS:① CerebraI cortex cells of 8-week aborted human fetus was harvested and cultured in vitro for obtaining human embryronic NSCs.②Rat models of hydraulic impact injury were developed.Bone window of motor sensory area of cerebral cortex was set at 2.5mm posterior to bregma which was zero point and 3.0 mm lateral to midline.Hydraulic impact injury parameters were set as impact pressure 0.3 MPa. impact time 25 ms and impact time

  20. THE LOCALIZATION OF ADRENOMEDULLIN IN RAT KIDNEY TISSUE AND ITS INHIBITORY EFFECT ON THE GROWTH OF CULTURED RAT MESANGIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    刘学光; 张志刚; 张秀荣; 朱虹光; 陈琦; 郭慕依

    2002-01-01

    Objective. To observe the localization of adrenomedullin (AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC). Methods. A monoclonal antibody against AM developed by our laboratory was used to detect the localization of AM protein in rat kidney tissue by avidin-biotin complex immunohistochemistry. The expressions of AM and its receptor CRLR mRNA on cultured glomerular epithelial cells (GEC) and MsC were investigated by Northern blot assay, and the possible effect of AM secreted by GEC on MsC proliferation was observed using [3H]thymidine incorporation as an index. Results. A specific monoclonal antibody against AM was successfully developed. AM was immunohistochemically localized mainly in glomeruli (GEC and endothelial cells), some cortical proximal tubules, medullary collecting duct cells, interstitial cells, vascular smooth muscle cells and endothelial cells. Northern blot assay showed that AM mRNA was expressed only on cultured GEC, but not on MsC, however, AM receptor CRLR mRNA was only expressed on MsC. GEC conditioned medium containing AM can inhibit MsC growth and AM receptor blocker CGRP8-37 may partially decreased this inhibitory effect. Conclusion. AM produced by GEC inhibits the proliferation of MsC, which suggests that AM as an important regulator is involved in glomerular normal physiological functions and pathologic processes.

  1. THE LOCALIZATION OF ADRENOMEDULLIN IN RAT KIDNEY TISSUE AND ITS INHIBITORY EFFECT ON THE GROWTH OF CULTURED RAT MESANGIAL CELLSA

    Institute of Scientific and Technical Information of China (English)

    刘学光; 张志刚; 等

    2002-01-01

    Objective:To observe the localization of adrenomedullin(AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC).Methods:A monoclonal antibody against AM developed by our laboratory was used to detect the localization of AM protein in rat kidney tissue by avidin-biotin complex immunohistochemistry.The expressions of AM and its receptor CRLR mRNA on cultured glomerular epithelial cells (GEC)and MsC were investigated by Northern blot assay,and the possible effect of AM secreted by GEC on MsC proliferation was observed using [3H] thymidine incorporation as an index.Results:A specific monoclonal antibody against AM was successfull developed.AM was immunohistochemically localized mainly in glomeruli (GEC and endothelial cells),some cortical proximal tubules,medullary collecting duct cells,interstitial cells,vascular smooth muscle cells and endothelial cells.Northern blot assay showed the AM mRNA was expressed only on cultured GEC,but not on MsC,however,AM receptor CRLR mRNA was only expressed on MsC.GEC conditioned medium containing AM can inhibit MsC growth and AM receptor blocker CGRP8-37 may partially decreased this inhibitory effect.Conclusion:AM produced by GEC inhibits the proliferation of MsC,which suggests that AM as an important regulator is involved in glomerular normal physiological functions and pathologic processes.

  2. Gender differences in transcriptional signature of developing rat testes and ovaries following embryonic exposure to 2,3,7,8-TCDD.

    Directory of Open Access Journals (Sweden)

    Solange Magre

    Full Text Available Dioxins are persistent organic pollutants interfering with endocrine systems and causing reproductive and developmental disorders. The objective of our project was to determine the impact of an in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD on reproductive function of male and female offspring in the rat with a special emphasis on the immature period. We used a low dose of TCDD (unique exposure by oral gavage of 200 ng/kg at 15.5 days of gestation in order to mirror a response to an environmental dose of TCDD not altering fertility of the progeny. We choose a global gene expression approach using Affymetrix microarray analysis, and testes of 5 days and ovaries of 14 days of age. Less than 1% of the expressed genes in gonads were altered following embryonic TCDD exposure; specifically, 113 genes in ovaries and 56 in testes with 7 genes common to both sex gonads. It included the repressor of the aryl hydrocarbon receptor (Ahrr, the chemokines Ccl5 and Cxcl4 previously shown to be regulated by dioxin in testis, Pgds2/Hpgds and 3 others uncharacterized. To validate and extend the microarray data we realized real-time PCR on gonads at various developmental periods of interest (from 3 to 25 days for ovaries, from 5 to the adult age for testes. Overall, our results evidenced that both sex gonads responded differently to TCDD exposure. For example, we observed induction of the canonic battery of TCDD-induced genes coding enzymes of the detoxifying machinery in ovaries aged of 3-14 days of age (except Cyp1a1 induced at 3-10 days but not in testes of 5 days (except Ahrr. We also illustrated that inflammatory pathway is one pathway activated by TCDD in gonads. Finally, we identified several new genes targeted by TCDD including Fgf13 in testis and one gene, Ptgds2/Hpgds regulated in the two sex gonads.

  3. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Tracy L., E-mail: tracylmarion@qualyst.com [Curriculum in Toxicology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7270 (United States); Perry, Cassandra H., E-mail: cassandraperry@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); St Claire, Robert L., E-mail: bobstclaire@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); Brouwer, Kim L.R., E-mail: kbrouwer@unc.edu [Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB 7569 Kerr Hall, Chapel Hill, NC 27599-7569 (United States)

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  4. A sandwich-cultured rat hepatocyte system with increased metabolic competence evaluated by gene expression profiling

    NARCIS (Netherlands)

    Kienhuis, A.S.; Wortelboer, H.M.; Maas, W.J.; Herwijnen, M. van; Kleinjans, J.C.S.; Delft, J.H.M. van; Stierum, R.H.

    2007-01-01

    A rapid decline of cytochrome P450 (CYP450) enzyme activities remains a drawback of rat hepatocyte-based in vitro cultures. Consequently, judgment of the toxic potential of compounds that need bioactivation by CYP450s may not be adequate using this model. In the present study, an improved hepatocyte

  5. Serum obtained from rats after partial hepatectomy enhances growth of cultured colon carcinoma cells

    NARCIS (Netherlands)

    de Jong, KP; Brouwers, MAM; van Veen, ML; Brinker, M; de Vries, EGE; Daemen, T; Scherphof, GL; Slooff, MJH

    1999-01-01

    Tumour-bearing rats were randomized to a 70% partial hepatectomy or a sham operation. At days 1, 3 or 14, portal and systemic serum was obtained and colon carcinoma cells were cultured in the presence of 5, 10, 20 or 50% serum. Proliferation and epidermal growth factor receptor (EGFr) expression was

  6. Embryotoxicant-specific transcriptomic responses in rat postimplantation whole-embryo culture

    NARCIS (Netherlands)

    Robinson, J.F.; van Beelen, V.A.; Verhoef, A.; Renkens, M.F.J.; Luijten, M.; van Herwijnen, M.; Westerman, A.; Pennings, J.L.; Piersma, A.H.

    2010-01-01

    Rat postimplantation whole-embryo culture (WEC) is a promising alternative test for the assessment of developmental toxicity. Toxicogenomic-based approaches may improve the predictive ability of the WEC model by providing a means to identify compound-specific mechanistic responses associated with em

  7. A sandwich-cultured rat hepatocyte system with increased metabolic competence evaluated by gene expression profiling

    NARCIS (Netherlands)

    Kienhuis, A.S.; Wortelboer, H.M.; Maas, W.J.; Herwijnen, M. van; Kleinjans, J.C.S.; Delft, J.H.M. van; Stierum, R.H.

    2007-01-01

    A rapid decline of cytochrome P450 (CYP450) enzyme activities remains a drawback of rat hepatocyte-based in vitro cultures. Consequently, judgment of the toxic potential of compounds that need bioactivation by CYP450s may not be adequate using this model. In the present study, an improved

  8. Comparison of rat epidermal keratinocyte organotypic culture (ROC) with intact human skin

    DEFF Research Database (Denmark)

    Pappinen, Sari; Hermansson, Martin; Kuntsche, Judith

    2008-01-01

    The present report is a part of our continuing efforts to explore the utility of the rat epidermal keratinocyte organotypic culture (ROC) as an alternative model to human skin in transdermal drug delivery and skin irritation studies of new chemical entities and formulations. The aim of the presen...

  9. The antiapoptotic effect of insulin against anoxia/reoxygenation injury in cultured cardiomyocyte of neonatal rat

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To study protective effect of insulin against cardiomyocyte apoptosis in anoxia/reoxygenation (A/R)injury of neonatal rat. Methods: The model of A/R injury was finished through receiving anoxia for 2 h and reoxygenation for 4 h in cultured cardiomyocytes of neonatal rat. The cardiomyocytes were divided randomly into 3 groups: control group (CON), anoxia/reoxygenation group (A/R) and insulin-treated group (INS). At the end of reoxygenation of 4 hours, activities of lactate dehydrogenase (LDH),contents of malondialdehyde (MDA) were assessed through spectrophotometric procedures, myocyte apoptosis were detected through TUNEL and DNA Ladder. Results: MDA, LDH, and Apoptosis Index were significantly decreased in INS group compared with A/R group (P<0.01). Conclusion: Insulin has a protective effect against A/R injury in cultured cardiomyocyte of neonatal rat; the protective mechanism may contribute to antiapoptosis of insulin.

  10. Urea production in long-term cultures of adult rat hepatocytes.

    Science.gov (United States)

    Sierra-Santoyo, A; López, M L; Hernández, A; Mendoza-Figueroa, T

    1994-04-01

    To study the functionality of the urea cycle in long-term cultures of adult rat hepatocytes, urea production and the activity of two urea cycle enzymes were measured in hepatocytes cultured on 3T3 cells for 15 days. Urea production was also measured in cultures maintained with medium containing either 0.4 mm arginine or 0.4 mm ornithine and in cultures exposed to different concentrations of NH(4)Cl, an in vivo inducer of urea production. In hepatocytes seeded on 3T3 cells, urea production decreased gradually to 50% of the initial value after 15 days. Urea production was similar in 3T3-hepatocyte cultures maintained for 11 days with medium containing ornithine or arginine. Hepatocytes exposed for 24 hr to 1, 3 and 5 mm NH(4)Cl showed an average increase in urea production of 25, 50 and 69%, respectively, above that of unexposed cultures over 15 days. Ornithine transcarbamylase (OTC) activity decreased by 84% after 5 days in culture and remained constant thereafter, while arginase activity remained constant over 15 days. In contrast, in hepatocytes seeded on plastic substratum, urea production decreased to 24% of the initial value after 8 days in culture. OTC and arginase activities also decreased to 13 and 10% of their initial values after 8 days in culture. These results show that 3T3-hepatocyte cultures from adult rats produce urea from ornithine and/or arginine for at least 15 days and respond to an inducer of urea production as in vivo. They also show that these cultures have decreasing and constant levels of OTC and arginase activities, respectively, owing probably to an adaptative response dependent on substrate concentrations and hormonal regulation. These findings also suggest that 3T3-hepatocyte cultures are a suitable in vitro system to study urea production, its regulation by substrates and hormones and its alteration by drugs and toxic chemicals.

  11. Synthesis and secretion of lipids by long-term cultures of female rat hepatocytes.

    Science.gov (United States)

    Rincón-Sánchez, A R; Hernández, A; López, M L; Mendoza-Figueroa, T

    1992-01-01

    The objective of this work was to characterize lipid metabolism in long-term cultures of adult rat hepatocytes from female rats and explore the potential use of this culture system to study the effect of hormones, drugs and toxic chemicals on it. Hepatocytes, seeded on a feeder layer of 3T3 cells, maintained for 2 weeks their typical morphology. The cultures were able to take up [14C]acetic and [14C]oleic acid from the culture medium and incorporate them into lipids. The synthesis and secretion of lipids by [14C]acetic acid-labeled cultures had a maximum value after 11 and 13 days in culture. Triacylglycerols were the main lipidic species synthesized and secreted by hepatocytes (up to 67% of the total lipids); they also synthesized and secreted phospholipids, cholesterol and cholesterol esters from [14C]acetic acid. Similarly, [14C]oleic acid-labeled cultures synthesized and secreted mostly triacylglycerols (up to 60-70% of the total lipids), but they were also able to incorporate the labeled precursor into both cellular and secreted phospholipids and cholesterol esters. The activity of glycerol-phosphate-dehydrogenase, marker enzyme of glycerolipid synthesis, decreased slightly during the culture time whereas the activity of malic enzyme, marker of fatty acid synthesis, increased. Our results show that long-term cultures of female rat hepatocytes are able to synthesize and secrete several lipids, specially triacylglycerols, from both [14C]acetic and [14C]oleic acid for at least 2 weeks and that they maintain enzyme activities related with the synthetic pathways of glycerolipids and fatty acids.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Susceptibility of primary culture neurons from rats of different ages to encephalomyocarditis (EMC) virus infection.

    Science.gov (United States)

    Su, Weiping; Ikegami, Hisashi; Nakayama, Yumi; Suzuki, Kazuhiko; Katayama, Kei-ichi; Nakayama, Hiroyuki; Doi, Kunio

    2003-10-01

    The changes in susceptibility of neurons to the D variant of EMC virus (EMC-D) (10(6) PFU/well) were investigated in developing hippocampal primary cultures from postnatal days of 1, 7, and 56 Fischer 344 rats (P1, P7, and P56) for up to 12 h after infection (12 HAI). The virus titer of primary culture neurons increased at 1 HAI, decreased at 2 HAI, increased at 3 HAI, peaked at 8 HAI, and decreased at 12 HAI in all age groups. The titers at 1 and 8 HAI were lowest in P56 cultures. The virus titer of neurons was always higher than that of culture media, especially at 1 HAI, in P1 cultures, whereas the former was lower than the latter from 2 to 3 HAI in P7 cultures and from 2 to 4 HAI in P56 cultures, respectively. Signals of viral RNA detected by in situ hybridization were first observed in the peripheral cytoplasm of neurons at 1 HAI in P1 and P7 cultures and at 4 HAI in P56 cultures, respectively. The signals spread to a large or whole area of cytoplasm and also to processes thereafter. The number of viral RNA-positive neurons and the amount of signals decreased with age. The present results indicated that the susceptibility of primary culture neurons to EMC-D decreased with age but viral replication still occurred in P56 cultures.

  13. Organotypic explant culture of adult rat retina for in vitro investigations of neurodegeneration, neuroprotection and cell transplantation

    OpenAIRE

    sprotocols

    2015-01-01

    This protocol details a method for isolating retinal tissue from adult rats as an organotypic culture to study neurobiological processes in mature tissue. It combines the efficiency and control common to in vitro techniques with close imitation of the in vivo environment. Eyes from adult rats are enucleated and the neural retina is isolated. Tissue is cut into quarters, yielding eight retinal explants per animal, and cultured at a fluid/air interface on organotypic culture membranes. Explanta...

  14. 人胚胎干细胞建系培养及体外诱导分化的研究进展%Advances in derivation, culture and vitro differentiation of human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    赵蕊; 吕学诜

    2010-01-01

    Human embryonic stem (hES) cells are pluripotent cells and could be induced to differentiate into various types of cells under special condition. Study of hES has tremendous value for the mechanism of human embryo development, research of human gene function, and therapeutic cloning. This article will review the derivation, culture and in vitro differentiation of human embryonic stem cells.%人胚胎干细胞具有发育全能性,在特定条件下能分化成多种类型的细胞.人胚胎干细胞的研究对人胚胎发育机制、人基因功能研究和治疗性克隆有着重大的意义.本文从人胚胎干细胞建系、培养及体外诱导分化等方面作一综述.

  15. 促红细胞生成素在大鼠视网膜胚胎发育中的表达变化%Changes of erythropoietin expression during the embryonic deveiopment period of rat retina

    Institute of Scientific and Technical Information of China (English)

    袁春燕; 孟旭霞; 牛膺筠

    2011-01-01

    its action on retina with the development is concerned. Objective This research was to investigate the expression of EPO during the embryonic development period of rat retina and explore the role of EPO in retina development process.Methods Clean Wistar rats with pregnancy for 12 days,16 days and 20 days were collected,and the embryonic 12-day rats (E12 d,5 rats),embryonic 16-day rats (E16 d,5 rats) and embryonic 20-day rats ( E20 d,5 rats) were obtained by caesarean operation,and 5 12-month W istar rats were used as controls.The rats were sacrificed by cervical dislocation and the retinal sections were prepared in the different-embryo-phase (12 d,16 d,20d) and growth phase.The expression of EPO protein and mRNA in rat retina was detected by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR),respectively.The feed and use of the animals followed the Regulation for the Administration of Affair Concerning Experimental Animals by State Science and Technology Commission.Results EPO was positively expressed in the cytoplasm and nuclei in the neuroepithelial layer and pigment epithelium of every-embryo-phase rats but only in retinal ganglion cell layer in 12-month-old rats.The gray scale values of EPO expression in retina were 105.55±10.35,99.35± 8.71,83.27± 7.84and 30.30± 3.80 in E12 d rats,E16 d rats,E20 d rats and 12-month-old rats respectively with a statistically significant difference (F=76.13,P<0.01 ).RT-PCR revealed that the relative values of EPO mRNA expression in retina were 0.876±0.10,0.861 ±0.09 and 0.256±0.03 in E16 d rats,E20 d rats and 12-month-old rats respectively,presenting a elevated value in embryonic rats compared with adult rats ( P =0.00).Gel imaging deletion showed that the A value of EPO amplification products was highest in E16 d rats and lowest in adult rats.Conclusions The expression of EPO appears a high to low fashion during the embryonic development of Wistar rats,which is closely associated with the

  16. Isolation and culture of mouse embryonic fibroblasts and preparation of feeder layers%小鼠胚胎成纤维细胞的分离培养及饲养层制备

    Institute of Scientific and Technical Information of China (English)

    胡三强; 王妍妍; 马永宾; 胡嘉波

    2014-01-01

    背景:建立一种既可以大量制备,又易于保存并保持较高活性的饲养层细胞是人胚胎干细胞培养研究的重要环节。  目的:建立昆明小鼠胚胎成纤维细胞的最佳分离培养方法,评价其用于人胚胎干细胞饲养层研究的可行性。方法:用不同浓度胰蛋白酶分步消化法体外分离和培养昆明小鼠胚胎成纤维细胞,观察其生物学特性,制备胚胎成纤维细胞饲养层,检测人胚胎干细胞在饲养层上培养的生长状态。  结果与结论:制备昆明小鼠胚胎成纤维细胞饲养层的最佳胎龄为13.5 d。不同浓度胰蛋白酶分步消化法制备的胚胎成纤维细胞生长状态好,获得的成纤维细胞纯度高,增殖活跃。冻存2周,1,3,6个月内复苏的细胞存活率差异无显著性意义。小鼠胚胎成纤维细胞在第2-4代增殖旺盛,第5代以后细胞增殖活力明显下降。人胚胎干细胞在小鼠胚胎成纤维细胞长期传代后呈典型的未分化形态,碱性磷酸酶和过碘酸-雪夫染色均为阳性。结果表明建立的昆明小鼠胚胎成纤维细胞饲养层分离培养法可为人胚胎干细胞扩增提供稳定、优质的饲养层细胞。%BACKGROUND:It is important to produce and save a large amount of high-activity feeder cel s for the culture of human embryonic stem cel s. OBJECTIVE:To establish the optimal method for isolation and culture of Kunming mouse embryonic fibroblasts, and to evaluate the feasibility of preparing feeder layers for culture of human embryonic stem cel s. METHODS:Embryonic fibroblasts were isolated and cultured by different concentrations of trypsin from Kunming mouse fetuses in vitro. The biological characteristics and growth rule of mouse embryonic fibroblasts were investigated, and then the feeder layers for human embryonic stem cel s culture were produced. The growth of human embryonic stem cel s on the prepared feeder layer was tested

  17. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...... differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......-culture, large numbers of tyrosine hydroxylase (TH)-immunoreactive, catecholaminergic cells could be found underneath individual striatal slices. Cell counting revealed that up to 25.3% (average 16.1%) of the total number of cells in these areas were TH-positive, contrasting a few TH-positive cells (

  18. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    ) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux into the culture medium, (c) cellular cobalt uptake as an index of calcium influx, (d) ordinary Nissl cell staining, and (e) immunohistochemical staining for microtubule-associated protein 2 (MAP-2). Cellular degeneration as assessed...

  19. Enhanced expression of contractile endothelin ET(B) receptors in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Johnsson, E.; Maddahi, A.; Wackenfors, A.;

    2008-01-01

    . In cardiovascular disease and in organ culture in vitro, endothelin ET(B) receptors are up-regulated on smooth muscle cells. The objectives of the present study were to characterise the endothelin receptor-induced vasoconstriction and quantify the endothelin receptor mRNA levels and immunoreactivity in fresh...... but produced significant vasoconstriction after organ culture. The endothelin ET(B) receptor mRNA level and the receptor protein immunoreactivity were increased, whereas the level of endothelin ET(A) receptor mRNA was down-regulated but not its receptor protein immunoreactivity after organ culture...... and cultured rat coronary arteries. We demonstrate that endothelin-1 induces strong and equal concentration-dependent contractions in fresh and cultured segments from the left anterior descending coronary artery. Sarafotoxin 6c, an endothelin ET(B) receptor agonist, had negligible effect in fresh arteries...

  20. Primary culture and identification of sinoatrial node cells from newborn rat

    Institute of Scientific and Technical Information of China (English)

    宋治远; 钟理; 仝识非; 何国祥

    2003-01-01

    Objective To establish a reliable approach to primary culture and identification of sinoatrial node (SAN) cells. Methods The SAN cells were cultured from SAN tissue removed from neonatal Wistar rats and purified with differential attachment and 5'-bromodeoxyuridine (BrdU) treatment. The obtained cells were morphologically observed with inverted microscopy and transmission electron microscopy. Its action potential was recorded using electrophysiological methods.Results Three distinctly different cells were observed in the cultured SAN cells: spindle, triangle and irregular. Of these, the spindle cells comprised the greatest proportion, with their shape, structure and electrophysiological characteristics consistent with those of the pacemaker cells of SAN. The triangle cells were similar in features to the similarly shaped myocytes located in the atrial myocardium. Conclusions The culture method of differential attachment combined with BrdU treatment is a reliable approach to growing SAN cells. Of the cells cultured from SAN, the spindle cells appear to function as pacemaker cells.

  1. Contrasting Nephropathic Responses to Oral Administration of Extract of Cultured Penicillium polonicum in Rat and Primate

    Science.gov (United States)

    Mantle, Peter G.; McHugh, Katharine M.; Fincham, John E.

    2010-01-01

    Liquid- or solid substrate-cultured Penicillium polonicum administered in feed to rats over several days evokes a histopathological response in kidney involving apoptosis and abnormal mitosis in proximal tubules. The amphoteric toxin is yet only partly characterized, but can be isolated from cultured sporulating biomass in a fraction that is soluble in water and ethanol, and exchangeable on either anion- or cation-exchange resins. After several weeks of treatment renal proximal tubule distortion became striking on account of karyocytomegaly, but even treatment for nearly two years remained asymptomatic. Extract from a batch of solid substrate fermentation of P. polonicum on shredded wheat was incorporated into feed for rats during four consecutive days, and also given as an aqueous solution by oral gavage to a vervet monkey daily for 10 days. Treatment was asymptomatic for both types of animal. Rat response was evident as the typical renal apoptosis and karyomegaly. In contrast there was no such response in the primate; and neither creatinine clearance nor any haematological characteristic or serum component concentration deviated from a control or from historical data for this primate. The contrast is discussed concerning other negative findings for P. polonicum in pigs and hamsters. Renal karyomegaly, as a common rat response to persistent exposure to ochratoxin A, is not known in humans suspected as being exposed to more than the usual trace amounts of dietary ochratoxin A. Therefore the present findings question assumptions that human response to ochratoxin A conforms to that in the rat. PMID:22069673

  2. Contrasting Nephropathic Responses to Oral Administration of Extract of Cultured Penicillium polonicum in Rat and Primate

    Directory of Open Access Journals (Sweden)

    John E. Fincham

    2010-08-01

    Full Text Available Liquid- or solid substrate-cultured Penicillium polonicum administered in feed to rats over several days evokes a histopathological response in kidney involving apoptosis and abnormal mitosis in proximal tubules. The amphoteric toxin is yet only partly characterized, but can be isolated from cultured sporulating biomass in a fraction that is soluble in water and ethanol, and exchangeable on either anion- or cation-exchange resins. After several weeks of treatment renal proximal tubule distortion became striking on account of karyocytomegaly, but even treatment for nearly two years remained asymptomatic. Extract from a batch of solid substrate fermentation of P. polonicum on shredded wheat was incorporated into feed for rats during four consecutive days, and also given as an aqueous solution by oral gavage to a vervet monkey daily for 10 days. Treatment was asymptomatic for both types of animal. Rat response was evident as the typical renal apoptosis and karyomegaly. In contrast there was no such response in the primate; and neither creatinine clearance nor any haematological characteristic or serum component concentration deviated from a control or from historical data for this primate. The contrast is discussed concerning other negative findings for P. polonicum in pigs and hamsters. Renal karyomegaly, as a common rat response to persistent exposure to ochratoxin A, is not known in humans suspected as being exposed to more than the usual trace amounts of dietary ochratoxin A. Therefore the present findings question assumptions that human response to ochratoxin A conforms to that in the rat.

  3. Amygdalin inhibits angiogenesis in the cultured endothelial cells of diabetic rats

    Directory of Open Access Journals (Sweden)

    Hossein Mirmiranpour

    2012-01-01

    Full Text Available Background: Angiogenesis contributes to different physiological and pathological conditions. The aim of this study was to investigate for the first time the antiangiogenic effects of amygdalin on the cultured endothelial cells of diabetic rats. Materials and Methods: A total of 20 streptozotocin-induced diabetic rats were divided into two equal groups of control and amygdalin-treated animals. Eight weeks after the induction of diabetes, amygdalin was injected intraperitoneally (3 mg/kg to the rats of the treatment group. One day later, rats were sacrificed; the aortic arteries were excised and cut as 2 mm rings. Each aortic ring was incubated in a cell-culture well for 7 days. The process of angiogenesis was monitored by counting the number of microvessels and primary microtubules in each well. Results: Optic microscopy showed proliferation and migration of new endothelial cells to the fibrin gels. The endothelial cells produced primary microtubules which gradually made several branches and finally made a vascular matrix. The number of the primary microtubules and microvessels were significantly lower in the amygdalin-treated vs. control group (P < 0.01. Conclusion: Therefore, amygdalin exerts inhibitory effects on angiogenesis in aortic rings of diabetic rats and may pave a new way for treatment of unfavorable angiogenic conditions.

  4. Amygdalin inhibits angiogenesis in the cultured endothelial cells of diabetic rats.

    Science.gov (United States)

    Mirmiranpour, Hossein; Khaghani, Shahnaz; Zandieh, Ali; Khalilzadeh, O Omid; Gerayesh-Nejad, Siavash; Morteza, Afsaneh; Esteghamati, Alireza

    2012-01-01

    Angiogenesis contributes to different physiological and pathological conditions. The aim of this study was to investigate for the first time the antiangiogenic effects of amygdalin on the cultured endothelial cells of diabetic rats. A total of 20 streptozotocin-induced diabetic rats were divided into two equal groups of control and amygdalin-treated animals. Eight weeks after the induction of diabetes, amygdalin was injected intraperitoneally (3 mg/kg) to the rats of the treatment group. One day later, rats were sacrificed; the aortic arteries were excised and cut as 2 mm rings. Each aortic ring was incubated in a cell-culture well for 7 days. The process of angiogenesis was monitored by counting the number of microvessels and primary microtubules in each well. Optic microscopy showed proliferation and migration of new endothelial cells to the fibrin gels. The endothelial cells produced primary microtubules which gradually made several branches and finally made a vascular matrix. The number of the primary microtubules and microvessels were significantly lower in the amygdalin-treated vs. control group (P amygdalin exerts inhibitory effects on angiogenesis in aortic rings of diabetic rats and may pave a new way for treatment of unfavorable angiogenic conditions.

  5. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    Science.gov (United States)

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  6. Differential feedback regulation of cholesterol 7α-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Lehmann, E.M.; Princen, H.M.G.

    1993-01-01

    We have used primary monolayer cultures of rat hepatocytes to study the effects of physiological concentrations of various bile acids, commonly found in bile of normal rats, on the mechanism of regulation of cholesterol 7α-hydroxylase and bile acid synthesis. Addition of taurocholic acid, the most

  7. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat

    DEFF Research Database (Denmark)

    Meyer, Morten; Widmer, H R; Wagner, B

    1998-01-01

    improvements in terms of significant reductions in amphetamine-induced rotations were observed in rats grafted with FFRT cultures (127%) and rats grafted with cell suspensions (122%), while control animals showed no normalization of rotational behavior. At 84 days after transplantation, there were similar...... days in culture or directly as dissociated cell suspensions, and compared with regard to neuronal survival and ability to normalize rotational behavior in adult rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. Other lesioned rats received injections of cell-free medium and served as controls...... numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after...

  8. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day of ge...... on GFA-content was seen any longer, although some few weakly GFA positive cells could be observed in all permanent cell lines. Fetal rat brain cells therefore seem to become less responsive to this differentiation inducer during neoplastic transformation in cell culture....

  9. Studies on responsiveness of hepatoma cells to catecholamines. II. Comparison of beta-adrenergic responsiveness of rat ascites hepatoma cells with cultured normal rat liver cells.

    Science.gov (United States)

    Miyamoto, K; Matsunaga, T; Takemoto, N; Sanae, F; Koshiura, R

    1985-05-01

    The pharmacological properties of beta-adrenoceptors in rat ascites hepatoma cells were compared with those in normal rat liver cells which were cultured for 24 hr after collagenase digestion. Adenylate cyclases in the homogenates of cultured normal rat liver cells and rat ascites hepatoma cells, AH44, AH66, AH109A, AH130 and AH7974, were all activated by isoproterenol or NaF to different degrees. The enzyme in rat liver cells was activated by several beta 2-agonists but those in all hepatoma cells hardly responded. Furthermore, salbutamol, a beta 2-partial agonist, antagonized the cyclase activation by isoproterenol in AH130 cells. The Kact value of isoproterenol for the activation of adenylate cyclase in AH130 cells was smaller than that in rat liver cells. A comparison of the Ki values of beta-antagonists for the inhibition of isoproterenol-stimulated cyclase activity shows that while the Ki values of propranolol and butoxamine in AH130 cells were similar to those in rat liver cells, a significant difference was observed in the values for beta 1-selective antagonists between AH130 cells and rat liver cells. The Ki values of metoprolol and atenolol for AH130 cells were 137- and 90-fold lower, respectively, than for normal rat liver cells. From these findings, it is strongly suggested that beta-adrenoceptors in rat ascites hepatoma cells including AH130 cells have similar properties to the mammalian beta 1-receptor.

  10. Identification of differentially expressed genes in aflatoxin B1-treated cultured primary rat hepatocytes and Fischer 344 rats.

    Science.gov (United States)

    Harris, A J; Shaddock, J G; Manjanatha, M G; Lisenbey, J A; Casciano, D A

    1998-08-01

    Aflatoxin B1 (AFB1), a mutagen and hepatocarcinogen in rats and humans, is a contaminant of the human food supply, particularly in parts of Africa and Asia. AFB1-induced changes in gene expression may play a part in the development of the toxic, immunosuppressive and carcinogenic properties of this fungal metabolite. An understanding of the-role of AFB1 in modulating gene regulation should provide insight regarding mechanisms of AFB1-induced carcinogenesis. We used three PCR-based subtractive techniques to identify AFB1-responsive genes in cultured primary rat hepatocyte RNA: differential display PCR (DD-PCR), representational difference analysis (RDA) and suppression subtractive hybridization (SSH). Each of the three techniques identified AFB1-responsive genes, although no individual cDNA was isolated by more than one technique. Nine cDNAs isolated using DD-PCR, RDA or SSH were found to represent eight genes that are differentially expressed as a result of AFB1 exposure. Genes whose mRNA levels were increased in cultured primary rat hepatocytes after AFB1 treatment were corticosteroid binding globulin (CBG), cytochrome P450 4F1 (CYP4F1), alpha-2 microglobulin, C4b-binding protein (C4BP), serum amyloid A-2 and glutathione S-transferase Yb2 (GST). Transferrin and a small CYP3A-like cDNA had reduced mRNA levels after AFB1 exposure. Full-length CYP3A mRNA levels were increased. When liver RNA from AFB1-treated male F344 rats was evaluated for transferrin, CBG, GST, CYP3A and CYP4F1 expression, a decrease in transferrin mRNA and an increase in CBG, GST, CYP3A and CYP4F1 mRNA levels was also seen. Analysis of the potential function of these genes in maintaining cellular homeostasis suggests that their differential expression could contribute to the toxicity associated with AFB1 exposure.

  11. Perbandingan Angka Fertilitas dan Hambatan Perkembangan Embrio Mencit yang Dikultur dalam Medium M16 dan Human Tubal Fluid (THE COMPARISON OF MICE FERTILITY RATE AND EMBRYONIC DEVELOPMENT CELL BLOCK WHEN CULTURED IN M16 AND HUMAN TUBAL FLUID MEDIA

    Directory of Open Access Journals (Sweden)

    Widjiati .

    2013-07-01

    Full Text Available The aim of this research was to compare the fertility rate and embryonic development cell block ofmice when cultured in M16 and Human Tubal Fluid (HTF media, respectively. Two months old femaleBalbC mice were super ovulated using Pregnant Mare Serum Gonadotrophin (PMSG and Human ChorionicGonadotrophin (HCG prior to mating with vasectomies mice. At 17 hours post mating the mice wassacrificed for the collections of egg cells and spermatozoa. Egg cells were collected by tearing the fertilizationsac, while the sperm were collected from caudal epididymis. After the collection, both the egg cells andsperm were put in Petri dish containing M16 and HTF media and kept in 5% CO2 incubator at 370C for onehour prior to the in vitro fertilization (IVF was performed. In vitro fertilization was performed in 5% CO2 incubator at 370C and kept for 24 hours in M16 and in HTF culture media. The results showed thatfertilization rate was 98.09% and 99.57%; cell block embryonic development was 85.09% and 83.36%when cultured in M16 and HTF media, respectively. In conclusion, HTF media can be used for culturingmouse embryo.

  12. In vitro culture and phagocytosis of human embryonic retinal pigment epithelium%人胚胎视网膜色素上皮细胞的体外培养和吞噬作用

    Institute of Scientific and Technical Information of China (English)

    靳晓亮; 徐国彤; 张文芳; 鲁建华

    2011-01-01

    Objective To analyze the culturing characteristics and phagocytosis of the retinal pigment epithelium (RPE) from human embryo, and to provide the cellular basis for the further research of RPE related diseases. Methods Fresh human embryonic eyeballs (13~15 weeks) were collected, and RPE cells were separated by mechanical and trypsin digestion after microdissec-tion. Human embryonic RPE phagocytosis of retinal outer segments was investigated by using immunofluorescence. Results After the human embryo had developed for 13~15 weeks, the RPE cells could be cultured in vitro according to standard culturing methods. Based on the growth curve, the RPE cells in generations 2~6 were collected for essays and showed the ability of phagocytosis afterwards. Conclusion The method of culturing human embryonic RPE cells is improved, and phagocytosis ability of human embryonic RPE cells is also proved in vitro according to this study.%目的 探讨人胚胎视网膜色素上皮(RPE)细胞分离培养的特性及其吞噬作用.方法 取发育至13~15周的新鲜人胚胎眼球,显微解剖后采用机械胰酶消化法分离培养RPE细胞,应用免疫荧光法观察人胚胎RPE细胞吞噬视网膜光感受细胞外节膜盘.结果 人胚胎发育至13~15周后,RPE细胞可应用标准的培养方法进行体外培养和传代.根据测定的人胚胎RPE细胞生长曲线,取2~6代细胞用于实验培养的人胚胎RPE细胞具备吞噬功能.结论 改进了人胚胎RPE细胞的培养方法,证明人胚胎RPE细胞在体外具有吞噬能力.

  13. 脑创伤程度对大鼠伤后胚胎神经干细胞移植的影响%Impact of injury severity on transplantation of embryonic neural stem cells following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    洪军; 崔建忠; 黎洁; 刘兴宇; 周云涛

    2011-01-01

    Objective To explore the influence of injury severity on transplantation of embryonic neural stem cells (NSCs) after traumatic brain injury (TBI).Methods The NSCs were isolated from the hippocampus of fetal rats aged at from 12-14 days.The cells were cultured and proliferated in the serum-free medium and identified in vitro.The animals received transplants in the bilateral hippocampal areas at day 3 following mild or moderate TBI separately.Conventional histology,TUNEL and immunohistology were examined to detect BrdU,NSE,GFAP,GalC,NGF and BDNF at day 14 post-implantation.Results BrdU-labeled positive cells in the bilateral hippocampus in the mild TBI group were more than those in the moderate TBI group at day 14 post-implantation.Significant differentiation of the astrocytes recognized as GFAP positive cells in the bilateral hippocampus was found at day 14 post-implantation.The expression of NGF and BDNF proteins was increased following TBI,the most evident in the mild TBI group.Conclusion The influence of injury severity on transplantation may be associated with the change of the microenvironment after TBI.%目的 探讨不同程度创伤性脑损伤(traumatic brain injury,TBI)对伤后胚胎神经干细胞(neural stem cells,NSCs)移植的影响. 方法 从孕12~ 14 d胚胎大鼠海马组织中分离NSCs,采用无血清培养法,进行体外培养、扩增和鉴定.大鼠分别于轻型、中型TBI后3d行胚胎NSCs双侧海马区移植;细胞移植14 d后行组织学和TUNEL检测,并对BrdU、NSE、GFAP、GalC、NGF、BDNF蛋白行免疫组化检测. 结果 移植治疗后14 d,轻型TBI组双侧海马区Brdu阳性细胞数明显多于中型TBI组.移植胚胎NSCs脑内分化以GFAP阳性胶质细胞为主.轻、中型TBI后NGF和BDNF蛋白阳性表达增加,其中以轻型TBI组表达最为显著. 结论 轻型和中型TBI对NSCs移植的影响与伤后脑组织局部微环境因素的改变密切相关.

  14. Estradiol Synthesis and Release in Cultured Female Rat Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Dalei Zhang

    2013-01-01

    Full Text Available Bone marrow stem cells (BMSCs have the capacity to differentiate into mature cell types of multiple tissues. Thus, they represent an alternative source for organ-specific cell replacement therapy in degenerative diseases. In this study, we demonstrated that female rat BMSCs could differentiate into steroidogenic cells with the capacity for de novo synthesis of Estradiol-17β (E2 under high glucose culture conditions with or without retinoic acid (RA. The cultured BMSCs could express the mRNA and protein for P450arom, the enzyme responsible for estrogen biosynthesis. Moreover, radioimmunoassay revealed that BMSCs cultured in the present culture system produced and secreted significant amounts of testosterone, androstenedione, and E2. In addition, RA promoted E2 secretion but did not affect the levels of androgen. These results indicate that BMSCs can synthesize and release E2 and may contribute to autologous transplantation therapy for estrogen deficiency.

  15. Regulation of period 1 expression in cultured rat pineal

    Science.gov (United States)

    Fukuhara, Chiaki; Dirden, James C.; Tosini, Gianluca

    2002-01-01

    The aim of the present study was to investigate the in vitro expression of Period 1 (Per1), Period 2 (Per2) and arylalkylamine N-acetyltransferase (AA-NAT) genes in the rat pineal gland to understand the mechanism(s) regulating the expression of these genes in this organ. Pineals, when maintained in vitro for 5 days, did not show circadian rhythmicity in the expression of any of the three genes monitored. Norepinephrine (NE) induced AA-NAT and Per1, whereas its effect on Per2 was negligible. Contrary to what was observed in other systems, NE stimulation did not induce circadian expression of Per1. The effect of NE on Per1 level was dose- and receptor subtype-dependent, and both cAMP and cGMP induced Per1. Per1 was not induced by repeated NE - or forskolin - stimulation. Protein synthesis was not necessary for NE-induced Per1, but it was for reduction of Per1 following NE stimulation. Per1 transcription in pinealocytes was activated by BMAL1/CLOCK. Our results indicate that important differences are present in the regulation of these genes in the mammalian pineal. Copyright 2002 S. Karger AG, Basel.

  16. IL-1β and IL-6 modulate apolipoprotein E gene expression in rat hepatocyte primary culture

    Directory of Open Access Journals (Sweden)

    Agnes Ribeiro

    1992-01-01

    Full Text Available Incubation of rat hepatocytes in primary culture with IL-1β at a concentration of 2.5 units/ml resulted in an increase (+80% in the amount of apoE mRNA without any effect upon apoE synthesis. IL-6 at a low concentration (10 units/ml induced a decrease (−35% in the amount of apoE mRNA, but increased apoE synthesis (+28%. No effect was observed with higher concentrations of IL-1β (10 units/ml or IL-6 (100 units/ml. These results suggest that inflammatory cytokines IL-1β and IL-6 modulate the expression of apoE gene in cultured rat hepatocytes, at a concentration that does not induce the acute phase response.

  17. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation

    OpenAIRE

    Rioux, Vincent; Daval, Stéphanie; Guillou, Hervé; Jan, Sophie; Legrand, Philippe

    2003-01-01

    International audience; This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [ 1-$^{14}$C] -lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells ($94.8 \\pm 2.2\\%$ of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low ($24.6 \\pm 4.2\\%$ of initial radioactivity after...

  18. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    In vitro models of the blood-brain barrier are useful tools to study blood-brain barrier function as well as drug permeation from the systemic circulation to the brain parenchyma. However, a large number of the available in vitro models fail to reflect the tightness of the in vivo blood-brain...... barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  19. Toxic effect of the glycoalkaloids solanine and tomatine on cultured neonatal rat heart cells.

    Science.gov (United States)

    Bergers, W W; Alink, G M

    1980-06-01

    The toxic effects of the glycoalkaloids, alpha-solanine and tomatine, were studied in beating heart cell cultures from 1--2-day-old rats. After addition of alpha-solanine (80 microgram/ml) and tomatine (40 microgram/ml) to the culture medium, the cells ceased beating within a few minutes. At a concentration of 40 microgram/ml alpha-solanine and 20 microgram/ml tomatine, both compounds caused a pronounced increase of the contraction frequency, lasting for at least 2h. K-strophantin, a reference heart glycoside, caused arrhythmic beating at 20 microgram/ml and complete cessation of contractions at 160 microgram/ml.

  20. Vasoactive intestinal peptide can promote the development of neonatal rat primordial follicles during in vitro culture.

    Science.gov (United States)

    Chen, Niannian; Li, Yu; Wang, Wenjun; Ma, Yun; Yang, Dongzi; Zhang, Qingxue

    2013-01-01

    Recruitment of primordial follicles is essential for female fertility. Some of the intraovarian growth factors involved in the initiation of primordial follicle growth have been identified, but the exact mechanisms regulating follicle activation are poorly understood. Strong evidence indicates that vasoactive intestinal peptide (VIP), a neuropeptide found in ovarian nerves, plays a role in the physiology of follicle development and function. The aim of the present study was to determine whether VIP might regulate the activation and growth of neonatal rat primordial follicles in an in vitro culture system. Ovaries from 4-day-old rats were cultured for 14 days in medium containing 10(-7) M VIP. At the end of the culture, the developmental stages and viability of the follicles were evaluated using histological sections. Immunohistochemistry studies for proliferating cell nuclear antigen (PCNA) were performed to assess the mitotic activity of granulosa cells. In addition, the expression level of kit ligand (KL) mRNA was examined after culture. Histology showed that primordial follicles could survive and start to grow in vitro. The proportion of primordial follicles was decreased and the proportion of early primary follicles increased after in vitro culture with VIP. Immunolocalization of PCNA showed that follicle growth was initiated after VIP treatment. The expression level of KL mRNA was increased in the VIP treatment group. Thus, VIP can promote primordial follicle development, possibly mediated in part through upregulating the expression of KL.

  1. Surface proteins in normal and transformed rat liver epithelial cells in culture.

    Science.gov (United States)

    Bannikov, G. A.; Saint Vincent, L.; Montesano, R.

    1980-01-01

    The pattern of surface proteins of different types of normal and transformed rat liver cells have been studied in culture by means of lactoperoxidase-catalysed iodination procedures, followed by SDS-gel electrophoresis. The cells examined were primary cultures of epithelial liver cells, long-term cultures of epithelial liver cells, in vitro transformed epithelial liver cell lines and liver tumour-cell lines; mesenchymal cells from liver and skin were also examined. The principal surface proteins of primary cultures of epithelial cells from adult or neonatal rats had components with mol. wts of 140,000-160,000, 100,000 and 40,000-70,000. A band that had the same position as fibronectin from mesenchymal cells was also present and this band, as well as other iodinated components, were less sensitive to trypsin than fibroblastic fibronectin. A similar pattern of iodinated proteins was seen in long-term cultures of epithelial liver cells, with a great reduction in the number and intensity of the bands in the mol. wt region below 100,000. Almost all the in vitro transformed and tumour epithelial cell lines contain a protein with a mol. wt 135,000 as one of the major iodinated bands, and in contrast to the observation in transformed fibroblasts, the fibronectin was retained by most of these transformed cell lines. Images Fig. 1 Fig. 2 Fig. 3 PMID:7053205

  2. Glutamate enhances the expression of vascular endothelial growth factor in cultured SD rat astrocytes

    Institute of Scientific and Technical Information of China (English)

    Chong-xiao Liu; Yong Liu; Wei Shi; Xin-lin Chen; Xin-li Xiao; Ling-yu Zhao; Yu-mei Tian; Jun-feng Zhang

    2009-01-01

    Objective To study the effect of glutamate on the expression of vascular endothelial growth factor (VEGF) mRNA and protein in cultured rat astrocytes. Methods Cultured rat astrocytes were randomly divided into 6 groups: control group (C), glutamate group (G), QA group (Q), DCG-IV group (D), L-AP4 group (L) and glutanmte-FMCPG gronp (G+M). Cells were cultured under nomoxic condition (95% air, 5% CO2). RT-PCR and ELISA methods were used to detect the expression of VEGF mRNA and protein in cultured astrocytes, respectively. G+ M group was preincubated with lmM MCPG for 30 min prior to the stimulation with glutamate. There were 7 time points at 0,4,8,12,16,24 and 48 h in each group except G+M group. Results The expression of VEGF mRNA and protein did not differ significantly among D group, L group and C group. Different from that in C group, the expression of VEGF mRNA and protein could be enhanced both in a dose-dependent and time-dependent manner in G group and Q group. Meanwhile, the enhanced expression of VEGF mRNA and protein in G group was completely suppressed by MCPG after 24 h. Conclusion Glutamate can increase the expression of VEGF mRNA and protein in cultured astrocytes, which may be due to the activation of group I metabotropic glutamate receptors in astrocytes.

  3. Identification and pharmacological characterization of the histamine H3 receptor in cultured rat astrocytes.

    Science.gov (United States)

    Mele, Tina; Jurič, Damijana Mojca

    2013-11-15

    Recently we reported that cultured rat cortical astrocytes express histamine H3 receptor that is functionally coupled to Gi/o proteins and participates to the stimulatory effect of histamine. Due to the lack of data on the distribution of histamine H3 receptors on glial cells we further investigated their presence in cultured astrocytes from different brain regions. Real-time PCR was performed to examine the expression of native histamine H3 receptor in cultured rat astrocytes from cortex,cerebellum, hippocampus and striatum.Double-antigen immunofluorescence staining and[3H]N-α-methylhistamine([3H]NαMH) binding studies were utilized to specifically identify and characterize receptor binding sites in astrocytes. Histamine H3 receptor mRNA was detected in rat astrocytes from all the regions under investigation with the highest levels in striatal astrocytes followed by hippocampal astrocytes and approximately equal levels in cerebellar and cortical astrocytes.Double-antigen immunofluorescence confirmed the presence of histamine H3 receptors on the membrane of all examined astroglial populations.[3H]NαMH bound with high affinity and specificity to an apparently single class of saturable sites on cortical astrocytic membranes(KD¼4.5570.46 nM; Bmax¼5.6370.21 fmol/mg protein)and competition assays with selective agonists and antagonists were consistent with labeling of histamine H3 receptor(range of pKi values 7.50–8.87). Our study confirmed the ability of cultured astrocytes from different rat brain regions to express histamine H3 receptors.The observed diverse distribution of the receptors within various astrocytic populations possibly mirrors their heterogeneity in the brain and indicates their active involvement in histamine-mediated effects.

  4. Thyroid hormone metabolism in primary cultured rat hepatocytes. Effects of glucose, glucagon, and insulin.

    OpenAIRE

    Sato, K.; Robbins, J

    1981-01-01

    Primary cultured adult rat hepatocytes were used to study regulation of thyroid hormone deiodination. Control studies showed that these cells survived for at leas 4 d, during which time they actively deiodinated both the phenolic (5'-) and non-phenolic (5-) rings of L-thyroxine (T4),3,5,3'-triiodo-L-thyronine, and 3,3',5'-triiodothyronine. Increasing the substate concentration caused a decrease in fractional iodide release and a corresponding increase in conjugation with sulfate and glucuroni...

  5. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  6. Therapy of Chronic Cardiosclerosis in WAG Rats Using Cultures of Cardiovascular Cells Enriched with Cardiac Stem Cell.

    Science.gov (United States)

    Chepeleva, E V; Pavlova, S V; Malakhova, A A; Milevskaya, E A; Rusakova, Ya L; Podkhvatilina, N A; Sergeevichev, D S; Pokushalov, E A; Karaskov, A M; Sukhikh, G T; Zakiyan, S M

    2015-11-01

    We developed a protocol for preparing cardiac cell culture from rat heart enriched with regional stem cells based on clonogenic properties and proliferation in culture in a medium with low serum content. Experiments on WAG rats with experimental ischemic myocardial damage showed that implantation of autologous regional stem cells into the left ventricle reduced the volume of cicatricial tissue, promoted angiogenesis in the damaged zone, and prevented the risk of heart failure development.

  7. Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays.

    Science.gov (United States)

    Ito, D; Tamate, H; Nagayama, M; Uchida, T; Kudoh, S N; Gohara, K

    2010-11-24

    To investigate the minimum neuron and neurite densities required for synchronized bursts, we cultured rat cortical neurons on planar multi-electrode arrays (MEAs) at five plating densities (2500, 1000, 500, 250, and 100 cells/mm(2)) using two culture media: Neuron Culture Medium and Dulbecco's Modified Eagle Medium supplemented with serum (DMEM/serum). Long-term recording of spontaneous electrical activity clarified that the cultures exhibiting synchronized bursts required an initial plating density of at least 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum. Immediately after electrical recording, immunocytochemistry of microtubule-associated protein 2 (MAP2) and Neurofilament 200 kD (NF200) was performed directly on MEAs to investigate the actual densities of neurons and neurites forming the networks. Immunofluorescence observation revealed that the construction of complicated neuronal networks required the same initial plating density as for synchronized bursts, and that overly sparse cultures showed significant decreases of neurons and neurites. We also found that the final densities of surviving neurons at 1 month decreased greatly compared with the initial plating densities and became saturated in denser cultures. In addition, the area of neurites and the number of nuclei were saturated in denser cultures. By comparing both the results of electrophysiological recording and immunocytochemical observation, we revealed that there is a minimum threshold of neuron densities that must be met for the exhibition of synchronized bursts. Interestingly, these minimum densities of MAP2-positive final neurons did not differ between the two culture media; the density was approximately 50 neurons/mm(2). This value was obtained in the cultures with the initial plating densities of 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum.

  8. Simvastatin inhibits leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Tai-ping HU; Fang-ping XU; Yuan-jian LI; Jian-dong LUO

    2006-01-01

    Aim:To test the hypothesis that statins inhibit leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes.Methods:Cultured neonatal rat cardiomyocytes were used to evaluate the effects of simvastatin on leptininduced hypertrophy.Intracellular reactive oxygen species (ROS) levels were determined by using 2',7'-dichlorofluorescein diacetate (DCF-DA) fluorescence.Total intracellular RNA and cell protein content,which serve as cell proliferative markers,were assayed by using propidium iodide (PI) fluorescence and the Bio-Rad DC protein assay.respectively.The cell surface area,an indicator of cell hypertrophy,was quantified by using Leica image analysis software.Results:After 72 h treatment,1eptin markedly increased RNA 1evels,cell surface area,and total cell protein levels in cardiomyocytes,which were significantly inhibited by simvastatin or catalase treatment.ROS levels were significantly elevated in cardiomyocytes treated with leptin for 4 h compared with those cells without leptin treatment.The increase in ROS levels in cardiomyocytes induced by leptin was reversed by treatment with simvastatin and catalase.Conclusion:Simvastatin inhibits leptin-induced ROS-mediated hyperophy in cultured neonatal rat cardiac myocytes.Statin therapy may provide an effective means of improving cardiac dysfunction in obese humans.

  9. Characterization of primary rat nasal epithelial cultures in CFTR knockout rats as a model for CF sinus disease.

    Science.gov (United States)

    Tipirneni, Kiranya E; Cho, Do-Yeon; Skinner, Daniel F; Zhang, Shaoyan; Mackey, Calvin; Lim, Dong-Jin; Woodworth, Bradford A

    2017-08-03

    The objectives of the current experiments were to develop and characterize primary rat nasal epithelial cultures and evaluate their usefulness as a model of cystic fibrosis (CF) sinonasal transepithelial transport and CF transmembrane conductance regulator (CFTR) function. Laboratory in vitro and animal studies. CFTR(+/+) and CFTR(-/-) rat nasal septal epithelia (RNSE) were cultured on semipermeable supports at an air-liquid interface to confluence and full differentiation. Monolayers were mounted in Ussing chambers for pharmacologic manipulation of ion transport and compared to similar filters containing murine (MNSE) and human (HSNE) epithelia. Histology and scanning electron microscopy (SEM) were completed. Real-time polymerase chain reaction of CFTR(+/+) RNSE, MNSE, and HSNE was performed to evaluate relative CFTR gene expression. Forskolin-stimulated anion transport (ΔIsc in μA/cm(2) ) was significantly greater in epithelia derived from CFTR(+/+) when compared to CFTR(-/-) animals (100.9 ± 3.7 vs. 10.5 ± 0.9; P < 0.0001). Amiloride-sensitive ISC was equivalent (-42.3 ± 2.8 vs. -46.1 ± 2.3; P = 0.524). No inhibition of CFTR-mediated chloride (Cl(-) ) secretion was exhibited in CFTR(-/-) epithelia with the addition of the specific CFTR inhibitor, CFTRInh -172. However, calcium-activated Cl(-) secretion (UTP) was significantly increased in CFTR(-/-) RNSE (CFTR(-/-) -106.8 ± 1.6 vs. CFTR(+/+) -32.2 ± 3.1; P < 0.0001). All responses were larger in RNSE when compared to CFTR(+/+) and CFTR(-/-) (or F508del/F508del) murine and human cells (P < 0.0001). Scanning electron microscopy demonstrated 80% to 90% ciliation in all RNSE cultures. There was no evidence of infection in CFTR(-/-) rats at 4 months. CFTR expression was similar among species. The successful development of the CFTR(-/-) rat enables improved evaluation of CF sinus disease based on characteristic abnormalities of ion transport. NA. Laryngoscope, 2017. © 2017 The American Laryngological

  10. Cortical network from human embryonic stem cells

    OpenAIRE

    2010-01-01

    Abstract The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in cul...

  11. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    ChunSONG; Xiu-QingDUAN; XiLI; Li-OuHAN; PingXU; Chun-FangSONG:; Lian-HongJIN

    2004-01-01

    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3,7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured underthe microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group (P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  12. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    Chun SONG; Xiu-Qing DUAN; Xi LI; Li-Ou HAN; Ping XU; Chun-Fang SONG; Lian-Hong JIN

    2004-01-01

    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3, 7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured under the microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group(P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  13. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    Science.gov (United States)

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  14. Preparation and Primary Culture of Liver Cells Isolated from Adult Rats by Dispase Perfusion

    Directory of Open Access Journals (Sweden)

    Wahid,Syarifuddin

    1984-06-01

    Full Text Available The dispase perfusion technique was used to isolate liver cells from adult rats. The optimum conditions for obtaining many isolated liver cells with high viability were an enzyme concentration of 2000 U/ml, a pH of 7.5 and a perfusion time of 20 min. The population of isolated liver cells prepared with dispase consisted of 43.6% cells with diameters less than 20 micron and 56.4% cells with diameters above 20 micron. The isolated liver cells were cultured in basal culture medium either supplemented with or without dexamethasone (1 X 10(-5M and insulin (10 micrograms/ml. The addition of hormones to the culture medium improved the attachment efficiency of the isolated liver cells and delayed the disappearance of mature hepatocytes. Epithelial-like clear cells proliferated early in primary culture even in the presence of hormones. Therefore, functioning mature hepatocytes and proliferating epithelial-like clear cells coexisted well in the hormone-containing medium. Furthermore, the number of cultured cells reached a maximal level earlier in the presence of hormones than in the absence of hormones. The level of TAT activity in primary cultured cells was higher up to 3 days after inoculation in the presence of hormones than in their absence. No difference between G6Pase activity in primary cultured cells in the presence of hormones and that in the absence of hormones was found.

  15. Explant culture of mouse embryonic whole lung, isolated epithelium, or mesenchyme under chemically defined conditions as a system to evaluate the molecular mechanism of branching morphogenesis and cellular differentiation.

    Science.gov (United States)

    Del Moral, Pierre-Marie; Warburton, David

    2010-01-01

    Lung primordial specification as well as branching morphogenesis, and the formation of various pulmonary cell lineages, requires a specific interaction of the lung endoderm with its surrounding mesenchyme and mesothelium. Lung mesenchyme has been shown to be the source of inductive signals for lung branching morphogenesis. Epithelial-mesenchymal-mesothelial interactions are also critical to embryonic lung morphogenesis. Early embryonic lung organ culture is a very useful system to study epithelial-mesenchymal interactions. Both epithelial and mesenchymal morphogenesis proceed under specific conditions that can be readily manipulated in this system (in the absence of maternal influence and blood flow). More importantly this technique can be readily done in a serumless, chemically defined culture media. Gain and loss of function can be achieved using expressed proteins, recombinant viral vectors, and/or analysis of transgenic mouse strains, antisense RNA, as well as RNA interference gene knockdown. Additionally, to further study epithelial-mesenchymal interactions, the relative roles of epithelium versus mesenchyme signaling can also be determined using tissue recombination (e.g., epithelial and mesenchymal separation) and microbead studies.

  16. Expression of precerebellins in cultured rat calvaria osteoblast-like cells.

    Science.gov (United States)

    Rucinski, Marcin; Zok, Agnieszka; Guidolin, Diego; De Caro, Raffaele; Malendowicz, Ludwik K

    2008-10-01

    Cerebellin (CER), originally isolated from rat cerebellum, is a hexadecapeptide derived from the larger precursor called precerebellin 1 (Cbln1). At present 4 propeptides designated as Cbln1, Cbln2, Cbln3 and Cbln4 are recognized. They belong to precerebellin subfamily of the C1q family proteins. Precerebellins act as transneuronal regulators of synapse development and synaptic plasticity in various brain regions. Initially CER was thought to be a cerebellum specific peptide, however subsequent studies revealed its presence in other brain regions as well as in extraneuronal tissues. We investigated whether precerebellins are expressed and involved in regulation of cultured rat calvarial osteoblast-like (ROB) cells. Classic RT-PCR revealed the presence of Cbln1 and Cbln3 mRNA in fragments of rat calvaria, in freshly isolated ROB cells and in ROB cells cultured for 7, 14 and 21 days. Cbln2 and Cbln4 mRNA, on the other hand, could not be demonstrated in ROB cells but was found to be present in the brain. In freshly isolated ROB cells expression of Cbln1 gene was very low and gradually increased in relation to the duration of culture. Expression of Cbln3, on the other hand, was very low in fragments of rat calvaria, and increased notably after digestion with collagenase-I. The highest expression of this precerebellin was observed at day 14 of culture while at days 7 and 21 levels of expressions were notably lower. Neither Cbln2 nor Cbln4 was found to be expressed in the ROB cells. Neither CER nor des-Ser1-CER (10(-10)-10(-6)M) affect osteocalcin production and proliferation rate of studied cells. The above findings suggest that CER, which theoretically would be derived from Cbln1, modulate neither differentiated (osteocalcin secretion) nor basic (proliferation) functions of cultured rat osteoblast-like cells. The obtained data raise an intriguing hypothesis that precerebellins may be involved in regulating of spatial organization of osteoblastic niches in the bone.

  17. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture.

    Science.gov (United States)

    Reda, A; Hou, M; Winton, T R; Chapin, R E; Söder, O; Stukenborg, J-B

    2016-09-01

    Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no supportive effect of the supplementation with any factor or the co-culturing with epididymal fat tissue on germ cell differentiation in

  18. Growth characteristics and functional changes in rat chondrocytes cultured in porous tantalum in vitro

    Directory of Open Access Journals (Sweden)

    Ling ZHANG

    2014-08-01

    Full Text Available Objective To evaluate the growth characteristics and functional changes in rat chondrocytes cultured in porous tantalum in vitro. Methods The chondrocytes isolated from cartilage of 3-week old SD rats were cultured in vitro, then the 2nd passage cells were identified and implanted in porous tantalum scaffolds with a density of 1×106 cells/ml. The morphological characteristics of the chondrocytes cultured in porous tantalum were observed under inverted microscope, scanning electron microscope (SEM and transmission electron microscope (TEM, and the content of glycosaminoglycan (GAG in the chondrocytes was measured by chromatometry. Results The harvested cells were identified as chondrocytes by type Ⅱ collagen immunocytochemical staining, toluidine blue staining and safranin-O staining. Many chondrocytes adhering to the edge of porous tantalum were found by inverted microscope. Observation under SEM showed that chondrocytes spread well on the surface and distributed in the holes of porous tantalum, and they proliferated and secreted some extracellular matrixes. TEM observation showed that the ultrastructure of chondrocytes cultured in porous tantalum was similar to that of normal chondrocytes. Chromatometry determination showed that the chondrocytes in porous tantalum could secrete GAG continuously. Conclusion Porous tantalum is shown to have a satisfactory biocompatibility with chondrocytes in vitro, and may be used as a scaffold for cartilage tissue engineering. DOI: 10.11855/j.issn.0577-7402.2014.06.08

  19. Leptin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    Science.gov (United States)

    Peliciari-Garcia, Rodrigo Antonio; Andrade-Silva, Jéssica; Cipolla-Neto, José; Carvalho, Carla Roberta de Oliveira

    2013-01-01

    Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE ( 1 µM) reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT) activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER) was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception.

  20. Leptin Modulates Norepinephrine-Mediated Melatonin Synthesis in Cultured Rat Pineal Gland

    Directory of Open Access Journals (Sweden)

    Rodrigo Antonio Peliciari-Garcia

    2013-01-01

    Full Text Available Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb. Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM associated with NE (1 µM reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception.

  1. Membrane-bound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture.

    Science.gov (United States)

    Simão, Ana Maria S; Beloti, Márcio M; Cezarino, Rodrigo M; Rosa, Adalberto Luiz; Pizauro, João M; Ciancaglini, Pietro

    2007-04-01

    Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MW(r) of about 120 kDa and specific PNPP activity of 1200 U/mg. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 U/mg), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and beta-glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function.

  2. Enzymatic Cell Isolation and Explant Cultures of Rat Calvarial Osteoblast Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Osteoblast cells were isolated from the calvarial bones of newborn Wistar rats and cultured in vitro via both collagenase digestion method and explant technique, and a comparative study was carried out on the two culture methods. The biologic characteristics of tbs osteoblast cells were studied via cell number counting,morphology observation, alkaline phosphatase staining of the cells and alizarine- red staining of the calcified nodules. The results show that osteoblast cells can be cultured in vitro via collagenase digestion method and explant technique, and the obtained cells are of good biologic characteristics. In comparison with the explant techniqne,the operative procedure of the enzymatic digestion method is more complicated. The digestion time must be carefully controlled. However, with this method, one can obtain a lager number of cells in a short time. The operative procedure of the explant technique is simpler, but it usually takes longer time to obtain cells of desirable number.

  3. Morphological and functional behaviors of rat hepatocytes cultured on single-walled carbon nanotubes.

    Science.gov (United States)

    Koga, Haruka; Fujigaya, Tsuyohiko; Nakashima, Naotoshi; Nakazawa, Kohji

    2011-09-01

    This study describes the morphological and functional behaviors of rat hepatocytes on single-walled carbon nanotube (CNT)-coated surfaces. Although the hydrophobic characteristics of CNT-coated surfaces increased with increasing CNT density, hepatocyte adhesion decreased, indicating that the interaction between hepatocytes and CNTs is weak. We found that hepatocytes on a CNT-coated surface gradually gather together and form spheroids (spherical multicellular aggregates). These spheroids exhibit compact spherical morphology with a smooth surface and express connexin-32, an intracellular communication molecule. In contrast, collagen treatment in conjunction with the CNT-coated surface improved hepatocyte adhesion, and the cells maintained a monolayer configuration throughout the culture period. The albumin secretion and ammonia removal activities of hepatocyte spheroids were maintained at elevated levels for at least 15 days of culturing as compared with hepatocyte monolayers. These results indicate that CNTs can be used for the formation and long-term culture of hepatocyte spheroids.

  4. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells.

    Science.gov (United States)

    Parkinson, Fiona E; Hacking, Cindy

    2005-07-05

    The blood-brain barrier is a physical and metabolic barrier that restricts diffusion of blood-borne substances into brain. In vitro models of the blood-brain barrier are used to characterize this structure, examine mechanisms of damage and repair and measure permeability of test substances. The core component of in vitro models of the blood-brain barrier is brain microvascular endothelial cells. We cultured rat brain microvascular endothelial cells (RBMEC) from isolated rat cortex microvessels. After 2-14 days in vitro (DIV), immunohistochemistry of these cells showed strong labeling for zona occludens 1 (ZO-1), a tight junction protein expressed in endothelial cells. Pericytes were also present in these cultures, as determined by expression of alpha-actin. The present study was performed to test different cell isolation methods and to compare the resulting cell cultures for abundance of pericytes and for blood-brain barrier function, as assessed by 14C-sucrose flux. Two purification strategies were used. First, microvessels were preabsorbed onto uncoated plastic for 4 h, then unattached microvessels were transferred to coated culture ware. Second, microvessels were incubated with an antibody to platelet-endothelial cell adhesion molecule 1 (PECAM-1; CD31) precoupled to magnetic beads, and a magnetic separation procedure was performed. Our results indicate that immunopurification, but not preadsorption, was an effective method to purify microvessels and reduce pericyte abundance in the resulting cultures. This purification significantly reduced 14C-sucrose fluxes across cell monolayers. These data indicate that pericytes can interfere with the development of blood-brain barrier properties in in vitro models that utilize primary cultures of RBMECs.

  5. Feasibility of direct oxygenation of primary-cultured rat hepatocytes using polyethylene glycol-decorated liposome-encapsulated hemoglobin (LEH).

    Science.gov (United States)

    Naruto, Hirosuke; Huang, Hongyun; Nishikawa, Masaki; Kojima, Nobuhiko; Mizuno, Atsushi; Ohta, Katsuji; Sakai, Yasuyuki

    2007-10-01

    We tested the short-term efficacy of liposome-encapsulated hemoglobin (LEH) in cultured rat hepatocytes. Supplementation with LEH (20% of the hemoglobin concentration of blood) did not lower albumin production in static culture, and completely reversed the cell death and deterioration in albumin production caused by an oxygen shortage in 2D flat-plate perfusion bioreactors.

  6. 人胚胎纹状体来源神经干细胞的体外培养**★%In vitro culture of human embryonic striatum-derived neural stem cells**★

    Institute of Scientific and Technical Information of China (English)

    樊明超; 王巧玲; 刘克; 张欣; 关云谦; 孙鹏

    2013-01-01

    BACKGROUND: Neural stem cells are always derived from animals, and unsuitable for human transplantation treatment. OBJECTIVE: To explore the in vitro culture methods of human embryonic striatum-derived neural stem cells, and to observe the biological characteristics. METHODS: The human embryonic striatum were separated from the embryo at a gestational age of 8-16 weeks that received induction of labor with water bag, and then the embryonic striatum was in vitro cultured in the serum-free Dulbecco’s modified Eagle’s medium. The cells were passaged after neurospheres formation, and then the cells were induced to differentiation with the Dulbecco’s modified Eagle’s medium/F12 containing 10% fetal bovine serum. RESULTS AND CONCLUSION: The in vitro cultured human embryonic striatum-derived neural stem cells grew rapidly and could express nestin. Colony formation assay showed the cel clone formation rate was 6.0%-7.0%. 5-Bromodeoxyuridine incorporation assay showed the cel proliferation rate was 37.9%. Immunofluorescence staining showed that the cells after induction and differentiation could express Tuj-1, glial fibril ary acidic protein and nestin, but not express myelin basic protein. The results indicate that human embryonic striatum-derived neural stem cells cultured in the serum-free medium can maintain their biological characteristics and have self-renewal capacity, and the cells can differentiate into the neurons and astrocytes induced by the fetal bovine serum.%  背景:目前神经干细胞多由动物获得,不适合人类临床移植治疗。目的:探索体外环境下人胚胎纹状体来源神经干细胞的培养方法,同时观察其生物学特性。方法:取经水囊引产的孕8-16周人胚胎纹状体,体外用无血清 DMEM 培养基进行培养,待细胞形成神经球后进行传代,并应用含体积分数10%胎牛血清的 DMEM/F12培养液进行诱导分化。结果与结论:体外培养的人胚胎纹状体来

  7. Time window characteristics of cultured rat hippocampal neurons subjected to ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    XU Zhong; XU Ru-xiang; LIU Bao-song; JIANG Xiao-dan; HUANG Tao; DING Lian-shu; YUAN Jun

    2005-01-01

    Objective: To explore cell death and apoptosis in rat hippocampal neurons at different time points after ischemia, hypoxia and reperfusion injury and to elucidate time window characteristics in ischemia neuronal injury.Methods: Hippocampal neurons were obtained from rat embryo and were cultured in vitro. The ischemia and reperfusion of cultured rat hippocampal neurons were simulated by oxygen-glucose deprivation (OGD) and recovery. OGD at different time points (0.25 h to 3.0 h) and then the same recovery (24 h) were prepared. Annexin V-PI staining and flow cytometry examined neuron death and apoptosis at different time after injury. Results: After OGD and recovery, both necrosis and apoptosis were observed. At different times after OGD, there were statistically significant differences in neuron necrosis rate (P0.05). At recovery, survival rate of hippocampal neurons further decreased while apoptosis rate increased. Furthermore, apoptosis rates of different time differed greatly (P<0.05). Apoptosis rate gradually increased with significant difference among those of different time points (P<0.05). However, 2 h after ischemia, apoptosis rate decreased markedly.Conclusions: Apoptosis is an important pathway of delayed neuron death. The therapeutic time window should be within 2 h after cerebral ischemia and hypoxia.

  8. Use of liposome encapsulated hemoglobin as an oxygen carrier for fetal and adult rat liver cell culture.

    Science.gov (United States)

    Montagne, Kevin; Huang, Hongyun; Ohara, Keikou; Matsumoto, Kunio; Mizuno, Atsushi; Ohta, Katsuji; Sakai, Yasuyuki

    2011-11-01

    Engineering liver tissue constructs with sufficient cell mass for transplantation implies culturing large numbers of hepatocytes in a reduced volume; however, providing sufficient oxygen to dense cell cultures is still not feasible using only conventional culture medium. Liposome-encapsulated hemoglobin (LEH), an oxygen-carrying blood substitute originally designed for short-term perfusion, may be a good candidate as an oxygen carrier to cultured liver cells. In this study, we investigated the feasibility of maintaining long term hepatocyte cultures using LEH. Primary fetal and adult rat liver cells were directly exposed to LEH for 6 to 14 days in static culture or in a perfused flat plate bioreactor. The functions and viability of adult rat hepatocytes exposed to LEH were not adversely affected in static monolayer culture and were even improved in the bioreactor. However, some cytotoxicity of LEH was observed with fetal rat liver cells after 4 days of culture. LEH, though a suitable oxygen carrier for long-term culture of mature hepatocytes, is not suitable in its present form for perfusing fetal hepatocyte cultures in direct contact with the liposomes; either the LEH will have to be made less toxic or a more sophisticated bioreactor that prevents the direct contact between hepatocytes and perfusates will have to be designed if fetal cells are to be used for liver tissue engineering.

  9. Chronic lithium treatment increased intracellular S100ß levels in rat primary neuronal culture.

    Directory of Open Access Journals (Sweden)

    Masoumeh Emamghoreishi

    2015-02-01

    Full Text Available S100ß a neurotrophic factor mainly released by astrocytes, has been implicated in the pathogenesis of bipolar disorder. Thus, lithium may exert its neuroprotective effects to some extent through S100ß. Furthermore, the possible effects of lithium on astrocytes as well as on interactions between neurons and astrocytes as a part of its mechanisms of actions are unknown. This study was undertaken to determine the effect of lithium on S100β in neurons, astrocytes and a mixture of neurons and astrocytes. Rat primary astrocyte, neuronal and mixed neuro-astroglia cultures were prepared from cortices of 18-day's embryos. Cell cultures were exposed to lithium (1mM or vehicle for 1day (acute or 7 days (chronic. RT-PCR and ELISA determined S100β mRNA and intra- and extracellular protein levels. Chronic lithium treatment significantly increased intracellular S100β in neuronal and neuro-astroglia cultures in comparison to control cultures (P<0.05. Acute and chronic lithium treatments exerted no significant effects on intracellular S100β protein levels in astrocytes, and extracellular S100β protein levels in three studied cultures as compared to control cultures. Acute and chronic lithium treatments did not significantly alter S100β mRNA levels in three studied cultures, compared to control cultures. Chronic lithium treatment increased intracellular S100ß protein levels in a cell-type specific manner which may favor its neuroprotective action. The findings of this study suggest that lithium may exert its neuroprotective action, at least partly, by increasing neuronal S100ß level, with no effect on astrocytes or interaction between neurons and astrocytes.

  10. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Rigbolt, Kristoffer T G; Johansen, Pia T;

    2009-01-01

    : Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase zeta (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell......-labeled hESCs appear to be perfectly suitable for functional studies, and we exploited a SILAC-based proteomics strategy for discovery of hESC-specific surface markers. We determined and quantitatively compared the membrane proteomes of the self-renewing versus differentiating cells of two distinct human...

  11. Batroxobin Against Anoxic Damage of Rat Hippocampal Neurons in Culture: Morphological Changes and Hsp70 Expression

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Batroxobin,the thrombin-like enzyme,is used for therapeutic defibrination. We have found that batroxobin has good therapeutic effect in ischemic reperfusion rats and clinical practices in vivo. But we have not studied the neuroprotective effect of batroxobin on anoxic hippocampal neurons in vitro. The purpose of this study was to obtain further information on the mechanism of the batroxobin-induced neuroprotection and examine the neuroprotective effect on neurons exposed to anoxia. The effect of batroxobin on anoxic damages in cultured hippocampal neurons of neonatal rats was investigated by using morphological changes and heat shock protein 70Kd (Hsp70) immunoreactive expression as indicators. The results indicate that batroxobin, besides its defibrination, may have a direct neuroprotective effect on anoxic damage of hippocampal neurons.

  12. Characterization of rat or human hepatocytes cultured in microphysiological systems (MPS) to identify hepatotoxicity.

    Science.gov (United States)

    Chang, Shih-Yu; Voellinger, Jenna L; Van Ness, Kirk P; Chapron, Brian; Shaffer, Rachel M; Neumann, Thomas; White, Collin C; Kavanagh, Terrance J; Kelly, Edward J; Eaton, David L

    2017-04-01

    The liver is the main site for drug and xenobiotics metabolism, including inactivation or bioactivation. In order to improve the predictability of drug safety and efficacy in clinical development, and to facilitate the evaluation of the potential human health effects from exposure to environmental contaminants, there is a critical need to accurately model human organ systems such as the liver in vitro. We are developing a microphysiological system (MPS) based on a new commercial microfluidic platform (Nortis, Inc.) that can utilize primary liver cells from multiple species (e.g., rat and human). Compared to conventional monolayer cell culture, which typically survives for 5-7days or less, primary rat or human hepatocytes in an MPS exhibited higher viability and improved hepatic functions, such as albumin production, expression of hepatocyte marker HNF4α and canaliculi structure, for up to 14days. Additionally, induction of Cytochrome P450 (CYP) 1A and 3A4 in cryopreserved human hepatocytes was observed in the MPS. The acute cytotoxicity of the potent hepatotoxic and hepatocarcinogen, aflatoxin B1, was evaluated in human hepatocytes cultured in an MPS, demonstrating the utility of this model for acute hepatotoxicity assessment. These results indicate that MPS-cultured hepatocytes provide a promising approach for evaluating chemical toxicity in vitro. Copyright © 2017. Published by Elsevier Ltd.

  13. Growth enhancement effect of BzATP on primary cultured astrocytes from rat brain

    Institute of Scientific and Technical Information of China (English)

    Hua-Zheng LIANG; Ying LIU; Zhu-Rong YE

    2006-01-01

    Objective To explore whether BzATP could promote the growth of primary cultured astrocytes (AS) of rat and its possible mechanism, and whether TGF-β1 was involved in the event. Methods The primary cultured AS were derived from new born Sprague-Dawley rats.Glial fibrillary acidic protein (GFAP) immunofluorescent stain was used to check the purity of cultured AS. Morphometry was used to detect the changes of AS. The proliferation index of AS was detected by BrdU incorporation assay. Western blot was used to detect the changes of GFAP under different conditions. Changes of TGF-β1 gene transcription were detected by RT-PCR. ELISA was utilized to detect the variation of TGF-β1 protein in the supernate. Results The purity of primary cultured AS reached to 99%. BzATP promoted the hypertrophy of AS including the elongation of AS processes and the enlargement of cell bodies, BzATP also promoted the expression of GFAP in existence of Ca2+, but had no effect on cell proliferation. BzATP increased the transcription of TGF-β1 mRNA and the release of TGF-β1 protein in existence of Ca2+. TGF-β1 neutralizing antibody partially inhibited the expression of GFAP induced by BzATP, but had no effect on AS proliferation and cell morphology. Conclusion BzATP enhanced the hypertrophy of primary cultured AS, increased the expression of GFAP partially through TGF-β1. Mechanisms of the enhancement of AS growth induced by BzATP other than TGF-51 pathway remains to be elucidated.

  14. Parvalbumin immunoreactivity is enhanced by brain-derived neurotrophic factor in organotypic cultures of rat retina.

    Science.gov (United States)

    Rickman, D W

    1999-11-15

    The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand-receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trk(B), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway-the parvalbumin (PV)-immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV-immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well-immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit.

  15. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    2016-10-01

    Full Text Available Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of longterm (14 days and low dose (1 μM exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  16. WNT/β-Catenin signaling pathway regulates non-tumorigenesis of human embryonic stem cells co-cultured with human umbilical cord mesenchymal stem cells

    Science.gov (United States)

    Chang, Yu-Hsun; Chu, Tang-Yuan; Ding, Dah-Ching

    2017-01-01

    Human pluripotent stem cells harbor hope in regenerative medicine, but have limited application in treating clinical diseases due to teratoma formation. Our previous study has indicated that human umbilical cord mesenchymal stem cells (HUCMSC) can be adopted as non-teratogenenic feeders for human embryonic stem cells (hESC). This work describes the mechanism of non-tumorigenesis of that feeder system. In contrast with the mouse embryonic fibroblast (MEF) feeder, HUCMSC down-regulates the WNT/β-catenin/c-myc signaling in hESC. Thus, adding β-catenin antagonist (FH535 or DKK1) down-regulates β-catenin and c-myc expressions, and suppresses tumorigenesis (3/14 vs. 4/4, p = 0.01) in hESC fed with MEF, while adding the β-catenin enhancer (LiCl or 6-bromoindirubin-3′-oxime) up-regulates the expressions, and has a trend (p = 0.056) to promote tumorigenesis (2/7 vs. 0/21) in hESC fed with HUCMSC. Furthermore, FH535 supplement does not alter the pluripotency of hESC when fed with MEF, as indicated by the differentiation capabilities of the three germ layers. Taken together, this investigation concludes that WNT/β-catenin/c-myc pathway causes the tumorigenesis of hESC on MEF feeder, and β-catenin antagonist may be adopted as a tumor suppressor. PMID:28157212

  17. Cells that emerge from embryonic explants produce fibers of type IV collagen.

    Science.gov (United States)

    Chen, J M; Little, C D

    1985-10-01

    Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.

  18. Inhibition of calcium currents in cultured rat dorsal root ganglion neurones by (-)-baclofen.

    OpenAIRE

    Dolphin, A C; Scott, R.H.

    1986-01-01

    Voltage-dependent inward calcium currents (ICa) activated in cultured rat dorsal root ganglion neurones were reversibly reduced in a dose-dependent manner by (-)-baclofen (10 microM to 100 microM). Baclofen (100 microM) reduced the calcium-dependent slow outward potassium current (IK(Ca)). This current was abolished in calcium-free medium and by 300 microM cadmium chloride. The action of baclofen on IK(Ca) was reduced when the calcium concentration in the medium was increased from 5 mM to 30 ...

  19. Modulations of prolactin and growth hormone gene expression and chromatin structure in cultured rat pituitary cells.

    OpenAIRE

    Levy-Wilson, B

    1983-01-01

    I have measured the effect of hormones and other regulatory factors present in the serum component of the culture medium on the levels of growth hormone and prolactin mRNAs in rat pituitary (GH4) cells. Hybridization of cytoplasmic RNA with growth hormone or prolactin cDNA clones indicate that serum depletion reduces significantly the amount of these two mRNAs. The localization of these two genes in chromatin was also analysed using micrococcal nuclease as a probe. At intermediate levels of d...

  20. The liberation of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kathryn Blair

    2011-04-01

    Full Text Available Mouse embryonic stem (ES cells are defined by their capacity to self-renew and their ability to differentiate into all adult tissues including the germ line. Along with efficient clonal propagation, these properties have made them an unparalleled tool for manipulation of the mouse genome. Traditionally, mouse ES (mES cells have been isolated and cultured in complex, poorly defined conditions that only permit efficient derivation from the 129 mouse strain; genuine ES cells have not been isolated from another species in these conditions. Recently, use of small molecule inhibitors of glycogen synthase kinase 3 (Gsk3 and the Fgf-MAPK signaling cascade has permitted efficient derivation of ES cells from all tested mouse strains. Subsequently, the first verified ES cells were established from a non-mouse species, Rattus norvegicus. Here, we summarize the advances in our understanding of the signaling pathways regulating mES cell self-renewal that led to the first derivation of rat ES cells and highlight the new opportunities presented for transgenic modeling on diverse genetic backgrounds. We also comment on the implications of this work for our understanding of pluripotent stem cells across mammalian species.

  1. Comparative embryotoxicity of different antimalarial peroxides: in vitro study using the rat whole embryo culture model (WEC).

    Science.gov (United States)

    Longo, Monica; Zanoncelli, Sara; Brughera, Marco; Colombo, Paolo; Wittlin, Sergio; Vennerstrom, Jonathan L; Moehrle, Joerg; Craft, J Carl

    2010-12-01

    Three groups of compounds: (i) active peroxides (artemisinin and arterolene), (ii) inactive non-peroxidic derivatives (deoxyartemisinin and carbaOZ277) and (iii) inactive peroxide (OZ381) were tested by WEC system to provide insights into the relationship between chemical structure and embryotoxic potential, and to assess the relationship between embryotoxicity and antimalarial activity. Deoxyartemisinin, OZ381 and carbaOZ277 did not affect rat embryonic development. Artemisinin and arterolane affected primarily nucleated red blood cells (RBCs), inducing anemia and subsequent tissue damage in rat embryos, with NOELs for RBC damage at 0.1 and 0.175μg/mL, respectively. These data support the idea that only active antimalarial peroxides are able to interfere with normal embryonic development. In an attempt to establish whether and to what extent activity as antimalarials and embryotoxicity can be divorced, IC(50)s for activity in Plasmodium falciparum strains and the NOELs for RBCs were compared. From this comparison, arterolane showed a better safety margin than artemisinin.

  2. [3H]ouabain binding to cultured rat vascular smooth muscle cells.

    Science.gov (United States)

    Khalil, F; Hopp, L; Searle, B M; Tokushige, A; Tamura, H; Kino, M; Aviv, A

    1984-05-01

    The number of Na+ pump units (Bmax) and the equilibrium dissociation constant (Kd) for ouabain as well as parameters of K+ binding to the Na+ pump were examined in in vitro-grown vascular smooth muscle cells ( VSMC ) derived from Sprague-Dawley rats. The technique to measure these variables utilizes analyses of [3H]ouabain displacement from its VSMC receptors by nonlabeled ouabain and K+. The mean values for Bmax and Kd in the cultured VSMCs were 1.95 X 10(5) receptor sites per single VSMC and 2.68 X 10(-6) M, respectively. The equilibrium dissociation constant for K+ (Ki) was 0.92 mM. K+ binding to the cultured VSMCs demonstrated positive cooperativity with a Hill coefficient (n) of 1.78.

  3. Quantitative analysis of the toxicity of human amniotic fluid to cultured rat spinal cord.

    Science.gov (United States)

    Drewek, M J; Bruner, J P; Whetsell, W O; Tulipan, N

    1997-10-01

    It has been proposed that the myelodysplastic components of a myelomeningocele are secondarily damaged as the result of exposure to amniotic fluid, the so-called 'two-hit' hypothesis. The critical time at which this secondary insult might occur has not been clearly defined. The present study addresses this issue by quantitatively assessing the toxic effects of human amniotic fluid of various gestational ages upon organotypic cultures of rat spinal cord. Using an assay for lactate dehydrogenase efflux to evaluate toxicity in such spinal cord cultures, we found that the amniotic fluid became toxic at approximately 34 weeks' gestation. This toxic effect of amniotic fluid appears to emerge rather suddenly. Accordingly, it seems reasonable to suggest that prevention of exposure of vulnerable spinal cord tissue to this toxicity by surgical closure of a myelomeningocele defect prior to the emergence of toxicity in amniotic fluid may prevent injury to vulnerable myelodysplastic spinal cord tissue.

  4. [POLYPEPTIDES INFLUENCE ON TISSUE CELL CULTURES REGENERATION OF VARIOUS AGE RATS].

    Science.gov (United States)

    Ryzhak, A P; Chalisova, N I; Lin'kova, N S; Khalimov, R I; Ryzhak, G A; Zhekalov, A N

    2015-01-01

    A comparative study of polypeptides extracted from the tissues of calves: Cortexin (from brain cortex), Epinorm (from pineal gland), Ventvil (from liver), Prostatilen (from prostate), Thymalin (from thymus), Chelohart (from heart), Chondrolux (from cartilage) on the relevant organotypic tissue cultures of young and old rats, in concentration 0,01-100 ng/ml was performed. Polypeptides specifically stimulated "young" and "old" cell cultures growth in concentration 20-50 ng/ml. This effect correlates with increasing of PCNA and decreasing of p53 expression in brain cortex, pineal gland, liver, prostate, heart, cartilage. Moreover, Thymalin activated CD5, CD20 expression--markers of B-cells differentiation. These data show that polypeptides isolated from different tissues have selective molecular activity on the regeneration of suitable tissues in aging.

  5. Regulation of Schwann cell proliferation in cultured segments of the adult rat sciatic nerve

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Kanje, M

    1998-01-01

    Schwann cell proliferation was studied in cultured segments of the rat sciatic nerve by measurement of [3H] thymidine incorporation or through bromodeoxyuridine-(BrdU)-labelling and immunocytochemistry. The aim was to delineate mechanisms involved in the injury-induced proliferative response...... of Schwann cells. Removal of extracellular Ca2+ by addition of EGTA to the culture medium suppressed [3H] thymidine incorporation as did the calmodulin inhibitor 48/80. The Ca2+ ionophore A23187 increased incorporation. Staurosporin, an inhibitor of protein kinase C (PKC), suppressed [3H] thymidine...... together with morphological evaluation of myelin association showed that proliferation occurred in Schwann cells. The results are consistent with a model in which Schwann cell proliferation is enhanced by Ca2+ through activation of calmodulin-dependent and/or PKCdependent mechanisms. Inhibition is achieved...

  6. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  7. Effect of arsenite on urea production by long-term cultures of adult rat hepatocytes.

    Science.gov (United States)

    Sierra-Santoyo, A; Hernández, A; López, M L; Mendoza-Figueroa, T

    1996-01-01

    Urea cycle is a hepatic metabolic pathway involving five enzymes and several intermediary metabolites and can be altered by different chemicals. To investigate the effect of arsenic, an ubiquitous hepatotoxic agent, on urea production we exposed long-term cultures of adult rat hepatocytes, which produce urea, to 1.33 and 6.67 microM arsenite for 2 weeks. In cultures exposed to 6.67 microM, urea production decreased 60-70% and cellular arginase activity decreased 30, 70 and 85% after 4, 7 and 14 days of exposure, respectively. The arginase activity released to the medium increased significantly after 4, 7 and 14 days, with a maximum value after 7 days of exposure that was 27-fold higher than that of the untreated controls. The total arginase activity also decreased 35, 52 and 82% after 4, 7 and 14 days of exposure and protein content decreased 57 and 65% after 7 and 14 days of exposure, respectively. Exposure to 6.67 microM arsenite also produced accumulation of intracytoplasmic lipid droplets, vacuolizations and enlargement of the intercellular spaces. On the other hand, exposure of hepatocytes to 1.33 microM arsenite caused an initial decrease of 20% in urea production, did not change cellular, released and total arginase activity and cellular protein content and produced accumulation of intracytoplasmic lipid droplets. These results show that long-term exposure of cultured rat hepatocytes to 6.67 microM arsenite decreases urea production, cellular and total arginase activity and protein content and increases the release of arginase into the culture medium. These alterations could be useful markers of hepatotoxicity in in vitro assays.

  8. Dimethyl sulfoxide enhances lipid synthesis and secretion by long-term cultures of adult rat hepatocytes.

    Science.gov (United States)

    De La Vega, F M; Mendoza-Figueroa, T

    1991-05-01

    Dimethyl sulfoxide (DMSO) was tested for its effects on lipid metabolism of long-term cultures of adult rat hepatocytes. The addition of 1% DMSO to 3T3-hepatocyte cultures was not toxic to cells and in fact treated cultures maintained better their characteristic morphology for up to 14 days of exposure. DMSO treatment increased 2-3 fold the de novo synthesis of total lipids from[14C]acetate. The analysis by thin layer chromatography of cellular and secreted lipids revealed that DMSO increased the levels of cellular triglycerides, phospholipides and free and sterified cholesterol at 7 days of exposure while at 14 days there was also a 2-3-fold increase in medium secreted lipids. Additionally, DMSO increased the activity of glycerol-phosphate dehydrogenase, a marker enzyme of glycerolipid synthesis, by greater than 50% at either 7 or 14 days of exposure. These results show that 1% DMSO not only is not detrimental to cultured hepatocytes but also enhances lipid synthesis and secretion, both hepatic-differentiated functions.

  9. Dose-dependent DNA ruptures induced by the procarcinogen dimethylnitrosamine on primary rat liver cultures.

    Science.gov (United States)

    Mendoza-Figueroa, T; López-Revilla, R; Villa-Treviño, S

    1979-08-01

    The effect of certain procarcinogens, among which demethylnitrosamine (DMN) is included, has been difficult to detect in several short-term assays. An alternative system, in which DMN effects could be easily quantitated, might be useful in studies of chemical carcinogenesis and environmental contamination. To develop such a system, we tested the possibility of measuring the amount of breakage produced by DMN on radiolabeled DNA of primary liver cultures. Rat liver cells were isolated 20 to 24 hr after partial hepatectomy, cultured, and pulse labeled in vitro with [3H]thymidine. Radioactively labeled cultures were treated with DMN or with the direct carcinogen N-methyl-N'-nitro-N-nitrosoguanidine and then lysed directly onto alkaline sucrose gradients. DMN and N-methyl-N'-nitro-N-nitrosoguanidine caused a dose-dependent reduction in the molecular weight of DNA, N-methyl-N'-nitro-N-nitrosoguanidine being approximately 1000 times more potent than DMN. DNA breaks appeared to be carcinogen specific and not due to cell death since treatment with high doses of cycloheximide, a noncarcinogenic hepatotoxic, was without significant effect. Our data indicate that detection of DNA breaks constitutes a more sensitive assay of DMN effects than does unscheduled DNA synthesis in primary liver cultures. Therefore, it could be useful to extend our work to determine the general applicability of quantitation of DNA breaks in liver cells as a short-term assay for the identification of possible carcinogens and procarcinogens.

  10. Comparison of two methods used to culture and purify rat retinal Müller cells.

    Science.gov (United States)

    Song, Wei-Tao; Zhang, Xue-Yong; Xiong, Si-Qi; Wen, Dan; Jiang, Jian; Xia, Xiao-Bo

    2013-01-01

    To study two methods for culturing and purifying Sprague-Dawley (SD) rat retinal Müller cells and determine which one is better. The passage culture method of Müller cells was respectively carried out by complete pancreatic enzyme digestion method and repeated incomplete pancreatic enzyme digestion method. After culturing retinal cells for one month through these two methods, fluorescence-activated cell sorter (FACS), RT-PCR, and immunohistochemistry technology were performed to examine the enrichment and purity of Müller glial cells, and carried out two-sample approximate t test using SSPS 13.0 to further compare the Müller cell positive rate in both methods. The statistical results showed that the purity of Müller cells was 83.2%±5.16% in group A, and the purity was 98.5%±1.08% in group B. The two-sample approximate t test analysis demonstrated that the difference between group A and group B was statistically significant (t=-9.178, Pcells cultured by the complete pancreatic enzyme digestion method (group A) and the repeated incomplete pancreatic enzyme digestion method (group B). Compared with the complete pancreatic enzyme digestion method, this novel method was more efficient and a higher purity of Müller cells could be obtained using this approach.

  11. Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Jian-quan ZHENG; Xie-chuan WENG; Xiao-dan GAI; Jin LI; Wen-bin XIAO

    2004-01-01

    AIM: To investigate whether agmatine could selectively block a given type of the voltage-gated calcium channels (VGCC) and whether related receptors are involved in the blocking effect of agmatine on VGCC. METHODS: The whole-cell patch recording technique was performed to record VGCC currents in the cultured neonatal rat hippocampal neurons. RESULTS: Verapamil (100 μmol/L), a selective blocker of L-type calcium channel, significantly inhibited VGCC current by 80 %± 7 %. Agmatine (100 μmol/L) could further depress the remained currents by 25 %±6 %. The α2-adrenoceptor antagonist yohimbine (10 μmol/L) and the I2 imidazoline receptor antagonist idazoxon (10 and 40 μmol/L) had no significant effect on VGCC currents when used respectively. When the mixture of yohimbine and agmatine was applied, VGCC currents were still depressed remarkably. However, the blocking effect of agmatine was decreased by 29 %± 8 % in the presence of idazoxon (10 μmol/L). The effect of idazoxon did not increase at a higher concentration (40 μmol/L). CONCLUSION: Agmatine could block the L- and other types of VGCC currents in the cultured rat hippocampal neurons. Blocking effect of agmatine on VGCC was partially related to I2 imidazoline receptor and had no relationship with α2-adrenoceptors.

  12. Evaluation of the rat embryo culture system as a predictive test for human teratogens.

    Science.gov (United States)

    Guest, I; Buttar, H S; Smith, S; Varma, D R

    1994-01-01

    Ingestion of the anticonvulsant drug valproic acid and of the angiotensin converting enzyme inhibitor captopril during pregnancy has been associated with abnormal fetal outcome in humans. In contrast, the use of the antiinflammatory drug ibuprofen and the antihistamine diphenhydramine has not been documented to be embryotoxic in humans. We evaluated the rat embryo culture system as a predictive model of teratogenesis, using these four drugs as test agents. Valproic acid, ibuprofen, and diphenhydramine were embryotoxic, inducing concentration-dependent decreases in growth and a significant increase in anomalies. Valproic acid caused an increase in neural tube defects, ibuprofen increased the incidence of abnormal maxillary processes, and diphenhydramine increased the number of embryos with distorted body morphology. These abnormalities were induced at concentrations of valproic acid and diphenhydramine that are used clinically, but ibuprofen only induced toxicity at concentrations greatly exceeding the therapeutic range. Captopril was not embryotoxic up to 5 mM, the highest concentration tested. These results suggest that the rat embryo culture system produces both false positive and false negative data on the teratogenic potential of drugs. Although such an in vitro assay may be suitable to determine the mechanism of teratogenesis, it is not a sensitive indicator of potential human teratogens on its own. These data support the view that in vitro systems can only supplement clinical and epidemiological observations in humans, possibly as a method to determine mechanisms of actions of teratogens.

  13. The role of adrenergic agonists on glycogenolysis in rat hepatocyte cultures and possible involvement of NO.

    Science.gov (United States)

    Hodis, J; Kutinová-Canová, N; Potmesil, P; Kameníková, L; Kmonícková, E; Zídek, Z; Farghali, H

    2007-01-01

    Certain liver metabolic diseases point to the presence of disturbances in glycogen deposition. Epinephrine raises the cAMP level that activates protein kinase A leading to the activation of phosphorylase and glycogen breakdown. In the present report, we sought to investigate whether NO is produced during adrenoceptor agonist-induced glycogenolysis in rat hepatocytes in cultures. Isolated glycogen rich rat hepatocytes in cultures were used. NO production (NO(2)(-)) was assessed under the effect of adrenergic agonists and adrenergic agonist/antagonist pairs, dibutyryl cyclic AMP sodium-potassium salt (db-cAMP), NO synthase (NOS) inhibitors N(omega)-nitro-L-arginine methyl ester (L-NAME), aminoguanidine (AG) and the NO donor S-nitroso-N-acetyl penicillamine (SNAP). The inducible NO synthase (iNOS) mRNA was examined by the reverse transcription-polymerase chain reaction (RT-PCR). Glycogenolysis was quantified by glucose levels released into medium. The amount of glucose and NO(2)(-) released by hepatocytes was increased as a result of epinephrine, phenylephrine or db-cAMP treatments. The increase in glucose and NO(2)(-) released by epinephrine or phenylephrine was blocked or reduced by prazosin pretreatment and by NOS inhibitors aminoguanidine and L-NAME. iNOS gene expression was up-regulated by epinephrine. It can be concluded that glycogenolysis occurs through -adrenoceptor stimulation and a signaling cascade may involve NO production.

  14. Developmental features of rat cerebellar neural cells cultured in a chemically defined medium

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, V.; Ciotti, M.T.; Aloisi, F.; Levi, G.

    1986-01-01

    We studied some aspects of the differentiation of rat cerebellar neural cells obtained from 8-day postnatal animals and cultured in a serum-free, chemically defined medium (CDM). The ability of the cells to take up radioactive transmitter amino acids was analyzed autoradiographically. The L-glutamate analogue /sup 3/H-D-aspartate was taken up by astroglial cells, but not by granule neurons, even in late cultures (20 days in vitro). This is in agreement with the lack of depolarization-induced release of /sup 3/H-D-aspartate previously observed in this type of culture. In contrast, /sup 3/H-(GABA) was scarcely accumulated by glial-fibrillary-acidic-protein (GFAP)-positive astrocytes, but taken up by glutamate-decarboxylase-positive inhibitory interneurons and was released in a Ca2+-dependent way upon depolarization: /sup 3/H-GABA evoked release progressively increased with time in culture. Interestingly, the expression of the vesicle-associated protein synapsin I was much reduced in granule cells cultured in CDM as compared to those maintained in the presence of serum. These data would indicate that in CDM the differentiation of granule neurons is not complete, while that of GABAergic neurons is not greatly affected. Whether the diminished differentiation of granule cells must be attributed only to serum deprivation or also to other differences in the composition of the culture medium remains to be established. /sup 3/H-GABA was avidly taken up also by a population of cells which were not recognized by antibodies raised against GFAP, glutamate decarboxylase, and microtubule-associated protein 2. These cells have been characterized as bipotential precursors of oligodendrocytes and of a subpopulation of astrocytes bearing a stellate shape and capable of high-affinity /sup 3/H-GABA uptake.

  15. alpha-Asarone toxicity in long-term cultures of adult rat hepatocytes.

    Science.gov (United States)

    López, M L; Hernández, A; Chamorro, G; Mendoza-Figueroa, T

    1993-04-01

    In this work we studied the toxic effects of alpha-asarone, a hypolipidemic active principle of Guatteria gaumeri Greenman, on long-term cultures of adult rat hepatocytes cultivated on a feeder layer of 3T3 cells. The exposure for one and two weeks to alpha-asarone (1-50 micrograms/ml) produced intracytoplasmic lipid droplets and at higher concentrations (25-50 micrograms/ml) retraction of the hepatocyte cords and cell detachment. Ultrastructurally, the treated cultures (10 micrograms/ml) showed enlargement and vacuolization of the mitochondria in addition to lipid droplets. The triacylglycerol content increased up to 2.3-fold in the cultures treated for one week with 50 micrograms/ml, whereas the protein content per culture, a rough estimate of cell number and viability, decreased by up to 53% in the cultures treated for two weeks with 50 micrograms/ml. The synthesis and secretion of proteins, measured by the incorporation of [3H]-leucine into cellular and secreted macromolecules, decreased also in the cultures exposed. After one and two week exposure to 50 micrograms/ml of alpha-asarone, the secretion of labeled proteins decreased by 53 and 67%, respectively, whereas the synthesis of cellular and total proteins decreased by 48-67%, respectively. The secretion of proteins was the most sensitive parameter of alpha-asarone toxicity. The mean inhibitory dose (ID50), i.e, that producing 50% inhibition in the incorporation of the labeled precursor, was 22.12 and 5.04 micrograms/ml after one and two weeks exposure, respectively. Our results show that long-term exposure to micromolar concentrations of alpha-asarone produces morphologic and ultrastructural alterations, triacylglycerol accumulation (fatty liver), and inhibition of protein synthesis and secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. 体外原代培养小鼠胚胎背根神经节细胞的神经化学特征%Neurochemical characteristics of cultured primary neurons from embryonic mouse dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    李夏青; Julie A Coffield; 王志如; 张宏

    2012-01-01

    目的 探讨胚胎背根神经节(DRG)感觉神经元作为体外研究神经多肽的细胞模型之有效性.方法 采用免疫荧光及相差显微技术对30只胚胎小鼠背跟神经节细胞选择性神经多肽的分布、细胞大小及其多肽表达与细胞大小之间的关系进行观察比较.结果 培养时间达3周龄的DRG细胞主要以中小直径(30~ 20μm)的细胞为主,与成年在体脊髓DRG细胞的形态多形性特征类似;选择性神经多肽(钙调素基因相关多肽、P物质、甘丙肽和nociceptin)的表达也随着体外培养时间的延长明显增强,且从早期仅在胞体部位表达到3周时细胞周围神经突起也出现显著免疫荧光阳性.此外,体外培养达到3周时,降钙素基因相关多肽和P物质主要在体积较小的神经细胞表达,与成年鼠DRG的分布特征一致.而甘丙肽与nociceptin在不同大小DRG神经元的表达没有像降钙素基因相关多肽和P物质一样随着培养时间的延长而出现明显改变.结论 胚胎小鼠DRG神经细胞培养可以作为研究感觉神经细胞某些重要的神经多肽(降钙素基因相关多肽,P物质)在调节感觉神经细胞内相关信号转导通路中作用的体外模型.%Objective Morphological heterogeneity and the expression of neuropeptides in the cultured primary neurons of the dorsal root ganglia from the embryonic mouse were investigated. Methods Morphology and neurochemistry of cultured dorsal root ganglia ( DRG) neurons were analyzed by phase-contrast microscopy and immnuofluorensence. Results Morphological characteristics of DRG neurons with a 3-week culture period appeared similar to those observed in adult DRG neurons. The ratio of median to small sized neurons (20 - 30μm) was increased from (8. 9 ± 0. 61) % after 1 -week culture to (29.58 ±1.23)% after 3-weeks culture. The selective neuropeptides, CGRP, substance-P, galanin and nociceptin, were expressed in neuron soma from the first week of the

  17. Pharmacological assessment of ARTCEREB irrigation and perfusion solution for cerebrospinal surgery using primary cultures of rat brain cells.

    Science.gov (United States)

    Nishimura, Masuhiro; Doi, Kazuhisa; Kishimoto, Sanae; Koshitani, Osamu; Naito, Shinsaku; Yamauchi, Aiko

    2010-08-01

    ARTCEREB irrigation and perfusion solution (Artcereb), an ethical pharmaceutical, is typically applied inside the skull and spinal cavity as artificial fluid. Artcereb is composed of glucose and electrolytes (Na+, K+, Mg2+, Ca2+, Cl-, HCO3- and P) and has a pH of 7.3. An in vitro assessment of the effects of Artcereb on cell culture of rat fetal astrocytes or rat fetal brain cells was performed in comparison with normal saline and lactated Ringer's solutions. Furthermore, the effects of Artcereb on cell culture of rat fetal brain cells were also assessed in comparison with Krebs bicarbonate solution. Cell function after exposure to Artcereb was assessed based on 3H-thymidine incorporation activity. Cell function after exposure to Artcereb and lactated Ringer's solution in primary cultures of rat fetal astrocytes remained unaffected when compared to that after exposure to normal saline. Cell function after exposure to Artcereb in a primary culture of rat brain cells remained unaffected as compared to that after exposure to normal saline and lactated Ringer's solution. However, function decreased after exposure to a modified Artcereb formulation lacking bicarbonate, thus confirming that the presence of bicarbonate is essential for the Artcereb formulation.

  18. Cultured rat and purified human Pneumocystis carinii stimulate intra- but not extracellular free radical production in human neutrophils

    DEFF Research Database (Denmark)

    Jensen, T; Aliouat, E M; Lundgren, B

    1998-01-01

    The production of free radicals in human neutrophils was studied in both Pneumocystis carinii derived from cultures of L2 rat lung epithelial-like cells and Pneumocystis carinii purified from human lung. Using the cytochrome C technique, which selectively measured extracellular superoxide....... It was established that 1) P. carinii stimulated intra- but not extracellular free radical production in human neutrophils, 2) opsonized cultured rat-derived P. carinii stimulated human neutrophils to a strong intracellular response of superoxide production, and 3) opsonized P. carinii, purified from human lung also...

  19. Effects of pyridoxine on rat testes by means of Sertoli-germ cell co-culture system in vitro

    Institute of Scientific and Technical Information of China (English)

    Huang Houjin

    2001-01-01

    Objective To investigate the effects of pyridoxine on rat testis in vitro. Method an in vitro systen of Sertoligem cell co-culture was applied, the toxic effects of pyridoxine at different concentrations an exposed duration were olserved. Results The detachment of germ cells from sertoli cells showed marked dose-response and time response relafionships with the exposure of pyridoxine. Meanwhile, the characteristic of loosing and ratracting skeletun in the Sertoli cells was found. Conclusions The effects induced by pyridoxine in vitro may reflect damage to Sertoli cells, and testicular cells co-culture could be of value for the study of underlying mechanisms of toxic effects of pyridoxine on rat testis.

  20. Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid.

    Science.gov (United States)

    Zhang, Yinghua; Yang, Cailing; Yuan, Guoyan; Wang, Zhongping; Cui, Weigang; Li, Ruixi

    2015-01-01

    Accumulating evidence suggests that anti-inflammatory agents and antioxidants have neuroprotective properties and may be beneficial in the treatment of neurodevelopental disorders, such as autism. In the present study, the possible neuroprotective properties of sulindac, a non-steroidal anti-inflammatory drug (NSAID), were investigated in vitro using cultured cortical neurons with valproic acid (VPA)-induced neurotoxicity, as well as in vivo through the behavioral analysis of rats prenatally exposed to VPA as a model of autism. VPA induced 4-hydroxynonenal (4-HNE) expression, reactive oxygen species (ROS) generation and decreased cell viability in primary cultured cortical neurons established from timed-pregnant (embryonic day 18) Wistar rat pups. However, co-incubation of the neurons with VPA and sulindac reduced oxidative stress and increased cell viability. The rats were administered an intraperitoneal injection with one of the following: VPA, sulindac, VPA and sulindac, or physiological saline, and their offspring were subjected to the open field test. During the test trials, repetitive/stereotypic-like movements for each rat were recorded and analyzed. The results revealed that treatment with both sulindac and VPA reduced the VPA-induced repetitive/stereotypic-like activity and the sulindac and VPA-treated animals responded better in the open field test compared to the VPA-treated animals. The results from the present study demonstrate that the antioxidant properties of sulindac may prove to be beneficial in the treatment of autism, suggesting that the upregulation of the Wnt/β-catenin signaling pathway disrupts oxidative homeostasis and facilitates susceptibility to autism.

  1. Effects of chronic renal failure rat serum on histone acetyltransferase p300 and activation of activating transcription factor 4 of arterial smooth muscle cells cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    张耀全

    2014-01-01

    Objective To investigate the effects of the rat serum with chronic renal failure(CRF)on ubiquitin-proteasome pathway,histone acetyltransferase p300 and activation of activating transcription factor 4(ATF4)of rat arterial vascular smooth muscle cells(VSMCs)cultured in vitro,and explore the possible mechanism.Methods Objective To establish the rat model of

  2. Organotypic slice cultures from rat brain tissue: a new approach for Naegleria fowleri CNS infection in vitro.

    Science.gov (United States)

    Gianinazzi, C; Schild, M; Müller, N; Leib, S L; Simon, F; Nuñez, S; Joss, P; Gottstein, B

    2005-12-01

    The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM.

  3. Metabolic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured in vitro.

    Science.gov (United States)

    Rato, Luís; Alves, Marco G; Socorro, Sílvia; Carvalho, Rui A; Cavaco, José E; Oliveira, Pedro F

    2012-02-01

    Sertoli cells actively metabolize glucose that is converted into lactate, which is used by developing germ cells for their energy metabolism. Androgens and oestrogens have general metabolic roles that reach far beyond reproductive processes. Hence, the main purpose of this study was to examine the effect of sex hormones on metabolite secretion/consumption in primary cultures of rat Sertoli cells. Sertoli cell-enriched cultures were maintained in a defined medium for 50 h. Glucose and pyruvate consumption, and lactate and alanine secretion were determined, by 1H-NMR (proton NMR) spectra analysis, in the presence or absence of 100 nM E2 (17β-oestradiol) or 100 nM 5α-DHT (dihydrotestosterone). Cells cultured in the absence (control) or presence of E2 consumed the same amount of glucose (29±2 pmol/cell) at similar rates during the 50 h. After 25 h of treatment with DHT, glucose consumption and glucose consumption rate significantly increased. Control and E2-treated cells secreted similar amounts of lactate during the 50 h, while the amount of lactate secreted by DHT-treated cells was significantly lower. Such a decrease was concomitant with a significant decrease in LDH A [LDH (lactate dehydrogenase) chain A] and MCT4 [MCT (monocarboxylate transporter) isoform 4] mRNA levels after 50 h treatment in hormonally treated groups, being more pronounced in DHT-treated groups. Finally, alanine production was significantly increased in E2-treated cells after 25 h treatment, which indicated a lower redox/higher oxidative state for the cells in those conditions. Together, these results support the existence of a relation between sex hormones action and energy metabolism, providing an important assessment of androgens and oestrogens as metabolic modulators in rat Sertoli cells.

  4. Complement C1q expression induced by Abeta in rat hippocampal organotypic slice cultures.

    Science.gov (United States)

    Fan, Rong; Tenner, Andrea J

    2004-02-01

    Amyloid beta peptide (Abeta) is a major component of senile plaques, one of the principle pathological features in Alzheimer's disease (AD) brains. Fibrillar Abeta has been shown to bind C1 via C1q, the recognition component of the classical complement pathway, resulting in the activation of the complement pathway, thereby initiating an inflammatory cascade in the brain. C1q has also been shown to enhance phagocytic activities of microglia, which could benefit in clearance of apoptotic cells or cellular debris. To begin to define the role of C1q in tissue injury mediated by Abeta, we assessed the appearance of C1q in hippocampal slice cultures treated with freshly solubilized or fibrillar Abeta 1-42. Here we demonstrate a dose- and time-dependent uptake of exogenously applied Abeta by pyramidal neurons in organotypic slice cultures from rat hippocampus. Importantly, when slices were immunostained with antibody against rat C1q, a distinct reactivity for C1q in cells within the neuronal cell layer of cornu ammonis (CA) of hippocampus, primarily the CA1/CA2, was observed in the Abeta-treated slices. No such immunoreactivity was detected in untreated cultures or upon addition of control peptides. ELISA assays also showed an increase in C1q in tissue extracts from slices of the treated group. Similarly, the mRNA level of C1q in slices was increased within 24 h after Abeta treatment. These data demonstrate that upon exposure to Abeta, C1q is expressed in neurons in this organotypic system. The induction of C1q may be an early, perhaps beneficial, tissue or cellular response to injury triggered by particular pathogenic stimuli.

  5. Effect of Serum from Chickens Treated with Clenbuterol on Myosin Accumulation, Beta-Adrenergic Receptor Population, and Cyclic AM Synthesis in Embryonic Chicken Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, R. B.; Bridge, K. Y.; Wuethrich, A. J.; Hancock, D. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Broiler chickens at 35 days of age were fed 1 ppm clenbuterol for 14 days. This level of dietary clenbuterol led to 5-7% increases in weights of leg and breast muscle tissue. At the end of the 14-day period, serum was prepared from both control and clenbuterol-treated chickens and was then employed as a component of cell culture media at a final concentration of 20% (v/v). Muscle cell cultures were prepared from both the leg and breast muscle groups of twelve-day chick embryos. Treatment groups included control chicken serum to which 10 nM, 50 nM, and 1 micron clenbuterol had been added, as well as cells grown in media containing 10% horse serum. Cultures were subjected to each treatment for 3 days beginning on the seventh day in culture. Neither the percent fusion nor the number of nuclei in myotubes were significantly affected by any of the treatments. The quantity of MHC was not increased by serum from clenbuterol-treated chickens in either breast and leg muscle cultures; however, MHC quantity was 50- 100% higher in cultures grown in control chicken serum to which 10 nM and 50 nM clenbuterol had also been added. The Beta-AR population was 4,000-7,000 Beta-AR per cell in cultures grown in chicken serum, with leg muscle cultures having approximately 25-30% more receptors than breast muscle cultures. Receptor population was not significantly affected by the presence of clenbuterol or by the presence of serum from clenbuterol-treated chickens. In contrast, the Beta-AR population in leg and breast muscle cultures grown in the presence of 10% horse serum was 18,000-20,000 Beta-AR per cell. Basal concentration of cAMP was not significantly affected by any of the treatments. When cultures grown in chicken serum were stimulated for 10 min with 1 micron isoproterenol, limited increases of 12-20% in cAMP concentration above basal levels were observed. However, when cultures grown in the presence of horse serum were stimulated with 1 micron isoproterenol, increases of 600

  6. Detection of teratogens in human serum using rat embryo culture: cancer and epilepsy treatments. [Detecting teratogenicity of anticonvulsant and antineoplastic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Chatot, C. L.

    1979-01-01

    Growth (protein and DNA contents) of headfold stage rat embryos cultured for 48 hrs on human serum was enhanced by glucose supplementation. Embryo growth varied with the source of the serum. Sera from 3 of the 19 control subjects produced abnormal embryos. Sera from 5 subjects undergoing cancer chemotherapy and 6 subjects receiving anticonvulsants were either lethal or teratogenic to cultured rat embryos.

  7. Epigenetic control of embryonic stem cell fate

    DEFF Research Database (Denmark)

    Christophersen, Nicolaj Strøyer; Helin, Kristian

    2010-01-01

    Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also...

  8. Arsenite alters heme synthesis in long-term cultures of adult rat hepatocytes.

    Science.gov (United States)

    Aguilar-González, M G; Hernández, A; López, M L; Mendoza-Figueroa, T; Albores, A

    1999-06-01

    Arsenite (As[III]) effects on the intermediate steps of heme biosynthesis were studied in adult rat hepatocytes seeded on a feeder layer of 3T3 cells (3T3-hepatocytes) and maintained for 2 weeks with culture medium non-supplemented or supplemented with 150 microM 5-aminolevulinic acid (ALA). The activities of the intracellular enzymes porphobilinogen deaminase (PBG-D), uroporphyrinogen III synthase (UROIII-S), and uroporphyrinogen III decarboxylase (URO-D), and the intermediary uroporphyrins (URO), coproporphyrins (COPRO) and protoporphyrin IX (PROTO) were determined in these cultures. The 3T3-hepatocytes maintained the activities of PBG-D, UROIII-S and URO-D during 2 weeks and ALA addition to the culture medium increased PBG-D (2-3-fold) and UROIII-S (50%) activities and porphyrin production, which accumulated as PROTO. Exposure to 3.9 microM As(III) inhibited UROIII-S activity (down to 34%), and PBG-D and URO-D activities to a lower extent; these effects were magnified by ALA supplementation. As(III) also produced an intracellular accumulation and a decreased excretion of PROTO, and a 31% reduction of the COPRO/URO ratio in the culture medium. Additionally, As(III) caused cytoplasmic vacuolization and lipid accumulation. Our results show that As(III) exposure selectively inhibits several intermediary enzymes of heme metabolism and affects the intra- and extracellular content of porphyrins and their ratio in the culture medium. They also confirm that 3T3-hepatocytes are a suitable in vitro model to study hepatic heme metabolism and its alterations by hepatotoxic chemicals.

  9. Royal Jelly Prevents Osteoporosis in Rats: Beneficial Effects in Ovariectomy Model and in Bone Tissue Culture Model

    Directory of Open Access Journals (Sweden)

    Saburo Hidaka

    2006-01-01

    Full Text Available Royal jelly (RJ has been used worldwide for many years as medical products, health foods and cosmetics. Since RJ contains testosterone and has steroid hormone-type activities, we hypothesized that it may have beneficial effects on osteoporosis. We used both an ovariectomized rat model and a tissue culture model. Rats were divided into eight groups as follows: sham-operated (Sham, ovariectomized (OVX, OVX given 0.5% (w/w raw RJ, OVX given 2.0% (w/w RJ, OVX given 0.5% (w/w protease-treated RJ (pRJ, OVX given 2.0% (w/w pRJ, OVX given 17β-estradiol and OVX given its vehicle, respectively. The Ovariectomy decreased tibial bone mineral density (BMD by 24%. Administration of 17β-estradiol to OVX rats recovered the tibial BMD decrease by 100%. Administration of 2.0% (w/w RJ and 0.5–2.0% (w/w pRJ to OVX rats recovered it by 85% or more. These results indicate that both RJ and pRJ are almost as effective as 17β-estradiol in preventing the development of bone loss induced by ovariectomy in rats. In tissue culture models, both RJ and pRJ increased calcium contents in femoral-diaphyseal and femoral-metaphyseal tissue cultures obtained from normal male rats. However, in a mouse marrow culture model, they neither inhibited the parathyroid hormone (PTH-induced calcium loss nor affected the formation of osteoclast-like cells induced by PTH in mouse marrow culture system. Therefore, our results suggest that both RJ and pRJ may prevent osteoporosis by enhancing intestinal calcium absorption, but not by directly antagonizing the action of PTH.

  10. Neurotoxicity evaluation of three root canal sealers on cultured rat trigeminal ganglion neurons

    Science.gov (United States)

    Ayar, Ahmet; Kalkan, Omer-Faruk; Canpolat, Sinan; Tasdemir, Tamer; Ozan, Ulku

    2017-01-01

    Background The aim of this study was to investigate the possible neurotoxic effects of 3 root canal sealers (RCSs) (AH Plus, GuttaFlow, iRoot SP) on cultured rat trigeminal ganglion (TG) neurons. Material and Methods Primary cultures of TG neurons were obtained from 1 to 2-day old rats. Freshly mixed RCSs were incubated in sterile phosphate buffered saline and cells were incubated with supernatants of the RCSs for different time intervals (1-, 3-, 6- and 24-h; 1 or 1/10 diluted) and viability/cytotoxicity was tested by counting the number of live cells. Pair of dishes with cells from the same culture incubated with only culture medium was considered as negative controls. Cell images were captured and acquired at x200 magnification using a microscope equipped with a camera using special image program. The viable cells were manually counted assigned from the images for each dose and incubation duration. Data was analysed by using 1-way analysis of variance with Tukey post hoc tests. Results There was no significant change in cell viability after short duration of incubation (1- and 3-h) with the supernatant of any of RCSs, except for undiluted-AH Plus at 3-h. When AH Plus was compared with other RCSs, for diluted supernatants, there was only significant difference between iRoot SP and AH Plus at 24-h (P<0.05). Whereas undiluted-AH Plus was significantly more cytotoxic for 3-, 6- and 24-h periods as compared to respective incubation periods of undiluted other groups (P<0.05). GuttaFlow groups had similar neurotoxic effect on cells for all test periods. Conclusions All tested RCSs exhibited a variable degree of neurotoxicity on these primary sensory neurons of orofacial tissues, depending on their chemical compositions. GuttaFlow and iRoot SP evoked a less toxic response to TG cells than AH Plus. Key words:Neurotoxicity, trigeminal ganglia, cell culture, root canal sealer, AH Plus, GuttaFlow, iRoot SP. PMID:28149460

  11. Efeito do Halotano sobre a Gestação e a Viabilidade Embrionária em Ratos - Estudo Experimental/Effect of Halothane on Pregnancy and Embryonic Viability in Rats - Experimental Study

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Domingues

    2012-12-01

    Full Text Available Objetivo: conhecer alterações morfológicas no desenvolvimento embrionário de filhotes de ratas expostas ao halotano no período estral e gestacional e avaliar o período gestacional de maior risco. Materiais e Métodos: projeto aprovado pela Comissão de Ética e Pesquisa da UNIFENAS (Parecer Nº 11ª/2008. Foram utilizadas 25 ratas da linhagem Wistar distribuídas em cinco grupos. Grupo 1: controle (n=5 ratas com prenhez identificada sem exposição ao halotano. Grupo 2: (n=5 ratas expostas ao halotano no período estral. Grupos 3: (n=5 ratas expostas ao halotano no 8º-10º dia de prenhez. Grupo 4: (n=5 ratas expostas ao halotano no 11º a 13º dia e Grupo 5:(n=5 14º a 16º dia. Os animais foram expostos ao halotano (0,8% por 30 minutos com oxigênio a 100%. Os filhotes, analisados quanto ao tamanho, peso, alterações morfológicas e comprimento do cordão umbilical e número de nascidos vivos por grupo. Os resultados foram expressos como média (+-, desvio padrão da média, seguida de teste de Tukey. Resultados: Ocorreram alterações morfológicas no período gestacional e alterações no peso, tamanho e comprimento do cordão umbilical de filhotes do grupo 2 (3,05 ± 0,10 cm, 3,17 ± 0,17g e 2,57 ± 0,12 cm, sendo significativo (p<0,005. Conclusão: Halotano não comprometeu a fertilização dos animais estudados, mas promoveu o aparecimento de alterações morfológicas no primeiro período gestacional, mostrando o risco de teratogenicidade e consequentemente, a inviabilidade embrionária. Objective: identify morphological changes in embryonic development in rats exposed to gestational and halotano estrous period and assess the gestational period of greatest risk. Material and Methods: project approved by Commission standards and research ethics at UNIFENAS (Federal University of Alfenas (Opinion No. 11ª /2008. We used 25 female Wistar rats, distributed in five groups. Group 1: control (n=5 rats with pregnancy identified without

  12. Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model

    Science.gov (United States)

    Lewis, M. L.; Moriarity, D. M.; Campbell, P. S.

    1993-01-01

    During development, salivary gland (SG) cells both secrete factors which modulate cellular behavior and express specific hormone receptors. Whether SG cell growth is modulated by an autocrine epidermal growth factor (EGF) receptor-mediated signal transduction pathway is not clearly understood. SG tissue is the synthesis site for functionally distinct products including growth factors, digestive enzymes, and homeostasis maintaining factors. Historically, SG cells have proven difficult to grow and may be only maintained as limited three-dimensional ductal-type structures in collagen gels or on reconstituted basement membrane gels. A novel approach to establishing primary rat SG cultures is use of microgravity bioreactors originally designed by NASA as low-shear culture systems for predicting cell growth and differentiation in the microgravity environment of space. These completely fluid-filled bioreactors, which are oriented horizontally and rotate, have proven advantageous for Earth-based culture of three-dimensional cell assemblies, tissue-like aggregates, and glandular structures. Use of microgravity bioreactors for establishing in vitro models to investigate steroid-mediated secretion of EGF by normal SG cells may also prove useful for the investigation of cancer and other salivary gland disorders. These microgravity bioreactors promise challenging opportunities for future applications in basic and applied cell research.

  13. Effect of salicyclic acid on gluccorticoid receptor in cultured fibroblasts derived from rat carrageenin granuloma.

    Science.gov (United States)

    Koshihara, Y; Yamagishi, M; Murota, S I

    1976-06-23

    The binding activity of [3H]dexamethasone to the specific receptor was studied in the cytoplasmic fraction of a established fibroblast line derived from rat carrageenin granuloma in culture condition. Specific receptor to dexamethasone was demonstrated. Scatchard analysis revealed a single class of binding sites with a dissociation constant for [3H]dexamethasone of 3.64 - 10(-8) M and a concentration of binding sites of 0.825 pmol per mg cytosol protein. The number of cytoplasmic binding sites per cell was calculated at 1.15 - 10(5). Total binding activity to [3H]dexamethasone of the cytoplasmic fraction was enhanced when the cells were cultured in a medium containing salicylic acid was at 37 degrees C. The maximum enhancement was seen at the concentration of 10(-3)M and in 3h treatment of salicylic acid. This enhancement by salicylic acid was lost when cycloheximide was added to the culture medium at the same time. If salicyclic acid was added to the cell free system, it showed no effect on the binding activity. The other non-steroidal anti-inflammatory drugs; phenylbutazone and indomethacin,also enhanced the total binding activity to [3H]dexamethasone of the cytoplasmic fraction at the concentration of 2 - 10(-5) M and 2 - 10(-7) M, respectively.

  14. Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets.

    Science.gov (United States)

    Eberhard, M; Miyagawa, K; Hermsmeyer, K; Erne, P

    1995-12-01

    The Ca2+ antagonist mibefradil at supratherapeutic concentrations induced a sustained increase of cytosolic Ca2+ in cultured rat cardiac fibroblasts and human platelets which lack sensitivity to K+ depolarization and Ca2+ channel block by verapamil or other Ca2+ antagonists. At concentrations above 10 microM, mibefradil elevated substantially cytosolic [Ca2+] without affecting the peak level of agonist-induced Ca2+ transients. These Ca2+-mobilizing actions of 10 or 100 microM mibefradil stand in contrast to the Ca2+ antagonism and relaxation of vascular muscle at 1 microM concentrations. Since a substantial part of mibefradil-induced increase in cytosolic Ca2+ was independent of extracellular Ca2+, and in order to define better the mechanism of Ca2+ increase, we exposed permeabilized cultured rat cardiac fibroblasts and human platelets to mibefradil at concentrations sufficiently high to identify covert effects. In permeabilized fibroblasts or platelets mibefradil at concentrations above 10 microM activated dose-dependent Ca2+ release from intracellular Ca2+ stores. Verapamil had no effect at concentrations of up to 100 microM. Mibefradil-induced Ca2+ release was not affected by ryanodine, thapsigargin, removal of ATP or dithioerythreitol, indicating that neither Ca2+ - nor disulfide reagent-induced Ca2+ release were involved and that mibefradil did not release Ca2+ by inhibition of the Ca2+-ATPase pump of endoplasmic reticulum. The rate, but not the amplitude, of mibefradil-induced Ca2+ release is increased up to fourfold in the presence of pentosan polysulphate or heparin, two potent inhibitors of inositol 1,4,5-trisphosphate-induced Ca2+ release. Depletion of Ca2+ stores of permeabilized cells inositol 1,4,5-trisphosphate in the presence of thapsigargin completely blocked mibefradil-induced Ca2+ release, and depletion of Ca2+ stores by mibefradil prevented further Ca2+ release by inositol 1,4,5-trisphosphate. Mibefradil at supratherapeutic concentrations (> or

  15. Oral insulin stimulates intestinal epithelial cell turnover following massive small bowel resection in a rat and a cell culture model.

    Science.gov (United States)

    Ben Lulu, Shani; Coran, Arnold G; Shehadeh, Naim; Shamir, Raanan; Mogilner, Jorge G; Sukhotnik, Igor

    2012-02-01

    We have recently reported that oral insulin (OI) stimulates intestinal adaptation after bowel resection and that OI enhances enterocyte turnover in correlation with insulin receptor expression along the villus-crypt axis. The purpose of the present study was to evaluate the effect of OI on intestinal epithelial cell proliferation and apoptosis in a rat model of short bowel syndrome (SBS) and in a cell culture model. Caco-2 cells were incubated with increasing concentrations of insulin. Cell proliferation and apoptosis were determined by FACS cytometry. Cell viability was investigated using the Alamar Blue technique. Male rats were divided into three groups: Sham rats underwent bowel transection, SBS rats underwent a 75% bowel resection, and SBS-OI rats underwent bowel resection and were treated with OI given in drinking water (1 U/ml) from the third postoperative day. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined on day 15. Real time PCR was used to determine the level of bax and bcl-2 mRNA and western blotting was used to determine bax, bcl-2, p-ERK and AKT protein levels. Statistical analysis was performed using the one-way ANOVA test, with P statistically significant. Treatment of Caco-2 cells with insulin resulted in a significant increase in cell proliferation (twofold increase after 24 h and 37