WorldWideScience

Sample records for cultured animal cells

  1. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  2. Animal-cell culture in aqueous two-phase systems

    NARCIS (Netherlands)

    Zijlstra, G.M.

    1998-01-01

    In current industrial biotechnology, animal-cell culture is an important source of therapeutic protein products. The conventional animal-cell production processes, however, include many unit operations as part of the fermentation and downstream processing strategy. The research described in

  3. Animal-cell culture media: History, characteristics, and current issues.

    Science.gov (United States)

    Yao, Tatsuma; Asayama, Yuta

    2017-04-01

    Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal-cell culture media. A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords. At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical-based synthetic media because naturally derived ingredients have their disadvantages such as large batch-to-batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum-containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances. Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.

  4. Radioimmunoassay studies on repair of ultraviolet damaged DNA in cultured animal cells

    International Nuclear Information System (INIS)

    Yatani, Ryuichi; Tohgo, Yukihiro; Kunishima, Nobuyoshi.

    1975-01-01

    UV (ultraviolet) damaged DNA and its repair of various cultured animal cells were observed by radioimmunoassay using anti-serum against the UV irradiation induced heat-degenerated DNA. There is some difference among the cells of used animals according to their DNA repairabilities. The cells were divided into four groups according to the existence or strength of their repairabilities. 1) excision repair type: cells of men and chimpanzees. 2) photoreactivation type: cells derived from Tachydromus tachydromoides and chicks. 3) photoreactivation with excision repair: cells of rats, kangaroos and mosquitos. 4) non-excision repair type: cells of mice, Meriones and rats. Animal cells have plural types of repair. Main types of repair will differ according to the kind of animals. (Ichikawa, K.)

  5. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals.

    Science.gov (United States)

    Butler, Michael

    2005-08-01

    There has been a rapid increase in the number and demand for approved biopharmaceuticals produced from animal cell culture processes over the last few years. In part, this has been due to the efficacy of several humanized monoclonal antibodies that are required at large doses for therapeutic use. There have also been several identifiable advances in animal cell technology that has enabled efficient biomanufacture of these products. Gene vector systems allow high specific protein expression and some minimize the undesirable process of gene silencing that may occur in prolonged culture. Characterization of cellular metabolism and physiology has enabled the design of fed-batch and perfusion bioreactor processes that has allowed a significant improvement in product yield, some of which are now approaching 5 g/L. Many of these processes are now being designed in serum-free and animal-component-free media to ensure that products are not contaminated with the adventitious agents found in bovine serum. There are several areas that can be identified that could lead to further improvement in cell culture systems. This includes the down-regulation of apoptosis to enable prolonged cell survival under potentially adverse conditions. The characterization of the critical parameters of glycosylation should enable process control to reduce the heterogeneity of glycoforms so that production processes are consistent. Further improvement may also be made by the identification of glycoforms with enhanced biological activity to enhance clinical efficacy. The ability to produce the ever-increasing number of biopharmaceuticals by animal cell culture is dependent on sufficient bioreactor capacity in the industry. A recent shortfall in available worldwide culture capacity has encouraged commercial activity in contract manufacturing operations. However, some analysts indicate that this still may not be enough and that future manufacturing demand may exceed production capacity as the number

  6. Platelet lysate: a replacement for fetal bovine serum in animal cell culture?

    OpenAIRE

    Johansson, Liselott; Klinth, Jeanna; Holmqvist, Olov; Ohlson, Sten

    2003-01-01

    A new cell culture supplement, platelet lysate, was evaluated with reference to fetal bovine serum (FBS), an established industrial medium for animal cell culture. Chemical and bacteriological profiles were conducted including the presence of platelet-derived growth factor (PDGF). PDGF was detected in the platelet lysate but it was not present in FBS. The platelet lysate medium demonstrated lack of microorganisms, mycoplasma and endotoxins. The platelet lysate was investigated in culture stud...

  7. Porcine platelet lysate as a supplement for animal cell culture

    Science.gov (United States)

    Aldén, Anna; Gonzalez, Lorena; Persson, Anna; Christensson, Kerstin; Holmqvist, Olov

    2007-01-01

    A novel supplementation of cell growth media based on a porcine platelet lysate was developed for culture of animal-derived cells. The platelet lysate was produced from porcine blood and contained lysate of platelets and plasma components. It showed satisfactory microbiological integrity and it carried only low amount of endotoxins (platelet lysate supported well proliferation of Vero (African green monkey transformed kidney epithelial cells), Chinese hamster ovary (CHO) and hybridoma cells comparable to fetal bovine serum (FBS). Platelet lysate shows promise as a viable choice over FBS as it can be produced in large quantities, high lot-to-lot consistency and with an attractive price structure. Furthermore it is a strong alternative to FBS for ethical reasons. It is expected that it can be used as a general supplementation for most animal cells for research studies on the proliferation of cells and their expression of products. PMID:19002989

  8. Prospects for the use of animal cell cultures in screening of pharmaceutical substances

    Science.gov (United States)

    Kolesnikova, S. G.; Moiseeva, I. Y.

    2017-01-01

    Currently, there is a tendency to reduce the use of animals in conducting safety tests of chemical substances. Therefore, in vitro methods are a good alternative or adjunct to in vivo safety tests. This is especially important at the stage of pre-clinical drug trial. In 2004, the international standard for the principles of good laboratory practice (GLP) [1] was adopted which regulates chemicals trials in cell cultures. However, in Russia, until recently, this issue has been neglected. Research works have been scarce. In 2013, the standard for GLP principles and compliance monitoring was adopted in Russia [2]. The feasibility of using animal cell cultures as drug testing system has been proved by the experimental base and is now being introduced into practice [3].

  9. HEK293 cell culture media study towards bioprocess optimization: Animal derived component free and animal derived component containing platforms.

    Science.gov (United States)

    Liste-Calleja, Leticia; Lecina, Martí; Cairó, Jordi Joan

    2014-04-01

    The increasing demand for biopharmaceuticals produced in mammalian cells has lead industries to enhance bioprocess volumetric productivity through different strategies. Among those strategies, cell culture media development is of major interest. In the present work, several commercially available culture media for Human Embryonic Kidney cells (HEK293) were evaluated in terms of maximal specific growth rate and maximal viable cell concentration supported. The main objective was to provide different cell culture platforms which are suitable for a wide range of applications depending on the type and the final use of the product obtained. Performing simple media supplementations with and without animal derived components, an enhancement of cell concentration from 2 × 10(6) cell/mL to 17 × 10(6) cell/mL was achieved in batch mode operation. Additionally, the media were evaluated for adenovirus production as a specific application case of HEK293 cells. None of the supplements interfered significantly with the adenovirus infection although some differences were encountered in viral productivity. To the best of our knowledge, the high cell density achieved in the work presented has never been reported before in HEK293 batch cell cultures and thus, our results are greatly promising to further study cell culture strategies in bioreactor towards bioprocess optimization. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. 9 CFR 101.6 - Cell cultures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  11. Cultural Image of Animal Words

    Institute of Scientific and Technical Information of China (English)

    邓海燕

    2017-01-01

    This paper,after introducing the definition and forms of cultural image,focuses on the detailed comparison and analysis of cultural image of animal words both in English and in Chinese from four aspects,that is,same animal word,same cultural image;same animal word,different cultural images;different animal words,same cultural image;different animal words,different cultural images.

  12. Cytotoxic effects of gold nanoparticles exposure employing in vitro animal cell culture system as part of nanobiosafety

    Science.gov (United States)

    Ambwani, Sonu; Kakade Datta, P.; Kandpal, Deepika; Arora, Sandeep; Ambwani, Tanuj Kumar

    2016-04-01

    Metal Nanoparticles are exploited in different fields that include biomedical sector where they are utilized in drug and gene delivery, biosensors, cancer treatment and diagnostic tools. Despite of their benefits, there has been serious concerns about possible side effects of several nanoparticles. Gold nanoparticles (AuNPs) are exploited for bio-imaging, biosensing, drug delivery, transfection and diagnosis. These nanoparticles may get released into the environment in high amounts at all stages of production, recycling and disposal. Since the manufacture and use of nanoparticles are increasing, humans/ animals are more likely to be exposed occupationally or via consumer products and the environment. The emergence of the new field of nanotoxicity has spurred great interest in a wide variety of materials and their possible effects on living systems. Animal cell culture system is considered as a sensitive indicator against exposure of such materials. Keeping in view the above scenario, present study was carried out to evaluate effect of AuNPs exposure in primary and cell line culture system employing chicken embryo fibroblast (CEF) culture and HeLa cell line culture through MTT assay. Minimum cytotoxic dose was found to be 60 µg/ml and 50 µg/ml in CEF and HeLa cells, respectively. Thus, it could be inferred that even a very low concentration of AuNPs could lead to cytotoxic effects in cell culture based studies.

  13. [Possibilities and limitations of fibroblast cultures in the study of animal aging].

    Science.gov (United States)

    Van Gansen, P; Van Lerberghe, N

    1987-01-01

    INTRODUCTION. Aging--the effect of time--occurs in every living organism. Senescence is the last period of the lifespan, leading to death. It happens in all animals, with the exception of a few didermic species (Hydras) having a stock of embryonic cells and being immortal. The causes of animal senescence are badly known. They depend both on genetic characters (maximal lifespan of a species) and on medium factors (mean expectation of life of the animals of a species). Animal senescence could depend on cell aging: 1) by senescence and death of the differentiated cells, 2) by modified proliferation and differentiation of the stem cells of differentiated tissues, 3) by alterations in the extracellular matrices, 4) by interactions between factors 1) 2) and 3) in each tissue, 5) by interactions between the several tissues of an organism. This complexity badly impedes the experimental study of animal senescence. Normal mammal cells are aging when they are cultivated (in vitro ageing): their phenotype varies and depends on the cell generation (in vitro differentiation); the last cell-generation doesn't divide anymore and declines until death of the culture (in vitro senescence). Analysis of these artificial but well controlled systems allows an experimental approach of the proliferation, differentiation, senescence and death of the cells and of the extracellular matrix functions. Present literature upon in vitro aging of cultivated human cells is essentially made of papers where proliferation and differentiation characteristics are compared between early ("young") and late ("old") cell-generations of the cultures. FIBROBLASTIC CELLS OF THE MOUSE SKIN. This cell type has been studied in our laboratory, using different systems: 1) Primary cultures isolated from peeled skins of 19 day old mouse embryos, 2) Mouse dermis analyzed in the animals, 3) Cultivated explants of skins, 4) Serial sub-cultures of fibroblasts isolated from these explants, 5) Cells cultivated comparably on

  14. Modulation of cell adhesion and viability of cultured murine bone marrow cells by arsenobetaine, a major organic arsenic compound in marine animals.

    Science.gov (United States)

    Sakurai, T; Fujiwara, K

    2001-01-01

    1. In this study, we investigated the biological effects of trimethyl (carboxymethyl) arsonium zwitterion, namely arsenobetaine (AsBe), which is a major organic arsenic compound in marine animals using murine bone marrow (BM) cells and compared them with those of an inorganic arsenical, sodium arsenite, in vitro. 2. Sodium arsenite showed strong cytotoxicity in BM cells, and its IC(50) was 6 microM. In contrast, AsBe significantly enhanced the viability of BM cells in a dose-dependent manner during a 72-h incubation; about a twofold increase in the viability of cells compared with that of control cells cultured with the medium alone was observed with a microM level of AsBe. 3. In morphological investigations, AsBe enhanced the numbers of large mature adherent cells, especially granulocytes, during a 72-h BM culture. When BM cells were cultured together with AsBe and a low dose (1 u ml(-1)) of recombinant murine granulocyte/macrophage colony-stimulating factor (rMu GM-CSF), significant additive-like increasing effects were observed on the numbers of both granulocytes and macrophages originated from BM cells. However, AsBe did not cause proliferation of BM cells at all as determined by colony-forming assay using a gelatinous medium. 4. These findings demonstrate the unique and potent biological effects in mammalian cells of AsBe, a major organic arsenic compound in various marine animals which are ingested daily as seafood in many countries.

  15. Application of cell co-culture system to study fat and muscle cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  16. Ginseng and obesity: observations and understanding in cultured cells, animals and humans.

    Science.gov (United States)

    Zhang, Longyun; Virgous, Carlos; Si, Hongwei

    2017-06-01

    Ginseng, a traditional medical herb, has been reported having beneficial effects in fatigue, heart diseases, diabetes, immune function and erectile dysfunction. In recent years, increasing investigations have been conducted on ginseng in preventing and treating of obesity, one of the major worldwide escalating public health concerns. However, the effect and the relevant mechanisms behind how ginseng works as an antiobesity treatment are still controversial. In this review, we briefly discussed the chemical structures, metabolism and pharmacokinetics of ginseng and its major bioactive components ginsenosides. The major focus is on the antiobesity effects and the physiological, cellular and molecular mechanisms of ginseng and its ginsenosides in cultured cells, animal models and humans. We particularly compared the ginsenosides profiles, the antiobesity effects and the mechanisms between Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius), the two major ginseng species having opposite medical effects in traditional Chinese medicine. Our unpublished data on the ginseng antiobesity in cultured cells and mice were also included. We further addressed the current problems and future directions of the ginseng antiobesity research. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cluster–cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    International Nuclear Information System (INIS)

    Alves, S G; Martins, M L

    2010-01-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster–cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture

  18. Selection of osteoprogenitors from the jaw periosteum by a specific animal-free culture medium.

    Directory of Open Access Journals (Sweden)

    Dorothea Alexander

    Full Text Available The goal of our research work is to establish mesenchymal osteoprogenitors derived from human jaw periosteum for tissue engineering applications in oral and maxillofacial surgery. For future autologous and/or allogeneic transplantations, some issues must be addressed. On the one hand, animal-free culture conditions have yet to be established. On the other hand, attempts should be undertaken to shorten the in vitro culturing process efficiently. The aim of the present study is to compare and analyze the phenotype of osteoprogenitors from the jaw periosteum under normal FCS-containing and animal-free culture conditions. Therefore, we analyzed the proliferation rates of MesenCult-XF medium (MC- in comparison to DMEM-cultured JPCs. Whereas jaw periosteal cells (JPCs show relatively slow proliferation rates and a fibroblastoid shape under DMEM culture conditions, MC-cultured JPCs diminished their cell size significantly and proliferated rapidly. By live-monitoring measurements of adhesion and proliferation, we made an interesting observation: whereas the proliferation of the MSCA-1(+ subpopulation and the unseparated cell fraction were favored by the animal-free culture medium, the proliferation of the MSCA-1(- subpopulation seemed to be repressed under these conditions. The alkaline phosphatase expression pattern showed similar results under both culture conditions. Comparison of the mineralization capacity revealed an earlier formation of calcium-phosphate precipitates under MC culture conditions; however, the mineralization capacity of the DMEM-cultured cells seemed to be higher. We conclude that the tested animal-free medium is suitable for the in vitro expansion and even for the specific selection of osteoprogenitor cells derived from the jaw periosteum.

  19. Flux analysis of mammalian cell culture

    NARCIS (Netherlands)

    Martens, D.E.; Tramper, J.

    2010-01-01

    Animal cells are used for the production of vaccines and pharmaceutical proteins. The increase in demand for these products requires an increase in volumetric productivity of animal cell culture processes, which can be attained through an increase in biomass concentration and/or specific

  20. Characterization, isolation and culture of primordial germ cells in domestic animals: recent progress and insights from the ovine species.

    Science.gov (United States)

    Ledda, S; Bogliolo, L; Bebbere, D; Ariu, F; Pirino, S

    2010-09-01

    Primordial germ cell (PGC) allocation, characterization, lineage restriction, and differentiation have been extensively studied in the mouse. Murine PGC can be easily identified using markers as alkaline phosphatase content or the expression of pluripotent markers such as Pou5f1, Nanog, Sox2, Kit, SSEA1, and SSEA4. These tools allowed us to clarify certain aspects of the complex interactions of somatic and germinal cells in the establishment of the germ cell lineage, its segregation from the neighbouring somatic tissue, and the guidance mechanisms during migration that direct most of the germ cells into the genital ridges. Few data are available from other domestic animals and here we reported our preliminary studies on the isolation, characterization, and in vitro culture of sheep PGCs. Sheep PGCs can be identified with the markers previously used in mouse, but, in some cases, these markers are not coherently expressed in the same cell depending on the grade of differentiation and on technical problems related to commercial antibodies used. Pluripotency of PGCs in culture (EGCs) from domestic animals also needs further evaluation even though the derivation of embryonic pluripotent cell lines from large mammals may be an advantage as they are more physiologically similar to the human and perhaps more relevant for clinical translation studies. Comprehensive epigenetic reprogramming of the genome in early germ cells, and derived EGCs including extensive erasure of epigenetic modifications, may be relevant for gaining insight into events that lead to reprogramming and establishment of totipotency. EGCs can differentiate in vitro in a various range of tissues, form embryonic bodies, but in many cases failed to generate tumours when transplanted into immunodeficient mice and are not able to generate germline chimeric animals after their transfer. Such incomplete information clearly indicates the urge to improve the studies on derivation of stem cells in farm animals and

  1. Pluripotent stem cells and reprogrammed cells in farm animals.

    Science.gov (United States)

    Nowak-Imialek, Monika; Kues, Wilfried; Carnwath, Joseph W; Niemann, Heiner

    2011-08-01

    Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.

  2. Intravital Microscopy Reveals Differences in the Kinetics of Endocytic Pathways between Cell Cultures and Live Animals

    Directory of Open Access Journals (Sweden)

    Roberto Weigert

    2012-11-01

    Full Text Available Intravital microscopy has enabled imaging of the dynamics of subcellular structures in live animals, thus opening the door to investigating membrane trafficking under physiological conditions. Here, we sought to determine whether the architecture and the environment of a fully developed tissue influences the dynamics of endocytic processes. To this aim, we imaged endocytosis in the stromal cells of rat salivary glands both in situ and after they were isolated and cultured on a solid surface. We found that the internalization of transferrin and dextran, two molecules that traffic via distinct mechanisms, is substantially altered in cultured cells, supporting the idea that the three dimensional organization of the tissue and the cues generated by the surrounding environment strongly affect membrane trafficking events.

  3. Mammalian Cell Culture Simplified.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  4. Lethal graft-versus-host disease: modification with allogeneic cultured donor cells

    International Nuclear Information System (INIS)

    Mauch, P.; Lipton, J.M.; Hamilton, B.; Obbagy, J.; Kudisch, M.; Nathan, D.; Hellman, S.

    1984-01-01

    The use of the bone marrow culture technique was studied as a means to prepare donor marrow for bone marrow transplantation to avoid lethal graft-versus-host disease (GVHD). Preliminary experiments demonstrated the rapid loss of theta-positive cells in such cultures, so that theta-positive cells were not detected after 6 days. Initial experiments in C3H/HeJ (H-2k, Hbbd) recipients prepared with 900 rad demonstrated improved survival when 3-day cultured C57BL/6 (H-2b, Hbbs) donor cells were used in place of hind limb marrow for transplantation. However, hemoglobin typing of recipient animals revealed only short-term donor engraftment, with competitive repopulation of recipient marrow occurring. Subsequent experiments were done in 1,200-rad prepared recipients, with long-term donor engraftment demonstrated. The majority of 1,200-rad prepared animals receiving cultured allogeneic cells died of GVHD, but animals receiving 28-day cultured cells had an improved 90-day survival and a delay in GVHD development over animals receiving hind limb marrow or marrow from shorter times in culture. In addition, animals receiving anti-theta-treated, 3-day nonadherent cells had an improved survival (44%) over animals receiving anti-theta-treated hind limb marrow (20%). These experiments demonstrate modest benefit for the use of cultured cells in bone marrow transplantation across major H-2 histocompatibility complex differences

  5. Animal culture: chimpanzee conformity?

    Science.gov (United States)

    van Schaik, Carel P

    2012-05-22

    Culture-like phenomena in wild animals have received much attention, but how good is the evidence and how similar are they to human culture? New data on chimpanzees suggest their culture may even have an element of conformity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Bactericidal Activity of Ceragenin CSA-13 in Cell Culture and in an Animal Model of Peritoneal Infection.

    Science.gov (United States)

    Bucki, Robert; Niemirowicz, Katarzyna; Wnorowska, Urszula; Byfield, Fitzroy J; Piktel, Ewelina; Wątek, Marzena; Janmey, Paul A; Savage, Paul B

    2015-10-01

    Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5). Additionally, the biodistribution and bactericidal activity of a CSA-13-IRDye 800CW derivate were assessed using an animal model of peritoneal infection after PAO1 challenge. In cell culture, CSA-13 bactericidal activities against PAO1 and Xen5 were higher than the activities of the human cathelicidin peptide LL-37. Increased CSA-13 activity was observed in polarized human lung epithelial cell cultures subjected to butyric acid treatment, which is known to increase endogenous LL-37 production. Eight hours after intravenous or intraperitoneal injection, the greatest CSA-13-IRDye 800CW accumulation was observed in mouse liver and kidneys. CSA-13-IRDye 800CW administration resulted in decreased bacterial outgrowth from abdominal fluid collected from animals subjected to intraperitoneal PAO1 infection. These observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity. Cationic lipids such as CSA-13 represent excellent candidates for the development of new antibacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions

    Science.gov (United States)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.

  8. Sparging - shear sensitivity of animal cells

    NARCIS (Netherlands)

    Pol, van der L.A.

    1998-01-01

    Biopharmaceuticals are increasingly produced by modern biotechnological techniques. The in-vitro culture of animal cells in stirred tanks is one of the feasible systems, especially for proteins that require specific post-tanslational modifications to evoke a desired respons in patients.

  9. [Diversity and bioactivity of culturable actinobacteria from animal feces].

    Science.gov (United States)

    Jiang, Yi; Cao, Yanru; Han, Li; Jin, Rongxian; Zheng, Dan; He, Wenxiang; Li, Youlong; Huang, Xueshi

    2012-10-04

    In order to provide new source for discovering new lead compounds of drugs and other products, the diversity and some bioactivities of culturable actinobacteria in animal feces were studied. Five animals' fecal samples were collected from Yunnan Wild Animal Park. The pure cultures of actinobacteria were isolated from these samples by using 5 different media. The 16S rRNA gene sequences of 119 selected strains were determined; the phylogenetic analysis was carried out; and antimicrobial and anti-tumor activities were determined by using agar diffusion method, tumor cell lines k562and HL60 respectively. In total 20 genera of actinobacteria from the 5 animals' feces were identified. Many strains inhibited Bacillus subtilis, Staphylococcus lentus, Mycobacterium tuberculosis, Candida albicans and Aspergillus niger. Some strains presented antitumor activities. Some known secondary metabolites and Sannastatin, a novel macrolactam polyketide glycoside with bioactivities, were isolated and identified. Fecal actinobacteria are a new potential source for discovering drug lead and other industry products.

  10. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells.

    Science.gov (United States)

    Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro

    2016-01-01

    The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.

  11. Cardiac Cells Beating in Culture: A Laboratory Exercise

    Science.gov (United States)

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  12. Count of splenic stromal precursor cells in mice and expression of cytokine genes in these cells in primary cultures during different periods after immunization of animals with S. typhimurium antigens.

    Science.gov (United States)

    Gorskaya, Yu F; Danilova, T A; Mezentseva, M V; Shapoval, I M; Narovlyanskii, A N; Nesterenko, V G

    2011-06-01

    Injection of S. typhimurium antigens significantly (9-fold) increased cloning efficiency and, hence, the content of stromal precursor cells in the spleen as soon as after 24 h. These parameters returned to normal by days 6-15 after immunization. Cultured splenocytes collected from immune (but not intact) animals expressed the genes of proinflammatory cytokines IL-1β (on days 1, 6, 15) and IL-6 (on days 1 and 6), TNF-α (on days 6 and 15), and of IFN-α and IL-18 (on days 6 and 15). The expression of IL-4 gene was suppressed on day 6 after immunization, of IL-10 gene on days 1 and 6, of IL-6 gene on day 15. Hence, no signs of immune response suppression by stromal cells were found in this system. The spectrum and dynamics of the expression of pro- and anti-inflammatory cytokine genes in stromal cell cultures from the spleen of immunized mice seemed to correspond to those needed for support of the immune response to S. typhimurium antigens, observed in immunized animals. The results indicate possible involvement of stromal cells in the realization of immune response in vivo. The increase of stromal precursor cells cloning efficiency in response to antigen injection could not be reproduced in vitro: the presence of S. typhimurium antigens in primary cultures of intact mouse bone marrow and spleen throughout the entire period of culturing ≈ 20-fold reduced cloning efficiency in cultures.

  13. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

    Science.gov (United States)

    Díez, José M; Bauman, Ewa; Gajardo, Rodrigo; Jorquera, Juan I

    2015-03-13

    Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.

  14. Dynamic cell culture system: a new cell cultivation instrument for biological experiments in space

    Science.gov (United States)

    Gmunder, F. K.; Nordau, C. G.; Tschopp, A.; Huber, B.; Cogoli, A.

    1988-01-01

    The prototype of a miniaturized cell cultivation instrument for animal cell culture experiments aboard Spacelab is presented (Dynamic cell culture system: DCCS). The cell chamber is completely filled and has a working volume of 200 microliters. Medium exchange is achieved with a self-powered osmotic pump (flowrate 1 microliter h-1). The reservoir volume of culture medium is 230 microliters. The system is neither mechanically stirred nor equipped with sensors. Hamster kidney (Hak) cells growing on Cytodex 3 microcarriers were used to test the biological performance of the DCCS. Growth characteristics in the DCCS, as judged by maximal cell density, glucose consumption, lactic acid secretion and pH, were similar to those in cell culture tubes.

  15. Establishment of primary cell culture from the temperate symbiotic cnidarian, Anemonia viridis.

    Science.gov (United States)

    Barnay-Verdier, Stéphanie; Dall'osso, Diane; Joli, Nathalie; Olivré, Juliette; Priouzeau, Fabrice; Zamoum, Thamilla; Merle, Pierre-Laurent; Furla, Paola

    2013-10-01

    The temperate symbiotic sea anemone Anemonia viridis, a member of the Cnidaria phylum, is a relevant experimental model to investigate the molecular and cellular events involved in the preservation or in the rupture of the symbiosis between the animal cells and their symbiotic microalgae, commonly named zooxanthellae. In order to increase research tools for this model, we developed a primary culture from A. viridis animal cells. By adapting enzymatic dissociation protocols, we isolated animal host cells from a whole tentacle in regeneration state. Each plating resulted in a heterogeneous primary culture consisted of free zooxanthellae and many regular, small rounded and adherent cells (of 3-5 μm diameter). Molecular analyses conducted on primary cultures, maintained for 2 weeks, confirmed a specific signature of A. viridis cells. Further serial dilutions and micromanipulation allowed us to obtain homogenous primary cultures of the small rounded cells, corresponding to A. viridis "epithelial-like cells". The maintenance and the propagation over a 4 weeks period of primary cells provide, for in vitro cnidarian studies, a preliminary step for further investigations on cnidarian cellular pathways notably in regard to symbiosis interactions.

  16. Spermatogonial stem cells from domestic animals: progress and prospects.

    Science.gov (United States)

    Zheng, Yi; Zhang, Yaqing; Qu, Rongfeng; He, Ying; Tian, Xiue; Zeng, Wenxian

    2014-03-01

    Spermatogenesis, an elaborate and male-specific process in adult testes by which a number of spermatozoa are produced constantly for male fertility, relies on spermatogonial stem cells (SSCs). As a sub-population of undifferentiated spermatogonia, SSCs are capable of both self-renewal (to maintain sufficient quantities) and differentiation into mature spermatozoa. SSCs are able to convert to pluripotent stem cells during in vitro culture, thus they could function as substitutes for human embryonic stem cells without ethical issues. In addition, this process does not require exogenous transcription factors necessary to produce induced-pluripotent stem cells from somatic cells. Moreover, combining genetic engineering with germ cell transplantation would greatly facilitate the generation of transgenic animals. Since germ cell transplantation into infertile recipient testes was first established in 1994, in vivo and in vitro study and manipulation of SSCs in rodent testes have been progressing at a staggering rate. By contrast, their counterparts in domestic animals, despite the failure to reach a comparable level, still burgeoned and showed striking advances. This review outlines the recent progressions of characterization, isolation, in vitro propagation, and transplantation of spermatogonia/SSCs from domestic animals, thereby shedding light on future exploration of these cells with high value, as well as contributing to the development of reproductive technology for large animals.

  17. Mini-Review: Limbal Stem Cells Deficiency in Companion Animals: Time to Give Something Back?

    Science.gov (United States)

    Sanchez, Rick F; Daniels, Julie T

    2016-04-01

    Experimental animals have been used extensively in the goal of developing sight-saving therapies for humans. One example is the development of transplantation of cultured limbal epithelial stem cells (LESC) to restore vision following ocular surface injury or disease. With clinical trials of cultured LESC therapy underway in humans and a potential companion animal population suffering from similar diseases, it is perhaps time to give something back. Comparatively to humans, what is known about the healthy limbus and corneal surface physiology of companion animals is still very little. Blinding corneal diseases in animals such as symblepharon in cats with Feline Herpes Virus-1 infections require a basic understanding of the functional companion animal limbus and corneal stem cells. Our understanding of many other vision threatening conditions such as scarring of the cornea post-inflammation with lymphocytic-plasmacytic infiltrate in dogs (aka chronic superficial keratitis) or pigment proliferation with Pigmentary Keratitis of Pugs would benefit from a better understanding of the animal cornea in health and disease. This is also vital when new therapeutic approaches are considered. This review will explore the current challenges and future research directions that will be required to increase our understanding of corneal diseases in animals and consider the potential development and delivery of cultured stem cell therapy to veterinary ocular surface patients.

  18. Six cloned calves produced from adult fibroblast cells after long-term culture

    Science.gov (United States)

    Kubota, Chikara; Yamakuchi, Hiroshi; Todoroki, Junichi; Mizoshita, Kazunori; Tabara, Norio; Barber, Michele; Yang, Xiangzhong

    2000-01-01

    Cloning whole animals with somatic cells as parents offers the possibility of targeted genetic manipulations in vitro such as “gene knock-out” by homologous recombination. However, such manipulation requires prolonged culture of nuclear donor cells. Previous successes in cloning have been limited to the use of cells collected either fresh or after short-term culture. Therefore, demonstration of genetic totipotency of cells after prolonged culture is pivotal to combining site-specific genetic manipulations and cloning. Here we report birth of six clones of an aged (17-year-old) Japanese Black Beef bull using ear skin fibroblast cells as nuclear donor cells after up to 3 months of in vitro culture (10–15 passages). We observed higher developmental rates for embryos derived from later passages (10 and 15) as compared with those embryos from an early passage (passage 5). The four surviving clones are now 10–12 months of age and appear normal, similar to their naturally reproduced peers. These data show that fibroblasts of aged animals remain competent for cloning, and prolonged culture does not affect the cloning competence of adult somatic donor cells. PMID:10655472

  19. Cellular targets for improved manufacturing of virus-based biopharmaceuticals in animal cells.

    Science.gov (United States)

    Rodrigues, Ana F; Carrondo, Manuel J T; Alves, Paula M; Coroadinha, Ana S

    2014-12-01

    The past decade witnessed the entry into the market of new virus-based biopharmaceuticals produced in animal cells such as oncolytic vectors, virus-like particle vaccines, and gene transfer vectors. Therefore, increased attention and investment to optimize cell culture processes towards enhanced manufacturing of these bioproducts is anticipated. Herein, we review key findings on virus-host interactions that have been explored in cell culture optimization. Approaches supporting improved productivity or quality of vector preparations are discussed, mainly focusing on medium design and genetic manipulation. This review provides an integrated outline for current and future efforts in exploring cellular targets for the optimization of cell culture manufacturing of virus-based biopharmaceuticals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evidence of heterogeneity within bovine satellite cells isolated from young and adult animals.

    Science.gov (United States)

    Li, J; Gonzalez, J M; Walker, D K; Hersom, M J; Ealy, A D; Johnson, S E

    2011-06-01

    Satellite cells are a heterogeneous population of myogenic precursors responsible for muscle growth and repair in mammals. The objectives of the experiment were to examine the growth rates and degree of heterogeneity within bovine satellite cells (BSC) isolated from young and adult animals. The BSC were harvested from the semimembranosus of young (4.3 ± 0.5 d) and adult (estimated 24 to 27 mo) cattle and cultured en masse. Young animal BSC re-enter the cell cycle sooner and reach maximal 5-ethynyl-2'-deoxyuridine (EdU) incorporation earlier (P animals after 3, 4, and 5 d in culture. These results indicate that BSC from young animals activate, proliferate, and differentiate sooner than isolates from adult animals. Lineage heterogeneity within BSC was examined using antibodies specific for Pax7 and Myf5, lineage markers of satellite cells, and myoblasts. Immunocytochemistry revealed the majority of Pax7-expressing BSC also express Myf5; a minor population (~5%) fails to exhibit Myf5 immunoreactivity. The percentage of Pax7:Myf5 BSC from young animals decreases sooner (P cell clones were established and analyzed after 10 d. Colonies segregated into 2 groups based upon population doubling time. Immunostaining of the slow-growing colonies (population doubling time ≥ 3 d) revealed that a portion exhibited asymmetric distribution of the lineage markers Pax7 and Myf5, similar to self-renewable mouse muscle stem cells. In summary, these results offer insight into the heterogeneity of BSC and provide evidence for subtle differences between rodent and bovine myogenic precursors.

  1. Imitation explains the propagation, not the stability of animal culture.

    Science.gov (United States)

    Claidière, Nicolas; Sperber, Dan

    2010-02-22

    For acquired behaviour to count as cultural, two conditions must be met: it must propagate in a social group, and it must remain stable across generations in the process of propagation. It is commonly assumed that imitation is the mechanism that explains both the spread of animal culture and its stability. We review the literature on transmission chain studies in chimpanzees (Pan troglodytes) and other animals, and we use a formal model to argue that imitation, which may well play a major role in the propagation of animal culture, cannot be considered faithful enough to explain its stability. We consider the contribution that other psychological and ecological factors might make to the stability of animal culture observed in the wild.

  2. Software sensors as a tool for optimization of animal-cell cultures

    NARCIS (Netherlands)

    Dorresteijn, R.C.

    1997-01-01

    In this thesis software sensors are introduced that predict the biomass activity and the concentrations of glucose, glutamine, lactic acid, and ammonium on line, The software sensors for biomass activity, glucose and lactic acid can be applied for any type of animal cell that is grown in a

  3. Pluripotent cells in farm animals: state of the art and future perspectives.

    Science.gov (United States)

    Nowak-Imialek, Monika; Niemann, Heiner

    2012-01-01

    Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.

  4. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  5. On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis.

    Science.gov (United States)

    Dremel, B A; Li, S Y; Schmid, R D

    1992-01-01

    A flow-injection analysis (FIA) system based on fibre optic detection of oxygen consumption using immobilized glucose oxidase (GOD) and lactate oxidase (LOD) is described for the on-line monitoring of glucose and lactate concentrations in animal cell cultures. The consumption of oxygen was determined via dynamic quenching by molecular oxygen of the fluorescence of an indicator. GOD and LOD were immobilized on controlled pore glass (CPG) in enzyme reactors which were directly linked to a specially designed fibre optic flow-through cell covering the oxygen optrode. The system is linear for 0-30 mM glucose, with an r.s.d. of 5% at 30 mM (five measurements) and for 0-30 mM lactate, with an r.s.d. of 5% at 30 mM (five measurements). The enzyme reactors used were stable for more than 4 weeks in continuous operation, and it was possible to analyse up to 20 samples per hour. The system has been successfully applied to the on-line monitoring of glucose and lactate concentrations of an animal cell culture designed for the production of recombinant human antithrombine III (AT-III). Results of the on-line measurement obtained by the FIA system were compared with the off-line results obtained by a glucose and lactate analyser from Yellow Springs Instrument Company (YSI).

  6. Toward the Replacement of Animal Experiments through the Bioinformatics-driven Analysis of 'Omics' Data from Human Cell Cultures.

    Science.gov (United States)

    Grafström, Roland C; Nymark, Penny; Hongisto, Vesa; Spjuth, Ola; Ceder, Rebecca; Willighagen, Egon; Hardy, Barry; Kaski, Samuel; Kohonen, Pekka

    2015-11-01

    This paper outlines the work for which Roland Grafström and Pekka Kohonen were awarded the 2014 Lush Science Prize. The research activities of the Grafström laboratory have, for many years, covered cancer biology studies, as well as the development and application of toxicity-predictive in vitro models to determine chemical safety. Through the integration of in silico analyses of diverse types of genomics data (transcriptomic and proteomic), their efforts have proved to fit well into the recently-developed Adverse Outcome Pathway paradigm. Genomics analysis within state-of-the-art cancer biology research and Toxicology in the 21st Century concepts share many technological tools. A key category within the Three Rs paradigm is the Replacement of animals in toxicity testing with alternative methods, such as bioinformatics-driven analyses of data obtained from human cell cultures exposed to diverse toxicants. This work was recently expanded within the pan-European SEURAT-1 project (Safety Evaluation Ultimately Replacing Animal Testing), to replace repeat-dose toxicity testing with data-rich analyses of sophisticated cell culture models. The aims and objectives of the SEURAT project have been to guide the application, analysis, interpretation and storage of 'omics' technology-derived data within the service-oriented sub-project, ToxBank. Particularly addressing the Lush Science Prize focus on the relevance of toxicity pathways, a 'data warehouse' that is under continuous expansion, coupled with the development of novel data storage and management methods for toxicology, serve to address data integration across multiple 'omics' technologies. The prize winners' guiding principles and concepts for modern knowledge management of toxicological data are summarised. The translation of basic discovery results ranged from chemical-testing and material-testing data, to information relevant to human health and environmental safety. 2015 FRAME.

  7. Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts

    International Nuclear Information System (INIS)

    Seeger, J.M.; Klingman, N.

    1985-01-01

    A possible approach to the low seeding efficiency of endothelial cells into prosthetic grafts is to increase the number of cells to be seeded in cell culture and improve seeding efficiency by graft precoating with fibronectin. The effect of cell culture on cell adhesion is unknown, however, and fibronectin also binds fibrin, which may increase the thrombogenicity of the graft luminal surface. To investigate these questions, freshly harvested canine jugular vein endothelial cells from six animals and similar cells harvested from six primary and eight secondary cell cultures were labeled with 111 Indium and seeded into 5 cm, 4 mm PTFE grafts coated with fibronectin, using similar uncoated PTFE grafts as controls. Platelet accumulation and distribution on six similar coated and uncoated grafts placed in canine carotid, external jugular arterial venous shunts for 2 hr were also determined using autogenous 111 Indium-labeled platelets. Significant differences between group means were determined using the paired Student's t test. Results reveal that seeding efficiency is significantly better in all groups of coated grafts compared to uncoated grafts (P less than 0.01). Cells derived from cell culture also had significantly higher seeding efficiencies than freshly harvested cells when seeded into coated grafts (P less than 0.05) and tended to have higher seeding efficiencies than harvested cells when seeded into uncoated grafts (P = 0.53). Fibronectin coating increased mean platelet accumulation on the entire graft luminal surface, but not to a statistically significant degree (P greater than 0.1). Whether this increased seeding efficiency will improve graft endothelialization remains to be investigated

  8. Expression of blood group I and i active carbohydrate sequences on cultured human and animal cell lines assessed by radioimmunoassays with monoclonal cold agglutinins

    International Nuclear Information System (INIS)

    Childs, R.A.; Kapadia, A.; Feizi, T.

    1980-01-01

    Human monoclonal anti-I and anti-i, reactive with known carbohydrate sequences, have been used as reagents to quantitate (by radioimmunoassay) and visualize (by immunofluorescence) the expression of the various blood group I and i antigenic determinants in a variety of cultured cell lines commonly used in laboratory investigations. It has been shown that the antigens they recognize are widely distributed on the surface of human and animal cell lines, expressed in varying amounts in different cell lines and on individual cells within a given cell line. In two cell lines, a transformation-associated increase in the expression of I antigen was observed. Because of their precise specificity for defined carbohydrate chain domains, these autoantibodies have become valuable reagents in biological chemistry. (orig.) [de

  9. [Donor age affects on the «behavior» and the sensibility bone marrow cells in on copper ion of the primary culture].

    Science.gov (United States)

    Bozhkov, A I; Ohiienko, S L; Kuznetsova, Yu A; Bondar', A Yu; Marchenko, V P; Gumennaya, M S

    2017-01-01

    The changes of bone marrow cells (BMC) number in the primary culture from 0 to 96 hours, the pattern (the distribution of cells) of cells morphotypes and «lifespan» (the time of cell life after isolation) of myelocytes, metamyelocytes, band and segmented neutrophils, isolated of the young (3 months) and old (20months) animals, were investigated. The number of the BMC obtained from intact old animals increased faster in primary culture, than from young animals. The Cu induced fibrosis had different influence on the rate of BMC culture growth of old and young animals. The adding of 4 mM and 8 mM CuSO4x5H2O in the BMC culture of young and old animals resulted in a dose-dependent inhibition of growth rate of young animal cells. If copper ions were added into the culture of BMC of old animals, the decreased of the BMC number was described less than for cells of young animals. The adding of 8 mM CuSO4x5H2O inhibited proliferation less, than the adding of 4 mM CuSO4x5H2O. The Cu-induced liver fibrosis had accelerated the BMC rate death of both old and young animals. However, this effect was more pronounced in young animals. It is suggested, that during the ontogenesis the BMC undergo such epigenetic changes, which change functional properties.

  10. Cnidarian Primary Cell Culture as a Tool to Investigate the Effect of Thermal Stress at Cellular Level.

    Science.gov (United States)

    Ventura, P; Toullec, G; Fricano, C; Chapron, L; Meunier, V; Röttinger, E; Furla, P; Barnay-Verdier, S

    2018-04-01

    In the context of global change, symbiotic cnidarians are largely affected by seawater temperature elevation leading to symbiosis breakdown. This process, also called bleaching, is triggered by the dysfunction of the symbiont photosystems causing an oxidative stress and cell death to both symbiont and host cells. In our study, we wanted to elucidate the intrinsic capacity of isolated animal cells to deal with thermal stress in the absence of symbiont. In that aim, we have characterized an animal primary cell culture form regenerating tentacles of the temperate sea anemone Anemonia viridis. We first compared the potential of whole tissue tentacle or separated epidermal or gastrodermal monolayers as tissue sources to settle animal cell cultures. Interestingly, only isolated cells extracted from whole tentacles allowed establishing a viable and proliferative primary cell culture throughout 31 days. The analysis of the expression of tissue-specific and pluripotency markers defined cultivated cells as differentiated cells with gastrodermal origin. The characterization of the animal primary cell culture allowed us to submit the obtained gastrodermal cells to hyperthermal stress (+ 5 and + 8 °C) during 1 and 7 days. Though cell viability was not affected at both hyperthermal stress conditions, cell growth drastically decreased. In addition, only a + 8 °C hyperthermia induced a transient increase of antioxidant defences at 1 day but no ubiquitin or carbonylation protein damages. These results demonstrated an intrinsic resistance of cnidarian gastrodermal cells to hyperthermal stress and then confirmed the role of symbionts in the hyperthermia sensitivity leading to bleaching.

  11. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from

  12. Cellulose/soy protein isolate composite membranes: evaluations of in vitro cytocompatibility with Schwann cells and in vivo toxicity to animals.

    Science.gov (United States)

    Luo, Lihua; Gong, Wenrong; Zhou, Yi; Yang, Lin; Li, Daokun; Huselstein, Celine; Wang, Xiong; He, Xiaohua; Li, Yinping; Chen, Yun

    2015-01-01

    To evaluate the in vitro cytocompatibility of cellulose/soy protein isolate composite membranes (CSM) with Schwann cells and in vivo toxicity to animals. A series of cellulose/soy protein isolate composite membranes (CSM) were prepared by blending, solution casting and coagulation process. The cytocompatibility of the CSM to Schwann cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by direct cells culture of Schwann cells on the surfaces of the CSM, respectively. The in vivo toxicity of the CSM to animals were also evaluated by acute toxicity testing, skin sensitization testing, pyrogen testing and intracutaneous stimulation testing, respectively, according to the ISO 10993 standard. The MTT assay showed that the cell viability of Schwann cells cultured in extracts from the CSM was higher than that from the neat cellulose membrane without containing SPI component. The direct cells culture indicated that the Schwann cells could attach and grow well on the surface of the CSM and the incorporation of SPI into cellulose contributed to improvement of cell adhesion and proliferation. The evaluations of in vivo biological safety suggested that the CSM showed no acute toxicity, no skin sensitization and no intracutaneous stimulation to the experimental animals. The CSM had in vitro cytocompatibility with Schwann cells and biological safety to animals, suggesting potential for the applications as nerve conduit for the repair of nerve defect.

  13. Bioluminescent system for dynamic imaging of cell and animal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hara-Miyauchi, Chikako [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Tsuji, Osahiko [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Hanyu, Aki [Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550 (Japan); Okada, Seiji [Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Yasuda, Akimasa [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Fukano, Takashi [Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Akazawa, Chihiro [Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Nakamura, Masaya [Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Imamura, Takeshi [Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Core Research for Evolutional Science and Technology, The Japan Science and Technology Corporation, Tokyo 135-8550 (Japan); Matsuzaki, Yumi [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Okano, Hirotaka James, E-mail: hjokano@jikei.ac.jp [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Division of Regenerative Medicine Jikei University School of Medicine, Tokyo 150-8461 (Japan); and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  14. Bioluminescent system for dynamic imaging of cell and animal behavior

    International Nuclear Information System (INIS)

    Hara-Miyauchi, Chikako; Tsuji, Osahiko; Hanyu, Aki; Okada, Seiji; Yasuda, Akimasa; Fukano, Takashi; Akazawa, Chihiro; Nakamura, Masaya; Imamura, Takeshi; Matsuzaki, Yumi; Okano, Hirotaka James

    2012-01-01

    Highlights: ► We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. ► ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. ► ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. ► ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  15. Socio-cultural animation in hospitals and the right to access culture

    Directory of Open Access Journals (Sweden)

    Dušana Findeisen

    2015-01-01

    Full Text Available Socio-cultural animation has a long tradition in French hospitals. It started in most probability with a theatre performance staged by Marquis de Sade between 1800-1810, while he was patient of a Parisian hospital. The theatrical performance was attended by ”le Tout Paris” – all notables of the city. In 1999, a convention of ”Culture and Health” was signed and culture has been moving to hospitals ever since, transforming them into open institutions, with patients and staff having acquired a different perspective on body and culture. Moreover, Slovenian Third Age University has been educating and training cultural mediators (its students for transmitting culture and knowledge gained at the U3A to patients, patients’ relatives and staff within the University Clinical Centre Ljubljana. In this article, author sets a frame of mind for examining the importance and implications of a fundamental universal right – the right to culture.

  16. Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture.

    Science.gov (United States)

    Han, Seora; Rhee, Won Jong

    2018-05-01

    Animal cell culture technology for therapeutic protein production has shown significant improvement over the last few decades. Chinese hamster ovary (CHO) cells have been widely adapted for the production of biopharmaceutical drugs. In the biopharmaceutical industry, it is crucial to develop cell culture media and culturing conditions to achieve the highest productivity and quality. However, CHO cells are significantly affected by apoptosis in the bioreactors, resulting in a substantial decrease in product quantity and quality. Thus, to overcome the obstacle of apoptosis in CHO cell culture, it is critical to develop a novel method that does not have minimal concern of safety or cost. Herein, we showed for the first time that exosomes, which are nano-sized extracellular vesicles, derived from CHO cells inhibited apoptosis in CHO cell culture when supplemented to the culture medium. Flow cytometric and microscopic analyses revealed that substantial amounts of exosomes were delivered to CHO cells. Higher cell viability after staurosporine treatment was observed by exosome supplementation (67.3%) as compared to control (41.1%). Furthermore, exosomes prevented the mitochondrial membrane potential loss and caspase-3 activation, meaning that the exosomes enhanced cellular activities under pro-apoptotic condition. As the exosomes supplements are derived from CHO cells themselves, it is not only beneficial for the biopharmaceutical productivity of CHO cell culture to inhibit apoptosis, but also from a regulatory standpoint to diminish any safety concerns. Thus, we conclude that the method developed in this research may contribute to the biopharmaceutical industry where minimizing apoptosis in CHO cell culture is beneficial. © 2018 Wiley Periodicals, Inc.

  17. Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models

    Directory of Open Access Journals (Sweden)

    Girdhari Rijal

    2017-01-01

    Full Text Available Preparation of three-dimensional (3D porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL. Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM proteins and their receptors. Estrogen receptor- (ER- positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.

  18. Culture in embryonic kidney serum and xeno-free media as renal cell carcinoma and renal cell carcinoma cancer stem cells research model.

    Science.gov (United States)

    Krawczyk, Krzysztof M; Matak, Damian; Szymanski, Lukasz; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M

    2018-04-01

    The use of fetal bovine serum hinders obtaining reproducible experimental results and should also be removed in hormone and growth factor studies. In particular hormones found in FBS act globally on cancer cell physiology and influence transcriptome and metabolome. The aim of our study was to develop a renal carcinoma serum free culture model optimized for (embryonal) renal cells in order to select the best study model for downstream auto-, para- or endocrine research. Secondary aim was to verify renal carcinoma stem cell culture for this application. In the study, we have cultured renal cell carcinoma primary tumour cell line (786-0) as well as human kidney cancer stem cells in standard 2D monolayer cultures in Roswell Park Memorial Institute Medium or Dulbecco's Modified Eagle's Medium and Complete Human Kidney Cancer Stem Cell Medium, respectively. Serum-free, animal-component free Human Embryonic Kidney 293 media were tested. Our results revealed that xeno-free embryonal renal cells optimized culture media provide a useful tool in RCC cancer biology research and at the same time enable effective growth of RCC. We propose bio-mimic RCC cell culture model with specific serum-free and xeno-free medium that promote RCC cell viability.

  19. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    International Nuclear Information System (INIS)

    Aslanova, Afag; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Yamamoto, Masakazu

    2015-01-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  20. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    Energy Technology Data Exchange (ETDEWEB)

    Aslanova, Afag [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Takagi, Ryo; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Yamamoto, Masakazu, E-mail: yamamoto.ige@twmu.ac.jp [Department of Surgery, Institute of Gastroenterology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2015-05-01

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferation of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen

  1. Non-Mulberry and Mulberry Silk Protein Sericins as Potential Media Supplement for Animal Cell Culture

    Directory of Open Access Journals (Sweden)

    Neety Sahu

    2016-01-01

    Full Text Available Silk protein sericins, in the recent years, find application in cosmetics and pharmaceuticals and as biomaterials. We investigate the potential of sericin, extracted from both mulberry Bombyx mori and different non-mulberry sources, namely, tropical tasar, Antheraea mylitta; muga, Antheraea assama; and eri, Samia ricini, as growth supplement in serum-free culture medium. Sericin supplemented media containing different concentrations of sericins from the different species are examined for attachment, growth, proliferation, and morphology of fibrosarcoma cells. The optimum sericin supplementation seems to vary with the source of sericins. The results indicate that all the sericins promote the growth of L929 cells in serum-free culture media; however, S. ricini sericin seems to promote better growth of cells amongst other non-mulberry sericins.

  2. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    from porcine embryos or induced pluripotent stem cells is presented. The neural induction is performed in coculture and the isolation of rosette structures is carried out manually to ensure a homogenous population of NPCs. Using this method, multipotent NPCs can be obtained in approximately 1 month......The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement...... therapy. The pig has become recognized as an important large animal model and establishment of in vitro-derived porcine NPCs would allow for preclinical safety testing by transplantation in a porcine biomedical model. In this chapter, a detailed method for isolation and in vitro culture of porcine NPCs...

  3. Cultured meat from stem cells: challenges and prospects.

    Science.gov (United States)

    Post, Mark J

    2012-11-01

    As one of the alternatives for livestock meat production, in vitro culturing of meat is currently studied. The generation of bio-artificial muscles from satellite cells has been ongoing for about 15 years, but has never been used for generation of meat, while it already is a great source of animal protein. In order to serve as a credible alternative to livestock meat, lab or factory grown meat should be efficiently produced and should mimic meat in all of its physical sensations, such as visual appearance, smell, texture and of course, taste. This is a formidable challenge even though all the technologies to create skeletal muscle and fat tissue have been developed and tested. The efficient culture of meat will primarily depend on culture conditions such as the source of medium and its composition. Protein synthesis by cultured skeletal muscle cells should further be maximized by finding the optimal combination of biochemical and physical conditions for the cells. Many of these variables are known, but their interactions are numerous and need to be mapped. This involves a systematic, if not systems, approach. Given the urgency of the problems that the meat industry is facing, this endeavor is worth undertaking. As an additional benefit, culturing meat may provide opportunities for production of novel and healthier products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKCδ in cell culture and animal models of Parkinson's disease

    International Nuclear Information System (INIS)

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-01-01

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 μM) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 μM) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKCδ) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 μM). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKCδ D327A and kinase dead PKCδ K376R or siRNA-mediated knockdown of PKCδ protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKCδ promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKCδ expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKCδ cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKCδ D327A protein protected against 6-OHDA-induced PKCδ activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKCδ is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.

  5. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  6. Duckweed cultures in animal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, M; Copelli, M; Ghetti, P F

    1981-01-01

    Cultures of duckweed (Lemna gibba and L. minor) were made for 2 months in 2 ponds fed by a semicontinuous flow of partially treated animal wastewaters. The growth rate of the organic load were obtained from weekly data and the rate of removal of N and P was evaluated. At high loads (concentrations greater than 400 COD, 60 NH/sub 4/+, 10 mg/L PO/sub 4/ to the power of 3-) an average yield (dry weight) of approximately 7 g/square meters/day was established. The mean dry weight of biomass was 6%. The N and P content in duckweed was 1.1 and 4.7%, respective, and the daily absorption rates were 415 N and 97 mg/square meters/day P. The technique of skimming biomass at a rate proportional to the growth rate is useful to maintain duckweed cultures in continuous active growth conditions.

  7. Culture of somatic cells isolated from frozen-thawed equine semen using fluorescence-assisted cell sorting.

    Science.gov (United States)

    Brom-de-Luna, Joao Gatto; Canesin, Heloísa Siqueira; Wright, Gus; Hinrichs, Katrin

    2018-03-01

    Nuclear transfer using somatic cells from frozen semen (FzSC) would allow cloning of animals for which no other genetic material is available. Horses are one of the few species for which cloning is commercially feasible; despite this, there is no information available on the culture of equine FzSC. After preliminary trials on equine FzSC, recovered by density-gradient centrifugation, resulted in no growth, we hypothesized that sperm in the culture system negatively affected cell proliferation. Therefore, we evaluated culture of FzSC isolated using fluorescence-assisted cell sorting. In Exp. 1, sperm were labeled using antibodies to a sperm-specific antigen, SP17, and unlabeled cells were collected. This resulted in high sperm contamination. In Exp. 2, FzSC were labeled using an anti-MHC class I antibody. This resulted in an essentially pure population of FzSC, 13-25% of which were nucleated. Culture yielded no proliferation in any of nine replicates. In Exp. 3, 5 × 10 3 viable fresh, cultured horse fibroblasts were added to the frozen-thawed, washed semen, then this suspension was labeled and sorted as for Exp. 2. The enriched population had a mean of five sperm per recovered somatic cell; culture yielded formation of monolayers. In conclusion, an essentially pure population of equine FzSC could be obtained using sorting for presence of MHC class I antigens. No equine FzSC grew in culture; however, the proliferation of fibroblasts subjected to the same processing demonstrated that the labeling and sorting methods, and the presence of few sperm in culture, were compatible with cell viability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The use of animal tissues alongside human tissue: Cultural and ethical considerations.

    Science.gov (United States)

    Kaw, Anu; Jones, D Gareth; Zhang, Ming

    2016-01-01

    Teaching and research facilities often use cadaveric material alongside animal tissues, although there appear to be differences in the way we handle, treat, and dispose of human cadaveric material compared to animal tissue. This study sought to analyze cultural and ethical considerations and provides policy recommendations on the use of animal tissues alongside human tissue. The status of human and animal remains and the respect because of human and animal tissues were compared and analyzed from ethical, legal, and cultural perspectives. The use of animal organs and tissues is carried out within the context of understanding human anatomy and function. Consequently, the interests of human donors are to be pre-eminent in any policies that are enunciated, so that if any donors find the presence of animal remains unacceptable, the latter should not be employed. The major differences appear to lie in differences in our perceptions of their respective intrinsic and instrumental values. Animals are considered to have lesser intrinsic value and greater instrumental value than humans. These differences stem from the role played by culture and ethical considerations, and are manifested in the resulting legal frameworks. In light of this discussion, six policy recommendations are proposed, encompassing the nature of consent, respect for animal tissues as well as human remains, and appropriate separation of both sets of tissues in preparation and display. © 2015 Wiley Periodicals, Inc.

  9. Cell-Permeable Parkin Proteins Suppress Parkinson Disease-Associated Phenotypes in Cultured Cells and Animals

    Science.gov (United States)

    Duong, Tam; Kim, Jaetaek; Ruley, H. Earl; Jo, Daewoong

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo. PMID:25019626

  10. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest

    2015-01-01

    -reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations...... of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure...... and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc....

  11. Morphological analysis of human umbilical vein endothelial cells co-cultured with ovarian cancer cells in 3D: An oncogenic angiogenesis assay.

    Directory of Open Access Journals (Sweden)

    Xiao Wan

    Full Text Available Antiangiogenic therapy for cancer is a strategy targeted at tumour vasculature, often in combination with conventional cytotoxicity treatments. Animal testing is still the most common method used for evaluating the efficacy of new drugs but tissue-engineered in vitro models are becoming more acceptable for replacing and reducing the use of animals in anti-cancer drug screening. In this study, a 3D co-culture model of human endothelial cells and ovarian cancer cells was developed. This model has the potential to mimic the interactions between endothelial cells and ovarian cancer cells. The feasibility of applying this model in drug testing was explored here. The complex morphology of the co-culture system, which features development of both endothelial tubule-like structures and tumour structures, was analysed quantitatively by an image analysis method. The co-culture morphology integrity was maintained for 10 days and the potential of the model for anti-cancer drug testing was evaluated using Paclitaxel and Cisplatin, two common anti-tumour drugs with different mechanisms of action. Both traditional cell viability assays and quantitative morphological analyses were applied in the drug testing. Cisplatin proved a good example showing the advantages of morphological analysis of the co-culture model when compared with mono-culture of endothelial cells, which did not reveal an inhibitory effect of Cisplatin on the tubule-like endothelial structures. Thus, the tubule areas of the co-culture reflected the anti-angiogenesis potential of Cisplatin. In summary, in vitro cancer models can be developed using a tissue engineering approach to more closely mimic the characteristics of tumours in vivo. Combined with the image analysis technique, this developed 3D co-culture angiogenesis model will provide more reproducible and reliably quantified results and reveal further information of the drug's effects on both tumour cell growth and tumour angiogenesis.

  12. Design of graphic and animation in game interface based on cultural ...

    African Journals Online (AJOL)

    Design of graphic and animation in game interface based on cultural value: verification. ... Abstract. No Abstract. Keywords: game interface; cultural value; hofstede; prototype; eye tracker ... AJOL African Journals Online. HOW TO USE AJOL.

  13. Evaluation of safety of Hammada salicornica in cell culture

    Directory of Open Access Journals (Sweden)

    F. Hosseini Hamedani

    2017-11-01

    Full Text Available Background and objectives: A pharmaceutical products that is planned to be used in clinic, should not only have beneficial effects but also be safe too. Preclinical studies in animals are costly and need considering ethical issues. Cell culture can be used before animal tests. Considering useful effects of these methods, we have evaluated safety of total methanol extract of Hammada salicornica and its aqueous and petroleum ether fractions in cell culture.Methods: Total methanol extract was prepared with the standard method of maceration. Different fractions were prepared by liquid-liquid fractionation and the extracts were then dried with rotary evaporator. After determination of bactericidal concentration of the extracts, 400 ug/mL, the cytotoxicity was tested at various concentrations regarding the minimum antibacterial concentration by MTT test. Hep-2c and VERO cell lines were used in MTT test. A range of concentrations (10-500 ug/mL of the extracts were prepared and were added to about 70% confluent 96 well plates. After exposure for 48 h, MTT solution was added to the wells, and 4 h later formazan crystals were solubilized and optical densities were read at 570 nm. Results: Cytotoxicity Index was calculated and significance test was performed using t-test comparing the Index of the test and control group at each concentration. No significant difference was observed. Conclusion: Various fractions of H. salicornica were not cytotoxic at concentrations above bactericidal concentrations (up to 500 ug/mL. The results need to be confirmed in animal studies before using in human subjects.

  14. Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture.

    Science.gov (United States)

    Tric, Mircea; Lederle, Mario; Neuner, Lisa; Dolgowjasow, Igor; Wiedemann, Philipp; Wölfl, Stefan; Werner, Tobias

    2017-09-01

    Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0-20 mM and a response time of t 90  ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied. Graphical abstract Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture.

  15. Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality.

    Science.gov (United States)

    Dill, Veronika; Hoffmann, Bernd; Zimmer, Aline; Beer, Martin; Eschbaumer, Michael

    2018-03-16

    Suspension culture of BHK cells allows large-scale virus propagation and cost-efficient vaccine production, while the shift to animal-component-free cell culture media without serum is beneficial for the quality and downstream processing of the product. Foot-and-mouth disease virus is still endemic in many parts of the world and high-quality vaccines are essential for the eradication of this highly contagious and economically devastating disease. Changes to the viral genome sequence during passaging in an adherent and a suspension cell culture system were compared and the impact of amino acid substitutions on receptor tropism, antigenicity and particle stability was examined. Virus production in suspension cells in animal-component-free media and in serum-containing media as well as in adherent cells in serum-containing media was compared. Infection kinetics were determined and the yield of intact viral particles was estimated in all systems using sucrose density gradient centrifugation. Capsid protein sequence alterations were serotype-specific, but varied between cell lines. But The A 24 -2P virus variant had expanded its receptor tropism, but virus neutralization tests found no changes in the antigenic profile in comparison to the original viruses. There were no differences in viral titer between a suspension and an adherent cell culture system, independent of the type of media used. Also, the usage of a serum-free suspension culture system promoted viral growth and allowed an earlier harvest. For serotype O isolates, no differences were seen in the yield of 146S particles. Serotype A preparations revealed a decreased yield of 146S particles in suspension cells independent of the culture media. The selective pressure of the available surface receptors in different cell culture systems may be responsible for alterations in the capsid coding sequence of culture-grown virus. Important vaccine potency characteristics such as viral titer and the neutralization

  16. Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans

    Science.gov (United States)

    Goya, Luis; Martín, María Ángeles; Sarriá, Beatriz; Ramos, Sonia; Mateos, Raquel; Bravo, Laura

    2016-01-01

    Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts. PMID:27070643

  17. Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans.

    Science.gov (United States)

    Goya, Luis; Martín, María Ángeles; Sarriá, Beatriz; Ramos, Sonia; Mateos, Raquel; Bravo, Laura

    2016-04-09

    Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts.

  18. Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans

    Directory of Open Access Journals (Sweden)

    Luis Goya

    2016-04-01

    Full Text Available Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts.

  19. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  20. Animal culture impacts species' capacity to realise climate-driven range shifts

    DEFF Research Database (Denmark)

    Keith, Sally A.; Bull, Joseph William

    2017-01-01

    Ecological predictions of how species will shift their geographical distributions under climate change generally consider individuals as machines that respond optimally to changing environmental conditions. However, animals frequently make active behavioural decisions based on imperfect information...... about their external environment, potentially mediated by information transmitted through social learning (i.e. culture). Vertical transmission of culture (between generations) might encourage conservative behaviour, constraining the ability of a species to respond, whilst horizontal transmission...... (within generations) can encourage innovation and so facilitate dynamic responses to a changing environment. We believe that the time is right to unite recent advances in ecological modelling and behavioural understanding to explicitly incorporate the influence of animal culture into future predictions...

  1. French Anime and Manga Fans in Japan : Pop culture tourism, media pilgrimage, imaginary

    OpenAIRE

    Sabre, Clothilde

    2017-01-01

    Japanese pop culture, particularly anime and manga, have been an important part of the French cultural scene since the 1980s. French fans have created communities that share references about this pop culture and more generally about Japan. This specific imaginary drives some fans to travel to Japan to discover the actual places which appear in their favourite manga/anime. Focusing on the travel experiences of French tourists, this article introduces the notion of media pilgrimage as a useful ...

  2. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    RNA and protein could be detected. The data suggest that iNOS expression may be a molecular mechanism mediating the adaptive response of trigeminal ganglia cells to the serum free stressful stimulus the culture environment provides. It may act as a cellular signalling molecule that is expressed after cell......Nitric oxide (NO) is an important signalling molecule that has been suggested to be a key molecule for induction and maintenance of migraine attacks based on clinical studies, animal experimental studies and the expression of nitric oxide synthase (NOS) immunoreactivity within the trigeminovascular......, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. In trigeminal ganglia cells not subjected to culture, endothelial (e) and neuronal (n) but not inducible (i) NOS mRNA and protein were detected. Culture of rat neurones resulted in a rapid axonal outgrowth of NOS positive...

  3. Chimeric animal models in human stem cell biology.

    Science.gov (United States)

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  4. Photodamage of the cells in culture sensitized with bilirubin

    Science.gov (United States)

    Kozlenkova, O. A.; Plavskaya, L. G.; Mikulich, A. V.; Leusenko, I. A.; Tretyakova, A. I.; Plavskii, V. Yu

    2016-08-01

    It has been shown that exposure to radiation of LED sources of light with an emission band maximum at about 465 and 520 nm having substantially identical damaging effects on animal cells in culture, that are in a logarithmic growth phase and preincubated with pigment. Photobiological effect is caused by photodynamic processes involving singlet oxygen generated by triplet excited sensitizer. Mono-exponential type dependence of cell survival on the energy dose indicates that it is bilirubin that acts as a sensitizer but not its photoproducts. The inclusion of bilirubin in the cells, where it is primarily localized in the mitochondria cells, it is accompanied by multiple amplification photochemical stability compared to pigment molecules bound with albumin

  5. Dynamized Preparations in Cell Culture

    Directory of Open Access Journals (Sweden)

    Ellanzhiyil Surendran Sunila

    2009-01-01

    Full Text Available Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929 and Chinese Hamster Ovary (CHO cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties.

  6. Socio-Cultural Animation as Inspiration for the Life of the Society- Linking of the Social and Cultural in the Heart of the New Civilization

    Directory of Open Access Journals (Sweden)

    Dušana Findeisen

    2009-12-01

    Full Text Available Initially, the author discusses the formats of passing on culture and knowledge that were used in the past, the formats of the times of creation of national States, the formats belonging to the enlightenment initiatives. Dušana Findeisen goes on to emphasize that all national States had their »englighteners« involved in inspiring, bonding and educating people of various professions, from various social groups, thus rendering the society alive and dynamic. Socio-cultural animation is a French concept, not as new as it may seem, stemming from popular education. After the Second World War the adjective popular started being omitted and the term socio-cultural animation slowly replaced it. Socio-cultural animation can be found wherever people are, regardless of their educational or social background, striving to bring improvement to individuals and society. Next, the author presents and discusses several definitions of socio-cultural animation, occasionally illustrating them by presenting examples of good practice. In addition to that, she identifies the prevailing criteria used when classifying formats of socio cultural animation, drawing the reader's attention to the great variety of actors in this field. Dušana Findeisen presents various functions of this subsystem of the French national cultural policy. Owing to them, socio-cultural animation can be clearly differentiated from community education.

  7. Design of 3D printed insert for hanging culture of Caco-2 cells

    International Nuclear Information System (INIS)

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2015-01-01

    A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which have been recommended to be more physiological relevant, were not superior to the Transwell culture in either accuracy or convenience in drug permeability testing. Using rapid 3D printing prototyping techniques, this study proposed a hanging culture of Caco-2 cells that performed with high accuracy in predicting drug permeability in humans. As found, hanging cultured Caco-2 cells formed a confluent monolayer and maintained high cell viability on the 3D printed insert. Compared with the normal culture on Transwell, the Caco-2 cells on the 3D printed insert presented ∼30–100% higher brush border enzyme activity and ∼2–7 folds higher activity of P-glycoprotein/multidrug resistance-associated protein 2 during 21 days of incubation. For the eight membrane transporter substrates, the predictive curve of the 3D printing culture exhibited better linearity (R 2  = 0.92) to the human oral adsorption than that of the Transwell culture (R 2  = 0.84), indicating better prediction by the 3D printing culture. In this regard, the 3D printed insert for hanging culture could be potentially developed as a convenient and low-cost tool for testing drug oral absorption. (paper)

  8. Viability and proliferation of L929, tumour and hybridoma cells in the culture media containing sericin protein as a supplement or serum substitute.

    Science.gov (United States)

    Cao, Ting-Ting; Zhang, Yu-Qing

    2015-09-01

    Cell cultures often require the addition of animal serum and other supplements. In this study, silk sericin, a bioactive protein, recovered from the waste of silk floss production was hydrolysed into three pepsin-degraded sericin peptides with different ranges of molecular mass. Normal animal cells, tumour cells and hybridoma cells were cultured systematically in FBS culture media containing sericin as a supplement or serum substitute. The culture test and microscopic observation of L929 cells showed that the smaller molecular weight of the degraded sericin is most suitable for cell culture. The cell culture results showed that with the degradation of sericin, for normal mouse fibroblast L929 cells, addition of 0.75 % sericin into FBS culture medium yields cell viability that is superior to FBS culture medium alone. When all serum was replaced by sericin, cell viability in the sericin medium could reach about one half of that in FBS medium. When in a medium containing a mixture of FBS: sericin (6:4, v/v), the cell culture effect is about 80 %. For the cultures of four tumour and one hybridoma cells, regardless of the molecular weight range, these degraded sericin peptides could substitute all serum in FBS media. The cell viability and proliferation of these tumour and hybridoma cells are equivalent or superior to that in FBS medium. In other words, cell viability and proliferation of these tumour and hybridoma cells in sericin media are more preferable to serum media. The mechanism of the sericin protein to promote cell growth and proliferation will be further investigated later.

  9. Calcitriol enhances fat synthesis factors and calpain activity in co-cultured cells.

    Science.gov (United States)

    Choi, Hyuck; Myung, Kyuho

    2014-08-01

    We have conducted an in vitro experiment to determine whether calcitriol can act as a fat synthesizer and/or meat tenderizer when skeletal muscle cells, adipose tissue, and macrophages are co-cultured. When co-cultured, pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression increased, whereas decreased anti-inflammatory cytokine (IL-10 and IL-15) expression decreased in both C2C12 and 3T3-L1 cells. Calcitriol increased reactive oxygen species (ROS) production in the media. While adiponectin gene expression decreased, leptin, resistin, CCAAT-enhancer-binding protein-beta (C/EBP-β), and peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression was significantly (P cultured with two different cell types. Inducible nitric oxide synthase (iNOS) protein levels were also stimulated in the C2C12 and 3T3-L1 cells, but arginase l was attenuated by calcitriol. Cacitriol highly amplified (P = 0.008) µ-calpain gene expression in co-cultured C2C12 cells. The results showed an overall increase in pro-inflammatory cytokines and a decrease in anti-inflammatory cytokines of C2C12 and 3T3-L1 cells with calcitriol in co-culture systems. µ-Calpain protein was also augmented in differentiated C2C12 cells with calcitriol. These findings suggest that calcitriol can be used as not only fat synthesizer, but meat tenderizer, in meat-producing animals. © 2014 International Federation for Cell Biology.

  10. Acute Exposure to Electronic and Combustible Cigarette Aerosols: Effects in an Animal Model and in Human Alveolar Cells.

    Science.gov (United States)

    Husari, Ahmad; Shihadeh, Alan; Talih, Soha; Hashem, Yasmine; El Sabban, Marwan; Zaatari, Ghazi

    2016-05-01

    Smoking electronic cigarettes (ECIG) is promoted as a safer alternative to smoking combustible cigarettes. This study investigates the effects of ECIG aerosol and cigarette smoke (CS) in an animal model and in human alveolar cell cultures (A549). Mice were divided into Control, ECIG, and CS. Animals were exposed for 6h/d to either lab air, ECIG or CS, for of 3 days. Total particulate matter exposure for the ECIG was set at higher levels compared to CS. Lung injury was determined by: (1) measurement of wet-to-dry ratio; (2) albumin concentration in the bronchoalveolar lavage fluid; (3) transcriptional expression of inflammatory mediators IL-1β, IL-6, TNF-α; (4) oxidative stress; (5) assessment of cell death; and (6) lung histopathology. Human alveolar cell cultures were treated with various concentrations of ECIG and CS aerosol extracts and the effects on cell proliferation were evaluated. Wet-to-dry ratio was higher in CS when compared to ECIG. Albumin leak in bronchoalveolar lavage fluid was evident in CS but not in ECIG. ECIG exposure was only associated with a significant increase in IL-1β. In contrast, CS exposure resulted in significant increases in IL-1β, IL-6, TNF-α expression, and oxidative stress. TUNEL staining demonstrated significant cell death in CS but not in ECIG. At the cellular level, ECIG and CS extracts reduced cell proliferation, however, CS exhibited effects at lower concentrations. Despite higher exposure conditions, ECIG exhibited less toxic effects on lungs of experimental animals and on A549 cell cultures when compared to CS. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  12. Cell Culture Made Easy.

    Science.gov (United States)

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  13. Summary of three-dimensional animation creation based on ethnic culture element

    Directory of Open Access Journals (Sweden)

    Shao Zhaopo

    2016-01-01

    Full Text Available three-dimensional animation is a product combined by technology and art. It is an artistic ex-pression form combining painting, film & television, digital technology, music, and literature. As an audio and visual art, three-dimensional animation has its own unique culture-loading function, technical aesthetic charac-teristics, and requirements for national art expression. This paper aims to find the method to combine digital technology and national art in combination of three-dimensional animation short film creation, and hopes to clear the road for the cultivation of domestic three-dimensional animation quality project.

  14. Cell Monitoring and Manipulation Systems (CMMSs based on Glass Cell-Culture Chips (GC3s

    Directory of Open Access Journals (Sweden)

    Sebastian M. Buehler

    2016-06-01

    Full Text Available We developed different types of glass cell-culture chips (GC3s for culturing cells for microscopic observation in open media-containing troughs or in microfluidic structures. Platinum sensor and manipulation structures were used to monitor physiological parameters and to allocate and permeabilize cells. Electro-thermal micro pumps distributed chemical compounds in the microfluidic systems. The integrated temperature sensors showed a linear, Pt1000-like behavior. Cell adhesion and proliferation were monitored using interdigitated electrode structures (IDESs. The cell-doubling times of primary murine embryonic neuronal cells (PNCs were determined based on the IDES capacitance-peak shifts. The electrical activity of PNC networks was detected using multi-electrode arrays (MEAs. During seeding, the cells were dielectrophoretically allocated to individual MEAs to improve network structures. MEA pads with diameters of 15, 20, 25, and 35 µm were tested. After 3 weeks, the magnitudes of the determined action potentials were highest for pads of 25 µm in diameter and did not differ when the inter-pad distances were 100 or 170 µm. Using 25-µm diameter circular oxygen electrodes, the signal currents in the cell-culture media were found to range from approximately −0.08 nA (0% O2 to −2.35 nA (21% O2. It was observed that 60-nm thick silicon nitride-sensor layers were stable potentiometric pH sensors under cell-culture conditions for periods of days. Their sensitivity between pH 5 and 9 was as high as 45 mV per pH step. We concluded that sensorized GC3s are potential animal replacement systems for purposes such as toxicity pre-screening. For example, the effect of mefloquine, a medication used to treat malaria, on the electrical activity of neuronal cells was determined in this study using a GC3 system.

  15. Optimization of high grade glioma cell culture from surgical specimens for use in clinically relevant animal models and 3D immunochemistry.

    Science.gov (United States)

    Hasselbach, Laura A; Irtenkauf, Susan M; Lemke, Nancy W; Nelson, Kevin K; Berezovsky, Artem D; Carlton, Enoch T; Transou, Andrea D; Mikkelsen, Tom; deCarvalho, Ana C

    2014-01-07

    Glioblastomas, the most common and aggressive form of astrocytoma, are refractory to therapy, and molecularly heterogeneous. The ability to establish cell cultures that preserve the genomic profile of the parental tumors, for use in patient specific in vitro and in vivo models, has the potential to revolutionize the preclinical development of new treatments for glioblastoma tailored to the molecular characteristics of each tumor. Starting with fresh high grade astrocytoma tumors dissociated into single cells, we use the neurosphere assay as an enrichment method for cells presenting cancer stem cell phenotype, including expression of neural stem cell markers, long term self-renewal in vitro, and the ability to form orthotopic xenograft tumors. This method has been previously proposed, and is now in use by several investigators. Based on our experience of dissociating and culturing 125 glioblastoma specimens, we arrived at the detailed protocol we present here, suitable for routine neurosphere culturing of high grade astrocytomas and large scale expansion of tumorigenic cells for preclinical studies. We report on the efficiency of successful long term cultures using this protocol and suggest affordable alternatives for culturing dissociated glioblastoma cells that fail to grow as neurospheres. We also describe in detail a protocol for preserving the neurospheres 3D architecture for immunohistochemistry. Cell cultures enriched in CSCs, capable of generating orthotopic xenograft models that preserve the molecular signatures and heterogeneity of GBMs, are becoming increasingly popular for the study of the biology of GBMs and for the improved design of preclinical testing of potential therapies.

  16. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  17. A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, A M

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  18. Technology and the Turkish Mind: Internet Animation as Counter Culture in Turkey

    Directory of Open Access Journals (Sweden)

    Murat Akser

    2014-10-01

    Full Text Available This paper is an attempt in interpreting the relationship between the adoption of new communications technologies such as the internet and how they are transformed and used in expression of a resisting cultural identity through content creation, namely internet flash animation in Turkey. The study discusses the Turkish adaptation of media of communication as social practice and as a means of social resistance and cultural expression. Its main focus is on internet use and especially around the use of humorous animated stories on the web.

  19. Primary Culture of Choroid Plexuses from Neonate Rats Containing Progenitor Cells Capable of Differentiation

    Directory of Open Access Journals (Sweden)

    Sheng-Li Huang

    2013-12-01

    Full Text Available Background: The choroid plexuses, which could secrete a number of neurotrophins, have recently been used in transplantation in central nervous system diseases. Aims: To study the mechanism of nerve regeneration in the central nervous system by grafting choroid plexus tissues. Study Design: Animal experimentation. Methods: The choroid plexuses from the lateral ventricles of neonatal rats were cultured in adherent culture, and immunocytochemical methods were used to analyse the progenitor cells on days 2, 6, and 10 after seeding. Results: Expression of both nestin and glial fibrillary acidic protein was observed in small cell aggregates on day 2 in primary culture. Most of the nestin-positive cells on day 6 were immunoreactive to glial fibrillary acidic protein antibody. No cells expressing nestin or glial fibrillary acidic protein were seen on day 10. Conclusion: These experimental results indicate that the choroid plexus contains a specific cell population – progenitor cells. Under in vitro experimental conditions, the progenitor cells differentiated into choroid plexus epithelial cells but did not form neurons or astrocytes.

  20. Functional Invariant NKT Cells in Pig Lungs Regulate the Airway Hyperreactivity: A Potential Animal Model

    Science.gov (United States)

    Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun

    2015-01-01

    Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929

  1. Retinal Cell Degeneration in Animal Models

    Directory of Open Access Journals (Sweden)

    Masayuki Niwa

    2016-01-01

    Full Text Available The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced, autoimmune (experimental autoimmune encephalomyelitis, mechanical stress (optic nerve crush-induced, light-induced and ischemia (transient retinal ischemia-induced. The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.

  2. Heritable non-lethal damage to cultured human cells irradiated with heavy ions

    International Nuclear Information System (INIS)

    Walker, J.T.; Walker, O.A.

    2002-01-01

    During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (linear energy transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 μm 2 , at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. (author)

  3. Cyclosporin A promotes mineralization by human cementoblastoma-derived cells in culture.

    Science.gov (United States)

    Arzate, Higinio; Alvarez, Marco A; Narayanan, A Sampath

    2005-06-01

    The immunosuppressive drug cyclosporin A has been shown to induce cementum deposition in vivo in experimental animals. Using cementoblastoma-derived cells, we have studied whether this drug will be useful to study cementum mineralization and differentiation in vitro. Human cementoblastoma cells and gingival fibroblasts (controls) were cultured and treated with 0.5, 1.0 and 5.0 microg/ml of cyclosporin A. Cell proliferation was evaluated by MTT (tetrazolium) assay and cell number, and cell viability was assessed by trypan blue dye exclusion. Induction of mineralization was evaluated by alizarin red S staining to detect mineralized nodules and by reverse transcription-polymerase chain reaction (RT-PCR) to assess the expression of bone differentiation markers alkaline phosphatase, osteocalcin, bone sialoprotein and core-binding factor a1 (Cbfa1). Cyclosporin A at 5.0 microg/ml concentration reduced significantly the increase in the number of cementoblastoma cells. A dose-dependent increase in the number of mineralized nodules occurred in cultures of cementoblastoma-derived cells treated with cyclosporin A, and RT-PCR analyses showed significantly higher levels of expression of alkaline phosphatase, bone sialoprotein, type I collagen, matrix metalloproteinase-1, osteocalcin, osteopontin, and Cbfa1. Human gingival fibroblast proliferation and cell number were not affected. Mineralized nodules were not detected in gingival fibroblasts and bone specific proteins were not expressed. Presence of cyclosporin A during 14-day culture period appears to suppress the proliferation of cementoblastoma cells and induce the formation mineralized-like tissue by these cells.

  4. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  5. INFLUENCE OF PETROCHEMICAL INDUSTRY ENVIRONMENTAL CONTAMINANTS ON ANIMAL OVARIAN CELLS

    Directory of Open Access Journals (Sweden)

    Alexander V. Sirotkin

    2012-10-01

    Full Text Available The aim of our studies was to examine (1 the effect of environmental contaminants (benzene, toluene and xylen on basic ovarian cell functions (proliferation, apoptosis, secretory activity in different animal species (rabbit, pig, cow, and (2 whether gonadotropic hormone (FSH and plant molecules (quercetin, resveratrol or extract of yucca can affect these functions and modify effect of environmental contaminants. It was observed, that the culture of either porcine or bovine ovarian cells with benzene, toluene or xylen promote apoptosis (accumulation of apoptosis markers bax and p53 and proliferation (accumulation of PCNA. Furthermore, additions of these contaminants were able either up- or down-regulate the release of progesterone, oxytocin, insulin-like growth factor I (IGF-I and prostaglandin F by cultured porcine, rabbit and bovine ovarian cells and their response to addition of FSH. FSH additions promoted proliferation, apoptosis and release of molecules listed above by porcine granulosa cells. Moreover, FSH was able to modify and to prevent. Some effects of BTEX on these cells. The effects of either quercetin or resveratrol on basic porcine ovarian cell functions were observed, but these plant molecules were not able to prevent BTEX effect. Feeding of rabbits with yucca extract caused changes in release of progesterone, IGF-I and prostaglandin F by their ovarian cells, as well as to modify and prevent the influence of benzene on ovarian hormone release. The obtained data suggest that (1 the negative effect of BTEX on reproduction can be due to their influence on ovarian cell apoptosis, proliferation, turnover and release of peptide and steroid hormones and growth factors, and that (2 FSH and plant molecules can regulate ovarian cell functions and prevent some effects of BTEX on these cells.

  6. Derivation of transgene-free human induced pluripotent stem cells from human peripheral T cells in defined culture conditions.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Kishino

    Full Text Available Recently, induced pluripotent stem cells (iPSCs were established as promising cell sources for revolutionary regenerative therapies. The initial culture system used for iPSC generation needed fetal calf serum in the culture medium and mouse embryonic fibroblast as a feeder layer, both of which could possibly transfer unknown exogenous antigens and pathogens into the iPSC population. Therefore, the development of culture systems designed to minimize such potential risks has become increasingly vital for future applications of iPSCs for clinical use. On another front, although donor cell types for generating iPSCs are wide-ranging, T cells have attracted attention as unique cell sources for iPSCs generation because T cell-derived iPSCs (TiPSCs have a unique monoclonal T cell receptor genomic rearrangement that enables their differentiation into antigen-specific T cells, which can be applied to novel immunotherapies. In the present study, we generated transgene-free human TiPSCs using a combination of activated human T cells and Sendai virus under defined culture conditions. These TiPSCs expressed pluripotent markers by quantitative PCR and immunostaining, had a normal karyotype, and were capable of differentiating into cells from all three germ layers. This method of TiPSCs generation is more suitable for the therapeutic application of iPSC technology because it lowers the risks associated with the presence of undefined, animal-derived feeder cells and serum. Therefore this work will lead to establishment of safer iPSCs and extended clinical application.

  7. Utility and translatability of mathematical modeling, cell culture and small and large animal models in magnetic nanoparticle hyperthermia cancer treatment research

    Science.gov (United States)

    Hoopes, P. J.; Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Pearce, John A.; Ryan, Thomas P.

    2015-03-01

    For more than 50 years, hyperthermia-based cancer researchers have utilized mathematical models, cell culture studies and animal models to better understand, develop and validate potential new treatments. It has been, and remains, unclear how and to what degree these research techniques depend on, complement and, ultimately, translate accurately to a successful clinical treatment. In the past, when mathematical models have not proven accurate in a clinical treatment situation, the initiating quantitative scientists (engineers, mathematicians and physicists) have tended to believe the biomedical parameters provided to them were inaccurately determined or reported. In a similar manner, experienced biomedical scientists often tend to question the value of mathematical models and cell culture results since those data typically lack the level of biologic and medical variability and complexity that are essential to accurately study and predict complex diseases and subsequent treatments. Such quantitative and biomedical interdependence, variability, diversity and promise have never been greater than they are within magnetic nanoparticle hyperthermia cancer treatment. The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and, recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. The goal of this paper is to use proven concepts and current research to address the potential pathobiology, modeling and quantification of the effects of treatment as pertaining to the similarities and differences in energy delivered by known external delivery techniques and iron oxide nanoparticles.

  8. Movement of regulatory RNA between animal cells.

    Science.gov (United States)

    Jose, Antony M

    2015-07-01

    Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions. © 2015 Wiley Periodicals, Inc.

  9. Laser-assisted modification of polystyrene surfaces for cell culture applications

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Bruns, Michael; Welle, Alexander; Wilson, Sandra

    2007-01-01

    Laser-assisted patterning and modification of polystyrene (PS) was investigated with respect to applications in micro-fluidics and cell culture. For this purpose the wettability, the adsorption of proteins and the adhesion of animal cells were investigated as function of laser- and processing parameters. The change of surface chemistry was characterized by X-ray photoelectron spectroscopy. The local formation of chemical structures suitable for improved cell adhesion was realized on PS surfaces by UV laser irradiation. Above and below the laser ablation threshold two different mechanisms affecting cell adhesion were detected. In the first case the debris deposited on and along laser irradiated areas was responsible for improved cell adhesion, while in the second case a photolytic activation of the polymer surface including a subsequent oxidization in oxygen or ambient air is leading to a highly localized alteration of protein adsorption from cell culture media and finally to increased cell adhesion. Laser modifications of PS using suitable exposure doses and an appropriate choice of the processing gas (helium or oxygen) enabled a highly localized control of wetting. The dynamic advancing contact angle could be adjusted between 2 o and 150 o . The hydrophilic and hydrophobic behaviour are caused by chemical and topographical surface changes

  10. Locust bean gum as an alternative polymeric coating for embryonic stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Perestrelo, Ana Rubina [Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve (Portugal); IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Universidade do Algarve (Portugal); PhD Program in Biomedical Sciences, Universidade do Algarve (Portugal); Grenha, Ana [IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Universidade do Algarve (Portugal); Rosa da Costa, Ana M. [Centro de Investigação em Química do Algarve (CIQA) and Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve (Portugal); Belo, José António, E-mail: jose.belo@fcm.unl.pt [Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve (Portugal); IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Universidade do Algarve (Portugal); Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa (Portugal)

    2014-07-01

    Pluripotent embryonic stem cells (ESCs) have self-renewal capacity and the potential to differentiate into any cellular type depending on specific cues (pluripotency) and, therefore, have become a vibrant research area in the biomedical field. ESCs are usually cultured in gelatin or on top of a monolayer of feeder cells such as mitotically inactivated mouse embryonic fibroblasts (MEFsi). The latter is the gold standard support to maintain the ESCs in the pluripotent state. Examples of versatile, non-animal derived and inexpensive materials that are able to support pluripotent ESCs are limited. Therefore, our aim was to find a biomaterial able to support ESC growth in a pluripotent state avoiding laborious and time consuming parallel culture of MEFsi and as simple to handle as gelatin. Many of the new biomaterials used to develop stem cell microenvironments are using natural polymers adsorbed or covalently attached to the surface to improve the biocompatibility of synthetic polymers. Locust beam gum (LBG) is a natural, edible polymer, which has a wide range of potential applications in different fields, such as food and pharmaceutical industry, due to its biocompatibility, adhesiveness and thickening properties. The present work brings a natural system based on the use of LBG as a coating for ESC culture. Undifferentiated mouse ESCs were cultured on commercially available LBG to evaluate its potential in maintaining pluripotent ESCs. In terms of morphology, ESC colonies in LBG presented the regular dome shape with bright borders, similar to the colonies obtained in co-cultures with MEFsi and characteristic of pluripotent ESC colonies. In short-term cultures, ESC proliferation in LBG coating was similar to ESC cultured in gelatin and the cells maintained their viability. The activity of alkaline phosphatase and Nanog, Sox2 and Oct4 expression of mouse ESCs cultured in LBG were comparable or in some cases higher than in ESCs cultured in gelatin. An in vitro

  11. Locust bean gum as an alternative polymeric coating for embryonic stem cell culture

    International Nuclear Information System (INIS)

    Perestrelo, Ana Rubina; Grenha, Ana; Rosa da Costa, Ana M.; Belo, José António

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) have self-renewal capacity and the potential to differentiate into any cellular type depending on specific cues (pluripotency) and, therefore, have become a vibrant research area in the biomedical field. ESCs are usually cultured in gelatin or on top of a monolayer of feeder cells such as mitotically inactivated mouse embryonic fibroblasts (MEFsi). The latter is the gold standard support to maintain the ESCs in the pluripotent state. Examples of versatile, non-animal derived and inexpensive materials that are able to support pluripotent ESCs are limited. Therefore, our aim was to find a biomaterial able to support ESC growth in a pluripotent state avoiding laborious and time consuming parallel culture of MEFsi and as simple to handle as gelatin. Many of the new biomaterials used to develop stem cell microenvironments are using natural polymers adsorbed or covalently attached to the surface to improve the biocompatibility of synthetic polymers. Locust beam gum (LBG) is a natural, edible polymer, which has a wide range of potential applications in different fields, such as food and pharmaceutical industry, due to its biocompatibility, adhesiveness and thickening properties. The present work brings a natural system based on the use of LBG as a coating for ESC culture. Undifferentiated mouse ESCs were cultured on commercially available LBG to evaluate its potential in maintaining pluripotent ESCs. In terms of morphology, ESC colonies in LBG presented the regular dome shape with bright borders, similar to the colonies obtained in co-cultures with MEFsi and characteristic of pluripotent ESC colonies. In short-term cultures, ESC proliferation in LBG coating was similar to ESC cultured in gelatin and the cells maintained their viability. The activity of alkaline phosphatase and Nanog, Sox2 and Oct4 expression of mouse ESCs cultured in LBG were comparable or in some cases higher than in ESCs cultured in gelatin. An in vitro

  12. Development of humanized culture medium with plant-derived serum replacement for human pluripotent stem cells

    Czech Academy of Sciences Publication Activity Database

    Kunová, M.; Matulka, K.; Eiselleová, L.; Trčková, P.; Hampl, Aleš; Dvořák, Petr

    2010-01-01

    Roč. 21, - (2010), s. 676-686 ISSN 1472-6483 Grant - others:GA MŠk(CZ) LC06077; EC FP6(XE) LSHG-CT-2006-018739 Program:LC Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : animal protein-free culture * high-density culture * human embryonic stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.285, year: 2010

  13. IRES-mediated translation of foot-and-mouth disease virus (FMDV) in cultured cells derived from FMDV-susceptible and -insusceptible animals.

    Science.gov (United States)

    Kanda, Takehiro; Ozawa, Makoto; Tsukiyama-Kohara, Kyoko

    2016-03-31

    Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5' untranslated region (5'UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs). Foot-and-mouth disease (FMD) is host-restricted disease for cloven-hoofed animals such as cattle and pigs, but the factors determining the host range have not been identified yet. Although, ITAFs are known to promote IRES-mediated translation, these findings were confirmed only in cells derived from FMDV-insusceptible animals so far. We evaluated and compared the IRES-mediated translation activities among cell lines derived from four different animal species using bicistronic luciferase reporter plasmid, which possesses an FMDV-IRES element between Renilla and Firefly luciferase genes. Furthermore, we analyzed the effect of the cellular factors on IRES-mediated translation by silencing the cellular factors using siRNA in both FMDV-susceptible and -insusceptible animal cells. Our data indicated that IRES-mediated translational activity was not linked to FMDV host range. ITAF45 promoted IRES-mediated translation in all cell lines, and the effects of poly-pyrimidine tract binding protein (PTB) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were observed only in FMDV-susceptible cells. Thus, PTB and 4E-BP1 may influence the host range of FMDV. IRES-mediated translation activity of FMDV was not predictive of its host range. ITAF45 promoted IRES-mediated translation in all cells, and the effects of PTB and 4E-BP1 were observed only in FMDV-susceptible cells.

  14. VH repertoire in progeny of long term lymphoid-cultured cells used to reconstitute immunodeficient mice

    International Nuclear Information System (INIS)

    Denis, K.A.; Timson, L.K.; Witte, O.N.

    1989-01-01

    VH gene utilization in the progeny of long term lymphoid-cultured cells used for reconstitution of severe combined immunodeficient mice under varying conditions was determined. Hybridomas made from the spleens of these animals were evaluated for clonality and donor origin and a panel of 146 independent hybridomas were subsequently examined for VH expression. Hybridomas derived from the spleens of SCID mice reconstituted with fresh cells, used as a control, utilized VH families in proportion to their numerical representation in the genome. However, hybridomas from the spleens of mice reconstituted with long term cultured cells utilized a predominance of the two VH gene families most proximal to JH, characteristic of cells early in B lymphocyte development. Coinjection of thymocytes with cultured fetal liver cells, to provide good levels of T lymphocytes, did not alter this pattern of VH utilization. Irradiation (3 Gy) of the mice before cultured cell injection, which leads to more complete reconstitution of the B cell compartment, was effective in removing this bias in the VH repertoire. Hybridomas derived from these mice expressed their VH genes more in proportion to family size, characteristic of cells later in B lymphocyte development. In this manner, long term lymphoid-cultured cells can be used to study the transitions that occur in VH repertoire expression which appear to be mediated by either B lymphocyte developmental microenvironment or population size

  15. Good cell culture practices &in vitro toxicology.

    Science.gov (United States)

    Eskes, Chantra; Boström, Ann-Charlotte; Bowe, Gerhard; Coecke, Sandra; Hartung, Thomas; Hendriks, Giel; Pamies, David; Piton, Alain; Rovida, Costanza

    2017-12-01

    Good Cell Culture Practices (GCCP) is of high relevance to in vitro toxicology. The European Society of Toxicology In Vitro (ESTIV), the Center for Alternatives for Animal Testing (CAAT) and the In Vitro Toxicology Industrial Platform (IVTIP) joined forces to address by means of an ESTIV 2016 pre-congress session the different aspects and applications of GCCP. The covered aspects comprised the current status of the OECD guidance document on Good In Vitro Method Practices, the importance of quality assurance for new technological advances in in vitro toxicology including stem cells, and the optimized implementation of Good Manufacturing Practices and Good Laboratory Practices for regulatory testing purposes. General discussions raised the duality related to the difficulties in implementing GCCP in an academic innovative research framework on one hand, and on the other hand, the need for such GCCP principles in order to ensure reproducibility and robustness of in vitro test methods for toxicity testing. Indeed, if good cell culture principles are critical to take into consideration for all uses of in vitro test methods for toxicity testing, the level of application of such principles may depend on the stage of development of the test method as well as on the applications of the test methods, i.e., academic innovative research vs. regulatory standardized test method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. DNA repair in non-mammalian animals

    International Nuclear Information System (INIS)

    Mitani, Hiroshi

    1984-01-01

    Studies on DNA repair have been performed using microorganisms such as Escherichia coli and cultured human and mammalian cells. However, it is well known that cultured organic cells differ from each other in many respects, although DNA repair is an extremely fundamental function of organisms to protect genetic information from environmental mutagens such as radiation and 0 radicals developing in the living body. To answer the question of how DNA repair is different between the animal species, current studies on DNA repair of cultured vertebrate cells using the methods similar to those in mammalian experiments are reviewed. (Namekawa, K.)

  17. A 3D human neural cell culture system for modeling Alzheimer’s disease

    Science.gov (United States)

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  18. Hand-made cloned goat (Capra hircus) embryos—a comparison of different donor cells and culture systems.

    Science.gov (United States)

    Akshey, Yogesh S; Malakar, Dhruba; De, Arun K; Jena, Manoj K; Garg, Shweta; Dutta, Rahul; Pawar, Sachin Kumar; Mukesh, Manisha

    2010-10-01

    Nuclear transfer is a very effective method for propagation of valuable, extinct, and endangered animals. Hand-made cloning (HMC) is an efficient alternative to the conventional micromanipulator-based technique in some domestic species. The present study was carried out for the selection of suitable somatic cells as a nuclear donor and development of an optimum culture system for in vitro culture of zona-free goat cloned embryos. Cleavage and blastocyst rates were observed 72.06 ± 2.94% and 0% for fresh cumulus cells, 81.95 ± 3.40% and 12.74 ± 2.12% for cultured cumulus cells, and 92.94 ± 0.91% and 23.78 ± 3.33% for fetal fibroblast cells, respectively. There was a significant (p cloned embryos and donor cells. In conclusion, the present study describes that the fetal fibroblast cell is a suitable candidate as nuclear donor, and the flat surface culture system is suitable for zona-free blastocyst development by the hand-made cloning technique in the goat.

  19. pH and the cytotoxicity of fluoride in an animal cell culture system

    International Nuclear Information System (INIS)

    Helgeland, K.; Leirskar, J.

    1976-01-01

    To investigate the mechanism for the toxicity of silicate cement as observed in a cell culture system, the effects of pH and fluoride were tested on human epithelial cells (NCTC 2544). At pH 7.3, fluoride concentrations from 15 to 25 μg/ml (0.79 to 1.3 mM) had a growth inhibitory effect. When the pH of the incubation medium was lowered to the range 7.0 to 6.4, an enhanced cytotoxic effect of fluoride was found, and even at 5 to 10 μg/ml growth inhibition occurred. Concomitant with the enhanced cytotoxicity of fluoride at low pH, there was an increased utilization of glucose and formation of lactate. Upon lowering the pH of the incubation medium from 7.4 to 6.7, a twofold increase in the intracellular concentration of fluoride was found. (author)

  20. Animal Models for Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Helieh S. Oz

    2011-01-01

    Full Text Available Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed.

  1. Animal Models for Periodontal Disease

    Science.gov (United States)

    Oz, Helieh S.; Puleo, David A.

    2011-01-01

    Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed. PMID:21331345

  2. Virulence-associated genome mutations of murine rotavirus identified by alternating serial passages in mice and cell cultures.

    Science.gov (United States)

    Tsugawa, Takeshi; Tatsumi, Masatoshi; Tsutsumi, Hiroyuki

    2014-05-01

    Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3' consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its diarrheagenic activity in mice

  3. Virulence-Associated Genome Mutations of Murine Rotavirus Identified by Alternating Serial Passages in Mice and Cell Cultures

    Science.gov (United States)

    Tatsumi, Masatoshi; Tsutsumi, Hiroyuki

    2014-01-01

    ABSTRACT Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3′ consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. IMPORTANCE Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its

  4. Microfluidic cell culture systems for drug research.

    Science.gov (United States)

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  5. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  6. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Science.gov (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  7. [Alternatives to animal testing].

    Science.gov (United States)

    Fabre, Isabelle

    2009-11-01

    The use of alternative methods to animal testing are an integral part of the 3Rs concept (refine, reduce, replace) defined by Russel & Burch in 1959. These approaches include in silico methods (databases and computer models), in vitro physicochemical analysis, biological methods using bacteria or isolated cells, reconstructed enzyme systems, and reconstructed tissues. Emerging "omic" methods used in integrated approaches further help to reduce animal use, while stem cells offer promising approaches to toxicologic and pathophysiologic studies, along with organotypic cultures and bio-artificial organs. Only a few alternative methods can so far be used in stand-alone tests as substitutes for animal testing. The best way to use these methods is to integrate them in tiered testing strategies (ITS), in which animals are only used as a last resort.

  8. [Possible evolutionary mechanisms of 'culture' in animals: The hypothesis of distributed social learning].

    Science.gov (United States)

    Reznikova, Zh I; Panteleeva, S N

    2015-01-01

    There is a plethora of works on the origin and genesis of behavioral traditions in different animal species. Nevertheless, it still remains unclear as for which factors facilitate and which factors hinder the spreading those forms of behavior that are new for a population. Here, we present an analytical review on the topic, considering also the results of studies on 'culture' in animals and analyzing contradictions that arise when attempting to clarify the ethological mechanisms of cultural succession. The hypothesis of 'distributed social learning' is formulated, meaning that for spreading of complex behavioral stereotypes in a population the presence of few carriers of consistent stereotypes is enough under the condition that the rest of animals carry incomplete genetic programmes that start up these stereotypes. Existence of 'dormant' fragments of such programmes determines an inborn predisposition of their bearer to perform a certain sequence of acts. To complete the consistent stereotype, the simplest forms of social learning ('social alleviation') turn to be enough. The hypothesis is examined at the behavioral level and supported by experimental data obtained when studying the scenarios of hunting behavior development in ants Myrmica rubra L. It makes possible to explain the spreading of behavioral models in animal communities in a simpler way than cultural succession.

  9. Principles of cancer cell culture.

    Science.gov (United States)

    Cree, Ian A

    2011-01-01

    The basics of cell culture are now relatively common, though it was not always so. The pioneers of cell culture would envy our simple access to manufactured plastics, media and equipment for such studies. The prerequisites for cell culture are a well lit and suitably ventilated laboratory with a laminar flow hood (Class II), CO(2) incubator, benchtop centrifuge, microscope, plasticware (flasks and plates) and a supply of media with or without serum supplements. Not only can all of this be ordered easily over the internet, but large numbers of well-characterised cell lines are available from libraries maintained to a very high standard allowing the researcher to commence experiments rapidly and economically. Attention to safety and disposal is important, and maintenance of equipment remains essential. This chapter should enable researchers with little prior knowledge to set up a suitable laboratory to do basic cell culture, but there is still no substitute for experience within an existing well-run laboratory.

  10. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.

    2008-01-01

    OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...... conditions following good manufacturing practice (GMP). The aims of the study were first to establish culture conditions following GMP quality demands for human MSC expansion and differentiation for use in clinical trials, and second to compare these MSCs with MSCs derived from culture in four media commonly...... analysis showed that the plastic-adherent MSCs cultured in EMEA medium or in the other four media were identically negative for the haematopoietic surface markers CD45 and CD34 and positive for CD105, CD73, CD90, CD166 and CD13, which in combined expression is characteristic of MSCs. MSC stimulation...

  11. Identification and characterization of a 29-kilodalton protein from Mycobacterium tuberculosis culture filtrate recognized by mouse memory effector cells

    DEFF Research Database (Denmark)

    Rosenkrands, I; Rasmussen, P.B.; Carnio, M

    1998-01-01

    Culture filtrate proteins from Mycobacterium tuberculosis induce protective immunity in various animal models of tuberculosis. Two molecular mass regions (6 to 10 kDa and 24 to 36 kDa) of short-term culture filtrate are preferentially recognized by Th1 cells in animal models as well as by patients...... the antigen 85 complex was selected. The 29-kDa antigen (CFP29) was purified from M. tuberculosis short-term culture filtrate by thiophilic adsorption chromatography, anion-exchange chromatography, and gel filtration, In its native form, CFP29 forms a polymer with a high molecular mass. CFP29 was mapped......, and they both elicited the release of high levels of gamma interferon from mouse memory effector cells isolated during the recall of protective immunity to tuberculosis. Interspecies analysis by immunoblotting and PCR demonstrated that CFP29 is widely distributed in mycobacterial species....

  12. Human cultured cells are capable to incorporate isolated plant mitochondria loaded with exogenous DNA

    Directory of Open Access Journals (Sweden)

    Laktionov P. P.

    2012-07-01

    Full Text Available Aim. To investigate the possibility of human cultured cells to incorporate isolated mitochondria together with exogenous DNA introduced into organelles. Methods. Two approaches were used for this purpose, fluorescent labelling of mitochondria and/or DNA with subsequent analysis of the cells subjected to incubation by microscopy or by quantitative PCR. Results. We have shown that human cultured cells lines, HeLa and HUVEC, are capable to uptake isolated plant mitochondria and that this process depends on the incubation time and concentration of organelles present in medium. The incorporated mitochondria can serve as vehicles to deliver exogenous DNA into human cells, this DNA is then distributed in different cell compartments. Conclusions. These results are preliminary and need further investigations, including testing the possibility of human cells to incorporate the mitochondria of human or animal origin and creating genetic construction which could provide certain selectivity or stability of the transferred exogenous DNA upon cell uptake of the mitochondria as vectors.

  13. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi, E-mail: arthik@iastate.edu

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for

  14. Bacterial cell culture

    OpenAIRE

    sprotocols

    2014-01-01

    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  15. Replication of cultured lung epithelial cells

    International Nuclear Information System (INIS)

    Guzowski, D.; Bienkowski, R.

    1986-01-01

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to ( 3 H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems

  16. The effect of isolation and culture methods on epithelial stem cell populations and their progeny-toward an improved cell expansion protocol for clinical application.

    Science.gov (United States)

    Lenihan, Catherine; Rogers, Caroline; Metcalfe, Anthony D; Martin, Yella H

    2014-12-01

    The use of cultured epithelial keratinocytes in the treatment of burns and skin graft donor sites is well established in clinical practice. The most widely used culture method for clinical use was originally developed by Rheinwald and Green 40 years ago. This system uses irradiated mouse dermal fibroblasts as a feeder cell layer to promote keratinocyte growth, a process that is costly and labor-intensive for health care providers. The medium formulation contains several components of animal origin, which pose further safety risks for patients. Improvements and simplification in the culturing process would lead to clear advantages: improved safety through reduction of xenobiotic components and reduction in cost for health care providers by dispensing with feeder cells. We compared the Rheinwald and Green method to culture in three commercially available, feeder-free media systems with defined/absent components of animal origin. During the isolation process, short incubation times in high-strength trypsin resulted in increased numbers of liberated keratinocyte stem cells compared with longer incubation times. All three commercially available media tested in this study could support the expansion of keratinocytes, with phenotypes comparable to cells expanded using the established Rheinwald and Green method. Growth rates varied, with two of the media displaying comparable growth rates, whereas the third was significantly slower. Our study demonstrates the suitability of such feeder-free media systems in clinical use. It further outlines a range of techniques to evaluate keratinocyte phenotype when assessing the suitability of cells for clinical application. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    Science.gov (United States)

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  18. Tuning differentiation signals for efficient propagation and in vitro validation of rat embryonic stem cell cultures.

    Science.gov (United States)

    Meek, Stephen; Sutherland, Linda; Burdon, Tom

    2015-01-01

    The rat is one of the most commonly used laboratory animals in biomedical research and the recent isolation of genuine pluripotent rat embryonic stem (ES) cell lines has provided new opportunities for applying contemporary genetic engineering techniques to the rat and enhancing the use of this rodent in scientific research. Technical refinements that improve the stability of the rat ES cell cultures will undoubtedly further strengthen and broaden the use of these stem cells in biomedical research. Here, we describe a relatively simple and robust protocol that supports the propagation of germ line competent rat ES cells, and outline how tuning stem cell signaling using small molecule inhibitors can be used to both stabilize self-renewal of rat ES cell cultures and aid evaluation of their differentiation potential in vitro.

  19. Are There Really Animals Like That? No Cell Division.

    Science.gov (United States)

    Blackwelder, R. E.; Garoian, G. S.

    1984-01-01

    Provides examples of animals in which growth occurs without cell division. Indicates that this phenomenon (called cell constancy or eutely) is an oddity of development that has arisen independently in several animal groups. (JN)

  20. Isolation and Characterization of Current Human Coronavirus Strains in Primary Human Epithelial Cell Cultures Reveal Differences in Target Cell Tropism

    Science.gov (United States)

    Dijkman, Ronald; Jebbink, Maarten F.; Koekkoek, Sylvie M.; Deijs, Martin; Jónsdóttir, Hulda R.; Molenkamp, Richard; Ieven, Margareta; Goossens, Herman; Thiel, Volker

    2013-01-01

    The human airway epithelium (HAE) represents the entry port of many human respiratory viruses, including human coronaviruses (HCoVs). Nowadays, four HCoVs, HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63, are known to be circulating worldwide, causing upper and lower respiratory tract infections in nonhospitalized and hospitalized children. Studies of the fundamental aspects of these HCoV infections at the primary entry port, such as cell tropism, are seriously hampered by the lack of a universal culture system or suitable animal models. To expand the knowledge on fundamental virus-host interactions for all four HCoVs at the site of primary infection, we used pseudostratified HAE cell cultures to isolate and characterize representative clinical HCoV strains directly from nasopharyngeal material. Ten contemporary isolates were obtained, representing HCoV-229E (n = 1), HCoV-NL63 (n = 1), HCoV-HKU1 (n = 4), and HCoV-OC43 (n = 4). For each strain, we analyzed the replication kinetics and progeny virus release on HAE cell cultures derived from different donors. Surprisingly, by visualizing HCoV infection by confocal microscopy, we observed that HCoV-229E employs a target cell tropism for nonciliated cells, whereas HCoV-OC43, HCoV-HKU1, and HCoV-NL63 all infect ciliated cells. Collectively, the data demonstrate that HAE cell cultures, which morphologically and functionally resemble human airways in vivo, represent a robust universal culture system for isolating and comparing all contemporary HCoV strains. PMID:23427150

  1. Traditional and Modern Cell Culture in Virus Diagnosis.

    Science.gov (United States)

    Hematian, Ali; Sadeghifard, Nourkhoda; Mohebi, Reza; Taherikalani, Morovat; Nasrolahi, Abbas; Amraei, Mansour; Ghafourian, Sobhan

    2016-04-01

    Cell cultures are developed from tissue samples and then disaggregated by mechanical, chemical, and enzymatic methods to extract cells suitable for isolation of viruses. With the recent advances in technology, cell culture is considered a gold standard for virus isolation. This paper reviews the evolution of cell culture methods and demonstrates why cell culture is a preferred method for identification of viruses. In addition, the advantages and disadvantages of both traditional and modern cell culture methods for diagnosis of each type of virus are discussed. Detection of viruses by the novel cell culture methods is considered more accurate and sensitive. However, there is a need to include some more accurate methods such as molecular methods in cell culture for precise identification of viruses.

  2. Selective comparison of gelling agents as neural cell culture matrices for long-term microelectrode array electrophysiology

    Directory of Open Access Journals (Sweden)

    Wilk Nicolai

    2016-01-01

    Full Text Available In classic monolayer cell culture, the world is flat. In contrast, tissue-embedded cells experience a three-dimensional context to interact with. We assessed a selection of natural gelling agents of non-animal origin (ι- and κ-carrageenan, gellan gum, guar gum, locust bean gum, sodium alginate, tragacanth and xanthan gum in serum-free medium at 1–4% (w/v concentration for their suitability as a more natural 3D culture environment for brain-derived cells. Their biophysical properties (viscosity, texture, transparency, gelling propensity resemble those of the extracellular matrix (ECM. Gels provide the neurons with a 3D scaffold to interact with and allow for an increase of the overall cell density compared to classical monolayer 2D culture. They not only protect neurons in cell culture from shear forces and medium evaporation, but stabilize the microenvironment around them for efficient glial proliferation, tissue-analog neural differentiation and neural communication. We report on their properties (viscosity, transparency, their ease of handling in a cell culture context and their possible use modalities (cell embedment, as a cell cover or as a cell culture substrate. Among the selected gels, guar gum and locust bean gum with intercalated laminin allowed for cortical cell embedment. Neurons plated on and migrating into gellan gum survived and differentiated even without the addition of laminin. Sodium alginate with laminin was a suitable cell cover. Finally, we exemplarily demonstrate how guar gum supported the functional survival of a cortical culture over a period of 79 days in a proof-of-concept long-term microelectrode array (MEA electrophysiology study.

  3. X-ray-induced production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by mouse spleen cells in culture

    International Nuclear Information System (INIS)

    Onoda, M.; Shinoda, M.; Tsuneoka, K.; Shikita, M.

    1980-01-01

    Spleen cells were collected from normal mice and cultured in a medium containing 20% calf serum. Addition of lipopolysaccharide (LPS) in the culture significantly increased the production of granulocyte-macrophage colony-stimulating factor (GM-CSF), and a maximum induction was attained in 5 days. Irradiation of the spleen cells with 300 to 3000 R x rays also enhanced the production of GM-CSF, but there was a latent period of about 5 days before the factor appeared in the culture medium. The observed difference between LPS and x rays in the timing of inducing GM-CSF production in the spleen cell culture was consistent with the difference observed in animals. These results suggest that different mechanisms of GM-CSF production operate in the spleen in response to either LPS or x rays

  4. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat

    DEFF Research Database (Denmark)

    Meyer, Morten; Widmer, H R; Wagner, B

    1998-01-01

    days in culture or directly as dissociated cell suspensions, and compared with regard to neuronal survival and ability to normalize rotational behavior in adult rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. Other lesioned rats received injections of cell-free medium and served as controls...... of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral...... improvements in terms of significant reductions in amphetamine-induced rotations were observed in rats grafted with FFRT cultures (127%) and rats grafted with cell suspensions (122%), while control animals showed no normalization of rotational behavior. At 84 days after transplantation, there were similar...

  5. Lethal impacts of cigarette smoke in cultured tobacco cells

    Directory of Open Access Journals (Sweden)

    Kawano Tomonori

    2011-07-01

    Full Text Available Abstract Background In order to understand and generalize the toxic mechanism of cigarette smoke in living cells, comparison of the data between animal systems and other biological system such as microbial and plant systems is highly beneficial. Objective By employing the tobacco cells as model materials for cigarette smoke toxicity assay, the impacts of the combustion by-products such as nitrogen oxides could be highlighted as the toxic impacts of the plant-derived endogenous chemicals could be excluded in the plant cells. Methods Cigarette smoke-induced cell death was assessed in tobacco cell suspension cultures in the presence and absence of pharmacological inhibitors. Results Cigarette smoke was effective in induction of cell death. The smoke-induced cell death could be partially prevented by addition of nitric oxide (NO scavenger, suggesting the role for NO as the cell death mediator. Addition of NO donor to tobacco cells also resulted in development of partial cell death further confirming the role of NO as cell death mediator. Members of reactive oxygen species and calcium ion were shown to be protecting the cells from the toxic action of smoke-derived NO.

  6. Efficacy of decoquinate against Sarcocystis neurona in cell cultures.

    Science.gov (United States)

    Lindsay, David S; Nazir, M Mudasser; Maqbool, Azhar; Ellison, Siobhan P; Strobl, Jeannine S

    2013-09-01

    Decoquinate is a quinolone anticoccidial approved for use in the prevention of intestinal coccidiosis in farm animals. This compound has good activity against Toxoplasma gondii and Neospora caninum in cell cultures. The drug acts on the parasites' mitochondria. The activity of decoquinate against developing merozoites of 2 isolates of Sarcocystis neurona was examined in cell culture. Merozoite production at 10 days was completely inhibited when decoquinate was used at 20 or 240 nM. The IC50 of decoquinate was 0.5 ± 0.09nM for the Sn6 isolate of S. neurona from a horse and 1.1 ± 0.6 nM for the SnOP15 isolate of S. neurona from an opossum. Levamisole was toxic at 5 μg/ml and no synergism was observed when decoquinate was combined with levamisole and tested against the Sn3YFP isolate of S. neurona. Decoquinate was cidal for developing schizonts of S. neurona at 240 nM. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions

    NARCIS (Netherlands)

    Hiemstra, P.S.; Grootaers, G.G.; Does, A.M. van der; Krul, C.A.M.; Kooter, I.M.

    2018-01-01

    The epithelium that covers the conducting airways and alveoli is a primary target for inhaled toxic substances, and therefore a focus in inhalation toxicology. The increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the

  8. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    Science.gov (United States)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  9. Experimental studies of animal social learning in the wild: Trying to untangle the mystery of human culture.

    Science.gov (United States)

    Hill, Kim

    2010-08-01

    Here I discuss how studies on animal social learning may help us understand human culture. It is an evolutionary truism that complex biological adaptations always evolve from less complex but related adaptations, but occasionally evolutionary transitions lead to major biological changes whose end products are difficult to anticipate. Language-based cumulative adaptive culture in humans may represent an evolutionary transition of this type. Most of the social learning observed in animals (and even plants) may be due to mechanisms that cannot produce cumulative cultural adaptations. Likewise, much of the critical content of socially transmitted human culture seems to show no parallel in nonhuman species. Thus, with regard to the uniquely human extent and quality of culture, we are forced to ask: Are other species only a few small steps away from this transition, or do they lack multiple critical features that make us the only truly cultural species? Only future research into animal social learning can answer these questions.

  10. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  11. "It's a Dog's Life": Culture, Empathy, Gender, and Domestic Violence Predict Animal Abuse in Adolescents-Implications for Societal Health.

    Science.gov (United States)

    Plant, Malcolm; van Schaik, Paul; Gullone, Eleonora; Flynn, Clifton

    2016-07-01

    Whereas the majority of previous research conducted on animal abuse has been in environments where animal abuse is rarely evidenced, the current study investigated the ramifications of animal abuse in an environment wherein the national culture creates an ethos of the "social acceptability" of animal abuse in society. Two survey studies were conducted with adolescent participants, to investigate the role played by several factors in the prediction of animal abuse in this age group. In Study 1, with samples from two different national cultures (101 from Germany and 169 from Romania; 143 boys/135 girls; age 13 to 17), animal abuse was negatively associated with affective empathy and national culture; more frequent animal abuse was found in Romania. Affective empathy fully mediated the association between gender and animal abuse. Specifically, girls were found to be higher in affective empathy; in turn, participants who were higher in affective empathy committed less animal abuse. Witnessing animal abuse was also predictive of engaging in animal abuse, but not independent of national culture. In Study 2, 15-year-old males ( n = 21) and females ( n = 39) took part, 29 from rural and 31 from urban locations in Romania. Rural adolescents were more likely to abuse animals and had higher exposure to domestic violence, which (in turn) was associated with more animal abuse. The implications of these findings in a society where animal abuse is encouraged and enacted on a national scale are discussed.

  12. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  13. Reporting of sex as a variable in cardiovascular studies using cultured cells

    Directory of Open Access Journals (Sweden)

    Taylor K

    2011-11-01

    Full Text Available Abstract Background Chromosomal complement, including that provided by the sex chromosomes, influences expression of proteins and molecular signaling in every cell. However, less than 50% of the scientific studies published in 2009 using experimental animals reported sex as a biological variable. Because every cell has a sex, we conducted a literature review to determine the extent to which sex is reported as a variable in cardiovascular studies on cultured cells. Methods Articles from 10 cardiovascular journals with high impact factors (Circulation, J Am Coll Cardiol, Eur Heart J, Circ Res, Arterioscler Thromb Vasc Biol, Cardiovasc Res, J Mol Cell Cardiol, Am J Physiol Heart Circ Physiol, J Heart Lung Transplant and J Cardiovasc Pharmacol and published in 2010 were searched using terms 'cultured' and 'cells' in any order to determine if the sex of those cells was reported. Studies using established cell lines were excluded. Results Using two separate search strategies, we found that only 25 of 90 articles (28% and 20 of 101 articles (19.8% reported the sex of cells. Of those reporting the sex of cells, most (68.9%; n = 31 used only male cells and none used exclusively female cells. In studies reporting the sex of cells of cardiovascular origin, 40% used vascular smooth-muscle cells, and 30% used stem/progenitor cells. In studies using cells of human origin, 35% did not report the sex of those cells. None of the studies using neonatal cardiac myocytes reported the sex of those cells. Conclusions The complement of sex chromosomes in cells studied in culture has the potential to affect expression of proteins and 'mechanistic' signaling pathways. Therefore, consistent with scientific excellence, editorial policies should require reporting sex of cells used in in vitro experiments.

  14. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    International Nuclear Information System (INIS)

    Fan, Ping; He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan

    2011-01-01

    Research highlights: → The proliferation of dramatic increased by co-cultured with Sertoli cells. → VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. → The MHC expression of ECs induced by INF-γ and IL-6, IL-8 and sICAM induced by TNF-α decreased respectively after co-cultured with Sertoli cells. → ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10 3 , 1 x 10 4 or 1 x 10 5 cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-γ and TNF-α were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10 4 cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P 4 cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-γ-induced MHC II antigen expression in co-cultured ECs compared with single

  15. Cultured Meat in Islamic Perspective.

    Science.gov (United States)

    Hamdan, Mohammad Naqib; Post, Mark J; Ramli, Mohd Anuar; Mustafa, Amin Rukaini

    2017-04-29

    Cultured meat is a promising product that is derived through biotechnology that partially circumvents animal physiology, thereby being potentially more sustainable, environmentally friendly and animal friendly than traditional livestock meat. Such a novel technology that can impact many consumers evokes ethical, philosophical and religious discussions. For the Islamic community, the crucial question is whether cultured meat is halal, meaning compliant with Islamic laws. Since the culturing of meat is a new discovery, invention and innovation by scientists that has never been discussed by classical jurists (fuqaha'), an ijtihad by contemporary jurists must look for and provide answers for every technology introduced, whether it comply the requirements of Islamic law or not. So, this article will discuss an Islamic perspective on cultured meat based on the original scripture in the Qur'an and interpretations by authoritative Islamic jurists. The halal status of cultured meat can be resolve through identifying the source cell and culture medium used in culturing the meat. The halal cultured meat can be obtained if the stem cell is extracted from a (Halal) slaughtered animal, and no blood or serum is used in the process. The impact of this innovation will give positive results in the environmental and sustain the livestock industry.

  16. Apoptosis after irradiation of the rat cortical and hippocampal cells in culture

    International Nuclear Information System (INIS)

    Coffigny, H.; Lane, M.C.

    1997-01-01

    During the development of the central nervous system many neurons are generated but over 50% die by natural apoptosis; this phenomenon occurred in neurons without or with wrong connections with their target cells. Children exposed in utero to Hiroshima or Nagasaki bombing presented microcephaly due to cell deaths and mental retardation. In animals, the number of apoptotic cells in the developing central nervous system increased as a function of the dose received. In vitro, we have shown that 1 Gy irradiation induced 50 % decrease of cortical and hippocampal cell survival. Nervous cells when seeded in a plate were round without processes. Neuritis outgrowth increased with culture time and physical contacts were established between cells. Our purpose is to test the importance of these contacts in the radio-induced apoptosis. (authors)

  17. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    Science.gov (United States)

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  18. Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support

    Directory of Open Access Journals (Sweden)

    Anita Muraglia

    2017-11-01

    Full Text Available Present cell culture medium supplements, in most cases based on animal sera, are not fully satisfactory especially for the in vitro expansion of cells intended for human cell therapy. This paper refers to (i an heparin-free human platelet lysate (PL devoid of serum or plasma components (v-PL and (ii an heparin-free human serum derived from plasma devoid of PL components (Pl-s and to their use as single components or in combination in primary or cell line cultures. Human mesenchymal stem cells (MSC primary cultures were obtained from adipose tissue, bone marrow, and umbilical cord. Human chondrocytes were obtained from articular cartilage biopsies. In general, MSC expanded in the presence of Pl-s alone showed a low or no proliferation in comparison to cells grown with the combination of Pl-s and v-PL. Confluent, growth-arrested cells, either human MSC or human articular chondrocytes, treated with v-PL resumed proliferation, whereas control cultures, not supplemented with v-PL, remained quiescent and did not proliferate. Interestingly, signal transduction pathways distinctive of proliferation were activated also in cells treated with v-PL in the absence of serum, when cell proliferation did not occur, indicating that v-PL could induce the cell re-entry in the cell cycle (cell commitment, but the presence of serum proteins was an absolute requirement for cell proliferation to happen. Indeed, Pl-s alone supported cell growth in constitutively activated cell lines (U-937, HeLa, HaCaT, and V-79 regardless of the co-presence of v-PL. Plasma- and plasma-derived serum were equally able to sustain cell proliferation although, for cells cultured in adhesion, the Pl-s was more efficient than the plasma from which it was derived. In conclusion, the cells expanded in the presence of the new additives maintained their differentiation potential and did not show alterations in their karyotype.

  19. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  20. Cell cultures for schistosomes - Chances of success or wishful thinking?

    Science.gov (United States)

    Quack, T; Wippersteg, V; Grevelding, C G

    2010-08-01

    Due to their worldwide importance for human and animal health, schistosomes are in the focus of national and international research activities. Their aims are to elucidate the genome, the transcriptome, the proteome and the glycome of schistosomes with the expectation to understand the biology of these blood flukes and to identify new candidate antigens for the development of a vaccine, or target molecules for the design of novel pharmaceutical compounds. All of these efforts have delivered a vast amount of information about the genetic equipment of schistosomes. In the emerging era of post-genomic research, however, methods and tools are necessary to interpret all available data and to characterise molecules of interest in more detail. In addition to transgenesis, it is generally accepted that cell lines for schistosomes are among the requirements to overcome present research limitations. In our commentary the prospect of establishing cell cultures for schistosomes is discussed. To this end we summarise the comprehensive endeavours made in the past regarding the establishment of invertebrate cell lines pointing to critical parameters that should be considered when making new attempts towards schistosome cell culturing. Furthermore, based on preliminary data with pilot-character, we discuss recent advances indicating the possibility of overcoming existing restrictions with respect to the 'immortalisation' of cells by oncogenes. Copyright 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  1. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation

    Directory of Open Access Journals (Sweden)

    Pasquale Marrazzo

    2016-01-01

    Full Text Available Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs. The perspective role of dental pulp stem cells (DPSCs in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1% was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H2O2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use.

  2. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation.

    Science.gov (United States)

    Marrazzo, Pasquale; Paduano, Francesco; Palmieri, Francesca; Marrelli, Massimo; Tatullo, Marco

    2016-01-01

    Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H 2 O 2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use.

  3. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  4. Advances in cell culture: anchorage dependence

    Science.gov (United States)

    Merten, Otto-Wilhelm

    2015-01-01

    Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097

  5. Iguana Virus, a Herpes-Like Virus Isolated from Cultured Cells of a Lizard, Iguana iguana

    Science.gov (United States)

    Clark, H. Fred; Karzon, David T.

    1972-01-01

    An agent cytopathic for Terrapene and Iguana cell cultures was isolated from spontaneously degenerating cell cultures prepared from a green iguana (Iguana iguana). The agent, designated iguana virus, caused a cytopathic effect (CPE) of a giant cell type, with eosinophilic inclusions commonly observed within giant cell nuclei. Incubation temperature had a marked effect on CPE and on virus release from infected cells. Within the range of 23 to 36 C, low temperatures favored CPE characterized by cytolysis and small giant cell formation, and significant virus release was observed. At warmer temperatures, a purely syncytial type of CPE and total absence of released virus were noted. A unique type of hexagonal eosinophilic cytoplasmic inclusion was observed within syncytia of infected Terrapene cell cultures incubated at 36 C. In vivo studies revealed no evidence of pathogenicity of iguana virus for suckling mice, embryonated hen's eggs, or several species of reptiles and amphibians. Inoculation of iguana virus into young iguanas consistently caused infection that was “unmasked” only when cell cultures were prepared directly from the infected animal. Filtration studies revealed a virion size of >100 nm and Iguana virus is ether-sensitive and, as presumptively indicated by studies of inhibition by bromodeoxyuridine, possesses a deoxyribonucleic type of nucleic acid. The virus characteristics described, as well as electron microscopy observations described in a separate report, indicate that iguana virus is a member of the herpesvirus group. Images PMID:4344303

  6. In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat.

    Science.gov (United States)

    Ohkoshi, Katsuhiro; Takahashi, Seiya; Koyama, Shin-Ichiro; Akagi, Satoshi; Adachi, Noritaka; Furusawa, Tadashi; Fujimoto, Jun-Ichiro; Takeda, Kumiko; Kubo, Masanori; Izaike, Yoshiaki; Tokunaga, Tomoyuki

    2003-01-01

    The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.

  7. Suspension culture of pluripotent stem cells: effect of shear on stem cell fate.

    Science.gov (United States)

    Keller, Kevin C; Rodrigues, Beatriz; zur Nieden, Nicole I

    2014-01-01

    Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time. This feature makes suspension cell culture ideal for use in stem cell research and eventually ideal in the large-scale production of differentiated cells for regenerative medicine. Because of their tremendous differentiation capacities and unlimited growth properties, pluripotent stem cells (PSCs) in particular are considered potential sources for future cell-replacement therapies. Currently, expansion of PSCs is accomplished in 2D, which only permits a limited amount of cell growth per culture flask before cells need to be passaged. However, before stem cells can be applied clinically, several aspects of their expansion, such as directed growth, but also differentiation, need to be better controlled. This review will summarize recent advantages in suspension culture of PSCs, while at the same time highlighting current challenges.

  8. Cross-cultural and construct validity of the Animated Activity Questionnaire

    DEFF Research Database (Denmark)

    Peter, Wilfred F; Cw de Vet, Henrika; Boers, Maarten

    2017-01-01

    OBJECTIVE: The Animated Activity Questionnaire (AAQ) assesses activity limitations in patients with hip/knee osteoarthritis (HKOA), and consisting video animations of which patients choose the animation that best matches their own performance. The AAQ has shown good validity and reliability......, and a Patient Reported Outcome Measure (PROM) and performance-based tests. RESULTS: Data of 1239 patients were available. Compared to Dutch (n=279), none of the 17 items showed DIF in English (n=202), French (n=193), 1 item showed uniform DIF in Spanish (n=99) and Norwegian (n=62), and 2 items showed uniform...... with the cross-cultural validity between these countries. With regard to construct validity, the correlations with PROM (0.74) and performance-based tests (0.36-0.68) were partly as expected (> 0.60). CONCLUSION: The AAQ, an innovative tool to measure activity limitations that can be placed on the continuum...

  9. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  10. The evolution of chicken stem cell culture methods.

    Science.gov (United States)

    Farzaneh, M; Attari, F; Mozdziak, P E; Khoshnam, S E

    2017-12-01

    1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.

  11. Animated Cell Biology: A Quick and Easy Method for Making Effective, High-Quality Teaching Animations

    Science.gov (United States)

    O'Day, Danton H.

    2006-01-01

    There is accumulating evidence that animations aid learning of dynamic concepts in cell biology. However, existing animation packages are expensive and difficult to learn, and the subsequent production of even short animations can take weeks to months. Here I outline the principles and sequence of steps for producing high-quality PowerPoint…

  12. Rabbit uterine epithelial cells: Co-culture with spermatozoa

    International Nuclear Information System (INIS)

    Boice, M.L.

    1988-01-01

    A primary culture of rabbit uterine epithelial cells was established and their effects on sperm function were examined in vitro. Epithelial cells were isolated from uteri of estrous rabbits and cultured on floating collagen gels in phenol red-free medium supplemented with 5% fetal bovine serum. Light microscopy and keratin staining showed that the epithelial cell population established in culture had morphological characteristics similar to that seen in the intact endometrium. Cells were cultured with 3 H-leucine and uptake of label by cells and its incorporation into cellular and secretory proteins determined. When compared to cells cultured for 24-48 h, incorporation of label into cellular protein was lower at 72-96 h, but secretion increased. Estradiol 17-β did not affect label uptake or incorporation, but did enhance proliferation of cells as judged by total DNA content of the cell population. Analysis of proteins in media by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography suggested that epithelial and stromal cells synthesis proteins that may be secretory in nature during 72-96 h culture. Twenty-nine to thirty-one h after initiation of epithelial cultures, 1-2 x 10 6 sperm were co-incubated with cells and sperm viability, motility, loss of acrosome and fertilizing ability determined

  13. Induced repair and mutagenesis in animal cells

    International Nuclear Information System (INIS)

    Takimoto, Koichi

    1981-01-01

    Induced repair and mutagenesis of animal cells against UV were studied in contrast with SOS repair of E. coli primarily by the use of viruses. Since UV-enhanced reactivation is a phenomenon similar to UV-reactivation (mutagenesis) and the presence of lesion bypass synthsis has been suggested, UV-enhanced reactivation has several common aspects with SOS reactivation of E. coli. However, correlation is not necessarily noted between increase in the viral survival rate and mutagenesis, nor do protease blockers exert any effect. Therefore, SOS repair of E. coli may have different mechansms from induced repair and mutagenesis in animal cells. (Ueda, J.)

  14. Plant and animal stem cells: similar yet different

    NARCIS (Netherlands)

    Heidstra, R.; Sabatini, S.

    2014-01-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into

  15. X-ray microanalysis of single and cultured cells

    International Nuclear Information System (INIS)

    Wroblewski, J.; Roomans, G.M.

    1984-01-01

    X-ray microanalysis of single or cultured cells is often a useful alternative or complement to the analysis of the corresponding tissue. It also allows the analysis of individual cells in a cell population. Preparation for X-ray microanalysis poses a number of typical problems. Suspensions of single cells can be prepared by either of two pathways: (1) washing - mounting - drying, or (2) centrifugation - freezing or fixation - sectioning. The washing step in the preparation of single or cultured cells presents the most severe problems. Cultured cells are generally grown on a substrate that is compatible with both the analysis and the culture, washed and dried. In some cases, sectioning of cultured cell monolayers has been performed. Special problems in quantitative analysis occur in those cases where the cells are analyzed on a thick substrate, since the substrate contributes to the spectral background

  16. 21 CFR 864.2800 - Animal and human sera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Animal and human sera. 864.2800 Section 864.2800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2800 Animal and...

  17. Molecular Mechanisms of Microcystin Toxicity in Animal Cells

    Directory of Open Access Journals (Sweden)

    Alexandre Campos

    2010-01-01

    Full Text Available Microcystins (MC are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.

  18. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  19. Histochemical study of brown-fat cells in the golden hamster (Mesocricetus auratus) in cultures

    International Nuclear Information System (INIS)

    Sokolov, V.E.; Boyadzhieva-Mikhailova, A.; Koncheva, L.; Angelova, P.; Evgen'eva, T.P.

    1985-01-01

    The authors undertake the task of studying the synthesis of certain hormones by brown-fat cells. The authors used brown-fat cells from the golden hamster. The metabolism of brown-fat cells was studied on precultured cells, which made it possible to detect the synthesis of the studied substances rather than their accumulation in the organ. The authors conducted three experiments. First, fragments of brown fat were cultivated in diffusion chambers in vivo. Pieces of brown fat were cultivated in parallel in vitro on agar (organotypic cultures) and on plasma (histotypic cultures). During cultivation in diffusion chambers, the chambers were implanted in the abdominal cavity of young white rats. For in vitro cultivation, TCM 199 plus 15-20% calf serum was used. A total of 36 cultures with 12 cultures in each series of experiments were performed. The auto-radiographic studies of brown-fat cells were conducted on 24-hour cultures and on brown-fat fragments taken from the intact animal. The cultures were incubated with isotopes for 1 h. Either [ 3 H]lysine (87.3 Ci/mM specific activity), [ 3 H]arginine (16.7 Ci/mM), [ 3 H]glycerol (43 Ci/mM), or [ 3 H]cholesterol (43 Ci/mM) were added to the medium. After incubation, the cultures were washed three times in pure medium, fixed in Sierra fluid, and embedded in paraffin. The paraffin sections were covered with Ilford K 2 emulsion, and the preparations were exposed for 20 days at 4 0 C temperature. Radio-immunological methods were used to study the accumulation of estradiol-17-beta in the culture medium by the Dobson method and that of testerone. The culture medium was taken on cultivation days 2,4,6,8, and 10. The medium was changed during cultivation every third day, which made it possible to judge the rates of accumulation of material with increase in the cultivation times

  20. Cultured meat: every village its own factory?

    NARCIS (Netherlands)

    Weele, van der C.; Tramper, J.

    2014-01-01

    Rising global demand for meat will result in increased environmental pollution, energy consumption, and animal suffering. Cultured meat, produced in an animal-cell cultivation process, is a technically feasible alternative lacking these disadvantages, provided that an animal-component-free growth

  1. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs......Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing......, these devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment...

  2. Transplantation of mesenchymal stem cells cultured on biomatrix support induces repairing of digestive tract defects, in animal model.

    Science.gov (United States)

    Sîrbu-Boeţi, Mirela-Patricia; Chivu, Mihaela; Pâslaru, Liliana Livia; Efrimescu, C; Herlea, V; Pecheanu, C; Moldovan, Lucia; Dragomir, Laura; Bleotu, Coralia; Ciucur, Elena; Vidulescu, Cristina; Vasilescu, Mihaela; Boicea, Anişoara; Mănoiu, S; Ionescu, M I; Popescu, I

    2009-01-01

    Transplanted mesenchymal stem cells (MSCs) appear to play a significant role in adult tissue repair. The aim of this research was to obtain MSCs enriched, three dimensional (3D) patches for transplant, and to test their ability to induce repair of iatrogenic digestive tract defects in rats. MSCs were obtained from human and rat bone marrow, cultured in vitro, and seeded in a collagen-agarose scaffold, where they showed enhanced viability and proliferation. The phenotype of the cultured cells was representative for MSCs (CD105+, CD90+, and CD34-, CD45-, CD3-, CD14-). The 3D patch was obtained by laying the MSCs enriched collagen-agarose scaffold on a human or swine aortic fragment. After excision of small portions of the rat digestive tract, the 3D patches were sutured at the edge of the defect using micro-surgical techniques. The rats were sacrificed at time-points and the regeneration of the digestive wall was investigated by immunofluorescence, light and electron microscopy. The MSCs enriched 3D patches were biocompatible, biodegradable, and prompted the regeneration of the four layers of the stomach and intestine wall in rats. Human cells were identified in the rat regenerated digestive wall as a hallmark of the transplanted MSCs. For the first time we constructed 3D patches made of cultured bone marrow MSCs, embedded into a collagen-rich biomatrix, on vascular bio-material support, and transplanted them in order to repair iatrogenic digestive tract defects. The result was a complete repair with preservation of the four layered structure of the digestive wall.

  3. Neuropharmacological and neuroprotective activities of some metabolites produced by cell suspension culture of Waltheria americana Linn.

    Science.gov (United States)

    Mundo, Jorge; Villeda-Hernández, Juana; Herrera-Ruiz, Maribel; Gutiérrez, María Del Carmen; Arellano-García, Jesús; León-Rivera, Ismael; Perea-Arango, Irene

    2017-10-01

    Waltheria americana is a plant used in Mexican traditional medicine to treat some nervous system disorders. The aims of the present study were to isolate and determine the neuropharmacological and neurprotective activities of metabolites produced by a cell suspension culture of Waltheria americana. Submerged cultivation of W. americana cells provided biomass. A methanol-soluble extract (WAsc) was obtained from biomass. WAsc was fractionated yielding the chromatographic fractions 4WAsc-H 2 O and WAsc-CH 2 Cl 2 . For the determination of anticonvulsant activity in vivo, seizures were induced in mice by pentylenetetrazol (PTZ). Neuropharmacological activities (release of gamma amino butyric acid (GABA) and neuroprotection) of chromatographic fractions were determined by in vitro histological analysis of brain sections of mice post mortem. Fraction 4WAsc-H 2 O (containing saccharides) did not produce neuronal damage, neurodegeneration, interstitial tissue edema, astrocytic activation, nor cell death. Pretreatment of animals with 4WAsc-H 2 O and WAsc-CH 2 Cl 2 from W. americana cell suspensions induced an increase in: GABA release, seizure latency, survival time, neuroprotection, and a decrease in the degree of severity of tonic/tonic-clonic convulsions, preventing PTZ-induced death of up to 100% of animals of study. Bioactive compounds produced in suspension cell culture of W. americana produce neuroprotective and neuropharmacological activities associated with the GABAergic neurotransmission system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Good Cell Culture Practice for stem cells and stem-cell-derived models.

    Science.gov (United States)

    Pamies, David; Bal-Price, Anna; Simeonov, Anton; Tagle, Danilo; Allen, Dave; Gerhold, David; Yin, Dezhong; Pistollato, Francesca; Inutsuka, Takashi; Sullivan, Kristie; Stacey, Glyn; Salem, Harry; Leist, Marcel; Daneshian, Mardas; Vemuri, Mohan C; McFarland, Richard; Coecke, Sandra; Fitzpatrick, Suzanne C; Lakshmipathy, Uma; Mack, Amanda; Wang, Wen Bo; Yamazaki, Daiju; Sekino, Yuko; Kanda, Yasunari; Smirnova, Lena; Hartung, Thomas

    2017-01-01

    The first guidance on Good Cell Culture Practice (GCCP) dates back to 2005. This document expands this to include aspects of quality assurance for in vitro cell culture focusing on the increasingly diverse cell types and culture formats used in research, product development, testing and manufacture of biotechnology products and cell-based medicines. It provides a set of basic principles of best practice that can be used in training new personnel, reviewing and improving local procedures, and helping to assure standard practices and conditions for the comparison of data between laboratories and experimentation performed at different times. This includes recommendations for the documentation and reporting of culture conditions. It is intended as guidance to facilitate the generation of reliable data from cell culture systems, and is not intended to conflict with local or higher level legislation or regulatory requirements. It may not be possible to meet all recommendations in this guidance for practical, legal or other reasons. However, when it is necessary to divert from the principles of GCCP, the risk of decreasing the quality of work and the safety of laboratory staff should be addressed and any conclusions or alternative approaches justified. This workshop report is considered a first step toward a revised GCCP 2.0.

  5. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  6. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.

    Science.gov (United States)

    Chen, Yu-Chih; Yoon, Euisik

    2017-01-01

    Three-dimensional (3D) cell culture is critical in studying cancer pathology and drug response. Though 3D cancer sphere culture can be performed in low-adherent dishes or well plates, the unregulated cell aggregation may skew the results. On contrary, microfluidic 3D culture can allow precise control of cell microenvironments, and provide higher throughput by orders of magnitude. In this chapter, we will look into engineering innovations in a microfluidic platform for high-throughput cancer cell sphere formation and review the implementation methods in detail.

  7. Liver Cell Culture Devices

    NARCIS (Netherlands)

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver

  8. Characterization of glucocerebrosidase in peripheral blood cells and cultured blastoid cells

    NARCIS (Netherlands)

    Aerts, J. M.; Heikoop, J.; van Weely, S.; Donker-Koopman, W. E.; Barranger, J. A.; Tager, J. M.; Schram, A. W.

    1988-01-01

    We have characterized glucocerebrosidase in various cell types of peripheral blood of control subjects and in cultured human blastoid cells. The intracellular level of glucocerebrosidase in cultured blastoid cells (10-30 nmol substrate hydrolyzed/h.mg protein) resembles closely values observed for

  9. Towards an Understanding of How Protein Hydrolysates Stimulate More Efficient Biosynthesis in Cultured Cells

    Science.gov (United States)

    Siemensma, André; Babcock, James; Wilcox, Chris; Huttinga, Hans

    In the light of the growing demand for high quality plant-derived hydrolysates (i.e., HyPep™ and UltraPep™ series), Sheffield Bio-Science has developed a new hydrolysate platform that addresses the need for animal-free cell culture medium supplements while also minimizing variability concerns. The platform is based upon a novel approach to enzymatic digestion and more refined processing. At the heart of the platform is a rationally designed animal component-free (ACF) enzyme cocktail that includes both proteases and non-proteolytic enzymes (hydrolases) whose activities can also liberate primary components of the polymerized non-protein portion of the raw material. This enzyme system is added during a highly optimized process step that targets specific enzyme-substrate reactions to expand the range of beneficial nutritional factors made available to cells in culture. Such factors are fundamental to improving the bio-performance of the culture system, as they provide not merely growth-promoting peptides and amino acids, but also key carbohydrates, lipids, minerals, and vitamins that improve both rate and quality of protein expression, and serve to improve culture life due to osmo-protectant and anti-apoptotic properties. Also of significant note is that, compared to typical hydrolysates, the production process is greatly reduced and requires fewer steps, intrinsically yielding a better-controlled and therefore more reproducible product. Finally, the more sophisticated approach to enzymatic digestion renders hydrolysates more amenable to sterile filtration, allowing hydrolysate end users to experience streamlined media preparation and bioreactor supplementation activities. Current and future development activities will evolve from a better understanding of the complex interactions within a handful of key biochemical pathways that impact the growth and productivity of industrially relevant organisms. Presented in this chapter are some examples of the efforts that

  10. Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Emerman, J.T.; Bartley, J.C.; Bissel, M.J.

    1981-01-01

    In the mammary gland of non-ruminant animals, glucose is utilized in a characteristic and unique way during lacation. By measuring the incorporation of glucose carbon from [U- 14 C]glucose into intermediary metabolitees and metabolic products in mammary epithelia cells from virgin, pregnant, and lacating mice, we domonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate are important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells isolated from pregnant mice and cultured on collagen gels have a pattern similar to that of their freshly isolated counter-parts. When isolated from lacating mice, the metabolite patterns of cells cultured on collagen gels are different from that of the cells of origin, and resembles that of freshly isolated cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state

  11. Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies.

    Science.gov (United States)

    Campbell, Jessica K; Rogers, Randy B; Lila, Mary Ann; Erdman, John W

    2006-02-08

    This work describes the development and utilization of a plant cell culture production approach to biosynthesize and radiolabel phytoene and phytofluene for prostate cancer cell culture studies. The herbicide norflurazon was added to established cell suspension cultures of tomato (Lycopersicon esculentum cv. VFNT cherry), to induce the biosynthesis and accumulation of the lycopene precursors, phytoene and phytofluene, in their natural isomeric forms (15-cis-phytoene and two cis-phytofluene isomers). Norflurazon concentrations, solvent carrier type and concentration, and duration of culture exposure to norflurazon were screened to optimize phytoene and phytofluene synthesis. Maximum yields of both phytoene and phytofluene were achieved after 7 days of treatment with 0.03 mg norflurazon/40 mL fresh medium, provided in 0.07% solvent carrier. Introduction of 14C-sucrose to the tomato cell culture medium enabled the production of 14C-labeled phytoene for subsequent prostate tumor cell uptake studies. In DU 145 prostate tumor cells, it was determined that 15-cis-phytoene and an oxidized product of phytoene were taken up and partially metabolized by the cells. The ability to biosynthesize, radiolabel, and isolate these carotenoids from tomato cell cultures is a novel, valuable methodology for further in vitro and in vivo investigations into the roles of phytoene and phytofluene in cancer chemoprevention.

  12. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    Science.gov (United States)

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Isolation and culture of larval cells from C. elegans.

    Directory of Open Access Journals (Sweden)

    Sihui Zhang

    Full Text Available Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4 cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81% of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology.

  14. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  15. Multizone Paper Platform for 3D Cell Cultures

    Science.gov (United States)

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  16. Culture in Animals: The Case of a Non-human Primate Culture of Low Aggression and High Affiliation

    Science.gov (United States)

    Sapolsky, Robert M.

    2006-01-01

    Philosophers often consider what it is that makes individuals human. For biologists considering the same, the answer is often framed in the context of what are the key differences between humans and other animals. One vestige of human uniqueness still often cited by anthropologists is culture. However, this notion has been challenged in recent…

  17. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange.

    Science.gov (United States)

    Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P

    2015-01-01

    The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the

  18. From "ES-like" cells to induced pluripotent stem cells: a historical perspective in domestic animals.

    Science.gov (United States)

    Koh, Sehwon; Piedrahita, Jorge A

    2014-01-01

    Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat; however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as "embryonic stem-like" cells owing to their similar morphologic characteristics to mouse ESCs, but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of iPSCs. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of iPSCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. rhEPO Enhances Cellular Anti-oxidant Capacity to Protect Long-Term Cultured Aging Primary Nerve Cells.

    Science.gov (United States)

    Wang, Huqing; Fan, Jiaxin; Chen, Mengyi; Yao, Qingling; Gao, Zhen; Zhang, Guilian; Wu, Haiqin; Yu, Xiaorui

    2017-08-01

    Erythropoietin (EPO) may protect the nervous system of animals against aging damage, making it a potential anti-aging drug for the nervous system. However, experimental evidence from natural aging nerve cell models is lacking, and the efficacy of EPO and underlying mechanism of this effect warrant further study. Thus, the present study used long-term cultured primary nerve cells to successfully mimic the natural aging process of nerve cells. Starting on the 11th day of culture, cells were treated with different concentrations of recombinant human erythropoietin (rhEPO). Using double immunofluorescence labeling, we found that rhEPO significantly improved the morphology of long-term cultured primary nerve cells and increased the total number of long-term cultured primary cells. However, rhEPO did not improve the ratio of nerve cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure nerve cell activity and showed that rhEPO significantly improved the activity of long-term cultured primary nerve cells. Moreover, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double immunofluorescence labeling flow cytometry revealed that rhEPO reduced the apoptotic rate of long-term cultured primary nerve cells. Senescence-associated β-galactosidase (SA-β-gal) immunohistochemistry staining showed that rhEPO significantly reduced the aging rate of long-term cultured primary nerve cells. Immunochemistry revealed that rhEPO enhanced intracellular superoxide dismutase (SOD) activity and glutathione (GSH) abundance and reduced the intracellular malondialdehyde (MDA) level. In addition, this effect depended on the dose, was maximized at a dose of 100 U/ml and was more pronounced than that of vitamin E. In summary, this study finds that rhEPO protects long-term cultured primary nerve cells from aging in a dose-dependent manner. The mechanism of this effect may be associated with the enhancement of the intracellular anti

  20. Mutation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Okada, S.

    1982-01-01

    Mammalian cell cultures were exposed to gamma-rays at various dose rates. Dose-rate effects were observed in cultured somatic cells of the mouse for cell killing and mutations resistant to 6-thioguanine (TGsup(r)) and to methotrexate (MTXsup(r)). Linear quadratic model may be applied to cell killing and TGsup(r) mutations in some cases but can not explain the whole data. Results at low doses with far low dose-rate were not predictable from data at high doses with acute or chronic irradiation. Radioprotective effects of dimethyl sulfoxide were seen only after acute exposure but not after chronic one, suggesting that damages by indirect action of radiations may be potentially reparable by cells. TGsup(r) mutations seem to contain gross structural changes whereas MTXsup(r) ones may have smaller alterations. (Namekawa, K.)

  1. Cell-free DNA in a three-dimensional spheroid cell culture model

    DEFF Research Database (Denmark)

    Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.

    2017-01-01

    Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...... cultures can serve as effective, simplified in vivo-simulating “closed-circuit” models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. Biological...... significance 3D cell cultures can be used to translate “closed-circuit” in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth...

  2. Cell culture techniques in honey bee research

    Science.gov (United States)

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  3. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    Chang, Jiyoung; Lin, Liwei; Yoon, Sang-Hee; Mofrad, Mohammad R K

    2011-01-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm 2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  4. Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.

    Science.gov (United States)

    Antonica, Francesco; Kasprzyk, Dominika Figini; Schiavo, Andrea Alex; Romitti, Mírian; Costagliola, Sabine

    2017-01-01

    During the last decade three-dimensional (3D) cultures of pluripotent stem cells have been intensively used to understand morphogenesis and molecular signaling important for the embryonic development of many tissues. In addition, pluripotent stem cells have been shown to be a valid tool for the in vitro modeling of several congenital or chronic human diseases, opening new possibilities to study their physiopathology without using animal models. Even more interestingly, 3D culture has proved to be a powerful and versatile tool to successfully generate functional tissues ex vivo. Using similar approaches, we here describe a protocol for the generation of functional thyroid tissue using mouse embryonic stem cells and give all the details and references for its characterization and analysis both in vitro and in vivo. This model is a valid approach to study the expression and the function of genes involved in the correct morphogenesis of thyroid gland, to elucidate the mechanisms of production and secretion of thyroid hormones and to test anti-thyroid drugs.

  5. Microfluidic engineered high cell density three-dimensional neural cultures

    Science.gov (United States)

    Cullen, D. Kacy; Vukasinovic, Jelena; Glezer, Ari; La Placa, Michelle C.

    2007-06-01

    Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approaching that of brain rapidly decay, presumably due to diffusion limited interstitial mass transport. To address this issue, we have developed a novel perfusion platform that utilizes forced intercellular convection to enhance mass transport. First, we demonstrated that in thick (>500 µm) 3D neural cultures supported by passive diffusion, cell densities =104 cells mm-3), continuous medium perfusion at 2.0-11.0 µL min-1 improved viability compared to non-perfused cultures (p death and matrix degradation. In perfused cultures, survival was dependent on proximity to the perfusion source at 2.00-6.25 µL min-1 (p 90% viability in both neuronal cultures and neuronal-astrocytic co-cultures. This work demonstrates the utility of forced interstitial convection in improving the survival of high cell density 3D engineered neural constructs and may aid in the development of novel tissue-engineered systems reconstituting 3D cell-cell/cell-matrix interactions.

  6. Effect of aging on GHRF-induced growth hormone release from anterior pituitary cells in primary culture

    International Nuclear Information System (INIS)

    Spik, K.W.; Boyd, R.L.; Sonntag, W.E.

    1991-01-01

    Five criteria were developed to validate the primary cell culture model for comparison of GRF-induced release of growth hormone in pituitary tissue from aging animals. Pituitaries from young (5-mo), middle-aged (14-mo), and old (24-mo) male Fischer 344 rats were dispersed using either trypsin/trypsin inhibitor or dispase and compared with respect to the number of pituitary cells recovered, cell viability, 3H-leucine incorporation into total protein, time course for recovery of optimal response to GRF, and the dose-relationship for GRF-induced release of growth hormone 2, 4, and 6 days after dispersal. Results indicated that direct comparison of cellular responses between tissues from young, middle-aged, and old rats in primary cell culture is confounded by variations in time for recovery of optimal responses, the effects of the enzymes used for dispersal, and the methods used to express the data

  7. Animal and plant stem cells concepts, propagation and engineering

    CERN Document Server

    Pavlović, Mirjana

    2017-01-01

    This book provides a multifaceted look into the world of stem cells and explains the similarities and differences between plant and human stem cells. It explores the intersection between animals and plants and explains their cooperative role in bioengineering studies. The book treats both theoretical and practical aspects of stem cell research. It covers the advantages and limitations of many common applications related to stem cells: their sources, categories, engineering of these cells, reprogramming of their functions, and their role as novel cellular therapeutic approach. Written by experts in the field, the book focuses on aspects of stem cells ranging from expansion-propagation to metabolic reprogramming. It introduces the emergence of cancer stem cells and different modalities in targeted cancer stem cell therapies. It is a valuable source of fresh information for academics and researchers, examining molecular mechanisms of animal and plant stem cell regulation and their usage for therapeutic applicati...

  8. Cell sources for in vitro human liver cell culture models

    Science.gov (United States)

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  9. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  10. Cell Culture as an Alternative in Education.

    Science.gov (United States)

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  11. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Kato, Kazunori; Nohara, Shigeo; Iwanuma, Yoshimi; Kajiyama, Yoshiaki

    2013-01-01

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present in esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression

  12. Refined control of cell stemness allowed animal evolution in the oxic realm

    DEFF Research Database (Denmark)

    Hammarlund, Emma U; von Stedingk, Kristoffer; Påhlman, Sven

    2018-01-01

    Animal diversification on Earth has long been presumed to be associated with the increasing extent of oxic niches. Here, we challenge that view. We start with the fact that hypoxia (cells continuously-and paradoxically......-regenerate animal tissue in oxygenated settings. Novel insights from tumour biology illuminate how cell stemness nevertheless can be achieved through the action of oxygen-sensing transcription factors in oxygenated, regenerating tissue. We suggest that these hypoxia-inducible transcription factors provided animals...... with unprecedented control over cell stemness that allowed them to cope with fluctuating oxygen concentrations. Thus, a refinement of the cellular hypoxia-response machinery enabled cell stemness at oxic conditions and, then, animals to evolve into the oxic realm. This view on the onset of animal diversification...

  13. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures

  14. Substrate utilisation by plant-cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M W

    1982-01-01

    Plant cell cultures have been grown on a wide range of carbon sources in addition to the traditional ones of sucrose and glucose. Biomass yields and growth rates vary greatly between the different carbon sources and there is a variation in response between different cell cultures to individual carbon sources. Some attempts have been made to grow cell cultures on 'waste' and related carbon sources, such as lactose, maltose, starch, molasses and milk whey. Only maltose was found to support growth to anything near the levels observed with glucose and sucrose. In the case of molasses carbon source cell growth was either non-existent or only just measurable. All the data point to glucose as being the most suitable carbon source, principally on the grounds of biomass yield and growth rate. It should be noted, however, that other carbon sources do appear to have a major (positive) influence on natural product synthesis. Uptake into the cell is an important aspect of carbohydrate utilisation. There is strong evidence that from disaccharides upwards, major degradation to smaller units occurs before uptake. In some cases the necessary enzymes appear to be excreted into the culture broth, in others they may be located within the cell wall; invertase that hydrolyses sucrose is a good example. Once the products of carbohydrate degradation and mobilisation enter the cell they may suffer one of two fates, oxidation or utilisation for biosynthesis. The precise split between these two varies depending on such factors as cell growth rate, cell size, nutrient broth composition and carbohydrate status of the cells. In general rapidly growing cells have a high rate of oxidation, whereas cells growing more slowly tend to be more directed towards biosynthesis. Carbohydrate utilisation is a key area of study, underpinning as it does both biomass yield and natural product synthesis. (Refs. 13).

  15. Biona-C Cell Culture pH Monitoring System

    Science.gov (United States)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  16. A cell-based biosensor for nanomaterials cytotoxicity assessment in three dimensional cell culture

    International Nuclear Information System (INIS)

    Dubiak-Szepietowska, Monika; Karczmarczyk, Aleksandra; Winckler, Thomas; Feller, Karl-Heinz

    2016-01-01

    Nanoparticles (NPs) are widely used in consumer and medicinal products. The high prevalence of nanoparticles in the environment raises concerns regarding their effects on human health, but there is limited knowledge about how NPs interact with cells or tissues. Because the European Union has called for a substantial reduction of animal experiments for scientific purposes (Directive 2010/63), increased efforts are required to develop in vitro models to evaluate potentially hazardous agents. Here, we describe a new cell-based biosensor for the evaluation of NPs cytotoxicity. The new biosensor is based on transgenic human hepatoblastoma cells (HepG2) that express a secreted form of alkaline phosphatase (SEAP) as a reporter protein whose expression is induced upon activation of a stress response pathway controlled by the transcription regulator nuclear factor-κB (NF-κB). The NF-κB-HepG2 sensor cells were cultured in a Matrigel-based three dimensional environment to simulate the in vivo situation. The new biosensor cells offer the advantage of generating fast and reproducible readout at lower concentrations and shorter incubation time than conventional viability assays, avoid possible interaction between nanomaterials and assay compounds, therefore, minimize generation of false positive or negative results and indicate mechanism of toxicity through NF-κB signaling.

  17. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    Science.gov (United States)

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or

  18. Protein biosynthesis in cultured human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1980-10-31

    A new technique has been used for culturing human keratinocytes. The cells grow on the basement membrane-like capsules of bovine lenses. Lens cells were removed from the capsules by rigid trypsinization. In order to exclude any contamination with remaining living cells the isolated capsules were irradiated with X-rays at a dose of 10,000 rad. In this way human epithelial cells can be brought in culture from individual hair follicles. Since feeder cells are not used in this culture technique, the biosynthesis of keratinocyte proteins can be studied in these cultures. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble, and a urea-insoluble fraction. Product analysis has been performed on the first two fractions revealing protein patterns identical to those of intact hair follicles. Product analysis of the urea-soluble fractions of microdissected hair follicles shows that the protein pattern of the cultured keratinocytes resembles the protein pattern of the hair follicle sheath. Studies on the metabolism of benzo(a)pyrene revealed that the enzyme aryl hydrocarbon hydroxylase (AHH) is present in cultured hair follicle cells. A possible use of our culture system for eventual detection of inherited predisposition for smoking-dependent lung cancer is discussed.

  19. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells.

    Science.gov (United States)

    Yang, Jinjuan; Liu, Hao; Wang, Kunfu; Li, Lu; Yuan, Hongyi; Liu, Xueting; Liu, Yingjie; Guan, Weijun

    2017-12-01

    Skeletal muscle has a huge regenerative potential for postnatal muscle growth and repair, which mainly depends on a kind of muscle progenitor cell population, called satellite cell. Nowadays, the majority of satellite cells were obtained from human, mouse, rat and other animals but rarely from pig. In this article, the porcine skeletal muscle satellite cells were isolated and cultured in vitro. The expression of surface markers of satellite cells was detected by immunofluorescence and RT-PCR assays. The differentiation capacity was assessed by inducing satellite cells into adipocytes, myoblasts and osteoblasts. The results showed that satellite cells isolated from porcine tibialis anterior were subcultured up to 12 passages and were positive for Pax7, Myod, c-Met, desmin, PCNA and NANOG but were negative for Myogenin. Satellite cells were also induced to differentiate into adipocytes, osteoblasts and myoblasts, respectively. These findings indicated that porcine satellite cells possess similar biological characteristics of stem cells, which may provide theoretical basis and experimental evidence for potential therapeutic application in the treatment of dystrophic muscle and other muscle injuries.

  20. Derivation and characterization of cell cultures from the skin of the Indo-Pacific humpback dolphin Sousa chinensis.

    Science.gov (United States)

    Jin, Wei; Jia, Kuntong; Yang, Lili; Chen, Jialin; Wu, Yuping; Yi, Meisheng

    2013-06-01

    The marine mammalian Indo-Pacific humpback dolphin, once widely lived in waters of the Indian to western Pacific oceans, has become an endangered species. The individual number of this dolphin has significantly declined in recent decades, which raises the concern of extinction. Direct concentration on laboratorial conservation of the genetic and cell resources should be paid to this marine species. Here, we report the successful derivation of cell lines form the skin of Indo-Pacific humpback dolphin. The cell cultures displayed the characteristics of fibroblast in morphology and grew rapidly at early passages, but showed obvious growth arrest at higher passages. The karyotype of the cells consisted of 42 autosomes and sex chromosomes X and Y. The immortalized cell lines obtained by forced expression of the SV40 large T-antigen were capable of proliferation at high rate in long-term culture. Immortalization and long-term culture did not cause cytogenetically observable abnormality in the karyotype. The cell type of the primary cultures and immortalized cell lines were further characterized as fibroblasts by the specific expression of vimentin. Gene transfer experiments showed that exogenetic genes could be efficiently delivered into the cells by both plasmid transfection and lentivirus infection. The cells derived from the skin of the Indo-Pacific humpback dolphin may serve as a useful in vitro system for studies on the effects of environmental pollutants and pathogens in habitats on the dolphin animals. More importantly, because of their high proliferation rate and susceptibility to lentivirus, these cells are potential ideal materials for generation of induced pluripotent stem cells.

  1. Cell-to-cell communication in plants, animals, and fungi: a comparative review.

    Science.gov (United States)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  2. Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis.

    Science.gov (United States)

    Claes, M F; Dunlap, P V

    2000-02-15

    The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major

  3. Differential marker expression by cultures rich in mesenchymal stem cells

    Science.gov (United States)

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  4. Chromosomal instability and telomere shortening in long-term culture of hematopoietic stem cells: insights from a cell culture model of RPS14 haploinsufficiency.

    Science.gov (United States)

    Thomay, K; Schienke, A; Vajen, B; Modlich, U; Schambach, A; Hofmann, W; Schlegelberger, B; Göhring, G

    2014-01-01

    The fate of cultivated primary hematopoietic stem cells (HSCs) with respect to genetic instability and telomere attrition has not yet been described in great detail. Thus, knowledge of the genetic constitution of HSCs is important when interpreting results of HSCs in culture. While establishing a cell culture model for myelodysplastic syndrome with a deletion in 5q by performing RPS14 knockdown, we found surprising data that may be of importance for any CD34+ cell culture experiments. We performed cytogenetic analyses and telomere length measurement on transduced CD34+ cells and untransduced control cells to observe the effects of long-term culturing. Initially, CD34+ cells had a normal median telomere length of about 12 kb and showed no signs of chromosomal instability. During follow-up, the median telomere length seemed to decrease and, simultaneously, increased chromosomal instability could be observed - in modified and control cells. One culture showed a clonal monosomy 7 - independent of prior RPS14 knockdown. During further culturing, it seemed that the telomeres re-elongated, and chromosomes stabilized, while TERT expression was not elevated. In summary, irrespective of our results of RPS14 knockdown in the long-term culture of CD34+ cells, it becomes clear that cell culture artefacts inducing telomere shortening and chromosomal instability have to be taken into account and regular cytogenetic analyses should always be performed. © 2013 S. Karger AG, Basel.

  5. Growth and death of animal cells in bioreactors

    NARCIS (Netherlands)

    Martens, D.E.

    1996-01-01


    Animal-cell cultivation is becoming increasingly important especially for the area of hunian- health products. The products range from vaccines to therapeutic proteins and the cells themselves. The therapeutic application of proteins puts high demands upon their quality with respect to

  6. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    Science.gov (United States)

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  7. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    Energy Technology Data Exchange (ETDEWEB)

    MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu [University of Virginia (United States); Shang, Hulan, E-mail: shanghulan@gmail.com [Department of Plastic Surgery, University of Virginia (United States); Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com [Department of Plastic Surgery, University of Virginia (United States); Yang, Ning, E-mail: ny6u@virgina.edu [Department of Plastic Surgery, University of Virginia (United States); Parker, Anna, E-mail: amp4v@virginia.edu [Department of Surgery, University of Virginia (United States); Katz, Adam J., E-mail: ajk2f@virginia.edu [Department of Plastic Surgery, University of Virginia (United States)

    2012-02-15

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non

  8. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    International Nuclear Information System (INIS)

    MacIsaac, Zoe Marie; Shang, Hulan; Agrawal, Hitesh; Yang, Ning; Parker, Anna; Katz, Adam J.

    2012-01-01

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: ► Adipose stem cells promise novel clinical therapies. ► Before clinical translation, safety profiles must be further elucidated. ► Subcutaneously injected non-autologous adipose stem cells do not form tumors. ► Subcutaneously injected non-autologous adipose stem cells undergo complete removal by one year.

  9. Stimulation of the proliferation of hemopoietic stem cells in irradiated bone marrow cell culture

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, H.; Seto, A.

    1981-01-01

    Long-term hemopoiesis was established in bone marrow cell culture in vitro. This culture was shown to support the recovery proliferation of hemopoietic stem cells completely in vitro after irradiation. Hemopoietic stem cells were stimulated into proliferation in culture when normal bone marrow cells were overlayed on top of the irradiated adherent cell colonies. These results indicate that proliferation and differentiation of hemopoietic stem cells in vitro are also supported by stromahemopoietic cell interactions

  10. Hyperexcitability and cell loss in kainate-treated hippocampal slice cultures

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Casaccia-Bonnefil, P; Stelzer, A

    1993-01-01

    Loss of hippocampal interneurons has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainate. We investigated the relationship between KA induced epileptiform discharge and loss of interneurons in hippocampal slice cultures. Application of KA (1 micro......M) produced reversible epileptiform discharge without neurotoxicity. KA (5 microM), in contrast, produced irreversible epileptiform discharge and neurotoxicity, suggesting that the irreversible epileptiform discharge was required for the neuronal loss. Loss of CA3 pyramidal cells and parvalbumin......-like immunoreactive (PV-I) interneurons preceded loss of somatostatin-like immunoreactive (SS-I) interneurons suggesting a different time course of KA neurotoxicity in these subpopulations of interneurons....

  11. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    Science.gov (United States)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  12. How do culture media influence in vitro perivascular cell behavior?

    Science.gov (United States)

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries. © 2015 International Federation for Cell Biology.

  13. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    Science.gov (United States)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  14. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Wils, Regitze Sølling

    2017-01-01

    Nanosized titanium dioxide (TiO2) has been investigated in numerous studies on genotoxicity, including comet assay endpoints and oxidatively damaged DNA in cell cultures and animal models. The results have been surprisingly mixed, which might be attributed to physico-chemical differences...... culture studies also demonstrate increased levels of oxidatively damaged DNA after exposure to TiO2. There are relatively few studies on animal models where DNA strand breaks and oxidatively damaged DNA have been tested with reliable methods. Collectively, this review shows that exposure to nanosized TiO2...... of the tested TiO2. In the present review, we assess the role of certain methodological issues and publication bias. The analysis shows that studies on DNA strand breaks without proper assay controls or very low intra-group variation tend to show statistically significant effects. Levels of oxidatively damaged...

  15. Biogelx: Cell Culture on Self-Assembling Peptide Gels.

    Science.gov (United States)

    Harper, Mhairi M; Connolly, Michael L; Goldie, Laura; Irvine, Eleanore J; Shaw, Joshua E; Jayawarna, Vineetha; Richardson, Stephen M; Dalby, Matthew J; Lightbody, David; Ulijn, Rein V

    2018-01-01

    Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products.

  16. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    Science.gov (United States)

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-09-15

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron.

  17. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells.

    Science.gov (United States)

    Hemeda, Hatim; Giebel, Bernd; Wagner, Wolfgang

    2014-02-01

    Culture media for therapeutic cell preparations-such as mesenchymal stromal cells (MSCs)-usually comprise serum additives. Traditionally, fetal bovine serum is supplemented in basic research and in most clinical trials. Within the past years, many laboratories adapted their culture conditions to human platelet lysate (hPL), which further stimulates proliferation and expansion of MSCs. Particularly with regard to clinical application, human alternatives for fetal bovine serum are clearly to be preferred. hPL is generated from human platelet units by disruption of the platelet membrane, which is commonly performed by repeated freeze and thaw cycles. Such culture supplements are notoriously ill-defined, and many parameters contribute to batch-to-batch variation in hPL such as different amounts of plasma, a broad range of growth factors and donor-specific effects. The plasma components of hPL necessitate addition of anticoagulants such as heparins to prevent gelatinization of hPL medium, and their concentration must be standardized. Labels for description of hPL-such as "xenogen-free," "animal-free" and "serum free"-are not used consistently in the literature and may be misleading if not critically assessed. Further analysis of the precise composition of relevant growth factors, attachment factors, microRNAs and exosomes will pave the way for optimized and defined culture conditions. The use of hPL has several advantages and disadvantages: they must be taken into account because the choice of cell culture additive has major impact on cell preparations. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations

    Directory of Open Access Journals (Sweden)

    Aaron H Fronk

    2016-07-01

    Full Text Available The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.

  19. Development of a Novel Large Animal Model to Evaluate Human Dental Pulp Stem Cells for Articular Cartilage Treatment.

    Science.gov (United States)

    Fernandes, Tiago Lazzaretti; Shimomura, Kazunori; Asperti, Andre; Pinheiro, Carla Cristina Gomes; Caetano, Heloísa Vasconcellos Amaral; Oliveira, Claudia Regina G C M; Nakamura, Norimasa; Hernandez, Arnaldo José; Bueno, Daniela Franco

    2018-05-04

    Chondral lesion is a pathology with high prevalence, reaching as much as 63% of general population and 36% among athletes. The ability of human Dental Pulp Stem Cells (DPSCs) to differentiate into chondroblasts in vitro suggests that this stem cell type may be useful for tissue bioengineering. However, we have yet to identify a study of large animal models in which DPSCs were used to repair articular cartilage. Therefore, this study aimed to describe a novel treatment for cartilage lesion with DPSCs on a large animal model. Mesenchymal stem cells (MSC) were obtained from deciduous teeth and characterized by flow cytometry. DPSCs were cultured and added to a collagen type I/III biomaterial composite scaffold. Brazilian miniature pig (BR-1) was used. A 6-mm diameter, full-thickness chondral defect was created in each posterior medial condyle. The defects were covered with scaffold alone or scaffold + DPSCs on the contralateral side. Animals were euthanized 6 weeks post-surgery. Cartilage defects were analyzed macroscopically and histology according to modified O'Driscoll scoring system. Flow cytometry confirmed characterization of DPSCs as MSCs. Macroscopic and histological findings suggested that this time period was reasonable for evaluating cartilage repair. To our knowledge, this study provides the first description of an animal model using DPSCs to study the differentiation of hyaline articular cartilage in vivo. The animals tolerated the procedure well and did not show clinical or histological rejection of the DPSCs, reinforcing the feasibility of this descriptive miniature pig model for pre-clinical studies.

  20. Skin allografts in lethally irradiated animals repopulated with syngeneic hemopoietic cells

    International Nuclear Information System (INIS)

    Schwadron, R.B.

    1983-01-01

    Total body irradiation and repopulation with syngeneic hemopoietic cells can be used to induce tolerance to major histocompatibility complex (MHC) mismatched heart and kidney grafts in rats and mice. However, this protocol does not work for MHC mismatched skin grafts in rats or mice. Furthermore, LEW rats that accept WF cardiac allografts after irradiation and repopulation reject subsequent WF skin grafts. Treatment of skin allograft donors with methotrexate prior to grafting onto irradiated and reconstituted mice resulted in doubling of the mean survival time. Analysis of which antigens provoked skin graft rejection by irradiation and reconstituted animals revealed the importance of I region antigens. Cardiac allograft acceptance by irradiated and reconstituted animals is mediated by suppressor cells found in the spleen. Adoptively tolerant LEW rats accepted WF skin grafts in 50% of grafted animals. Analysis of this phenomenon revealed that the adoptive transfer procedure itself was important in achieving skin allograft acceptance by these animals. In general, it seems that the lack of ability of irradiated and reconstituted animals to accept fully MHC disparate skin grafts results from the inability of these animals to suppress lymph node effector cells against I region antigen seen on highly immunogenic allogeneic Langerhans cells in the skin

  1. Development of a microfluidic perfusion 3D cell culture system

    Science.gov (United States)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  2. Piwi and potency: PIWI proteins in animal stem cells and regeneration.

    Science.gov (United States)

    van Wolfswinkel, Josien C

    2014-10-01

    PIWI proteins are well known for their roles in the animal germline. They are essential for germline development and maintenance, and together with their binding partners, the piRNAs, they mediate transposon silencing. More recently, PIWI proteins have also been identified in somatic stem cells in diverse animals. The expression of PIWI proteins in these cells could be related to the ability of such cells to contribute to the germline. However, evaluation of stem cell systems across many different animal phyla suggests that PIWI proteins have an ancestral role in somatic stem cells, irrespective of their contribution to the germ cell lineage. Moreover, the data currently available reveal a possible correlation between the differentiation potential of a cell and its PIWI levels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  3. Promoting Profit Model Innovation in Animation Project in Northeast Asia: Case Study on Chinese Cultural and Creative Industry

    OpenAIRE

    Hao Jiao; Yupei Wang; Hongjun Xiao; Jianghua Zhou; Wensi Zeng

    2017-01-01

    Building on a case study of three animation companies in the Chinese cultural and creative industry, this study aims to understand how profit model innovation is promoted. Due to the rapidly changing environments and resource scarcity, cultural and creative companies need to select the appropriate profit model according to their own key resources. The study uncovers two critical factors that promote profit model innovation in animation projects: the quantity of consumers and their consumption...

  4. Promoting Profit Model Innovation in Animation Project in Northeast Asia: Case Study on Chinese Cultural and Creative Industry

    Directory of Open Access Journals (Sweden)

    Hao Jiao

    2017-12-01

    Full Text Available Building on a case study of three animation companies in the Chinese cultural and creative industry, this study aims to understand how profit model innovation is promoted. Due to the rapidly changing environments and resource scarcity, cultural and creative companies need to select the appropriate profit model according to their own key resources. The study uncovers two critical factors that promote profit model innovation in animation projects: the quantity of consumers and their consumption intention. According to these two dimensions, the authors’ analysis shows profit model innovation in animation projects can be divided into Fans mode, Popular mode, Placement mode, and Failure mode, respectively. This study provides an empirical basis for advocating profit model innovation and discusses the resource requirements of Fan mode, Popular model, and Placement mode in China’s cultural and creative industry. The authors’ research also has managerial implications that might help firms promote profit model innovation. Finally, learning and promoting the profit model of China’s animation industry in the Northeast Asia area will be conducive to Northeast Asia’s cooperation and sustainable development.

  5. Skeletal muscle stem cells from animals I. Basic cell biology

    Science.gov (United States)

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  6. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-01-01

    in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies

  7. Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson's Disease (PD).

    Science.gov (United States)

    Sheikh, Muhammad Abid; Malik, Yousra Saeed; Xing, Zhenkai; Guo, Zhaopei; Tian, Huayu; Zhu, Xiaojuan; Chen, Xuesi

    2017-05-01

    Parkinson's Disease (PD) is a chronic neurodegenerative disorder characterized by motor deficits which result from the progressive loss of dopaminergic neurons. Gene therapy using growth factors such as VEGF seems to be a viable approach for potential therapeutic treatment of PD. In this study, we utilized a novel non-viral gene carrier designated as PEI-PLL synthesized by our laboratory to deliver VEGF gene to study its effect by using both cell culture as well as animal models of PD. For cell culture experiments, we utilized 6-hydroxydopamine (6-OHDA) mediated cell death model of MN9D cells following transfection with either a control plasmid or VEGF expressing plasmid. As compared to control transfected cells, PEI-PLL mediated VEGF gene delivery to MN9D cells resulted in increased cell viability, increase in the number of Tyrosine hydroxylase (TH) positive cells and decreased apoptosis following 6-OHDA insult. Next, we studied the therapeutic potential of PEI-PLL mediated VEGF gene delivery in SNPc by using unilateral 6-OHDA Medial forebrain bundle (MFB) lesion model of PD in rats. VEGF administration prevented the loss of motor functions induced by 6-OHDA as determined by behavior analysis. Similarly, VEGF inhibited the 6-OHDA mediated loss of DA neurons in Substantia Nigra Pars Compacta (SNPc) as well as DA nerve fibers in striatum as determined by TH immunostaining. In addition, PEI-PLL mediated VEGF gene delivery also prevented apoptosis and microglial activation in PD rat models. Together, these results clearly demonstrated the beneficial effects of PEI-PLL mediated VEGF gene delivery on dopaminergic system in both cell culture and animal models of PD. In this report, we exploited the potential of PEI-PLL to deliver VEGF gene for the potential therapeutic treatment of PD by using both cell culture and animal models of PD. To the best of our knowledge, this is the first report describing the use of novel polymeric gene carriers for the delivery of VEGF gene

  8. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre......-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  9. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane

    The brain is the center of the nervous system, where serious neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s are products of functional loss in the neural cells (1). Typical techniques used to investigate these diseases lack precise control of the cellular surroundings......, in addition to isolating the neural tissue from nutrient delivery and to creating unwanted gradients (2). This means that typical techniques used to investigate neurodegenerative diseases cannot mimic in vivo conditions, as closely as desired. We have developed a novel microfluidic system for culturing PC12...... cells, neuronal cells, astrocytes cultures and brain slices. The microfluidic system provides efficient nutrient delivery, waste removal, access to oxygen, fine control over the neurochemical environment and access to modern microscopy. Additionally, the setup consists of an in vitro culturing...

  10. Human Organ Culture: Updating the Approach to Bridge the Gap from In Vitro to In Vivo in Inflammation, Cancer, and Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Rafia S. Al-Lamki

    2017-09-01

    Full Text Available Human studies, critical for developing new diagnostics and therapeutics, are limited by ethical and logistical issues, and preclinical animal studies are often poor predictors of human responses. Standard human cell cultures can address some of these concerns but the absence of the normal tissue microenvironment can alter cellular responses. Three-dimensional cultures that position cells on synthetic matrices, or organoid or organ-on-a-chip cultures, in which different cell spontaneously organize contacts with other cells and natural matrix only partly overcome this limitation. Here, we review how human organ cultures (HOCs can more faithfully preserve in vivo tissue architecture and can better represent disease-associated changes. We will specifically describe how HOCs can be combined with both traditional and more modern morphological techniques to reveal how anatomic location can alter cellular responses at a molecular level and permit comparisons among different cells and different cell types within the same tissue. Examples are provided involving use of HOCs to study inflammation, cancer, and stem cell biology.

  11. Maintenance of mesenchymal stem cells culture due to the cells with reduced attachment rate

    Directory of Open Access Journals (Sweden)

    Shuvalova N. S.

    2013-01-01

    Full Text Available Aim. The classic detachment techniques lead to changes in cells properties. We offer a simple method of cultivating the population of cells that avoided an influence on the surface structures. Methods. Mesenchymal stem cells (MSC from human umbilical cord matrix were obtained and cultivated in standard conditions. While substituting the culture media by a fresh portion, the conditioned culture medium, where the cells were maintained for three days, was transferred to other culture flacks with addition of serum and growth factors. Results. In the flacks, one day after medium transfer, we observed attached cells with typical MSC morphology. The cultures originated from these cells had the same rate of surface markers expression and clonogenic potential as those replated by standard methods. Conclusions. MSC culture, derived by preserving the cells with reduced attachment ability, actually has the properties of «parent» passage. Using this method with accepted techniques of cells reseeding would allow maintaining the cells that avoided an impact on the cell surface proteins.

  12. Recent advances in the cell biology of aging.

    Science.gov (United States)

    Hayflick, L

    1980-01-01

    Cultured normal human and animal cells are predestined to undergo irreversible functional decrements that mimic age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occurs in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.

  13. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    Science.gov (United States)

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  14. Evaluation of the osteogenic differentiation of gingiva-derived stem cells grown on culture plates or in stem cell spheroids: Comparison of two- and three-dimensional cultures.

    Science.gov (United States)

    Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2017-09-01

    Three-dimensional cell culture systems provide a convenient in vitro model for the study of complex cell-cell and cell-matrix interactions in the absence of exogenous substrates. The current study aimed to evaluate the osteogenic differentiation potential of gingiva-derived stem cells cultured in two-dimensional or three-dimensional systems. To the best of our knowledge, the present study is the first to compare the growth of gingiva-derived stem cells in monolayer culture to a three-dimensional culture system with microwells. For three-dimensional culture, gingiva-derived stem cells were isolated and seeded into polydimethylsiloxane-based concave micromolds. Alkaline phosphatase activity and alizarin red S staining assays were then performed to evaluate osteogenesis and the degree of mineralization, respectively. Stem cell spheroids had a significantly increased level of alkaline phosphatase activity and mineralization compared with cells from the two-dimensional culture. In addition, an increase in mineralized deposits was observed with an increase in the loading cell number. The results of present study indicate that gingiva-derived stem cell spheroids exhibit an increased osteogenic potential compared with stem cells from two-dimensional culture. This highlights the potential of three-dimensional culture systems using gingiva-derived stem cells for regenerative medicine applications requiring stem cells with osteogenic potential.

  15. A novel three-dimensional cell culture method enhances antiviral drug screening in primary human cells.

    Science.gov (United States)

    Koban, Robert; Neumann, Markus; Daugs, Aila; Bloch, Oliver; Nitsche, Andreas; Langhammer, Stefan; Ellerbrok, Heinz

    2018-02-01

    Gefitinib is a specific inhibitor of the epidermal growth factor receptor (EGFR) and FDA approved for treatment of non-small cell lung cancer. In a previous study we could show the in vitro efficacy of gefitinib for treatment of poxvirus infections in monolayer (2D) cultivated cell lines. Permanent cell lines and 2D cultures, however, are known to be rather unphysiological; therefore it is difficult to predict whether determined effective concentrations or the drug efficacy per se are transferable to the in vivo situation. 3D cell cultures, which meanwhile are widely distributed across all fields of research, are a promising tool for more predictive in vitro investigations of antiviral compounds. In this study the spreading of cowpox virus and the antiviral efficacy of gefitinib were analyzed in primary human keratinocytes (NHEK) grown in a novel 3D extracellular matrix-based cell culture model and compared to the respective monolayer culture. 3D-cultivated NHEK grew in a polarized and thus a more physiological manner with altered morphology and close cell-cell contact. Infected cultures showed a strongly elevated sensitivity towards gefitinib. EGFR phosphorylation, cell proliferation, and virus replication were significantly reduced in 3D cultures at gefitinib concentrations which were at least 100-fold lower than those in monolayer cultures and well below the level of cytotoxicity. Our newly established 3D cell culture model with primary human cells is an easy-to-handle alternative to conventional monolayer cell cultures and previously described more complex 3D cell culture systems. It can easily be adapted to other cell types and a broad spectrum of viruses for antiviral drug screening and many other aspects of virus research under more in vivo-like conditions. In consequence, it may contribute to a more targeted realization of necessary in vivo experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.

    Science.gov (United States)

    Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin

    2018-02-15

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel

  17. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2016-01-01

    Accumulating evidences have demonstrated that mesenchymal stem cells (MSC) could be recruited to the tumor microenvironment. Umbilical cord mesenchymal stem cells (UCMSC) were attractive vehicles for delivering therapeutic agents against cancer. Nevertheless, the safety of UCMSC in the treatment of tumors including hepatocellular carcinoma (HCC) was still undetermined. In this study, an in vitro co-culture system was established to evaluate the effect of UCMSC on the cell growth, cancer stem cell (CSC) characteristics, drug resistance, metastasis of 3D-cultured HCC cells, and the underlying mechanism was also investigated. It was found that after co-cultured with UCMSC, the metastatic ability of 3D-cultured HCC cells was significantly enhanced as indicated by up-regulation of matrix metalloproteinase (MMP), epithelial-mesenchymal transition (EMT)-related genes, and migration ability. However, cell growth, drug resistance and CSC-related gene expression of HCC cells were not affected by UCMSC. Moreover, EMT was reversed, MMP-2 expression was down-regulated, and migration ability of HCC cell was significantly inhibited when TGF-β receptor inhibitor SB431542 was added into the co-culture system. Therefore, these data indicated that UCMSC could significantly enhance the tumor cell metastasis, which was due to the EMT of HCC cells induced by TGF-β. The online version of this article (doi:10.1186/s12885-016-2595-4) contains supplementary material, which is available to authorized users

  18. Modeling human disease using organotypic cultures

    DEFF Research Database (Denmark)

    Schweiger, Pawel J; Jensen, Kim B

    2016-01-01

    animal models and in vitro cell culture systems. However, it has been exceedingly difficult to model disease at the tissue level. Since recently, the gap between cell line studies and in vivo modeling has been narrowing thanks to progress in biomaterials and stem cell research. Development of reliable 3D...... culture systems has enabled a rapid expansion of sophisticated in vitro models. Here we focus on some of the latest advances and future perspectives in 3D organoids for human disease modeling....

  19. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Science.gov (United States)

    Bonazza, Camila; Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Batista, Fabrício Pereira; Paredes-Gamero, Edgar J; Girão, Manoel J B C; Oliva, Maria Luiza V; Castro, Rodrigo Aquino

    2016-01-01

    Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  20. Non-animal methodologies within biomedical research and toxicity testing.

    Science.gov (United States)

    Knight, Andrew

    2008-01-01

    Laboratory animal models are limited by scientific constraints on human applicability, and increasing regulatory restrictions, driven by social concerns. Reliance on laboratory animals also incurs marked - and in some cases, prohibitive - logistical challenges, within high-throughput chemical testing programmes, such as those currently underway within Europe and the US. However, a range of non-animal methodologies is available within biomedical research and toxicity testing. These include: mechanisms to enhance the sharing and assessment of existing data prior to conducting further studies, and physicochemical evaluation and computerised modelling, including the use of structure-activity relationships and expert systems. Minimally-sentient animals from lower phylogenetic orders or early developmental vertebral stages may be used, as well as microorganisms and higher plants. A variety of tissue cultures, including immortalised cell lines, embryonic and adult stem cells, and organotypic cultures, are also available. In vitro assays utilising bacterial, yeast, protozoal, mammalian or human cell cultures exist for a wide range of toxic and other endpoints. These may be static or perfused, and may be used individually, or combined within test batteries. Human hepatocyte cultures and metabolic activation systems offer potential assessment of metabolite activity and organ-organ interaction. Microarray technology may allow genetic expression profiling, increasing the speed of toxin detection, well prior to more invasive endpoints. Enhanced human clinical trials utilising micro- dosing, staggered dosing, and more representative study populations and durations, as well as surrogate human tissues, advanced imaging modalities and human epidemiological, sociological and psycho- logical studies, may increase our understanding of illness aetiology and pathogenesis, and facilitate the development of safe and effective pharmacologic interventions. Particularly when human tissues

  1. Lack of interaction between digoxin and quinidine in cultured heart cells

    International Nuclear Information System (INIS)

    Horowitz, J.D.; Barry, W.H.; Smith, T.W.

    1982-01-01

    Previous investigations have raised the possibility that the digoxin-quinidine interaction is associated with a reduction in the positive inotropic effect of digoxin due to displacement of digoxin from cardiac as well as skeletal muscle. To circumvent some of the complexities presented by intact animal models, this interaction was investigated in cultured chick embryo ventricular cells. Quinidine, even at relatively high concentrations (10(-4)--2 x 10(-3) M), did not significantly affect positive inotropic effects of digoxin and did not protect against cellular contracture induced by toxic digoxin concentrations, despite preincubation of cells with quinidine for 60 min. The effects of digoxin on monovalent cation transport, as judged by active uptake of the K analog 86Rb, were also not altered by 10(-4) M to 2 x 10(-3) M quinidine. These data suggest that quinidine does not displace digoxin from Na, K adenosine triphosphatase binding sites in this preparation. Although these data must be extrapolated to the intact animal with caution, our findings suggest that changes in digoxin clearance are more likely of primary importance in the digoxin-quinidine interaction, and indicate that the approximately 2-fold increase in serum digoxin concentration observed after addition of quinidine would be expected to have direct effects on myocardial cells comparable with those seen with increased digoxin concentration in the absence of quinidine

  2. Radiosensitivity of normal human epidermal cells in culture

    International Nuclear Information System (INIS)

    Dover, R.; Potten, C.S.

    1983-01-01

    Using an in vitro culture system the authors have derived #betta#-radiation survival curves over a dose range 0-8 Gy for the clonogenic cells of normal human epidermis. The culture system used allows the epidermal cells to stratify and form a multi-layered sheet of keratinizing cells. The cultures appear to be a very good model for epidermis in vivo. The survival curves show a population which is apparently more sensitive than murine epidermis in vivo. It remains unclear whether this is an intrinsic difference between the species or is a consequence of the in vitro cultivation of the human cells. (author)

  3. Social learning and traditions in animals: evidence, definitions, and relationship to human culture.

    Science.gov (United States)

    Galef, Bennett G

    2012-11-01

    The number of publications concerned with social learning in nonhuman animals has expanded dramatically in recent decades. In this article, recent literature addressing three issues that have been of particular concern to those with both an interest in social learning and a background in experimental psychology are reviewed: (1) the definition as well as (2) empirical investigation of the numerous behavioral processes that support social learning in animals, and (3) the relationship of the 'traditions' seen in animals to the 'culture' that is so important in shaping the development of behavioral repertoires in humans. WIREs Cogn Sci 2012 doi: 10.1002/wcs.1196 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  4. From hauntology to a new animism? Nature and culture in Heinz Kimmerle’s intercultural philosophy

    OpenAIRE

    Hofmeyr, Murray

    2007-01-01

    Derrida has proposed a new spectrology in an attempt to deal with the ghost of Marx. Kimmerle shows that Marx has forgotten nature, and enquires about Derrida’s forgetting Marx’s forgetting. With specific reference to African culture he asks whether a new animism should not be explored within the framework of a new spectrology. Derrida uses the concept animism, but not in terms of the being of things in and of themselves, which could positively be thought as animated. Kimmerle proposes a w...

  5. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.

    Science.gov (United States)

    Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya

    2017-01-01

    Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a

  6. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    Science.gov (United States)

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p cell level correlated positively with the number of patient colonies (r = 0.762, p Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research

  7. The impact of cell culture equipment on energy loss.

    Science.gov (United States)

    Davies, Lleucu B; Kiernan, Michael N; Bishop, Joanna C; Thornton, Catherine A; Morgan, Gareth

    2014-01-01

    Light energy of discrete wavelengths supplied via lasers and broadband intense pulsed light have been used therapeutically for many years. In vitro models complement clinical studies, especially for the elucidation of underlying mechanisms of action. Clarification that light energy reaches the cells is necessary when developing protocols for the treatment of cells using in vitro models. Few studies report on energy loss in cell culture equipment. The ability of energy from light with therapeutic potential to reach cells in culture needs to be determined; this includes determining the proportion of light energy lost within standard cell culture media and cell culture vessels. The energy absorption of cell culture media, with/without the pH indicator dye phenol red, and the loss of energy within different plastics and glassware used typically for in vitro cell culture were investigated using intense pulsed light and a yellow pulsed dye laser. Media containing phenol red have a distinctive absorption peak (560 nm) absent in phenol red-free media and restored by the addition of phenol red. For both light sources, energy loss was lowest in standard polystyrene tissue culture flasks or multi-well plates and highest in polypropylene vessels or glass tubes. The effects of phenol red-free media on the absorption of energy varied with the light source used. Phenol red-free media are the media of choice; polystyrene vessels with flat surfaces such as culture flasks or multi-well plates should be used in preference to polypropylene or glass vessels.

  8. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  9. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Directory of Open Access Journals (Sweden)

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  10. Nonthermal-plasma-mediated animal cell death

    Science.gov (United States)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  11. Nonthermal-plasma-mediated animal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Kyong-Tai [Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang 790-784 (Korea, Republic of); Kim, Gyoo-Cheon, E-mail: ktk@postech.ac.kr [Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan 626-810 (Korea, Republic of)

    2011-01-12

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood. (topical review)

  12. Nonthermal-plasma-mediated animal cell death

    International Nuclear Information System (INIS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Kyong-Tai; Kim, Gyoo-Cheon

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood. (topical review)

  13. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture........ The contact angle of SU-8 surface was significantly reduced from 90° to 25° after the surface modification. The treated SU-8 surfaces provided a cell culture environment that was comparable with cell culture flask surface in terms of generation time and morphology....

  14. Identification of differences in gene expression in primary cell cultures of human endometrial epithelial cells and trophoblast cells following their interaction

    DEFF Research Database (Denmark)

    Høgh, Mette; Islin, Henrik; Møller, Charlotte

    2006-01-01

    The interaction between the cell types was simulated in vitro by growing primary cell cultures of human endometrial epithelial cells and trophoblast cells together (co-culture) and separately (control cultures). Gene expression in the cell cultures was compared using the Differential Display method and confirmed...

  15. Establishment of automated culture system for murine induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Koike Hiroyuki

    2012-11-01

    Full Text Available Abstract Background Induced pluripotent stem (iPS cells can differentiate into any cell type, which makes them an attractive resource in fields such as regenerative medicine, drug screening, or in vitro toxicology. The most important prerequisite for these industrial applications is stable supply and uniform quality of iPS cells. Variation in quality largely results from differences in handling skills between operators in laboratories. To minimize these differences, establishment of an automated iPS cell culture system is necessary. Results We developed a standardized mouse iPS cell maintenance culture, using an automated cell culture system housed in a CO2 incubator commonly used in many laboratories. The iPS cells propagated in a chamber uniquely designed for automated culture and showed specific colony morphology, as for manual culture. A cell detachment device in the system passaged iPS cells automatically by dispersing colonies to single cells. In addition, iPS cells were passaged without any change in colony morphology or expression of undifferentiated stem cell markers during the 4 weeks of automated culture. Conclusions Our results show that use of this compact, automated cell culture system facilitates stable iPS cell culture without obvious effects on iPS cell pluripotency or colony-forming ability. The feasibility of iPS cell culture automation may greatly facilitate the use of this versatile cell source for a variety of biomedical applications.

  16. Youth Culture and Cell Phone

    Directory of Open Access Journals (Sweden)

    mohammad saeed zokaei

    2009-11-01

    Full Text Available Iranian youth’s leisure culture has been immediately affected by the digital media culture. As a communicative media, cell phone has crossed borders of youth norms and identity; and in addition to facilitating their communication, has changed its patterns. Applying Bourdieu’s concepts of habitus and field, and relied on the qualitative and quantitative data gathered from the mobile youth users, the present study argues that mobile has produced a new field in which youth’s opportunities for leisure, entertainment, communication, and independence have extended. In addition, cell phone has facilitated and compensated for some defects in public sphere, and therefore empowered youth agency, individuality, and power. Despite this strengthening, cell phone does not cross borders of gender and class differences, or the levels of social capital.

  17. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Directory of Open Access Journals (Sweden)

    Camila Bonazza

    Full Text Available Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2 and progesterone (P4 effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation. These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  18. Spatial turn and animation practices inspired by cultural anthropology

    Directory of Open Access Journals (Sweden)

    Agnieszka Wieszaczewska

    2016-09-01

    Full Text Available Spatial turn is one of the cultural turns, which have recently occurred in the humanities. It stresses the importance of issues such as space and place and can be successfully used as a theoretical perspective gaining use in thought over issues such as globalisation, transnationality, mapping but also education. In the discourses of pedagogical science space and place are considered through their multidimensional impact on education and learning. As significant concepts rooting pedagogy or pedagogy of borderland. The pedagogical reflection on space could be also used in the field of animation practices, especially in activities, which are related to place somehow colonised.

  19. Effect of microwell chip structure on cell microsphere production of various animal cells.

    Science.gov (United States)

    Sakai, Yusuke; Yoshida, Shirou; Yoshiura, Yukiko; Mori, Rhuhei; Tamura, Tomoko; Yahiro, Kanji; Mori, Hideki; Kanemura, Yonehiro; Yamasaki, Mami; Nakazawa, Kohji

    2010-08-01

    The formation of three-dimensional cell microspheres such as spheroids, embryoid bodies, and neurospheres has attracted attention as a useful culture technique. In this study, we investigated a technique for effective cell microsphere production by using specially prepared microchip. The basic chip design was a multimicrowell structure in triangular arrangement within a 100-mm(2) region in the center of a polymethylmethacrylate (PMMA) plate (24x24 mm(2)), the surface of which was modified with polyethylene glycol (PEG) to render it nonadhesive to cells. We also designed six similar chips with microwell diameters of 200, 300, 400, 600, 800, and 1000 microm to investigate the effect of the microwell diameter on the cell microsphere diameter. Rat hepatocytes, HepG2 cells, mouse embryonic stem (ES) cells, and mouse neural progenitor/stem (NPS) cells formed hepatocyte spheroids, HepG2 spheroids, embryoid bodies, and neurospheres, respectively, in the microwells within 5 days of culture. For all the cells, a single microsphere was formed in each microwell under all the chip conditions, and such microsphere configurations remained throughout the culture period. Furthermore, the microsphere diameters of each type of cell were strongly positively correlated with the microwell diameters of the chips, suggesting that microsphere diameter can be factitiously controlled by using different chip conditions. Thus, this chip technique is a promising cellular platform for tissue engineering or regenerative medicine research, pharmacological and toxicological studies, and fundamental studies in cell biology. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency.

    Science.gov (United States)

    Brown, Karl David; Low, Suet; Mariappan, Indumathi; Abberton, Keren Maree; Short, Robert; Zhang, Hong; Maddileti, Savitri; Sangwan, Virender; Steele, David; Daniell, Mark

    2014-02-01

    Extensive damage to the limbal region of the cornea leads to a severe form of corneal blindness termed as limbal stem cell deficiency (LSCD). Whereas most cases of corneal opacity can be treated with full thickness corneal transplants, LSCD requires stem cell transplantation for successful ocular surface reconstruction. Current treatments for LSCD using limbal stem cell transplantation involve the use of murine NIH 3T3 cells and human amniotic membranes as culture substrates, which pose the threat of transmission of animal-derived pathogens and donor tissue-derived cryptic infections. In this study, we aimed to produce surface modified therapeutic contact lenses for the culture and delivery of corneal epithelial cells for the treatment of LSCD. This approach avoids the possibility of suture-related complications and is completely synthetic. We used plasma polymerization to deposit acid functional groups onto the lenses at various concentrations. Each surface was tested for its suitability to promote corneal epithelial cell adhesion, proliferation, retention of stem cells, and differentiation and found that acid-based chemistries promoted better cell adhesion and proliferation. We also found that the lenses coated with a higher percentage of acid functional groups resulted in a higher number of cells transferred onto the corneal wound bed in rabbit models of LSCD. Immunohistochemistry of the recipient cornea confirmed the presence of autologous, transplanted 5-bromo-2'-deoxyuridine (BrdU)-labeled cells. Hematoxylin staining has also revealed the presence of a stratified epithelium at 26 days post-transplantation. This study provides the first evidence for in vivo transfer and survival of cells transplanted from a contact lens to the wounded corneal surface. It also proposes the possibility of using plasma polymer-coated contact lenses with high acid functional groups as substrates for the culture and transfer of limbal cells in the treatment of LSCD.

  1. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  2. In vitro culture and characterization of enteric neural precursor cells from human gut biopsy specimens using polymer scaffold.

    Science.gov (United States)

    Krishnamohan, Janardhanam; Senthilnathan, Venugopal S; Vaikundaraman, Tirunelveli Muthiah; Srinivasan, Thangavelu; Balamurugan, Madasamy; Iwasaki, Masaru; Preethy, Senthilkumar; Abraham, Samuel Jk

    2013-08-01

    In vitro expansion and characterization of neural precursor cells from human gut biopsy specimens with or without Hirschsprung's disease using a novel thermoreversible gelation polymer (TGP) is reported aiming at a possible future treatment. Gut biopsy samples were obtained from five patients undergoing gut resection for Hirschsprung's disease (n = 1) or gastrointestinal disorders (n = 4). Cells isolated from the smooth muscle layer and the myenteric plexus were cultured in two groups for 18 to 28 days; Group I: conventional culture as earlier reported and Group II: using TGP scaffold. Neurosphere like bodies (NLBs) were observed in the cultures between 8th to 12th day and H & E staining was positive for neural cells in both groups including aganglionic gut portion from the Hirschsprung's disease patient. Immunohistochemistry using S-100 and neuron specific enolase (NSE) was positive in both groups but the TGP group (Group II) showed more number of cells with intense cytoplasmic granular positivity for both NSE and S-100 compared to Group I. TGP supports the in vitro expansion of human gut derived neuronal cells with seemingly better quality NLBs. Animal Studies can be tried to validate their functional outcome by transplanting the NLBs with TGP scaffolds to see whether this can enhance the outcome of cell based therapies for Hirschsprung's disease.

  3. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  4. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Dedifferentiated fat cells: Potential and perspectives for their use in clinical and animal science purpose.

    Science.gov (United States)

    Duarte, M S; Bueno, R; Silva, W; Campos, C F; Gionbelli, M P; Guimarães, S E F; Silva, F F; Lopes, P S; Hausman, G J; Dodson, M V

    2017-05-01

    An increasing body of evidences has demonstrated the ability of the mature adipocyte to dedifferentiate into a population of proliferative-competent cells known as dedifferentiated fat (DFAT) cells. As early as the 1970s, in vitro studies showed that DFAT cells may be obtained by ceiling culture, which takes advantage of the buoyancy property of lipid-filled cells. It was documented that DFAT cells may acquire a phenotype similar to mesenchymal stem cells and yet may differentiate into multiple cell lineages, such as skeletal and smooth muscle cells, cardiomyocytes, osteoblasts, and adipocytes. Additionally, recent studies showed the ability of isolated mature adipocytes to dedifferentiate in vivo and the capacity of the progeny cells to redifferentiate into mature adipocytes, contributing to the increase of body fatness. These findings shed light on the potential for use of DFAT cells, not only for clinical purposes but also within the animal science field, because increasing intramuscular fat without excessive increase in other fat depots is a challenge in livestock production. Knowledge of the mechanisms underlying the dedifferentiation and redifferentiation of DFAT cells will allow the development of strategies for their use for clinical and animal science purposes. In this review, we highlight several aspects of DFAT cells, their potential for clinical purposes, and their contribution to adipose tissue mass in livestock.

  5. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  6. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    DEFF Research Database (Denmark)

    Björk, Sara M.; Sjoström, Staffan L.; Svahn, Helene Andersson

    2015-01-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets......, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast...... limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format....

  7. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    Science.gov (United States)

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  8. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  9. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure.

    Science.gov (United States)

    Akahane, M; Shimizu, T; Kira, T; Onishi, T; Uchihara, Y; Imamura, T; Tanaka, Y

    2016-11-01

    To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis.Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569-576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. © 2016 Akahane et al.

  10. 21st Century Cell Culture for 21st Century Toxicology.

    Science.gov (United States)

    Pamies, David; Hartung, Thomas

    2017-01-17

    There is no good science in bad models. Cell culture is especially prone to artifacts. A number of novel cell culture technologies have become more broadly available in the 21st century, which allow overcoming limitations of traditional culture and are more physiologically relevant. These include the use of stem-cell derived human cells, cocultures of different cell types, scaffolds and extracellular matrices, perfusion platforms (such as microfluidics), 3D culture, organ-on-chip technologies, tissue architecture, and organ functionality. The physiological relevance of such models is further enhanced by the measurement of biomarkers (e.g., key events of pathways), organ specific functionality, and more comprehensive assessment cell responses by high-content methods. These approaches are still rarely combined to create microphysiological systems. The complexity of the combination of these technologies can generate results closer to the in vivo situation but increases the number of parameters to control, bringing some new challenges. In fact, we do not argue that all cell culture needs to be that sophisticated. The efforts taken are determined by the purpose of our experiments and tests. If only a very specific molecular target to cell response is of interest, a very simple model, which reflects this, might be much more suited to allow standardization and high-throughput. However, the less defined the end point of interest and cellular response are, the better we should approximate organ- or tissue-like culture conditions to make physiological responses more probable. Besides these technologic advances, important progress in the quality assurance and reporting on cell cultures as well as the validation of cellular test systems brings the utility of cell cultures to a new level. The advancement and broader implementation of Good Cell Culture Practice (GCCP) is key here. In toxicology, this is a major prerequisite for meaningful and reliable results, ultimately

  11. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    Science.gov (United States)

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices. © 2013 Wiley Periodicals, Inc.

  12. Quantitative volumetric Raman imaging of three dimensional cell cultures

    Science.gov (United States)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  13. Animal study on transplantation of human umbilical vein endothelial cells for corneal endothelial decompensation

    Directory of Open Access Journals (Sweden)

    Li Cui

    2014-06-01

    Full Text Available AIM: To explore the feasibility of culturing human umbilical vein endothelial cells(HUVECon acellular corneal stroma and performing the posterior lamellar endothelial keratoplasty(PLEKtreating corneal endothelial decompensation.METHODS: Thirty New-Zealand rabbits were divided into three groups randomly, 10 rabbits for experimental group, 10 for stroma group and 10 for control group. Corneal endothelial cells were removed to establish animal model of corneal endothelial failure. PLEK was performed on the rabbits of experimental group and stroma group, and nothing was transplantated onto the rabbits of control group with the deep layer excised only. Postoperative observation was taken for 3mo. The degree of corneal edema and central corneal thickness were recorded for statistical analysis.RESULTS: Corneas in experimental group were relieved in edema obviously compared with that in stroma group and the control group, and showed increased transparency 7d after the operation. The average density of endothelial cells was 2 026.4±129.3cells/mm2, and average central corneal thickness was 505.2±25.4μm in experimental group, while 1 535.6±114.5μm in stroma group and 1 493.5±70.2μm in control group 3mo after operation.CONCLUSION:We achieved preliminary success in our study that culturing HUVEC on acellular corneal stroma and performing PLEK for corneal endothelial decompensation. HUVEC transplanted could survive in vivo, and have normal biological function of keeping cornea transparent. This study provides a new idea and a new way clinically for the treatment of corneal endothelial diseases.

  14. The Effect of Primary Cancer Cell Culture Models on the Results of Drug Chemosensitivity Assays: The Application of Perfusion Microbioreactor System as Cell Culture Vessel

    Science.gov (United States)

    Chen, Yi-Dao; Huang, Shiang-Fu; Wang, Hung-Ming

    2015-01-01

    To precisely and faithfully perform cell-based drug chemosensitivity assays, a well-defined and biologically relevant culture condition is required. For the former, a perfusion microbioreactor system capable of providing a stable culture condition was adopted. For the latter, however, little is known about the impact of culture models on the physiology and chemosensitivity assay results of primary oral cavity cancer cells. To address the issues, experiments were performed. Results showed that minor environmental pH change could significantly affect the metabolic activity of cells, demonstrating the importance of stable culture condition for such assays. Moreover, the culture models could also significantly influence the metabolic activity and proliferation of cells. Furthermore, the choice of culture models might lead to different outcomes of chemosensitivity assays. Compared with the similar test based on tumor-level assays, the spheroid model could overestimate the drug resistance of cells to cisplatin, whereas the 2D and 3D culture models might overestimate the chemosensitivity of cells to such anticancer drug. In this study, the 3D culture models with same cell density as that in tumor samples showed comparable chemosensitivity assay results as the tumor-level assays. Overall, this study has provided some fundamental information for establishing a precise and faithful drug chemosensitivity assay. PMID:25654105

  15. Bags versus flasks: a comparison of cell culture systems for the production of dendritic cell-based immunotherapies.

    Science.gov (United States)

    Fekete, Natalie; Béland, Ariane V; Campbell, Katie; Clark, Sarah L; Hoesli, Corinne A

    2018-04-19

    In recent years, cell-based therapies targeting the immune system have emerged as promising strategies for cancer treatment. This review summarizes manufacturing challenges related to production of antigen presenting cells as a patient-tailored cancer therapy. Understanding cell-material interactions is essential because in vitro cell culture manipulations to obtain mature antigen-producing cells can significantly alter their in vivo performance. Traditional antigen-producing cell culture protocols often rely on cell adhesion to surface-treated hydrophilic polystyrene flasks. More recent commercial and investigational cancer immunotherapy products were manufactured using suspension cell culture in closed hydrophobic fluoropolymer bags. The shift to closed cell culture systems can decrease risks of contamination by individual operators, as well as facilitate scale-up and automation. Selecting closed cell culture bags over traditional open culture systems entails different handling procedures and processing controls, which can affect product quality. Changes in culture vessels also entail changes in vessel materials and geometry, which may alter the cell microenvironment and resulting cell fate decisions. Strategically designed culture systems will pave the way for the generation of more sophisticated and highly potent cell-based cancer vaccines. As an increasing number of cell-based therapies enter the clinic, the selection of appropriate cell culture vessels and materials becomes a critical consideration that can impact the therapeutic efficacy of the product, and hence clinical outcomes and patient quality of life. © 2018 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  16. Does your pig go 'knor'? Medical students' skills in using animal sounds as a cross-cultural paediatric engagement tool.

    Science.gov (United States)

    Cornwall, Jon; Roy, Melyssa

    2016-12-01

    The development of verbal communication skills is an important aspect of medical education as accurate assessment in part relies on effectively obtaining information from patients. When assessing children of different cultural or ethnic backgrounds, young medics may find effective verbal communication difficult because they lack understanding about what children are really like. Animal noises are a likely tool with which to successfully engage with young children. However, these differ by culture and it is unclear whether young New Zealand medical students will be adept at effectively engaging and communicating with foreign children via this mode of communication. We therefore assessed whether medical students in our country were able to accurately reproduce animal noises from different cultures. Six current medical students from New Zealand (with English as their first language) were assessed on their ability to reproduce animal noises from three different foreign languages: Dutch, Arabic and Danish. The animals selected were duck, cow, dog, frog, pig and sheep. Students were played recordings of the foreign-language animal noises, and were then rated on a scale of 1-5 (1 = poor, 5 = outstanding) on their ability to reproduce the noise. Arabic animal noises were reproduced more convincingly than those in the other languages (mean score: 3.8), of which animal noises in Danish were worst (mean score: 3.1). Perhaps unsurprisingly, sheep noises were reproduced best (mean score: 4.7), whereas pig noises were the least convincing (mean score: 2.2). Findings indicate that New Zealand medical students are likely to be better than average at reproducing animal noises in the languages examined, and are perhaps socially and genetically predisposed to replicating sheep noises successfully. They are therefore likely to make good paediatric registrars and fabulous au pairs. The study highlights the more serious issues of multicultural understanding and tolerance of other

  17. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems.

    Science.gov (United States)

    Demircan, Pinar Cetinalp; Sariboyaci, Ayla Eker; Unal, Zehra Seda; Gacar, Gulcin; Subasi, Cansu; Karaoz, Erdal

    2011-11-01

    BACKGROUND AIMS. Studies performed using human and animal models have indicated the immunoregulatory capability of mesenchymal stromal cells in several lineages. We investigated whether human dental pulp-derived stem cells (hDP-SC) have regulatory effects on phytohemagglutinin (PHA)-activated CD3(+) T cells. We aimed to define the regulatory mechanisms associated with hDP-SC that occur in mixed lymphocyte reaction (MLR) and transwell systems with PHA-CD3(+) T cells and hDP-SC at a ratio of 1:1. METHODS. Proliferation, apoptosis and pro- and anti-inflammatory cytokines of PHA-CD3(+)T cells, the expression of Regulatory T cells (Treg) markers and some regulatory factors related to hDP-SC, were studied in Both transwell and MLR are co-cultures systems. RESULTS. Anti-proliferative and apoptotic effects of hDP-SC were determined in co-culture systems. Elevated expression levels of human leukocyte antigen (HLA)-G, hepatocyte growth factor (HGF)-β1, intracellular adhesion molecule (ICAM-1)-1, interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β1, vascular adhesion molecule (VCAM)-1 and vascular endothelial growth factor (VEGF) by hDP-SC were detected in the co-culture systems. We observed decreased expression levels of pro-inflammatory cytokines [interferon (IFN)-γ, IL-2, IL-6 receptor (R), IL-12, Interleukin-17A (IL-17A), tumor necrosis factor (TNF)-α] and increased expression levels of anti-inflammatory cytokine [inducible protein (IP)-10] from PHA-CD3(+) T cells in the transwell system. Expression of Treg (CD4(+) CD25(+) Foxp3(+)) markers was significantly induced by hDP-SC in both co-culture systems. We observed apoptosis of PHA-CD3(+) T cells with 24 h using time-lapse camera photographs and active caspase labeling; it is likely that paracrine soluble factors and molecular signals secreted by hDP-SC led this apoptosis. CONCLUSIONS. We suggest that hDP-SC have potent immunoregulatory functions because of their soluble factors and cytokines via paracrine

  18. Prospectus of cultured meat—advancing meat alternatives

    OpenAIRE

    Bhat, Zuhaib Fayaz; Fayaz, Hina

    2010-01-01

    The in vitro production of meat is probably feasible with existing tissue engineering techniques and may offer health and environmental advantages by reducing environmental pollution and land use associated with current meat production systems. By culturing loose myosatellite cells on a substrate, it is probably possible to produce cultured meat by harvesting mature muscle cells after differentiation and processing them into various meat products. Besides reducing the animal suffering signifi...

  19. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  20. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  1. Boron neutron capture therapy for clear cell sarcoma (CCS): Biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models

    International Nuclear Information System (INIS)

    Andoh, T.; Fujimoto, T.; Sudo, T.; Fujita, I.; Imabori, M.; Moritake, H.; Sugimoto, T.; Sakuma, Y.; Takeuchi, T.; Kawabata, S.; Kirihata, M.; Akisue, T.; Yayama, K.; Kurosaka, M.; Miyatake, S.; Fukumori, Y.; Ichikawa, H.

    2011-01-01

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake L-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of 10 B (45–74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg).

  2. Boron neutron capture therapy for clear cell sarcoma (CCS): Biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, T. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Fujimoto, T. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Sudo, T. [Section of Translational Research, Hyogo Cancer Center, Akashi 673-0021 (Japan); Fujita, I.; Imabori, M. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Moritake, H. [Department of Pediatrics, Miyazaki University, Kiyotake 889-1692 (Japan); Sugimoto, T. [Department of Pediatrics, Saiseikai Shigaken Hospital, Ritto 520-3046 (Japan); Sakuma, Y. [Department of Pathology, Hyogo Cancer Center, Akashi 673-0021 (Japan); Takeuchi, T. [Department of Pathology, Kochi University, Nangoku 783-8505 (Japan); Kawabata, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Kirihata, M. [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531 (Japan); Akisue, T. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Yayama, K. [Laboratory of Cardiovascular Pharmacology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Kurosaka, M. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Miyatake, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Fukumori, Y. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Ichikawa, H., E-mail: ichikawa@pharm.kobegakuin.ac.jp [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan)

    2011-12-15

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake L-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of {sup 10}B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg).

  3. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions.

    Science.gov (United States)

    Kaji, Hirokazu; Camci-Unal, Gulden; Langer, Robert; Khademhosseini, Ali

    2011-03-01

    Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell-cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell-cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 2010 Elsevier B.V. All rights reserved.

  4. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    Science.gov (United States)

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. © 2015 The Authors. Anatomia, Histologia, Embryologia Published by Blackwell Verlag GmbH.

  5. A microwell cell culture platform for the aggregation of pancreatic β-cells.

    Science.gov (United States)

    Bernard, Abigail B; Lin, Chien-Chi; Anseth, Kristi S

    2012-08-01

    Cell-cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell-cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell-cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered.

  6. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  7. Cell division requirement for activation of murine leukemia virus in cell culture by irradiation

    International Nuclear Information System (INIS)

    Otten, J.A.; Quarles, J.M.; Tennant, R.W.

    1976-01-01

    Actively dividing cultures of AKR mouse cells were exposed to relatively low dose-rates of γ radiation and tested for activation of endogenous leukemia viruses. Efficient and reproducible induction of virus was obtained with actively dividing cells, but cultures deprived of serum to inhibit cell division before and during γ irradiation were not activated, even when medium with serum was added immediately after irradiation. These results show that cell division was required for virus induction but that a stable intermediate similar to the state induced by halogenated pyrimidines was not formed. In actively dividing AKR cell cultures, virus activation appeared to be proportional to the dose of γ radiation; the estimated frequency of activation was 1-8 x 10 - 5 per exposed cell and the efficiency of activation was approximately 0.012 inductions per cell per rad. Other normal primary and established mouse cell cultures tested were not activated by γ radiation. The requirement of cell division for radiation and chemical activation may reflect some common mechanism for initiation of virus expression

  8. Use of primary cell cultures to measure the late effects in the skins of rhesus monkeys irradiated with protons

    Science.gov (United States)

    Cox, A. B.; Wood, D. H.; Lett, J. T.

    Previous pilot investigations of the uses of primary cell cultures to study late damage in stem cells of the skin of the New Zealand white (NZW) rabbit and the rhesus monkey /1-3/, have been extended to individual monkeys exposed to 55 MeV protons. Protons of this energy have a larger range in tissue of (~2.6 cm) than the 32 MeV protons (~0.9 cm) to which the animals in our earlier studies had been exposed. Although the primary emphases in the current studies were improvement and simplification in the techniques and logistics of transportation of biopsies to a central analytical facility, comparison of the quantitative measurements obtained thus far for survival of stem cells in the skins from animals irradiated 21 years ago reveals that the effects of both proton energies are similar.

  9. Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome aberrations in mice bone marrow cells

    International Nuclear Information System (INIS)

    Bouslimi, Amel; Bouaziz, Chayma; Ayed-Boussema, Imen; Hassen, Wafa; Bacha, Hassen

    2008-01-01

    Ochratoxin A (OTA) and citrinin (CTN) are two common contaminant mycotoxins which can occur jointly in a wide range of food commodities. Both mycotoxins have several toxic effects but share a significant nephrotoxic and carcinogenic potential since OTA and CTN were reported to be responsible for naturally occurring human and animal kidney diseases and tumors. Considering the concomitant production of OTA and CTN, it is very likely that humans and animals are always exposed to the mixture rather than to individual compounds. Therefore, the aim of the present study was to investigate, in vivo and in vitro, whether DNA damage is enhanced by combination of both mycotoxins as compared to their effect separately. To this end, we have assessed their effects individually or combined on cell proliferation and DNA fragmentation in cultured Vero cells and in vivo by monitoring the induction of chromosome aberrations. Our results clearly showed that cultured renal cells respond to OTA and CTN exposure by a moderate and weak inhibition of cell proliferation, respectively. However, when combined, they exert a significant increase in inhibition of cell viability. Similar results were found for the investigated genotoxicity endpoints (DNA fragmentation and chromosome aberrations). Altogether, our study showed that OTA and CTN combination effects are clearly synergistic. The synergistic induction of DNA damage observed with OTA and CTN taken concomitantly could be relevant to explain the molecular basis of the renal diseases and tumorogenesis induced by naturally occurring mycotoxins

  10. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity

    Science.gov (United States)

    Bradley, Jillian H.; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P.; Gregg, Randal K.

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter. When

  11. Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals.

    Science.gov (United States)

    Klein, Andreas; Guhl, Eva; Zollinger, Raphael; Tzeng, Yin-Jeh; Wessel, Ralf; Hummel, Michael; Graessmann, Monika; Graessmann, Adolf

    2005-05-01

    Microarray studies revealed that as a first hit the SV40 T/t antigen causes deregulation of 462 genes in mammary gland cells (ME cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell proliferation specific and Rb-E2F dependent, causing ME cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal ME cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal ME cells. The profile of retransformants shows that only 38 deregulated genes are tumor-specific, and that none of them is considered to be a typical breast cancer gene.

  12. Tumor necrosis factor (cachetin) decreases adipose cell differentiation in primary cell culture

    International Nuclear Information System (INIS)

    Martin, R.J.; Jones, D.D.; Jewell, D.E.; Hausman, G.J.

    1986-01-01

    Cachetin has been shown to effect gene product expression in the established adipose cell line 3T3-L1. Expression of messenger RNA for lipoprotein lipase is suppressed in cultured adipocytes. The purpose of this study was to determine the effect of Cachetin on adipose cell differentiation in primary cell culture. Stromalvascular cells obtained from the inguinal fat pad of 4-5 week old Sprague-Dawley rats were grown in culture for two weeks. During the proliferative growth phase all cells were grown on the same medium and labelled with 3 H-thymidine. Cachetin treatment (10 -6 to 10 -10 M) was initiated on day 5, the initial phase of preadipocyte differentiation. Adipocytes and stromal cells were separated using density gradient, and 3 H-thymidine was determined for both cell types. Thymidine incorporation into adipose cells was decreased maximally (∼ 50%) at 10 -10 M. Stromalvascular cells were not influenced at any of the doses tested. Adipose cell lipid content as indicated by oil red-O staining was decreased by Cachetin. Esterase staining by adipose cells treated with Cachetin was increased indicating an increase in intracellular lipase. These studies show that Cachetin has specific effects on primary adipose cell differentiation

  13. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  14. Neurorestorative clinical application standards for the culture and quality control of olfactory ensheathing cells

    Directory of Open Access Journals (Sweden)

    Xiao J

    2017-09-01

    Full Text Available Juan Xiao,1,2 Lin Chen,3 Gengsheng Mao,1 Wenyong Gao,1,2 Ming Lu,4 Xijing He,5 Hongyun Huang1,2 On behalf of the Neurorestoratology Professional Committee of Chinese Medical Doctors Association (Chinese Association of Neurorestoratology 1Institute of Neurorestoratology, The General Hospital of Chinese People’s Armed Police Forces, Beijing, People’s Republic of China; 2Cell Therapy Center, Beijing Hongtianji Neuroscience Academy, Beijing, People’s Republic of China; 3Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, People’s Republic of China; 4Department of Neurosurgery, 163 Hospital of PLA (Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People’s Republic of China; 5Department of Orthopedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xian, Shanxi Provine, People’s Republic of China Abstract: Olfactory ensheathing cells (OECs are a novel type of glial cell that can perform and promote many neurorestorative processes in vivo after transplant. To date, dozens of preclinical and clinical studies have confirmed that OECs have unique restoring effects in animal models and human subjects with neurological degeneration or damage, such as spinal cord injury, stroke, cerebral palsy, traumatic brain injury, and motor neuron disease (amyotrophic lateral sclerosis. To ensure the safety and effectiveness of clinical applications utilizing this type of cell, it is important to standardize cell-culture and quality-control processes. Based on a comprehensive review of published clinical studies, as well as existing methods of OEC culture and quality control currently utilized by hospitals and biomedical enterprises, the Chinese Association of Neurorestoratology has developed a set of standards for the culture and quality control of olfactory ensheathing cells for use in clinical applications. These guidelines include standardized training and management procedures for

  15. Hyaluronan synthesis in cultured tobacco cells (BY-2) expressing a chlorovirus enzyme: cytological studies.

    Science.gov (United States)

    Rakkhumkaew, Numfon; Shibatani, Shigeo; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2013-04-01

    Extraction of hyaluronan from animals or microbial fermentation has risks including contamination with pathogens and microbial toxins. In this work, tobacco cultured-cells (BY-2) were successfully transformed with a chloroviral hyaluronan synthase (cvHAS) gene to produce hyaluronan. Cytological studies revealed accumulation of HA on the cells, and also in subcellular fractions (protoplasts, miniplasts, vacuoplasts, and vacuoles). Transgenic BY-2 cells harboring a vSPO-cvHAS construct containing the vacuolar targeting signal of sporamin connected to the N-terminus of cvHAS accumulated significant amounts of HA in vacuoles. These results suggested that cvHAS successfully functions on the vacuolar membrane and synthesizes/transports HA into vacuoles. Efficient synthesis of HA using this system provides a new method for practical production of HA. Copyright © 2012 Wiley Periodicals, Inc.

  16. Interleukin-1β regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    International Nuclear Information System (INIS)

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret; Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens; Albrecht, Martin

    2010-01-01

    Research highlights: → Levels of IL-1β are increased in the pig myocardium after infarction. → Cultured pig heart cells possess IL-1 receptors. → IL-1β increases cell proliferation of pig heart cells in-vitro. → IL-1β increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. → IL-1β may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1β is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1β on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1β. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1β resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1β (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1β (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1β plays a major role in the events of tissue remodelling in the heart. Combined with our recently published in vivo data (Meybohm et al., PLoS One

  17. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Brandt, Berenice [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Wuensch, Annegret [Institute of Molecular Animal Breeding and Biotechnology, Ludwig Maximilians University, Munich (Germany); Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany)

    2010-09-03

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  18. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    Science.gov (United States)

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  19. Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods

    DEFF Research Database (Denmark)

    van der Valk, J; Brunner, D; De Smet, K

    2010-01-01

    with an undefined and variable composition. Defined media supplements are commercially available for some cell types. However, information on the formulation by the companies is often limited and such supplements can therefore not be regarded as completely defined. The development of defined media is difficult......, reproducible and reduce the use of experimental animals. Good cell culture practice (GCCP) is an attempt to develop a common standard for in vitro methods. The implementation of the use of chemically defined media is part of the GCCP. This will decrease the dependence on animal serum, a supplement...... and often takes place in isolation. A workshop was organised in 2009 in Copenhagen to discuss strategies to improve the development and use of serum-free defined media. In this report, the results from the meeting are discussed and the formulation of a basic serum-free medium is suggested. Furthermore...

  20. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    Science.gov (United States)

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  1. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  3. A method for the isolation and culture of adult rat retinal pigment epithelial (RPE cells to study retinal diseases

    Directory of Open Access Journals (Sweden)

    Janosch Peter Heller

    2015-11-01

    Full Text Available Diseases such as age-related macular degeneration (AMD affect the retinal pigment epithelium (RPE and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 minutes yielded 4 x 104 viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch’s membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch’s membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.

  4. EXPLANTATION OF MESANGIAL CELL HILLOCKS - A METHOD FOR OBTAINING HUMAN MESANGIAL CELLS IN CULTURE

    NARCIS (Netherlands)

    MULLER, EW; KIM, Y; MICHAEL, AF; VERNIER, RL; VANDERHEM, GK; VANDERWOUDE, FJ

    A simple method is presented for selective cell culture of human mesangial cells using explanatation of mesangial cell hillocks. Glomeruli which had been incubated with collagenase were explanted on plastic tissue culture flasks. Three to 6 weeks after explantation, a rapidly growing multilayer of

  5. Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells in irradiated bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Fujitake, Hideki; Okamoto, Yuruko; Okubo, Hiroshi; Miyanomae, Takeshi; Kumagai, Keiko; Mori, K.J.

    1981-01-01

    Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells after irradiation were studied in the long-term culture of mouse bone marrow cells in vitro. No difference was observed in the survival of the stem cells among cultures in which 0 - 10 7 cells were re-inoculated on the adherent cell colonies in the culture flask. Stem cells showed a significant proliferation within 1 week and the number of the stem cells exceeded the control in 3 weeks after irradiation in the cultures with less than 10 6 re-inoculated cells per flask. In contrast, there was a considerable delay in the onset of stem cell proliferation after irradiation in the culture with 10 7 cells per flask. Based on these results, a possibility that a stimulator of stem cell proliferation, released from irradiated stromal cells, is cancelled by an inhibitory factor produced by irradiated or unirradiated haemopoietic cells is postulated. (author)

  6. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture...

  7. Retinal pigment epithelium culture;a potential source of retinal stem cells.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-07-01

    To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.

  8. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  9. Establishment of primary keratinocyte culture from horse tissue biopsates

    Directory of Open Access Journals (Sweden)

    Jernej OGOREVC

    2015-12-01

    Full Text Available Primary cell lines established from skin tissue can be used in immunological, proteomic and genomic studies as in vitro skin models. The goal of our study was to establish a primary keratinocyte cell culture from tissue biopsates of two horses. The primary keratinocyte cell culture was obtained by mechanical and enzymatic dissociation and with explant culture method. The result was a heterogeneous primary culture comprised of keratinocytes and fibroblasts. To distinguish epithelial and mesenchymal cells immunofluorescent characterisation was performed, using antibodies against cytokeratin 14 and vimentin. We successfully at attained a primary cell line of keratinocytes, which could potentially be used to study equine skin diseases, as an animal model for human diseases, and for cosmetic and therapeutic product testing.

  10. Enrichment of skin-derived neural precursor cells from dermal cell populations by altering culture conditions.

    Science.gov (United States)

    Bayati, Vahid; Gazor, Rohoullah; Nejatbakhsh, Reza; Negad Dehbashi, Fereshteh

    2016-01-01

    As stem cells play a critical role in tissue repair, their manipulation for being applied in regenerative medicine is of great importance. Skin-derived precursors (SKPs) may be good candidates for use in cell-based therapy as the only neural stem cells which can be isolated from an accessible tissue, skin. Herein, we presented a simple protocol to enrich neural SKPs by monolayer adherent cultivation to prove the efficacy of this method. To enrich neural SKPs from dermal cell populations, we have found that a monolayer adherent cultivation helps to increase the numbers of neural precursor cells. Indeed, we have cultured dermal cells as monolayer under serum-supplemented (control) and serum-supplemented culture, followed by serum free cultivation (test) and compared. Finally, protein markers of SKPs were assessed and compared in both experimental groups and differentiation potential was evaluated in enriched culture. The cells of enriched culture concurrently expressed fibronectin, vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors as compared to control culture. In addition, they possessed a multipotential capacity to differentiate into neurogenic, glial, adipogenic, osteogenic and skeletal myogenic cell lineages. It was concluded that serum-free adherent culture reinforced by growth factors have been shown to be effective on proliferation of skin-derived neural precursor cells (skin-NPCs) and drive their selective and rapid expansion.

  11. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity.

    Science.gov (United States)

    Bradley, Jillian H; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P; Gregg, Randal K

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter

  12. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures

    Science.gov (United States)

    Kaldis, Angelo; Ahmad, Adil; Reid, Alexandra; McGarvey, Brian; Brandle, Jim; Ma, Shengwu; Jevnikar, Anthony; Kohalmi, Susanne E; Menassa, Rima

    2013-01-01

    The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER. PMID:23297698

  13. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    2010-06-01

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  14. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    International Nuclear Information System (INIS)

    Nobuhisa, Ikuo; Ohtsu, Naoki; Okada, Seiji; Nakagata, Naomi; Taga, Tetsuya

    2007-01-01

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45 low c-Kit + cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45 low c-Kit - cells that showed a granulocyte morphology; CD45 high c-Kit low/- that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45 low c-Kit + cells from the AGM culture had the abilities to reproduce CD45 low c-Kit + cells and differentiate into CD45 low c-Kit - and CD45 high c-Kit low/- cells, whereas CD45 low c-Kit - and CD45 high c-Kit low/- did not produce CD45 low c-Kit + cells. Furthermore, CD45 low c-Kit + cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45 low c-Kit + cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells

  15. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Kazuhiro; Nagata, Shogo; Okitsu, Teru; Takeuchi, Shoji

    2017-06-06

    Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.

  16. Cystine uptake by cultured cells originating from dog proximal tubule segments

    International Nuclear Information System (INIS)

    States, B.; Reynolds, R.; Lee, J.; Segal, S.

    1990-01-01

    Large numbers of kidney epithelial cells were cultured successfully from isolated dog proximal tubule segments. Cells in primary culture and in first passage retained the cystine-dibasic amino acid co-transporter system which is found in vivo and in freshly isolated proximal tubule segments. In contrast to other cultured cells, the cystine-glutamate anti-porter was absent in primary cultures. However, this anti-porter system seemed to be developing in cells in first passage. The intracellular ratio of cysteine:reduced glutathione (CSH:GSH) was maintained at 1:36 in both primary cultures and in low passage cells. Incubation of cells in primary culture for 5 min at 37 degrees C with 0.025 mM [ 35 S]L-cystine resulted in incorporation of approximately 36 and 8.5% of the label into intracellular CSH and GSH, respectively. These cultured cells, therefore, seem to be an excellent model system for the eventual elucidation of (a) the inticacies of cystine metabolism and (b) regulation of (1) the cystine-dibasic amino acid co-transporter system and (2) the development of the cysteine-glutamate anti-porter system

  17. Bacteria isolated from companion animals in Japan (2014-2016) by blood culture.

    Science.gov (United States)

    Tsuyuki, Yuzo; Kurita, Goro; Murata, Yoshiteru; Takahashi, Takashi

    2018-02-24

    We aimed to identify microorganisms isolated by blood culture (BC) from companion animals and to determine antimicrobial resistance of these isolates during 2014-2016 at veterinary laboratory, in comparison with those during 2010-2013, in Japan. Clinical data (animal species, visiting animals/hospitalized animals, and others except for disease type and clinical course including history of antimicrobial agent use) on ill animals at veterinary clinics or hospitals were obtained. We retrospectively analyzed animal-origin BC results extracted from the database in 2014-2016 and those obtained in 2010-2013. BC-positive samples were from most of dogs (n = 174 in 2014-2016 and n = 86 in 2010-2013). Escherichia coli (n = 50, 25.1%) and Staphylococcus intermedius group (SIG) bacteria (n = 23, 11.6%) were most prevalent in 2014-2016, while the percentages of E. coli (n = 22, 25.3%) and SIG (n = 9, 10.3%) in 2010-2013 were similar to those in 2014-2016. Percentages of extended-spectrum β-lactamase (ESBL)-producing E. coli and methicillin-resistant staphylococci (MRS) rate of SIG bacteria isolated in 2014-2016 were 28.0% and 69.6% (vs. 22.7% and 44.4% in 2010-2013), respectively. Fourteen ESBL-producing E. coli in 2014-2016 were isolated from 7 visiting animals and 7 hospitalized ones, whereas the sixteen MRS of SIG were from 7 visiting animals and 9 hospitalized ones. Our observations support the prevalent microorganisms isolated by BC and their antimicrobial resistance patterns for two study periods. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Isolation and Characterization of Poliovirus in Cell Culture Systems.

    Science.gov (United States)

    Thorley, Bruce R; Roberts, Jason A

    2016-01-01

    The isolation and characterization of enteroviruses by cell culture was accepted as the "gold standard" by clinical virology laboratories. Methods for the direct detection of all enteroviruses by reverse transcription polymerase chain reaction, targeting a conserved region of the genome, have largely supplanted cell culture as the principal diagnostic procedure. However, the World Health Organization's Global Polio Eradication Initiative continues to rely upon cell culture to isolate poliovirus due to the lack of a reliable sensitive genetic test for direct typing of enteroviruses from clinical specimens. Poliovirus is able to infect a wide range of mammalian cell lines, with CD155 identified as the primary human receptor for all three seroytpes, and virus replication leads to an observable cytopathic effect. Inoculation of cell lines with extracts of clinical specimens and subsequent passaging of the cells leads to an increased virus titre. Cultured isolates of poliovirus are suitable for testing by a variety of methods and remain viable for years when stored at low temperature.This chapter describes general procedures for establishing a cell bank and routine passaging of cell lines. While the sections on specimen preparation and virus isolation focus on poliovirus, the protocols are suitable for other enteroviruses.

  19. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.

    Science.gov (United States)

    Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A

    2017-11-15

    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell

  20. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Manuel Mata

    2017-01-01

    Full Text Available Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI. The effectiveness of ACI has been shown in vitro and in vivo, but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs to regenerate cartilage in vitro and in vivo. hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  1. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study.

    Science.gov (United States)

    Mata, Manuel; Milian, Lara; Oliver, Maria; Zurriaga, Javier; Sancho-Tello, Maria; de Llano, Jose Javier Martin; Carda, Carmen

    2017-01-01

    Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI). The effectiveness of ACI has been shown in vitro and in vivo , but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs) to regenerate cartilage in vitro and in vivo . hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  2. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells.

    Directory of Open Access Journals (Sweden)

    Kristiina Rajala

    2010-04-01

    Full Text Available The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable.Here, we report the development of a fully defined xeno-free medium (RegES, capable of supporting the expansion of human embryonic stem cells (hESC, induced pluripotent stem cells (iPSC and adipose stem cells (ASC. We describe the use of the xeno-free medium in the derivation and long-term (>80 passages culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS, while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed.Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation described herein has the potential to be further optimized for specific

  3. Plant cell culture initiation

    NARCIS (Netherlands)

    Hall, R.D.

    2000-01-01

    The use of cultured plant cells in either organized or unorganized form has increased vey considerably in the last 10-15 yr. Many new technologies have been developed and applications in both fundamental and applied research have led to the development of some powerful tools for improving our

  4. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture

    Directory of Open Access Journals (Sweden)

    Ruth Olmer

    2018-05-01

    Full Text Available Summary: Endothelial cells (ECs are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. : In this article, U. Martin and colleagues show the generation of hiPSC endothelial cells in scalable cultures in up to 100 mL culture volume. The generated ECs show in vitro proliferation capacity and a high degree of chromosomal stability after in vitro expansion. The established protocol allows to generate hiPSC-derived ECs in relevant numbers for regenerative approaches. Keywords: hiPSC differentiation, endothelial cells, scalable culture

  5. Electrospinning PCL Scaffolds Manufacture for Three-Dimensional Breast Cancer Cell Culture

    Directory of Open Access Journals (Sweden)

    Marc Rabionet

    2017-08-01

    Full Text Available In vitro cell culture is traditionally performed within two-dimensional (2D environments, providing a quick and cheap way to study cell properties in a laboratory. However, 2D systems differ from the in vivo environment and may not mimic the physiological cell behavior realistically. For instance, 2D culture models are thought to induce cancer stem cells (CSCs differentiation, a rare cancer cell subpopulation responsible for tumor initiation and relapse. This fact hinders the development of therapeutic strategies for tumors with a high relapse percentage, such as triple negative breast cancer (TNBC. Thus, three-dimensional (3D scaffolds have emerged as an attractive alternative to monolayer culture, simulating the extracellular matrix structure and maintaining the differentiation state of cells. In this work, scaffolds were fabricated through electrospinning different poly(ε-caprolactone-acetone solutions. Poly(ε-caprolactone (PCL meshes were seeded with triple negative breast cancer (TNBC cells and 15% PCL scaffolds displayed significantly (p < 0.05 higher cell proliferation and elongation than the other culture systems. Moreover, cells cultured on PCL scaffolds exhibited higher mammosphere forming capacity and aldehyde dehydrogenase activity than 2D-cultured cells, indicating a breast CSCs enrichment. These results prove the powerful capability of electrospinning technology in terms of poly(ε-caprolactone nanofibers fabrication. In addition, this study has demonstrated that electrospun 15% PCL scaffolds are suitable tools to culture breast cancer cells in a more physiological way and to expand the niche of breast CSCs. In conclusion, three-dimensional cell culture using PCL scaffolds could be useful to study cancer stem cell behavior and may also trigger the development of new specific targets against such malignant subpopulation.

  6. Development of an automated chip culture system with integrated on-line monitoring for maturation culture of retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Mee-Hae Kim

    2017-10-01

    Full Text Available In cell manufacturing, the establishment of a fully automated, microfluidic, cell culture system that can be used for long-term cell cultures, as well as for process optimization is highly desirable. This study reports the development of a novel chip bioreactor system that can be used for automated long-term maturation cultures of retinal pigment epithelial (RPE cells. The system consists of an incubation unit, a medium supply unit, a culture observation unit, and a control unit. In the incubation unit, the chip contains a closed culture vessel (2.5 mm diameter, working volume 9.1 μL, which can be set to 37 °C and 5% CO2, and uses a gas-permeable resin (poly- dimethylsiloxane as the vessel wall. RPE cells were seeded at 5.0 × 104 cells/cm2 and the medium was changed every day by introducing fresh medium using the medium supply unit. Culture solutions were stored either in the refrigerator or the freezer, and fresh medium was prepared before any medium change by warming to 37 °C and mixing. Automated culture was allowed to continue for 30 days to allow maturation of the RPE cells. This chip culture system allows for the long-term, bubble-free, culture of RPE cells, while also being able to observe cells in order to elucidate their cell morphology or show the presence of tight junctions. This culture system, along with an integrated on-line monitoring system, can therefore be applied to long-term cultures of RPE cells, and should contribute to process control in RPE cell manufacturing.

  7. Effects of Metalloporphyrins on Heme Oxygenase-1 Transcription: Correlative Cell Culture Assays Guide in Vivo Imaging

    Directory of Open Access Journals (Sweden)

    Monica Hajdena-Dawson

    2003-07-01

    Full Text Available Heme oxygenase (HO is the rate-limiting step in the heme degradation pathway and is a potential target for the control, or prevention, of pathologic jaundice in neonates. Metalloporphyrins (Mps, a diverse set of synthetic derivatives of heme, can competitively inhibit the HO enzymes. However, certain Mps are phototoxic and some increase transcription of HO-1, the inducible HO isozyme. Therefore, effective development of this class of compounds as therapeutics for treating pathologic jaundice will require rapid and integrated biological screens to identify the most efficacious and safe Mps. To study the safety of these compounds, we assessed their cytotoxic effects and measured luciferase activity by bioluminescent imaging (BLI as an index of HO-1 transcription, first in live cell cultures and then in living transgenic reporter mice. A total of 12 Mps were first evaluated in the correlative cell culture assay. Based on results from this study, 2 Mps, zinc protoporphyrin (ZnPP and zinc bis glycol porphyrin (ZnBG, were selected for further studies in the live animal model. In vitro BLI showed ZnPP to be a strong inducer of HO-1 transcription in comparison to ZnBG, which showed minimal induction. Cytotoxicity studies revealed that ZnPP was phototoxic, whereas ZnBG had no effect on cell viability. In vivo BLI showed that both ZnPP and ZnBG had minimal effects on the levels of HO-1 transcription in the animals. Furthermore, serum enzyme assays indicated that neither caused detectable liver toxicity. These findings, and especially those with ZnBG, support the use of selected Mps as therapies for pathologic jaundice. Coupling the high throughput advantage of cell culture with the capability of imaging for whole-body temporal analyses could accelerate and refine the preclinical phases of drug development. Thus, this study serves as a model for understanding the effects of specific compounds in relation to defined targets using an integrated approach.

  8. [Biological characteristics of mesenchymal stem cell and hematopoietic stem cell in the co-culture system].

    Science.gov (United States)

    Wei, Wei; Xu, Chao; Ye, Zhi-Yong; Huang, Xiao-Jun; Yuan, Jia-En; Ma, Tian-Bao; Lin, Han-Biao; Chen, Xiu-Qiong

    2016-10-25

    The aim of the present study was to obtain the qualified hematopoietic stem/progenitor cells (HSC/HPC) and human umbilical cord-mesenchymal stem cells (MSC) in vitro in the co-culture system. Cord blood mononuclear cells were separated from umbilical cord blood by Ficoll lymphocyte separation medium, and then CD34 + HSC was collected by MACS immunomagnetic beads. The selected CD34 + HSC/HPC and MSC were transferred into culture flask. IMDM culture medium with 15% AB-type cord plasma supplemented with interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (Flt-3L) factors were used as the co-culture system for the amplification of HSC/HPC and MSC. The cellular growth status and proliferation on day 6 and 10 after co-culture were observed by using inverted microscope. The percentage of positive expression of CD34 in HSC/HPC, as well as the percentages of positive expressions of CD105, CD90, CD73, CD45, CD34 and HLA-DR in the 4 th generation MSC, was tested by flow cytometry. Semisolid colony culture was used to test the HSC/HPC colony forming ability. The osteogenic, chondrogenesis and adipogenic ability of the 4 th generation MSC were assessed. The karyotype analysis of MSC was conducted by colchicines. The results demonstrated that the HSC/HPC of co-culture group showed higher ability of amplification, CFU-GM and higher CD34 + percentage compared with the control group. The co-cultured MSC maintained the ability to differentiate into bone cells, fat cells and chondrocytes. And the karyotype stability of MSC remained normal. These results reveal that the appropriate co-culture system for MSC and HSC is developed, and via this co-culture system we could gain both two kinds of these cells. The MSCs under the co-culture system maintain the biological characteristics. The CFU-GM ability, cell counting and the flow cytometry results of HSC/HPC under the co-culture system are conform to the criterion, showing that

  9. Production of betalaines by Myrtillocactus cell cultures. Passage from heterotrophic state to autotrophic state with Asparagus cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Bulard, C; Mary, J; Chaumont, D; Gudin, C

    1982-11-01

    Myrtillocactus tissue cultures are grown from the epicotyl of young plantlets. With an appropriate growing medium it is possible, after transfer of fragments of these cultures to a liquid environment, to obtain dissociation and proliferation of cells. The production of betalaic pigments is induced in solid surroundings by adjustement of the growing medium composition and can be maintained in a liquid environment. The multiplication of pigmented cells in suspension may thus be obtained. The conversion of Asparagus cell suspensions from the heterotrophic state (use of lactose as source of carbon) to the autotrophic state (carbon supplied by CO/sub 2/) is obtained by a gradual reduction in the sugar concentration of the medium combined with a rise in the CO/sub 2/ content of the gas mixture atmosphere injected into the cultivator. The passage to the autotrophic state of a Myrtillocactus suspension would enable the production conditions of a metabolite (Betalaine) to be studied by micro-algae culture techniques.

  10. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J.

    1990-01-01

    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells

  11. Contributions of 3D Cell Cultures for Cancer Research.

    Science.gov (United States)

    Ravi, Maddaly; Ramesh, Aarthi; Pattabhi, Aishwarya

    2017-10-01

    Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Evaluation of a dental pulp-derived cell sheet cultured on amniotic membrane substrate.

    Science.gov (United States)

    Honjo, Ken-ichi; Yamamoto, Toshiro; Adachi, Tetsuya; Amemiya, Takeshi; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2015-01-01

    Mesenchymal stem cells (MSC) are transplanted for periodontal tissue regeneration, and the periodontal ligament (PDL) is regenerated using a cultured cell sheet. This cultured cell sheet is prepared using PDL-derived cells, growth factors, and amniotic membrane (AM). Dental pulp (DP)-derived cells can be easily obtained from extracted wisdom teeth, proliferate rapidly, and are less susceptible to bacterial infection than PDL-derived cells. Thus, to prepare a novel cell sheet, DP-derived cells were cultured on AM as a culture substrate for immunohistochemical examination. Wisdom teeth extracted from three adults were cut along the cement-enamel border. DP tissue was collected, minced, and primarily cultured. After three or four passage cultures, DP-derived cells were cultured on AM, followed by hematoxylin-eosin (H-E) and immunofluorescence staining. DP-derived cells cultured on AM formed a layered structure. Cells positive for vimentin, Ki-67, ZO-1, desmoplakin, CD29, 44, 105 or 146, STRO-1, collagen IV or VII or laminin 5 or α5 chain were localized. DP-derived cells proliferated on AM, while retaining the properties of DP, which allowed the cultured cell sheet to be prepared. In addition, the cultured cell sheet contained MSC, which suggests its potential application in periodontal tissue regeneration.

  13. Cytotoxicity of TSP in 3D Agarose Gel Cultured Cell.

    Directory of Open Access Journals (Sweden)

    Song-I Chun

    Full Text Available A reference reagent, 3-(trimethylsilyl propionic-2, 2, 3, 3-d4 acid sodium (TSP, has been used frequently in nuclear magnetic resonance (NMR and magnetic resonance spectroscopy (MRS as an internal reference to identify cell and tissue metabolites, and determine chemical and protein structures. This reference material has been exploited for the quantitative and dynamic analyses of metabolite spectra acquired from cells. The aim of this study was to evaluate the cytotoxicity of TSP on three-dimensionally, agarose gel, cultured cells.A human osteosarcoma cell line (MG-63 was selected, and cells were three dimensionally cultured for two weeks in an agarose gel. The culture system contained a mixture of conventional culture medium and various concentrations (0, 1, 3, 5, 7, 10, 20 30 mM of TSP. A DNA quantification assay was conducted to assess cell proliferation using Quant-iT PicoGreen dsDNA reagent and kit, and cell viability was determined using a LIVE/DEAD Viability/Cytotoxicity kit. Both examinations were performed simultaneously at 1, 3, 7 and 14 days from cell seeding.In this study, the cytotoxicity of TSP in the 3D culture of MG-63 cells was evaluated by quantifying DNA (cell proliferation and cell viability. High concentrations of TSP (from 10 to 30 mM reduced both cell proliferation and viability (to 30% of the control after one week of exposure, but no such effects were found using low concentrations of TSP (0-10 mM.This study shows that low concentrations of TSP in 3D cell culture medium can be used for quantitative NMR or MRS examinations for up to two weeks post exposure.

  14. Establishment and characterization of American elm cell suspension cultures

    Science.gov (United States)

    Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy

    2000-01-01

    Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...

  15. Multiciliated Cells in Animals.

    Science.gov (United States)

    Meunier, Alice; Azimzadeh, Juliette

    2016-12-01

    Many animal cells assemble single cilia involved in motile and/or sensory functions. In contrast, multiciliated cells (MCCs) assemble up to 300 motile cilia that beat in a coordinate fashion to generate a directional fluid flow. In the human airways, the brain, and the oviduct, MCCs allow mucus clearance, cerebrospinal fluid circulation, and egg transportation, respectively. Impairment of MCC function leads to chronic respiratory infections and increased risks of hydrocephalus and female infertility. MCC differentiation during development or repair involves the activation of a regulatory cascade triggered by the inhibition of Notch activity in MCC progenitors. The downstream events include the simultaneous assembly of a large number of basal bodies (BBs)-from which cilia are nucleated-in the cytoplasm of the differentiating MCCs, their migration and docking at the plasma membrane associated to an important remodeling of the actin cytoskeleton, and the assembly and polarization of motile cilia. The direction of ciliary beating is coordinated both within cells and at the tissue level by a combination of planar polarity cues affecting BB position and hydrodynamic forces that are both generated and sensed by the cilia. Herein, we review the mechanisms controlling the specification and differentiation of MCCs and BB assembly and organization at the apical surface, as well as ciliary assembly and coordination in MCCs. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  17. Stimulation and support of haemopoietic stem cell proliferation by irradiated stroma cell colonies in bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, Hiroko; Seto, Akira

    1981-01-01

    A culture system was established in which haemopoietic stem cells can undergo a recovery proliferation after a depletion of the stem cells, completely in vitro. To elucidate the source of the stimulatory factors, normal bone marrow cells were overlayed on top of the irradiated adherent 'stromal' cell colonies in the bone marrow cell culture. This stimulated the proliferation of haemopoietic stem cells in the cultured cells in suspension. The present results indicate that the stromal cells produce factors which stimulate stem cell proliferation. Whether the stimulation is evoked by direct cell-cell interactions or by humoral factors is as yet to be studied. (author)

  18. Immunocytochemical characterization of primary cell culture in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Luis M.M. Flórez

    Full Text Available Abstract: Immunochemistry with anti-vimentin, anti-lysozyme, anti-alpha 1 antitrypsin, anti-CD3 and anti-CD79α antibodies has been used for characterization of primary cell culture in the transmissible venereal tumor (TVT. Samples for primary cell culture and immunohistochemistry assays were taken from eight dogs with cytological and clinical diagnosis of TVT. To validate the immunochemical results in the primary cell culture of TVT, a chromosome count was performed. For the statistical analysis, the Mann-Whitney test with p<0.05 was used. TVT tissues and culture cells showed intense anti-vimentin immunoreactivity, lightly to moderate immunoreactivity for anti-lysozyme, and mild for anti-alpha-antitrypsin. No marking was achieved for CD3 and CD79α. All culture cells showed chromosomes variable number of 56 to 68. This is the first report on the use of immunocytochemical characterization in cell culture of TVT. Significant statistic difference between immunochemistry in tissue and culture cell was not established, what suggests that the use of this technique may provide greater certainty for the confirmation of tumors in the primary culture. This fact is particularly important because in vitro culture of tumor tissues has been increasingly used to provide quick access to drug efficacy and presents relevant information to identify potential response to anticancer medicine; so it is possible to understand the behavior of the tumor.

  19. Irradiated murine fibroblasts as feeder layer used in human cell culture

    International Nuclear Information System (INIS)

    Almeida, Tiago L.; Klingbeil, Fatima G.; Yoshito, Daniele; Caproni, Priscila; Mathor, Monica B.; Herson, Marisa R.

    2007-01-01

    In 1975, Rheinwald and Green published an in vitro model for keratinocyte cell cultures in which the use of murine fibroblasts, as a feeder layer was introduced. These cells are modified fibroblasts, which presence render keratinocyte cells to remain proliferative for longer periods of time. This optimization of culture outputs has allowed for several clinical applications of confluent keratinocyte cultures as skin substitutes or wound dressings in situations such as post burn extensive skin loss, loss of oral mucosa, and other skin disorders. Nevertheless, proliferation of fibroblast in co-culture with keratinocytes must be controlled by anti-proliferative measures such as irradiation; at the same time, keratinocytes require specific nutrients in the culture medium, which may interfere with the fibroblast feeder layer viability. Therefore, the thorough understanding of the impact of different issues such as culture media composition, irradiation dose and pre-plating storage conditions of irradiated fibroblast to be used as feeder layer in these co-culture systems is important. In this work, changes as far as viability and proliferative rates of irradiated fibroblasts in culture were evaluated in relation to the type of culture medium used, dose of gamma radiation exposure, storage and timing of cell plating post irradiation. Results indicate that the type of culture medium used and time-lag between irradiation, refrigeration and plating of irradiated cells do not have significant impact in culture outcomes. However, the dose of gamma radiation administered to the cells may influence the final quality of these cells if to be used as a feeder layer. (author)

  20. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells.

    Science.gov (United States)

    Tong, Zhixiang; Martyn, Keir; Yang, Andy; Yin, Xiaolei; Mead, Benjamin E; Joshi, Nitin; Sherman, Nicholas E; Langer, Robert S; Karp, Jeffrey M

    2018-02-01

    Current ISC culture systems face significant challenges such as animal-derived or undefined matrix compositions, batch-to-batch variability (e.g. Matrigel-based organoid culture), and complexity of assaying cell aggregates such as organoids which renders the research and clinical translation of ISCs challenging. Here, through screening for suitable ECM components, we report a defined, collagen based monolayer culture system that supports the growth of mouse and human intestinal epithelial cells (IECs) enriched for an Lgr5 + population comparable or higher to the levels found in a standard Matrigel-based organoid culture. The system, referred to as the Bolstering Lgr5 Transformational (BLT) Sandwich culture, comprises a collagen IV-coated porous substrate and a collagen I gel overlay which sandwich an IEC monolayer in between. The distinct collagen cues synergistically regulate IEC attachment, proliferation, and Lgr5 expression through maximizing the engagement of distinct cell surface adhesion receptors (i.e. integrin α2β1, integrin β4) and cell polarity. Further, we apply our BLT Sandwich system to identify that the addition of a bone morphogenetic protein (BMP) receptor inhibitor (LDN-193189) improves the expansion of Lgr5-GFP + cells from mouse small intestinal crypts by nearly 2.5-fold. Notably, the BLT Sandwich culture is capable of expanding human-derived IECs with higher LGR5 mRNA levels than conventional Matrigel culture, providing superior expansion of human LGR5 + ISCs. Considering the key roles Lgr5 + ISCs play in intestinal epithelial homeostasis and regeneration, we envision that our BLT Sandwich culture system holds great potential for understanding and manipulating ISC biology in vitro (e.g. for modeling ISC-mediated gut diseases) or for expanding a large number of ISCs for clinical utility (e.g. for stem cell therapy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Continuous Release of Tumor-Derived Factors Improves the Modeling of Cachexia in Muscle Cell Culture

    Directory of Open Access Journals (Sweden)

    Robert W. Jackman

    2017-09-01

    Full Text Available Cachexia is strongly associated with a poor prognosis in cancer patients but the biological trigger is unknown and therefore no therapeutics exist. The loss of skeletal muscle is the most deleterious aspect of cachexia and it appears to depend on secretions from tumor cells. Models for studying wasting in cell culture consist of experiments where skeletal muscle cells are incubated with medium conditioned by tumor cells. This has led to candidates for cachectic factors but some of the features of cachexia in vivo are not yet well-modeled in cell culture experiments. Mouse myotube atrophy measured by myotube diameter in response to medium conditioned by mouse colon carcinoma cells (C26 is consistently less than what is seen in muscles of mice bearing C26 tumors with moderate to severe cachexia. One possible reason for this discrepancy is that in vivo the C26 tumor and skeletal muscle share a circulatory system exposing the muscle to tumor factors in a constant and increasing way. We have applied Transwell®-adapted cell culture conditions to more closely simulate conditions found in vivo where muscle is exposed to the ongoing kinetics of constant tumor secretion of active factors. C26 cells were incubated on a microporous membrane (a Transwell® insert that constitutes the upper compartment of wells containing plated myotubes. In this model, myotubes are exposed to a constant supply of cancer cell secretions in the medium but without direct contact with the cancer cells, analogous to a shared circulation of muscle and cancer cells in tumor-bearing animals. The results for myotube diameter support the idea that the use of Transwell® inserts serves as a more physiological model of the muscle wasting associated with cancer cachexia than the bolus addition of cancer cell conditioned medium. The Transwell® model supports the notion that the dose and kinetics of cachectic factor delivery to muscle play a significant role in the extent of pathology.

  2. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  3. Rheological characteristics of cell suspension and cell culture of Perilla frutescens.

    Science.gov (United States)

    Zhong, J J; Seki, T; Kinoshita, S; Yoshida, T

    1992-12-05

    Physical properties such as viscosity, fluid dynamic behavior of cell suspension, and size distribution of cell aggregates of a plant, Perilla frustescens, cultured in a liquid medium were studied. As a result of investigations using cells harvester after 12 days of cultivation in a flask, it was found that the apparent viscosity of the cell suspension did not change with any variation of cell concentration below 5 g dry cell/L but markedly increased when the cell concentration increased over 12.8 g dry cell/L. The cell suspension exhibited the characteristics of a Bingham plastic fluid with a small yield stress. The size of cell aggregates in the range 74 to 500 mum did not influence the rheological characteristics of the cell suspension. The rheological characteristics of cultivation mixtures of P. frutescens cultivated in a flask and in a bioreactor were also investigated. The results showed that the flow characteristics of the cell culture could be described by a Bingham plastic model. At the later stage of cultivation, the apparent viscosity increased steadily, even though the biomass concentration (by dry weight) decreased, due to the increase of individual cell size. (c) 1992 John Wiley & Sons, Inc.

  4. Boron neutron capture therapy for clear cell sarcoma (CCS): biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models.

    Science.gov (United States)

    Andoh, T; Fujimoto, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Kawabata, S; Kirihata, M; Akisue, T; Yayama, K; Kurosaka, M; Miyatake, S; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake l-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of (10)B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg). Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-01-01

    Highlights: ► Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). ► Presence of SCs dramatically increased proliferation and migration of UCMSCs. ► Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of “nurse” cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  6. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  7. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  8. Development of Cell Culture Microdevice Actuated by Piezoelectric Thin Films for Delivering Mechanical Vibratory Stimuli to Cells

    International Nuclear Information System (INIS)

    Yamada, Y; Umegaki, G; Kawashima, T; Nagai, M; Shibata, T; Masuzawa, T; Kimura, T; Kishida, A

    2012-01-01

    In order to realize a cell culture microdevice actuated by piezoelectric thin films for on-chip regulation of cell functions, this paper reported on a feasibility study by using the microdevice with KOH-etched cavities surrounded by four (111) sidewalls as microchambers in order to introduce cells to be cultured. As a result, the vibration characteristic of the PZT actuator was improved by using an electric field -150 kV/cm at 70 C for 30 min in poling process. A feasibility study on cell culture for delivering mechanical vibratory stimuli to cells revealed the microdevice could be applicable to the culture with actual biological cells. In addition, it was found that O 2 -plasma treated parylene-C process could be applicable for obtaining homogeneous surface of cell culture microdevice.

  9. Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system.

    Directory of Open Access Journals (Sweden)

    Bridget S Fisher

    Full Text Available Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.

  10. Bone marrow stromal cell therapy for ischemic stroke: A meta-analysis of randomized control animal trials.

    Science.gov (United States)

    Wu, Qing; Wang, Yuexiang; Demaerschalk, Bart M; Ghimire, Saruna; Wellik, Kay E; Qu, Wenchun

    2017-04-01

    Background Results of animal studies assessing efficacy of bone marrow stromal cell therapy for ischemic stroke remain inconsistent. Aims The aims are to assess efficacy of bone marrow stromal cell therapy for ischemic stroke in animal studies. Methods Randomized controlled animal trials assessing efficacy of bone marrow stromal cell therapy were eligible. Stroke therapy academic industry round table was used to assess methodologic quality of included studies. Primary outcomes were total infarction volume and modified Neurological Severity Score. Multiple prespecified sensitivity analyses and subgroup analyses were conducted. Random effects models were used for meta-analysis. Results Thirty-three randomized animal trials were included with a total of 796 animals. The median quality score was 6 (interquartile range, 5-7). Bone marrow stromal cell therapy decreased total infarction volume (standardized mean difference, 0.897; 95% confidence interval, 0.553-1.241; P animals treated with bone marrow stromal cell and controls was 2.47 (95% confidence interval, 1.84-3.11; P animal studies. Conclusions Bone marrow stromal cell therapy significantly decreased total infarction volume and increased neural functional recovery in randomized controlled animal models of ischemic stroke.

  11. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  12. Novel culturing platform for brain slices and neuronal cells

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya

    2015-01-01

    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been...... tested successfully with brain slices and PC12 cells. The culture substrate can be modified using metal electrodes and/or nanostructures for conducting electrical measurements while culturing and for better mimicking the in vivo conditions....

  13. Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells

    Science.gov (United States)

    Sun, Xiuzhi S.; Nguyen, Thu A.

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204

  14. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method.

    Science.gov (United States)

    Kim, So-Jung; Jung, Ji-Won; Ha, Hye-Yeong; Koo, Soo Kyung; Kim, Eung-Gook; Kim, Jung-Hyun

    2017-03-01

    Embryonic stem cells (ESCs) can be expanded infinitely in vitro and have the potential to differentiate into hematopoietic stem cells (HSCs); thus, they are considered a useful source of cells for HSC production. Although several technical in vitro methods for engineering HSCs from pluripotent stem cells have been developed, clinical application of HSCs engineered from pluripotent stem cells is restricted because of the possibility of xenogeneic contamination resulting from the use of murine materials. Human ESCs (CHA-hES15) were cultured on growth factor-reduced Matrigel-coated dishes in the mTeSR1 serum-free medium. When the cells were 70% confluent, we initiated HSC differentiation by three methods involving (1) knockout serum replacement (KSR), cytokines, TGFb1, EPO, and FLT3L; (2) KSR, cytokines, and bFGF; or (3) cytokines and bFGF. Among the three differentiation methods, the minimal number of cytokines without KSR resulted in the greatest production of HSCs. The optimized method resulted in a higher proportion of CD34 + CD43 + hematopoietic progenitor cells (HPCs) and CD34 + CD45 + HPCs compared to the other methods. In addition, the HSCs showed the potential to differentiate into multiple lineages of hematopoietic cells in vitro . In this study, we optimized a two-step, serum-free, animal protein-free, KSR-free, feeder-free, chemically defined monolayer culture method for generation of HSCs and hematopoietic stem and progenitor cells (HSPCs) from human ESCs.

  15. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  16. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines).

    Science.gov (United States)

    Doroshenko, Alexander; Halperin, Scott A

    2009-06-01

    Annual influenza epidemics continue to have a considerable impact in both developed and developing countries. Vaccination remains the principal measure to prevent seasonal influenza and reduce associated morbidity and mortality. The WHO recommends using established mammalian cell culture lines as an alternative to egg-based substrates in the manufacture of influenza vaccine. In June 2007, the EMEA approved Optaflu, a Madin Darby canine kidney cell culture-derived influenza vaccine manufactured by Novartis Vaccines. This review examines the advantages and disadvantages of cell culture-based technology for influenza vaccine production, compares immunogenicity and safety data for Optaflu with that of currently marketed conventional egg-based influenza vaccines, and considers the prospects for wider use of cell culture-based influenza vaccines.

  17. The Reconfigured Body. Human-animal relations in xenotransplantation

    Directory of Open Access Journals (Sweden)

    Kristofer Hansson

    2011-12-01

    Full Text Available The article explores issues concerning the reconfiguration of human and animal bodies in modern biotechnology. The examples are based on xenotransplantation: Transplantation of cells, tissue and organs from animals to humans. Three thematic issues that emerged from xenotransplantation research in Sweden in the 1990s and early 2000s are examined in the article. The first issue concerns how the pig was introduced as a donor animal in xenotransplantation and, at the same time, dehumanized in relation to what is human. Baboons and chimpanzees that had previously been used in xenotransplantation now became an ethically problematic choice, and were in stead humanized. The second issue concerns the introduction of transgenic and cloned pigs as commoditized objects. The biotechnological development reconfigured the pig’s cells, tissue and organs to become more human-like. The third issue concerns the risk that pigs contain retrovirus that could infect the transplanted patients. The human body became part of a network of both animal and retrovirus. Boundlessness between human and animal bodies appears in these three thematic phases and is analysed from a cultural perspective.

  18. Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture.

    Science.gov (United States)

    Im, Pilseon; Ji, Dong Hwan; Kim, Min Kyung; Kim, Jaeyun

    2017-05-15

    Inverse opal hydrogels (IOHs) for cell culture were fabricated and optimized using calcium-crosslinked alginate microbeads as sacrificial template and gelatin as a matrix. In contrast to traditional three-dimensional (3D) scaffolds, the gelatin IOHs allowed the utilization of both the macropore surface and inner matrix for cell co-culture. In order to remove templates efficiently for the construction of 3D interconnected macropores and to maintain high cell viability during the template removal process using EDTA solution, various factors in fabrication, including alginate viscosity, alginate concentration, alginate microbeads size, crosslinking calcium concentration, and gelatin network density were investigated. Low viscosity alginate, lower crosslinking calcium ion concentration, and lower concentration of alginate and gelatin were found to obtain high viability of cells encapsulated in the gelatin matrix after removal of the alginate template by EDTA treatment by allowing rapid dissociation and diffusion of alginate polymers. Based on the optimized fabrication conditions, gelatin IOHs showed good potential as a cell co-culture system, applicable to tissue engineering and cancer research. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems.

    Science.gov (United States)

    Yeatts, Andrew B; Choquette, Daniel T; Fisher, John P

    2013-02-01

    Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Blast cells transfer experimental hypersensitivity pneumonitis in guinea pigs

    International Nuclear Information System (INIS)

    Schuyler, M.; Cook, C.; Listrom, M.; Fengolio-Preiser, C.

    1988-01-01

    We previously demonstrated that experimental hypersensitivity pneumonitis (HP) can be transferred by lymph node cells (LNC) cultured in vitro with antigen. The purpose of this study was to identify the cells responsible for transfer and to determine if pulmonary cells can transfer HP. We cultured LNC from sensitized Strain 2 guinea pigs with a soluble extract of Micropolyspora faeni for 72 h, separated lymphoblasts from small lymphocytes, and transferred both subpopulations intravenously to syngeneic recipients. We also transferred irradiated lymphoblasts (1,500 rads), macrophage-depleted, lymphoblast-enriched populations, and pulmonary cells either without culture or after culture with M. faeni. Control animals received an equal volume of medium. All recipient animals were challenged intratracheally (i.t.) with M. faeni 48 h after the cell transfer, and they were killed 4 days after i.t. challenge. Randomly selected microscopic fields of the lung (250/animal) were judged to be normal or abnormal without knowledge of treatment. This measurement was reproducible (r = 0.95 for duplicate measurements, n = 55). All guinea pigs were maintained in HEPA-filtered air. There was a low level of pulmonary response to an i.t. challenge of M. faeni in animals that received medium. Animals that received pulmonary cells, either cultured or noncultured, did not differ from those in the control group. There was a substantial increase (p less than 0.01) in the extent of pulmonary abnormalities in the recipients of the lymphoblast population, with significant correlation (r = 0.87, p less than 0.01) between the number of lymphoblasts transferred and the extent of pulmonary abnormalities

  1. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  2. Cultured meat: every village its own factory?

    Science.gov (United States)

    van der Weele, Cor; Tramper, Johannes

    2014-06-01

    Rising global demand for meat will result in increased environmental pollution, energy consumption, and animal suffering. Cultured meat, produced in an animal-cell cultivation process, is a technically feasible alternative lacking these disadvantages, provided that an animal-component-free growth medium can be developed. Small-scale production looks particularly promising, not only technologically but also for societal acceptance. Economic feasibility, however, emerges as the real obstacle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The effects of low-level ionising radiation on primary explant cultures of rainbow trout Pronephros

    International Nuclear Information System (INIS)

    Olwell, P.; Ni Shuilleabhain, S.; Mothersill, C.; Seymour, C.; Cottell, D.C.; Lyng, F.M.

    2004-01-01

    It has long been known that the haematopoietic tissue of mammals is one of the most radiosensitive tissues. In vitro studies on prawn have also shown that low doses of radiation has an extremely deleterious effect on cells cultured from this animal's blood forming tissues. This raises the question on the relative effects of radiation between animals from different species. One of the most important aquatic animals, from both an economic and ecologic point of view, is the fish. With this in mind, primary cultures of the blood forming tissues of rainbow trout were exposed to radiation followed by a morphological comparison between control and irradiated cultures. The cultured cells were characterised as macrophages following incubation with non-specific fluorescent beads and human apoptotic PMN. The cells demonstrated both specific and non-specific phagocytosis, by consuming the non-indigenous bodies, and were classified as phagocytic leucocytes. These cells were found in two morphological forms, stretched and rounded. It was shown that there was a commensurate increase in the number of stretched cells following application of radiation. Radiation was also shown to cause a dose-dependent increase in the amounts of apoptosis and necrosis in cells over time. The phagocytic efficacy of the irradiated leucocytes compared to controls was also investigated. (author)

  4. Mesenchymal Stromal Cells Cultured in Serum from Heart Failure Patients Are More Resistant to Simulated Chronic and Acute Stress

    Directory of Open Access Journals (Sweden)

    Timo Z. Nazari-Shafti

    2018-01-01

    Full Text Available Despite regulatory issues surrounding the use of animal-derived cell culture supplements, most clinical cardiac cell therapy trials using mesenchymal stromal cells (MSCs still rely on fetal bovine serum (FBS for cell expansion before transplantation. We sought to investigate the effect of human serum from heart failure patients (HFS on cord blood MSCs (CB-MSCs during short-term culture under regular conditions and during simulated acute and chronic stress. Cell survival, proliferation, metabolic activity, and apoptosis were quantified, and gene expression profiles of selected apoptosis and cell cycle regulators were determined. Compared to FBS, HFS and serum from healthy donors (CS showed similar effects by substantially increasing cell survival during chronic and acute stress and by increasing cell yields 5 days after acute stress. Shortly after the termination of acute stress, both HFS and CS resulted in a marked decrease in apoptotic cells. Transcriptome analysis suggested a decrease in TNF-mediated induction of caspases and decreased activation of mitochondrial apoptosis. Our data confirm that human serum from both healthy donors and heart failure patients results in increased cell yields and increased resistance to cellular stress signals. Therefore, we consider autologous serum a valid alternative to FBS in cell-based therapies addressing severe heart disease.

  5. Pros and cons of fish skin cells in culture: long-term full skin and short-term scale cell culture from rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Rakers, Sebastian; Klinger, Matthias; Kruse, Charli; Gebert, Marina

    2011-12-01

    Here, we report the establishment of a permanent skin cell culture from rainbow trout (Oncorhynchus mykiss). The cells of the fish skin cell culture could be propagated over 60 passages so far. Furthermore, we show for the first time that it is possible to integrate freshly harvested rainbow trout scales into this new fish skin cell culture. We further demonstrated that epithelial cells derived from the scales survived in the artificial micro-environment of surrounding fibroblast-like cells. Also, antibody staining indicated that both cell types proliferated and started to build connections with the other cell type. It seems that it is possible to generate an 'artificial skin' with two different cell types. This could lead to the development of a three-dimensional test system, which might be a better in vitro representative of fish skin in vivo than individual skin cell lines. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Preparation of labelled lipids by the use of plant cell cultures

    International Nuclear Information System (INIS)

    Mangold, H.K.

    1978-01-01

    The preparation of some radioacitvely labelled lipids by the use of plant cell cultures is discussed and further applications of the new method are suggested. Cell suspension cultures of rape (Brassica napus) and soya (Glycine max) have been used for the preparation of lipids labelled with radioisotopes. Radioactive acetic acid as well as various long-chain fatty acids are readily incorporated into the neutral and ionic lipids of plant cell cultures. In addition, 14 C-labelled glycerol, ethanolamine and choline are well utilized by the cells. Randomly labelled lipids have been obtained by incubating cell suspension cultures of rape and soya with [1- 14 C] acetic acid, and uniformly labelled lipids have been isolated from cultures that had been incubated with a mixture of [1- 14 C] acetic acid plus [2- 14 C] acetic acid. The use of techniques of plant cell cultures for the preparation of lipds labelled with stable or radioactive isotopesappears particularly rewarding because the uptake of precursors by the cells and their incorporation into various lipid compounds proceeds rapidly and often quanitatively.This new approach should be useful also for the biosynthesis of lipids whose acyl moieties contain a spn radical, a fluorescent group, or a light-sensitive label. Thus, plant cell cultures constitute valuable new tools for the biosynthetic preparation of a great variety of labelled lipids. (A.G.)

  7. Further characterization of the adhesive-tumor-cell culture system for measuring the radiosensitivity of human tumor primary cultures

    International Nuclear Information System (INIS)

    Brock, W.A.; Bock, S.P.; Williams, M.; Baker, F.L.

    1987-01-01

    This study extends the use of the adhesive-tumor-cell culture system to include: over 100 sensitivity measurements at 2.0 Gy; tumorgenicity determinations in nude mice; and flow cytometry of the cells grown in the system. The malignant nature of the growing cells was proved by injecting cells into nude mice. Tumors resulted in 60% of the cases and the histology of each xenograft was similar to that of the human tumor. Flow cytometry was used to obtain DNA histograms of the original cell suspension and of cultures during the two week culture period in order to obtain quantitative information about the growth of aneuploid versus diploid populations. The results thus far demonstrate that 95% of aneuploid populations yield aneuploid growth; of the first 20 cases studied, only one suspension with an aneuploid peak resulted in diploid growth. Of further interest was the observation that it is not unusual for a minor aneuploid population to become the predominate growth fraction after two weeks in culture. These results demonstrate that the adhesive-tumor-cell culture system supports the growth of malignant cells, that multiple cell populations exist in cell suspensions derived from solid tumors, and that differences exist between the radiosensitivity of cells at 2.0 Gy in different histology types

  8. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries?

    Science.gov (United States)

    Ledur, Pítia Flores; Onzi, Giovana Ravizzoni; Zong, Hui; Lenz, Guido

    2017-09-15

    In cancer research, the use of established cell lines has gradually been replaced by primary cell cultures due to their better representation of in vivo cancer cell behaviors. However, a major challenge with primary culture involves the finding of growth conditions that minimize alterations in the biological state of the cells. To ensure reproducibility and translational potentials for research findings, culture conditions need to be chosen so that the cell population in culture best mimics tumor cells in vivo . Glioblastoma (GBM) is one of the most aggressive and heterogeneous tumor types and the GBM research field would certainly benefit from culture conditions that could maintain the original plethora of phenotype of the cells. Here, we review culture media and supplementation options for GBM cultures, the rationale behind their use, and how much those choices affect drug-screening outcomes. We provide an overview of 120 papers that use primary GBM cultures and discuss the current predominant conditions. We also show important primary research data indicating that "mis-cultured" glioma cells can acquire unnatural drug sensitivity, which would have devastating effects for clinical translations. Finally, we propose the concurrent test of four culture conditions to minimize the loss of cell coverage in culture.

  9. Ex vivo electroporation of retinal cells: a novel, high efficiency method for functional studies in primary retinal cultures.

    Science.gov (United States)

    Vergara, M Natalia; Gutierrez, Christian; O'Brien, David R; Canto-Soler, M Valeria

    2013-04-01

    Primary retinal cultures constitute valuable tools not only for basic research on retinal cell development and physiology, but also for the identification of factors or drugs that promote cell survival and differentiation. In order to take full advantage of the benefits of this system it is imperative to develop efficient and reliable techniques for the manipulation of gene expression. However, achieving appropriate transfection efficiencies in these cultures has remained challenging. The purpose of this work was to develop and optimize a technique that would allow the transfection of chick retinal cells with high efficiency and reproducibility for multiple applications. We developed an ex vivo electroporation method applied to dissociated retinal cell cultures that offers a significant improvement over other currently available transfection techniques, increasing efficiency by five-fold. In this method, eyes were enucleated, devoid of RPE, and electroporated with GFP-encoding plasmids using custom-made electrodes. Electroporated retinas were then dissociated into single cells and plated in low density conditions, to be analyzed after 4 days of incubation. Parameters such as voltage and number of electric pulses, as well as plasmid concentration and developmental stage of the animal were optimized for efficiency. The characteristics of the cultures were assessed by morphology and immunocytochemistry, and cell viability was determined by ethidium homodimer staining. Cell imaging and counting was performed using an automated high-throughput system. This procedure resulted in transfection efficiencies in the order of 22-25% of cultured cells, encompassing both photoreceptors and non-photoreceptor neurons, and without affecting normal cell survival and differentiation. Finally, the feasibility of the technique for cell-autonomous studies of gene function in a biologically relevant context was tested by carrying out gain and loss-of-function experiments for the

  10. 40 CFR 798.5300 - Detection of gene mutations in somatic cells in culture.

    Science.gov (United States)

    2010-07-01

    ... cells in culture. 798.5300 Section 798.5300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5300 Detection of gene mutations in somatic cells in culture. (a) Purpose. Mammalian cell culture... selected by resistance to ouabain. (2) Description. Cells in suspension or monolayer culture are exposed to...

  11. Prospects for the use of plant cell cultures in food biotechnology.

    Science.gov (United States)

    Davies, Kevin M; Deroles, Simon C

    2014-04-01

    Plant cell cultures can offer continuous production systems for high-value food and health ingredients, independent of geographical or environmental variations and constraints. Yet despite many improvements in culture technologies, cell line selection, and bioreactor design, there are few commercial successes. This is principally due to the culture yield and market price of food products not being sufficient to cover the plant cell culture production costs. A better understanding of the underpinning biological mechanisms that control the target metabolite biosynthetic pathways may allow the metabolic engineering of cell lines to provide for economically competitive product yields. However, uncertainty around the regulatory and public acceptance of products derived from engineered cell cultures presents a barrier to the uptake of the technology by food product companies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cytotoxicity of extracts of spices to cultured cells.

    Science.gov (United States)

    Unnikrishnan, M C; Kuttan, R

    1988-01-01

    The cytotoxicity of the extracts from eight different spices used in the Indian diet was determined using Dalton's lymphoma ascites tumor cells and human lymphocytes in vitro and Chinese Hamster Ovary cells and Vero cells in tissue culture. Alcoholic extracts of the spices were found to be more cytotoxic to these cells than their aqueous extracts. Alcoholic extracts of several spices inhibited cell growth at concentrations of 0.2-1 mg/ml in vitro and 0.12-0.3 mg/ml in tissue culture. Ginger, pippali (native to India; also called dried catkins), pepper, and garlic showed the highest activity followed by asafetida, mustard, and horse-gram (native to India). These extracts also inhibited the thymidine uptake into DNA.

  13. In vitro culture and characterization of human lung cancer circulating tumor cells isolated by size exclusion from an orthotopic nude-mouse model expressing fluorescent protein.

    Science.gov (United States)

    Kolostova, Katarina; Zhang, Yong; Hoffman, Robert M; Bobek, Vladimir

    2014-09-01

    In the present study, we demonstrate an animal model and recently introduced size-based exclusion method for circulating tumor cells (CTCs) isolation. The methodology enables subsequent in vitro CTC-culture and characterization. Human lung cancer cell line H460, expressing red fluorescent protein (H460-RFP), was orthotopically implanted in nude mice. CTCs were isolated by a size-based filtration method and successfully cultured in vitro on the separating membrane (MetaCell®), analyzed by means of time-lapse imaging. The cultured CTCs were heterogeneous in size and morphology even though they originated from a single tumor. The outer CTC-membranes were blebbing in general. Abnormal mitosis resulting in three daughter cells was frequently observed. The expression of RFP ensured that the CTCs originated from lung tumor. These readily isolatable, identifiable and cultivable CTCs can be used to characterize individual patient cancers and for screening of more effective treatment.

  14. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    Science.gov (United States)

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  15. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    Science.gov (United States)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  16. Enhanced chondrocyte culture and growth on biologically inspired nanofibrous cell culture dishes.

    Science.gov (United States)

    Bhardwaj, Garima; Webster, Thomas J

    2016-01-01

    Chondral and osteochondral defects affect a large number of people in which treatment options are currently limited. Due to its ability to mimic the natural nanofibrous structure of cartilage, this current in vitro study aimed at introducing a new scaffold, called XanoMatrix™, for cartilage regeneration. In addition, this same scaffold is introduced here as a new substrate onto which to study chondrocyte functions. Current studies on chondrocyte functions are limited due to nonbiologically inspired cell culture substrates. With its polyethylene terephthalate and cellulose acetate composition, good mechanical properties and nanofibrous structure resembling an extracellular matrix, XanoMatrix offers an ideal surface for chondrocyte growth and proliferation. This current study demonstrated that the XanoMatrix scaffolds promote chondrocyte growth and proliferation as compared with the Corning and Falcon surfaces normally used for chondrocyte cell culture. The XanoMatrix scaffolds also have greater hydrophobicity, three-dimensional surface area, and greater tensile strength, making them ideal candidates for alternative treatment options for chondral and osteochondral defects as well as cell culture substrates to study chondrocyte functions.

  17. 5-Fluorouracil-induced apoptosis in cultured oral cancer cells.

    Science.gov (United States)

    Tong, D; Poot, M; Hu, D; Oda, D

    2000-03-01

    Chemotherapy is commonly used to treat advanced oral squamous cell carcinoma (SCC) and is known to kill cancer cells through apoptosis. Our hypothesis states that 5-fluorouracil (5FU) also kills cultured oral epithelial cells through programmed cell death or apoptosis. Cultured oral cancer cells were exposed to an optimum dose of 20 mg/ml of 5FU. Cells were analyzed for changes in cell cycle distribution and induction of cell death including apoptosis. Normal control, human papilloma virus-immortalized (PP), ATCC SCC cell line (CA1) and two primary oral SCC cell lines (CA3 and -4) were studied. Inhibition of apoptosis by a pan-caspase inhibitor was used. SYTO 11 flow cytometry showed increased apoptosis in all 5FU-treated cell cultures compared to untreated controls. The results show biological variation in apoptotic response. CA1 had the lowest apoptotic rate of the cancer cell lines at 1.5%. Next lowest was CA3, followed by CA4 and PP. In addition, alteration in the G1 and S phase fractions were found. Untreated CA1 showed 28% G1, 53% S compared to 43% G1, and 40% S of treated. We investigated the pathway of apoptosis using the pan-caspase inhibitor IDN-1529 by methylthiazolyl diphenyl tetrazolium bromide (MTT) colorimetric analysis. Results showed mild inhibition of cell death when cells were incubated with 50 microM IDN-1529 for 24 h. This suggests a probable caspase-dependent apoptotic pathway. In conclusion, our data suggest that 5FU induces oral cancer cell death through apoptosis and that biological variation exists between normal and cancer cells and between different types of cancer cells themselves. Our data indicate that cultures of a useful in vitro model for chemosensitivity assays are possible. Our results also suggest a caspase-dependent pathway for chemocytotoxicity in oral SCC.

  18. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan); Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan)

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  19. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    International Nuclear Information System (INIS)

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-01-01

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li 2 CO 3 were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  20. Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion

    DEFF Research Database (Denmark)

    Petronis, Sarunas; Stangegaard, Michael; Christensen, C.

    2006-01-01

    Modern microfabrication and microfluidic technologies offer new opportunities in the design and fabrication of miniaturized cell culture systems for online monitoring of living cells. We used laser micromachining and thermal bonding to fabricate an optically transparent, low-cost polymeric chip...... for long-term online cell culture observation under controlled conditions. The chip incorporated a microfluidic flow equalization system, assuring uniform perfusion of the cell culture media throughout the cell culture chamber. The integrated indium-tin-oxide heater and miniature temperature probe linked....... HeLa cells were cultured for up to 2 weeks within the cell culture chip and monitored using a time-lapse video recording microscopy setup. Cell attachment and spreading was observed during the first 10-20 h (lag phase). After approximately 20 h, cell growth gained exponential character...

  1. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    Science.gov (United States)

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P Skeletal muscle cells were...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P contracted, but not in the moderately contracted muscle cells...

  3. Validation of cell-free culture using scanning electron microscopy (SEM) and gene expression studies.

    Science.gov (United States)

    Yang, R; Elankumaran, Y; Hijjawi, N; Ryan, U

    2015-06-01

    A cell-free culture system for Cryptosporidium parvum was analysed using scanning electron microscopy (SEM) to characterise life cycle stages and compare gene expression in cell-free culture and cell culture using HCT-8 cells. Cryptosporidium parvum samples were harvested at 2 h, 8 h, 14 h, 26 h, 50 h, 74 h, 98 h, 122 h and 170 h, chemically fixed and specimens were observed using a Zeiss 1555 scanning electron microscope. The presence of sporozoites, trophozoites and type I merozoites were identified by SEM. Gene expression in cell culture and cell-free culture was studied using reverse transcriptase quantitative PCR (RT-qPCR) of the sporozoite surface antigen protein (cp15), the glycoprotein 900 (gp900), the Cryptosporidium oocyst wall protein (COWP) and 18S ribosomal RNA (rRNA) genes in both cell free and conventional cell culture. In cell culture, cp15 expression peaked at 74 h, gp900 expression peaked at 74 h and 98 h and COWP expression peaked at 50 h. In cell-free culture, CP15 expression peaked at 98 h, gp900 expression peaked at 74 h and COWP expression peaked at 122 h. The present study is the first to compare gene expression of C. parvum in cell culture and cell-free culture and to characterise life cycle stages of C. parvum in cell-free culture using SEM. Findings from this study showed that gene expression patterns in cell culture and cell-free culture were similar but in cell-free culture, gene expression was delayed for CP15 and COWP in cell free culture compared with the cell culture system and was lower. Although three life cycle stageswere conclusively identified, improvements in SEM methodology should lead to the detection of more life cycle stages. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  5. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  6. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    Science.gov (United States)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  7. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    Science.gov (United States)

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  8. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    Science.gov (United States)

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  9. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding...

  10. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    International Nuclear Information System (INIS)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-01-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes

  11. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  12. Near-IR laser-triggered target cell collection using a carbon nanotube-based cell-cultured substrate.

    Science.gov (United States)

    Sada, Takao; Fujigaya, Tsuyohiko; Niidome, Yasuro; Nakazawa, Kohji; Nakashima, Naotoshi

    2011-06-28

    Unique near-IR optical properties of single-walled carbon nanotube (SWNTs) are of interest in many biological applications. Here we describe the selective cell detachment and collection from an SWNT-coated cell-culture dish triggered by near-IR pulse laser irradiation. First, HeLa cells were cultured on an SWNT-coated dish prepared by a spraying of an aqueous SWNT dispersion on a glass dish. The SWNT-coated dish was found to show a good cell adhesion behavior as well as a cellular proliferation rate similar to a conventional glass dish. We discovered, by near-IR pulse laser irradiation (at the laser power over 25 mW) to the cell under optical microscopic observation, a quick single-cell detachment from the SWNT-coated surface. Shockwave generation from the irradiated SWNTs is expected to play an important role for the cell detachment. Moreover, we have succeeded in catapulting the target single cell from the cultured medium when the depth of the medium was below 150 μm and the laser power was stronger than 40 mW. The captured cell maintained its original shape. The retention of the genetic information of the cell was confirmed by the polymerase chain reaction (PCR) technique. A target single-cell collection from a culture medium under optical microscopic observation is significant in wide fields of single-cell studies in biological areas.

  13. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  14. 3D Cell Culture in a Self-Assembled Nanofiber Environment.

    Directory of Open Access Journals (Sweden)

    Yi Wen Chai

    Full Text Available The development and utilization of three-dimensional cell culture platforms has been gaining more traction. Three-dimensional culture platforms are capable of mimicking in vivo microenvironments, which provide greater physiological relevance in comparison to conventional two-dimensional cultures. The majority of three-dimensional culture platforms are challenged by the lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. In this study, we review the use of a highly defined material composed of naturally occurring compounds, hyaluronic acid and chitosan, known as Cell-Mate3DTM. Moreover, we provide an original measurement of Young's modulus using a uniaxial unconfined compression method to elucidate the difference in microenvironment rigidity for acellular and cellular conditions. When hydrated into a tissue-like hybrid hydrocolloid/hydrogel, Cell-Mate3DTM is a highly versatile three-dimensional culture platform that enables downstream applications such as flow cytometry, immunostaining, histological staining, and functional studies to be applied with relative ease.

  15. Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells.

    Science.gov (United States)

    Ledur, Pítia F; Liu, Chong; He, Hua; Harris, Alexandra R; Minussi, Darlan C; Zhou, Hai-Yan; Shaffrey, Mark E; Asthagiri, Ashok; Lopes, Maria Beatriz S; Schiff, David; Lu, Yi-Cheng; Mandell, James W; Lenz, Guido; Zong, Hui

    2016-10-01

    Cell culture plays a pivotal role in cancer research. However, culture-induced changes in biological properties of tumor cells profoundly affect research reproducibility and translational potential. Establishing culture conditions tailored to the cancer cell of origin could resolve this problem. For glioma research, it has been previously shown that replacing serum with defined growth factors for neural stem cells (NSCs) greatly improved the retention of gene expression profile and tumorigenicity. However, among all molecular subtypes of glioma, our laboratory and others have previously shown that the oligodendrocyte precursor cell (OPC) rather than the NSC serves as the cell of origin for the proneural subtype, raising questions regarding the suitability of NSC-tailored media for culturing proneural glioma cells. OPC-originated mouse glioma cells were cultured in conditions for normal OPCs or NSCs, respectively, for multiple passages. Gene expression profiles, morphologies, tumorigenicity, and drug responsiveness of cultured cells were examined in comparison with freshly isolated tumor cells. OPC media-cultured glioma cells maintained tumorigenicity, gene expression profiles, and morphologies similar to freshly isolated tumor cells. In contrast, NSC-media cultured glioma cells gradually lost their OPC features and most tumor-initiating ability and acquired heightened sensitivity to temozolomide. To improve experimental reproducibility and translational potential of glioma research, it is important to identify the cell of origin, and subsequently apply this knowledge to establish culture conditions that allow the retention of native properties of tumor cells. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone Scaffolds

    Directory of Open Access Journals (Sweden)

    Sònia Palomeras

    2016-04-01

    Full Text Available The cancer stem cell (CSC population displays self-renewal capabilities, resistance to conventional therapies, and a tendency to post-treatment recurrence. Increasing knowledge about CSCs’ phenotype and functions is needed to investigate new therapeutic strategies against the CSC population. Here, poly(ε-caprolactone (PCL, a biocompatible polymer free of toxic dye, has been used to fabricate scaffolds, solid structures suitable for 3D cancer cell culture. It has been reported that scaffold cell culture enhances the CSCs population. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. PCL design and fabrication parameters were first determined and then optimized considering several measurable variables of the resulting scaffolds. MCF7 breast carcinoma cell line was used to assess scaffolds adequacy for 3D cell culture. To evaluate CSC enrichment, the Mammosphere Forming Index (MFI was performed in 2D and 3D MCF7 cultures. Results showed that the 60° scaffolds were more suitable for 3D culture than the 45° and 90° ones. Moreover, 3D culture experiments, in adherent and non-adherent conditions, showed a significant increase in MFI compared to 2D cultures (control. Thus, 3D cell culture with PCL scaffolds could be useful to improve cancer cell culture and enrich the CSCs population.

  17. Impact of cell culture process changes on endogenous retrovirus expression.

    Science.gov (United States)

    Brorson, Kurt; De Wit, Christina; Hamilton, Elizabeth; Mustafa, Mehnaz; Swann, Patrick G; Kiss, Robert; Taticek, Ron; Polastri, Gian; Stein, Kathryn E; Xu, Yuan

    2002-11-05

    Cell culture process changes (e.g., changes in scale, medium formulation, operational conditions) and cell line changes are common during the development life cycle of a therapeutic protein. To ensure that the impact of such process changes on product quality and safety is minimal, it is standard practice to compare critical product quality and safety attributes before and after the changes. One potential concern introduced by cell culture process improvements is the possibility of increased endogenous retrovirus expression to a level above the clearance capability of the subsequent purification process. To address this, retrovirus expression was measured in scaled down and full production scaled Chinese hamster ovary (CHO) cell cultures of four monoclonal antibodies and one recombinant protein before and after process changes. Two highly sensitive, quantitative (Q)-PCR-based assays were used to measure endogenous retroviruses. It is shown that cell culture process changes that primarily alter media components, nutrient feed volume, seed density, cell bank source (i.e., master cell bank vs. working cell bank), and vial size, or culture scale, singly or in combination, do not impact the rate of retrovirus expression to an extent greater than the variability of the Q-PCR assays (0.2-0.5 log(10)). Cell culture changes that significantly alter the metabolic state of the cells and/or rates of protein expression (e.g., pH and temperature shifts, NaButyrate addition) measurably impact the rate of retrovirus synthesis (up to 2 log(10)). The greatest degree of variation in endogenous retrovirus expression was observed between individual cell lines (up to 3 log(10)). These data support the practice of measuring endogenous retrovirus output for each new cell line introduced into manufacturing or after process changes that significantly increase product-specific productivity or alter the metabolic state, but suggest that reassessment of retrovirus expression after other

  18. Loss of notochordal cell phenotype in 3D-cell cultures: implications for disc physiology and disc repair.

    Science.gov (United States)

    Omlor, G W; Nerlich, A G; Tirlapur, U K; Urban, J P; Guehring, T

    2014-12-01

    Embryonic notochordal disc nucleus cells (NC) have been identified to protect disc tissue against disc degeneration but in human beings NC phenotype gets lost with aging and the pathophysiological mechanisms are poorly understood. NC may stimulate other cells via soluble factors, and NC-conditioned medium can be used to stimulate matrix production of other disc cells and mesenchymal stem cells and thus may be of special interest for biological disc repair. As this stimulatory effect is associated with the NC phenotype, we investigated how cell morphology and gene-expression of the NC phenotype changes with time in 3D-cell culture. NC and inner annulus chondrocyte-like cells (CLC) from immature pigtails (freshly isolated cells/tissue, 3D-alginate beads, 3D-clusters) were cultured for up to 16 days under normoxia and hypoxia. Protein-expression was analysed by immunohistology and gene-expression analysis was carried out on freshly isolated cells and cultured cells. Cell morphology and proliferation were analysed by two-photon-laser-microscopy. Two-photon-laser-microscopy showed a homogenous and small CLC population in the inner annulus, which differed from the large vacuole-containing NC in the nucleus. Immunohistology found 93 % KRT8 positive cells in the nucleus and intracellular and pericellular Col2, IL6, and IL12 staining while CLC were KRT8 negative. Freshly isolated NC showed significantly higher KRT8 and CAIII but lower Col2 gene-expression than CLC. NC in 3D-cultures demonstrated significant size reduction and loss of vacuoles with culture time, all indicating a loss of the characteristic NC morphology. Hypoxia reduced the rate of decrease in NC size and vacuoles. Gene-expression of KRT8 and CAIII in NC fell significantly early in culture while Col2 did not decrease significantly within the culture period. In CLC, KRT8 and CAIII gene-expression was low and did not change noticeably in culture, whereas Col2 expression fell with time in culture. 3D-culture

  19. Radiosensitivity of primary cultured fish cells with different ploidy

    International Nuclear Information System (INIS)

    Mitani, Hiroshi; Egami, Nobuo; Kobayashi, Hiromu.

    1986-01-01

    The radiosensitivity of primary cultured goldfish cells (Carassius auratus) was investigated by colony formation assay. The radiosensitivity of cells from two varieties of goldfish, which show different sensitivity to lethal effect of ionizing radiation in vivo, was almost identical. Primary cultured cells from diploid, triploid and tetraploid fish retained their DNA content as measured by microfluorometry, and the nuclear size increases as ploidy increases. However, radiosensitivity was not related to ploidy. (author)

  20. Neural differentiation of adipose-derived stem cells by indirect co-culture with Schwann cells

    Directory of Open Access Journals (Sweden)

    Li Xiaojie

    2009-01-01

    Full Text Available To investigate whether adipose-derived stem cells (ADSCs could be subject to neural differentiation induced only by Schwann cell (SC factors, we co-cultured ADSCs and SCs in transwell culture dishes. Immunoassaying, Western blot analysis, and RT-PCR were performed (1, 3, 7, 14 d and the co-cultured ADSCs showed gene and protein expression of S-100, Nestin, and GFAP. Further, qRT-PCR disclosed relative quantitative differences in the above three gene expressions. We think ADSCs can undergo induced neural differentiation by being co-cultured with SCs, and such differentia­tions begin 1 day after co-culture, become apparent after 7 days, and thereafter remain stable till the 14th day.

  1. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    Science.gov (United States)

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  2. Pattern changes in quantitative and qualitative markers of hematopoietic stem cells during acute and chronic exposure to Sr"9"0 isotope in cell culture

    International Nuclear Information System (INIS)

    Russu, Yi.Z.; Byil'ko, D.Yi.; Byil'ko, N.M.; Rodyionova, N.K.

    2015-01-01

    To study the condition of stem cells and their immediate progenitors we implemented cell culture methodology in vivo in gel diffusion capsules with subsequent analysis of the colonies and clusters. On the basis of experiments it was established that long-term effects of incorporated "9"0 Sr isotope leads to significant disturbances in the hematopoietic system and in particular, revealing changes in hematological parameters of irradiated animals such as the appearance of circulating progenitor cells in peripheral blood, reducing the colony-forming efficiency of the bone marrow derived progenitor cells, as well as quantitative and qualitative changes in the clones. Indices confirm the connection of the detected effects in individuals exposed to ionizing radiation described in the earlier publications and can serve as basis for developing criteria for the formation of risk groups among people exposed to "9"0 Sr

  3. The Evolution of Polystyrene as a Cell Culture Material.

    Science.gov (United States)

    Lerman, Max J; Lembong, Josephine; Muramoto, Shin; Gillen, Greg; Fisher, John P

    2018-04-10

    Polystyrene (PS) has brought in vitro cell culture from its humble beginnings to the modern era, propelling dozens of research fields along the way. This review discusses the development of the material, fabrication, and treatment approaches to create the culture material. However, native PS surfaces poorly facilitate cell adhesion and growthin vitro. To overcome this, liquid surface deposition, energetic plasma activation, and emerging functionalization methods transform the surface chemistry. This review seeks to highlight the many potential applications of the first widely accepted polymer growth surface. Although the majority of in vitro research occurs on 2D surfaces, the importance of 3D culture models cannot be overlooked. Here the methods to transition PS to specialized 3D culture surfaces are also reviewed. Specifically, casting, electrospinning, 3D printing, and microcarrier approaches to shift PS to a 3D culture surface are highlighted. The breadth of applications of the material makes it impossible to highlight every use, but the aim remains to demonstrate the versatility and potential as both a general and custom cell culture surface. The review concludes with emerging scaffolding approaches and, based on the findings, presents our insights on the future steps for PS as a tissue culture platform.

  4. Cell death in Tetrahymena thermophila: new observations on culture conditions.

    Science.gov (United States)

    Christensen, S T; Sørensen, H; Beyer, N H; Kristiansen, K; Rasmussen, L; Rasmussen, M I

    2001-01-01

    We previously suggested that the cell fate of the protozoan ciliate, Tetrahymena thermophila, effectively relates to a quorum-sensing mechanism where cell-released factors support cell survival and proliferation. The cells have to be present above a critical initial density in a chemically defined nutrient medium in order to release a sufficient level of these factors to allow a new colony to flourish. At a relatively high rate of metabolism and/or macromolecular synthesis and below this critical density, cells began to die abruptly within 30 min of inoculation, and this death took the form of an explosive disintegration lasting less than 50 milliseconds. The cells died at any location in the culture, and the frequency of cell death was always lower in well-filled vials than those with medium/air interface. Cell death was inhibited by the addition of Actinomycin D or through modifications of the culture conditions either by reducing the oxygen tension or by decreasing the temperature of the growth medium. In addition, plastic caps in well-filled vials release substances, which promote cell survival. The fate of low-density cultures is related to certain 'physical' conditions, in addition to the availability of oxygen within closed culture systems. Copyright 2001 Academic Press.

  5. A method for culturing human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1981-01-01

    For the first time a method for culturing human hair follicle cells is described. The bovine eye lens capsule, a basement membrane-like structure, is used as the substrate for the cultures. In a culture medium supplemented with hydrocortisone and insulin about 70% of the original follicles will form growing colonies of diploid keratinocytes.

  6. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.

    Science.gov (United States)

    Wolf, Moritz K F; Closet, Aurélie; Bzowska, Monika; Bielser, Jean-Marc; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo

    2018-05-21

    Mammalian cell perfusion cultures represent a promising alternative to the current fed-batch technology for the production of various biopharmaceuticals. Long-term operation at a fixed viable cell density (VCD) requires a viable culture and a constant removal of excessive cells. Product loss in the cell removing bleed stream deteriorates the process yield. In this study, the authors investigate the use of chemical and environmental growth inhibition on culture performance by either adding valeric acid (VA) to the production media or by reducing the culture temperature (33.0 °C) with respect to control conditions (36.5 °C, no VA). Low temperature significantly reduces cellular growth, thus, resulting in lower bleed rates accompanied by a reduced product loss of 11% compared to 26% under control conditions. Additionally, the cell specific productivity of the target protein improves and maintained stable leading to media savings per mass of product. VA shows initially an inhibitory effect on cellular growth. However, cells seemed to adapt to the presence of the inhibitor resulting in a recovery of the cellular growth. Cell cycle and Western blot analyses support the observed results. This work underlines the role of temperature as a key operating variable for the optimization of perfusion cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    Directory of Open Access Journals (Sweden)

    Akpe Victor

    2007-12-01

    Full Text Available Abstract Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. Results Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. Conclusion Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology.

  8. Ontogeny and localization of the cells produce IL-2 in healthy animals.

    Science.gov (United States)

    Yamamoto, Mutsumi; Seki, Yoichi; Iwai, Kazuyuki; Ko, Iei; Martin, Alicia; Tsuji, Noriko; Miyagawa, Shuji; Love, Robert B; Iwashima, Makio

    2013-03-01

    IL-2 is a growth factor for activated T cells and is required for maintenance of naturally arising regulatory T cells (nTregs). Mice defective in IL-2/IL-2 receptor signaling pathways have impaired nTregs and suffer from lymphoproliferative disorders, suggesting that IL-2 is present and functional in healthy animals. However, the cellular source of IL-2 is currently unknown. To determine which cells produce IL-2 in healthy animals, we established mice carrying cre gene knock in at the il-2 locus (termed IL-2(cre)). When IL-2(cre) mice were crossed with EGFP reporter mice, EGFP was exclusively expressed by a fraction of CD4 T cells present in both lymphoid and non-lymphoid tissues. Live imaging of IL-2(cre) mice that carry the luciferase reporter showed concentrated localization of luciferase(+) cells in Peyer's patches. These cells were not observed in new born mice but appeared within 3days after birth. Reduction of antigen receptor repertoire by transgene expression reduced their number, indicating that recognition of environmental antigens is necessary for generation of these IL-2 producers in healthy animals. A substantial fraction of EGFP(+) cells also produce IL-10 and IFN-γ, a characteristic profile of type 1 regulatory T cells (Tr1). The data suggest that a group of Tr1 cells have addition roles in immune homeostasis by producing IL-2 along with other cytokines and help maintaining Tregs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.

    Science.gov (United States)

    Kieninger, Jochen; Tamari, Yaara; Enderle, Barbara; Jobst, Gerhard; Sandvik, Joe A; Pettersen, Erik O; Urban, Gerald A

    2018-04-26

    The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.

  10. Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask

    Directory of Open Access Journals (Sweden)

    Jochen Kieninger

    2018-04-01

    Full Text Available The Sensing Cell Culture Flask (SCCF is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G and breast cancer (T-47D cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.

  11. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle.

    Science.gov (United States)

    Butler, W B

    1984-08-15

    A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.

  12. MAPLE deposition of 3D micropatterned polymeric substrates for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Irina Alexandra, E-mail: irina.paun@physics.pub.ro [National Institute for Laser, Plasma and Radiation Physics, RO-077125, Magurele, Bucharest (Romania); Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042, Bucharest (Romania); Mihailescu, Mona [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042, Bucharest (Romania); Calenic, Bogdan [Department of Biochemistry, Faculty of Dentistry, UMF Carol Davila, Bucharest (Romania); Luculescu, Catalin Romeo [National Institute for Laser, Plasma and Radiation Physics, RO-077125, Magurele, Bucharest (Romania); Greabu, Maria [Department of Biochemistry, Faculty of Dentistry, UMF Carol Davila, Bucharest (Romania); Dinescu, Maria, E-mail: dinescum@nipne.ro [National Institute for Laser, Plasma and Radiation Physics, RO-077125, Magurele, Bucharest (Romania)

    2013-08-01

    3D micropatterned poly(lactide-co-glycolide)/polyurethane (PLGA/PU) substrates were produced by MAPLE deposition through masks and used for regulating the behavior of oral keratinocyte stem cells in response to topography. Flat PLGA/PU substrates were produced for comparison. 3D imaging of the PLGA/PU substrates and of the cultured cells was performed by Digital Holographic Microscopy. The micropatterns were in the shape of squares of 50 × 50 and 80 × 80 μm{sup 2} areas, ∼1.8 μm in height and separated by 20 μm wide channels. It was found that substrate topography guided the adhesion of the cultured cells: on the smooth substrates the cells adhered randomly and showed no preferred orientation; in contrast, on the micropatterned substrates the cells adhered preferentially onto the squares and not in the separating channels. Furthermore, key properties of the cells (size, viability, proliferation rate and stem cell marker expression) did not show any dependence on substrate topography. The size of the cultured cells, their viability, the proportions of actively/slow proliferating cells, as well as the stem cell markers expressions, were similar for both flat and micropatterned substrates. Finally, it was found that the cells cultured on the PLGA/PU substrates deposited by MAPLE exhibited similar properties as the controls (i.e. cells cultured on glass slides), indicating the capability of the former to preserve the properties of the keratinocyte stem cells.

  13. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  14. Plant Cell Cultures as Source of Cosmetic Active Ingredients

    Directory of Open Access Journals (Sweden)

    Ani Barbulova

    2014-04-01

    Full Text Available The last decades witnessed a great demand of natural remedies. As a result, medicinal plants have been increasingly cultivated on a commercial scale, but the yield, the productive quality and the safety have not always been satisfactory. Plant cell cultures provide useful alternatives for the production of active ingredients for biomedical and cosmetic uses, since they represent standardized, contaminant-free and biosustainable systems, which allow the production of desired compounds on an industrial scale. Moreover, thanks to their totipotency, plant cells grown as liquid suspension cultures can be used as “biofactories” for the production of commercially interesting secondary metabolites, which are in many cases synthesized in low amounts in plant tissues and differentially distributed in the plant organs, such as roots, leaves, flowers or fruits. Although it is very widespread in the pharmaceutical industry, plant cell culture technology is not yet very common in the cosmetic field. The aim of the present review is to focus on the successful research accomplishments in the development of plant cell cultures for the production of active ingredients for cosmetic applications.

  15. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy

    Directory of Open Access Journals (Sweden)

    Haiying Guo

    2018-01-01

    Full Text Available Dermal papilla (DP plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.

  16. Cell Homogeneity Indispensable for Regenerative Medicine by Cultured Human Corneal Endothelial Cells.

    Science.gov (United States)

    Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru

    2016-09-01

    To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.

  17. Ethics of animal research in human disease remediation, its institutional teaching; and alternatives to animal experimentation.

    Science.gov (United States)

    Cheluvappa, Rajkumar; Scowen, Paul; Eri, Rajaraman

    2017-08-01

    Animals have been used in research and teaching for a long time. However, clear ethical guidelines and pertinent legislation were instated only in the past few decades, even in developed countries with Judeo-Christian ethical roots. We compactly cover the basics of animal research ethics, ethical reviewing and compliance guidelines for animal experimentation across the developed world, "our" fundamentals of institutional animal research ethics teaching, and emerging alternatives to animal research. This treatise was meticulously constructed for scientists interested/involved in animal research. Herein, we discuss key animal ethics principles - Replacement/Reduction/Refinement. Despite similar undergirding principles across developed countries, ethical reviewing and compliance guidelines for animal experimentation vary. The chronology and evolution of mandatory institutional ethical reviewing of animal experimentation (in its pioneering nations) are summarised. This is followed by a concise rendition of the fundamentals of teaching animal research ethics in institutions. With the advent of newer methodologies in human cell-culturing, novel/emerging methods aim to minimise, if not avoid the usage of animals in experimentation. Relevant to this, we discuss key extant/emerging alternatives to animal use in research; including organs on chips, human-derived three-dimensional tissue models, human blood derivates, microdosing, and computer modelling of various hues. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  18. A stromal cell free culture system generates mouse pro-T cells that can reconstitute T-cell compartments in vivo.

    Science.gov (United States)

    Gehre, Nadine; Nusser, Anja; von Muenchow, Lilly; Tussiwand, Roxane; Engdahl, Corinne; Capoferri, Giuseppina; Bosco, Nabil; Ceredig, Rhodri; Rolink, Antonius G

    2015-03-01

    T-cell lymphopenia following BM transplantation or diseases such as AIDS result in immunodeficiency. Novel approaches to ameliorate this situation are urgently required. Herein, we describe a novel stromal cell free culture system in which Lineage(-) Sca1(+)c-kit(+) BM hematopoietic progenitors very efficiently differentiate into pro-T cells. This culture system consists of plate-bound Delta-like 4 Notch ligand and the cytokines SCF and IL-7. The pro-T cells developing in these cultures express CD25, CD117, and partially CD44; express cytoplasmic CD3ε; and have their TCRβ locus partially D-J rearranged. They could be expanded for over 3 months and used to reconstitute the T-cell compartments of sublethally irradiated T-cell-deficient CD3ε(-/-) mice or lethally irradiated WT mice. Pro-T cells generated in this system could partially correct the T-cell lymphopenia of pre-Tα(-/-) mice. However, reconstituted CD3ε(-/-) mice suffered from a wasting disease that was prevented by co-injection of purified CD4(+) CD25(high) WT Treg cells. In a T-cell-sufficient or T-lymphopenic setting, the development of disease was not observed. Thus, this in vitro culture system represents a powerful tool to generate large numbers of pro-T cells for transplantation and possibly with clinical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Stio, Maria; Martinesi, Maria; Treves, Cristina [Dipartimento di Scienze Biomediche, Sperimentali e Cliniche ‘Mario Serio’, Sezione di Scienze Biochimiche, Università di Firenze, viale Morgagni 50, 50134 Firenze (Italy); Borgioli, Francesca, E-mail: francesca.borgioli@unifi.it [Dipartimento di Ingegneria Industriale (DIEF), Università di Firenze, via S. Marta 3, 50139 Firenze (Italy)

    2016-12-01

    Samples of AISI 316L austenitic stainless steel were subjected either to grinding and polishing procedure, or to grinding and then low temperature glow-discharge nitriding treatment, or to grinding, nitriding and subsequently coating with collagen-I. Nitrided samples, even if only ground, show a higher corrosion resistance in PBS solution, in comparison with ground and polished AISI 316L. Biocompatibility was evaluated in vitro by incubating the samples with either peripheral blood mononuclear cells (PBMC) or human umbilical vein endothelial cells (HUVEC), tested separately or in co-culture. HUVEC-PBMC co-culture and co-incubation of HUVEC with PBMC culture medium, after the previous incubation of PBMC with metallic samples, allowed to determine whether the incubation of PBMC with the different samples might affect HUVEC behaviour. Many biological parameters were considered: cell proliferation, release of cytokines, matrix metalloproteinases (MMPs) and sICAM-1, gelatinolytic activity of MMPs, and ICAM-1 protein expression. Nitriding treatment, with or without collagen coating of the samples, is able to ameliorate some of the biological parameters taken into account. The obtained results point out that biocompatibility may be successfully tested in vitro, using cultures of normal human cells, as blood and endothelial cells, but more than one cell line should be used, separately or in co-culture, and different parameters should be determined, in particular those correlated with inflammatory phenomena. - Highlights: • Nitriding improves corrosion resistance and biocompatibility of ground AISI 316L. • The metallic samples differently affect different human cell cultures. • PBMC and HUVEC are a suitable model to test in vitro biocompatibility. • Co-cultures show that HUVEC are affected by pre-incubation of PBMC with the samples. • Inflammation parameters must be taken into account for assessing biocompatibility.

  20. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2016-01-01

    Samples of AISI 316L austenitic stainless steel were subjected either to grinding and polishing procedure, or to grinding and then low temperature glow-discharge nitriding treatment, or to grinding, nitriding and subsequently coating with collagen-I. Nitrided samples, even if only ground, show a higher corrosion resistance in PBS solution, in comparison with ground and polished AISI 316L. Biocompatibility was evaluated in vitro by incubating the samples with either peripheral blood mononuclear cells (PBMC) or human umbilical vein endothelial cells (HUVEC), tested separately or in co-culture. HUVEC-PBMC co-culture and co-incubation of HUVEC with PBMC culture medium, after the previous incubation of PBMC with metallic samples, allowed to determine whether the incubation of PBMC with the different samples might affect HUVEC behaviour. Many biological parameters were considered: cell proliferation, release of cytokines, matrix metalloproteinases (MMPs) and sICAM-1, gelatinolytic activity of MMPs, and ICAM-1 protein expression. Nitriding treatment, with or without collagen coating of the samples, is able to ameliorate some of the biological parameters taken into account. The obtained results point out that biocompatibility may be successfully tested in vitro, using cultures of normal human cells, as blood and endothelial cells, but more than one cell line should be used, separately or in co-culture, and different parameters should be determined, in particular those correlated with inflammatory phenomena. - Highlights: • Nitriding improves corrosion resistance and biocompatibility of ground AISI 316L. • The metallic samples differently affect different human cell cultures. • PBMC and HUVEC are a suitable model to test in vitro biocompatibility. • Co-cultures show that HUVEC are affected by pre-incubation of PBMC with the samples. • Inflammation parameters must be taken into account for assessing biocompatibility.

  1. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Immunoglobulin production in human mixed lymphocyte cultures: implications for co-cultures of cells from patients and healthy donors

    International Nuclear Information System (INIS)

    Ruemke, H.C.; Terpstra, F.G.; Huis, B.; Out, T.A.; Zeijlemaker, W.P.

    1982-01-01

    When human peripheral blood lymphocytes (PBL) are cultured in the presence of irradiated allogeneic lymphocytes, the resulting mixed lymphocyte reaction (MLR) leads to the secretion into the supernatant of substantial amounts of IgM and IgG, derived from nonirradiated responder B lymphocytes. Our data indicate that stimulation to Ig production by responder B cells may result from different types of of interactions. First, B cells and monocytes among the irradiated stimulator cells activate T responder B cells to produce Ig; second, ''responder'' B cells activate irradiated ''stimulator'' T cells, leading to a ''helper'' signal, back to the responder B cells and leading to Ig production. The latter system is radiosensitive, because allogeneic T cells, irradiated at a dose of 4000 rad or more, failed to induce Ig production by responder B cells. In some combinations of human allogeneic lymphocytes, the co-culture of the cells leads to inhibition of Ig production, both in the presence and in the absence of PWM. Thus, co-culture of allogeneic cells may cause ''positive'' as well as ''negative'' allogeneic effects. The implications of these findings for the interpretation of co-cultures that are aimed at establishing defects in lymphocytes from patients with, for example, immunodeficiencies, who fail to produce Ig in the presence of PWM are discussed

  3. Control of fibronectin synthesis by rat granulosa cells in culture

    International Nuclear Information System (INIS)

    Skinner, M.K.; Dorrington, J.H.

    1984-01-01

    The secreted and cellular [ 35 S]methionine-radiolabeled proteins of cultured rat granulosa cells were separated by electrophoresis on sodium dodecylsulfate (SDS) polyacrylamide gradient slab gels. From 24 to 72 h of culture FSH increased the intensity of labeling of most of the secreted proteins. A 220,000-dalton protein, however, increased in intensity only in control cultures and became the major secreted protein after 72 h, comprising 20% of the total radiolabeled proteins. This protein was identified as fibronectin by immunoprecipitation. There was no increase in the secreted or cellular fibronectin in FSH- or testosterone- and insulin-treated cultures. These studies indicate that a component of extracellular matrix is a major secretory product of unstimulated immature granulosa cells. As hormones induce the differentiated functions of granulosa cells in culture, the secretion of fibronectin is inhibited

  4. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Michal Aharonowiz

    Full Text Available BACKGROUND: Multiple sclerosis (MS is an immune mediated demyelinating disease of the central nervous system (CNS. A potential new therapeutic approach for MS is cell transplantation which may promote remyelination and suppress the inflammatory process. METHODS: We transplanted human embryonic stem cells (hESC-derived early multipotent neural precursors (NPs into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE, the animal model of MS. We studied the effect of the transplanted NPs on the functional and pathological manifestations of the disease. RESULTS: Transplanted hESC-derived NPs significantly reduced the clinical signs of EAE. Histological examination showed migration of the transplanted NPs to the host white matter, however, differentiation to mature oligodendrocytes and remyelination were negligible. Time course analysis of the evolution and progression of CNS inflammation and tissue injury showed an attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination. Co-culture experiments showed that hESC-derived NPs inhibited the activation and proliferation of lymph node-derived T cells in response to nonspecific polyclonal stimuli. CONCLUSIONS: The therapeutic effect of transplantation was not related to graft or host remyelination but was mediated by an immunosuppressive neuroprotective mechanism. The attenuation of EAE by hESC-derived NPs, demonstrated here, may serve as the first step towards further developments of hESC for cell therapy in MS.

  5. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  6. Predictions for optimal mitigation of paracrine inhibitory signalling in haemopoietic stem cell cultures.

    Science.gov (United States)

    Berry, Joseph D; Godara, Pankaj; Liovic, Petar; Haylock, David N

    2015-04-16

    Recent studies in the literature have highlighted the critical role played by cell signalling in determining haemopoietic stem cell (HSC) fate within ex vivo culture systems. Stimulatory signals can enhance proliferation and promote differentiation, whilst inhibitory signals can significantly limit culture output. Numerical models of various mitigation strategies are presented and applied to determine effectiveness of these strategies toward mitigation of paracrine inhibitory signalling inherent in these culture systems. The strategies assessed include mixing, media-exchange, fed-batch and perfusion. The models predict that significant spatial concentration gradients exist in typical cell cultures, with important consequences for subsequent cell expansion. Media exchange is shown to be the most effective mitigation strategy, but remains labour intensive and difficult to scale-up for large culture systems. The fed-batch strategy is only effective at very small Peclet number, and its effect is diminished as the cell culture volume grows. Conversely, mixing is effective at high Peclet number, and ineffective at low Peclet number. The models predict that cell expansion in fed-batch cultures becomes independent of increasing dilution rate, consistent with experimental results previously reported in the literature. In contrast, the models predict that increasing the flow rate in perfused cultures will lead to increased cell expansion, indicating the suitability of perfusion for use as an automated, tunable strategy. The effect of initial cell seeding density is also investigated, with the model showing that perfusion outperforms dilution for all densities considered. The models predict that the impact of inhibitory signalling in HSC cultures can be mitigated against using media manipulation strategies, with the optimal strategy dependent upon the protein diffusion time-scale relative to the media manipulation time-scale. The key messages from this study can be applied to

  7. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  8. Ultrastructure of cells of Ulmus americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi

    Science.gov (United States)

    Paula M. Pijut; R. Daniel Lineberger; Subhash C. Domir; Jann M. Ichida; Charles R. Krause

    1990-01-01

    Calli of American elm susceptible and resistant to Dutch elm disease were exposed to a culture filtrate of a pathogenic isolate of Ceratocystis ulmi. Cells from untreated tissue exhibited typical internal composition associated with healthy, actively growing cells. All cells exposed to culture filtrate showed appreciable ultrastructural changes....

  9. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    International Nuclear Information System (INIS)

    Katano, Takahito; Ootani, Akifumi; Mizoshita, Tsutomu; Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi; Toda, Shuji; Joh, Takashi

    2013-01-01

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment

  10. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Takahito [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Ootani, Akifumi [Department of Gastroenterology and GI Endoscopy Center, Shin-Kokura Hospital, Federation of National Public Service Personnel Mutual Aid Associations, 1-3-1 Kanada, Kokurakita-ku, Kitakyushu 803-0816 (Japan); Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Mizoshita, Tsutomu, E-mail: tmizoshi@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.

  11. Adherence of Moraxella bovis to cell cultures of bovine origin.

    Science.gov (United States)

    Annuar, B O; Wilcox, G E

    1985-09-01

    The adherence of five strains of Moraxella bovis to cell cultures was investigated. M bovis adhered to cultures of bovine corneal epithelial and Madin-Darby bovine kidney cells but not to cell types of non-bovine origin. Both piliated and unpiliated strains adhered but piliated strains adhered to a greater extent than unpiliated strains. Antiserum against pili of one strain inhibited adherence of piliated strains but caused only slight inhibition of adherence to the unpiliated strains. Treatment of bacteria with magnesium chloride caused detachment of pili from the bacterial cell and markedly inhibited adherence of piliated strains but caused only slight inhibition of adherence by the unpiliated strains. The results suggested that adhesion of piliated strains to cell cultures was mediated via pili but that adhesins other than pili may be involved in the attachment of unpiliated strains of M bovis to cells.

  12. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    Science.gov (United States)

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  13. Trp53 activity is repressed in radio-adapted cultured murine limb bud cells

    International Nuclear Information System (INIS)

    Vares, Guillaume; Wang, Bing; Tanaka, Kaoru; Shang, Yi; Fujita, Kazuko; Hayata, Isamu; Nenoi, Mitsuru

    2011-01-01

    Understanding the effects of ionizing radiation (IR) at low dose in fetal models is of great importance, because the fetus is considered to be at the most radiosensitive stage of the development and prenatal radiation might influence subsequent development. We previously demonstrated the existence of an adaptive response (AR) in murine fetuses after pre-exposure to low doses of X-rays. Trp53-dependent apoptosis was suggested to be responsible for the teratogenic effects of IR; decreased apoptosis was observed in adapted animals. In this study, in order to investigate the role of Trp53 in AR, we developed a new model of irradiated micromass culture of fetal limb bud cells, which replicated proliferation, differentiation and response to IR in murine embryos. Murine fetuses were exposed to whole-body priming irradiation of 0.3 Gy or 0.5 Gy at embryonic day 11 (E11). Limb bud cells (collected from digital ray areas exhibiting radiation-induced apoptosis) were cultured and exposed to a challenging dose of 4 Gy at E12 equivalent. The levels of Trp53 protein and its phosphorylated form at Ser18 were investigated. Our results suggested that the induction of AR in mouse embryos was correlated with a repression of Trp53 activity. (author)

  14. AMMONIA REMOVAL FROM MAMMALIAN CELL CULTURE MEDIUM BY ION-EXCHANGE MEMBRANES

    Science.gov (United States)

    Metabolites such as ammonia and lactic acid formed during mammalian cell culture can frequently be toxic to the cells themselves beyond a threshold concentration of the metabolites. Cell culture conducted in the presence of such accumulated metabolites is therefore limited in pro...

  15. Advanced three-dimensional culture of equine intestinal epithelial stem cells.

    Science.gov (United States)

    Stewart, A Stieler; Freund, J M; Gonzalez, L M

    2018-03-01

    Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease

  16. Assessment of long-term effects of nanoparticles in a microcarrier cell culture system.

    Directory of Open Access Journals (Sweden)

    Maria Mrakovcic

    Full Text Available Nano-sized materials could find multiple applications in medical diagnosis and therapy. One main concern is that engineered nanoparticles, similar to combustion-derived nanoparticles, may cause adverse effects on human health by accumulation of entire particles or their degradation products. Chronic cytotoxicity must therefore be evaluated. In order to perform chronic cytotoxicity testing of plain polystyrene nanoparticles on the endothelial cell line EAhy 926, we established a microcarrier cell culture system for anchorage-dependent cells (BioLevitator(TM. Cells were cultured for four weeks and exposed to doses, which were not cytotoxic upon 24 hours of exposure. For comparison, these particles were also studied in regularly sub-cultured cells, a method that has traditionally been used to assess chronic cellular effects. Culturing on basal membrane coated microcarriers produced very high cell densities. Fluorescent particles were mainly localized in the lysosomes of the exposed cells. After four weeks of exposure, the number of cells exposed to 20 nm polystyrene particles decreased by 60% as compared to untreated controls. When tested in sub-cultured cells, the same particles decreased cell numbers to 80% of the untreated controls. Dose-dependent decreases in cell numbers were also noted after exposure of microcarrier cultured cells to 50 nm short multi-walled carbon nanotubes. Our findings support that necrosis, but not apoptosis, contributed to cell death of the exposed cells in the microcarrier culture system. In conclusion, the established microcarrier model appears to be more sensitive for the identification of cellular effects upon prolonged and repeated exposure to nanoparticles than traditional sub-culturing.

  17. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  18. Risk Mitigation in Preventing Adventitious Agent Contamination of Mammalian Cell Cultures.

    Science.gov (United States)

    Shiratori, Masaru; Kiss, Robert

    2017-11-14

    Industrial-scale mammalian cell culture processes have been contaminated by viruses during the culturing phase. Although the historical frequency of such events has been quite low, the impact of contamination can be significant for the manufacturing company and for the supply of the product to patients. This chapter discusses sources of adventitious agent contamination risk in a cell culture process, provides a semiquantitative assessment of such risks, and describes potential process barriers that can be used to reduce contamination risk. High-temperature, short-time (HTST) heat treatment is recommended as the process barrier of choice, when compatible with the process. A case study assessing the compatibility of HTST heat treatment with a cell culture medium is presented, and lessons learned are shared from our experiences over many years of developing and implementing virus barriers in mammalian cell culture processes. Graphical Abstract.

  19. Cultured bovine granulosa cells rapidly lose important features of their identity and functionality but partially recover under long-term culture conditions.

    Science.gov (United States)

    Yenuganti, Vengala Rao; Vanselow, Jens

    2017-05-01

    Cell culture models are essential for the detailed study of molecular processes. We analyze the dynamics of changes in a culture model of bovine granulosa cells. The cells were cultured for up to 8 days and analyzed for steroid production and gene expression. According to the expression of the marker genes CDH1, CDH2 and VIM, the cells maintained their mesenchymal character throughout the time of culture. In contrast, the levels of functionally important transcripts and of estradiol and progesterone production were rapidly down-regulated but showed a substantial up-regulation from day 4. FOXL2, a marker for granulosa cell identity, was also rapidly down-regulated after plating but completely recovered towards the end of culture. In contrast, expression of the Sertoli cell marker SOX9 and the lesion/inflammation marker PTGS2 increased during the first 2 days after plating but gradually decreased later on. We conclude that only long-term culture conditions (>4 days) allow the cells to recover from plating stress and to re-acquire characteristic granulosa cell features.

  20. Pre-irradiation of tissue culture flasks leads to diminished stem and progenitor cell production in long-term bone marrow cultures

    International Nuclear Information System (INIS)

    Rooney, P.; Wright, E.G.

    1993-01-01

    Empty plastic tissue culture flasks were exposed to X-irradiation doses of 0.3-10.0 Gy, prior to the establishment of long-term bone marrow cultures. During the course of a 10 week culture period, all irradiated plastic flasks exhibited a dramatic decrease in the number of both haemopoietic stem cells and myeloid progenitor cells, in the non-adherent layer, when compared with controls. This decrease was not due to a decrease in the number of non-adherent cells produced. Histological examination of non-adherent cells showed an increase in mature granulocytic cells with few blast cells. Morphologically, the adherent layers of irradiated flasks demonstrated a delay in appearance or absence of fat cell production. X-irradiation of glass tissue culture flasks had no deleterious effect. (author)

  1. Cell in situ zymography: an in vitro cytotechnology for localization of enzyme activity in cell culture.

    Science.gov (United States)

    Chhabra, Aastha; Jaiswal, Astha; Malhotra, Umang; Kohli, Shrey; Rani, Vibha

    2012-09-01

    In situ zymography is a unique technique for detection and localization of enzyme-substrate interactions majorly in histological sections. Substrate with quenched fluorogenic molecule is incorporated in gel over which tissue sections are mounted and then incubated in buffer. The enzymatic activity is observed in the form of fluorescent signal. With the advancements in the field of biological research, use of in vitro cell culture has become very popular and holds great significance in multiple fields including inflammation, cancer, stem cell biology and the still emerging 3-D cell cultures. The information on analysis of enzymatic activity in cell lines is inadequate presently. We propose a single-step methodology that is simple, sensitive, cost-effective, and functional to perform and study the 'in position' activity of enzyme on substrate for in vitro cell cultures. Quantification of enzymatic activity to carry out comparative studies on cells has also been illustrated. This technique can be applied to a variety of enzyme classes including proteases, amylases, xylanases, and cellulases in cell cultures.

  2. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    Science.gov (United States)

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  3. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    Science.gov (United States)

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M.; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells we targeted HER2-positive OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2-positive canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy prior to conducting studies in humans. PMID:25198528

  4. Tailor-made three-dimensional hybrid scaffolds for cell cultures

    International Nuclear Information System (INIS)

    Psycharakis, Stylianos; Melissinaki, Vasileia; Giakoumaki, Anastasia; Ranella, Anthi; Tosca, Androniki

    2011-01-01

    The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

  5. Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses.

    Science.gov (United States)

    Mayorova, Tatiana D; Smith, Carolyn L; Hammar, Katherine; Winters, Christine A; Pivovarova, Natalia B; Aronova, Maria A; Leapman, Richard D; Reese, Thomas S

    2018-01-01

    Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.

  6. METABOLIC MAPPING BY ENZYME HISTOCHEMISTRY IN LIVING ANIMALS, TISSUES AND CELLS

    NARCIS (Netherlands)

    van Noorden, C. J. F.

    2009-01-01

    Imaging of reporter molecules such as fluorescent proteins in intact animals, tissue and cells has become an indispensable tool in cell biology Imaging activity of enzymes, which is called metabolic mapping, provides information on subcellular localisation in combination with function of the enzymes

  7. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  8. Topological defects control collective dynamics in neural progenitor cell cultures

    Science.gov (United States)

    Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki

    2017-04-01

    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.

  9. Is cell culture a risky business? Risk analysis based on scientist survey data.

    Science.gov (United States)

    Shannon, Mark; Capes-Davis, Amanda; Eggington, Elaine; Georghiou, Ronnie; Huschtscha, Lily I; Moy, Elsa; Power, Melinda; Reddel, Roger R; Arthur, Jonathan W

    2016-02-01

    Cell culture is a technique that requires vigilance from the researcher. Common cell culture problems, including contamination with microorganisms or cells from other cultures, can place the reliability and reproducibility of cell culture work at risk. Here we use survey data, contributed by research scientists based in Australia and New Zealand, to assess common cell culture risks and how these risks are managed in practice. Respondents show that sharing of cell lines between laboratories continues to be widespread. Arrangements for mycoplasma and authentication testing are increasingly in place, although scientists are often uncertain how to perform authentication testing. Additional risks are identified for preparation of frozen stocks, storage and shipping. © 2015 UICC.

  10. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas

    2002-01-01

    Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM...... tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated...... numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo...

  11. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    Science.gov (United States)

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  12. The Effect of Spaceflight on Bone Cell Cultures

    Science.gov (United States)

    Landis, William J.

    1999-01-01

    Understanding the response of bone to mechanical loading (unloading) is extremely important in defining the means of adaptation of the body to a variety of environmental conditions such as during heightened physical activity or in extended explorations of space or the sea floor. The mechanisms of the adaptive response of bone are not well defined, but undoubtedly they involve changes occurring at the cellular level of bone structure. This proposal has intended to examine the hypothesis that the loading (unloading) response of bone is mediated by specific cells through modifications of their activity cytoskeletal elements, and/or elaboration of their extracellular matrices. For this purpose, this laboratory has utilized the results of a number of previous studies defining molecular biological, biochemical, morphological, and ultrastructural events of the reproducible mineralization of a primary bone cell (osteoblast) culture system under normal loading (1G gravity level). These data and the culture system then were examined following the use of the cultures in two NASA shuttle flights, STS-59 and STS-63. The cells collected from each of the flights were compared to respective synchronous ground (1G) control cells examined as the flight samples were simultaneously analyzed and to other control cells maintained at 1G until the time of shuttle launch, at which point they were terminated and studied (defined as basal cells). Each of the cell cultures was assayed in terms of metabolic markers- gene expression; synthesis and secretion of collagen and non-collagenous proteins, including certain cytoskeletal components; assembly of collagen into macrostructural arrays- formation of mineral; and interaction of collagen and mineral crystals during calcification of the cultures. The work has utilized a combination of biochemical techniques (radiolabeling, electrophoresis, fluorography, Western and Northern Blotting, and light microscopic immunofluorescence) and structural

  13. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  14. Induction of expression of two phenotypic markers of pulmonary type II cells in a cultured cell line

    International Nuclear Information System (INIS)

    Henderson, R.F.; Waide, J.J.; Scott, G.G.

    1994-01-01

    The functions of pulmonary type II cells, such as synthesis of pulmonary surfactant and metabolism of inhaled xenobiotics, can be studied in primary isolates of lung cells. However, isolated type II cells, when cultured, quickly lose the phenotypic expressions characteristics of type II cells, including surfactant lipid and protein synthesis and alkaline phosphatase (AP) activity. A cultured cell line that maintained expression of type II cell markers of differentiation would be advantageous for the study of such functions as surfactant synthesis and secretion. Such a cell line would allow generation of a large number of homogeneous cells for study. The purpose of the current study was to induce markers of differentiated type II cells in a cultured cell line to facilitate studies of factors that control surfactant synthesis and secretion

  15. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance.

    Science.gov (United States)

    Li, Yi; Guo, Gang; Li, Li; Chen, Fei; Bao, Ji; Shi, Yu-Jun; Bu, Hong

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation is a promising treatment of many diseases. However, conventional techniques with cells being cultured as a monolayer result in slow cell proliferation and insufficient yield to meet clinical demands. Three-dimensional (3D) culture systems are gaining attention with regard to recreating a complex microenvironment and to understanding the conditions experienced by cells. Our aim is to establish a novel 3D system for the culture of human umbilical cord MSCs (hUC-MSCs) within a real 3D microenvironment but with no digestion or passaging. Primary hUC-MSCs were isolated and grown in serum-free medium (SFM) on a suspension Rocker system. Cell characteristics including proliferation, phenotype and multipotency were recorded. The therapeutic effects of 3D-cultured hUC-MSCs on carbon tetrachloride (CCl4)-induced acute liver failure in mouse models were examined. In the 3D Rocker system, hUC-MSCs formed spheroids in SFM and maintained high viability and active proliferation. Compared with monolayer culture, the 3D-culture system yielded more hUC-MSCs cells within the same volume. The spheroids expressed higher levels of stem cell markers and displayed stronger multipotency. After transplantation into mouse, 3D hUC-MSCs significantly promoted the secretion of interferon-γ and interleukin-6 but inhibited that of tumor necrosis factor-α, thereby alleviating liver necrosis and promoting regeneration following CCl4 injury. The 3D culture of hUC-MSCs thus promotes cell yield and stemness maintenance and represents a promising strategy for hUC-MSCs expansion on an industrial scale with great potential for cell therapy and biotechnology.

  16. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is conclu......We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level...

  17. CD34+ cells cultured in stem cell factor and interleukin-2 generate CD56+ cells with antiproliferative effects on tumor cell lines

    Directory of Open Access Journals (Sweden)

    Hensel Nancy

    2005-04-01

    Full Text Available Abstract In vitro stimulation of CD34+ cells with IL-2 induces NK cell differentiation. In order to define the stages of NK cell development, which influence their generation from CD34 cells, we cultured G-CSF mobilized peripheral blood CD34+ cells in the presence of stem cell factor and IL-2. After three weeks culture we found a diversity of CD56+ subsets which possessed granzyme A, but lacked the cytotoxic apparatus required for classical NK-like cytotoxicity. However, these CD56+ cells had the unusual property of inhibiting proliferation of K562 and P815 cell lines in a cell-contact dependent fashion.

  18. Non-animal Replacements for Acute Toxicity Testing.

    Science.gov (United States)

    Barker-Treasure, Carol; Coll, Kevin; Belot, Nathalie; Longmore, Chris; Bygrave, Karl; Avey, Suzanne; Clothier, Richard

    2015-07-01

    Current approaches to predicting adverse effects in humans from acute toxic exposure to cosmetic ingredients still heavily necessitate the use of animals under EU legislation, particularly in the context of the REACH system, when cosmetic ingredients are also destined for use in other industries. These include the LD50 test, the Up-and-Down Procedure and the Fixed Dose Procedure, which are regarded as having notable scientific deficiencies and low transferability to humans. By expanding on previous in vitro tests, such as the animal cell-based 3T3 Neutral Red Uptake (NRU) assay, this project aims to develop a truly animal-free predictive test for the acute toxicity of cosmetic ingredients in humans, by using human-derived cells and a prediction model that does not rely on animal data. The project, funded by Innovate UK, will incorporate the NRU assay with human dermal fibroblasts in animal product-free culture, to generate an in vitro protocol that can be validated as an accepted replacement for the currently available in vivo tests. To date, the project has successfully completed an assessment of the robustness and reproducibility of the method, by using sodium lauryl sulphate (SLS) as a positive control, and displaying analogous results to those of the original studies with mouse 3T3 cells. Currently, the testing of five known ingredients from key groups (a surfactant, a preservative, a fragrance, a colour and an emulsifier) is under way. The testing consists of initial range-finding runs followed by three valid runs of a main experiment with the appropriate concentration ranges, to generate IC50 values. Expanded blind trials of 20 ingredients will follow. Early results indicate that this human cell-based test holds the potential to replace aspects of in vivo animal acute toxicity testing, particularly with reference to cosmetic ingredients. 2015 FRAME.

  19. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

    Science.gov (United States)

    Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian

    2017-06-01

    Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6  cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide

  20. Culture of human cells in experimental units for spaceflight impacts on their behavior.

    Science.gov (United States)

    Cazzaniga, Alessandra; Moscheni, Claudia; Maier, Jeanette Am; Castiglioni, Sara

    2017-05-01

    Because space missions produce pathophysiological alterations such as cardiovascular disorders and bone demineralization which are very common on Earth, biomedical research in space is a frontier that holds important promises not only to counterbalance space-associated disorders in astronauts but also to ameliorate the health of Earth-bound population. Experiments in space are complex to design. Cells must be cultured in closed cell culture systems (from now defined experimental units (EUs)), which are biocompatible, functional, safe to minimize any potential hazard to the crew, and with a high degree of automation. Therefore, to perform experiments in orbit, it is relevant to know how closely culture in the EUs reflects cellular behavior under normal growth conditions. We compared the performances in these units of three different human cell types, which were recently space flown, i.e. bone mesenchymal stem cells, micro- and macrovascular endothelial cells. Endothelial cells are only slightly and transiently affected by culture in the EUs, whereas these devices accelerate mesenchymal stem cell reprogramming toward osteogenic differentiation, in part by increasing the amounts of reactive oxygen species. We conclude that cell culture conditions in the EUs do not exactly mimic what happens in a culture dish and that more efforts are necessary to optimize these devices for biomedical experiments in space. Impact statement Cell cultures represent valuable preclinical models to decipher pathogenic circuitries. This is true also for biomedical research in space. A lot has been learnt about cell adaptation and reaction from the experiments performed on many different cell types flown to space. Obviously, cell culture in space has to meet specific requirements for the safety of the crew and to comply with the unique environmental challenges. For these reasons, specific devices for cell culture in space have been developed. It is important to clarify whether these

  1. Lipofection of early passages of cell cultures derived from murine adenocarcinomas: in vitro and ex vivo testing of the thymidine kinase/ganciclovir system.

    Science.gov (United States)

    Karara, Armando L; Bumaschny, Viviana F; Fiszman, Gabriel L; Casais, Cecilia C; Glikin, Gerardo C; Finocchiaro, Liliana Me

    2002-01-01

    Early passages of cultured cells derived from four spontaneous Balb/c murine adenocarcinomas were used to explore the feasibility of a nonviral HSVtk-based suicide gene therapy system. After lipofection with pCMVtk, the transiently HSVtk expressing P07 (lung), M3, M05, and M38 (mammary gland) cells were, respectively, about 130-, 30-, 120-, and 170-fold more sensitive to ganciclovir (GCV) in vitro than their respective controls. Eighty percent of Balb/c mice subcutaneously inoculated with ex vivo pCMVtk-lipofected P07 cells, followed by intraperitoneal GCV injection for 7 days, displayed a complete inhibition of tumor growth for over 70 days. Control animals started to display tumors 13 days after inoculation. We present evidence showing that early passages of cultured tumor cells can efficiently express lipofected genes and that they are sensitive to the lipoplex-mediated HSVtk/GCV system.

  2. Influence of culture conditions on Vero cell propagation on non-porous microcarriers

    Directory of Open Access Journals (Sweden)

    Marta Cristina de Oliveira Souza

    2005-06-01

    Full Text Available Animal cell cultures are widely employed for the production of viral vaccines and for recombinant protein expression. The cell line Vero is a continuous, adherent cell line, which has been recommended by the World Health Organization for the production of human vaccines. For the large-scale production of vaccines, microcarriers, which are microspheres that serve as support for the cells, are being increasingly used. The use of microcarriers in stirred bioreactors allows high cell densities and, consequently, high virus titres to be achieved. With the aim of selecting appropriate culture conditions for the cultivation of Vero cells at high cell densities, in this work the influence of several variables (agitation rate, ratio of inoculated cells to microcarrier mass and fetal bovine serum concentration on cell growth on Cytodex 1 microcarriers was studied. Under the best conditions determined, a comparison with Vero cell cultivation on Cytodex 3 microcarriers was carried out.Cultivos de células animais são amplamente utilizados para a produção de vacinas virais e para a expressão de proteínas recombinantes. A linhagem celular Vero é uma linhagem contínua, dependente de ancoragem, recomendada pela Organização Mundial de Saúde para a produção de vacinas de uso humano. Para a produção de vacinas virais em larga escala, vêm sendo cada vez mais empregados microcarregadores, que são microesferas que servem de suporte para as células. O emprego de microcarregadores em biorreatores agitados permite a obtenção de altas densidades celulares e, conseqüentemente, de altos títulos de antígenos virais. Com o objetivo de selecionar condições de cultivo adequadas, estudou-se, neste trabalho, o efeito das variáveis agitação, razão de células inoculadas por microcarregador e concentração de soro fetal bovino sobre o crescimento de células Vero em microcarregadores Cytodex 1. Nas melhores condições selecionadas, o desempenho dos

  3. Assessment of genetic and epigenetic variation during long-term Taxus cell culture.

    Science.gov (United States)

    Fu, Chunhua; Li, Liqin; Wu, Wenjuan; Li, Maoteng; Yu, Xiaoqing; Yu, Longjiang

    2012-07-01

    Gradual loss of secondary metabolite production is a common obstacle in the development of a large-scale plant cell production system. In this study, cell morphology, paclitaxel (Taxol®) biosynthetic ability, and genetic and epigenetic variations in the long-term culture of Taxus media cv Hicksii cells were assessed over a 5-year period to evaluate the mechanisms of the loss of secondary metabolites biosynthesis capacity in Taxus cell. The results revealed that morphological variations, gradual loss of paclitaxel yield and decreased transcriptional level of paclitaxel biosynthesis key genes occurred during long-term subculture. Genetic and epigenetic variations in these cultures were also studied at different times during culture using amplified fragment-length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP), and high-performance liquid chromatography (HPLC) analyses. A total of 32 primer combinations were used in AFLP amplification, and none of the AFLP loci were found to be polymorphic, thus no major genetic rearrangements were detected in any of the tested samples. However, results from both MSAP and HPLC indicated that there was a higher level of DNA methylation in the low-paclitaxel yielding cell line after long-term culture. Based on these results, we proposed that accumulation of paclitaxel in Taxus cell cultures might be regulated by DNA methylation. To our knowledge, this is the first report of increased methylation with the prolongation of culture time in Taxus cell culture. It provides substantial clues for exploring the gradual loss of the taxol biosynthesis capacity of Taxus cell lines during long-term subculture. DNA methylation maybe involved in the regulation of paclitaxel biosynthesis in Taxus cell culture.

  4. Primary culture of human Schwann and schwannoma cells: improved and simplified protocol.

    Science.gov (United States)

    Dilwali, Sonam; Patel, Pratik B; Roberts, Daniel S; Basinsky, Gina M; Harris, Gordon J; Emerick, Kevin S; Stankovic, Konstantina M

    2014-09-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects of viscoelastic ophthalmic solutions on cell cultures

    Directory of Open Access Journals (Sweden)

    Madhavan Hajib

    1998-01-01

    Full Text Available The development of mild but significant inflammation probably attributable to viscoelastic ophthalmic solutions in cataract surgery was recently brought to the notice of the authors, and hence a study of the effects of these solutions available in India, on cell cultures was undertaken. We studied the effects of 6 viscoelastic ophthalmic solutions (2 sodium hyaluronate designated as A and B, and 4 hydroxypropylmethylcellulose designated as C, D, E and F on HeLa, Vero and BHK-21 cell lines in tissue culture microtitre plates using undiluted, 1:10 and 1:100 dilutions of the solutions, and in cover slip cultures using undiluted solutions. Phase contrast microscopic examination of the solutions was also done to determine the presence of floating particles. The products D and F produced cytotoxic changes in HeLa cell line and these products also showed the presence of floating particles under phase contrast microscopy. Other products did not have any adverse effects on the cell lines nor did they show floating particles. The viscoelastic ophthalmic pharmaceutical products designated D and F have cytotoxic effects on HeLa cell line which appears to be a useful cell line for testing these products for their toxicity. The presence of particulate materials in products D and F indicates that the methods used for purification of the solution are not effective.

  6. Free-energy carriers in human cultured muscle cells

    NARCIS (Netherlands)

    Bolhuis, P. A.; de Zwart, H. J.; Ponne, N. J.; de Jong, J. M.

    1985-01-01

    Creatine phosphate (CrP), adenosine triphosphate (ATP), creatine kinase (CK), adenylate kinase (AK), protein, and DNA were quantified in human muscle cell cultures undergoing transition from dividing myoblasts to multinucleate myotubes. CrP is negligible in cultures grown in commonly applied media

  7. Proteins associated with adaptation of cultured tobacco cells to NaCl

    International Nuclear Information System (INIS)

    Singh, N.K.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A.

    1985-01-01

    Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyarylamide gel electrophoresis. The intensities of some of the polypeptide bands increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands are reduced. Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate 35 S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From their results, the authors suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress. 38 references, 11 figures, 2 tables

  8. Duchenne muscular dystrophy: normal ATP turnover in cultured cells

    International Nuclear Information System (INIS)

    Fox, I.H.; Bertorini, T.; Palmieri, G.M.A.; Shefner, R.

    1986-01-01

    This paper examines ATP metabolism in cultured muscle cells and fibroblasts from patients with Duchenne dystrophy. ATP and ADP levels were the same in cultured cells from normal subjects and patients and there was no difference in ATP synthesis or degradation. The ATP synthesis was measured by the incorporation of C 14-U-adenine into aTP and ADP. although there was a significant decrease in radioactively labelled ATP after incubation with deoxyglucose in Duchenne muscle cells, there was no difference in ATP concentration of ADP metabolism

  9. Human dental pulp cell culture and cell transplantation with an alginate scaffold.

    Science.gov (United States)

    Kumabe, Shunji; Nakatsuka, Michiko; Kim, Gi-Seup; Jue, Seong-Suk; Aikawa, Fumiko; Shin, Je-Won; Iwai, Yasutomo

    2006-02-01

    Many studies on tissue stem cells have been conducted in the field of regenerative medicine, and some studies have indicated that cultured dental pulp mesenchymal cells secrete dentin matrix. In the present study we used alginate as a scaffold to transplant subcultured human dental pulp cells subcutaneously into the backs of nude mice. We found that when beta-glycerophosphate was added to the culture medium, dentin sialophosphoprotein mRNA coding dentin sialoprotein (DSP) was expressed. An increase in alkaline phosphatase, which is an early marker for odontoblast differentiation, was also demonstrated. At 6 weeks after implantation the subcutaneous formation of radio-opaque calcified bodies was observed in situ. Immunohistochemical and fine structure studies identified expression of type I collagen, type III collagen, and DSP in the mineralizing transplants. Isolated odontoblast-like cells initiated dentin-like hard tissue formation and scattered autolyzing apoptotic cells were also observed in the transplants. The study showed that subcultured dental pulp cells actively differentiate into odontoblast-like cells and induce calcification in an alginate scaffold.

  10. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...

  11. Cytokines effects on radio-induced apoptosis in cortical and hippocampal rat cells in culture

    International Nuclear Information System (INIS)

    Coffigny, H.; Briot, D.; Le Nin, I.

    2000-01-01

    In the central nervous system in development the radio-induced cell death occurs mainly by apoptosis. The effects of modulating factors like cytokines were studied on this kind of death. To handle more easily parameters implicated in nerve cell apoptosis, we studied the effects of radiation with a in vitro system. Cells were isolated from rat foetal cortex and hippocampus, two of the major structures implicated in human mental retardation observed after exposition in utero at Hiroshima and Nagasaki. Cortical or hippocampal cells were isolated from 17 day-old rat foetuses by enzymatic and mechanical treatments and irradiated with 0.50 or 1 Gy. The cells from both structures were cultured 1 or 3 days in serum free medium. Cytokines like βNGF, NT3, EGF, βTGF, α and βFGF, IGF I and II, interleukines like Il 1β, Il 2 and IL 6 were added to the medium. In 3 days cortical cell culture, only βFGF increased cell survival with as little as 10 ng/ml. This effect was dose dependent. In hippocampal cell culture, no significant increase of cell survival occurred with 10 ng/ml of any cytokines. In the same system culture with 1 Gy irradiation, the positive or negative effect of the association of βFGF with another cytokine was tested on cell survival. Only the association with EGF induced higher cell survival in cortical cell culture. In hippocampal cell culture where βFGF alone had no effect, the cell survival was not modified by the association. In the same system, the triple association of βFGF-EGF with another cytokine was tested on hippocampal and cortical cell cultures. No significant effect was observed in both cultures but cell survival trented to decrease with βTGF. In order to avoid the mitotic effect of cytokines in the 3 day-old culture, experiments were carried out on 20 hours cell culture, before the end of the first round of the cell cycle, with the selected cytokines (βFGF or βFGF-EGF). Without irradiation, the percentage of cortical cell survival

  12. [Culture conditions for gametes and embryos: Which culture medium? Which impact on newborn?

    Science.gov (United States)

    Koscinski, I; Merten, M; Kazdar, N; Guéant, J-L

    2018-05-01

    Many studies have examined the impact of cell/embryo culture media on the development of human embryo during IVF process, but few studies have followed up and compared the effects of these culture media on the developmental outcome of children conceived by IVF. As recurrent experimental evidence from animal studies suggests potential long-term effects of embryo culture media on the health outcome of IVF-conceived children, more studies are needed to clarify the role of the culture media and mechanisms underlying such effects. In human, however, the effects of culture media are difficult to pinpoint due to complications stem from both the influence of maternal nutrition during the gestational period and the parental genetic. Based on a simple review of the literature integrating animal experimentations and human clinic studies, we suggest that the composition of culture medium should be considered beyond the character of unique or sequential medium, corresponding to "let embryo choose" or "back to nature" respectively. Instead, we suggest that the main components of embryo culture media should be considered from the point of view of metabolic consequences and potential epigenetic effects. Given that energetic metabolites can regulate epigenetic machinery, we hypothesize that metabolic abnormalities linked to morphological abnormalities could reveal epigenetic defects in embryos. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    International Nuclear Information System (INIS)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-01-01

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy

  14. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  15. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells

    International Nuclear Information System (INIS)

    Makarova, Olga V.; Adams, Daniel L.; Divan, Ralu; Rosenmann, Daniel; Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei

    2016-01-01

    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. - Highlights: • Surface topographical effects the growth patterns and cell function of cancer cells • Nanoscale surface topography on polymer filters for circulating tumor cell culture • Membrane fabricated directly on polymer surfaces utilized for polymer etching • Nanotopography alters cell shape, phenotype and growth patterns of cancer cells • Nanoscale surface topography dictates monolayering or 3D structured cell culture

  16. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Olga V. [Creatv MicroTech, Inc., 2242 West Harrison St., Chicago 60612, IL (United States); Adams, Daniel L., E-mail: dan@creatvmicrotech.com [Creatv MicroTech, Inc., 1 Deer Park Drive, Monmouth Junction, NJ 08852 (United States); Divan, Ralu; Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Ave., Argonne 60439, IL (United States); Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei [Creatv MicroTech, Inc., 11609 Lake Potomac Drive, Potomac 20854, MD (United States)

    2016-09-01

    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. - Highlights: • Surface topographical effects the growth patterns and cell function of cancer cells • Nanoscale surface topography on polymer filters for circulating tumor cell culture • Membrane fabricated directly on polymer surfaces utilized for polymer etching • Nanotopography alters cell shape, phenotype and growth patterns of cancer cells • Nanoscale surface topography dictates monolayering or 3D structured cell culture.

  17. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    Science.gov (United States)

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  18. Enhanced Chondrocyte Proliferation in a Prototyped Culture System with Wave-Induced Agitation

    Directory of Open Access Journals (Sweden)

    Pilarek Maciej

    2017-06-01

    Full Text Available One of the actual challenges in tissue engineering applications is to efficiently produce as high of number of cells as it is only possible, in the shortest time. In static cultures, the production of animal cell biomass in integrated forms (i.e. aggregates, inoculated scaffolds is limited due to inefficient diffusion of culture medium components observed in such non-mixed culture systems, especially in the case of cell-inoculated fiber-based dense 3D scaffolds, inside which the intensification of mass transfer is particularly important. The applicability of a prototyped, small-scale, continuously wave-induced agitated system for intensification of anchorage-dependent CP5 chondrocytes proliferation outside and inside three-dimensional poly(lactic acid (PLA scaffolds has been discussed. Fibrous PLA-based constructs have been inoculated with CP5 cells and then maintained in two independent incubation systems: (i non-agitated conditions and (ii culture with wave-induced agitation. Significantly higher values of the volumetric glucose consumption rate have been noted for the system with the wave-induced agitation. The advantage of the presented wave-induced agitation culture system has been confirmed by lower activity of lactate dehydrogenase (LDH released from the cells in the samples of culture medium harvested from the agitated cultures, in contrast to rather high values of LDH activity measured for static conditions. Results of the proceeded experiments and their analysis clearly exhibited the feasibility of the culture system supported with continuously wave-induced agitation for robust proliferation of the CP5 chondrocytes on PLA-based structures. Aside from the practicability of the prototyped system, we believe that it could also be applied as a standard method offering advantages for all types of the daily routine laboratory-scale animal cell cultures utilizing various fiber-based biomaterials, with the use of only regular laboratory

  19. Effect of Co-Culturing of Mice Liver Cells and Embryonic Carcinomatous Stem Cells on the Rate of Differentiation to Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    AA Pourfatollah

    2005-10-01

    Full Text Available Introduction: Considering the importance of co-culture in differentiation of embryonic stem cells, the aim of this study was evaluation of the effect of co-culturing fetal liver stroma cells with P19 cells on the line of differentiation. Materials and Methods: For this purpose, P19 cells were cultured directly in semisolid medium. These cells proliferated and primarily differentiated to colonies know as embryoid bodies (EBs after 8-12 days. The Ebs cells were trypsinized and dissociated to single or double cells. Then these cells were co-cultured on the mouse fetal liver feeder layer in the absence of exogenous factors. After 14-18 days, the colonies were studied morphologically by benzidine and giemsa staining and also counted under invert microscope. Results: The percentages of benzidine positive (or erythroid and negative colonies were 94% and 6% respectively and also the cells of colonies were studied by Giemsa staining. Results showed that they were myeloid or lymphoid type cells. Thus, the results show that in the presence of mouse fetal liver feeder layer, the number of erythroid colonies was increased. Conclusions: Therefore, this technique may be effective for differentiation of stem cells from different sources into hematopoietic cells and can be used in future for human cell therapy.

  20. Development of an innovative 3D cell culture system to study tumour--stroma interactions in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Arno Amann

    Full Text Available INTRODUCTION: We describe a novel 3D co-culture model using non-small cell lung cancer (NSCLC cell lines in combination with lung fibroblasts. This model allows the investigation of tumour-stroma interactions and addresses the importance of having a more in vivo like cell culture model. METHODS: Automation-compatible multi-well hanging drop microtiter plates were used for the production of 3D mono- and co-cultures. In these hanging drops the two NSCLC cell lines A549 and Colo699 were cultivated either alone or co-cultured with lung fibroblasts. The viability of tumour spheroids was confirmed after five and ten days by using Annexin V/Propidium Iodide staining for flow-cytometry. Tumour fibroblast spheroid formation was characterized by scanning electron microscope (SEM, semi-thin sections, fluorescence microscope and immunohistochemistry (IHC. In addition to conventional histology, protein expression of E-Cadherin, vimentin, Ki67, fibronectin, cytokeratin 7 and α-smooth muscle actin (α-SMA was investigated by IHC. RESULTS: Lower viability was observed in A549 monocultures compared to co-cultures, whereas Colo699 monocultures showed better viability compared to co-cultures. Ki67 expression varied significantly between mono- and co-cultures in both tumour cell lines. An increase of vimentin and decreased E-Cadherin expression could be detected during the course of the cultivation suggesting a transition to a more mesenchymal phenotype. Furthermore, the fibroblast cell line showed an expression of α-SMA only in co-culture with the cancer cell line A549, thereby indicating a mesenchymal to mesenchymal shift to an even more myofibroblast phenotype. CONCLUSION: We demonstrate that our method is a promising tool for the generation of tumour spheroid co-cultures. Furthermore, these spheroids allow the investigation of tumour-stroma interactions and a better reflection of in vivo conditions of cancer cells in their microenvironment. Our method holds