WorldWideScience

Sample records for cultivated soils electronic

  1. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    Science.gov (United States)

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  2. Parental material and cultivation determine soil bacterial community structure and fertility.

    Science.gov (United States)

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  3. ADAPTIVE ENERGY-SAVING CULTIVATOR FOR STONY SOILS CULTIVATING

    Directory of Open Access Journals (Sweden)

    A. B. Kudzaev

    2015-01-01

    Full Text Available Practice of cultivators operation on stony soils in RNO-Alania with high hardness and humidity indicates that traction resistance during the work varies widely, with deviation from the mean value by more than 2 times. Optimally adjust the machine to the soil background when using most modern mechanisms of regulation is not always possible. Customizing the data machine boils down to the choice of priority between the vibration of the working bodies in the soil, the maintenance of the given depth and power reserve stands required to crawl the working body of the big stones. It is very difficult to get in practice the best combination of these three factors, especially on stony soils. Therefore, the machine must be designed with the ability to quickly adjust to changing operating conditions and modes to ensure energy-saving effects and not violations of the specified soil depth of various hardness with the possibility of equipping the machine racks with different working bodies. The interrow cultivator with the possibility of the quick adjustment (including automated to varying conditions was developed. In the process of studied basic parameters of elastic composite racks and parameters of pneumatic mechanism drive to adjust the proposed section of the machine were established. The system hardiness in layouts by elastic bars with air pressure up to 0.6 MPa varies from 17.7 to 45.3 N/mm. It was received effective values of pressures 0.4-0.5 MPa in the pneumatic drive partitions of the machine when operating with universal blade and ridger body OK-3 on stony soil. As a result, traction resistance decreases by 30-35 percent.

  4. The utilization of ultisol soil for horticulture crops cultivation

    Science.gov (United States)

    Sumono; Parinduri, SM; Huda, N.; Ichwan, N.

    2018-02-01

    Ultisol soil is a marginal soil commonly used for palm oil cultivation in Indonesia, its very potential for cultivation of horticulture crops. The utilization of ultisol soil can be done with adding compost with certain proportions. The research aimed to know best proportion of ultisol soil and compost, and proportion of water concentration, and its relationship with fresh and dry weight of horticulture crops . The research was divided 3 steps. The first, mixed ultisol soil and compost with certain proportion and flooding until steady. The second, watering with different concentration to soil mixture. The last, studied its relationship with fresh and dry weight of crops. The result show that physical properties and nutrient content of ultisol soil was increasing with adding compost. SC4 (70% soil and 30% compost) is the best composition to soil mixture. Watering with different concentration show that trend decreased from reference and the bulk density and porosity decreased not significantly at the significant level ∝ = 0.05. Watering affect mass of pakcoynot significantly at the significant level ∝ = 0.05. Hence, ultisol soil was a potential marginal soil to utilizing as a media for cultivating horticulture crops.

  5. CHANGE OF CHOSEN SOIL PHYSICAL PROPERTIES OF CHERNOZEM AFTER SEVEN YEARS OF NO-TILL SOIL CULTIVATION

    Directory of Open Access Journals (Sweden)

    Katarna Hrckov

    2014-09-01

    Full Text Available Soil physical properties were investigated in two types of growing systems - integrated no-till system and conventional system with ploughing, in 1999 2005 on chernozem in maize growing region. Bulk density decreased and total porosity increased during 7 years in both growing systems. In integrated system the improvement of soil physical properties could be explained by remaining of plant residues on soil surface. In conventional system the plant residues were incorporated into soil by ploughing. This led to the higher proportion of organic matter in soil. Soil cultivated conventionally had significantly higher value of reduced bulk density, significantly lower porosity and significantly higher values of soil moisture compared to soil in integrated no-till system. Maximum capillary water capacity was not significantly influenced by soil cultivation. Values of investigated soil physical properties in both systems were not markedly different from the typical values of cultivated chernozem.

  6. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soil

    OpenAIRE

    Elliott, E.T.

    1986-01-01

    Metadata only record This study evaluates the impact of cultivation on soil organic matter loss in North American grassland soils by measuring numerous aggregate- and nutrient-related soil indicators. Macroaggregates were more stable in native soil than in cultivated soil. In both soils, more C, N, and P were present in macroaggregates than in microaggregates.

  7. Aggregate stability in soils cultivated with eucalyptus

    Science.gov (United States)

    Eucalyptus cultivation has increased in many Brazilian regions. In order to recommend good management practices, it is necessary to understand changes in soil properties where eucalyptus is planted. Aggregate stability analyses have proved to be a useful tool to measure soil effects caused by change...

  8. Phosphorus critical levels and availability in lowland soils cultivated with flooded rice

    Directory of Open Access Journals (Sweden)

    Mariano Isabela Orlando dos Santos

    2002-01-01

    Full Text Available Lowland soils present a great potential for the flooded rice crop. This work aimed to estimate critical levels of P in waterlogged soils cultivated with rice using Mehlich 1 and anion exchange resin as soil-P extractors, compare the performance of these extractors as for the evaluation of the P availability, and study the soil-P fractions involved in the P nutrition of the rice crop. Studied soils consisted of four Histosols: Low Humic Gley (GP, Aluvial (A, Humic Gley (GH and Bog Soil (O which were previously cultivated with beans. The experimental design was completely randomized, in a factorial scheme, using four soils, five P rates (75, 150, 300, 500 and 800 mg dm-3 and two liming treatments (with and without liming, with three replicates. After 60 days of flooding, soil samples were submitted to P extraction by Mehlich 1 and resin, and phosphorous fractionation. Two rice plants were cultivated in pots containing 3 dm³ of waterlogged soils. The labile P and the moderately labile P of the soils contributed for rice nutrition. The two tested extractors presented efficiency in the evaluation of P availability for the rice cultivated in lowland waterlogged soils.

  9. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil.

    Science.gov (United States)

    Al-Sadi, Abdullah M; Al-Oweisi, Fatma A; Edwards, Simon G; Al-Nadabi, Hamed; Al-Fahdi, Ahmed M

    2015-07-28

    Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T

  10. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  11. Soil protection through almond tree cultivation

    International Nuclear Information System (INIS)

    Garcia, C.; Hernandez, T.; Moreno, J. L.; Bastida, F.; Masciandaro, G.; Mennone, C.; Ceccanti, B.

    2009-01-01

    Most threat to soil are particularly severe in areas with steps slopes and suffering dry periods followed by heavy rain such as the Mediterranean regions. Severity is aggravated by lacking or inappropriate farming systems. Therefore the objective of this work was to demonstrate that land management based on cultivation of new varieties of local crops (almond trees) suited to these conditions may result in a sustainable system to prevent soil degradation. (Author)

  12. [Effects of different cultivation patterns on soil aggregates and organic carbon fractions].

    Science.gov (United States)

    Qiu, Xiao-Lei; Zong, Liang-Gang; Liu, Yi-Fan; Du, Xia-Fei; Luo, Min; Wang, Run-Chi

    2015-03-01

    Combined with the research in an organic farm in the past 10 years, differences of soil aggregates composition, distribution and organic carbon fractions between organic and conventional cultivation were studied by simultaneous sampling analysis. The results showed that the percentages of aggregates (> 1 mm, 1-0.5 mm, 0.5-0.25 mm and organic cultivation were 9.73%, 18.41%, 24.46% and 43.90%, respectively. The percentage of organic cultivation than that in conventional cultivation. Organic cultivation increased soil organic carbon (average of 17.95 g x kg(-1)) and total nitrogen contents (average of 1.51 g x kg(-1)). Among the same aggregates in organic cultivation, the average content of heavy organic carbon fraction was significantly higher than that in conventional cultivation. This fraction accumulated in organic carbon. In organic cultivation, the content of labile organic carbon in > 1 mm macro-aggregates was significantly higher than that in conventional cultivation, while no significant difference was found among the other aggregates, indicating that the labile organic carbon was enriched in > 1 mm macro-aggregates. Organic cultivation increased the amounts of organic carbon and its fractions, reduced tillage damage to aggregates, and enhanced the stability of organic carbon. Organic cultivation was therefore beneficial for soil carbon sequestration. The findings of this research may provide theoretical basis for further acceleration of the organic agriculture development.

  13. Effect of cultivation ages on Cu accumulation in Greenhouse Soils in North China

    Science.gov (United States)

    Wang, Jun; Guo, Wenmiao; Chen, Xin; Shi, Yi

    2017-11-01

    In this study, we determined the influence of cultivation age on Cu accumulation in greenhouse soils. The concentration of plant available Cu (A-Cu) decreased with depth, and the contents of top soils (0-40 cm) in greenhouses were higher than those of the open field. There was a positive correlation between A-Cu concentrations in soils and cultivation ages (R2=0.572). The contents of total Cu (T-Cu) decreased with depth, and positively correlated with cultivation ages in top soils (0-20cm) (R2=0.446). The long-term usage of manures can cause Cu increase and accumulation in greenhouse soils in comparison to the open field.

  14. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    Science.gov (United States)

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  15. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    Science.gov (United States)

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern. The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the

  16. Processes and Causes of Accelerated Soil Erosion on Cultivated ...

    African Journals Online (AJOL)

    Processes and Causes of Accelerated Soil Erosion on Cultivated Fields of South Welo, Ethiopia. ... In most of the highlands, crop cultivation is carried out without any type of terracing, while about 74 per cent of this land requires application of contour plowing, broad-based terracing, or bench terracing. The third group of ...

  17. Biochar from commercially cultivated seaweed for soil amelioration

    OpenAIRE

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum ? brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma ? red seaweeds). While there is some variability in biochar properties as ...

  18. Aggregate Stability of Tropical Soils Under Long-Term Eucalyptus Cultivation

    Science.gov (United States)

    Eucalyptus cultivation has increased in all Brazilian regions. Despite the large amount of cultivated area, little is known about how this kind of management system affects soil properties, mainly the aggregate stability. Aggregate stability analyses have proved to be a sensitive tool to measure soi...

  19. Phytoremediation of radiocesium in different soils using cultivated plants

    International Nuclear Information System (INIS)

    Suzuki, Yasukazu; Saito, Takashi; Tsukada, Hirofumi

    2012-01-01

    A huge amount of radionuclides were released into the environment after the Fukushima Daiichi nuclear power plant accident. Radiocesium, which is one of the more prevalent radionuclides, was deposited in the soil. It is well known that radiocesium is adsorbed into the soil and binds strongly to clay. As a result, it is difficult to reduce the contamination level in the soil. We examine the possibility of decontamination by means of phytoremediation. Four species of plants (sunflower, sorghum, amaranth, and buckwheat) were sown in light-colored Andosol and gray lowland soil. When the plants matured, they were harvested and separated into their different parts, i.e., flower, leaf, stem, and root. The removal percentage of 137 Cs for the aboveground parts, which is defined as the ratio of the total content of 137 Cs in the aboveground biomass of plants to that in the cultivated soil of 0-15 cm depth, was 0.013-0.93% for the light-colored Andosol and 0.0072-0.038% for the gray lowland soil. The plants exhibiting the highest value cultivated in the light-colored Andosol and gray lowland soil were amaranth (0.093%) and sunflower (0.038%), respectively. This indicates that it is difficult to remove radiocesium from contaminated soil by means of phytoremediation. (author)

  20. SOIL CONSERVATION TECHNIQUES IN OIL PALM CULTIVATION FOR SUSTAINABLE AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Halus Satriawan

    2017-08-01

    Full Text Available Currently, many have been concerned with the oil palm cultivation since it may also put land resources in danger and bring about environmental damage. Poor practices in managing agricultural land very often occur due to the inadequate knowledge of soil conservation. Application of soil and water conservation is to maintain the productivity of the land and to prevent further damage by considering land capability classes. This research was aimed at obtaining soil and water conservation techniques which are the most appropriate and optimal for oil palm cultivation areas based on land capability classes which can support sustainable oil palm cultivation. Several soil conservation techniques had been treated to each different class III, IV, and VI of the studied area. These treatment had been performed by a standard plot erosion. The results showed for the land capability class III, Cover plants + Manure was able to control runoff, erosion and reduce leaching of N (LSD P≤0,05, in which soil conservation produced the lowest erosion (3,73t/ha, and N leaching (0,25%. On land capability class IV, Sediment Trap + cover plants+ manure was able to control runoff, erosion and reduce organic C and P leaching (LSD P≤0,05, in which soil conservation produced the lowest runoff (127,77 m3/ha, erosion (12,38t/ha, organic C leaching (1,14 %, and P leaching (1,28 ppm. On land capability class VI, there isn’t significant effect of soil conservation, but Bench Terrace + cover plants +manure has the lowest runoff, erosion and soil nutrient leaching.

  1. Biochar from commercially cultivated seaweed for soil amelioration

    Science.gov (United States)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-04-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum - brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma - red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity.

  2. Biochar from commercially cultivated seaweed for soil amelioration

    Science.gov (United States)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum – brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma – red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity. PMID:25856799

  3. Phytoremediation of radiocesium in different soils using cultivated plants

    International Nuclear Information System (INIS)

    Suzuki, Yasukazu; Saito, Takashi; Tsukada, Hirofumi

    2013-01-01

    A huge amount of radionuclides were released into the environment after the Fukushima Daiichi nuclear power plant accident. Radiocesium, which is one of the more prevalent radionuclides, was deposited in the soil. It is well known that radiocesium is adsorbed into the soil and binds strongly to clay. As a result, it is difficult to reduce the contamination level in the soil. We examine the possibility of decontamination by means of phytoremediation. Four species of plants (sunflower, sorghum, amaranth, and buckwheat) were sown in light-colored Andosol and gray lowland soil. When the plants matured, they were harvested and separated into their different parts, i.e., flower, leaf, stem, and root. The removal percentage of "1"3"7Cs for the aboveground parts, which is defined as the ratio of the total content of "1"3"7Cs in the aboveground biomass of plants to that in the cultivated soil of 0-15 cm depth, was 0.013- 0.93% for the light-colored Andosol and 0.0072-0.038% for the gray lowland soil. The plants exhibiting the highest value cultivated in the light-colored Andosol and gray lowland soil were amaranth (0.093%) and sunflower (0.038%), respectively. This indicates that it is difficult to remove radiocesium from contaminated soil by means of phytoremediation. (author)

  4. REE Distribution in Cultivated and No Cultivated Soils in Two Viticultural Areas of Central Chile: Mineralogical, Pedological and Anthropic Influences

    Science.gov (United States)

    Castillo, P.; Townley, B.; Aburto, F.

    2017-12-01

    Within the scope of a Corfo-Innova Project (I+D Wines of Chile-University of Chile) we have recognized remarkable REE patterns in soils of two vineyards located in traditional vinicultural areas: Casablanca and Santa Cruz. Both vineyards have granitic parent rock, with similar petrographic features and REE patterns. We studied REE distribution on twelve cultivated soil profiles at each vineyard, where a full mineralogical, geochemical and pedogenic sampling and characterization was performed. To establish the effect of management no cultivated soil profiles were included from each vineyard location. REE in soil samples were measured by ICP-MS using two digestion methods: lithium metaborate/tetraborate fusion to obtain REE contents in total soil and MMI® partial extraction technique for REE contents on bioavailable phases.Soils display similar signatures of REEs respect to the rock source at both vineyards, but showing relative enrichments in soils of Casablanca and depletion in soils of Santa Cruz. Bioavailable phase data indicates a relative depletion of LREEs compared to HREEs and different anomalies for Ce (positive vs negative) in different areas of the same vineyard. Similar patterns of soils and parent rock suggest that REEs are adequate tracers of lithological source. Enrichments and/or depletions of REE patterns in soils respect to the rock source and Ce anomalies, evidence differential pedogenetic processes occurring at each sampled site. Results of bioavailable phase are coherent with the immobilization and fractionation of LREEs by stable minerals within soils as clays and Fe oxides. Mineralogical results in soil thin sections of Casablanca evidence the occurrence of Ti phases as sphene, ilmenite and rutile, which probably control the relative REE enrichment, since these minerals are considered more stable under pedogenic conditions.Finally, cultivated soils show a depleted but analogous pattern of REE regarding to no cultivated soil, indicating the

  5. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome.

    Science.gov (United States)

    Lessa, J H L; Araujo, A M; Silva, G N T; Guilherme, L R G; Lopes, G

    2016-12-01

    Soil management may affect selenium (Se) adsorption capacity. This study investigated adsorption and desorption of Se (VI) in selected Brazilian soils from the Cerrado biome, an area of ever increasing importance for agriculture expansion in Brazil. Soil samples were collected from cultivated and uncultivated soils, comprising clayed and sandy soils. Following chemical and mineralogical characterization, soil samples were subjected to Se adsorption and desorption tests. Adsorption was evaluated after a 72-h reaction with increasing concentrations of Se (0-2000 μg L -1 ) added as Na 2 SeO 4 in a NaCl electrolyte solution (pH 5.5; ionic strength 15 mmol L -1 ). Desorption, as well as distribution coefficients (K d ) for selenate were also assessed. Soil management affected Se adsorption capacity, i.e., Se adsorbed amounts were higher for uncultivated soils, when compared to cultivated ones. Such results were also supported by data of K d and maximum adsorption capacity of Se. This fact was attributed mainly to the presence of greater amounts of competing anions, especially phosphate, in cultivated soils, due to fertilizer application. Phosphate may compete with selenate for adsorption sites, decreasing Se retention. For the same group of soils (cultivated and uncultivated), Se adsorption was greater in the clayed soils compared to sandy ones. Our results support the idea that adding Se (VI) to the soil is a good strategy to increase Se levels in food crops (agronomic biofortification), especially when crops are grown in soils that have been cultivated over the time due to their low Se adsorption capacity (high Se availability). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. 137Cs profiles in erosion plots with different soil cultivation

    International Nuclear Information System (INIS)

    Andrello, A.C.; Appoloni, C.R.; Cassol, E.A.; Melquiades, F.L.

    2006-01-01

    Cesium-137 methodology has been successfully used to assess soil erosion. Seven erosion plots were sampled to determine the 137 Cs profile and to assess the erosion rates. Cesium-137 profile for native pasture plot showed an exponential decline below 5 cm depth, with little 137 Cs activity in the superficial layer (0-5 cm). Cesium-137 profile for wheat-soybean rotation plot in conventional tillage showed a uniform distribution with depth. For this plot, the soil loss occurs more in middle than upper and lower level. Cesium-137 profile for wheat-soybean rotation and wheat-maize rotation plots in no-tillage showed a similar result to the native pasture, with a minimum soil loss in the superficial layer. Cesium-137 profile for bare soil and cultivated pasture plots are similar, with a soil erosion rate of 229 t ha -1 year -1 . In the plots with a conventional tillage a greater soil loss occur in middle than upper and lower level. In no-tillage cultivation plots occurs soil loss in lower level, but no sign of soil loss neither gain in the upper level is observed. Cesium-137 methodology is a good tool to assess soil erosion and the 137 Cs profile gives a possibility to understand the soil erosion behavior in erosion plots. (author)

  7. Bacterial diversity and community structure in lettuce soil are shifted by cultivation time

    Science.gov (United States)

    Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin

    2017-08-01

    Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.

  8. [Prevention of soil deterioration during cultivation of medicinal plants].

    Science.gov (United States)

    Guo, Lan-ping; Huang, Lu-qi; Jiang, You-xu; Lv, Dong-mei

    2006-05-01

    This paper summarized the aspects of the soil deterioration due to continuous growth of medicinal plants, such as nutrition insufficient, pH variation, harmful salt accumulating, harmful microbe and allelopathic substance increasing, soil physics and chemistry properties variation. And the ways to prevent and rehabilitate the deteriorated soil was indicated, which included anti-adversity species selecting, scientific management such as whorl cropping, nutrient elements supplement, usage of physical methods, nutrient liquid cultivating and VAM inoculating etc.

  9. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.

    Science.gov (United States)

    Jung, Joo-Young; Kim, Sunmin; Lee, Hansol; Kim, Kyochan; Kim, Woong; Park, Min S; Kwon, Jong-Hee; Yang, Ji-Won

    2014-12-01

    Calcium ion and trace metals play important roles in various metabolisms of photosynthetic organisms. In this study, simple methods were developed to extract calcium ion and micronutrients from oyster shell and common soil, and the prepared extracts were tested as a replacement of the corresponding chemicals that are essential for growth of microalgae. The oyster shell and soil were treated with 0.1 M sodium hydroxide or with 10 % hydrogen peroxide, respectively. The potential application of these natural sources to cultivation was investigated with Spirulina maxima. When compared to standard Zarrouk medium, the Spirulina maxima cultivated in a modified Zarrouk media with elements from oyster shell and soil extract exhibited increases in biomass, chlorophyll, and phycocyanin by 17, 16, and 64 %, respectively. These results indicate that the extracts of oyster shell and soil provide sufficient amounts of calcium and trace metals for successful cultivation of Spirulina maxima.

  10. [Community traits of soil fauna in forestlands converted from cultivated lands in limestone red soil region of Ruichang, Jiangxi Province of China].

    Science.gov (United States)

    Li, Tao; Liu, Yuan-Qiug; Guo, Sheng-Mao; Ke, Guo-Qing; Zhang, Zhao; Xiao, Xu-Bao; Liu, Wu

    2012-04-01

    This paper studied the variations of the community composition and individuals' number of soil fauna in limestone red soil region of Ruichang, Jiangxi Province after six years of converting cultivated lands into forestlands. Three converted forestlands, including the lands of mixed multiple-species forest, bamboo-broadleaved forest, and tree-seedling integration, were selected as test objects, with cultivated lands as the comparison. A total of 34 orders, 17 classes, and 6 phyla of soil fauna were observed in the converted forestlands. The dominant group was Nematoda, accounting for 86.7% of the total, whereas Acarina, Enchytraeidae, and Collembola were the common groups. In the cultivated lands, soil fauna had 21 orders, 10 classes, and 5 phyla. The dominant group was also Nematoda, accounting 86.7% of the total, and Acarina and Enchytraeidae were the common groups. In the converted forestlands, the group number of rare species was greater than that in the cultivated lands (30 vs. 18), and, except in winter, the group number and average density were significantly higher than those in the cultivated lands (P soil fauna in the soil profiles showed an obvious surface accumulation, which was more apparent in converted forestlands than in cultivated lands, and the individuals' number had significant differences between the surface (0-5 cm) layer and the 5-10 cm and 10-15 cm layers (P soil fauna in the converted forestlands had a seasonal variation ranked in the order of summer > autumn > spring > winter, and there was a significant difference between summer-autumn and spring-winter. The average density of the soil fauna also had a seasonal variation but ranked as autumn > summer > spring > winter, and the differences among the seasons were significant (P soil fauna was significantly higher in converted forestlands than in cultivated lands, and was the highest in mixed multiple-species forestland and the least in tree-seedling integration land.

  11. Soil organic carbon stock and distribution in cultivated land converted to grassland in a subtropical region of China.

    Science.gov (United States)

    Zhang, J H; Li, F C; Wang, Y; Xiong, D H

    2014-02-01

    Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P\\0.001) for converted soils than those for cultivated soils but lower (P\\0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m-2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m-2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P\\0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).

  12. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000

    Science.gov (United States)

    Yu, Yanyan; Guo, Zhengtang; Wu, Haibin; Kahmann, Julia A.; Oldfield, Frank

    2009-06-01

    We address the spatial changes in organic carbon density and storage in cultivated soils in China from 1980 to 2000 on the basis of measured data from individual studies and those acquired during the second national soil survey in China. The results show a carbon gain in ˜66% of the cultivated area of China as a whole with the increase in soil organic carbon (SOC) density mostly ranging from 10% to 30%. Soil organic carbon density increased in fluvi-aquic soils (fluvisols, Food and Agriculture Organization (FAO) of the United Nations) in north China, irrigated silting soils (calcaric fluvisols) in northwest China, latosolic red earths (haplic acrisols/alisols), and paddy soils (fluvisols/cambisols) in south China. In contrast, significant decreases are observed in black soils (phaeozems) in northeast China and latosols (haplic acrisols) in southwest China. No significant changes are detected in loessial soils (calcaric regosols) and dark loessial soils (calcisols) in the loess plateau region. The total SOC storage and average density in the upper 20 cm in the late 1990s are estimated to be ˜5.37 Pg C and 2.77 kg/m2, respectively, compared with the values of ˜5.11 Pg C and 2.63 kg/m2 in the early 1980s. This reveals an increase of SOC storage of 0.26 Pg C and suggests an overall carbon sink for cultivated soils in China, which has contributed 2-3% to the global terrestrial ecosystem carbon absorption from 1980 to 2000. Statistical analyses suggest an insignificant contribution to the observed SOC increase from climate change, and we infer that it is mostly attributable to improved agricultural practices. Despite the SOC density increases over 20 years, the SOC density of the cultivated soils in China in the late 1990s is still ˜30% lower compared to their uncultivated counterparts in comparable soil types, suggesting a considerable potential for SOC restoration through improving management practices. Assuming a restoration of ˜50% of the lost SOC in the next 30

  13. Convergent adaptations: bitter manioc cultivation systems in fertile anthropogenic dark earths and floodplain soils in Central Amazonia.

    Directory of Open Access Journals (Sweden)

    James Angus Fraser

    Full Text Available Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open

  14. Convergent Adaptations: Bitter Manioc Cultivation Systems in Fertile Anthropogenic Dark Earths and Floodplain Soils in Central Amazonia

    Science.gov (United States)

    Fraser, James Angus; Alves-Pereira, Alessandro; Junqueira, André Braga; Peroni, Nivaldo; Clement, Charles Roland

    2012-01-01

    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for

  15. Weed infestation of onion in soil reduced cultivation system

    Directory of Open Access Journals (Sweden)

    Marzena Błażej-Woźniak

    2013-12-01

    Full Text Available Field experiment was conducted in the years 1998-2000 in GD Felin. The influence of no-tillage cultivation and conventional tillage with spring ploughing on weed infestation of onion was compared. In experiment four cover crop mulches (Sinapis alba L., Vicia sativa L., Phacelia tanacetifolia B., Avena sativa L. were applied. From annual weeds in weed infestation of onion in great number Matricaria chamomilla L., and Senecio vulgaris L. stepped out. and from perennial - Agropyron repens (L.P.B. Reduced soil cultivation system (no-tillage caused the significant growth of primary weed infestation of onion in comparison with conventional tillage. In all years of investigations the executed pre-sowing ploughing limited significantly the annual weeds' number in primary weed infestation. The applied mulches from cover plants limited in considerable degree the number of primary weed infestation. In all years of investigations the most weeds stepped out on control object. Among investigated cover crop mulches Vicia sativa L. and Avena sativa L. had a profitable effect on decrease of onion`s primary weed infestation. Soil cultivation system and cover crop mulches had no signi ficant residual influence on the secondary weed infestation of onion.

  16. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  17. Effects of Organic Matter on Soil Erosion and Runoff Peanuts and Green Pea in Cultivation

    OpenAIRE

    Sukataatmaja, Sukandi; Sato, Yohei; Yamaji, Eiji; Ishikawa, Masaya

    2002-01-01

    Organic matter from manure are used not only for fertilizer but also can be used for preventing soil erosion and runoff. How to manage manure to soil for peanut and green pea CUltivation is especially important, because most farmers plant these crops. The objective of this research is to identify effect of: 1) organicmatter from chicken manure, cow manure and sheep manure on soil erosion and runoff in peanuts and green pea cultivations, 2) mulch from paddy, corn and leaf of banana on soil ero...

  18. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    Science.gov (United States)

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.

  19. Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image

    Science.gov (United States)

    Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun

    2018-02-01

    Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.

  20. Development direction of the soil-formation processes for reclaimed soda solonetz-solonchak soils of the Ararat valley during their cultivation

    Directory of Open Access Journals (Sweden)

    R.R. Manukyan

    2018-03-01

    Full Text Available The data of the article show that the long-term cultivation of reclaimed sodium solonetz-solonchak soils entails to further improvement of their properties and in many parameters of chemical compositions of soil solution and soil-absorbing complex they come closer to irrigated meadow-brown soils in the period of 15–20 years of agricultural development. The analysis of the experimental research by the method of non-linear regression shows, that for the enhancement of some yield determining parameters to the level of irrigated meadow-brown soils, a time period of 30–40 years of soil-formation processes is needed and longer time is necessary for humidification. The forecast of soil-formation processes for the long-term period, allows to reveal the intensity and orientation of development of the specified processes and to develop the scientifically-justified actions for their further improvement. Keywords: Soil-formation processes, Reclaimed soda solonetz-solonchaks, Irrigated meadow-brown soils, Multi-year cultivation, Improvement, Forecasting

  1. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms.

    Science.gov (United States)

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2018-03-29

    Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases.

  2. Influence of fertilizers on the NORM content in agricultural cultivated soils of Villupuram district, Tamilnadu India

    International Nuclear Information System (INIS)

    Punniyakotti, J.; Lakshmi, K.S.; Meenakshisundaram, V.

    2017-01-01

    Natural radioactivity content is determined in ten different types of fertilizers and influence of these, if any, in fertilized agricultural cultivated soil samples is investigated and compared with virgin soil samples. Higher amount of "2"3"8U and "4"0K are observed in single super phosphate and potash fertilizers respectively. In all the fertilizers, "2"3"2Th activity was found to be BDL excepting single super phosphate. The average values of radioactivity content of all the three radionuclides are found to be higher in cultivated soils using fertilizers than in the virgin soil samples. However, all the three radionuclides in both virgin and cultivated soil samples are far lesser than the world average value of 33, 45 and 420 Bq.kg"-"1 for "2"3"8U, "2"3"2Th and "4"0K respectively. (author)

  3. A Web-Based Decision Support System for Evaluating Soil Suitability for Cassava Cultivation

    Directory of Open Access Journals (Sweden)

    Adewale Opeoluwa Ogunde

    2017-01-01

    Full Text Available Precision agriculture in recent times had assumed a different dimension in order to improve on the poor standard of agriculture. Similarly, the upsurge in technological advancement, most especially in the aspect of machine learning and artificial intelligence, is a promising trend towards a positive solution to this problem. Therefore, this research work presents a decision support system for analyzing and mining knowledge from soil data with respect to its suitability for cassava cultivation. Past data consisting of some major soil attributes were obtained from relevant literature sources. This data was preprocessed using the ARFF Converter, available in WEKA. 70% of the data were used as training data set while remaining 30% were used for testing. Classification rule mining was carried out using J48 decision tree algorithm for the data training. ‘If-then’ construct models were then generated from the decision tree, which was used to develop a system for predicting the suitability status of soil for cassava cultivation. The percentage accuracy of the data classification was 76.5% and 23.5% for correctly classified and incorrectly classified instances respectively. Practically, the developed system was esteemed a prospective tool for farmers, soil laboratories and other users in predicting soil suitability for cassava cultivation.

  4. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils.

    Science.gov (United States)

    Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg

    2016-04-01

    Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools.

  5. Radiometric research in soils cultivated with sugar cane in Pernambuco - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, Otavio P. dos; Santos Junior, Jose A. dos; Amaral, Romilton dos S.; Menezes, Romulo S.C.; Santos, Josineide M.N. dos; Silva, Arykerne N.C. da; Fernandez, Zahily H.; Rojas, Lino A.V.; Damascena, Kennedy F.R.; Silva, Rafael R.; Milan, Marvic O., E-mail: rodriguesrs19@gmail.com, E-mail: otavio.santos@vitoria.ifpe.edu.br, E-mail: lino.valcarcel@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Vitoria de Santo Antao, PE (Brazil); Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear, La Habana (Cuba); Instituto Superior de Tecnologias y Ciencias Aplicadas Quinta de los Molinos, La Habana (Cuba)

    2017-11-01

    The state of Pernambuco is representative of Northeastern Brazil, with respect to the variability of climatic conditions, soil types, soil cover, as well as land use. The state is subdivided into five regions: Recife Metropolitan Region, Sao Francisco, Sertao, Agreste and Zona da Mata (Atlantic Forest Region). Each region presents peculiar climatic and economic activities. The Atlantic Forest region, the focus of this study, presents a humid tropical climate and is characterized by large farms and the monoculture of sugarcane. In this scenario, a radioecological investigation was carried out to determine the radiometric potential from the analysis of forty-five soil samples, collected in five soil profiles, to a depth of 60 cm. A non-destructive method was adopted for the radiometric analysis, using High- Resolution Gamma Spectrometry with an HPGe-Be type detector. This method allowed the determination of specific activities of U-238, Th-232 and K-40 in the soil samples. The results will be used as a basis for the determination of a reference value for the natural radioactivity of these soils, to predict the existence of possible environmental impacts resulting from their use for the cultivation of sugar cane, as well as to contribute to guarantee the safety of food crops cultivated in this region. (author)

  6. Radiometric research in soils cultivated with sugar cane in Pernambuco - Brazil

    International Nuclear Information System (INIS)

    Santos Junior, Otavio P. dos; Santos Junior, Jose A. dos; Amaral, Romilton dos S.; Menezes, Romulo S.C.; Santos, Josineide M.N. dos; Silva, Arykerne N.C. da; Fernandez, Zahily H.; Rojas, Lino A.V.; Damascena, Kennedy F.R.; Silva, Rafael R.; Milan, Marvic O.

    2017-01-01

    The state of Pernambuco is representative of Northeastern Brazil, with respect to the variability of climatic conditions, soil types, soil cover, as well as land use. The state is subdivided into five regions: Recife Metropolitan Region, Sao Francisco, Sertao, Agreste and Zona da Mata (Atlantic Forest Region). Each region presents peculiar climatic and economic activities. The Atlantic Forest region, the focus of this study, presents a humid tropical climate and is characterized by large farms and the monoculture of sugarcane. In this scenario, a radioecological investigation was carried out to determine the radiometric potential from the analysis of forty-five soil samples, collected in five soil profiles, to a depth of 60 cm. A non-destructive method was adopted for the radiometric analysis, using High- Resolution Gamma Spectrometry with an HPGe-Be type detector. This method allowed the determination of specific activities of U-238, Th-232 and K-40 in the soil samples. The results will be used as a basis for the determination of a reference value for the natural radioactivity of these soils, to predict the existence of possible environmental impacts resulting from their use for the cultivation of sugar cane, as well as to contribute to guarantee the safety of food crops cultivated in this region. (author)

  7. Effect of soil carbohydrates on nutrient availability in natural forests and cultivated lands in Sri Lanka

    Science.gov (United States)

    Ratnayake, R. R.; Seneviratne, G.; Kulasooriya, S. A.

    2013-05-01

    Carbohydrates supply carbon sources for microbial activities that contribute to mineral nutrient production in soil. Their role on soil nutrient availability has not yet been properly elucidated. This was studied in forests and cultivated lands in Sri Lanka. Soil organic matter (SOM) fractions affecting carbohydrate availability were also determined. Soil litter contributed to sugars of plant origin (SPO) in croplands. The negative relationship found between clay bound organic matter (CBO) and glucose indicates higher SOM fixation in clay that lower its availability in cultivated lands. In forests, negative relationships between litter and sugars of microbial origin (SMO) showed that litter fuelled microbes to produce sugars. Fucose and glucose increased the availability of Cu, Zn and Mn in forests. Xylose increased Ca availability in cultivated lands. Arabinose, the main carbon source of soil respiration reduced the P availability. This study showed soil carbohydrates and their relationships with mineral nutrients could provide vital information on the availability of limiting nutrients in tropical ecosystems.

  8. Assessment of the quality of the Harran Plain soils under long-term cultivation.

    Science.gov (United States)

    Bilgili, Ali Volkan; Küçük, Çiğdem; Van Es, Harold M

    2017-08-19

    Soil quality refers to the ability of soils to perform their functions well. The soils of the Harran Plain, Turkey, have been put into intensive crop production with the introduction of an irrigation scheme and become increasingly degraded due to unsustainable management and cropping systems that resulted in the loss of production potential. The goal of this study was to quantify the quality of common soil series in the Plain using soil quality indexes (SQI) and to compare SQIs of two long-term crop rotations, cotton and wheat-corn cultivation, and different soil types. Over 400 samples were collected at a 0- to 30-cm depth and analyzed for 31 soil variables. The best representative soil quality variables forming a minimum data set (MDS) were selected using principal component analysis (PCA), and soil quality scores were obtained using both linear and non-linear scoring functions. The MDS included three physical (hydraulic conductivity, bulk density, and plant available water content), two biological (soil organic matter and catalase enzyme activity), and nine chemical soil quality indicators (CEC, pH, plant available Cu and Fe, exchangeable Na and K, soluble Ca, Mg, and Na). Because of the low level of SOM, soil qualities were overall low with indexes obtained using two scoring functions ranging from 38.0/100 to 48.7/100. Correlations between SQI obtained using two approaches (linear vs. non-linear; r > 0.61) and using two data sets (all data vs. MDS; r > 0.79) were high. Non-linear scoring functions were more sensitive to management impacts. ANOVA models testing the individual impacts of soil types and crop management on soil quality were statistically different (p < 0.01), but the models including interactions were not. Overall, the fields under cotton cultivation were generally associated with higher clay contents and had the lowest SQIs as a result of intensive cultivation.

  9. Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland

    Directory of Open Access Journals (Sweden)

    Yating He

    2017-01-01

    Full Text Available Grazing and cultivation are two important management practices worldwide that can cause significant soil organic carbon (SOC losses. However, it remains elusive how soil microbes have responded to soil carbon changes under these two practices. Based on a four-decade long field experiment, this study investigated the effects of grazing and cultivation on SOC stocks and microbial properties in the semi-arid grasslands of China. We hypothesize that grazing and cultivation would deplete SOC and depress microbial activities under both practices. However, our hypotheses were only partially supported. As compared with the adjacent indigenous grasslands, SOC and microbial biomass carbon (MBC were decreased by 20% or more under grazing and cultivation, which is consistent with the reduction of fungi abundance by 40% and 71%, respectively. The abundance of bacteria and actinomycetes was decreased under grazing but increased under cultivation, which likely enhanced microbial diversity in cultivation. Invertase activity decreased under the two treatments, while urease activity increased under grazing. These results suggest that nitrogen fertilizer input during cultivation may preferentially favor bacterial growth, in spite of SOC loss, due to rapid decomposition, while overgrazing may deteriorate the nitrogen supply to belowground microbes, thus stimulating the microbial production of nitrogen acquisition enzymes. This decade-long study demonstrated differential soil microbial responses under grazing and cultivation and has important applications for better management practices in the grassland ecosystem.

  10. evaluation of nutrients status of soils under rice cultivation in cross ...

    African Journals Online (AJOL)

    CULTIVATION IN CROSS RIVER STATE, NIGERIA. I. N. ONYEKWERE, A. G. ... KEYWORDS: Evaluation, Nutrient status, Soils, Cross River. ... countries like India, Japan, Taiwan and South Korea. ... which the rice culture can be established.

  11. Fast Decline of Pythium zingiberum in Soil and Its Recolonization by Cultivating Susceptible Host Plants

    OpenAIRE

    ICHITANI, Takio; SHIMIZU, Tokiya

    1984-01-01

    This experiment demonstrates the fast decline of Pythium zingiberum in soil and its recolonization by cultivating mioga, susceptible host plant, and discusses growth and survival of the pathogen in the host rhizosphere in cultivated fields.

  12. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation.

    Science.gov (United States)

    Mantzos, N; Karakitsou, A; Hela, D; Patakioutas, G; Leneti, E; Konstantinou, I

    2014-02-15

    A field dissipation and transport study of oxyfluorfen in a sunflower cultivation under Mediterranean conditions have been conducted in silty clay plots (cultivated and uncultivated) with two surface slopes (1% and 5%). The soil dissipation and transport of oxyfluorfen in runoff water and sediment, as well as the uptake by sunflower plants, were investigated over a period of 191 days. Among different kinetic models assayed, soil dissipation rate of oxyfluorfen was better described by first-order kinetics. The average half-life was 45 and 45.5 days in cultivated plots with soil slopes 5% and 1% respectively, and 50.9 and 52.9 days in uncultivated plots with soil slopes 5% and 1%. The herbicide was detected below the 10 cm soil layer 45 days after application (DAA). Limited amounts of oxyfluorfen were moved with runoff water and the cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.007% and 0.005% of the initial applied active ingredient, while for the plots with slope of 1%, the respective values were 0.002% and 0.001%. The maximum concentration of oxyfluorfen in sediment ranged from 1.46 μg g(-1) in cultivated plot with soil slope 1% to 2.33 μg g(-1) in uncultivated plot with soil slope 5%. The cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.217% and 0.170% while for the plots with slope of 1%, the respective values were 0.055% and 0.025%. Oxyfluorfen was detected in sunflower plants until the day of harvest; maximum concentrations in stems and leaves (0.042 μg g(-1)) were observed 33 DAA and in roots (0.025 μg g(-1)) 36 DAA. In conclusion, oxyfluorfen hardly moves into silty clay soil and exhibited low run-off potential so it represents a low risk herbicide for the contamination of ground and adjacent water resources. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Initial growth and yield structure of selected cultivars of cranberry (Vaccinium macrocarpon Ait. cultivated on mineral soils

    Directory of Open Access Journals (Sweden)

    Szwonek Eugeniusz

    2016-06-01

    Full Text Available A study was conducted to evaluate the possibility of cranberry cultivation on mineral soils and to assess the influence of vegetative biomass development, generative growth and yield components on the yielding of three cranberry cultivars originating in the USA (Stevens, Pilgrim and Ben Lear at two locations in Poland. The key biometrical traits involved in yield formation were taken into account, and the soil and plant chemical conditions were evaluated. All of the measured biometrical characteristics were strongly influenced by the location and the year of cultivation, and varietal differences were also noted. The most important determinants that explained yield variation were: the number of uprights per square meter, floral induction and berry set. However, the participation of each component in yield variation was strongly affected by the location, age of plantation and to a minor extent by the cultivar. The study confirmed the possibility of cranberry cultivation on mineral soils with a low pH. The biggest average yield of the three years was collected from cv. Stevens as cultivated on sandy soil in contrast to the same cultivar grown on sandy loam soil. In the case of sandy loam soil after acidification, cv. Pilgrim appeared to be a relatively better yielding cultivar.

  14. WATER INFILTRATION IN TWO CULTIVATED SOILS IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2015-04-01

    Full Text Available Infiltration is the passage of water through the soil surface, influenced by the soil type and cultivation and by the soil roughness, surface cover and water content. Infiltration absorbs most of the rainwater and is therefore crucial for planning mechanical conservation practices to manage runoff. This study determined water infiltration in two soil types under different types of management and cultivation, with simulated rainfall of varying intensity and duration applied at different times, and to adjust the empirical model of Horton to the infiltration data. The study was conducted in southern Brazil, on Dystric Nitisol (Nitossolo Bruno aluminoférrico húmico and Humic Cambisol (Cambissolo Húmico alumínico léptico soils to assess the following situations: simulated rains on the Nitisol from 2001 to 2012 in 31 treatments, differing in crop type, sowing direction, type of soil opener on the seeder, amount and type of crop residue and amount of liquid swine manure applied; on the Cambisol, rains were simlated from 2006 to 2012 and 18 treatments were evaluated, differing in crop, seeding direction and crop residue type. The constant of the water infiltration rate into the soil varies significantly with the soil type (30.2 mm h-1 in the Nitisol and 6.6 mm h-1 in the Cambisol, regardless of the management system, application time and rain intensity and duration. At the end of rainfalls, soil-water infiltration varies significantly with the management system, with the timing of application and rain intensity and duration, with values ranging from 13 to 59 mm h-1, in the two studied soils. The characteristics of the sowing operation in terms of relief, crop type and amount and type of crop residue influenced soil water infiltration: in the Nitisol, the values of contour and downhill seeding vary between 27 and 43 mm h-1, respectively, with crop residues of corn, wheat and soybean while in the Cambisol, the variation is between 2 and 36 mm h-1

  15. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Hu, Jia [Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu (China); Wang, Jinqi; Chen, Xuerong; Yao, Na [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Tao, Jing, E-mail: jingtao1982@126.com [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhou, Yi-Kai, E-mail: zhouyk@mails.tjmu.edu.cn [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2015-03-01

    Here, a novel technique is described for the extraction and quantitative determination of six phthalate esters (PAEs) from soils by gas purge microsyringe extraction and gas chromatography. Recovery of PAEs ranged from 81.4% to 120.3%, and the relative standard deviation (n = 6) ranged from 5.3% to 10.5%. Soil samples were collected from roadsides, farmlands, residential areas, and non-cultivated areas in a non-industrialized region, and from the same land-use types within 1 km of an electronics manufacturing facility (n = 142). Total PAEs varied from 2.21 to 157.62 mg kg{sup −1} in non-industrialized areas and from 8.63 to 171.64 mg kg{sup −1} in the electronics manufacturing area. PAE concentrations in the non-industrialized area were highest in farmland, followed (in decreasing order) by roadsides, residential areas, and non-cultivated soil. In the electronics manufacturing area, PAE concentrations were highest in roadside soils, followed by residential areas, farmland, and non-cultivated soils. Concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP) differed significantly (P < 0.01) between the industrial and non-industrialized areas. Principal component analysis indicated that the strongest explanatory factor was related to DMP and DnBP in non-industrialized soils and to butyl benzyl phthalate (BBP) and DMP in soils near the electronics manufacturing facility. Congener-specific analysis confirmed that diethylhexyl phthalate (DEHP) was a predictive indication both in the non-industrialized area (r{sup 2} = 0.944, P < 0.01) and the industrialized area (r{sup 2} = 0.860, P < 0.01). The higher PAE contents in soils near the electronics manufacturing facility are of concern, considering the large quantities of electronic wastes generated with ongoing industrialization. - Highlights: • A new method for determining phthalate esters in soil samples was developed. • Investigate six phthalates near an industry and a

  16. Estimates of soil erosion and deposition of cultivated soil of Nakhla watershed, Morocco, using 137Cs technique and calibration models

    International Nuclear Information System (INIS)

    Bouhlassa, S.; Moukhchane, M.; Aiachi, A.

    2000-01-01

    Despite the effective threat of erosion, for soil preservation and productivity in Morocco, there is still only limited information on rates of soil loss involved. This study is aimed to establish long-term erosion rates on cultivated land in the Nakhla watershed located in the north of the country, using 137 Cs technique. Two sampling strategies were adopted. The first is aimed at establishing areal estimates of erosion, whereas the second, based on a transect approach, intends to determine point erosion. Twenty-one cultivated sites and seven undisturbed sites apparently not affected by erosion or deposition were sampled to 35 cm depth. Nine cores were collected along the transect of 149 m length. The assessment of erosion rates with models varying in complexity from the simple Proportional Model to more complex Mass Balance Models which attempts to include the processes controlling the redistribution of 137 Cs in soil, enables us to demonstrate the significance of soil erosion problem on cultivated land. Erosion rates rises up to 50 t ha -1 yr -1 . The 137 Cs derived erosion rates provide a reliable representation of water erosion pattern in the area, and indicate the importance of tillage process on the redistribution of 137 Cs in soil. For aggrading sites a Constant Rate Supply (CRS) Model had been adapted and introduced to estimate easily the depositional rate. (author) [fr

  17. Role of Pigeonpea Cultivation on Soil Fertility and Farming System Sustainability in Ghana

    Directory of Open Access Journals (Sweden)

    S. Adjei-Nsiah

    2012-01-01

    Full Text Available The productivity of the smallholder farming system in Ghana is under threat due to soil fertility decline. Mineral fertilizer is sparingly being used by smallholder farmers because of prohibitive cost. Grain legumes such as pigeonpea can play a complementary or alternative role as a source of organic fertilizer due to its ability to enhance soil fertility. Despite its importance, the potential of pigeonpea as a soil fertility improvement crop has not been exploited to any appreciable extent and the amount of land cultivated to pigeonpea in Ghana is vey negligible. This paper synthesizes recent studies that have been carried out on pigeonpea in Ghana and discusses the role of pigeonpea cultivation in soil fertility management and its implication for farming system sustainability. The paper shows that recent field studies conducted in both the semi-deciduous forest and the forest/savanna transitional agro-ecological zones of Ghana indicate that pigeonpea/maize rotations can increase maize yield by 75–200%. Barrier to widespread adoption of pigeonpea include land tenure, market, and accessibility to early maturing and high yielding varieties. The paper concludes among other things that in order to promote the cultivation of pigeonpea in Ghana, there is the need to introduce varieties that combine early maturity with high yields and other desirable traits based on farmers preferences.

  18. Study of soil redistribution in cultivated fields using fallout cesium-137 at Fateh Jang, Attock, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Iqbal, N.; Akram, W.; Aasi, M.R.

    2009-11-01

    The study was carried out to investigate soil redistribution and net soil losses from two cultivated fields located in the dissected loess plains in the Pothwar Plateau at Mangial (33.6 N; 72.8 E), District Attock, Pakistan. For reference site, soil samples were collected by scrapper plate at 2 cm intervals and bulk cores in a grid, while the cultivated fields were sampled taking bulk cores in grid and along transect. /sup 137/Cs was measured by gamma spectroscopy using Soil 6 (IAEA) as a standard. The established reference inventory of /sup 137/Cs for this area is 3204 Bq/m/sup 2/. The technique provides very clear quantitative information on medium-term erosion and deposition rates at different locations, and net soil loss from cultivated fields, while no other methods available can be applied so simply. Gradient of the cultivated fields play an important role in the soil redistribution and net soil loss. Due to higher gradient of Field 2, the net soil losses determined by PM and MBM-1 using 20 cm plough layer (14.18 t ha/sup -1/ yr/sup -1/ and 16.37 t ha/sup -1/ yr/sup -1/ respectively) are much higher than that for Field 1 determined by the same models (0.24 t ha-1 yr-1 and 3.84 t ha/sup -1/ yr/sup -1/). Therefore, the cultivated fields should be as much leveled as possible. Major implication arises in using soil conversion models when thickness of /sup 137/Cs bearing layer becomes more than the normal plough layer due to deposition of eroded soil at low-lying areas. In case of Field 2, using 30 cm thickness of plough layer having significant /sup 137/Cs in the deposition areas the net erosion estimates using by PM and MBM-1 are 8.71 t ha/sup -1/ yr/sup -1/ and 10.05 t ha-1 yr/sup -1/, respectively, which seem more reliable because maximum /sup 137/Cs inventory is taken into accounted. The herbicide residue varies spatially in the field, but these three distributions corresponding to the three sampling dates indicate reduction in the residue with time. The

  19. Comparison of the depth distribution processes for 137Cs and 210Pbex in cultivated soils

    International Nuclear Information System (INIS)

    Zhang Yunqi; Zhang Xinbao; Long Yi; He Xiubin; Yu Xingxiu

    2012-01-01

    This paper focuses on the different processes of 137 Cs and 210 Pb ex depth distribution in cultivated soils. In view of their different fallout deposition processes, considering radionuclide will diffuse from the plough layer to the plough pan layer duo to the concentration gradient between the two layers, the 137 Cs and 210 Pb ex depth distribution processes were theoretically derived. Additionally, the theoretical derivation was verified by the measured 137 Cs and 210 Pb ex values in the soil core collected from wheat field in Fujianzhuang, Shanxi Province, China, and the 137 Cs and 210 Pb ex concentrations variation with depth in soils of the wheat field was explained rationally. The 137 Cs depth distribution state in cultivated soils will consistently vary with time due to 137 Cs continual decay and diffusion as an artificial radionuclide without sustainable fallout input since 1960s. In contrast, the 210 Pb ex depth distribution in cultivated soils will achieve steady state because of sustainable deposition of the naturally occurring 210 Pb ex fallout, and it can be concluded that the differences between the theoretical and the measured values, especially for 210 Pb ex , might be associated with the history of plough depth variation or LUCC. (authors)

  20. Carbon dioxide emissions from peat soils under potato cultivation in Uganda

    Science.gov (United States)

    Farmer, Jenny; Langan, Charlie; Smith, Jo

    2017-04-01

    Organic wetland soils in south western Uganda are found in valley bottom wetlands, surrounded by steep, mineral soil hill slopes. Land use change in these papyrus dominated wetlands has taken place over the past forty years, seeing wetland areas cleared of papyrus, rudimentary drainage channel systems dug, and soil cultivated and planted with crops, predominantly potatoes. There has been little research into the cultivation of organic wetlands soils in Uganda, or the impacts on soil carbon dynamics and associated carbon dioxide (CO2) emissions. This study used two rounds of farmer interviews to capture the land management practices on these soils and how they vary over the period of a year. Three potato fields were also randomly selected and sampled for CO2 emissions at four points in time during the year; 1) just after the potato beds had been dug, 2) during the potato growing period, 3) after the potato harvest, and 4) at the end of the fallow season. Carbon dioxide emissions, soil and air temperatures, water table depth, vegetation cover and land use were all recorded in situ in each field on each sampling occasion, from both the raised potato beds and the trenches in between them. There appeared to be a delay in the disturbance effect of digging the peat, with heterotrophic CO2 emissions from the raised beds not immediately increasing after being exposed to the air. Excluding these results, there was a significant linear relationship between mean emissions and water table depth from the raised beds and trenches in each field over time (pgaps which need to be addressed with future studies.

  1. A quantitative model for estimating mean annual soil loss in cultivated land using 137Cs measurements

    International Nuclear Information System (INIS)

    Yang Hao; Zhao Qiguo; Du Mingyuan; Minami, Katsuyuki; Hatta, Tamao

    2000-01-01

    The radioisotope 137 Cs has been widely used to determine rates of cultivated soil loss, Many calibration relationships (including both empirical relationships and theoretical models) have been employed to estimate erosion rates from the amount of 137 Cs lost from the cultivated soil profile. However, there are important limitations which restrict the reliability of these models, which consider only the uniform distribution of 137 Cs in the plough layer and the depth. As a result, erosion rates they may be overestimated or underestimated. This article presents a quantitative model for the relation the amount of 137 Cs lost from the cultivate soil profile and the rate of soil erosion. According to a mass balance model, during the construction of this model we considered the following parameters: the remaining fraction of the surface enrichment layer (F R ), the thickness of the surface enrichment layer (H s ), the depth of the plough layer (H p ), input fraction of the total 137 Cs fallout deposition during a given year t (F t ), radioactive decay of 137 Cs (k), and sampling year (t). The simulation results showed that the amounts of erosion rates estimated using this model were very sensitive to changes in the values of the parameters F R , H s , and H p . We also observed that the relationship between the rate of soil loss and 137 Cs depletion is neither linear nor logarithmic, and is very complex. Although the model is an improvement over existing approaches to derive calibration relationships for cultivated soil, it requires empirical information on local soil properties and the behavior of 137 Cs in the soil profile. There is clearly still a need for more precise information on the latter aspect and, in particular, on the retention of 137 Cs fallout in the top few millimeters of the soil profile and on the enrichment and depletion effects associated with soil redistribution (i.e. for determining accurate values of F R and H s ). (author)

  2. Adapting the Caesium-137 technique to document soil redistribution rates associated with traditional cultivation practices in Haiti.

    Science.gov (United States)

    Velasco, H; Astorga, R Torres; Joseph, D; Antoine, J S; Mabit, L; Toloza, A; Dercon, G; Walling, Des E

    2018-03-01

    Large-scale deforestation, intensive land use and unfavourable rainfall conditions are responsible for significant continuous degradation of the Haitian uplands. To develop soil conservation strategies, simple and cost-effective methods are needed to assess rates of soil loss from farmland in Haiti. The fallout radionuclide caesium-137 ( 137 Cs) provides one such means of documenting medium-term soil redistribution rates. In this contribution, the authors report the first use in Haiti of 137 Cs measurements to document soil redistribution rates and the associated pattern of erosion/sedimentation rates along typical hillslopes within a traditional upland Haitian farming area. The local 137 Cs reference inventory, measured at an adjacent undisturbed flat area, was 670 Bq m -2 (SD = 100 Bq m -2 , CV = 15%, n = 7). Within the study area, where cultivation commenced in 1992 after deforestation, three representative downslope transects were sampled. These were characterized by 137 Cs inventories ranging from 190 to 2200 Bq m -2 . Although, the study area was cultivated by the local farmers, the 137 Cs depth distributions obtained from the area differed markedly from those expected from a cultivated area. They showed little evidence of tillage mixing within the upper part of the soil or, more particularly, of the near-uniform activities normally associated with the plough layer or cultivation horizon. They were very similar to that found at the reference site and were characterized by high 137 Cs activities at the surface and much lower activities at greater depths. This situation is thought to reflect the traditional manual tillage practices which cause limited disturbance and mixing of the upper part of the soil. It precluded the use of the conversion models normally used to estimate soil redistribution rates from 137 Cs measurements on cultivated soils and the Diffusion and Migration conversion model frequently used for uncultivated soils was modified for

  3. Removal of radioactivity and safe vegetables cultivation from highly radioactivity polluted soil in Fukushima using photosynthetic bacteria

    International Nuclear Information System (INIS)

    Sasaki, Kei; Okagawa, Masakazu; Takeno, Kenji; Shinkawa, Hidenori; Sasaki, Ken

    2015-01-01

    The soil pollution caused by radioactive substances released from the accident of TEPCO Fukushima Daiichi Nuclear Power Station has been still serious interference against agricultural reconstruction. This study used the soil contaminated with high radioactivity (13,602∼87,181 Bq/kg) in Namie Town, Fukushima Prefecture, and performed decontamination using photosynthetic bacteria in a simple outdoor practical test using a 60 L container. Using the soil after decontamination, the authors cultivated vegetables such as komatsuna (Japanese mustard spinach), and bok choy, the results of which are reported. As photosynthetic bacteria, Rhodobacter shaerodes SSI species was used. This paper describes the cultivation method of bacteria, preparation method of immobilization grain, decontamination method, and cultivation method of vegetables. As a result of the experiment, the decontamination efficient of the soil was between 59.5 to 73.3%, and cultured vegetables passed the edible reference value (edible criteria for infants: 50 Bq/kg FW), which was the success of the experiment. (A.O.)

  4. Variation in soil fertility influences cycle dynamics and crop diversity in shifting cultivation systems

    NARCIS (Netherlands)

    Braga Junqueira, A.; Stomph, T.J.; Clement, C.R.; Struik, P.C.

    2016-01-01

    Smallholder farming in Amazonia is practised mostly through shifting cultivation, which under low population pressure is well adapted to the low-fertility soils that predominate in uplands and to the lack of external inputs. In this paper we investigate the effects of soil heterogeneity (in terms of

  5. The transformation of nitrogen in soil under Robinia Pseudacacia shelterbelt and in adjoining cultivated field

    Science.gov (United States)

    Szajdak, L.; Gaca, W.

    2009-04-01

    The shelterbelts perform more than twenty different functions favorable to the environment, human economy, health and culture. The most important for agricultural landscape is increase of water retention, purification of ground waters and prevent of pollution spread in the landscape, restriction of wind and water erosion effects, isolation of polluting elements in the landscape, preservation of biological diversity in agricultural areas and mitigation of effects of unfavorable climatic phenomena. Denitrification is defined as the reduction of nitrate or nitrite coupled to electron transport phosphorylation resulting in gaseous N either as molecular N2 or as an oxide of N. High content of moisture, low oxygen, neutral and basic pH favour the denitrification. Nitrate reductase is an important enzyme involved in the process of denitrification. The reduction of nitrate to nitrite is catalyzed by nitrate reductase. Nitrite reductase is catalyzed reduction nitrite to nitrous oxide. The conversion of N2O to N2 is catalyzed by nitrous oxide reductase. This process leads to the lost of nitrogen in soil mainly in the form of N2 and N2O. Nitrous oxide is a greenhouse gas which cause significant depletion of the Earth's stratospheric ozone layer. The investigations were carried out in Dezydery Chlapowski Agroecological Landscape Park in Turew (40 km South-West of Poznań, West Polish Lowland). Our investigations were focused on the soils under Robinia pseudacacia shelterbelt and in adjoining cultivated field. The afforestation was created 200 years ago and it is consist of mainly Robinia pseudacacia with admixture of Quercus petraea and Quercus robur. This shelterbelt and adjoining cultivated field are located on grey-brown podzolic soil. The aim of this study is to present information on the changes of nitrate reductase activity in soil with admixture urea (organic form of nitrogen) in two different concentrations 0,25% N and 0,5% N. Our results have shown that this process

  6. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    Science.gov (United States)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  7. Evaluation of nutrients status of soils under rice cultivation in cross ...

    African Journals Online (AJOL)

    Nutrients status of soils under rice cultivation in Cross River State Nigeria was evaluated to ascertain the present status and suggest management practices needed for an increased rice production. A reconnaissance survey of the entire State was undertaken. A total number of eight Local Government Areas, namely ...

  8. Intensification of Shifting Cultivation in Tanzania: Degree, Drivers and Effects on Vegetation and Soils

    DEFF Research Database (Denmark)

    Kilawe, Charles Joseph

    The aim of the present study was to provide a better understanding of the degree and drivers of intensification of shifting cultivation and its effects on vegetation and soils. The study was conducted in uplands and low lands agro-ecological zones of Kilosa District, eastern central Tanzania. Data...... and intensive short fallow systems. They also adopted intensive land preparation methods that involved deep cultivation and burying of vegetation. Intensification in upland was driven by adoption and enforcement of land tenure policies which restrict shifting cultivation whereas in the lowlands, it was driven...... that sustainable intensification of shifting cultivation be sought to prevent further adverse effects on the environment. The present restrictive policy driven approach of intensification of shifting cultivation seems to cause more negative environmental consequences. I recommend development and promotion...

  9. Soil water erosion under different cultivation systems and different fertilization rates and forms over 10 years

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2014-12-01

    Full Text Available The action of rain and surface runoff together are the active agents of water erosion, and further influences are the soil type, terrain, soil cover, soil management, and conservation practices. Soil water erosion is low in the no-tillage management system, being influenced by the amount and form of lime and fertilizer application to the soil, among other factors. The aim was to evaluate the effect of the form of liming, the quantity and management of fertilizer application on the soil and water losses by erosion under natural rainfall. The study was carried out between 2003 and 2013 on a Humic Dystrupept soil, with the following treatments: T1 - cultivation with liming and corrective fertilizer incorporated into the soil in the first year, and with 100 % annual maintenance fertilization of P and K; T2 - surface liming and corrective fertilization distributed over five years, and with 75 % annual maintenance fertilization of P and K; T3 - surface liming and corrective fertilization distributed over three years, and with 50 % annual maintenance fertilization of P and K; T4 - surface liming and corrective fertilization distributed over two years, and with 25 % annual maintenance fertilization of P and K; T5 - fallow soil, without liming or fertilization. In the rotation the crops black oat (Avena strigosa , soybean (Glycine max , common vetch (Vicia sativa , maize (Zea mays , fodder radish (Raphanus sativus , and black beans (Phaseolus vulgaris . The split application of lime and mineral fertilizer to the soil surface in a no-tillage system over three and five years, results in better control of soil losses than when split in two years. The increase in the amount of fertilizer applied to the soil surface under no-tillage cultivation increases phytomass production and reduces soil loss by water erosion. Water losses in treatments under no-tillage cultivation were low in all crop cycles, with a similar behavior as soil losses.

  10. The role of Amazonian anthropogenic soils in shifting cultivation: learning from farmers' rationales

    Directory of Open Access Journals (Sweden)

    André B. Junqueira

    2016-03-01

    Full Text Available We evaluated farmers' rationales to understand their decision making in relation to the use of fertile anthropogenic soils, i.e., Amazonian dark earths (ADE, and for dealing with changes in shifting cultivation in Central Amazonia. We analyzed qualitative information from 196 interviews with farmers in 21 riverine villages along the Madeira River. In order to decide about crop management options to attain their livelihood objectives, farmers rely on an integrated and dynamic understanding of their biophysical and social environment. Farmers associate fallow development with higher crop yields and lower weed pressure, but ADE is always associated with high yields and high weeding requirements. Amazonian dark earths are also seen as an opportunity to grow different crops and/or grow crops in more intensified management systems. However, farmers often maintain simultaneously intensive swiddens on ADE and extensive swiddens on nonanthropogenic soils. Farmers acknowledge numerous changes in their socioeconomic environment that affect their shifting cultivation systems, particularly their growing interaction with market economies and the incorporation of modern agricultural practices. Farmers considered that shifting cultivation systems on ADE tend to be more prone to changes leading to intensification, and we identified cases, e.g., swiddens used for watermelon cultivation, in which market demand led to overintensification and resulted in ADE degradation. This shows that increasing intensification can be a potential threat to ADE and can undermine the importance of these soils for agricultural production, for the conservation of agrobiodiversity, and for local livelihoods. Given that farmers have an integrated knowledge of their context and respond to socioeconomic and agro-ecological changes in their environment, we argue that understanding farmers' knowledge and rationales is crucial to identify sustainable pathways for the future of ADE and of

  11. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    Science.gov (United States)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial

  12. Changes in the Diversity of Soil Arbuscular Mycorrhizal Fungi after Cultivation for Biofuel Production in a Guantanamo (Cuba) Tropical System

    Science.gov (United States)

    Alguacil, Maria del Mar; Torrecillas, Emma; Hernández, Guillermina; Roldán, Antonio

    2012-01-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems. PMID:22536339

  13. Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a Guantanamo (Cuba tropical system.

    Directory of Open Access Journals (Sweden)

    Maria del Mar Alguacil

    Full Text Available The arbuscular mycorrhizal fungi (AMF are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba, in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems.

  14. Impact of commonly used agrochemicals on bacterial diversity in cultivated soils.

    Science.gov (United States)

    Ampofo, J A; Tetteh, W; Bello, M

    2009-09-01

    The effects of three selected agrochemicals on bacterial diversity in cultivated soil have been studied. The selected agrochemicals are Cerox (an insecticide), Ceresate and Paraquat (both herbicides). The effect on bacterial population was studied by looking at the total heterotrophic bacteria presence and the effect of the agrochemicals on some selected soil microbes. The soil type used was loamy with pH of 6.0-7.0. The soil was placed in opaque pots and bambara bean (Vigna subterranean) seeds cultivated in them. The agrochemicals were applied two weeks after germination of seeds at concentrations based on manufacturer's recommendation. Plant growth was assessed by weekly measurement of plant height, foliage appearance and number of nodules formed after one month. The results indicated that the diversity index (Di) among the bacteria populations in untreated soil and that of Cerox-treated soils were high with mean diversity index above 0.95. Mean Di for Ceresate-treated soil was 0.88, and that for Paraquattreated soil was 0.85 indicating low bacterial populations in these treatment-type soils. The study also showed that application of the agrochemicals caused reduction in the number of total heterotrophic bacteria population sizes in the soil. Ceresate caused 82.50% reduction in bacteria number from a mean of 40 × 10(5) cfu g(-1) of soil sample to 70 × 10(4) cfu g(-1). Paraquat-treated soil showed 92.86% reduction, from a mean of 56 × 10(5) cfu g(-1) to 40 × 10(4) cfu g(-1). Application of Cerox to the soil did not have any remarkable reduction in bacterial population number. Total viable cell count studies using Congo red yeast-extract mannitol agar indicated reduction in the number of Rhizobium spp. after application of the agrochemicals. Mean number of Rhizobium population numbers per gram of soil was 180 × 10(4) for the untreated soil. Cerox-treated soil recorded mean number of 138 × 10(4) rhizobial cfu g(-1) of soil, a 23.33% reduction. Ceresate- and

  15. Experimental and analytical study on removal of strontium from cultivated soil

    International Nuclear Information System (INIS)

    Fukutani, Satoshi; Takahashi, Tomoyuki

    2003-01-01

    Experimental and analytical study was done to estimate the removal of strontium from cultivated soil. The continuous batch tests were made and uneasy desorption form or immobility form was proved to exist. 2-Component Model, which considers easy desorption and uneasy desorption form fraction, was constructed and it showed good explanation of the continuous batch test results. (author)

  16. Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-06-01

    Full Text Available The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1 CT and annual cover crop with the leguminous Calopogonium mucunoides; (2 CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and cover crop with spontaneous B. humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.

  17. The effects of cultivation on the organic matter of total soil and in the different soil particle size separates using radiocarbon dating

    International Nuclear Information System (INIS)

    Gazineu, M.H.P.

    1982-07-01

    The effects of cultivation on the organic matter and nutrients in the total soil and in five particle size separates were studied through chemical analyses and radiocarbon dating. Samples were taken from the A and B horizons of an uncultivated field and of fields cultivated during 5,60 and 90 years which had never received treatment with fertilizers. (M.A.) [pt

  18. Fungal Genetics and Functional Diversity of Microbial Communities in the Soil under Long-Term Monoculture of Maize Using Different Cultivation Techniques

    Directory of Open Access Journals (Sweden)

    Anna Gałązka

    2018-01-01

    Full Text Available Fungal diversity in the soil may be limited under natural conditions by inappropriate environmental factors such as: nutrient resources, biotic and abiotic factors, tillage system and microbial interactions that prevent the occurrence or survival of the species in the environment. The aim of this paper was to determine fungal genetic diversity and community level physiological profiling of microbial communities in the soil under long-term maize monoculture. The experimental scheme involved four cultivation techniques: direct sowing (DS, reduced tillage (RT, full tillage (FT, and crop rotation (CR. Soil samples were taken in two stages: before sowing of maize (DSBS-direct sowing, RTBS-reduced tillage, FTBS-full tillage, CRBS-crop rotation and the flowering stage of maize growth (DSF-direct sowing, RTF-reduced tillage, FTF-full tillage, CRF-crop rotation. The following plants were used in the crop rotation: spring barley, winter wheat and maize. The study included fungal genetic diversity assessment by ITS-1 next generation sequencing (NGS analyses as well as the characterization of the catabolic potential of microbial communities (Biolog EcoPlates in the soil under long-term monoculture of maize using different cultivation techniques. The results obtained from the ITS-1 NGS technique enabled to classify and correlate the fungi species or genus to the soil metabolome. The research methods used in this paper have contributed to a better understanding of genetic diversity and composition of the population of fungi in the soil under the influence of the changes that have occurred in the soil under long-term maize cultivation. In all cultivation techniques, the season had a great influence on the fungal genetic structure in the soil. Significant differences were found on the family level (P = 0.032, F = 3.895, genus level (P = 0.026, F = 3.313 and on the species level (P = 0.033, F = 2.718. This study has shown that: (1 fungal diversity was changed

  19. Multipurpose units: combining of technological operations of a soil cultivating and seeding

    Directory of Open Access Journals (Sweden)

    D. A. Petukhov

    2015-01-01

    Full Text Available The modern domestic market of technique for grain crops seeding differs variety of machines brands and types. The intensive type technologies combining technological operations of a soil cultivating and grain crops seeding in one pass are more widely used. The authors have established that one-operational units in new machine park have to be replaced multipurpose, universal and combined machines. Such approach will reduce number of machines in grain production from 20-30 to 5-6 name titles. Possibilities of multipurpose sowing units for simultaneous fertilizers application, soil cultivating and weeds destruction were analyzed. It was specified that nowadays there are several technologies types with two, four or six operations overlapping. Operational performance, technological and economical efficiency of the best multipurpose and also efficiency of technological operations overlapping at grain crops cultivating in the conditions of their real operation and at a trial establishment in the Kuban research institute of information and technical and economic studies of agro-industrial complex engineering and technical services were studied. Tit was defined that use of multipurpose sowing units and also studied efficiency of decreases operational costs by 48-71 percent, fuel consumption - by 41-76 percent and reduces labor input by 72-80 percent. Thus grain crops seeding is possible in optimal agrotime because of 4-6 technological operations overlapping in one pass.

  20. The role of Amazonian anthropogenic soils in shifting cultivation: learning from farmers’ rationales

    NARCIS (Netherlands)

    Braga Junqueira, A.; Almekinders, C.J.M.; Stomph, T.J.; Clement, C.R.; Struik, P.C.

    2016-01-01

    We evaluated farmers’ rationales to understand their decision making in relation to the use of fertile anthropogenic soils, i.e., Amazonian dark earths (ADE), and for dealing with changes in shifting cultivation in Central Amazonia. We analyzed qualitative information from 196 interviews with

  1. Study of Effects of Sorghum Cultivation on Some Soil Biological Indicators at Different Zinc Levels

    Directory of Open Access Journals (Sweden)

    S. Bagheri

    2015-06-01

    Full Text Available Zinc is an essential element for plant growth which its high concentrations can cause pollution and toxicity in plant. In this study, the effects of sorghum cultivation on some indicators of microbial activity and its association with increased zinc concentrations in two soils with relatively similar physical and chemical properties, but different in concentration of heavy metals were investigated. In both soils zinc levels were added to obtain 250, 375 and 500 mg kg-1 (based on the initial nitric acid extractable content. Using plastic boxes containing 8 kg of soil, growth boxes (Rhizobox were prepared. The box interior was divided into three sections S1 (the rhizosphere, S2 (adjacent to the rhizosphere and S3 (bulk soil using nylon net plates. The results showed that at all levels of zinc in both soil types, BCF were bigger than units, so using this indicator, sorghum can be considered as a plant for accumulation of zinc. Microbial respiration and dehydrogenase activity was reduced in all sections adjacent to root in the polluted soil. It is generally understood that substrates and inhibitors (heavy metals compete in the formation of substrate-enzyme and inhibitor-enzyme complexes, but the effects of sorghum cultivation in increasing biological and enzyme activity indexes in soil 1 (non-polluted was higher than soil 2 (polluted, perhaps due to improvements in microbial activity in the vicinity of the roots, even in concentration higher than stress condition levels for zinc in soil.

  2. Selenium determination in cereal plants and cultivation soils by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Galinha, C.; Freitas, M.C.; Anawar, H.M.; Pacheco, A.M.G.; Kamenik, J.; Kucera, J.; Coutinho, J.; Macas, B.; Almeida, A.S.

    2012-01-01

    Selenium (Se) is an essential micronutrient for human health but it is deficient in at least 1 billion people around the globe. Cereals are by far the most significant agricultural crops, not only on a gross tonnage basis, but also by what they represent in terms of energy supply and dietary intake for human nutrition worldwide. Portugal is no exception to such pattern. The Portuguese situation is difficult to assess though, due to scarce information and lack of consistent studies on the subject. In these terms, the Se status of major cereals and their cultivation soils are dealt with herein. Two species of wheat-bread and durum wheat-were sown at the end of November 2009, and then sampled in different growth stages. Rye was collected during harvest season, and cultivation soils were analyzed as well. Se results were within the range of: 100-225 ng g -1 for soils; 3-55 ng g -1 for durum wheat; 6-80 ng g -1 for bread wheat; and 4-30 ng g -1 for rye. Accuracy of the RNAA procedure was proved by analysis of reference materials NIST-SRM 1515 and NIS-SRM 8433. (author)

  3. Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils.

    Science.gov (United States)

    Liu, Yihua; Xu, Zhenzhen; Wu, Xiaoguang; Gui, Wenjun; Zhu, Guonian

    2010-06-15

    The adsorption-desorption behaviors of diuron were investigated in six cultivated soils of China. The effect of system pH and temperature were also studied. The data fitted the Freundlich equation very well. The adsorption K(F) values indicated the adsorption of diuron in the six soils was in the sequence of black soil (D)>yellow earth (F)>paddy soil (B)>yellow-brown soil (C)>yellow-cinnamon soil (A)>lateritic red earth (E). The adsorption K(F) and Freundlich exponents n were decreased when temperature was increased from 298 K to 318 K. However, the Gibb's free energy values were found less negative with the increasing temperature. Meanwhile, the extent of diuron adsorption on soil was at rather high level under low pH value conditions and decreased with increasing pH value. In addition, the desorption behavior of diuron in the six soils was in the sequence of lateritic red earth (E)>yellow-cinnamon soil (A)>paddy soil (B)>yellow earth (F)>yellow-brown soil (C)>black soil (D). At the same time, desorption hysteresis of diuron were observed in all of the tested soils. And the soil organic matter content may play an important role in the adsorption-desorption behavior. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Indicators of structural degradation on intensively cultivated soils of the Piedemonte Llanero

    International Nuclear Information System (INIS)

    Obando, Franco H

    2000-01-01

    In order to evaluate the validity of a diagnosis methodology of structural soil degradation based on the combination of internal morphology of aggregates and measurement of resistance to penetration, a reconnaissance survey of physical degradation processes on intensively cultivated soils in the Piedemonte Llanero was carried out. The internal morphology of soil aggregates was classified into five states; micro-aggregate (μ), compacted (∇ μ), very compacted (∇), cracked compacted (φ) and agglomerate (ψ) defined according to morphological characteristics derived from cultivation practices and wheel traffic. Two crops systems were selected: low-lying rice (mono-cropping) during 30 years) and upland rice, maize, soybean cotton crop rotations during 20 years in two landscapes of the alluvial plain of piedmont (medium terraces of the sub-recent piedmont, TM, and No-flooding Lowland Flats of the Recent Piedmont, PR). A natural forest and 20 years cacao tree plantation was include as benchmark systems. It was found that higher values of resistance to penetration and total density are associated to compact layers (∇ μ, ∇ and φ states) and lower values to the μ a ψ states. The ∇ state was particularly evident on TM under mono-cropping e low-lying rice crop. High values of resistance to penetration of topsoil on PR were rather associated to e textural resistance. Under natural forest and cacao e plantation it was found the micro-aggregate state (μ) o on surface soil. High values of weighed mean diameter of water stable aggregates, DMP, (≥ 5mm) were associated to compacted layers in the crop rotation e systems in PR. it was demonstrated that this methodology developed in France (temperate zone) can be applied to tropical soils

  5. The 134Cs uptake by sunflower (Helianthus anuus, Less) cultivated on soil contaminated with 134Cs

    International Nuclear Information System (INIS)

    Poppy Intan Tjahaja; Putu Sukmabuana

    2008-01-01

    One of the methods for remediation of contaminated environment is phytoremediation techniques, i.e. the environmental remediation using plants. In this research the bioavailability of sunflower plant (Helianthus anuus, Less) in radiocaesium uptake from soil was studied for being considered as a phytoremediator later. Sunflower plants were cultivated on soil contaminated with 134 Cs with the concentrations of 29,3 kBq/kg ; 117,2 kBq/kg ; 557 kBq/kg for 45 days. As control the sunflowers were also cultivated on non contaminated soil. Observation was carried out every 5 days by sampling 3 plants and soils. The plant and soil samples were dried using infra red lamp for 24 hours, and then counted using gamma spectrometer. The counting results i.e. 134 Cs concentration on soil and plant parts were then analyzed to obtain transfer factor (TF) values. The highest TF values was reached on 26 th day, i.e. 0,87; 1,89 ; 2,82 for initial soil 134 Cs concentrations of 29,3 Bq/g ; 117,2 Bq/g ; 557 Bq/g, respectively. The TF values obtained expressed the capability of plants to accumulate 134 Cs from soils. The observation to the plants growth showed that the plants grew normally on the 134 Cs contaminated soil until the concentration of 557 Bq/g. The sunflower can be considered to be phytoremediator of andosol soil contaminated with Cs radionuclides. (author)

  6. Transfer mechanisms in cultivated soils of waste radionuclides from electronuclear power plants in the system river--irrigated soil--underground water level

    Energy Technology Data Exchange (ETDEWEB)

    Saas, A; Grauby, A

    1974-12-31

    From symposinm on environmentl behavior of radionuclides released in the nuclear industry; Aix-en-Provence, France (14 May 1973). The location of nuclear power plants by rivers whose waters are used for irrigation and industrial and domestic consumption necessities a profound study of the river-irrigated soil- ground water system. Mechanisms of radionuclide transport in cultivated soil are considered under three principal aspects: the effect of the quality of the river water, of the irrigation channels, and of the ground water level on the mobility of the radionuclides in the soil; the influence of the type of soil (the four types of soils considered are acid brown soil, calcic brown soil, chalky brown soil, and chalky alluvial soil); and the distribution of radionuclides in the soil (hydrosoluble forms can contminate the ground water level and these are the forms in which they are taken up by plants. A study was made on the following nuclides: /sup 22/Na, /sup 137/Cs, /sup 85/Sr, /Sup 54/Mn, /Sup 59/Fe, /Sup 60/ Co, /sup 65/Zn, /sup 124/Sb, /sup 141 in the cultivated soils permit the evaluation of the risks of contmination of the food chain and of the underground water. This study also showed new perspectives of the behavior of radionuclides as a function of their contmination of the organo-mineral wastes of industrial and domestic origin. This pollution interfers largely with the formation of stble complexes carried by the river to irrigated soils. The quality of the water determines the distribution of the radionuclides in the profile. The hydrosoluble complex persists in the soil and migrates toward the underground water level if they are not biodegradable. The stability of these forms as a function of the soil pH and of its physicochemical characteristics, as well as that of the radionuclides considered, permit the formulation of a new balance of the radionuclides in soils. The formulation of new proposals for the contml of nuclear sites is discussed. (tr-auth)

  7. Application of wood chips for soil mulching in the cultivation of ornamental grasses

    Directory of Open Access Journals (Sweden)

    Henschke Monika

    2016-12-01

    Full Text Available A mulch is a layer of material applied to the surface of the soil. Mulching plays an important role in the maintenance of green spaces. Organic materials are still sought for the preparation of mulches. Recently interest in wood chips has grown. The aim of the study was to determine the effect of mulching with pine and birch chips on the contents of phenolic compounds in the soil, as well as on the growth and flowering of ornamental grasses – Bouteloua gracilis (Kunth. Lag. ex Griffiths, Panicum virgatum L. and Pennisetum alopecuroides L. The content of phenolic compounds in the soil steadily increased from spring to autumn. Mulching led to a substantial increase in the level of phenolic compounds. In the first year of cultivation more phenolic compounds were released by chips of pine than birch, while in the second year this difference did not occur. Mulching had a negative impact on the growth and flowering of ornamental grasses, especially in the first year of cultivation. Ornamental grass sensitivity to the substances released from mulches decreased with the age of the plants and was dependent on the species – Bouteloua gracilis was found to be particularly sensitive.

  8. Deforestation and cultivation mobilize mercury from topsoil.

    Science.gov (United States)

    Gamby, Rebecca L; Hammerschmidt, Chad R; Costello, David M; Lamborg, Carl H; Runkle, James R

    2015-11-01

    Terrestrial biomass and soils are a primary global reservoir of mercury (Hg) derived from natural and anthropogenic sources; however, relatively little is known about the fate and stability of Hg in the surface soil reservoir and its susceptibility to change as a result of deforestation and cultivation. In southwest Ohio, we measured Hg concentrations in soils of deciduous old- and new-growth forests, as well as fallow grassland and agricultural soils that had once been forested to examine how, over decadal to century time scales, man-made deforestation and cultivation influence Hg mobility from temperate surface soils. Mercury concentrations in surficial soils were significantly greater in the old-growth than new-growth forest, and both forest soils had greater Hg concentrations than cultivated and fallow fields. Differences in Hg:lead ratios between old-growth forest and agricultural topsoils suggest that about half of the Hg lost from deforested and cultivated Ohio soils may have been volatilized and the other half eroded. The estimated mobilization potential of Hg as a result of deforestation was 4.1 mg m(-2), which was proportional to mobilization potentials measured at multiple locations in the Amazon relative to concentrations in forested surface soils. Based on this relationship and an estimate of the global average of Hg concentrations in forested soils, we approximate that about 550 M mol of Hg has been mobilized globally from soil as a result of deforestation during the past two centuries. This estimate is comparable to, if not greater than, the amount of anthropogenic Hg hypothesized by others to have been sequestered by the soil reservoir since Industrialization. Our results suggest that deforestation and soil cultivation are significant anthropogenic processes that exacerbate Hg mobilization from soil and its cycling in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The technology of layer-specific rotary soil cultivation for forest crops and equipment for its implementation

    Directory of Open Access Journals (Sweden)

    S. N. Orlovskiy

    2017-06-01

    Full Text Available Influence of existing methods and technologies of soil processing for forest crops on establishment and growth of cultivated tree species was studied. It was found that furrow plough processing of soil can interfere with the cultivated trees’ ecological peculiarities, because the furrow floor, where trees are planted, often constitutes the lower part of the turf or the upper part of the ashen-gray layers having unfavorable water-physical conditions and decreased crop-producing power. Whenever conifer trees grow on the bottom of a furrow excavated in medium and heavy clay loam, their growth is significantly decreased and accompanied by remarkable changes in morphology. Processing of shallow humus thickness soil with multiple cutter results in mixing of A0, A1 and A2 (ashen-gray layers. Consequently, the processed horizon obtains a lower amount of fertile substances than the vegetable soil on non-processed places. An apparatus for graded soil tillage, its construction, working principle and usage technology are described. The major peculiarity of the device consists in the ability not to crumbl the soil, but to shake down vegetable earth cut by subsurface plow from beneath. The technology involves removing roots and grass outside cultivated land, so that it cannot be then overgrown with weeds. It was found that exploitation of the device improves soil pulverization quality, enhances percentage of separates less than 10 mm and 10–50 mm, decreases content of the separate larger than 50 mm, and reduced specific energy output almost three-fold. Vertical displacement of control particles while soil processing with common cutter machines and the suggested device was studied. Establishment and growth of Siberian pine was determined in experimental productive cultures at different planting technologies. It was shown that under the suggested technology, forest plants furrow sowing can be done while soil processing, so that making nurseries becomes

  10. Study of phosphorus retention in a quartz ferralitic u soil devoted to citrus cultivation

    International Nuclear Information System (INIS)

    Nuviola, A.; Garcia, A.; Vallin, G.; Gonzalez, A.; Alvarez, C.

    1988-01-01

    Samples of a ferralitic quartz yellow-reddish lixiviated soil cultivated with valencia late orange were taken at two depths. Five different doses of phosphorus fertilization were applied there. These samples were worked out in the laboratory by using P 32 radioactive tracers so as to know the characteristics of retention and release of phosphorus. The effect of fertilization on the phosphates forms present in the soil were studied and the influence of each considered variant could be established trough the main components analysis

  11. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (Valerianella locusta L. Laterr).

    Science.gov (United States)

    Manzocco, Lara; Foschia, Martina; Tomasi, Nicola; Maifreni, Michela; Dalla Costa, Luisa; Marino, Marilena; Cortella, Giovanni; Cesco, Stefano

    2011-06-01

    Nowadays, there is an increasing interest in the hydroponic floating system to cultivate leafy vegetables for ready-to-eat salads. It is reasonable that different growing systems could affect the quality and shelf life of these salads. The quality and shelf life of ready-to-eat lamb's lettuce grown in protected environment in soil plot or in soil-less system over hydroponic solution with or without the addition of 30 µmol L⁻¹ silicon were evaluated. Minimum effects were observed on colour, firmness and microbial counts. Hydroponic cultivation largely affected plant tissue hydration, leading to weight loss and structural modifications during refrigerated storage. The shelf life of lamb's lettuce was limited by the development of visually detectable unpleasant sensory properties. Shelf life, calculated by survival analysis of consumer acceptability data, resulted about 7 days for soil-cultivated salad and 2 days for the hydroponically grown ones. The addition of silicon to the hydroponic solution resulted in an interesting strategy to increase plant tissue yield and reduce nitrate accumulation. Although hydroponic cultivation may have critical consequences on product quality and shelf life, these disadvantages could be largely counterbalance by increased yield and a reduction of nitrate accumulation when cultivation is performed on nutritive solutions with supplemental addition of silicon. Copyright © 2011 Society of Chemical Industry.

  12. Jatropha curcas and Ricinus communis differentially affect arbuscular mycorrhizal fungi diversity in soil when cultivated for biofuel production in a Guantanamo (Cuba) tropical system.

    Science.gov (United States)

    Alguacil, M. M.; Torrecillas, E.; Hernández, G.; Torres, P.; Roldán, A.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a control soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) disappeared in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were improved by the cultivation of the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the control soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable in long-term conservation and sustainable management of these tropical ecosystems.

  13. [Effects of heavy machinery operation on the structural characters of cultivated soils in black soil region of Northeast China].

    Science.gov (United States)

    Wang, En-Heng; Chai, Ya-Fan; Chen, Xiang-Wei

    2008-02-01

    With the cultivated soils in black soil region of Northeast China as test objects, this paper measured their structural characters such as soil strength, bulk density, and non-capillary porosity/capillary porosity (NCP/CP) ratio before and after heavy and medium-sized machinery operation, aimed to study the effects of machinery operation on the physical properties of test soils. The results showed that after machinery operation, there existed three distinct layers from top to bottom in the soil profiles, i.e., plowed layer, cumulative compacted layer, and non-affected layer, according to the changes of soil strength. Under medium-sized machinery operation, these three layers were shallower, and there was a new plow pan at the depth between 17.5 and 30 cm. Heavy machinery operation had significant positive effects on the improvement of topsoil structure (P heavy machinery, the bulk density of topsoil decreased by 7.2% and 3.5%, respectively, and NCP/CP increased by 556.6% after subsoiling, which would benefit water infiltration, reinforce water storage, and weaken the threat of soil erosion. The main action of heavy machinery operation was soil loosening, while that of medium-sized machinery operation was soil compacting.

  14. Chinantec shifting cultivation : InTERAcTIVE landuse : a case-study in the Chinantla, Mexico, on secondary vegetation, soils and crop performance under indigenous shifting cultivation

    NARCIS (Netherlands)

    Wal, van der H.

    1999-01-01

    The development of secondary vegetation, soils and crop performance was studied in local variants of shifting cultivation in two villages in the Chinantla, Mexico. In Chapter 1, the institutional, social and political context of the research are presented and the reader is advertised that

  15. Impacts from Land Use Pattern on Spatial Distribution of Cultivated Soil Heavy Metal Pollution in Typical Rural-Urban Fringe of Northeast China.

    Science.gov (United States)

    Li, Wenbo; Wang, Dongyan; Wang, Qing; Liu, Shuhan; Zhu, Yuanli; Wu, Wenjun

    2017-03-22

    Under rapid urban sprawl in Northeast China, land conversions are not only encroaching on the quantity of cultivated lands, but also posing a great threat to black soil conservation and food security. This study's aim is to explore the spatial relationship between comprehensive cultivated soil heavy metal pollution and peri-urban land use patterns in the black soil region. We applied spatial lag regression to analyze the relationship between PLI (pollution load index) and influencing factors of land use by taking suburban cultivated land of Changchun Kuancheng District as an empirical case. The results indicate the following: (1) Similar spatial distribution characteristics are detected between Pb, Cu, and Zn, between Cr and Ni, and between Hg and Cd. The Yitong River catchment in the central region, and the residential community of Lanjia County in the west, are the main hotspots for eight heavy metals and PLI. Beihu Wetland Park, with a larger-area distribution of ecological land in the southeast, has low level for both heavy metal concentrations and PLI values. Spatial distribution characteristics of cultivated heavy metals are related to types of surrounding land use and industry; (2) Spatial lag regression has a better fit for PLI than the ordinary least squares regression. The regression results indicate the inverse relationship between heavy metal pollution degree and distance from long-standing residential land and surface water. Following rapid urban land expansion and a longer accumulation period, residential land sprawl is going to threaten cultivated land with heavy metal pollution in the suburban black soil region, and cultivated land irrigated with urban river water in the suburbs will have a higher tendency for heavy metal pollution.

  16. Impacts from Land Use Pattern on Spatial Distribution of Cultivated Soil Heavy Metal Pollution in Typical Rural-Urban Fringe of Northeast China

    Science.gov (United States)

    Li, Wenbo; Wang, Dongyan; Wang, Qing; Liu, Shuhan; Zhu, Yuanli; Wu, Wenjun

    2017-01-01

    Under rapid urban sprawl in Northeast China, land conversions are not only encroaching on the quantity of cultivated lands, but also posing a great threat to black soil conservation and food security. This study’s aim is to explore the spatial relationship between comprehensive cultivated soil heavy metal pollution and peri-urban land use patterns in the black soil region. We applied spatial lag regression to analyze the relationship between PLI (pollution load index) and influencing factors of land use by taking suburban cultivated land of Changchun Kuancheng District as an empirical case. The results indicate the following: (1) Similar spatial distribution characteristics are detected between Pb, Cu, and Zn, between Cr and Ni, and between Hg and Cd. The Yitong River catchment in the central region, and the residential community of Lanjia County in the west, are the main hotspots for eight heavy metals and PLI. Beihu Wetland Park, with a larger-area distribution of ecological land in the southeast, has low level for both heavy metal concentrations and PLI values. Spatial distribution characteristics of cultivated heavy metals are related to types of surrounding land use and industry; (2) Spatial lag regression has a better fit for PLI than the ordinary least squares regression. The regression results indicate the inverse relationship between heavy metal pollution degree and distance from long-standing residential land and surface water. Following rapid urban land expansion and a longer accumulation period, residential land sprawl is going to threaten cultivated land with heavy metal pollution in the suburban black soil region, and cultivated land irrigated with urban river water in the suburbs will have a higher tendency for heavy metal pollution. PMID:28327541

  17. Greenhouse Gas Emissions and Growth of Wheat Cultivated in Soil Amended with Digestate from Biogas Production

    Institute of Scientific and Technical Information of China (English)

    Liliana PAMPILL(O)N-GONZ(A)LEZ; Marco LUNA-GUIDO; Olivia FRANCO-HERN(A)NDEZ; Fabián FERN(A)NDEZ-LUQUE(N)O; Octavio PAREDES-L(O)PEZ; Gerardo HERN(A)NDEZ; Luc DENDOOVEN

    2017-01-01

    Digestate,the product obtained after anaerobic digestion of organic waste for biogas production,is rich in plant nutrients and might be used to fertilize crops.Wheat (Triticum spp.L.) was fertilized with digestate,urea,or left unfertilized and cultivated in the greenhouse for 120 d.Emissions of greenhouse gasses (carbon dioxide (CO2),methane (CH4),and nitrous oxide (N2O)) were monitored and plant growth characteristics were determined at harvest.The digestate was characterized for heavy metals,pathogens,and C and N mineralization potential in an aerobic incubation experiment.No Salmonella spp.,Shigella spp.,or viable eggs of helminths were detected in the digested pig slurry,but the number of faecal coliforms was as high as 3.6 × 104 colony-forming units (CFU) g-1 dry digestate.The concentrations of heavy metals did not surpass the upper limits established by US Environmental Protection Agency (EPA).After 28 d,17% of the organic C (436 g kg-1 dry digestate) and 8% of the organic N (6.92 g kg-1 dry digestate) were mineralized.Emissions of CO2 and CH4 were not significantly affected by fertilization in the wheat-cultivated soil,but digestate significantly increased the cumulative N2O emission by 5 times compared to the urea-amended soil and 63 times compared to the uncultivated unfertilized soil.It could be concluded that digestate was nutrient rich and low in heavy metals and pathogens,and did not affect emissions of CH4 and CO2 when applied to a soil cultivated with wheat,but increased emission of N2O.

  18. Vegetative growth and yield of strawberry under irrigation and soil mulches for different cultivation environments

    Directory of Open Access Journals (Sweden)

    Pires Regina Célia de Matos

    2006-01-01

    Full Text Available The vegetative growth and yield of strawberry in relation to irrigation levels and soil mulches are still not well known, mainly for different environmental conditions. Two experiments were carried out in Atibaia, SP, Brazil, during 1995, one in a protected environment and the other in an open field, to evaluate the cultivar Campinas IAC-2712, under different irrigation levels and soil mulches (black and clear polyethylene. Three water potential levels in the soil were used in order to define irrigation time, corresponding to -0.010 (N1, -0.035 (N2, and -0.070 (N3 MPa, measured through tensiometers installed at the 10 cm depth. A 2 x 3 factorial arrangement was adopted, as randomized complete block, with 5 replicates. In the protected cultivation, the irrigation levels of -0.010 and -0.035 MPa and the clear plastic mulch favored the vegetative growth, evaluated through plant height, maximum horizontal dimension of the plant, leaf area index, as well as by total marketable fruit yield and its components (mean number and weight of fruits per plant. In the open field cultivation, no effect of treatments due to rainfall were observed.

  19. Role of water repellency in aggregate stability of cultivated soils under simulated raindrop impact

    Science.gov (United States)

    Kořenková, Lucia; Matúš, Peter

    2015-07-01

    Soil aggregate stability (AS) is an important indicator of soil physical quality. For the purpose of this research it was hypothesized that particular properties such as water repellency (WR) influence soil aggregation and AS. Directly after sampling, WR was detected for three soils, after a week of air-drying two of these soils still showed some resistance to penetration by a water drop placed on the surface (WDPT test). The study examines AS of air-dried texturally different aggregates of size 0.25-0.5 mm taken from surface layers (5-15 cm depth) of six agriculturally used soils. The procedure involves exposure of soil aggregates to direct impact of water drops. Results showed that soil AS increases in order: cutanic Luvisol (siltic) Chernozem < calcic mollic Fluvisol < mollic grumic Vertisol (pellic) < mollic Fluvisol (calcaric) < gleyic Fluvisol (eutric). Gradual increase in AS can be explained by the increase in soil organic matter content and its hydrophobic properties. Although WR has been most commonly observed in soils under forests and grass cover, the results confirmed that cultivated soils may also create water-stable aggregates, especially in the case when their organic matter induces WR under particular moisture conditions.

  20. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Science.gov (United States)

    T.P. Beldini; R.C. Oliveira Junior; Michael Keller; P.B. de Camargo; P.M. Crill; A. Damasceno da Silva; D. Bentes dos Santos; D. Rocha de Oliveira

    2015-01-01

    Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest....

  1. Microbial activity in soil cultivated with different summer legumes in coffee crop

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-02-01

    Full Text Available A field experiment was conducted for ten years in a sandy soil in the north part of the Paraná State, Brazil. The soil samples were collected at 0-10 cm depth, both under the coffee canopy and in the inter row space between the coffee plants, in the following treatments: Control, Leucaena leucocephala, Crotalaria spectabilis, Crotalaria breviflora, Mucuna pruriens, Mucuna deeringiana, Arachis hypogaea and Vigna unguiculata. The legume crops influenced the microbial activity, both under the coffee canopy and in the inter row space. The cultivation of Leucaena leucocephala increased the microbial biomass C, N and P. Although L. leucocephala and Arachis hypogaea provided higher microbial biomass, the qCO2 decreased by up to 50% under the coffee canopy and by about 25% in the inter row space. The soil microbial biomass was enriched in N and P due to green manure residue addition.

  2. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation.

    Science.gov (United States)

    Pogrzeba, Marta; Rusinowski, Szymon; Sitko, Krzysztof; Krzyżak, Jacek; Skalska, Aleksandra; Małkowski, Eugeniusz; Ciszek, Dorota; Werle, Sebastian; McCalmont, Jon Paul; Mos, Michal; Kalaji, Hazem M

    2017-06-01

    Crop growth and development can be influenced by a range of parameters, soil health, cultivation and nutrient status all play a major role. Nutrient status of plants can be enhanced both through chemical fertiliser additions (e.g. N, P, K supplementation) or microbial fixation and mobilisation of naturally occurring nutrients. With current EU priorities discouraging the production of biomass on high quality soils there is a need to investigate the potential of more marginal soils to produce these feedstocks and the impacts of soil amendments on crop yields within them. This study investigated the potential for Miscanthus x giganteus to be grown in trace element (TE)-contaminated soils, ideally offering a mechanism to (phyto)manage these contaminated lands. Comprehensive surveys are needed to understand plant-soil interactions under these conditions. Here we studied the impacts of two fertiliser treatments on soil physico-chemical properties under Miscanthus x giganteus cultivated on Pb, Cd and Zn contaminated arable land. Results covered a range of parameters, including soil rhizosphere activity, arbuscular mycorrhization (AM), as well as plant physiological parameters associated with photosynthesis, TE leaf concentrations and growth performance. Fertilization increased growth and gas exchange capacity, enhanced rhizosphere microbial activity and increased Zn, Mg and N leaf concentration. Fertilization reduced root colonisation by AMF and caused higher chlorophyll concentration in plant leaves. Microbial inoculation seems to be a promising alternative for chemical fertilizers, especially due to an insignificant influence on the mobility of toxic trace elements (particularly Cd and Zn). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    Science.gov (United States)

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Determination of some micro and macro element concentrations in cotton-cultivated and fallow soils in the rural area of Damascus using neutron activation analysis

    International Nuclear Information System (INIS)

    Khamis, I.; Sarheel, A.; Al-Samel, N.; Khalifa, K.

    2004-01-01

    This study was conducted in the rural area of Damascus in the region where cotton is frequently planted. The aim of the study is to determine the concentration of some trace elements and other important elements for soil such as (Fe, Ca, Ba, Co, Cr, Mn, Ni, Sr, V, Zn, Zr). In order to demonstrate the depletion of such elements by absorption in cotton, results are compared with cultivated soils already planted by cotton and others which are considered Fallow soil. Results, for four regions under investigation, showed that concentration of most elements in fallow soil is higher than that cultivated by cotton. However, concentration of some elements were close in two different soil samples in each region. On the other side, concentration of some elements was higher in soil cultivated by cotton compared with the fallow soil. The study has shown that a decrease in the concentration of some elements in the location of region is directed towards northeast. Result reveal a clear absorption phenomena of some elements by cotton when compared with fallow soil. It is important to consider the presented result as a first indicator which needs more studies to confirm its results in other region planted by cotton in Syria. (author)

  5. Determination of some micro and macro element's concentrations in cotton-cultivated and fallow soils in the rural area of Damascus using neutron activation analysis

    International Nuclear Information System (INIS)

    Khamis, I.; Khalifa, K.; Sarheel, A.; Al-Samel, N.

    2003-12-01

    This study was conducted in the rural area of Damascus in the region where cotton is frequently planted. The aim of the study is to determine the concentration of some trace elements and other important elements for soil such as (Fe, Ca, As, Ba, Co, Cr, Mn, Ni, Sr, V, Zn, Zr). In order to demonstrate the depletion of such elements by absorption in cotton, results are compared between cultivated soils already planted by cotton and others which is considered fallow soil. Results, for four regions under investigation, showed that concentration of most elements in fallow soil is higher than that cultivated by cotton. However, concentration of some elements were close in two different soil samples in each region. on the other side , concentration of some elements were higher in cultivated soil by cotton compared to the one fallow soil. The study has shown that a decrease in the concentration of some elements are noticeable as the location of region is directed towards north-east. Results reveal a clear absorption phenomena of some elements by cotton when compared to fallow soil. It is important to consider the presented results as a first indicator which needs more studies to confirm its results in other regions being planted by cotton in Syria. (author)

  6. Fertility status of cultivated floodplain soils in the Zambezi Valley, northern Zimbabwe

    Science.gov (United States)

    Chimweta, M.; Nyakudya, I. W.; Jimu, L.

    2018-06-01

    Flood-recession cropping improves smallholder farmers' household food security. The objective of this study was to determine the fertility status of cultivated Zambezi Valley floodplain soils, in northern Zimbabwe. The study was conducted at three sites, along tributaries of Musengezi River. Soil samples were taken at 0.20 m depth increments to 0.60 m from hydromorphologically stratified fields, during the cropping season. Sampling points were replicated twice in each stratum at points equidistant from river edges. Relative elevations of sampling points were measured using levelling equipment. Soil was analysed using: core method for bulk density, hydrometer method for texture, loss on ignition for soil organic carbon (SOC), Kjeldahl procedure for total nitrogen (N), 0.01 M CaCl2 for pH, and Inductively Coupled Plasma (ICP) for Mehlich 3 extractable elements. Data from soil analyses were subjected to One Way Analysis of Variance and Pearson's correlation analysis. Bulk density ranged from 1.2 to 1.4 g cm-3 and it was negatively related to distance from river; and positively related to elevation at two sites. Highest values for SOC and total N were 2.04% and 0.36% respectively. Soil pH ranged from 7.70 to 8.60. Soil organic carbon and N were positively related to distance from river but negatively related to elevation. Threshold concentrations for deficiency: fertilizer microdosing are among possible fertility management options.

  7. Soil erosion from shifting cultivation and other smallholder land use in Sarawak, Malaysia

    DEFF Research Database (Denmark)

    Neergaard, Andreas de; Magid, Jakob; Mertz, Ole

    2008-01-01

    to compare soil erosion from three land use types in a shifting cultivation system, namely upland rice, pepper gardens and native forest. We used two sample sites within the humid tropical lowland zone in Sarawak, Malaysia. Both areas had steep slopes between 25° and 50°, and were characterised by a mosaic...... land use of native forest, secondary re-growth, upland rice fields and pepper gardens. Soil samples were collected to 90 cm depth from all three land use types, and analysed for various chemical parameters, including texture, total organic matter and 137Cs content. 137Cs is a radioactive isotope...... in the upper soil layers, are unlikely to change the carbon inventory dramatically. 137Cs content in the soil profile indicated largest retention of original topsoil in the native forest plots, and a loss of 18 and 35% of topsoil from upland rice and pepper gardens, respectively, over the past 40 years. When...

  8. Sewage sludge use in bioenergy production. A case study of its effects on soil properties under Cynara cardunculus L. cultivation

    Directory of Open Access Journals (Sweden)

    Alfonso J. Lag-Brotons

    2015-03-01

    Full Text Available Energy crops cultivation is expected to further increase, which represents an opportunity to establish synergies able to enhance key environmental components (i.e. soil. To reach this benefits crop management is crucial and should be properly assessed. The aim of this work is to provide an insight on the effects of sewage sludge compost (SSC on soil properties, when this material is applied as basal dressing for the cultivation of a Mediterranean energy crop (Cynara cardunculus L.. A 3-years trial (2008/2011 was conducted in Alicante (Southeastern Spain, testing four SSC application rates (0, 30, 50 and 70 t/ha on a heavy textured Anthrosol. The addition of SSC enhanced soil fertility, primarily increasing organic carbon (Cox, Kjeldahl nitrogen (Nk, available P (PBurriel, CuDTPA and ZnDTPA levels. Comparatively with the control (0 t/ha, 30, 50 and 70 t/ha treatments induced a rise of 11%, 19% and 25% in Nk (Control=1.11 g/kg and PBurriel (Control=79 mg/kg, while for Cox (Control=11.8 g/kg was 14%, 21% and 30%. However, these variables apparently did not significantly decrease throughout the experiment, which suggests that the organic matter added was under a stabilization process, favoured by the poor physical properties of the soil. Other elements (NaNH4Ac, KNH4Ac, MnDTPA were accumulated within the soil as time passed by, as a result of soil status, Mediterranean environmental conditions and crop management. The use of SSC as organic fertilizer represents an effective option to optimize cynara cultivation systems while improving soil quality through enhanced long-lasting organic matter pools.

  9. Sewage sludge use in bioenergy production. A case study of its effects on soil properties under Cynara cardunculus L. cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Lag-Brotons, A.J.; Gómez, I.; Navarro-Pedreño, J.

    2015-07-01

    Energy crops cultivation is expected to further increase, which represents an opportunity to establish synergies able to enhance key environmental components (i.e. soil). To reach this benefits crop management is crucial and should be properly assessed. The aim of this work is to provide an insight on the effects of sewage sludge compost (SSC) on soil properties, when this material is applied as basal dressing for the cultivation of a Mediterranean energy crop (Cynara cardunculus L.). A 3-years trial (2008/2011) was conducted in Alicante (Southeastern Spain), testing four SSC application rates (0, 30, 50 and 70 t/ha) on a heavy textured Anthrosol. The addition of SSC enhanced soil fertility, primarily increasing organic carbon (Cox), Kjeldahl nitrogen (Nk), available P (PBurriel), CuDTPA and ZnDTPA levels. Comparatively with the control (0 t/ha), 30, 50 and 70 t/ha treatments induced a rise of 11%, 19% and 25% in Nk (Control=1.11 g/kg) and PBurriel (Control=79 mg/kg), while for Cox (Control=11.8 g/kg) was 14%, 21% and 30%. However, these variables apparently did not significantly decrease throughout the experiment, which suggests that the organic matter added was under a stabilization process, favoured by the poor physical properties of the soil. Other elements (NaNH4Ac, KNH4Ac, MnDTPA) were accumulated within the soil as time passed by, as a result of soil status, Mediterranean environmental conditions and crop management. The use of SSC as organic fertilizer represents an effective option to optimize cynara cultivation systems while improving soil quality through enhanced long-lasting organic matter pools. (Author)

  10. EFFECTS OF MIXED ORGANIC AND INORGANIC FERTILIZERS APPLICATION ON SOIL PROPERTIES AND THE GROWTH OF KENAF (HIBISCUS CANNABINUS L.) CULTIVATED ON BRIS SOILS

    OpenAIRE

    Mohd Hadi Akbar Basri; Arifin Abdu; Shamshuddin Jusop; Osumanu Haruna Ahmed; Hazandy Abdul-Hamid; Mohd-Ashadie Kusno; Baharom Zainal; Abdul Latib Senin; Nasima Junejo

    2013-01-01

    The demand for kenaf in the world increases rapidly by the years. Cultivation of the crop in Malaysia is a challenging task, especially when kenaf is grown on sandy soils with low fertility, such as the BRIS Soils (Beach Ridges Interspersed with Swales). A pot study was conducted in a glasshouse at Universiti Putra Malaysia to evaluate the potential of inorganic and organic fertilizers or their combination for growing kenaf on very sandy BRIS Soils, using variety V36. There were altogether si...

  11. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    Science.gov (United States)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    Deep earthwork activities carried out before vineyard plantation completely upset soil profile and characteristics. The resulting soil features are often much more similar to the underlying substratum than original soil profile. The time needed to recover soil functions is ecologically relevant and affects vine phenology and grape yield, particularly in organic viticulture. The general aim of this research work was to investigate the time needed to recover soil functions after the earthworks made before vine plantation. This study compared for a four years period physical and chemical properties, microbial and mesofauna communities, in new and old vineyards, cultivated on the same soil type. The experiment was conducted in a farm of the Chianti Classico district (Central Italy), on hills of high altitude (400-500 m a.s.l.) on clayey-calcareous flysches, with stony and calcareous soils (Haplic Cambisol (Calcaric, Skeletic)). The reference vine cultivar was Sangiovese. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011 after an equivalent earthwork carried out in the summer of 2009. Both vineyards were organically managed and only compost at the rate of 1,000 kg ha-1 -a was added every year. The new vineyard was periodically cultivated by mechanical tillage, while the older only at alternate rows. Soil samples from the first 15 cm depth were collected in 4 replicates in the younger as well as in the older vineyard during the springtime of 2010-2013; in the older vineyard, two samples were from the periodically cultivated swaths and two under permanent grass cover. Samples were analysed for physical (particle size, field capacity, wilting point), chemical (pH, electrical conductivity, lime, active lime, organic carbon, total nitrogen), microbiological (soil respiration, microbial biomass, DGGE), and mesofauna features (abundance, taxa richness, BSQ index and

  12. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  13. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    Science.gov (United States)

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  14. Recycling of organic wastes in burnt soils: combined application of poultry manure and plant cultivation.

    Science.gov (United States)

    Villar, M C; Petrikova, V; Díaz-Raviña, M; Carballas, T

    2004-01-01

    A pot experiment was conducted to investigate the efficacy of a post-fire land management practice, including plant cultivation (Lolium perenne) combined with poultry manure addition, for restoring the protective vegetation cover in soils degraded by high intensity wildfires. The greenhouse experiment was performed with three burnt pine forest soils with added poultry manure at two doses of application and comparing the data with those obtained using NPK fertilizer. A significant effect of the amendment, soil properties and the interaction between amendment and soil properties on vegetation cover (phytomass production, nutrient content) was detected, but often the amendment treatment explained most of the variance. Changes induced by the organic amendment were more marked than those induced by inorganic fertilization. The increase of phytomass and nutrient uptake with poultry manure addition indicated the beneficial effects of this soil management practice. These findings can serve to develop field experiments and burnt soils reclamation technology.

  15. A comparison using the caesium-137 technique of the relative importance of cultivation and overland flow on soil erosion in a steep semi-tropical sub-catchment

    International Nuclear Information System (INIS)

    Wiranatha, A.S.; Rose, C.W.; Salama, M.S.

    2001-01-01

    The spatial pattern of net soil loss on 6 downslope transects in a small semi-tropical sub-catchment was measured in 1990-91 using the resident caesium-137 deficit technique. The sub-catchment consisted of 2 opposing hillslopes which shed water to an intermittent stream in the valley bottom of the sub-catchment. There were 3 transects on each of the opposing hillslopes, and measurement indicated net soil loss from all 6 transects. Furthermore, the spatial pattern of caesium- 37 deficit did not indicate the accumulation of soil expected due to the slope decrease toward the bottom of the valley. Possible explanations of this finding could be the effect of periodic flooding of the intermittent valley stream, or seepage-accelerated erosion. Pineapple cultivation in the sub-catchment since 1950 included intensive cultivation at 4-year intervals by downslope-moving rotary hoe. The paper develops a theoretical prediction of the spatial pattern of net soil loss expected due to such cultivation, as well as the expected pattern of soil loss due to overland flow on the hillslopes. The spatial patterns of soil loss due to these 2 different soil erosion mechanisms were then compared with the pattern of net soil loss indicated by caesium- 137 depletion to provide an assessment of their likely relative importance in contributing to soil loss. In the upper part of each hillslope, this comparison of spatial trends did not allow the dominant cause of soil erosion to be distinguished. Both the model of erosion due to cultivation and that due to hillside overland flow predicted soil accumulation in the lower valley sides where slope decreased. Neither model represented the net loss of such accumulated soil indicated by caesium- 137 deficit, and this loss possibly occurred during periodically observed flooding of the valley floor, or due to surface burial with caesium-137 depleted subsoil. Copyright (2001) CSIRO Publishing

  16. Effects of Some Beneficial Bacteria in Casing Soil on Growth and Yield of Cultivated Mushroom Agaricus bisporus

    Directory of Open Access Journals (Sweden)

    Mehmet Çetin

    2016-03-01

    Full Text Available This research was carried out to determine the interaction between some bacteria naturally existing in casing soil and Agaricus bisporus (Sylvan Hauser A15 hypha in laboratory (in vitro and cultivation (in vivo conditions, and to confirm its effects on mushroom yield. Totally 32 bacteria (3 Gram (+ and 29 Fluorescent Pseudomonads was isolated from casing soil and healthy sporophores. As a result of in vitro experiment carried out to determine the effects of bacteria on mycelium growth of A. bisporus, 24 bacterial isolates were found more effective at the rate of 2 to 115% than control treatment. To determine the effects of bacterium, chosen at the end of in vitro experiments, on mushroom yield in cultivation conditions, three experiments were established in March, May and July in 2008. At the end of experiments, bacterial isolates provided 8 – 40 % increase in total yield. Population density and change in population number related to time was observed during growing period, after the inoculation of bacterial isolates into casing soil. According to the results, Pseudomonas fluorescens (T 4/2 and Ş 8, P.putida (Ş 2/1 and Ş 10 and Bacillus mycoides (T 7/2 bacterial isolates were colonized successfully both in casing soil and sporophores.

  17. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Operations included in âcultivation and tillage of the soil.â 780.110 Section 780.110 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSIN...

  18. Uptake and specification of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    NARCIS (Netherlands)

    Larsen, E.H.; Lobinski, R.; Burger-Meijer, K.; Hansen, M.; Ruzik, R.; Mazurowska, L.; Rasmussen, P.H.; Sloth, J.J.; Scholten, O.E.; Kik, C.

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic

  19. The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil.

    Science.gov (United States)

    Maric, Miroslava; Antonijevic, Milan; Alagic, Sladjana

    2013-02-01

    The copper production in Bor (East Serbia) during the last 100 years presents an important source of the pollution of environment. Dust, waste waters, tailing, and air pollutants influence the quality of soil, water, and air. Over 2,000 ha of fertile soil have been damaged by the flotation tailing from Bor's facilities. The goal of the present work has been to determine the content of Pb, Cu, and Fe in wild plants (17 species) naturally growing in the damaged soil and in fodder crops (nine species) planted at the same place. The content of Pb, Cu, and Fe has been analyzed in damaged soil as well. This study has also searched for native (wild) and cultivated plants which are able to grow in contaminated soil in the area of the intense industrial activity of copper production in Bor, which means that they can accumulate and tolerate heavy metals in their above-ground tissues. It has been found out that the content of all metals in contaminated soil decreases considerably at the end of the experiment. As it has been expected, all plant species could accumulate investigated metals. All tested plants, both wild-growing and cultivated plants, seem to be quite healthy on the substrate which contained extremely high concentrations of copper.

  20. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers

    International Nuclear Information System (INIS)

    López-Valdez, F.; Fernández-Luqueño, F.; Luna-Suárez, S.; Dendooven, L.

    2011-01-01

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO 2 and N 2 O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO 2 and N 2 O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N 2 O emissions but not CO 2 emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern.

  1. Long-term effects of peatland cultivation on soil physical and hydraulic properties: Case study in Canada

    Science.gov (United States)

    Dennis W. Hallema; Jonathan A. Lafond; Yann Périard; Silvio J. Gumiere; Ge Sun; Jean Caron

    2015-01-01

    Organic soils are an excellent substrate for commercial lettuce (Lactuca sativa L.) farming; however, drainage accelerates oxidation of the surface layer and reduces the water holding capacity, which is often lethal for crops that are sensitive to water stress. In this case study, we analyzed 942 peat samples from a large cultivated peatland complex...

  2. Uranium-contaminated soils: Ultramicrotomy and electron beam analysis

    International Nuclear Information System (INIS)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1994-02-01

    Uranium-contaminated soils from the U.S. Department of Energy (DOE) Fernald Site, Ohio, have been examined by a combination of scanning electron microscopy with backscattered electron imaging (SEM/BSE) and analytical electron microscopy (AEM). The inhomogeneous distribution of particulate uranium phases in the soil required the development of a method for using ultramicrotomy to prepare transmission electron microscopy (TEM) thin sections of the SEM mounts. A water-miscible resin was selected that allowed comparison between SEM and TEM images, permitting representative sampling of the soil. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite (UO 2 ). No uranium was detected in association with phyllosilicates in the soil

  3. EFFECT OF REFINED PETROLEUM PRODUCTS CONTAMINATION ON BACTERIAL POPULATION AND PHYSICOCHEMICAL CHARACTERISTICS OF CULTIVATED AGRICULTURAL SOIL

    Directory of Open Access Journals (Sweden)

    Adewale Sogo Olalemi

    2012-10-01

    Full Text Available An investigation into the effect of refined petroleum products contamination on bacterial population and physicochemical characteristics of cultivated agricultural soil was carried out. The soil samples obtained from the Teaching and Research Farm, Obakekere, Federal University of Technology, Akure, Ondo State were contaminated with varying volumes of petrol, diesel and kerosene. The results revealed higher bacterial populations in uncontaminated soils than contaminated soils. The counts of bacteria ranged from 3.0 × 105 to 5.0 × 105 cfu/g in uncontaminated soils and 1.0 × 105 to 3.0 × 105 cfu/g in contaminated soils. The isolated bacteria were identified as Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, Corynebacterium variabilis, Pseudomonas fluorescens. The contamination had no significant effect on pH, potassium, sodium, organic carbon and nitrogen content of the soils, while the moisture, calcium, phosphorus and magnesium content of the contaminated soils were significantly different (P < 0.05 compared with the uncontaminated soils. The ability of Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, and Pseudomonas fluorescens to utilize the refined petroleum products suggest that these bacteria had potential to bioremediate petroleum contaminated soils.

  4. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    Science.gov (United States)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance

  5. Nutrient critical levels and availability in soils cultivated with peach palm (Bactris gasipaes Kunth. in Santo Domingo de Los Tsáchilas, Ecuador

    Directory of Open Access Journals (Sweden)

    Carlos Julio Quezada Crespo

    2017-04-01

    Full Text Available Ecuador is the most important exporter of canned peach palm, however, to date ideal soil fertility characteristics for peach palm growers remain unknown. The aim of this research was to determine optimal levels of soil nutrients for the cultivation of peach palm, specifically with regards to soil cation exchange capacity in order to obtain higher yields. We worked with 20 farmsteads and their soils from the province of Santo Domingo de los Tsáchilas during the second half of 2014. Fields were evaluated based on a relative yield and extractable (modified Olsen nutrient contents in each soil were determined using regression modeling to determine critical levels of each nutrient and specifically to determine the ideal soil cation exchange capacity under peach palm cultivation. Our analysis established critical levels of soil pH (6.3; OM 6.5%; P 12.3 mg.dm-3; K 0.67 cmol.dm-3 K; Ca 5.1 cmol.dm-3 ; Mg 0.97 cmol.dm-3; and S 7.5 mg.dm-3. The ideal Ca: Mg: K soil cation exchange capacity was determined to be 76:14:10.

  6. Soil Nutrient Condition of Coffee Cultivation with Industrial Woody-crops

    Directory of Open Access Journals (Sweden)

    Rudy Erwiyo

    2008-05-01

    Full Text Available Black pod rot disease (BPRD which is caused by Phytophthora palmivora is one of the main diseases of cocoa cultivations particularly in plantations with wet climate. Black pod rot can develop rapidly under high humidity environments, particularly during rainy seasons. This disease can cause loss of harvest of up to 46.63% in East Java. The various control efforts attempted so far have not resulted in significant improvements. Urea, in addition to functioning as fertilizer, can also produce the ammonia gas which is believed to be able to suppress black pod rot. This research aims to determine the effectiveness of black pod rot control using the combination of lime and urea. This research was conducted from June to September 2013. The materials used in test included sterile soil, black pod rot infected cocoa, urea, and agricultural lime. Observation results showed that ammonia could form from urea. Lime can increase the speed of the formation. The ammonia gas forming from 0.06% urea and 0.3% lime can control the P. palmivora fungus inside the soil. Key words: Pod rot, P. palmivora, urea, lime, ammonia

  7. Microbialproperty improvement of saline-alkali soil for vegetable cultivation in Shanghai coastal area and its evaluation

    Directory of Open Access Journals (Sweden)

    KOU Yiming

    2015-10-01

    Full Text Available In order to improve the fertility of saline-alkali soil in Shanghai coastal area,and make it suitable for vegetable cultiration,in the study,the saline-alkali soil was mixed with organic fertilizer,and then sprayed with composite microbes,which have the ability of the synergistically degrading organic substrate.The results showed that the saline-alkali soil added with 5∶1 organic fertilizer can rapidly increase the utilization ability soil organic matter.The soil microbial populations and microbial diversity index were significantly improved when applied with the 0.5% composite microbial liquid which containeds 1∶3∶3∶1 of Bacillus licheniformis,Pseudomonas sp., Flavobacterium sp.and Sphingomonas sp..At the same time,the enzymology indicators of soil urease,phosphatase,cellulase and catalase increased significantly.The vegetable cultivation experiments showed that:the biomass of Brassica chinensis nearly doubled in the original saline-alkali soil,while the yield of organic fertilizer increased 30.2% after 50 days.The research result on of the biological improvement for saline-alkali soil will have good application value in vegetable planting in coastal saline-alkali soil.

  8. Effect of reed canary grass cultivation on greenhouse gas emission from peat soil at controlled rewetting

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Lærke, Poul Erik

    2015-01-01

    Cultivation of bioenergy crops in rewetted peatland (paludiculture) is considered as a possible land use option to mitigate greenhouse gas (GHG) emissions. However, bioenergy crops like reed canary grass (RCG) can have a complex influence on GHG fluxes. Here we determined the effect of RCG...... and bare soil were measured at weekly to fortnightly intervals with static chamber techniques for a period of 1 year. Cultivation of RCG increased both ER and CH4 emissions, but decreased the N2O emissions. The presence of RCG gave rise to 69, 75 and 85% of total ER at −20, −10 and 0 cm GWL, respectively...... from ER were obviously the dominant RCG-derived GHG flux, but above-ground biomass yields, and preliminary measurements of gross photosynthetic production, showed that ER could be more than balanced due to the photosynthetic uptake of CO2 by RCG. Our results support that RCG cultivation could be a good...

  9. High genetic diversity among and within bitter manioc varieties cultivated in different soil types in Central Amazonia

    Directory of Open Access Journals (Sweden)

    Alessandro Alves-Pereira

    2017-04-01

    Full Text Available Abstract Although manioc is well adapted to nutrient-poor Oxisols of Amazonia, ethnobotanical observations show that bitter manioc is also frequently cultivated in the highly fertile soils of the floodplains and Amazonian dark earths (ADE along the middle Madeira River. Because different sets of varieties are grown in each soil type, and there are agronomic similarities between ADE and floodplain varieties, it was hypothesized that varieties grown in ADE and floodplain were more closely related to each other than either is to varieties grown in Oxisols. We tested this hypothesis evaluating the intra-varietal genetic diversity and the genetic relationships among manioc varieties commonly cultivated in Oxisols, ADE and floodplain soils. Genetic results did not agree with ethnobotanical expectation, since the relationships between varieties were variable and most individuals of varieties with the same vernacular name, but grown in ADE and floodplain, were distinct. Although the same vernacular name could not always be associated with genetic similarities, there is still a great amount of variation among the varieties. Many ecological and genetic processes may explain the high genetic diversity and differentiation found for bitter manioc varieties, but all contribute to the maintenance and amplification of genetic diversity within the manioc in Central Amazonia.

  10. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Valdez, F., E-mail: flopez2072@yahoo.com [Laboratory of Agricultural Biotechnology, CIBA, IPN, Tepetitla de Lardizabal, C.P. 90700, Tlaxcala (Mexico); Laboratory of Soil Ecology, GIB, Department of Biotechnology and Bioengineering, Cinvestav-Zacatenco, C.P. 07360, D.F. (Mexico); Fernandez-Luqueno, F. [Natural and Energetic Resources, Cinvestav-Saltillo, C.P. 25900, Coahuila (Mexico); Laboratory of Soil Ecology, GIB, Department of Biotechnology and Bioengineering, Cinvestav-Zacatenco, C.P. 07360, D.F. (Mexico); Luna-Suarez, S. [Laboratory of Agricultural Biotechnology, CIBA, IPN, Tepetitla de Lardizabal, C.P. 90700, Tlaxcala (Mexico); Dendooven, L. [Laboratory of Soil Ecology, GIB, Department of Biotechnology and Bioengineering, Cinvestav-Zacatenco, C.P. 07360, D.F. (Mexico)

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO{sub 2} and N{sub 2}O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO{sub 2} and N{sub 2}O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N{sub 2}O emissions but not CO{sub 2} emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern.

  11. Greenhouse gas emissions and plant characteristics from soil cultivated with sunflower (Helianthus annuus L.) and amended with organic or inorganic fertilizers.

    Science.gov (United States)

    López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L

    2011-12-15

    Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. [Effect of Water Extracts from Rhizosphere Soil of Cultivated Astragalus membranaceus var. mongholicus on It's Seed Germination and Physiological Characteristics].

    Science.gov (United States)

    Lang, Duo-yong; Fu, Xue-yan; Rong, Jia-wang; Zhang, Xin-hui

    2015-01-01

    To explore the relationship between continuous cropping obstacle and autotoxicity of Astragalus membranaceus var. mongholicus. Distilled water(CK), water extracts of rhizosphere soil(50, 100, 200 and 400 mg/mL) were applied to test their effect on early growth and physiological characteristics of Astragalus membranaceus var. mongholicus. The water extracts from rhizospher soil of cultivated Astragalus membranaceus var. mongholicus significantly increased seedling emergence rate, root length and vigor index of Astragalus membranaceus var. mongholicus seedling when at the concentration of 100 mg/mL or below, however,there was no significant effect at 200 mg/mL or higher. The water extracts from rhizosphere soil of cultivated Astragalus membranaceus var. mongholicus significantly reduced the SOD activity in Astragalus membranaceus var. mongholicus seedling at 400 mg/mL and POD activity at 200 mg/mL and 400 mg/mL,while significantly increased the MDA content. Water extracts from Astragalus membranaceus var. mongholicus rhizosphere soil significantly affected Astragalus membranaceus var. mongholicus germination and seedling growth in a concentration-dependent manner, generally, low concentrations increased the SOD and POD activity which improved seed germination and seedling growth, while high concentrations caused cell membrane damage of the seedling.

  13. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.

    Science.gov (United States)

    Waghmode, Tatoba R; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (Price cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation.

  14. Effect of organic cultivation of rooibos tea plants ( Aspalathus linearis )

    African Journals Online (AJOL)

    The shoots of rooibos (Aspalathus linearis (Burm.f.) R.Dahlgren) plants, cultivated organically by small-scale farmers in Nieuwoudtville, are harvested for the production of tea. These practices could lead to decreasing soil fertility. It was hypothesised that soil from cultivated rooibos plots will have lower nutrient ...

  15. Contamination and health risks from heavy metals in cultivated soil in Zhangjiakou City of Hebei Province, China.

    Science.gov (United States)

    Liang, Qian; Xue, Zhan-Jun; Wang, Fei; Sun, Zhi-Mei; Yang, Zhi-Xin; Liu, Shu-Qing

    2015-12-01

    A total of 79 topsoil samples (ranging from 0 to 20 cm in depth) were collected from a grape cultivation area of Zhangjiakou City, China. The total concentrations of As, Cd, Hg, Cr, Cu, Mn, Ni, Pb, and Zn in soil samples were determined to evaluate pollution levels and associated health risks in each sample. Pollution levels were calculated using enrichment factors (EF) and geoaccumulation index (I geo). Health risks for adults and children were quantified using hazard indexes (HI) and aggregate carcinogenic risks (ACR). The mean concentrations of measured heavy metals Cd, Hg, and Cu, only in the grape cultivation soil samples, were higher than the background values of heavy metals in Hebei Province. According to principal component analysis (PCA), the anthropogenic activities related to agronomic and fossil fuel combustion practices attributed to higher accumulations of Cd, Hg, and Cu, which have slightly polluted about 10-40% of the sampled soils. However, the HI for all of the heavy metals were lower than 1 (within safe limits), and the ACR of As was in the 10(-6)-10(-4) range (a tolerable level). This suggests the absence of both non-carcinogenic and carcinogenic health risks for adults and children through oral ingestion and dermal absorption exposure pathways in the studied area. It should be also noted that the heightened vulnerability of children to health risks was accounted for higher HI and ACR values. Consequently, heavy metal concentrations (e.g., Cd, Hg, Cu) should be periodically monitored in these soils and improved soil management practices are required to minimize possible impacts on children's health.

  16. Impact of tillage on soil magnetic properties: results over thirty years different cultivation plots

    Science.gov (United States)

    Thiesson, Julien; Kessouri, Pauline; Buvat, Solène; Tabbagh, Alain

    2010-05-01

    Cultivation may favour or not different processes such as air and water circulation, organic matter and fertilizers supplies..., consequently it can a priori induce significant changes in local oxido-reduction conditions which determine the magnetic properties of soils: the soil magnetic signal. If laboratory measurements on soil samples can be slow and irreversible, it is also possible to perform in field measurements by using electromagnetic devices that allow quick and easy measuring over the relevant soil thicknesses both in time (TDEM) and frequency (FDEM) domains. The object of this study is to compare the variation of two magnetic properties (magnetic susceptibility, measured by FDEM apparatus and magnetic viscosity measured by TDEM apparatus) and there ratio along depth for three different types of tillage (no tillage, ploughing, and simplified tillage). An experimental plot of 80 m by 50 m total area, on which these three types of tillage have been conducted for more than thirty years, was surveyed. The plot is divided in five strips of 16 m by 50 m area, each of which being cultivated by one type of tillage only. Each strip is divided in two parts, one half with nitrogen-fixing crop during intercultivation winter period and the other half with bare soil during this period. On each part, the variation along depth of both magnetic properties was assessed by surveying with different devices corresponding to three different volumes of investigation. For the magnetic susceptibility measurements the devices used were the MS2 of Bartington Ltd with the MS2D probe and the CS60 a slingram prototype use in VCP and HCP configurations. For the magnetic viscosity, the devices used were the DECCO from Littlemore ltd. And the VC100, a slingram prototype, used at two heights. Eleven values of the two magnetic properties have been recorded using each device and their medians calculated. The data were inverted to define the median magnetic profiles of each half

  17. Reduced soil cultivation and organic fertilization on organic farms: effects on crop yield and soil physical traits

    Science.gov (United States)

    Surböck, Andreas; Gollner, Gabriele; Klik, Andreas; Freyer, Bernhard; Friedel, Jürgen K.

    2017-04-01

    A continuous investment in soil fertility is necessary to achieve sustainable yields in organic arable farming. Crucial factors here besides the crop rotation are organic fertilization and the soil tillage system. On this topic, an operational group (Project BIOBO*) was established in the frame of an European Innovation Partnership in 2016 consisting of organic farmers, consultants and scientists in the farming region of eastern Austria. The aim of this group is the development and testing of innovative, reduced soil cultivation, green manure and organic fertilization systems under on-farm and on-station conditions to facilitate the sharing and transfer of experience and knowledge within and outside the group. Possibilities for optimization of the farm-specific reduced soil tillage system in combination with green manuring are being studied in field trials on six organic farms. The aim is to determine, how these measures contribute to an increase in soil organic matter contents, yields and income, to an improved nitrogen and nutrient supply to the crops, as well as support soil fertility in general. Within a long-term monitoring project (MUBIL), the effects of different organic fertilization systems on plant and soil traits have been investigated since 2003, when the farm was converted to organic management. The examined organic fertilization systems, i.e. four treatments representing stockless and livestock keeping systems, differ in lucerne management and the supply of organic manure (communal compost, farmyard manure, digestate from a biogas plant). Previous results of this on-station experiment have shown an improvement of some soil properties, especially soil physical properties, since 2003 in all fertilization systems and without differences between them. The infiltration rate of rainwater has increased because of higher hydraulic conductivity. The aggregate stability has shown also positive trends, which reduces the susceptibility to soil erosion by wind and

  18. Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils

    Science.gov (United States)

    Nadeem, Shahid; Bakken, Lars; Reent Köster, Jan; Tore Mørkved, Pål; Simon, Nina; Dörsch, Peter

    2015-04-01

    For decades, agricultural scientists have searched for methods to reduce the climate forcing of food production by increasing carbon sequestration in the soil and reducing the emissions of nitrous oxide (N2O). The outcome of this research is depressingly meagre and the two targets appear incompatible: efforts to increase carbon sequestration appear to enhance the emissions of N2O. Currently there is a need to find alternative management strategies which may effectively reduce both the CO2 and N2O footprints of food production. Soil pH is a master variable in soil productivity and plays an important role in controlling the chemical and biological activity in soil. Recent investigations of the physiology of denitrification have provided compelling evidence that the emission of N2O declines with increasing pH within the range 5-7. Thus, by managing the soil pH at a near neutral level appears to be a feasible way to reduce N2O emissions. Such pH management has been a target in conventional agriculture for a long time, since a near-neutral pH is optimal for a majority of cultivated plants. The traditional way to counteract acidification of agricultural soils is to apply lime, which inevitably leads to emission of CO2. An alternative way to increase the soil pH is the use of mafic rock powders, which have been shown to counteract soil acidification, albeit with a slower reaction than lime. Here we report a newly established field trail in Norway, in which we compare the effects of lime and different mafic mineral and rock powders (olivine, different types of plagioclase) on CO2 and N2O emissions under natural agricultural conditions. Soil pH is measured on a monthly basis from all treatment plots. Greenhouse gas (GHG) emission measurements are carried out on a weekly basis using static chambers and an autonomous robot using fast box technique. Field results from the first winter (fallow) show immediate effect of lime on soil pH, and slower effects of the mafic rocks. The

  19. Chemical, Biochemical, and Microbiological Properties of Soils from Abandoned and Extensively Cultivated Olive Orchards

    Directory of Open Access Journals (Sweden)

    A. M. Palese

    2013-01-01

    Full Text Available The abandonment of olive orchards is a phenomenon of great importance triggered mainly by economic and social causes. The aim of this study was to investigate some chemical, biochemical, and microbiological properties in a soil of a southern olive grove abandoned for 25 years. In order to define the effect of the long-term land abandonment on soil properties, an adjacent olive grove managed according to extensive practices was taken as reference (essentially minimum tillage and no fertilization. Soil organic matter, total nitrogen, and pH were significantly higher in the abandoned olive grove due to the absence of tillage and the natural inputs of organic matter at high C/N ratio which, inter alia, increased the number of cellulolytic bacteria and stimulated the activity of β-glucosidase, an indicator of a more advanced stage of soil evolution. The soil of the abandoned olive orchard showed a lower number of total bacteria and fungi and a lower microbial diversity, measured by means of the Biolog method, as a result of a sort of specialization trend towards low quality organic substrates. From this point of view, the extensive cultivation management seemed to not induce a disturbance to microbiological communities.

  20. Chemical, Biochemical, and Microbiological Properties of Soils from Abandoned and Extensively Cultivated Olive Orchards

    Science.gov (United States)

    Palese, A. M.; Magno, R.; Casacchia, T.; Curci, M.; Baronti, S.; Miglietta, F.; Crecchio, C.; Xiloyannis, C.; Sofo, A.

    2013-01-01

    The abandonment of olive orchards is a phenomenon of great importance triggered mainly by economic and social causes. The aim of this study was to investigate some chemical, biochemical, and microbiological properties in a soil of a southern olive grove abandoned for 25 years. In order to define the effect of the long-term land abandonment on soil properties, an adjacent olive grove managed according to extensive practices was taken as reference (essentially minimum tillage and no fertilization). Soil organic matter, total nitrogen, and pH were significantly higher in the abandoned olive grove due to the absence of tillage and the natural inputs of organic matter at high C/N ratio which, inter alia, increased the number of cellulolytic bacteria and stimulated the activity of β-glucosidase, an indicator of a more advanced stage of soil evolution. The soil of the abandoned olive orchard showed a lower number of total bacteria and fungi and a lower microbial diversity, measured by means of the Biolog method, as a result of a sort of specialization trend towards low quality organic substrates. From this point of view, the extensive cultivation management seemed to not induce a disturbance to microbiological communities. PMID:24348166

  1. Addition of residues and reintroduction of microorganisms in Jatropha curcas cultivated in degraded soil

    Directory of Open Access Journals (Sweden)

    Adriana A. Santos

    2016-04-01

    Full Text Available ABSTRACT The aim of this study was to evaluate, through mycorrhization (root colonization and number of spores of arbuscular mycorrhizal fungi - AMF, leaf acid phosphatase and soil chemical characteristics, the effects of the addition of residues (macrophytes and ash, hydrogel and the reintroduction of microorganisms in a degraded area cultivated with jatropha. Degradation occurred when the surface soil was removed during the construction of a hydroelectric power plant. The experiment was set in a randomized block design, using a 2 x 2 x 4 factorial scheme, i.e., two inoculation treatments (with and without soil-inoculum, two hydrogel treatments (with and without and four with the addition of residues (macrophytes - MAC, ash, MAC + ash and control, without residues applied in the planting hole, with 4 replicates and 5 plants in each replicate. Soil from preserved Cerrado area was used as a source of microorganisms, including AMF. The conclusion is that, after 12 months of planting, the hydrogel increased root colonization, while the chemical characteristics of the degraded soil responded positively to the addition of MAC and MAC + ash, with increase in pH and SB and reduction of Al and H + Al. The addition of the soil-inoculum, along with MAC and MAC + ash, promoted higher mycorrhizal colonization and number of spores and reduced amounts of leaf acid phosphatase, indicating increased absorption of P by the host.

  2. Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains.

    Science.gov (United States)

    Greger, Maria; Landberg, Tommy

    2015-01-01

    Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.

  3. Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site

    DEFF Research Database (Denmark)

    Lara, E; Berney, C; Ekelund, Flemming

    2007-01-01

    We compared the abundance and diversity of cultivable protozoa (flagellates and amoebae) in a polycyclic aromatic hydrocarbon (PAH) polluted soil and an unpolluted control, by isolating and cultivating clonal strains. The number of cultivable protozoa was higher in the polluted soil; however...

  4. Atividade microbiana em solo do semi-árido sob cultivo de Atriplex nummularia Microbial activity in a semiarid soil cultivated with Atriplex nummularia

    Directory of Open Access Journals (Sweden)

    Sônia Valéria Pereira

    2004-08-01

    Full Text Available Métodos para avaliar a atividade microbiana no solo são fundamentais no monitoramento ambiental de áreas degradadas. O objetivo deste trabalho foi investigar a atividade microbiana de solo do semi-árido cultivado com Atriplex nummularia Lindl. em áreas que receberam rejeito salino durante um e três anos, em comparação com um solo nativo, sem cultivo e não irrigada. O solo cultivado por três anos e que recebeu rejeito salino apresentou, no período seco, valores de pH, CE e atividade de hidrólise do diacetato de fluoresceína (FDA superiores aos das demais áreas. No entanto, foi observada correlação negativa entre o carbono microbiano e os valores do quociente metabólico (qCO2. A biomassa microbiana e a fosfatase alcalina também foram superiores no solo cultivado por três anos e que recebeu rejeito salino em relação ao solo nativo sem irrigação, confirmando o desempenho de plantas halófitas na melhoria da qualidade do solo sob condições de estresse salino. O cultivo de A. nummularia constitui uma das alternativas para utilização de rejeito salino proveniente da dessalinização por osmose reversa.Methods used to estimate the soil microbial activity are important to environmental monitoring of degraded areas. The objective of this research was to investigate the microbial activity of a semiarid soil cultivated with Atriplex nummularia Lindl. in a field receiving saline waste during one and three years, in comparison with an area without crop and irrigation. Soil cultivated during three years presented, during the dry season, values of pH, CE, and activity of FDA hydrolyses higher than those registered in other areas. However, a negative correlation between the microbial carbon and values of qCO2 was observed. The microbial biomass and the alkaline phosphates were also higher in the three years cultivated soil, in comparison with the native soil, non irrigated, confirming the role of halophytes for enhancing quality of

  5. Enhancing the fertility of an acid sulfate soil for rice cultivation using lime in combination with bio-organic fertilizer

    International Nuclear Information System (INIS)

    Farhana, A.; Shamshuddin, J.; Fauziah, C.I.; Panhwar, Q.A.

    2017-01-01

    The acid sulfate soils contain pyrite (FeS/sub 2/) which is due to oxidation results in the production of high amount of acidity, aluminum and iron significantly affecting rice growth. A glasshouse study was arranged to determine the effect of ground magnesium limestone (GML) in combination with bio-organic fertilizer (JITUTM) application on the chemical properties of soils and rice yield. Three rice seedlings were transplanted in pots which were previously amended with 0, 2, 4, 6 and 8 t/ha GML with or without bio-organic fertilizer. The common rice varieties (MR 219 and MR 253) were cultivated for two seasons in the same pots. The critical Fe2+ and Al3+ activities for MR 219 were 14.45 and 4.23 mu M, while for MR 253 were 7.45 and 5.53 mu M, respectively. However, without applying the amendments, rice grown on the soils was affected severely by the high acidity (Fe2+ and Al3+ toxicity). The soil pH increased to 5 and the higher grain yield of MR 219 (99.77 and 121.38 g/pot) and MR253 (98.63 and 112.60 g/pot) was in first and second season with the application of 2 t GML application combined with 0.25 t JITUTM/ha respectively. In addition, 1000 grain weight, number of panicle, number of spikelets panicle-1 and the percentage of filled spikelet, were also higher than without the soil amendments. Hence, the infertility of acid sulfate soils for sustainable rice cultivation in Malaysia can be improved by applying 2 t GML/ha combined with 0.25 t JITUTM/ha for two seasons in long run. (author)

  6. Water Footprint of Industrial Tomato Cultivations in the Pinios River Basin: Soil Properties Interactions

    Directory of Open Access Journals (Sweden)

    Eleftherios Evangelou

    2016-11-01

    Full Text Available Industrial tomatoes are cultivated in about 4000 ha of the Pinios river basin (central Greece, providing significant income to the farmers. In this study, the water footprint (WF of industrial tomatoes between planting and harvest was estimated in 24 different farms for three consecutive years. The selected farms were representative of the main agro-climatic zones and soil textural classes within the river basin. Green, blue and grey WF calculations were based on datasets of the experimental plots for each farm, including irrigation water volume, meteorological, soil, and crop yield data. The results showed that the WF of tomatoes ranged from 37 to 131 m3 water/ton tomatoes with an average of 61 m3/ton. The WF variation depended mainly on crop yield, local agro-climatic and soil conditions. The green, blue, and grey WF components averaged 13, 27 and 21 m3/ton, respectively. The results reveal the importance of WF in understanding how tomato production relates to the sustainable use of freshwater and pollution at local level.

  7. Economic analysis of irrigated melon cultivated in greenhouse with and without soil plastic mulching

    Directory of Open Access Journals (Sweden)

    Elvis M. de C. Lima

    Full Text Available ABSTRACT The objective of this study was to analyze technically and economically the irrigated ‘Gália’ melon (Hybrid Nectar, cultivated in greenhouse with and without using plastic mulch covering on the soil. Simultaneously, two experiments were conducted using a completely randomized design (CRD, in which melon plants were submitted to five water availability levels, defined by 50, 75, 100, 125, and 150% of crop evapotranspiration, with four replicates. The difference between experiments were only about the soil covering with plastic mulch: with (CC or without (SC plastic mulch. The economically optimal irrigation depths were 208.83 and 186.88 mm, resulting in yields of 50.85 and 44.51 t ha-1 for the experiments with and without mulching, respectively. The results showing the economically optimal irrigation depths were very close to those that produced the highest yield.

  8. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.

    Directory of Open Access Journals (Sweden)

    Tatoba R Waghmode

    Full Text Available 2-bromoethanesulfonate (BES is a structural analogue of coenzyme M (Co-M and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1 were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001 decreased by BES application possibly due to significant (P<0.001 reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance. BES significantly (P<0.001 reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation.

  9. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzo, Pablo J. [Grupo Materiales Polimericos, INIFTA - Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (UNLP-CONICET), Diag. 113 y 64, CC 16 Suc 4, 1900 La Plata (Argentina); Porta, Atilio A. [CIMA - Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina); Division Quimica Analitica, Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina)], E-mail: aporta@quimica.unlp.edu.ar; Ronco, Alicia E. [CIMA - Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina)

    2008-11-15

    Levels of glyphosate were determined in water, soil and sediment samples from a transgenic soybean cultivation area located near to tributaries streams of the Pergamino-Arrecifes system in the north of the Province of Buenos Aires, Argentina. Field work took into account both the pesticide application and the rains occurring after applications. The pesticide was analysed by HPLC-UV detection, previous derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). In addition, SoilFug multimedia model was used to analyse the environmental distribution of the pesticides. In the field, levels of glyphosate in waters ranged from 0.10 to 0.70 mg/L, while in sediments and soils values were between 0.5 and 5.0 mg/Kg. Temporal variation of glyphosate levels depended directly on the time of application and the rain events. The results obtained from the application of the model are in accordance with the values found in the field. - Glyphosate concentrations in the environment from a region where little information exists about this and intensive cultivation activities predominate in large areas.

  10. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina

    International Nuclear Information System (INIS)

    Peruzzo, Pablo J.; Porta, Atilio A.; Ronco, Alicia E.

    2008-01-01

    Levels of glyphosate were determined in water, soil and sediment samples from a transgenic soybean cultivation area located near to tributaries streams of the Pergamino-Arrecifes system in the north of the Province of Buenos Aires, Argentina. Field work took into account both the pesticide application and the rains occurring after applications. The pesticide was analysed by HPLC-UV detection, previous derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). In addition, SoilFug multimedia model was used to analyse the environmental distribution of the pesticides. In the field, levels of glyphosate in waters ranged from 0.10 to 0.70 mg/L, while in sediments and soils values were between 0.5 and 5.0 mg/Kg. Temporal variation of glyphosate levels depended directly on the time of application and the rain events. The results obtained from the application of the model are in accordance with the values found in the field. - Glyphosate concentrations in the environment from a region where little information exists about this and intensive cultivation activities predominate in large areas

  11. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Lobinski, R.; Burger-Meyer, K.

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic...... in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 mu g g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content...... of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of gamma...

  12. Characterization of Carbofuran Degrading Bacteria Obtained from Potato Cultivated Soils with Different Pesticide Application Records

    OpenAIRE

    Castellanos Rozo, José; Sánchez Nieves, Jimena; Uribe Vélez, Daniel; Moreno Chacón, Leonardo; Melgarejo Muñoz, Luz Marina

    2013-01-01

    Eighty-two bacterial isolates with potential Carbofuran degradation activity (Furadan®3SC) were obtained from soils cultivated with the potato variety Unica (Solanum tuberosum) in Silos, Norte de Santander (Colombia), with different records of pesticide application. The bacteria were selected for their ability to grow at 25 °C for 72 h in media containing 200 mg L-1 of analytical Carbofuran as the sole source of carbon and/ or nitrogen. The results showed that ten isolates, 12% of those obtai...

  13. Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation

    International Nuclear Information System (INIS)

    Tsadilas, C.D.; Karaivazoglou, N.A.; Tsotsolis, N.C.; Stamatiadis, S.; Samaras, V.

    2005-01-01

    Tobacco is able to accumulate cadmium and reduction of cadmium content can reduce health hazards to smokers. Soil pH and form of N fertilizers are among the factors affecting Cd uptake by tobacco. This hypothesis was tested in an acid soil in northern Greece by a four year field experiment. The variability of Cd uptake by tobacco was attributed to the variation of soil Cd availability as affected by soil pH. Liming with 3000 kg Ca(OH) 2 ha -1 increased soil pH by 0.8 units and decreased extractable with DTPA soil and leaf Cd by 40% and 35%, respectively. The ammonium fertilizer caused the opposite, but weaker, effects. Liming reduced soil Cd more in the ammonium treatment than in nitrate or combined N treatments. The year of cultivation strongly affected soil and leaf Cd. Four years after tobacco cultivation, soil pH was reduced by 0.5 units, whereas soil and leaf Cd reduction was more than 60% in the limed treatments. Liming affected Cd uptake only in the first three years of cultivation. - Liming and N form affect Cd uptake by Virginia tobacco which contributes significantly to the great reduction of extractable soil Cd after three years of continuous cultivation

  14. Early Hg mobility in cultivated tropical soils one year after slash-and-burn of the primary forest, in the Brazilian Amazon.

    Science.gov (United States)

    Béliveau, Annie; Lucotte, Marc; Davidson, Robert; Lopes, Luis Otávio do Canto; Paquet, Serge

    2009-07-15

    In the Brazilian Amazon, forest conversion to agricultural lands (slash-and-burn cultivation) contributes to soil mercury (Hg) release and to aquatic ecosystem contamination. Recent studies have shown that soil Hg loss occurs rapidly after deforestation, suggesting that Hg mobility could be related to the massive cation input resulting from biomass burning. The objective of this research was to determine the effects of the first year of slash-and-burn agriculture on soil Hg levels at the regional scale of the Tapajós River, in the state of Pará, Brazilian Amazon. A total of 429 soil samples were collected in 26 farms of five riparian communities of the Tapajós basin. In September 2004, soil samples were collected from primary forest sites planned for slash-and-burn cultivation. In August 2005, one year after the initial burning, a second campaign was held and the exact same sites were re-sampled. Our results showed that total Hg levels in soils did not change significantly during the first year following slash-and-burn, suggesting no immediate release of soil Hg at that point in time. However, an early Hg mobility was detected near the surface (0-5 cm), reflected by a significant shift in Hg distribution in soil fractions. Indeed, a transfer of Hg from fine to coarser soil particles was observed, indicating that chemical bonds between Hg and fine particles could have been altered. A correspondence analysis (CA) showed that this process could be linked to a chemical competition caused by cation enrichment. The regional dimension of the study highlighted the prevailing importance of soil types in Hg dynamics, as shown by differentiated soil responses following deforestation according to soil texture. Confirming an early Hg mobility and indicating an eventual Hg release out of the soil, our results reinforce the call for the development of more sustainable agricultural practices in the Amazon.

  15. Soil Copper and Zinc Accumulation and Bioavailability under a Long Term Vineyard Cultivation in South Italy

    Directory of Open Access Journals (Sweden)

    Paolo Lorenzoni

    2007-03-01

    Full Text Available Soil metal contamination, particularly by copper, is a phenomenon which often occurs in the surface layer of vineyard soils, due to the widespread application of Cu-based products in the plant disease management. Our study was focused on soil Cu and Zn accumulation and bioavailability as related to some soil properties under a long term vineyard cultivation, in a D.O.C. wine area of South Italy (Calabria region. Soils selected from different landscape units, ranging from acid to alkaline, under homogeneous climate conditions and vineyard management system, were investigated. Each soil was sampled in both a vineyard and a fallow area, at the depth levels of 0-10 cm, 10-25 cm and 25-50 cm. The experimental data were analysed by ANOVA, correlation and multiple stepwise regression procedures. As expected, the results indicated a contamination of the vineyard soils by Cu due to the repeated application of Cu-based products in the plant disease control, with increments of total Cu content up to 150% against the fallow soils. On the contrary, the results led to exclude any soil Zn pollution due to the vineyard management and to suppose a main pedogenic origin for this metal. According to the relationships between Cu content and soil properties, Cu accumulation was promoted by higher pH, clay and organic matter contents. These soil properties also showed a strong influence on metal bioavailability, which underwent a significant reduction in soils with higher pH and clay contents. A further result of great significance was the adverse impact of soil erosion, enhanced by the application of not suitable management systems in hilly areas, on soil capability to retain polluting metals. Soil pH, organic matter content and texture, as well as soil management system, are key factors in soil capability to limit polluting metal dispersion in the environment.

  16. Soil Copper and Zinc Accumulation and Bioavailability under a Long Term Vineyard Cultivation in South Italy

    Directory of Open Access Journals (Sweden)

    Anna Maria Corea

    2011-02-01

    Full Text Available Soil metal contamination, particularly by copper, is a phenomenon which often occurs in the surface layer of vineyard soils, due to the widespread application of Cu-based products in the plant disease management. Our study was focused on soil Cu and Zn accumulation and bioavailability as related to some soil properties under a long term vineyard cultivation, in a D.O.C. wine area of South Italy (Calabria region. Soils selected from different landscape units, ranging from acid to alkaline, under homogeneous climate conditions and vineyard management system, were investigated. Each soil was sampled in both a vineyard and a fallow area, at the depth levels of 0-10 cm, 10-25 cm and 25-50 cm. The experimental data were analysed by ANOVA, correlation and multiple stepwise regression procedures. As expected, the results indicated a contamination of the vineyard soils by Cu due to the repeated application of Cu-based products in the plant disease control, with increments of total Cu content up to 150% against the fallow soils. On the contrary, the results led to exclude any soil Zn pollution due to the vineyard management and to suppose a main pedogenic origin for this metal. According to the relationships between Cu content and soil properties, Cu accumulation was promoted by higher pH, clay and organic matter contents. These soil properties also showed a strong influence on metal bioavailability, which underwent a significant reduction in soils with higher pH and clay contents. A further result of great significance was the adverse impact of soil erosion, enhanced by the application of not suitable management systems in hilly areas, on soil capability to retain polluting metals. Soil pH, organic matter content and texture, as well as soil management system, are key factors in soil capability to limit polluting metal dispersion in the environment.

  17. Simulation of Soil Quality with Riparian Forests and Cultivated with Sugarcane

    Science.gov (United States)

    da Silva, Luiz Gabriel; Colato, Alexandre; Casagrande, José Carlos; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2013-04-01

    Riparian forests are entrusted with important hydrological functions, such as riparian zone protection, filtering sediments and nutrients and mitigation of the amount of nutrients and xenobiotic molecules from the surrounding agro ecosystems. The soil was sampled in the depths of 0-0,2 and 0.2-0.4 m and its chemical (nutrient content and organic matter, cationic exchange capacity - CEC, sum of bases-SB, bases saturation, V%, and aluminum saturation, m%); physical (particle size distribution, density and porosity) and microbiological attributes (basal respiration and microbial biomass) were determined. This work aimed to study the liner method of combining data, figures of merit (FoM), weighing process and the scoring functions developed by Wymore and asses the quality of the soil (SQI) by means of chemical, physical and microbiological soil attributes, employing the additive pondered model for two areas of riparian forest at different stages of ecological succession and an adjacent area cultivated with sugar cane, located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. Some hierarchical functions containing FoMs and their parameters were constructed, and from them weights were assigned to each FoM and parameter, in a way that cluster of structures with the same FoMs and parameters with different weights were formed. These clusters were used to calculate the SQI for all vegetal formations considering two types of soil (Oxisol and Podzol), in that way, the SQI was calculated for each combination of vegetation and soil. The SQIs values were usually higher in the oldest riparian forest, while the recent riparian forest showed the smallest SQI values, for both types of soil. The variation of values within a combination vegetation/soil was also different between all combinations, being that the set of values from the oldest riparian forest presented the lowest amplitude. It was also observed that the Oxisols, regardless of the vegetation, presented higher SQIs

  18. Accumulation of /sup 90/Sr, Ca, Mg, K and Na in crane's-bill plants cultivated on soil and hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Analyan, V L; Sarkisyan, G A [AN Armyanskoj SSR, Erevan. Inst. Agrokhimicheskikh Problem i Gidroponiki

    1981-01-01

    Accumulation of /sup 90/Sr in plants under the conditions of soil and hydroponic cultures from the viewpoint of the possibility of obtaining ''pure'' vegetable production has been studied. Predominant absorption of /sup 90/Sr by soil plants as compared with calcium is shown. In the course of using the hydroponic cultivation method predominant radiostrontium absorption has been manifested to all investigated nuclides including potassium. The accumulation coefficients analysis has shown that among soil plants the first place is occupied by potassium, while the /sup 90/Sr coefficients are greater than Ca on hydroponics, where the true, not distorted by soil sorption processes absorptive plant capacity has been manifested, the first places in the series are occupied by /sup 90/Sr and K, then come Ca and Mg.

  19. Radiological aspects of choice of a system of cultivation of sod-podzolic sandy loam soils with different degree of humidity on lands of Mogilev region contaminated with 137Cs

    International Nuclear Information System (INIS)

    Lazarevich, S.S.; Ermolenko, A.V.; Shapsheeva, T.P.

    2010-01-01

    In the conditions of the Republic of Belarus there were presented data about the influence of technological factors on entry of 137Cs into plant products (grain and green mass). In course of the study there were analyzed the following variants of soil cultivation: moldboard plowing; subsurface chisel soil tillage; subsurface surface soil tillage; minimal tillage. There were presented data on specific activity of 137Cs in plant product samples of oat (Avena sativa) grain; field pea (Pisum arvense L.) and oat mixture grain and green mass; wheat (Triticum aestivum) grain. There were determined the main principles of influence of cultivation systems of sod-podzolic sandy loam soil with different degree of humidity on transition of 137Cs into plants depending on the degree of soil and crop humidity. On the automorphic soil there was revealed a tendency of increased transition of 137Cs into grain and green mass after application of subsurface surface soil tillage system

  20. Emission of CO{sub 2} and N{sub 2}O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Luqueno, F.; Reyes-Varela, V.; Martinez-Suarez, C.; Reynoso-Keller, R.E.; Mendez-Bautista, J.; Ruiz-Romero, E. [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico D.F, C.P. 07360 (Mexico); Lopez-Valdez, F. [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico D.F, C.P. 07360 (Mexico); CIBA, IPN, Tepetitla de Lardizabal, Tlaxcala C.P. 90700 (Mexico); Luna-Guido, M.L. [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico D.F, C.P. 07360 (Mexico); Dendooven, L., E-mail: dendoove@cinvestav.mx [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico D.F, C.P. 07360 (Mexico)

    2009-07-01

    Addition of different forms of nitrogen fertilizer to cultivated soil is known to affect carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) emissions. In this study, the effect of urea, wastewater sludge and vermicompost on emissions of CO{sub 2} and N{sub 2}O in soil cultivated with bean was investigated. Beans were cultivated in the greenhouse in three consecutive experiments, fertilized with or without wastewater sludge at two application rates (33 and 55 Mg fresh wastewater sludge ha{sup -1}, i.e. 48 and 80 kg N ha{sup -1} considering a N mineralization rate of 40%), vermicompost derived from the wastewater sludge (212 Mg ha{sup -1}, i.e. 80 kg N ha{sup -1}) or urea (170 kg ha{sup -1}, i.e. 80 kg N ha{sup -1}), while pH, electrolytic conductivity (EC), inorganic nitrogen and CO{sub 2} and N{sub 2}O emissions were monitored. Vermicompost added to soil increased EC at onset of the experiment, but thereafter values were similar to the other treatments. Most of the NO{sub 3}{sup -} was taken up by the plants, although some was leached from the upper to the lower soil layer. CO{sub 2} emission was 375 C kg ha{sup -1} y{sup -1} in the unamended soil, 340 kg C ha{sup -1} y{sup -1} in the urea-amended soil and 839 kg ha{sup -1} y{sup -1} in the vermicompost-amended soil. N{sub 2}O emission was 2.92 kg N ha{sup -1} y{sup -1} in soil amended with 55 Mg wastewater sludge ha{sup -1}, but only 0.03 kg N ha{sup -1} y{sup -1} in the unamended soil. The emission of CO{sub 2} was affected by the phenological stage of the plant while organic fertilizer increased the CO{sub 2} and N{sub 2}O emission, and the yield per plant. Environmental and economic implications must to be considered to decide how many, how often and what kind of organic fertilizer could be used to increase yields, while limiting soil deterioration and greenhouse gas emissions.

  1. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  2. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controlled [correction of controled] environment conditions.

    Science.gov (United States)

    Tikhomirov, A A; Ushakova, S A; Gribovskaya, I A; Tirranen, L S; Manukovsky, N S; Zolotukhin, I G; Karnachuk, R A; Gros, J B; Lasseur, Ch

    2003-01-01

    To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 micromoles m-2 s-1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m2) of the wheat crops was attained at the irradiance of 920 micromoles m-2 s-1. Light intensity of 1150 micromoles m-2 s-1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m2) as compared to 920 micromoles m-2 s-1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 micromoles m-2 s-1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of

  3. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Directory of Open Access Journals (Sweden)

    Troy Patrick Beldini

    2015-11-01

    Full Text Available Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest. Increases in soil bulk density, exchangeable cations and pH were observed in the soy field soil. In the primary forest, soil microbial biomass and basal respiration rates were higher, and the microbial community was metabolically more efficient. The sum of basal respiration across the A, AB and BA horizons on a mass per area basis ranged from 7.31 to 10.05 Mg CO2-C ha-1yr-1, thus yielding estimates for total soil respiration between 9.6 and 15.5 Mg CO2-C ha-1yr-1 across sites and seasons. These estimates are in good agreement with literature values for Amazonian ecosystems. The estimates of heterotrophic respiration made in this study help to further constrain the estimates of autotrophic soil respiration and will be useful for monitoring the effects of future land-use in Amazonian ecosystems.

  4. Codonopilate A, a Triterpenyl Ester as Main Autotoxin in Cultivated Soil of Codonopsis pilosula (Franch.) Nannf.

    Science.gov (United States)

    Xie, Min; Yan, Zhiqiang; Ren, Xia; Li, Xiuzhuang; Qin, Bo

    2017-03-15

    Codonopilate A (1), a triterpenyl ester, was isolated from monocultivated soil of annual Codonopsis pilosula and identified as the main autotoxin. The yield ratio of codonopilate A in dried soil was calculated as 2.04 μg/g. Other two triterpenoids, taraxeryl acetate (2) and 24-methylenecycloartanol (3), were isolated and identified as well showing weaker autotoxity. This was the first time that the potential allelochemicals and autotoxins in the cultivated soil of Codonopsis pilosula were reported. Accumulation of reactive oxygen species (ROS) induced by the autotoxins in the root tips of Codonopsis pilosula was considered as an important factor for the phytotoxic effect. This work systematically investigates the allelopathic and autotoxic effect of Codonopsis pilosula, and the preliminary autotoxic action mode of the three autotoxins. These findings are helpful to understand the molecular mechanism of autotoxicity and conducive to explore proper ways to degrade the autotoxins and eliminate the replanting problems of Codonopsis pilosula.

  5. Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene.

    Science.gov (United States)

    Sharonova, Natalia; Breus, Irina

    2012-05-01

    In laboratory experiments on leached chernozem contaminated by kerosene (1-15 wt.%), germination of 50 plants from 21 families (cultivated and wild, annual and perennial, mono- and dicotyledonous) as affected by kerosene type and concentration and plant features was determined. Tested plants formed three groups: more tolerant, less tolerant, and intolerant, in which relative germination was more than 70%, 30-70% and less than 30%, respectively. As parameters of soil phytotoxicity, effective kerosene concentrations (EC) causing germination depression of 10%, 25% and 50% were determined. EC values depended on the plant species and varied in a wide range of kerosene concentrations: 0.02-7.3% (EC(10)), 0.05-8.1% (EC(25)), and 0.2-12.7% (EC(50)). The reported data on germination in soils contaminated by oil and petrochemicals were generalized. The comparison showed that at very high contamination levels (10 and 15%) kerosene was 1.3-1.6 times more phytotoxic than diesel fuel and 1.3-1.4 times more toxic than crude oil, and at low (1 and 2%) and medium (3 and 5%) levels the toxicity of these contaminants was close differing by a factor of 1.1-1.2. Tolerance of plants to soil contamination had a species-specific nature and, on the average, decreased in the following range of families: Fabaceae (germination decrease of 10-60% as compared to an uncontaminated control)>Brassicaceae (5-70%)>Asteraceae (25-95%)>Poaceae (10-100%). The monocotyledonous species tested were characterized as medium- and low-stable to contamination, whereas representatives of dicotyledonous plants were met in all groups of tolerance. Tested wild plants, contrary to reference data on oil toxicity, were more sensitive to kerosene than cultivated. No correlation was observed between degree of plant tolerance to kerosene and mass of seeds. The evidence indicates factors as structure and properties of testa, structure of germ, type of storage compounds, and type of seed germination (underground or

  6. Impact of potato cultivation and cattle farming on physicochemical parameters and enzymatic activities of Neotropical high Andean Páramo ecosystem soils.

    Science.gov (United States)

    Avellaneda-Torres, Lizeth Manuela; León Sicard, Tomás Enrique; Torres Rojas, Esperanza

    2018-08-01

    The Andean Páramos are high mountain ecosystems whose soils are essential for the management of South American water resources, but research on anthropic impacts to these soils is currently minimal and insufficient. The objective of this study was to evaluate the impacts of potato (Solanum tuberosum) cultivation and livestock on the physicochemical parameters and enzymatic activities that determine the soil quality of the Neotropical high Andean Páramo ecosystem in the Nevados National Natural Park (Nevados NNP) in Colombia. It was hypothesised that sites with potato crops and livestock farming would exhibit significant changes in soil physicochemical parameters and enzymatic activities compared with Páramo sites that have been conserved without agriculture. Samples were collected from soils under potato cultivation, livestock and Páramo (subject to the lowest degree of human intervention possible), on three farms in the El Bosque District at three different altitudes (Buenos Aires, El Edén and La Secreta) during two seasons (dry and rainy). The results showed that none of the physical parameters under study presented statistically significant differences due to the type of use (livestock, potato crop or Páramo), season of sampling (dry or rainy season) or altitude (different farms). The chemical parameters that statistically significantly differed due to land use were organic carbon, cation exchange capacity, calcium, potassium, and ammonium and those that showed statistically significant differences associated with the sampling timing were organic carbon, nitrogen, cation exchange capacity, total carbon, C/N and nitrate. Additionally, there were differences in organic carbon due to the altitude of the farms. With respect to enzymatic activities, those of β-glucosidase, phosphodiesterase and urease significantly decreased in soils under potato cultivation and livestock relative to those of Páramo, but those of acid phosphatase and protease increased

  7. Effects of different cultivation techniques on vineyard fauna

    OpenAIRE

    Mikulas, J.; Kutasi, Cs.; Mark, V.; Balog, A.

    2002-01-01

    Green covering compared to soil cultivation enhanced the number of individuals of Araneae living on or near soil. No differences between the different soil management systems were found for the number of individuals of Staphylinidae and Carabidae. The typical main species of the two systems were different for all groups analyzed (Araneae, Staphylinidae and Carabidae).

  8. Concentration of radiocesium in rice, vegetables, and fruits cultivated in the evacuation area in Okuma Town, Fukushima

    International Nuclear Information System (INIS)

    Kenji Ohse; Kyo Kitayama; Akira Kanno; Chika Suzuki; Kencho Kawatsu; Hirofumi Tsukada

    2015-01-01

    Radiocesium concentration in the crops cultivated in contaminated and decontaminated soils in the evacuation area were measured. The radiocesium concentration in the decontaminated soil decreased approximately one-quarter to that in the contaminated soil. The radiocesium concentration in the rice and vegetables cultivated in the decontaminated soil decreased to one-half to tenth of that in the contaminated soil. Except for eggplant and pumpkin cultivated in the decontaminated field, the radiocesium concentration in crops was higher than the standard limit in foods in Japan. The obtained transfer factors of most crops were within the reported values. (author)

  9. Specificity of Cs-137 redistribution in toposequence of arable soils cultivated after the Chernobyl accident

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey; Baranchukov, Vladimir; Berezkin, Victor; Moiseenko, Fedor; Kirov, Sergey

    2017-04-01

    Investigations performed after the Chernobyl accident showed high spatial variation of radionuclide contamination of the soil cover in elementary landscape geochemical systems (ELGS) that characterize catena's structure. Our studies of Cs-137 distribution along and cross the slopes of local ridges in natural forested key site revealed a cyclic character of variation of the radionuclide surface activity along the studied transections (Korobova et al, 2008; Korobova, Romanov, 2009; 2011). We hypothesized that the observed pattern reflects a specific secondary migration of Cs-137 with water, and that this process could have taken place in any ELGS. To test this hypothesis a detailed field measurement of Cs-137 surface activity was performed in ELGS in agricultural area cultivated after the Chernobyl accident but later withdrawn from land-use. In situ measurements carried out by field gamma-spectrometry were accompanied by soil core sampling at the selected points. Soil samples were taken in increments of 2 cm down to 20 cm and of 5 cm down to 40 cm. The samples were analyzed for Cs-137 in laboratory using Canberra gamma-spectrometer with HP-Ge detector. Obtained results confirmed the fact of area cultivation down to 20 cm that was clearly traced by Cs-137 profile in soil columns. At the same time, the measurements also showed a cyclic character of Cs-137 variation in a sequence of ELGS from watershed to the local depression similar to that found in woodland key site. This proved that the observed pattern is a natural process typical for matter migration in ELGS independently of the vegetation type and ploughing. Therefore, spatial aspect is believed to be an important issue for development of adequate technique for a forecast of contamination of agricultural production and remediation of the soil cover on the local scale within the contaminated areas. References Korobova, E.M., Romanov, S.L., 2009. A Chernobyl 137Cs contamination study as an example for the spatial

  10. Soil water regime and crop yields in relation to various technologies of cultivation in the Kulunda Steppe (Altai Krai

    Directory of Open Access Journals (Sweden)

    V. Beliaev

    2016-09-01

    Full Text Available This article presents the results of crop yield in areas with different technologies of cultivation based on the network of automatic stations that provide data on climatic and soil-hydrological monitoring in the dry steppe during the vegetation period of May–September 2013–2016 . These data  on regional ecological and climatic parameters are of great interest to the ecologists, plant physiologists, and farmers working in the Kulunda Plain (Altai Territory. We compared the following options for cropping technologies: the modern system, which is the "no-till", technology without autumn tillage;the intensive technology of deep autumn tillage by plough PG-3-5 at a depth of 22–24 cm. Cultivation of crops was carried out using the following scheme of crop rotation: the modern system: 1–2–3–4 (wheat – peas – wheat – rape; the intensive system: 5/6 – 7/8 – 9/10 (fallow – wheat – wheat. We believe that the use of modern technology in these conditions is better due to exchange between the different layers of soil. When  the ordinary Soviet system , the so-called "plow sole" , was used , at a depth of 24 cm , we observed that this creates a water conductivity barrier that seems to preclude the possibility of lifting water from the lower horizons. Results of the study of infiltration of soil moisture at the depth of 30 and 60 cm  have shown in some years the advantages of the modern technology over the ordinary Soviet system: in the version with the use of modern technology we can trace better exchange between the various horizons and , probably,  moisture replenishment from the lower horizons. Differences in individual observation periods are comparatively large due to the redistribution of soil moisture, depending on the weather conditions, the crops used in the crop rotations, and cultivation techniques. Moreover, the average moisture reserves within the one meter layer did not show any significant differences during the

  11. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    Science.gov (United States)

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  12. Olive Cultivation, its Impact on Soil Erosion and its Progression into Yield Impacts in Southern Spain in the Past as a Key to a Future of Increasing Climate Uncertainty

    Directory of Open Access Journals (Sweden)

    José A. Gómez

    2014-06-01

    Full Text Available This article is intended as a review of the current situation regarding the impact of olive cultivation in Southern Spain (Andalusia on soil degradation processes and its progression into yield impacts, due to diminishing soil profile depth and climate change in the sloping areas where it is usually cultivated. Finally, it explores the possible implications in the regional agricultural policy these results might have. It tries to show how the expansion and intensification of olive cultivation in Andalusia, especially since the late 18th century, had as a consequence an acceleration of erosion processes that can be identified by several indicators and techniques. Experimental and model analysis indicates that the rate of soil erosion accelerated since the expansion of mechanization in the late 1950s. In addition, that unsustainable erosion rates have prevailed in the region since the shift to a more intense olive cultivation systems by the end of the 17th Century. Although agroenvironmental measures implemented since the early 2000s have reduced erosion rates, they are still unsustainably high in a large fraction of the olive area in the region. In the case of olive orchards located in steeper areas with soils of lower water-holding capacity (due to coarse texture and stone content, cumulative erosion has already had a high impact on reducing their potential productivity. This is one of the factors that contributes towards increasing the gap between these less intensified orchards in the mountainous areas and those in the hilly areas with more gentle slopes, such as for instance the lower stretches of the Guadalquivir River Valley. In the case of olive orchards in the hilly areas with better soils, easier access to irrigation and lower production costs per unit, the efforts on soil conservation should be oriented towards limiting off-site damage, since the soil water-storage function of these soils may be preserved in the medium term even at the

  13. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    Science.gov (United States)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  14. Carnauba straw incorporated into the soil for fertilization carrot in organic cultivation

    Directory of Open Access Journals (Sweden)

    Micharlyson Carlos Morais

    2017-10-01

    Full Text Available Carrot is one of the most produced vegetables in Brazil and, with the growing demand for organic vegetables, it is necessary to develop production technologies that are less dependent on external inputs and more accessible to family agriculture. The objective of this study was to evaluate the effect of the addition to soil of carnauba straw as fertilizer, incorporated under different pre-planting periods, for the organic cultivation of the carrot. The experiment was carried out in the Experimental Horta of the Instituto Federal do Rio Grande do Norte, Campus Ipanguaçu, using the experimental design in randomized blocks with three replicates and five treatments referring to the times of 15; 30; 45 and 60 days for the incorporation of carnauba straw, in the amount of 14 t ha-1, prior to planting the carrot, and a control treatment without addition of straw to the soil. The evaluated characteristics was dry mass of the aerial part, the length and root diameter, and productivity. There was an effect of the incorporation time of the carnauba straw on the length and productivity, being the highest values observed when the straw was incorporated between 15 and 30 days before sowing.

  15. Analysis of Selected Environmental Indicators in the Cultivation System of Energy Crops

    Directory of Open Access Journals (Sweden)

    Šoltysová Božena Š

    2017-11-01

    Full Text Available The changes of selected chemical parameters were observed in Gleyic Fluvisols. The field experiment was established as a twofactor experiment with four energy crops (Arundo donax L., Miscanthus × giganteus, Elymus elongatus Gaertner, Sida hermafrodita and two variants of fertilization (nitrogen fertilization in rate 60 kg ha-1, without nitrogen fertilization. Soil samples were taken from the depth of 0 to 0.3 m at the beginning of the experiment in the autumn 2012 and at the end of reference period in the autumn 2015. Land management conversion from market crops to perennial energy crops cultivation has influenced changes of selected soil chemical parameters. The contents of soil organic carbon were affected by cultivated energy crops differently. It was found out that Arundo increased the organic carbon content and Miscanthus, Elymus and Sida decreased its content. At the same time, the same impact of the crops on content of available phosphorus and potassium and soil reaction was found. It was recorded that each cultivated crop decreased the soil reaction and available phosphorus content and increased the content of available potassium.

  16. Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower

    Directory of Open Access Journals (Sweden)

    Mara Suyane Marques Dantas

    2014-01-01

    Full Text Available The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA, located in Vitória de Santo Antão. The experimental design was randomized blocks with 6×5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1; and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater, with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers.

  17. Absorption of radioelements from the soil by various vegetables grown under normal condition of cultivation

    International Nuclear Information System (INIS)

    Huguet; Delas; Delmas; Demias; Flanzy; Benard; Puyaubert; Fioramonti; Marty; Barbier; Le Blaye; Michon

    1961-01-01

    Various vegetables were cultivated in 4 different types of soil, having received, or receiving periodically, strontium-90 or caesium-137 in fairly strong doses, in order to facilitate the measurement of the fraction of these radioelements taken up by the vegetables. In sandy soil, whole plants absorbed 2 to 3 per cent of Sr and 3 to 9 parts per thousand of Cs approximately; in clay soils, 1 to 6 parts per thousand of Sr and 0,2 to 2 parts per thousand of Cs; Cs, however, migrates relatively more than Sr in fruits or storage organs. The experiments confirmed that the quotient of the ratios 90 Sr/Ca in the vegetables and in the ploughed layer varies comparatively slightly; these would be a certain safety margin in assuming this ratio to be slightly above unity (to be confirmed after homogenising the ploughed layer). In view of the fact that in an arid climate it is necessary to apply several tens of litres of irrigation water (up to 50) in order to produce 1 kg of vegetables (fresh whole plants) and that furthermore, the radioelements of the residue from the crop harvest return to the soil, it can be expected that the limit of accumulation 1 kg of certain vegetables will contain as much of each radioelement as several tens of litres of irrigation water. (author) [fr

  18. Accumulation of /sup 90/Sr, Ca, Mg, K and Na in crane's-bill plants cultivated on soil and hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Analyan, V.L.; Sarkisyan, G.A. (AN Armyanskoj SSR, Erevan. Inst. Agrokhimicheskikh Problem i Gidroponiki)

    1981-01-01

    Accumulation of /sup 90/Sr in plants under the conditions of soil and hydroponic cultures from the viewpoint of the possibility of obtaining ''pure'' vegetable production has been studied. Predominant absorption of /sup 90/Sr by soil plants as compared with calcium is shown. In the course of using the hydroponic cultivation method predominant radiostrontium absorption has been manifested to all investigated nuclides including potassium. The accumulation coefficients analysis has shown that among soil plants the first place is occupied by potassium, while the /sup 90/Sr coefficients are greater than Ca on hydroponics, where the true, not distorted by soil sorption processes absorptive plant capacity has been manifested, the first places in the series are occupied by /sup 90/Sr and K, then come Ca and Mg.

  19. Accumulation of germanium and rare earth elements in functional groups of selected energy crops cultivated on two different soils

    Science.gov (United States)

    Wiche, Oliver; Székely, Balázs

    2016-04-01

    A field experiment was conducted to investigate the uptake of Ge and selected REEs in functional groups of selected crop species. Five species belonging to the functional group of grasses (Hordeum vulgare, Zea mays, Avena sativa, Panicum miliaceum and Phalaris arundinacea) and four species from the group of herbs (Lupinus albus, Lupinus angustifolius, Fagopyrum esculentum and Brassica napus) were cultivated in parallel on two soils with slightly alkaline (soil A: pH = 7.8) and slightly acidic (soil B: pH = 6.8) conditions. After harvest, concentrations of Ge, La, Nd, Gd, Er, P, Fe, Mn and Si in shoot tissues were determined with ICP-MS. Concentrations of Ge were significantly higher in grasses than in herbs. Conversely, concentrations of La and Nd were significantly higher in herbs, than in grasses. Highest concentrations were measured in Brassica napus (REEs) and Zea mays (Ge). Concentrations of Ge significantly correlated with that of Si in the shoots showing low concentrations in herbs and high concentrations in grasses, indicating a common mechanism during the uptake in grasses. Concentrations of REEs correlated significantly with that of Fe, indicating increasing concentrations of REEs with increasing concentrations of Fe. Cultivation of species on the slightly acidic soil significantly increased the uptake Ge in Lupinus albus and Phalaris arundinacea and the uptake of La and Nd in all species except of Phalaris arundinacea. This study demonstrated that commonly used field crops could be regarded as suitable candidates for a phytomining of Ge and REEs, since these species develop high yields of shoots, high concentrations of elements and are widely used in agricultural practice. Under soil conditions where bioavailability of Ge and REEs is expected to be low (soil A) accumulation can be estimated at 1.8 g/ha Ge in Z. mays and 3.7 g/ha REEs (1.5 g/ha La, 1.4 g/ha Nd, 0.6 g/ha Gd, 0.3 g/ha Er), respectively, in B. napus, assuming a constant high efficiency of

  20. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    Science.gov (United States)

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  1. Efeito do cultivo da soja na dinâmica da população bacteriana, em solos de cerrado Effects of soybean cultivation on the bacterial population dynamics in cerrado soils

    Directory of Open Access Journals (Sweden)

    JOÃO CARLOS PEREIRA

    2000-06-01

    Full Text Available Este trabalho teve por objetivo avaliar a influência do cultivo da soja sobre a dinâmica da população bacteriana, em dois solos de Cerrado do Estado de São Paulo, originalmente cobertos com Paspalum notatum (em Barretos e Brachiaria decumbens (em S��o Carlos. Nesses solos, a densidade da população de bactérias em geral variou de 398,1 x 10³ a 467,7 x 10³ e de 123 x 10³ a 218,8 x 10³ ufc (unidades formadoras de colônias/g de solo seco, respectivamente. O cultivo da soja, em ambos os solos, resultou em incrementos variados nos números de ufc/g de solo seco da população de bactérias em geral, das resistentes aos antibióticos estreptomicina e cloranfenicol, e de actinomicetos. A população de actinomicetos ocorreu no solo principalmente como esporos, e as variações das relações esporos/hifas entre os solos não-rizosférico e rizosférico não foram significativas. Os resultados evidenciam que o cultivo da soja influenciou de forma diferenciada a população desses solos.The effect of soybean cultivation on the population dynamics of the bacterial community was evaluated in two "Cerrado" soils of São Paulo State, Brazil. The experimental areas, in the vicinities of the cities of São Carlos and Barretos, were previously cultivated, respectively, with Paspalum notatum and Brachiaria decumbens. The bacterial population densities in these soils varied from 398.1 x 10³ to 467.7 x 10³ cfu (colony forming units and from 123 x 10³ to 218.8 x 10³ cfu/g of dried soil, respectively, in São Carlos and Barretos soils. Soybean cultivation in both soils resulted in increments in the total bacterial population density, in the actinomycetes population, and in the bacterial population resistant to the antibiotics streptomycin and chloramphenicol. Actinomycetes were present in these soils mainly as spores. Soybean cultivation did not alter the actinomycetes spores/hyphae ratio when comparing rhizospheric and non-rhizospheric soils

  2. Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies

    Science.gov (United States)

    van der Kamp, G.; Hayashi, M.; Gallén, D.

    2003-02-01

    At the St Denis National Wildlife Area in the prairie region of southern Saskatchewan, Canada, water levels in wetlands have been monitored since 1968. In 1980 and 1983 a total of about one-third of the 4 km2 area was converted from cultivation to an undisturbed cover of brome grass. A few years after this conversion all the wetlands within the area of grass dried out; they have remained dry since, whereas wetlands in adjacent cultivated lands have held water as before. Field measurements show that introduction of undisturbed grass reduces water input to the wetlands mainly through a combination of efficient snow trapping and enhanced infiltration into frozen soil. In winter, the tall brome grass traps most of the snowfall, whereas in the cultivated fields more wind transport of snow occurs, especially for short stubble and fallow fields. Single-ring infiltration tests were conducted during snowmelt, while the soil was still frozen, and again in summer. The infiltrability of the frozen soil in the grassland is high enough to absorb most or all of the snowmelt, whereas in the cultivated fields the infiltration into the frozen soil is limited and significant runoff occurs. In summer, the infiltrability increases for the cultivated fields, but the grassland retains a much higher infiltrability than the cultivated land. The development of enhanced infiltrability takes several years after the conversion from cultivation to grass, and is likely due to the gradual development of macropores, such as root holes, desiccation cracks, and animal burrows.

  3. Disturbance of Soil Organic Matter and Nitrogen Dynamics: Implications for Soil and Water Quality

    Science.gov (United States)

    2004-06-30

    Elliott, E.T., 1992. Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777–783. Dale, V.H...C.A., Elliott, E.T., 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal...1645-1650. Van Straalen, N.M. 1997. How to measure no effect. 2. Threshold effects in ecotoxicology . Environmetrics 8: 249-253. Verburg, P.S.J

  4. Preliminary assessment of the potential for using cesium-137 technique to estimate rates of soil erosion on cultivated land in La Victoria I, Camaguey province of cuba

    International Nuclear Information System (INIS)

    Brigido, F.O.; Gandarilla Benitez, J.E.

    1999-01-01

    Despite a growing awareness that erosion on cultivated land in Cuba is a potential hazard to long term productivity, there is still only limited information on the rates involved, particularly long term values. The potential for using the radionuclide Caesium-137 as an environmental tracer to indicate sources of soil erosion on cultivated soils in La Victoria catchment is introduced. Use of Caesium-137 measurements to estimate rates of erosion and deposition is founded on comparison of the Caesium-137 inventories at individual sampling points with a reference inventory representing the local Caesium fallout input and thus the inventory to be expected at the site experiencing neither erosion nor deposition. Two models for converting Caesium-137 measurements to estimates of soil redistribution rates on studied site have been used, the Proportional Model and Mass Balance Model. Using the first one net soil erosion was calculated to be 17.6 t. Ha 1 - .year 1 - . Estimates of soil loss using a Mass Balance Model (Simplified Model 1 and Model 2) were found to be 30.2 and 30.6 t. Ha 1 - .year 1 - ,respectively. Preliminary results suggest that Caesium-137 technique may be of considerable value in assembling data on the rates and spatial distribution of soil loss and a reliable tool for developing of soil conservation program

  5. Relationship between 137Cs concentration and cultivated history on loessial hillslopes

    International Nuclear Information System (INIS)

    Wang Xiaoyan; Tian Junliang; Yang Mingyi; Liu Puling

    2005-01-01

    There are close linkages between soil loss degree and soil disturbance degree by human. So it is a key problem to know that how human activity affects soil loss. To analyse the correlation of 137 Cs loss degree with hillslopes' cultivated histories, the concentrations of 137 Cs on different kinds of loessial hillslopes with different cultivated histories, abandoned ages and different patterns of reforestation are studied. The result shows that there is a linear relationship among 137 Cs areal concentrations, cultivation ages and slope gradients. the regressive equation is as follows: X=2356.79-22.77 t-35.53 S. Variant coefficient of 137 Cs areal concentration is 80.11% among hillslopes with different abandonment ages. It is also deduced that 137 Cs areal concentration is affected primarily by abandonment ages of hillslopes. The 137 Cs loss rates of hillslopes with different vegetation restoration manners show significant differences, as a whole, autogenic restoration 137 Cs area concentrations on hillslopes. (authors)

  6. Increasing Efficiency of Soil Fertility Map for Rice Cultivation Using Fuzzy Logic, AHP and GIS

    Directory of Open Access Journals (Sweden)

    javad seyedmohammadi

    2017-02-01

    fertility groups for better management of soil and plant nutrition. Weight of soil parameters was0.54, 0.29 and 0.17 for organic carbon, available phosphor and potassium, respectively. Fuzzy map of study area includes five soil fertility groups as: 22.9% very high fertility, 27.7% high fertility, 35.53% medium fertility, 10.48% low fertility and 3.39% very low fertility. Consequently, a separated map for soil fertility prepared to evaluate soil fertility of study area for rice cultivation. Toinvestigatethe efficiency of fuzzy model and AHP in increasing the accuracy of soil fertility map, soil fertility map with Boolean method prepared as well. Boolean map showed 58.88% fertile and 41.12% unfertile.15 soil samples from different soil fertility groups of study area were derived fromcontrol of maps accuracy. 13 renewed samples of 15 and 9 soil samples have matched with fuzzy and Boolean map, respectively. Comparison of parameters mean in fuzzy map fertility groups showed that parameters mean amounts of very high and high fertility groups are higher than optimum level except potassium that is a few lower than optimum level in high fertility group, therefore, addition of fertilizers in these groups could not be useful to increase rice crop production. Phosphorus parameter amount is lower than the critical level in very low, low and medium fertility groups, then in these groups phosphorus fertilizer should be added to the soil toincreaserice production. The amount of potassium parameter is higher than the critical level and lower than optimum limit in very low, low, medium and high fertility groups, then in these groups addition of potassium fertilizer will results in theincrease of production. Organic carbon amount is lower than optimum level in very low and low fertility groups. With regard to the relation between organic carbon andnitrogen and phosphorus, therefore, the addition of organic carbon fertilizer could compensate deficit of nitrogen and phosphorus in these groups

  7. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    Science.gov (United States)

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    during direct analysis of the same soil and from a wide range of other sample types studied elsewhere. The study demonstrates the value of fine-scale molecular analysis for identification of laboratory isolates and indicates the culturability of approximately 1% of the total population but under a restricted range of media and cultivation conditions.

  8. Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites.

    Science.gov (United States)

    Gomes, Eldon C Q; Godinho, Valéria M; Silva, Débora A S; de Paula, Maria T R; Vitoreli, Gislaine A; Zani, Carlos L; Alves, Tânia M A; Junior, Policarpo A S; Murta, Silvane M F; Barbosa, Emerson C; Oliveira, Jaquelline G; Oliveira, Fabio S; Carvalho, Camila R; Ferreira, Mariana C; Rosa, Carlos A; Rosa, Luiz H

    2018-05-01

    Molecular biology techniques were used to identify 218 fungi from soil samples collected from four islands of Antarctica. These consisted of 22 taxa of 15 different genera belonging to the Zygomycota, Ascomycota, and Basidiomycota. Mortierella, Antarctomyces, Pseudogymnoascus, and Penicillium were the most frequently isolated genera and Penicillium tardochrysogenum, Penicillium verrucosus, Goffeauzyma gilvescens, and Mortierella sp. 2 the most abundant taxa. All fungal isolates were cultivated using solid-state fermentation to obtain their crude extracts. Pseudogymnoascus destructans, Mortierella parvispora, and Penicillium chrysogenum displayed antiparasitic activities, whilst extracts of P. destructans, Mortierella amoeboidea, Mortierella sp. 3, and P. tardochrysogenum showed herbicidal activities. Reported as pathogenic for bats, different isolates of P. destructans exhibited trypanocidal activities and herbicidal activity, and may be a source of bioactive molecules to be considered for chemotherapy against neglected tropical diseases. The abundant presence of P. destructans in soils of the four islands gives evidence supporting that soils in the Antarctic Peninsula constitute a natural source of strains of this genus, including some P. destructans strains that are phylogenetically close to those that infect bats in North America and Europe/Palearctic Asia.

  9. SOIL ORGANIC CARBON LEVELS IN SOILS OF CONTRASTING LAND USES IN SOUTHEASTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chinyere Blessing Okebalama

    2017-12-01

    Full Text Available Land use change affects soil organic carbon (SOC storage in tropical soils, but information on the influence of land use change on segmental topsoil organic carbon stock is lacking. The study investigated SOC levels in Awgu (L, Okigwe (CL, Nsukka I (SL, and Nsukka II (SCL locations in southeastern Nigeria. Land uses considered in each location were the cultivated (manually-tilled and the adjacent uncultivated (4-5 year bush-fallow soils from which samples at 0-10, 10-20, and 20-30 cm topsoil depth were assessed. The SOC level decreased with topsoil depth in both land uses. Overall, the SOC level at 0-30 cm was between 285.44 and 805.05 Mg ha-1 amongst the soils.  The uncultivated sites stored more SOC than its adjacent cultivated counterpart at 0-10 and 10-20 cm depth, except in Nsukka II soils, which had significantly higher SOC levels in the cultivated than the uncultivated site. Nonetheless, at 20-30 cm depth, the SOC pool across the fallowed soils was statistically similar when parts of the same soil utilization type were tilled and cultivated. Therefore, while 4 to 5 years fallow may be a useful strategy for SOC stabilization within 20-30 cm topsoil depth in the geographical domain, segmental computation of topsoil organic carbon pool is critical.

  10. Effect of Bioremediation on Growth of Wheat Plant Cultivated In Contaminated Soil with Heavy Metals

    International Nuclear Information System (INIS)

    Abdel-Azis, O.A.; El-Ghandour, I.A.; Galal, Y.G.M.; El-Sheikh, H.H.

    2008-01-01

    Pot experiment was carried out under greenhouse conditions to evaluate the impact of BYFA (bacterial, fungal, yeast, and actinomycetes isolates), and bio fertilizers (mycorrhizas and N 2 fixers) in remedy the heavy metals -polluted soil and its effect on wheat growth. Basal recommended doses of P and N were applied; the treatments were arranged in completely randomized block design. The results showed a positive effect on growth and N uptake by wheat cultivated in polluted soil with (Zn, Cu, Pb, Co, Ni and Cd). The data cleared that, the lowest content of Pb in the soil was occurred with composite inoculants plus BFYA (274.57μ g/gm) as compared to the other treatments. Reduction in zinc content in soil was recorded with control + BFYA (272.0 μg/g) compared to other one. Similarly, inoculation with (Azo) + (BFYA) induced a reduction in Cu content in soil, Data of 15 N revealed that both the mechanisms of BNF have been occurred. In this respect, it is worthy to mention that, symbiotic bacteria has a considerable role with such cereal crop via BNF or enhancement of plant growth, The inoculation with Rh + AM resulted in the highest percentage of N uptake from fertilizer (29%), followed by AM, then Azo (23.9%, 22.7%, respectively) without BFYA. Another picture was noticed with BFYA whereas the best percentage was recorded with Azospirillum (19.3 %). This treatment is the only one that increased the portion of N derived from fertilizer over those recorded with the control (11.13%). BFYA have the ability to reduce the content of heavy metal in both the contaminated soil and wheat plant. Similar function was detected with bio fertilizers, besides to their effects on enhancement of plant growth via plant growth promotion substances and BNF mechanisms

  11. Recovering greater fungal diversity from pristine and diesel fuel contaminated Sub-Antarctic soil through cultivation using a high and a novel low nutrient approach

    Directory of Open Access Journals (Sweden)

    Belinda Carlene Ferrari

    2011-11-01

    Full Text Available Novel cultivation strategies for bacteria are widespread and are well described for recovering greater diversity from the hitherto unculturable majority. While similar approaches have not been demonstrated for fungi it has been suggested that of the 1.5 million estimated species less than 5% have been recovered into pure culture. Fungi are known to be involved in many degradative processes, including the breakdown of hydrocarbons, and it has been speculated that in Polar Regions they contribute significantly to bioremediation of soils contaminated with hydrocarbons. Given the biotechnological potential of fungi there is a need to increase efforts for greater species recovery, particularly from extreme environments such as sub-Antarctic Macquarie Island. In this study, like the hitherto unculturable bacteria, high concentrations of nutrients selected for predominantly different species to that recovered using low nutrient media. By combining both approaches to cultivation from contaminated and non-contaminated soils, 99 fungal species were recovered, including 42 yet unidentified species, several of which were isolated from soils containing high concentrations of diesel fuel. These novel species will now be characterized for their potential role in hydrocarbon degradation.

  12. Environmental hazards related to Miscanthus x giganteus cultivation on heavy metal contaminated soil

    Directory of Open Access Journals (Sweden)

    Pogrzeba M.

    2013-04-01

    Full Text Available According to recent estimates reaching the target of a 20% share of renewable energy sources (RES in the final energy balance in Poland by 2020 will result in the demand for more than 8 million tons of biomass, which, in turn, will entail the necessity of creating large-scale energy crop plantations. According to EU assumptions the most effective way to produce biomass for energy purposes is cultivation of energy crops in agricultural areas. It is particularly vital for Poland, because these areas constitute a relatively large part of the country (59%, 76% of them being used as farmlands. In Silesia, the most industrialized region of the country, 5-10% of agricultural soils are contaminated with cadmium, lead and zinc. The main objective of the presented study was to estimate the accumulation of heavy metals in the tissues of Miscanthus x giganteus grown on contaminated soils and calculate concentrations of Pb, Cd and Zn in crops. It was shown that the large intake of heavy metals by that species could cause high emissions of pollutants into the atmosphere during its improper combustion. As a side effect, winter harvesting led to the loss of even 30% of biomass. Plant residues (leaves can be the source of pollution after decomposing and releasing metals back into the soil. Moreover, miscanthus leaves can be transferred by wind to the surrounding areas. It is very likely that ash coming from the combustion of contaminated biomass cannot be used as a fertilizer.

  13. Extensive cultivation of soil and water samples yields various pathogens in patients with cystic fibrosis but not Burkholderia multivorans.

    Science.gov (United States)

    Peeters, Charlotte; Depoorter, Eliza; Praet, Jessy; Vandamme, Peter

    2016-11-01

    While the epidemiology of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients suggests that Burkholderia multivorans is acquired from environmental sources, this species has rarely been isolated from soil and water samples. Multiple isolation strategies were applied to water and soil samples that were previously shown to be B. multivorans PCR positive. These included direct plating and liquid enrichment procedures and the use of selective media, acclimatizing recovery and co-cultivation with CF sputum. MALDI-TOF mass spectrometry and sequence analysis of 16S rRNA and housekeeping genes were used to identify all isolates. None of the approaches yielded B. multivorans isolates. Other Burkholderia species, several Gram-negative non-fermenting bacteria (including Cupriavidus, Inquilinus, Pandoraea, Pseudomonas and Stenotrophomonas) and rapidly growing mycobacteria (including Mycobacterium chelonae) were all isolated from water and soil samples. The use of Bcc isolation media yielded a surprisingly wide array of rare but often clinically relevant CF pathogens, confirming that soil and water are reservoirs of these infectious agents. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  14. Scientific case studies in land-use driven soil erosion in the central United States: Why soil potential and risk concepts should be included in the principles of soil health

    Directory of Open Access Journals (Sweden)

    Benjamin L. Turner

    2018-03-01

    Full Text Available Despite recent improvements in overall soil health gained through conservation agriculture, which has become a global priority in agricultural systems, soil and water-related externalities (e.g., wind and water erosion continue to persist or worsen. Using an inductive, systems approach, we tested the hypothesis that such externalities persist due to expansion of cultivation onto areas unsuitable for sustained production. To test this hypothesis, a variety of data sources and analyses were used to uncover the land and water resource dynamics underlying noteworthy cases of soil erosion (either wind or water and hydrological effects (e.g., flooding, shifting hydrographs throughout the central United States. Given the evidence, we failed to reject the hypothesis that cultivation expansion is contributing to increased soil and water externalities, since significant increases in cultivation on soils with severe erosion limitations were observed everywhere the externalities were documented. We discuss the case study results in terms of land use incentives (e.g., policy, economic, and biophysical, developing concepts of soil security, and ways to utilize case studies such as those presented to better communicate the value of soil and water resource conservation. Incorporating the tenets of soil potential and soil risk into soil health evaluations and cultivation decision-making is needed to better match the soil resource with land use and help avoid more extreme soil and water-related externalities.

  15. Causes and perspectives of land-cover change through expanding cultivation in Kavango

    CSIR Research Space (South Africa)

    Pröpper, M

    2010-01-01

    Full Text Available of cultivation on dry-forest species associations, deliver a description of existing vegetation and soil properties and their suitability for cultivation and possibilities for improvement. Likewise we look at the characteristics of human landuse, at the socio...

  16. Plants cultivation in controlled containments

    International Nuclear Information System (INIS)

    2000-01-01

    The plants cultivation in controlled containments permits to the - Departement d'Ecophysiologie Vegetale et de Microbiologie (DVEM) - of the CEA to lead several topics of research. The works of DVEM which are based on the molecular labelling, technique adapted to plants, contribute to understand the plant - soil relationships and the plant growth process. In addition, the staff of DVEM study the impact of pollutant heavy metals, existing in the soil, on plants and the plant stress induced by oxygen, light, ionizing radiations,... and defence mechanisms of plants (F. M.)

  17. Financial assessment of oil palm cultivation on peatland in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    M.N. Noormahayu

    2009-02-01

    Full Text Available Oil palm plantations on peat soils are generally believed to have greater environmental impacts than those on other soil types. Nonetheless, Malaysia operates substantial incentives to maximise palm oil production, which in practice encourage the establishment of plantations on peatland. This paper explores the social and economic basis of oil palm cultivation on one peatland estate at Sungai Panjang in the state of Selangor, peninsular Malaysia. Data were obtained by conducting a questionnaire survey of 200 farmers who cultivate oil palm on peat soil. Some of the data were cross-tabulated against farmers’ ages in order to identify any age-related trends in education level, the area of land farmed, annual income and knowledge about oil palm cultivation. The Cobb-Douglas production function was used to model the financial output from oil palm in terms of the costs of chemical inputs and labour. The results indicated that cultivation of this crop gives decreasing returns to scale on peatland in Sungai Panjang, and that chemical inputs are more important than labour cost in determining the level of financial output. Finally, the financial viability of oil palm cultivation for farmers was assessed by calculating three financial indicators (NPV, BCR and IRR. This can be a profitable investment so long as growth conditions, costs, selling price and interest rate do not fluctuate substantially. Greater annual returns can be achieved over 20–25 years than over shorter periods, especially of less than 10 years.

  18. Morphological studies of some cultivated soils

    NARCIS (Netherlands)

    Slager, S.

    1966-01-01

    A study was made of those morphological and physical soil properties considered to govern root development.

    A deep and wide-branched root system was shown only to develop in a soil containing a permanent heterogeneous pore system, formed by biological activity in the profile. Therefore a

  19. Introducing Natural Farming in Black Pepper (Piper nigrum L. Cultivation

    Directory of Open Access Journals (Sweden)

    Kevin Muyang Tawie Sulok

    2018-01-01

    Full Text Available This paper reviews the role of Natural Farming as an ecological farming method to produce organically grown food of safe and high quality and at the same time improve soil quality and soil health. Currently, there is a dearth of information on the effects of Natural Farming approach on black pepper farms particularly in Sarawak, Malaysia. Previous studies on other crops had indicated positive outcome using the Natural Farming method. Thus, this paper discusses the essential role of effective microorganisms in Natural Farming and their potential in pepper cultivation. Through the action of effective microorganisms, this approach should be able to transform a degraded soil ecosystem into one that is fertile and has high nutrients availability. The mixed culture of effective microorganisms applied must be mutually compatible and coexist with one another to ensure its favorable establishment and interaction in the soil. Therefore, it is anticipated that introducing Natural Farming in black pepper cultivation can enhance the predominance of effective microorganisms in the soil, which in turn could lead to promising growth and yield of the crop.

  20. Resource-saving inter-row cultivator

    Directory of Open Access Journals (Sweden)

    N. E. Rudenko

    2017-01-01

    Full Text Available Inter-row cultivators have some shortcomings: design is complicated due to placing on each section of a 4-unit (parallelogram suspension of working tools; as the copying means use wheels which are mounted at distance from working tools, in other vertical plane, and have negative effect on variability of tillage depth; working tools are V-shaped hoes with a crumbling angle not more than 16 degrees. In the operation course the parts of a leg and a hoe, moving in the soil, raise it and throw to the side, creating not aligned surface grooves are formed, imposed moist soil. These processes are exacerbated by increasing the operating speed of the cultivator. The authors offered a resource-saving inter-row cultivator with a radial suspension of working tools. A flat plate spring was used as a beam. This simplifies the design, eliminates the horizontal oscillations of the working tools, provides a constant pressing them in the process. The working tool in the form of a flat lancet plowshares with a spiral fixed on the leg was designed. Operating width of a ploughshare is of 420 mm, thickness equals 4 (5 mm. The spiral with a diameter of 50 mm is made of a carbon spring wire with a diameter of 2-3 mm. One hoe is set instead of three-five tines on each section, that significantly reduces material consumption. A plough share with a spiral form the swinging-loosening element that provides creating a fine lumpy topsoil. The ploughshare performs the copying functions therefore the additional copying wheels are not required. Tests showed that the new working tool of a cultivator allows to operate qualitatively at a speed up to 14-18 km/h.

  1. Construction of the Classification and Grading Index System of Cultivated Land Based on the Viewpoint of Sustainable Development

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to objectively and reasonably evaluate the actual and potential value of cultivated land, both social and ecological values are introduced into the classification and grading index system of cultivated land based on the viewpoint of sustainable development, after considering the natural and economic values of cultivated land. Index system construction of the sustainable utilization of cultivated land should follow the principles of economic viability, social acceptability, and ecological protection. Classification of cultivated land should take into account the soil fertility of cultivated land. Then, grading of cultivated land is carried out from the practical productivity (or potential productivity) of cultivated land. According to the existing classification index system of cultivated land, the soil, natural and environmental factors in plains, mountains and hills are mainly modified in the classification index system of cultivated land. And index systems for the cultivated land classification in plains, mountains and hills are set up. The grading index system of cultivated land is established based on the economic viability (economic value), social acceptability (social value) and protection of cultivated land (ecological value). Quantitative expression of cultivated land grading index is also carried out.

  2. Remediation of organochlorine pesticides (OCPs) contaminated site by successive methyl-β-cyclodextrin (MCD) and sunflower oil enhanced soil washing - Portulaca oleracea L. cultivation.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Hu, Feng; Kengara, Fredrick Orori; Jiang, Xin; Luo, Yongming; Yang, Xinlun

    2014-06-01

    An innovative ex situ soil washing technology was developed in this study to remediate organochlorine pesticides (OCPs)-contaminated site. Elevated temperature (50 °C) combined with ultrasonication (35 kHz, 30 min) at 25 g L(-1) methyl-β-cyclodextrin and 100 mL L(-1) sunflower oil were effective in extracting OCPs from the soil. After four successive washing cycles, the removal efficiency for total OCPs, DDTs, endosulfans, 1,2,3,4,5,6-hexachlorocyclohexanes, heptachlors, and chlordanes were all about 99%. The 4th washed soil with 3 months cultivation of Portulaca oleracea L. and nutrient addition significantly increase (p<0.05) the number, biomass carbon, nitrogen, and functioning diversity of soil microorganisms. This implied that the microbiological functioning of the soil was at least partially restored. This combined cleanup strategy proved to be effective and environmental friendly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Modelling soil erosion reduction by mahonia aquifolium on hillslopes in hungary: The impact of soil stabilization by roots

    NARCIS (Netherlands)

    Hudek, C.; Sterk, Geert; van Beek, Rens L P H; de Jong, Steven M.

    2014-01-01

    Agricultural activities on hillslopes often cause soil erosion and degradation. Permanent vegetation strips on cultivated slopes could be an effective soil conservation technique to reduce erosion. Previous studies showed that cultivated Mahonia aquifolium can be an effective plant for water erosion

  4. Pequi leaves incorporated into the soil reduce the initial growth of cultivated, invasive and native species.

    Science.gov (United States)

    Allem, Laísa N; Gomes, Anabele S; Borghetti, Fabian

    2014-12-01

    Studies have identified the phytotoxicity of many native species of the Cerrado; however, most of them were conducted either in inert substrates, or using exaggerate proportions of plant material. We investigated the phytotoxicity of pequi leaves added to substrate soil in quantities compatible with the litter produced by this species. Pequi leaves were triturated and added to red latosol in concentrations of 0.75%, 1.5% and 3%; the control was constituted of leafless soil. These mixtures were added to pots and irrigated daily to keep them moist. Germinated seeds of the cultivated sorghum and sesame, of the invasive brachiaria and of the native purple ipê, were disposed in the pots to grow for five to seven days at 30°C within a photoperiod of 12 h. Seedlings of all the species presented a reduction in their initial growth in a dose-dependent way. In general, the root growth was more affected by the treatments than the shoot growth; moreover, signs of necrosis were observed in the roots of the sorghum, sesame and brachiaria. The phytotoxic effects generated by relatively small quantities of leaves, in a reasonable range of species within a soil substrate, suggest potential allelopathy of pequi leaves under natural conditions.

  5. Pequi leaves incorporated into the soil reduce the initial growth of cultivated, invasive and native species

    Directory of Open Access Journals (Sweden)

    LAÍSA N. ALLEM

    2014-12-01

    Full Text Available Studies have identified the phytotoxicity of many native species of the Cerrado; however, most of them were conducted either in inert substrates, or using exaggerate proportions of plant material. We investigated the phytotoxicity of pequi leaves added to substrate soil in quantities compatible with the litter produced by this species. Pequi leaves were triturated and added to red latosol in concentrations of 0.75%, 1.5% and 3%; the control was constituted of leafless soil. These mixtures were added to pots and irrigated daily to keep them moist. Germinated seeds of the cultivated sorghum and sesame, of the invasive brachiaria and of the native purple ipê, were disposed in the pots to grow for five to seven days at 30°C within a photoperiod of 12 h. Seedlings of all the species presented a reduction in their initial growth in a dose-dependent way. In general, the root growth was more affected by the treatments than the shoot growth; moreover, signs of necrosis were observed in the roots of the sorghum, sesame and brachiaria. The phytotoxic effects generated by relatively small quantities of leaves, in a reasonable range of species within a soil substrate, suggest potential allelopathy of pequi leaves under natural conditions.

  6. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China

    International Nuclear Information System (INIS)

    Li, Lianzhen; Wu, Huifeng; Gestel, Cornelis A.M. van; Peijnenburg, Willie J.G.M.; Allen, Herbert E.

    2014-01-01

    The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods with a lowest pH of 4.34. Metals were enriched in topsoils after decades of horticultural cultivation, with highest concentrations of Cu (132 kg −1 ) and Zn (168 mg kg −1 ) in old apple orchards and Pb (73 mg kg −1 ) and Cd (0.57 mg kg −1 ) in vineyard soil. Earthworm tissue concentrations of Cu and Pb significantly correlated with 0.01 M CaCl 2 -extractable soil concentrations (R 2  = 0.70, p < 0.001 for Cu; R 2  = 0.58, p < 0.01 for Pb). Because of the increased bioavailability, regular monitoring of soil conditions in old orchards and vineyards is recommended, and soil metal guidelines need reevaluation to afford appropriate environmental protection under acidifying conditions. - Highlights: • Soil acidity of Chinese orchards increased with increasing fruit cultivation period. • Metal levels were enriched in topsoils after decades of horticultural cultivation. • Earthworm bioassays and chemical assays were used to assess metal bioavailability. • Earthworm Cu and Pb concentrations correlated with CaCl 2 -extractable concentrations. • Regular monitoring of soil conditions in old orchards and vineyards is recommended. - Long-term cultivation leads to increased acidification and metal accumulation in horticultural soils, with higher metal bioavailability to earthworms

  7. Partitioning Carbon Dioxide Emission and Assessing Dissolved Organic Carbon Leaching of a Drained Peatland Cultivated with Pineapple at Saratok, Malaysia

    Directory of Open Access Journals (Sweden)

    Liza Nuriati Lim Kim Choo

    2014-01-01

    Full Text Available Pineapples (Ananas comosus (L. Merr. cultivation on drained peats could affect the release of carbon dioxide (CO2 into the atmosphere and also the leaching of dissolved organic carbon (DOC. Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr than under bare peat treated with chloroform (205 t CO2 ha/yr, and they were the lowest (179.6 t CO2 ha/yr under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.

  8. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    Science.gov (United States)

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  9. Rapid Turnover and Minimal Accretion of Mineral Soil Carbon During 60-Years of Pine Forest Growth on Previously Cultivated Land

    Science.gov (United States)

    Richter, D., Jr.; Mobley, M. L.; Billings, S. A.; Markewitz, D.

    2016-12-01

    At the Calhoun Long-Term Soil-Ecosystem field experiment (1957-present), reforestation of previously cultivated land over fifty years nearly doubled soil organic carbon (SOC) in surface soils (0 to 7.5-cm) but these gains were offset by significant SOC losses in subsoils (35 to 60-cm). Nearly all of the accretions in surface soils amounted to gains in light fraction SOC, whereas losses at depth were associated with silt and clay-sized particles. These changes are documented in the Calhoun Long-Term Soil-Ecosystem (LTSE) study that resampled soil from 16 plots about every five years and archived all soil samples from four soil layers within the upper 60-cm of mineral soil. We combined soil bulk density, density fractionation, stable isotopes, and radioisotopes to explore changes in SOC and soil organic nitrogen (SON) associated with five decades of the growth of a loblolly pine secondary forest. Isotopic signatures showed relatively large accumulations of contemporary forest-derived carbon in surface soils, and no accumulation of forest-derived carbon in subsoils. We interpret results to indicate that land-use change from cotton fields to secondary pine forests drove soil biogeochemical and hydrological changes that enhanced root and microbial activity and SOM decomposition in subsoils. As pine stands matured and are now transitioning to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth has eased due to pine mortality, and bulk SOM and SON and their isotopes in subsoils have stabilized. We anticipate major changes in the next fifty years as 1957 pine trees transition to hardwoods. This study emphasizes the importance of long-term experiments and deep soil measurements when characterizing SOC and SON responses to land use change. There is a remarkable paucity of E long-term soil data deeper than 30 cm.

  10. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V., E-mail: vdaditya1000@gmail.com [Department of Electrical Engineering,College of Technology and Engineerin, MPUAT Udaipur, 313001,India (India); Rao, G. P., E-mail: ragrao38@gmail.com; Tiwari, G. S., E-mail: tiwarigsin@yahoo.com [Department of Farm Machinery and Power Engineering, MPUAT Udaipur, 313001,India (India); Sanger, A., E-mail: amitsangeriitr@gmail.com; Kumar, A., E-mail: 01ashraj@gmail.com; Chandra, R., E-mail: ramesfic@gmail.com [Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2016-04-13

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  11. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    International Nuclear Information System (INIS)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-01-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  12. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Science.gov (United States)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-04-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  13. Economic and energy assessment of minimalized soil tillage methods in maize cultivation

    OpenAIRE

    Piotr Szulc; Andrzej Dubas

    2014-01-01

    Grain yield of maize cultivated in the years 1997-2009 in monoculture and with annual tillage simplifications was assessed in energy and economy terms. Effects of no-tillage system and direct sowing (D) with cultivation with autumn deep (A) and shallow (B) ploughing and cultivation with spring pre-sowing ploughing (C) were compared. It was demonstrated that the 13-year maize grain yield in no-tillage system and direct sowing was lower by 10.4% than the yield obtained in conventional tillage s...

  14. DIATOMS (BACILLARIOPHYCEAE IN RIVERS AND STREAMS AND ON CULTIVATED SOILS OF THE PODKARPACIE REGION IN THE YEARS 2007–2011

    Directory of Open Access Journals (Sweden)

    Teresa Noga

    2014-01-01

    Full Text Available Diatoms Bacillariophyceae are a specialized, systematic group of algae, living in different types of ecosystems, and they are very good indicators of water quality. Recently, detailed studies have been carried out in the territory of the Podkarpacie Province on the diversity of diatoms in running waters. The area of study covers mostly the catchment of the biggest rivers of the province (mainly the River Wisłok and cultivated soils. Running waters in the Podkarpacie Province are characterized by a huge species richness of diatoms, 738 different taxa have been found so far. The highest number of taxa was noted in the Wisłok River (400, while the Żołynianka and Różanka streams and the Mleczka were also characterized by huge diversity (from 200 to over 350 taxa. In the majority of studied sites diatoms of alkaline (pH>7 and nutrient rich (eutrophic waters dominated: Navicula lanceolata, N. gregaria, N. capitatoradiata, Nitzschia palea, N. dissipata ssp. dissipata, Achnanthidium minutissimum var. minutissimum, A. pyrenaicum, Amphora pediculus, Diatoma vulgaris, Rhoicosphenia abbreviata, Planothidium lanceolatum, Cocconeis pediculus and C. placentula var. lineata. About 150 taxa were indentified on cultivated soils, among which the largest populations were formed by Hantzschia amphioxys, Mayamaea atomus, Nitzschia palea, N. pusilla, Pinnularia obscura and Stauroneis thermicola.

  15. Reduction of the efficacy of biochar as soil amendment by soil erosion

    DEFF Research Database (Denmark)

    Fister, Wolfgang; Heckrath, Goswin Johann; Greenwood, Philip

    Biochar is primarily used as soil amendment to improve soil quality and to sequester more carbon (C) to increase both medium- and long-term soil C stocks. These positive effects are obviously diminished if biochar is eroded and transported out of the field. Due to its low bulk density......, the preferential mobilization and redistribution of biochar in the landscape seems probable. Therefore, the question has been raised in recent years of how vulnerable biochar actually is to soil erosion. This is especially relevant on soils which are regularly cultivated and are vulnerable to soil erosion...... of the financial value of the eroded biochar and its cost-effectiveness were scaled up from plot to field scale. In this investigation, the biochar was applied to the soil surface of three plots on a recently cultivated sandy field near Viborg in northern Jutland, Denmark at concentrations equivalent to 1.5-2.0 kg...

  16. Uranium-contaminated soils: Ultramicrotomy and electron beam analysis

    International Nuclear Information System (INIS)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1994-01-01

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level

  17. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil.

    Science.gov (United States)

    Chen, Jingjing; Kim, Hyunjin; Yoo, Gayoung

    2015-01-01

    Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.

  18. Metals and metalloids in fruits of tomatoes (Solanum lycopersicum) and their cultivation soils in the Basque Country: concentrations and accumulation trends.

    Science.gov (United States)

    Rodriguez-Iruretagoiena, Azibar; Trebolazabala, Josu; Martinez-Arkarazo, Irantzu; de Diego, Alberto; Madariaga, Juan Manuel

    2015-04-15

    The concentrations of several elements (Al, Fe, As, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sn, V, and Zn) were measured in soils and the edible part of different vegetables (tomatoes (Solanum lycopersicum "Raf") peppers (Capsicum annuum), chards (Betavulgaris var. cicla), artichokes (Cynarascholymus)) and fruits (Raspberries (Rubusidaeus)) from 13 orchards in the Basque Country affected by different pollution sources. Multivariate analysis of data was used to look for possible correlations between metals in soil and metals in the edible part of the plant. Only manganese showed a correlation significantly different from zero. The metal concentrations found in the edible part were always below the upper limits recommended by the European legislation in force. The Bioaccumulation Index was used to investigate how efficient the plant is to uptake an element from the cultivation soil and to preserve its edible part from the element. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Measurements of trace contaminants in closed-type plant cultivation chambers

    Science.gov (United States)

    Tani, A.; Kiyota, M.; Aiga, I.; Nitta, K.; Tako, Y.; Ashida, A.; Otsubo, K.; Saito, T.

    Trace contaminants generated in closed facilities can cause abnormal plant growth. We present measurement data of trace contaminants released from soils, plants, and construction materials. We mainly used two closed chambers, a Closed-type Plant and Mushroom Cultivation Chamber (PMCC) and Closed-type Plant Cultivation Equipment (CPCE). Although trace gas budgets from soils obtained in this experiment are only one example, the results indicate that the budgets of trace gases, as well as CO_2 and O_2, change greatly with the degree of soil maturation and are dependent on the kind of substances in the soil. Both in the PMCC and in the CPCE, trace gases such as dioctyl phthalate (DOP), dibutyl phthalate (DBP), toluene and xylene were detected. These gases seemed to be released from various materials used in the construction of these chambers. The degree of increase in these trace gas levels was dependent on the relationship between chamber capacity and plant quantity. Results of trace gas measurement in the PMCC, in which lettuce and shiitake mushroom were cultivated, showed that ethylene was released both from lettuce and from the mushroom culture bed. The release rates were about 90 ng bed^-1 h^-1 for the shiitake mushroom culture bed (volume is 1700 cm^3) and 4.1 ~ 17.3 ng dm^-2h^-1 (leaf area basis) for lettuce. Higher ethylene release rates per plant and per unit leaf area were observed in mature plants than in young plants.

  20. Empirical or rational truffle cultivation? It is time to choose.

    Directory of Open Access Journals (Sweden)

    Gerard Chevalier

    2014-08-01

    Full Text Available Aim of study: The aim of this study was to finalize a new method of truffle cultivation in order to obtain an earlier, more regular and  sizeable production of high quality fruiting bodies. Area of study: The experimentation was carried out in France (country of Dordogne, south-western  France  and Italy (country of  Marches,   eastern central Italy for more than one  decade.Material and methods: For the first time the method is based on scientific data on truffle biology particularly: the dynamic system of mycorrhization by the truffle and by other fungi;  the saprophytic capability of the truffle; the ability of its mycelium for decomposing certain minerals and organic materials in the “brûlés”.The basic principle concern the work of the soil and the upkeep of the root system: to work the soil  immediately after the plantation of mycorrhizal seedlings, deeply enough, with adapted tools,  in order to do not compact the soil,  aerate it,  favour the production of deep fruiting bodies not exposed to high temperatures, dryness, frost, parasites… ;  cut accurately  the roots in order to regenerate them and consequently to provide food for the truffle mycelium.Main results: The result has been a new cultivation method designated “differentiated” and called “MRT”, with adapted work of the soil on the lines of plantation and upkeep of the grass between them,  to maintain the cohabitation between areas where the mycelium is present, from those where it is absent.Research highlights: Research is going on to improve   the techniques and particularly finalize tools more precise and more adapted for working the soil and maintaining  the root system in a  best way.  Keywords: truffle; production; nutrition; soil, root system; cultivation tools. 

  1. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu (China); College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu (China); Chen, Xing-Peng; Ma, Zhen-Bang [College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu (China); Jia, Hui-Hui [State High-Tech Industrial Innovation Center, Shenzhen 518057, Guangdong (China); Wang, Jun-Jian, E-mail: junjian.wang@utoronto.ca [Department of Physical and Environmental Sciences, University of Toronto, Toronto M1C 1A4 (Canada)

    2016-08-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. - Highlights: • Vegetable farmlands in Baiyin, Gansu, China were severely polluted by As and Cd. • Greenhouses had

  2. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems

    International Nuclear Information System (INIS)

    Cao, Chun; Chen, Xing-Peng; Ma, Zhen-Bang; Jia, Hui-Hui; Wang, Jun-Jian

    2016-01-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. - Highlights: • Vegetable farmlands in Baiyin, Gansu, China were severely polluted by As and Cd. • Greenhouses had

  3. Growth and yield of cucumber under no-tillage cultivation using rye as a cover crop

    Directory of Open Access Journals (Sweden)

    Małgorzata Jelonkiewicz

    2012-12-01

    Full Text Available In the first two years of study, method of cultivation did not affect the emergence of cucumber seedlings. In the third year, a drought occurring during the spring was the cause of poor seedling emergence on no-tilled plots. Six weeks after seed sowing, the shoots of cucumbers grown on the no-tilled plots were much shorter, especially in the last study year. At the time of cucumber seed sowing, no-tilled soil contained less phosphorus and potassium and in the middle of the fructification period the content of these elements in cucumber leaves was higher under no-tillage cultivation. Additional spring fertilization of rye with ammonium nitrate resulted in a higher N-NO3 content in soil and later in a higher nitrogen content of cucumber leaves. The content of calcium and magnesium in soil and than in cucumber leaves was independent of the cultivation method. In the first two years, method of cultivation did not affect the yield of cucumber fruits and in the third year the yield was much lower under no-tillage because of poor seedling emergence. Moreover, in the third year the fruits were smaller and dry matter content of the fruit was significantly higer under no-tillage cultivation.

  4. CO2 and Carbon Balance of an Intensively Grazed Temperate Pasture: Response to Cultivation

    Science.gov (United States)

    Rutledge, S.; Mudge, P. L.; Wallace, D.; Campbell, D.; Wall, A.; Hosking, C. L.; Schipper, L. A.

    2012-12-01

    Recent soil resampling studies have shown that soils on flat land used for intensive dairy farming in New Zealand have lost large amounts of carbon (~1 t C ha-1y-1) over the past few decades, and the causes of these losses are poorly understood. One of the management practices potentially contributing to the C losses from these dairy soils is the periodic cultivation commonly associated with pasture renewal or the rotation through summer or winter crops. Here we report the results of three experiments aimed at quantifying the effect of cultivation as part of pasture renewal on the CO2 and C balances of permanent pastures. In the first experiment, the net ecosystem CO2 exchange (NEE) of an intensively grazed dairy pasture was measured before, during and after cultivation using eddy covariance (EC) from 2008 to 2011 at a dairy farm in the Waikato region on the North Island of New Zealand. The net ecosystem carbon balance (NECB) was determined by combining NEE data with measurements and estimates of other C imports (feed) and C exports (milk, methane, silage and leaching). The other two experiments took place on the same farm and monitored two different cultivation events in 2008. We made chamber measurements of soil CO2 losses between spraying and seedling emergence. One of the cultivations took place in summer 2008 during a drought, whereas the other took place in spring 2008 when soil water was not limiting. For the first two years of experiment 1 the site was under permanent pasture and it was a sink for both CO2 (1.6 and 2.3 t C ha-1y-1 for 2008 and 2009, respectively) and C (0.59 and 0.90 t C ha-1y-1 for 2008 and 2009, respectively), despite a severe drought in summer 2008 which had led to a loss of approximately 1.1 t C ha-1 as CO2 over the three summer months. Pasture renewal took place in March 2010 and CO2 losses during this event were approximately 1.7 t C ha-1. However, the site seemed to recover quickly and was a sink of CO2 at an annual time scale of

  5. The effects of land use types and soil depth on soil properties of ...

    African Journals Online (AJOL)

    The effects of land use types and soil depth on soil properties of Agedit watershed, Northwest Ethiopia. ... immediate intervention to protect the remnant forests and to replenish the degraded soil properties for sustainable agricultural productivity. Keywords: cultivation, deforestation, grazing, land management, soil fertility ...

  6. A study of soil erosion on a steep cultivated slope in the Mt. Gongga region near Luding, Sichuan, China, using the 137Cs technique

    International Nuclear Information System (INIS)

    Zhang, X.B.; Wen, A.B.; Quine, T.A.; Walling, D.E.

    2000-01-01

    This paper reports the results of an investigation of soil erosion on a steep cultivated slope in the Mt Gongga region of the Upper Yangtze River Basin, Southwest China, using the 137 Cs technique. The effective 137 Cs reference inventory for the study field, estimated from the bottom layer of a 137 Cs depth profile at the deposition zones, is 2373.9 Bq/m2, accounting for 65.8% the local 137 Cs reference inventory of 3607.7 Bq/m2. It strongly indicates that a considerable amount of 137 Cs input was lost prior to incorporation into the ploughing layer from the study field during the nuclear weapons testing period because of 137 Cs surface enrichment. The average erosion rate is estimated to be 4914 t/km 2 yr for a typical cultivated steep slope with an angle of 34 deg at the subtropical zone in the Mt Gongga region. It can reach to 22856 t/km 2 yr for a failure slope under cultivation. (author)

  7. Is the soil quality monitoring an effective tool in consumers' protection of agricultural crops from cadmium soil contamination?-a case of the Silesia region (Poland).

    Science.gov (United States)

    Piekut, Agata; Baranowska, Renata; Marchwińska-Wyrwał, Ewa; Ćwieląg-Drabek, Małgorzata; Hajok, Ilona; Dziubanek, Grzegorz; Grochowska-Niedworok, Elżbieta

    2017-12-16

    The monitoring of soil quality should be a control tool used to reduce the adverse health effects arising from exposure to toxic chemicals in soil through cultivated crop absorption. The aim of the study was to evaluate the effectiveness of the monitoring and control system of soil quality in Poland, in terms of consumer safety, for agricultural plants cultivated in areas with known serious cadmium contamination, such as Silesia Province. To achieve the objective, the contents of cadmium in soils and vegetables in the Silesia administrative area were examined. The obtained results were compared with the results of soil contamination from the quality monitoring of arable soil in Poland. The studies show a significant exceedance of the permissible values of cadmium in soil samples and the vegetables cultivated on that soil. The threat to consumer health is a valid concern, although this threat was not indicated by the results of the national monitoring of soil quality. The results indicated an unequal distribution of risk to consumers resulting from contaminated soil. Moreover, the monitoring systems should be designed at the local or regional scale to guarantee the safety of consumers of edible plants cultivated in the areas contaminated with cadmium.

  8. EFFECT OF FALLOW LAND, CULTIVATED PASTURE AND ABANDONED PASTURE ON SOIL FERTILITY IN TWO DEFORESTED AMAZONIAN REGIONS

    Directory of Open Access Journals (Sweden)

    J.A DIEZ

    1997-01-01

    Full Text Available The effect of two practices adopted by settlers (abandoned pasture and fallow land on soil fertility of two deforested Amazonian regions (Belém-Pará and Ariquemes-Rondônia was studied. Whenever possible, cultivated pasture, over similar time periods in both cases and in natural forest, were employed as soil fertility reference standards. Nutrient dynamics was studied using the electroultra-filtration technique. In general, deforestation, as practiced in these areas, has a degrading effect on soil fertility. The effect of burning normally leads to a pH rise caused by ash. This usually yields a favorable transitory effect, improving soil fertility conditions, however not sufficient for plant needs, as inferred from the low P and K levels. Cattle excrements, improved the K level for cultivated pastures. Qualitative differences related to N were observed between cultivated pasture and both, fallow land or abandoned pasture. In the first, a certain recovery of available N levels was detected, mainly affecting the EUF-Norg fraction. On the other hand, a regeneration of organic compounds, in the fallow land and the abandoned pasture, closely related to those existing in the natural forest, was verified. This is mainly due to the presence of a higher proportion of NO3-_N and, consequently, a EUF-Norg/EUF-NO3- ratio close to 1.Comparou-se o efeito de duas práticas de manejo, ou seja, o abandono da pastagem e o pousio, sobre a fertilidade do solo de duas regiões desmatadas da Amazônia (Belém-Pará e Ariquemes-Rondônia. Quando possível, pastagens cultivadas por períodos semelhantes e florestas nativas foram usadas como padrões da fertilidade do solo. A dinâmica dos nutrientes foi estuda pela técnica da eletroultrafiltração (EUF. De um modo geral, o desmatamento, como praticado nessas regiões, tem efeito degradador sobre a fertilidade do solo. A queima da biomassa vegetal normalmente leva a um aumento do pH causado pelas cinzas, resultando

  9. [Review on application of plant growth retardants in medicinal plants cultivation].

    Science.gov (United States)

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  10. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  11. Impact of cover crops and tillage on porosity of podzolic soil

    Science.gov (United States)

    Błażewicz-Woźniak, M.; Konopiñski, M.

    2013-09-01

    The aim of the study was to determine the influence of cover crops biomass, mixed with the soil on different dates and with the use of different tools in field conditions. The cover crop biomass had a beneficial influence on the total porosity of the 0-20 cm layer of the soil after winter. The highest porosity was achievedwith cover crops of buckwheat, phacelia and mustard, the lowest with rye. During the vegetation period the highest porosity of soil was observed in the ridges. Among the remaining non-ploughing cultivations, pre-winter use of stubble cultivator proved to have a beneficial influence on the soil porosity, providing results comparable to those achieved in conventional tillage. The differential porosity of the soil was modified not only by the catch crops and the cultivation methods applied, but also by the sample collection dates, and it did change during the vegetation period. The highest content of macropores after winter was observed for the phacelia cover crop, and the lowest in the case of cultivation without any cover crops. Pre-winter tillage with the use of a stubble cultivator increased the amount of macropores in soil in spring, and caused the biggest participation of mesopores as compared with other non-ploughing cultivation treatments of the soil. The smallest amount of mesopores was found in the ridges.

  12. The Problems Detected in Mushroom Cultivation in Ankara

    Directory of Open Access Journals (Sweden)

    Mürüvvet Ulusoy Deniz

    2016-03-01

    Full Text Available Development of the cultivated mushroom farming which began to be produced in the 1960s in Turkey, has been more faster in the Mediterranean region than other regions. The development of mushroom cultivation has began to seen Marmara and İç Anadolu regions in recent years. The mushroom production which is very important for human health and nutrition, has been changing year to year (sometimes increase, sometimes decrease in the province of Ankara. The first private mushrrom cultivation company had been established in1963. Up to date, the number of private enterprises has changed over the years in Ankara. This study was carried out by doing a survey with an active 12 enterprises which the annual production capacity of 10-600 ton. The enterprises were visited and problems were determined during the cultivation. As a result of the study, It was observed that there are problems in production and marketing phases and with surface soil material

  13. Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon.

    Science.gov (United States)

    Béliveau, Annie; Lucotte, Marc; Davidson, Robert; Paquet, Serge; Mertens, Frédéric; Passos, Carlos J; Romana, Christine A

    2017-12-01

    In addition to causing physical degradation and nutrient depletion, erosion of cultivated soils in the Amazon affects aquatic ecosystems through the release of natural soil mercury (Hg) towards lakes and rivers. While traditional agriculture is generally cited as being among the main causes of soil erosion, agroforestry practices are increasingly appreciated for soil conservation. This study was carried out in family farms of the rural Tapajós region (Brazil) and aimed at evaluating soil erosion and associated Hg release for three land uses. Soils, runoff water and eroded sediments were collected at three sites representing a land cover gradient: a recently burnt short-cycle cropping system (SCC), a 2-year-old agroforestry system (AFS) and a mature forest (F). At each site, two PVC soil erosion plots (each composed of three 2 × 5 m isolated subplots) were implemented on steep and moderate slopes respectively. Sampling was done after each of the 20 rain events that occurred during a 1-month study period, in the peak of the 2011 rain season. Runoff volume and rate, as well as eroded soil particles with their Hg and cation concentrations were determined. Total Hg and cation losses were then calculated for each subplot. Erosion processes were dominated by land use type over rainfall or soil slope. Eroded soil particles, as well as the amount of Hg and cations (CaMgK) mobilized at the AFS site were similar to those at the F site, but significantly lower than those at the SCC site (p agroforestry systems, even in their early stages of implementation, are characterized by low erosion levels resembling those of local forest environments, thus contributing to the maintenance of soil integrity and to the reduction of Hg and nutrient mobility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available Carbon (C sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N dynamics. Treatments included biochar addition (CHAR, NO CHAR and amendment (COMPOST, UREA, NO FERT. The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.

  15. The use of biochar to reduce nitrogen and potassium leaching from soil cultivated with maize

    Directory of Open Access Journals (Sweden)

    W Widowati

    2014-10-01

    Full Text Available Nutrient leaching is often a problem especially in tropical areas with soil fertility constraints. This study aims to reveal the effect of biochars on leaching and uptake of nitrogen and potassium from degraded soils cultivated with maize. Each of three types of biochar originated from rice husk, wood, and coconut shell, was applied to the soil placed in PVC tube at four rates (0, 15, 30, and 45 t/ha. Maize was then planted in each pot. All pots received urea (135 kg N/ha, SP36 (36 kg P2O5/ha, and KCl (110 kg K2O/ha. Twelve treatments (three biochars and four application rates were arranged in a factorial randomized block design with three replicates. Results of the study showed interaction effects of biochar materials and biochar rates on nitrate leaching (except on day 1 to 30 and potassium, N uptake, and plant growth. On day 1-30, leaching of nitrate and potassium was reduced by biochar application. The lowest nitrate leaching was observed at rate of 45 t /ha of wood biochar, while application of 45 t coconut shell biochar / ha resulted in the highest K leaching. Beside, wood biochar resulted in a similar nitrate leaching with that of coconut shell biochar, but nitrate leaching increased with increasing rate of rice husk biochar on day 30-60. All biochar materials yielded similar potassium leaching at all rates. Application of 45 t rice husk biochar /ha resulted in the best maize growth.

  16. Effect of different pre-sowing tillage on quantity and quality of parsnip (Pastinaca sativa L. root yield in ridge cultivation

    Directory of Open Access Journals (Sweden)

    Mirosław Konopiński

    2012-12-01

    Full Text Available Parsnip is a very valuable vegetable due to its nutritional value and dietetic quality. It is moreover herbal raw material abundant in active substances. The yield quality of vegetables greatly depends on thorough pre-sowing soil tillage. The present study aimed at evaluating the influence of different presowing soil tillage (medium-deep ploughing, cultivating and plant growing methods, flat or ridge cultivation, on the yield of parsnip and some biometric traits of its roots. The field experiment was carried out in 1999, 2000 and 2002 on lessive soil with the granulometric composition corresponding to medium silty loam. The parsnip cultivar 'Półdługi Biały' was the experimental plant species. The cultivation of parsnip on ridges had a significant influence on increased total yield of roots and decreased yield of small roots, as compared to flat cultivation. A significant increase in unit weight of the root and its diameter in the top part was also recorded in the latter type of cultivation. Spring pre-sowing tillage had no significant effect on parsnip yields. An increasing trend was observed only for total and marketable root yield in the ploughed plots. When parsnip is grown on lessive soil (which has an unstable structure, plants cultivated on ridges after spring pre-sowing plough are the most beneficial treatment combination.

  17. Effect of pest controlling neem and mata-raton leaf extracts on greenhouse gas emissions from urea-amended soil cultivated with beans: A greenhouse experiment

    International Nuclear Information System (INIS)

    Mendez-Bautista, Joaquin; Fernandez-Luqueno, Fabian; Lopez-Valdez, Fernando; Mendoza-Cristino, Reyna; Montes-Molina, Joaquin A.; Gutierrez-Miceli, Federico A.; Dendooven, L.

    2010-01-01

    In a previous laboratory experiment, extracts of neem (Azadirachta indica A. Juss.) and Gliricidia sepium Jacquin, locally known as mata-raton, used to control pests on crops, inhibited emissions of CO 2 from a urea-amended soil, but not nitrification and N 2 O emissions. We investigated if these extracts when applied to beans (Phaseolus vulgaris L.) affected their development, soil characteristics and emissions of carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) in a greenhouse environment. Untreated beans and beans planted with lambda-cyhalothrin, a commercial insecticide, served as controls. After 117 days, shoots of plants cultivated in soil amended with urea or treated with lambda-cyhalothrin, or extracts of neem or G. sepium were significantly higher than when cultivated in the unamended soil, while the roots were significantly longer when plants were amended with urea or treated with leaf extracts of neem or G. sepium than when treated with lambda-cyhalothrin. The number of pods, fresh and dry pod weight and seed yield was significantly higher when bean plants were treated with leaf extracts of neem or G. sepium treatments than when left untreated and unfertilized. The number of seeds was similar for the different treatments. The number of nodules was lower in plants fertilized with urea, treated with leaf extracts of neem or G. sepium, or with lambda-cyhalothrin compared to the unfertilized plants. The concentrations of NH 4 + , NO 2 - and NO 3 - decreased significantly over time with the lowest concentrations generally found at harvest. Treatment had no significant effect on the concentrations of NH 4 + and NO 2 - , but the concentration of NO 3 - was significantly lower in the unfertilized soil compared to the other treatments. It was found that applying extracts of neem or G. sepium leaves to beans favored their development when compared to untreated plants, but had no significant effect on nitrification in soil.

  18. Effect of pest controlling neem and mata-raton leaf extracts on greenhouse gas emissions from urea-amended soil cultivated with beans: A greenhouse experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Bautista, Joaquin [Laboratory of Soil Ecology, Cinvestav, Mexico D.F. (Mexico); Fernandez-Luqueno, Fabian [Laboratory of Soil Ecology, Cinvestav, Mexico D.F. (Mexico); Department of Electromechanics, Renewable Energy Engineering, UTTulancingo, Hidalgo (Mexico); Lopez-Valdez, Fernando [Laboratory of Soil Ecology, Cinvestav, Mexico D.F. (Mexico); C.I.B.A.-I.P.N., Tepetitla de Lardizabal, Tlaxcala (Mexico); Mendoza-Cristino, Reyna [Laboratory of Soil Ecology, Cinvestav, Mexico D.F. (Mexico); Montes-Molina, Joaquin A.; Gutierrez-Miceli, Federico A. [Laboratorio de Biotecnologia Vegetal, Instituto Tecnologico de Tuxtla-Gutierrez, Tuxtla-Gutierrez (Mexico); Dendooven, L., E-mail: dendoove@cinvestav.mx [Laboratory of Soil Ecology, Cinvestav, Mexico D.F. (Mexico)

    2010-10-01

    In a previous laboratory experiment, extracts of neem (Azadirachta indica A. Juss.) and Gliricidia sepium Jacquin, locally known as mata-raton, used to control pests on crops, inhibited emissions of CO{sub 2} from a urea-amended soil, but not nitrification and N{sub 2}O emissions. We investigated if these extracts when applied to beans (Phaseolus vulgaris L.) affected their development, soil characteristics and emissions of carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) in a greenhouse environment. Untreated beans and beans planted with lambda-cyhalothrin, a commercial insecticide, served as controls. After 117 days, shoots of plants cultivated in soil amended with urea or treated with lambda-cyhalothrin, or extracts of neem or G. sepium were significantly higher than when cultivated in the unamended soil, while the roots were significantly longer when plants were amended with urea or treated with leaf extracts of neem or G. sepium than when treated with lambda-cyhalothrin. The number of pods, fresh and dry pod weight and seed yield was significantly higher when bean plants were treated with leaf extracts of neem or G. sepium treatments than when left untreated and unfertilized. The number of seeds was similar for the different treatments. The number of nodules was lower in plants fertilized with urea, treated with leaf extracts of neem or G. sepium, or with lambda-cyhalothrin compared to the unfertilized plants. The concentrations of NH{sub 4}{sup +}, NO{sub 2}{sup -} and NO{sub 3}{sup -} decreased significantly over time with the lowest concentrations generally found at harvest. Treatment had no significant effect on the concentrations of NH{sub 4}{sup +} and NO{sub 2}{sup -}, but the concentration of NO{sub 3}{sup -} was significantly lower in the unfertilized soil compared to the other treatments. It was found that applying extracts of neem or G. sepium leaves to beans favored their development when compared to untreated plants, but had no significant

  19. Solar system for soil drainage

    International Nuclear Information System (INIS)

    Kocic, Z.R.; Stojanovic, J.B.; Antic, M.A.; Pavlovic, T.M.

    1999-01-01

    The paper reviews solar system for drainage of the cultivable agricultural surfaces which can be situated near the rivers in plains. These are usually very fertile surfaces which cannot be cultivated die to constant presence of the water. Using such solar systems should increase the percentage of cultivable surfaces. These systems can also be installed on the cultivable agricultural surfaces, where the water surfaces or so called still waters appear, which make impossible the application of agritechnical measures on these surfaces, significantly decreasing crops and creating conditions for the growth of pond plants and animals. Increasing the percentage of cultivable agricultural surfaces would increase national agricultural income. At the same time, increasing the percentage of cultivable agricultural surfaces decreases the surfaces of unhealthy bog, swamp and marshland soils, where many insect breed. They are the cause for soil spraying from the air, which causes the pollution of environment. Solar systems do not pollute the environment because they use solar energy as the purest source of energy. Their usage has special significance in the places where there is no electricity distribution network

  20. Barium and sodium in sunflower plants cultivated in soil treated with wastes of drilling of oil well

    Directory of Open Access Journals (Sweden)

    Jésus Sampaio Junior

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the effects of the application of two types of oil drilling wastes on the development and absorption of barium (Ba and sodium (Na by sunflower plants. The waste materials were generated during the drilling of the 7-MGP-98D-BA oil well, located in the state of Bahia, Brazil. The treatments consisted of: Control – without Ba application, comprising only its natural levels in the soil; Corrected control – with fertilization and without wastes; and the Ba doses of 300, 3000 and 6000 mg kg-1, which were equivalent to the applications of 16.6, 165.9 and 331.8 Mg ha-1 of waste from the dryer, and 2.6, 25.7 and 51.3 Mg ha-1 of waste from the centrifugal. Plants cultivated using the first dose of dryer waste and the second dose of centrifugal waste showed growth and dry matter accumulation equal to those of plants under ideal conditions of cultivation (corrected control. The highest doses of dryer and centrifugal wastes affected the development of the plants. The absorption of Ba by sunflower plants was not affected by the increase in the doses. Na proved to be the most critical element present in the residues, interfering with sunflower development.

  1. Transfer and internalisation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cabbage cultivated on contaminated manure-amended soil under tropical field conditions in Sub-Saharan Africa.

    Science.gov (United States)

    Ongeng, D; Vasquez, G A; Muyanja, C; Ryckeboer, J; Geeraerd, A H; Springael, D

    2011-01-31

    Surface contamination and internalisation of Escherichia coli O157:H7 and Salmonella Typhimurium in cabbage leaf tissues at harvest (120 days post-transplantation) following amendment of contaminated bovine manure to soil at different times during crop cultivation were investigated under tropical field conditions in the Central Agro-Ecological Zone of Uganda. Fresh bovine manure inoculated with rifampicin-resistant derivatives of non-virulent strains of E. coli O157:H7 and S. Typhimurium was incorporated into the soil to achieve inoculum concentrations of 4 and 7 log CFU/g at the point of transplantation, 56 or 105 days post-transplantation of cabbage seedlings. Frequent sampling of the soil enabled the accurate identification of the survival kinetics in soil, which could be described by the Double Weibull model in all but one of the cases. The persistence of 4 log CFU/g E. coli O157:H7 and S. Typhimurium in the soil was limited, i.e. only inocula applied 105 days post-transplantation were still present at harvest. Moreover, no internalisation in cabbage leaf tissues was observed. In contrast, at the 7 log CFU/g inoculum level, E. coli O157:H7 and S. Typhimurium survived in the soil throughout the cultivation period. All plants (18/18) examined for leaf contamination were positive for E. coli O157:H7 at harvest irrespective of the time of manure application. A similar incidence of leaf contamination was found for S. Typhimurium. On the other hand, only plants (18/18) cultivated on soil amended with contaminated manure at the point of transplantation showed internalised E. coli O157:H7 and S. Typhimurium at harvest. These results demonstrate that under tropical field conditions, the risk of surface contamination and internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues at harvest depend on the inoculum concentration and the time of manure application. Moreover, the internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues

  2. Land use impact on soil quality in eastern Himalayan region of India.

    Science.gov (United States)

    Singh, A K; Bordoloi, L J; Kumar, Manoj; Hazarika, S; Parmar, Brajendra

    2014-04-01

    Quantitative assessment of soil quality is required to determine the sustainability of land uses in terms of environmental quality and plant productivity. Our objective was to identify the most appropriate soil quality indicators and to evaluate the impact of six most prevalent land use types (natural forestland, cultivated lowland, cultivated upland terrace, shifting cultivation, plantation land, and grassland) on soil quality in eastern Himalayan region of India. We collected 120 soil samples (20 cm depth) and analyzed them for 29 physical, chemical, and biological soil attributes. For selection of soil quality indicators, principal component analysis (PCA) was performed on the measured attributes, which provided four principal components (PC) with eigenvalues >1 and explaining at least 5% of the variance in dataset. The four PCs together explained 92.6% of the total variance. Based on rotated factor loadings of soil attributes, selected indicators were: soil organic carbon (SOC) from PC-1, exchangeable Al from PC-2, silt content from PC-3, and available P and Mn from PC-4. Indicators were transformed into scores (linear scoring method) and soil quality index (SQI) was determined, on a scale of 0-1, using the weighting factors obtained from PCA. SQI rating was the highest for the least-disturbed sites, i.e., natural forestland (0.93) and grassland (0.87), and the lowest for the most intensively cultivated site, i.e., cultivated upland terrace (0.44). Ratings for the other land uses were shifting cultivation (0.60) > cultivated low land (0.57) > plantation land (0.54). Overall contribution (in percent) of the indicators in determination of SQI was in the order: SOC (58%) > exch. Al (17.1%) > available P (8.9%) > available Mn (8.2%) > silt content (7.8%). Results of this study suggest SOC and exch. Al as the two most powerful indicators of soil quality in study area. Thus, organic C and soil acidity management holds the key to improve soil

  3. HEAVY METALS IN VINEYARDS AND ORCHARD SOILS

    Directory of Open Access Journals (Sweden)

    GUSTAVO BRUNETTO

    Full Text Available ABSTRACT The application of foliar fungicides in vineyards and orchards can increase soil concentration of heavy metals such as copper (Cu and zinc (Zn, up to the toxicity threshold for fruit trees and cover crops. However, some agronomic practices, such as liming, addition of organic fertilizers, cultivation of soil cover crops and inoculation of young plants with arbuscular mycorrhizal fungi can decrease the availability and the potential of heavy metal toxicity to fruit trees. This review aims to compile and present information about the effects of increasing concentrations of heavy metals, especially Cu and Zn, on soils cultivated with fruit trees and provides some agronomic practices of remediation. Information about the sources of heavy metals found in soils cultivated with fruit trees are presented; mechanisms of absorption, transport, accumulation and potential toxicity to plants are described.

  4. Relationship between soil erodibility and modeled infiltration rate in different soils

    Science.gov (United States)

    Wang, Guoqiang; Fang, Qingqing; Wu, Binbin; Yang, Huicai; Xu, Zongxue

    2015-09-01

    The relationship between soil erodibility, which is hard to measure, and modeled infiltration rate were rarely researched. Here, the soil erodibility factors (K and Ke in the USLE, Ki and K1 in the WEPP) were calculated and the infiltration rates were modeled based on the designed laboratory simulation experiments and proposed infiltration model, in order to build their relationship. The impacts of compost amendment on the soil erosion characteristics and relationship were also studied. Two contrasting agricultural soils (bare and cultivated fluvo-aquic soils) were used, and different poultry compost contents (control, low and high) were applied to both soils. The results indicated that the runoff rate, sediment yield rate and soil erodibility of the bare soil treatments were generally higher than those of the corresponding cultivated soil treatments. The application of composts generally decreased sediment yield and soil erodibility but did not always decrease runoff. The comparison of measured and modeled infiltration rates indicated that the model represented the infiltration processes well with an N-S coefficient of 0.84 for overall treatments. Significant negative logarithmic correlations have been found between final infiltration rate (FIR) and the four soil erodibility factors, and the relationship between USLE-K and FIR demonstrated the best correlation. The application of poultry composts would not influence the logarithmic relationship between FIR and soil erodibility. Our study provided a useful tool to estimate soil erodibility.

  5. Soil respiration is not limited by reductions in microbial biomass during long-term soil incubations

    Science.gov (United States)

    Declining rates of soil respiration are reliably observed during long-term laboratory incubations, but the cause is uncertain. We explored different controls on soil respiration during long-term soil incubations. Following a 707 day incubation (30 C) of soils from cultivated and forested plots at Ke...

  6. Yields and nutrient pools in soils cultivated with Tectona grandis and Gmelina arborea in Nigerian rainforest ecosystem

    Directory of Open Access Journals (Sweden)

    V.A.J. Adekunle

    2011-06-01

    Full Text Available This study examined the yield of the two most prominent exotic species in southwest Nigeria and the nutrient status of soils cultivated with these species. The impacts of plantation development on soil nutrients were also examined. The plantations species are Gmelina arborea (Gmelina stands established in 1984, 1988, 1990 and 1994 and Tectona grandis (Teak established in 1990, 1992, 1994, 1996 and 1997. Growth data and composite soil samples from 3 depths (0–15, 15–30 and 30–60 cm were collected from five equal sized plots (20 × 20 m2 randomly located in the plantation of the two species. Also, soil samples were collected from the adjacent natural forest for comparison. The results for both species show that tree growth variables increased substantially with increase in tree age. There was significant difference in number of trees per hectare, dominant diameter, volume/ha and MAI for the Gmelina stands. In the Teak stand, there was significant difference in most of the tree growth variables also. Nutrients required by plants to survive were present in the soil samples from the plantations and the natural forest in different proportions. There was high correlation between percentage sand and most of the tree growth variables for both species. The pH value obtained for the Gmelina stands ranged between 6.47 and 7.47 while that of Teak stands ranged between 5.57 and 8.33. There was also a high and positive relationship between some soil chemical properties and tree growth variables. The highest significant correlation coefficient existed between phosphorus concentration and basal area for stands of both species. The r-values are 0.98 and 0.96 for Gmelina and Teak, respectively. While a high, negative and significant r-value (−0.88 was also obtained between potassium and volume/ha for the Gmelina stands, a high positive r-value was obtained between the potassium and basal area for the Teak stands. Comparison of soil nutrients in the

  7. Estimates of soil erosion using cesium-137 tracer models.

    Science.gov (United States)

    Saç, M M; Uğur, A; Yener, G; Ozden, B

    2008-01-01

    The soil erosion was studied by 137Cs technique in Yatagan basin in Western Turkey, where there exist intensive agricultural activities. This region is subject to serious soil loss problems and yet there is not any erosion data towards soil management and control guidelines. During the soil survey studies, the soil profiles were examined carefully to select the reference points. The soil samples were collected from the slope facets in three different study areas (Kirtas, Peynirli and Kayisalan Hills). Three different models were applied for erosion rate calculations in undisturbed and cultivated sites. The profile distribution model (PDM) was used for undisturbed soils, while proportional model (PM) and simplified mass balance model (SMBM) were used for cultivated soils. The mean annual erosion rates found using PDM in undisturbed soils were 15 t ha(-1) year(-1) at the Peynirli Hill and 27 t ha(-1) year(-1) at the Kirtas Hill. With the PM and SMBM in cultivated soils at Kayişalan, the mean annual erosion rates were obtained to be 65 and 116 t ha(-1) year(-1), respectively. The results of 137Cs technique were compared with the results of the Universal Soil Loss Equation (USLE).

  8. Effects of straw mulching on soil evaporation during the soil thawing ...

    Indian Academy of Sciences (India)

    26

    Keywords: straw mulching, soil water evaporation, soil thawing period, freezing depth, soil liquid water content. 1. Introduction. The Songnen Plain, located in northeastern China, has 594×104 ha of cultivated land area and a grain yield of 395×108 kg. It is one of the most important food production bases in China (Yan et al.

  9. SOIL QUALITY CHANGES FOLLOWING FOREST CLEARANCE IN BENGKULU, SUMATRA

    Directory of Open Access Journals (Sweden)

    I.P. HANDAYANI

    2004-01-01

    Full Text Available Intense destruction and degradation of tropical forests is recognized as one of the environmental threats and tragedies. These have increased the need to assess the effects of subsequent land-use following forest extraction on soil quality. Therefore, the objective of this study is to evaluate the impacts of land-use type on soil quality properties in Bengkulu Province, Sumatra. Soil samples were collected from adjacent sites including natural secondary forest, bare land, cultivated land and grassland. The results show that land-use following forest clearance lowered saturated hydraulic conductivity (85%, porosity (10.50%, soil water content at field capacity (34%,C organic (27%, N total (26%, inorganic N (37%, soil microbial biomass C (32%, mineralizable C (22%, and particulate organic matter (50%, but slightly increased water soluble organic C. Specific respiration activi ty rates increased about 14% in cultivated soils compared to natural forest soils, indicating greater C turnover per labile C pool in the form of soil microbial biomass, thus decreased biologically active soil organic matter. Forest conversion tends to reduce the C,ffg/Crer for all deforested sites. All of deforested areas relatively have infertile soil, with the worst case found in cultivated field. The C^g/Crd of cultivated field s was about 24% less than that of remnant fo rest (1.07. Grassland apparently mainta ins only slightly higher soil C levels than the bare land. On average, degradation index of so il following forest clearance was 35% with the highest deterioration occurred in the bare land (38%. Fallowing the fields by naturally growth of Imperata cylindrica for about 15 yr in abandoned land after 3-5 years of cultivation did not improve the soil quality. Moreover, forest clearance has an impact on soil quality as resulted in the loss of a physically protected organic matter and reduction in some labile C pools, thus declined biological activity at disturbed

  10. Application of the 137Cs determination to evaluate the erosion rates in cultivated soils in the west part of Cuba

    International Nuclear Information System (INIS)

    Gil Castillo, Reinaldo; Peralta Vital, Jose Luis; Carrazana Gonzalez, Jorge; Riverol Rosquet, Mario; Penna Valenti, Fermin; Cabrera Calcedo, Eduardo

    2004-01-01

    The paper shows the experience in the application of 137Cs technique to estimate the erosion rates in cultivated soils (Ultisol) in the west part of the country, and the validation of the technique results by comparison against the results from traditional methods (watershed segments). The proportional, the simplified balance of mass and the balance of mass models were used to calculate the erosion rates, for three segments. In the evaluated area, have been obtained erosion rates from 3.5 to 7.1 t/ha/y for the segment I, from 5.17 to 10.3 t/ha/y for the segment III and from 2.3 to 17 t/ha/y for the segment IX. The conclusions are, the 137Cs technique is reliable for the estimation of erosion rates in the evaluated soil and the mass balance model obtained the nearest values to the estimated by watershed segments

  11. Estimation of soya cultivation efficiency in conditions of Belarus lands polluted by radionuclides

    International Nuclear Information System (INIS)

    Gutseva, G.Z.

    2007-01-01

    Production of high-protein soya crop including lands polluted by radionuclides after the Chernobyl accident, causes to the necessity of carrying out research to study the radionuclide transfer into production of this crop. As a result of research the transfer factors of 137Cs and 90Sr from soil into seeds and green mass of various soya varieties have been determined to allow a prediction of radionuclide transfer into production. Limiting densities of radionuclide pollution for moderately improved sod - podzol sandy soils for production of the soya products corresponding of 137Cs and 90Sr content to the national permissible levels are established. Use of the crop in plant cultivation and cattle-breeding branch is accompanied by high energy - conserving effects. Soya products contains high quantity of total energy per kilogram of forage. The most highly energy-conserving forages are waste products of soya processing: an oil cake - up to 87,4 Mj and soil-seed meal up to 79,7 Mj. High profitability of this crop cultivation is provided by production for seeds. It is economically defensible a soya beans cultivation for processing and for fodder. For reception of seeds for food purposes there are restrictions on pollution of soil: 1125 kBk/square ? (30 Ci/square km) and 90Sr to 2,6 kBk/square ? (0,07 Ci/square km)

  12. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach.

    Science.gov (United States)

    Eevers, N; Hawthorne, J R; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Híbridos experimentais de melão rendilhado cultivados em solo e substrato Net melon experimental hybrids cultivated in soil and substrate

    Directory of Open Access Journals (Sweden)

    Hamilton César de Oliveira Charlo

    2011-03-01

    Full Text Available Este trabalho teve como objetivo verificar o desempenho de híbridos experimentais de melão rendilhado em dois sistemas de cultivo. Foram avaliados seis híbridos experimentais (Jab 07#16, Jab 07#17, Jab 07#23, Jab 07#24, Jab 07#26, Jab 07#28 e três híbridos comerciais (Bônus nº 2, Louis e Fantasy, em dois sistemas de cultivo (em solo e em fibra da casca de coco. O delineamento experimental utilizado foi em blocos casualizados, com nove tratamentos e quatro repetições, para cada experimento, realizando-se análise conjunta dos dados. Foram avaliados: massa média do fruto; produtividade; diâmetro médio transversal do fruto; diâmetro médio longitudinal do fruto; índice de formato de fruto; diâmetro médio transversal do lóculo; diâmetro médio longitudinal do lóculo; índice de formato do lóculo; espessura do mesocarpo; diâmetro médio da inserção do pedúnculo dos frutos; sólidos solúveis; pH; vitamina C; rendilhamento da casca; e firmeza do fruto. Pode-se concluir que, para o sistema de cultivo em fibra da casca de coco, todos os híbridos são recomendados, exceto o Jab 07#17, enquanto os híbridos Bônus nº 2, Fantasy, Jab 07#26, Jab 07#28 e Jab 07#16 devem ser cultivados em solo.This work aimed check net melon experimental hybrids performance in two cultivation systems. Six experimental hybrids (Jab 07#16, Jab 07#17, Jab 07#23, Jab 07#24, Jab 07#26, and Jab 07#28 and three commercial hybrids (Bônus nº 2, Louis, and Fantasy were evaluated, in two cultivation systems (soil and coconut fiber cultivation. The statistical design used was the randomized blocks, with nine treatments and four replications, and the data analysis was done together. The evaluations were: fruit weight, productivity, transversal fruit diameter, longitudinal fruit diameter, fruit shape index, transversal locule diameter, longitudinal locule diameter, locule shape index, mesocarp thickness, insertion diameter of the stalk's insertion, soluble

  14. Decontamination of electronic waste-polluted soil by ultrasound-assisted soil washing.

    Science.gov (United States)

    Chen, Fu; Yang, Baodan; Ma, Jing; Qu, Junfeng; Liu, Gangjun

    2016-10-01

    Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.

  15. Peatlands and potatoes; organic wetland soils in Uganda

    Science.gov (United States)

    Farmer, Jenny; Langan, Charlie; Gimona, Alessandro; Poggio, Laura; Smith, Jo

    2017-04-01

    Land use change in Uganda's wetlands has received very little research attention. Peat soils dominate the papyrus wetlands of the south west of the country, but the areas they are found in have been increasingly converted to potato cultivation. Our research in Uganda set out to (a) document both the annual use of and changes to these soils under potato cultivation, and (b) the extent and condition of these soils across wetland systems. During our research we found it was necessary to develop locally appropriate protocols for sampling and analysis of soil characteristics, based on field conditions and locally available resources. Over the period of one year we studied the use of the peat soil for potato cultivation by smallholder farmers in Ruhuma wetland and measured changes to surface peat properties and soil nutrients in fields over that time. Farmer's use of the fields changed over the year, with cultivation, harvesting and fallow periods, which impacted on soil micro-topography. Measured soil properties changed over the course of the year as a result of the land use, with bulk density, nitrogen content, potassium and magnesium all reducing. Comparison of changes in soil carbon stocks over the study period were difficult to make as it was not possible to reach the bottom of the peat layer. However, a layer of fallow weeds discarded onto the soil prior to preparation of the raised potato beds provided a time marker which gave insight into carbon losses over the year. To determine the peatland extent, a spatial survey was conducted in the Kanyabaha-Rushebeya wetland system, capturing peat depths and key soil properties (bulk density, organic matter and carbon contents). Generalised additive models were used to map peat depth and soil characteristics across the system, and maps were developed for these as well as drainage and land use classes. Comparison of peat cores between the two study areas indicates spatial variability in peat depths and the influence of

  16. Effects of indoor and outdoor cultivation conditions on 137 Cs concentrations in cultivated mushrooms produced after the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi

    2017-01-01

    Radiocesium ( 134 Cs and 137 Cs) in mushrooms has been a matter of public concern after the accident at Fukushima Daiichi Nuclear Power Plant. To minimize the internal dose by ingestion of cultivated mushrooms, the Japanese government set a guideline level with respect to the radiocesium concentration in bed-logs and mushroom beds; however, the effects of indoor and outdoor cultivation methods on radiocesium concentrations in cultivated mushrooms were not clear. The effects of indoor and outdoor cultivation on the radiocesium concentrations in mushroom were examined using published food monitoring data. 137 Cs concentration data in Lentinula edodes from the Aizu area in Fukushima Prefecture and seven prefectures outside Fukushima were used for the analysis. No statistically significant 137 Cs concentration differences were found between these two cultivation methods. Using detected 137 Cs data in shiitake, the geometric means from each prefecture were less than one-quarter of the standard limit (100 Bq kg -1 ) for total radiocesium under both cultivation conditions. It was suspected that re-suspended radiocesium might have been taken up by mushrooms or that radiocesium might have been absorbed into the mushrooms from the soil in the outdoor cultures. However, neither effect was significant for cultivated mushrooms in the areas examined. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Effects of long-term Salix cultivation on total and plant-available contents of Cadmium in the soil - a pilot study

    International Nuclear Information System (INIS)

    Eriksson, Jan; Ledin, S.

    1996-02-01

    The aim of the project was to study how total and plant-available contents of Cadmium in the soil are affected by the large amounts of Cadmium that are removed during the harvesting of Salix. Eight long-term Salix plantations, 8-30 years old, were chosen. At each place soil samples were taken in 4 areas in the stands of Salix and in 4 neighbouring areas with comparable soil conditions, but without Salix (reference areas). Cd in three fractions of different bonding strength were determined in the soil samples. The fractions roughly correspond to the total concentration, the exchangeable fraction, and the fraction dissolved in the soil solution. The result showed a relatively minor effect of the Salix plantation on the total concentrations. In six of eight cases, however, the concentrations tended to be lower in the Salix plantations than in the reference areas. When consideration was given to certain pH differences, the exchangeable, and particularly the most soluble fraction, showed a clear tendency for concentrations to be lower in the Salix stands than in the reference areas.The concentrations in stem samples from growing stands were generally lower than those measured in harvest-mature stems in other studies. The concentrations in foliage were of the same magnitude as those in the stems, implying that there is an important return of Cd to the soil at leaf-fall. The negligible effect on the total content in the soil may depend on uptake occurring both in the topsoil and in the subsoil. Re-circulation via the leaves will also result in redistribution of Cd from the subsoil to the topsoil, compensating the uptake from the topsoil. The conclusion reached was that Salix cultivation results in a reduction of the plant-available Cd in the soil, but the effect is not concentrated to the topsoil. 13 refs, 5 tabs, 4 figs

  18. Accumulation of steroid hormones in soil and its adjacent aquatic environment from a typical intensive vegetable cultivation of North China.

    Science.gov (United States)

    Zhang, Feng-Song; Xie, Yun-Feng; Li, Xue-Wen; Wang, Dai-Yi; Yang, Lin-Sheng; Nie, Zhi-Qiang

    2015-12-15

    Steroid hormones released from manure agricultural application are a matter of global concern. The residual levels of steroid hormones were studied in a typical intensive vegetable cultivation area in northeast China, with a long history of heavy manure application. Seven steroids (estrone, 17α-estradiol, 17β-estradiol, estriol, testosterone, androstendione and progesterone) were analyzed from soil sampled from vegetable greenhouses, from sediments and water from the adjacent drainage ditch and from the groundwater. The results showed that target steroids were detected in the soil samples, with detection frequencies varying from 3.13 to 100%. The steroid concentrations varied substantially in soils, ranging from below the detection limit to 109.7μg·kg(-1). Three steroids-progesterone, androstendione and estrone-were found to have relatively high residue concentrations in soil, with maximum concentrations of 109.7, 9.83 and 13.30μg·kg(-1), respectively. In adjacent groundwater, all the steroids, with the exception of estrone, were detected in one or more of the 13 groundwater samples. The concentrations of steroids in groundwater ranged from below the method detection limit to 2.38ng·L(-1). Six of the seven (excluding androstendione) were detected in drainage ditch water samples, with concentrations ranging from below the detection limit to 14ng·L(-1). Progesterone, androstendione and estrone accumulated relatively easily in soils; their concentrations in groundwater were lower than those of other steroids. The concentrations of testosterone and estriol were relatively low in soil, while in groundwater were higher than those of other steroids. The residual levels of steroids in soil and groundwater showed a clear spatial variation in the study area. The residual levels of steroid hormones in soil varied substantially between differently planted greenhouses. Copyright © 2015. Published by Elsevier B.V.

  19. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils.

    Science.gov (United States)

    Galal, Tarek M

    2016-07-01

    The present study was carried out to investigate the heavy metal concentration accumulated by summer squash cultivated in contaminated soil and their health hazards for public consumers at south Cairo Province, Egypt. Soil and plants were sampled from contaminated and reference farms, using 1 m(2) quadrats, for biomass estimation and nutrient analysis. The daily intake of metals (DIM) and health risk index (HRI) were estimated. Significant differences in soil variables (except As) between contaminated and reference sites were recognized. Summer squash showed remarkable reduction in fresh and dry biomass, fruit production, and photosynthetic pigments under pollution stress. The inorganic and organic nutrients in the aboveground and belowground parts showed significant reduction in contaminated site. In addition, higher concentrations of heavy metals were accumulated in the edible parts and roots more than shoots. The bioaccumulation factor of summer squash for investigated metals was greater than 1, while the translocation factor did not exceed unity in both contaminated and reference sites. The DIM for all investigated metals in the reference site and in the contaminated site (except Fe and Mn) did not exceed 1 in both adults and children. However, HRI of Ni and Mn in the reference site and Pb, Cd, Cu, Ni, Fe, Mn, and Zn in the contaminated one exceeded unity indicating great potential to pose health risk to the consumers. The author recommends that people living in the contaminated area should not eat large quantities of summer squash, so as to avoid excess accumulation of heavy metals in their bodies.

  20. Instrumentation of Lysimeter Experiments and Monitoring of Soil Parameters

    International Nuclear Information System (INIS)

    Schmid, T.; Tallos, A.; Millan, R.; Vera, R.; Recreo, F.

    2004-01-01

    This study forms part of the project Mercurio and Recuperation de Terrenos Afectados por Mercurio Ambiental (RETAMA) , which determines the behaviour of mercury in the soil-plant system within the area of Almaden. The objective of this work is to instrument lysimeters with a set of electronic sensors to monitor physical and chemical soil parameters (moisture content, soil temperature, soil water matrix potential, Eh and pH) over a period of a complete vegetation cycle for selected crops. Physical and chemical soil analyses have been carried out on samples two soil profiles marking the extreme perimeter where the lysimeters were extracted. The monitoring data obtained every half hour show that the physicochemical conditions of the soils in the lysimeter can be correlated with the type of cultivation in the lysimeters. The results for parameters such as soil water matrix potential and the soil temperature reflect the diurnal changes; and fluctuations of the Eh can be related to the biological activities in the soils and are within oxid and sub oxid conditions. Slight fluctuations have been observed for the pH and constant volumetric moisture content is maintained during the period of no hydric stress. (Author) 16 refs

  1. Instrumentation of Lysimeter Experiments and Monitoring of Soil Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, T.; Tallos, A.; Millan, R.; Vera, R.; Recreo, F.

    2004-07-01

    This study forms part of the project Mercurio and Recuperation de Terrenos Afectados por Mercurio Ambiental (RETAMA), which determines the behaviour of mercury in the soil-plant system within the area of Almaden. The objective of this work is to instrument lysimeters with a set of electronic sensors to monitor physical and chemical soil parameters (moisture content, soil temperature, soil water matrix potential. Eh and pH) over a period of a complete vegetation cycle for selected crops. Physical and chemical soil analyses have been carried out on samples two soil profiles marking the extreme perimeter where the lysimeters were extracted. The monitoring data obtained every half hour show that the physicochemical conditions of the soils in the lysimeter can be correlated with the type of cultivation in the lysimeters. The results for parameters such as soil water matrix potential and the soil temperature reflect the diurnal changes; and fluctuations of the Eh can be related to the biological activities in the soils and are within oxid and suboxic conditions. Slight fluctuations have been observed for the pH and constant volumetric moisture content is maintained during the period of no hydric stress. (Author) 16 refs.

  2. Content of nitrates in potato tubers depending on the organic matter, soil fertilizer, cultivation simplifications applied and storage

    Directory of Open Access Journals (Sweden)

    Jaroslaw Pobereżny

    2015-03-01

    Full Text Available Nitrates naturally occur in plant-based food. Nitrates content in consumable plant organs is small and should not raise concern provided that the recommended fertilization and harvest terms of the original plants are observed. The aim was to determine the effect of the application of various organic matter of soil fertilizer and simplifications in growing potato (Solanum tuberosum L. on the content of nitrates in the tubers of mid-early cultivar 'Satina' after harvest and after 6-mo of storage. Introducing cultivation simplification involves limiting mineral fertilization by 50% as well as chemical protection limitation. The soil fertilizer was used: 0.6 (autumn, 0.3 (spring, and 0.3 L ha-1 (during the vegetation period. The content of nitrates, was determined with the use of the ion-selective method (multi-purpose computer device CX-721, Elmetron. The lowest amount of nitrates was recorded in the tubers from the plots without the application of organic matter with a 50% rate of mineral fertilization with soil fertilizer (120.5 mg kg-1 FW. The use of varied organic matter resulted in a significant increase in the content of nitrates in tubers and the lowest effect on their accumulation was reported for straw. The soil fertilizer used significantly decreased the content of nitrates in tubers by 15% for 100% NPK and 10.4% for 50% NPK. After 6-mo storage, irrespective of the experiment factors, the content of nitrates decreased in the fertilization experiment by 26% and in the experiment with a limited protection - by 19.9%.

  3. Microbial Diversity of Browning Peninsula, Eastern Antarctica Revealed Using Molecular and Cultivation Methods.

    Science.gov (United States)

    Pudasaini, Sarita; Wilson, John; Ji, Mukan; van Dorst, Josie; Snape, Ian; Palmer, Anne S; Burns, Brendan P; Ferrari, Belinda C

    2017-01-01

    Browning Peninsula is an ice-free polar desert situated in the Windmill Islands, Eastern Antarctica. The entire site is described as a barren landscape, comprised of frost boils with soils dominated by microbial life. In this study, we explored the microbial diversity and edaphic drivers of community structure across this site using traditional cultivation methods, a novel approach the soil substrate membrane system (SSMS), and culture-independent 454-tag pyrosequencing. The measured soil environmental and microphysical factors of chlorine, phosphate, aspect and elevation were found to be significant drivers of the bacterial community, while none of the soil parameters analyzed were significantly correlated to the fungal community. Overall, Browning Peninsula soil harbored a distinctive microbial community in comparison to other Antarctic soils comprised of a unique bacterial diversity and extremely limited fungal diversity. Tag pyrosequencing data revealed the bacterial community to be dominated by Actinobacteria (36%), followed by Chloroflexi (18%), Cyanobacteria (14%), and Proteobacteria (10%). For fungi, Ascomycota (97%) dominated the soil microbiome, followed by Basidiomycota. As expected the diversity recovered from culture-based techniques was lower than that detected using tag sequencing. However, in the SSMS enrichments, that mimic the natural conditions for cultivating oligophilic "k-selected" bacteria, a larger proportion of rare bacterial taxa (15%), such as Blastococcus, Devosia, Herbaspirillum, Propionibacterium and Methylocella and fungal (11%) taxa, such as Nigrospora, Exophiala, Hortaea , and Penidiella were recovered at the genus level. At phylum level, a comparison of OTU's showed that the SSMS shared 21% of Acidobacteria, 11% of Actinobacteria and 10% of Proteobacteria OTU's with soil. For fungi, the shared OTUs was 4% (Basidiomycota) and <0.5% (Ascomycota). This was the first known attempt to culture microfungi using the SSMS which resulted in

  4. Quantifying soil profile change caused by land use in central Missouri loess hillslopes

    Science.gov (United States)

    Samuel J. Indorante; John M. Kabrick; Brad D. Lee; Jon M. Maatta

    2014-01-01

    Three major challenges are present when studying anthropogenic impacts on soil profile properties: (i) site selection; (ii) sampling and modeling native and cultivated soil-landscape relationships; and (iii) graphically and statistically comparing native and cultivated sites to model soil profile changes. This study addressed those challenges by measuring and modeling...

  5. Environmental and nutritional requirements for tea cultivation

    Directory of Open Access Journals (Sweden)

    Hajiboland Roghieh

    2017-12-01

    Full Text Available Tea (Camellia sinensis is an important beverage crop cultivated in the tropics and subtropics under acid soil conditions. Increased awareness of the health-promoting properties of the tea beverage has led to an increase in its level of consumption over the last decades. Tea production contributes significantly to the economy of several tea-cultivating countries in Asia and Africa. Environmental constrains, particularly water deficiency due to inadequate and/or poorly distributed rainfall, seriously limit tea production in the majority of tea-producing countries. It is also predicted that global climate change will have a considerable adverse impact on tea production in the near future. Application of fertilizers for higher production and increased quality and quantity of tea is a common agricultural practice, but due to its environmental consequences, such as groundwater pollution, the rate of fertilizer application needs to be reconsidered. Cultivation of tea under humid conditions renders it highly susceptible to pathogens and pest attacks. Application of pesticides and fungicides adversely affects the quality of tea and increases health risks of the tea beverage. Organic cultivation as an agricultural practice without using synthetic fertilizers and other chemical additives such as pesticides and fungicides is a sustainable and eco-friendly approach to producing healthy tea. A growing number of tea-producing countries are joining organic tea cultivation programmes in order to improve the quality and to maintain the health benefits of the tea produced.

  6. Quick test for infiltration of arable soils

    OpenAIRE

    Liebl, Boris; Spiegel, Ann-Kathrin

    2018-01-01

    The quick test makes the consequences of soil compaction on water infiltration and the yield of agricultural crops visible. It promotes an understanding of the effects of soil compaction and the importance of soil-conserving cultivation.

  7. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  8. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  9. “Green waste” as a substrate component in Begonia spp. potting cultivation

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Acosta Durán

    2018-01-01

    Full Text Available The forest soil is the main substrate in the production of ornamental plants in pots, but its unlimited extraction causes a negative environmental impact. One alternative for replacing the forest soil is the garden waste, also called “green waste”. The aim of this study was to characterize and determine the optimal dose inclusion of green waste in order to use it as substrate component for begonia (Begonia spp. container cultivation. This experiment was performed in Morelos State, Mexico, in 2015. Physical and chemical laboratory analysis, as well as an agronomic evaluation was performed. Different proportions (100%, 75%, 50%, and 25% of green waste and forest soil, supplemented by a general substrate (coconut fiber and sawdust, 50/50, v/v were mixed. A completely randomized design of eight treatments with eight replications was used. Green waste has similar physicochemical characteristics to forest soil. In the growth and development of begonia plants, the results were statistically equal, between treatments of 100% green waste use and forest soil use in six of the sixteen variables studied, and was superior to other treatments, in one of them. As a result of this study, we reached the following conclusion: that green waste is a material that has the necessary physicochemical characteristics for the Begonia spp. container cultivation, and that if its used as a substrate, it could replace the forest soil.

  10. Concentration of radiocesium in rice, vegetables, and fruits cultivated in evacuation area at Okuma town, Fukushima

    International Nuclear Information System (INIS)

    Ohse, Kenji; Kitayama, Kyo; Kanno, Akira; Suzuki, Chika; Kawatsu, Kencho; Tsukada, Hirofumi; Suenaga, Seiichi; Matsumoto, Kiyoyuki

    2013-01-01

    Rice, vegetables, and fruits were cultivated in the evacuation area at Okuma town, and the radiocesium concentration of the crop samples cultivated in contaminated and decontaminated soil was compared. Decrease of the concentration in every crop by decontamination was observed. The TF of brown rice was higher than previous reports. (author)

  11. Effect of aggregate size and superficial horizon differentiation on the friability index of soils cultivated with sugar cane: a multivariate approach

    Directory of Open Access Journals (Sweden)

    Edgar Alvaro Avila P.

    2015-04-01

    Full Text Available Soil friability is a physical property that provides valuable information for minimizing energy consumption during soil tillage and for preparing the edaphic medium for plant development. Its quantitative determination is generally carried out with aggregates obtained from soil blocks taken at fixed depths of profiles without considering the superficial horizons of the soil. The objective of the this study was to determine the effect of aggregate size and superficial horizon differentiation on the friability index (FI of some soils cultivated with sugar cane in the Geographic Valley of the Cauca River (Colombia, using univariate (CVu and multivariate (CVm coefficients of variation. The FI was evaluated using a compression test with four aggregate-size ranges taken from the Ap and A1 superficial horizons of 182 sampling sites located on 18 sugar cane farms. Of the five types of studied soils (Inceptisols, Mollisols, Vertisols, Alfisols and Ultisols, 7,280 aggregates were collected that were air dried and subsequently dried in a low-temperature oven before determining the tensile strength (TS, which was in turn used to calculate the FI using the coefficient of variation method. This study found that the FI varied with the aggregate size and the soil depth (first two horizons. Only three of the four size ranges initially selected were relevant. The CVm proved to be very useful for the selection of a more relevant value from the confidence interval of the TS from the CVu method for friability and established that the lower limit value (FIi of the TS CVu was the FI value that was closest to the multivariate measurement.

  12. Degradation Processes of Pesticides Used in Potato Cultivations.

    Science.gov (United States)

    Kurek, M; Barchańska, H; Turek, M

    Potato is one of the most important crops, after maize, rice and wheat. Its global production is about 300 million tons per year and is constantly increasing. It grows in temperate climate and is used as a source of starch, food, and in breeding industry.Potato cultivation requires application of numerous agro-technical products, including pesticides, since it can be affected by insects, weeds, fungi, and viruses. In the European Union the most frequently used pesticides in potato cultivations check are: thiamethoxam, lambda-cyhalothrin and deltamethrin (insecticides), rimsulfuron (herbicide) and metalaxyl (fungicide).Application of pesticides improves crop efficiency, however, as pesticides are not totally selective, it affects also non-target organisms. Moreover, the agrochemicals may accumulate in crops and, as a consequence, negatively influence the quality of food products and consumer health. Additional risks of plant protection products are related to their derivatives, that are created both in the environment (soil, water) and in plant organisms, since many of these compounds may exhibit toxic effects.This article is devoted to the degradation processes of pesticides used in potato crop protection. Attention is also paid to the toxicity of both parent compounds and their degradation products for living organisms, including humans. Information about the level of pesticide contamination in the environment (water, soil) and accumulation level in edible plants complement the current knowledge about the risks associated with widespread use of thiamethoxam, lambda-cyhalothrin and deltamethrin, rimsulfuron and metalaxyl in potato cultivation.

  13. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    Science.gov (United States)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  14. Analytical electron microscopy characterization of Fernald soils. Annual report, October 1993--September 1994

    International Nuclear Information System (INIS)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1995-03-01

    A combination of backscattered electron imaging and analytical electron microscopy (AEM) with electron diffraction have been used to determine the physical and chemical properties of uranium contamination in soils from the Fernald Environmental Management Project in Ohio. The information gained from these studies has been used in the development and testing of remediation technologies. Most chemical washing techniques have been reasonably effective with uranyl [U(VI)] phases, but U(IV) phases have proven difficult to remove from the soils. Carbonate leaching in an oxygen environment (heap leaching) has removed some of the U(IV) phases, and it appears to be the most effective technique developed in the program. The uranium metaphosphate, which was found exclusively at an incinerator site, has not been removed by any of the chemical methods. We suggest that a physical extraction procedure (either a magnetic separation or aqueous biphasic process) be used to remove this phase. Analytical electron microscopy has also been used to determine the effect of the chemical agents on the uranium phases. It has also been used to examine soils from the Portsmouth site in Ohio. The contamination there took the form of uranium oxide and uranium calcium oxide phases. Technology transfer efforts over FY 1994 have led to industry-sponsored projects involving soil characterization

  15. Definition of Management Zones for Enhancing Cultivated Land Conservation Using Combined Spatial Data

    Science.gov (United States)

    Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi

    2013-10-01

    The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation

  16. Efeito do boro na nodulação da ervilha cultivada em solos de várzea Boron effects on nodule development in pea plants cultivated in lowland soils

    Directory of Open Access Journals (Sweden)

    Watson Rogério de Azevedo

    2002-08-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do boro na nodulação da ervilha (Pisum sativum L. cv. Torta de Flor Roxa, cultivada em solos de várzea em condições de casa de vegetação, entre maio e julho de 1998. Amostras de Neossolo Flúvico, Gleissolo Háplico, Gleissolo Melânico e Organossolo Mésico artificialmente drenado foram coletadas na camada de 0-20 cm. Essas amostras foram previamente cultivadas com rabanete, e receberam calcário, P, K, S, Cu e Zn e seis doses de B (0,0, 0,25, 0,5, 1,5, 3,0 e 6,0 mg dm-3. Por ocasião do cultivo da ervilha aplicou-se apenas K (100 mg dm-3. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 4x6, com três repetições. Foram cultivadas três plantas por vaso, cujas sementes, na época da semeadura, foram submetidas à inoculação com estirpes de Rhizobium leguminosarum (BR 618 e BR 619. Para verificação da existência de estirpes nativas de rizóbio, cultivaram-se sem inoculação nas sementes, três vasos, de cada solo, que haviam recebido a mesma dose de calcário, a mesma adubação básica e 0,5 mg dm-3 de boro. Aos 45 dias após o plantio, em pleno florescimento, colheu-se o experimento. Não foram observadas estirpes nativas nos solos avaliados. Nos solos Gleissolo Háplico e Organossolo Mésico artificialmente drenado, as doses de B influenciaram a nodulação e a atividade da nitrogenase.The objective of this work was to evaluate the effect of boron on nodule development in pea Pisum sativum L. plants cultivated in lowland soils under greenhouse conditions from May to July, 1998. Samples of Alluvial Soil, Low Humic Gley, Humic Gley and artificially drained Bog Soil were collected from a layer 0-20 cm deep. The samples were previously cultivated with radish plants that received lime, P, K, S, Cu and Zn and doses of B (0, 0.25, 0.5, 1.5, 3.0 and 6.0 mg dm-3. Before pea cultivation only K was applied (100 mg dm-3. The experimental design was totally

  17. Action of Canavalia ensiformis in remediation of contaminated soil with sulfentrazone

    Directory of Open Access Journals (Sweden)

    João Carlos Madalão

    Full Text Available ABSTRACT This study evaluated the jack bean (Canavalia ensiformis as a potential remediator of sulfentrazone in the soil. The experiment was conducted under field conditions in a complete randomised block design. The treatments consisted of soils with and without herbicide application as well as the absence and presence of C. ensiformis cultivation associated with incorporation into the soil or the removal of shoots of C. ensiformis. Sorghum was planted as a bioindicator to evaluate the remediation efficiency of jack bean. Sulfentrazone application in areas without C. ensiformis cultivation decreased plants stands, productivity, and height of sorghum compared to treatments where C. ensiformis was cultivated. Sorghum cultivated in succession to C. ensiformis in areas contaminated with sulfentrazone resulted in dry matter production, plants numbers, productivity, and height of sorghum equivalent to uncontaminated areas. The results of this research indicate that the use of jack bean for the bioremediation of sulfentrazone treated soils would provide greater security in the planting of susceptible species in areas where this herbicide has been applied. The cultivation of C. ensiformis in contaminated areas may reduce the risk of environmental impacts caused by sulfentrazone.

  18. PHYSICAL AND CHEMICAL DEGRADATION OF AGRICULTURAL SOILS AT SAN PEDRO LAGUNILLAS, NAYARIT

    Directory of Open Access Journals (Sweden)

    Gelacio Alejo Santiago

    2012-08-01

    Full Text Available The objective of this study was to evaluate the degradation to propose strategies for remediation and recovery of agricultural soils of San Pedro Lagunillas, Nayarit, Mexico; considering physical and chemical properties. Soils maintained with natural vegetation but slightly grazed and agricultural soils used for more than 20 years for the production of several crops, were compared. Eight sites were studied (four cultivated and four uncultivated, each agricultural lands (cultivated was located at a distance of 30 to 80 m from its counterpart or soil with natural vegetation (uncultivated. Samples were obtained from the following layers: 0 to 10, 10 to 20 and 20 to 30 cm. The variables evaluated were: particles smaller than 2 mm, pH, organic matter, extractable phosphorus, exchangeable potassium, calcium and magnesium; soil texture and water infiltration rate. An analysis of variance and Tukey means test (α = 0.05 was applied. It was concluded that traditional farming practices led to adverse changes in soil chemical properties, in the upper 20 cm soil layer. Physical properties were also affected because infiltration film and water infiltration rate decreased about 50% in cultivated soils. The overall results in this work evident the need to take appropriate measures to prevent the physical and chemical degradation of cultivated soils in order to preserve this resource and maintain their productivity.

  19. Occurrence and distribution of trifluralin, ethalfluralin, and pendimethalin in soils used for long-term intensive cotton cultivation in central Greece.

    Science.gov (United States)

    Karasali, Helen; Pavlidis, George; Marousopoulou, Anna; Ambrus, Arpad

    2017-10-03

    In the present study, a soil monitoring program was undertaken in Greek cotton cultivated areas in 2012. Twenty-seven soil samples were collected from the entire Thessaly plain in early summer of 2012, corresponding to approximately three months (current use of pendimethalin), up to one year (for the banned ethalfluralin), and three years (for the also banned trifluralin), after the last dinitroaniline application. Low but not negligible levels of dinitroanilines were detected, ranging from 0.01 to 0.21 μg g -1 d.w. for trifluralin and 0.01-0.048 μg g -1 d.w. for pendimethalin, respectively. Trifluralin was the herbicide most frequently detected (44.4%). The high historic application of trifluralin and its high persistence and accumulation potential is in line with the abundance of the detected residues. The present data indicate that soil samples contain extractable residues of banned trifluralin, but based on the comparison of the theoretical PECplateau for trifluralin (0.277 µg g -1 ) and the maximum Measured Environmental Concentration, it was concluded that the detected residues should be attributed to previous years' application. The latter suggested the need for continual monitoring of the dinitroaniline family of pesticides, including the banned substances, aiming thus to an improved environmental profile for agricultural areas.

  20. Influence of indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary; Kwon, Soon-lk

    2010-01-01

    This study investigated the influence of Indian mustard (Brassica juncea) root exudation on soil solution properties (pH, dissolved organic carbon (DOC), metal solubility) in the rhizosphere using a rhizobox. Measurement was conducted following the cultivation of Indian mustard in the rhizobox filled four different types of heavy metal contaminated soils (two alkaline soils and two acidic soils). The growth of Indian mustard resulted in a significant increase (by 0.6 pH units) in rhizosphere soil solution pH of acidic soils and only a slight increase (soil solution varied considerably amongst different soils, resulting in significant changes to soil solution metals in the rhizosphere. For example, the soil solution Cd, Cu, Pb, and Zn concentrations increased in the rhizosphere of alkaline soils compared to bulk soil following plant cultivation. In contrast, the soluble concentrations of Cd, Pb, and Zn in acidic soils decreased in rhizosphere soil when compared to bulk soils. Besides the influence of pH and DOC on metal solubility, the increase of heavy metal concentration having high stability constant such as Cu and Pb resulted in a release of Cd and Zn from solid phase to liquid phase.

  1. PM2.5 and PM10 Emission from agricultural soils by wind erosion

    Science.gov (United States)

    Soil tillage and wind erosion are a major source of particulate matter less than 2.5 and 10 µm (PM2.5 and PM10) emission from cultivated soil. Fifteen cultivated soils collected from 5 states were tested as crushed (<2.0 mm) and uncrushed (natural aggregation) at 8, 10, and 13 m s-1 wind velocity in...

  2. Progress towards GlobalSoilMap.net soil database of Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog

    2012-01-01

    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This study...... presents recent advancements in Digital Soil Mapping (DSM) activities in Denmark with an example of soil clay mapping using regression-based DSM techniques. Several environmental covariates were used to build regression rules and national scale soil prediction was made at 30 m resolution. Spatial...... content mapping, the plans for future soil mapping activities in support to GlobalSoilMap.net project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps....

  3. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  4. Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: comparison between greenhouse and field experiments.

    Science.gov (United States)

    Pelfrêne, Aurélie; Kleckerová, Andrea; Pourrut, Bertrand; Nsanganwimana, Florien; Douay, Francis; Waterlot, Christophe

    2015-02-01

    The in situ stabilization of metals in soils using plants with great biomass value is a promising, cost-effective, and ecologically friendly alternative to manage metal-polluted sites. The goal of phytostabilization is to reduce the bioavailable concentrations of metals in polluted soil and thus reduce the risk to the environment and human health. In this context, this study aimed at evaluating Miscanthus × giganteus efficiency in phytostabilizing metals on three contaminated agricultural sites after short-term exposure under greenhouse conditions and after long-term exposure under field conditions. Particular attention was paid to the influence of Miscanthus cultivation on (i) Cd, Pb, and Zn fractionation using sequential extractions and (ii) metal bioaccessibility using an in vitro gastrointestinal digestion test. Data gave evidence of (i) different behaviors between the greenhouse and the field; (ii) metal redistribution in soils induced by Miscanthus culture, more specifically under field conditions; (iii) higher environmental availability for Cd than for Pb and Zn was found in both conditions; and (iv) overall, a higher bioaccessible fraction for Pb (about 80 %) and Cd (65-77 %) than for Zn (36-52 %) was recorded in the gastric phase, with a sharp decrease in the intestinal phase (18-35 % for Cd, 5-30 % for Pb, and 36-52 % for Zn). Compared to soils without culture, the results showed that phytostabilization using Miscanthus culture provided evidence for substantial effects on oral bioaccessibility of Cd, Pb, and Zn.

  5. Spatial distribution models of erosion on slopes cultivated with vineyards

    International Nuclear Information System (INIS)

    Armaez, J.; Ortigosa, L.; Ruiz-Falno, P.; Llorente, J. A.; Lasanta, T.

    2009-01-01

    Soils cultivated with vineyards have high rates of erosion. In the Mediterranean area, this is related to the environmental characteristics and the management of cultivation techniques. Indeed, in this region the rainfall intensity and the location of vineyards on slopes favour the erosive activity of runoff. The total area of vineyards in La Rioja (Spain) is currently almost 40,000 ha. Vineyards are located on hillsides between 400 and 60 m.a.s.l. Of the vineyards of La Rioja 81,7% are planted on slopes with a gradient between 3 degree centigrade and 9 degree centigrade. (Author) 5 refs.

  6. Effect of three Electron Shuttles on Bioreduction of Ferric Iron in two Acidic and Calcareous soils

    Directory of Open Access Journals (Sweden)

    Setareh Sharifi

    2017-01-01

    Full Text Available Introduction: Iron cycle is one of the most important biogeochemical processes which affect the availability of iron in soils. Ferric iron oxides are the most abundant forms of iron in soils and sediments. Ferric iron is highly insoluble at circumneutral pH. Present investigations have shown that the structural ferric iron bound in clay minerals is reduced by some microorganisms. Anaerobic bacteria reduce ferric iron which bound to soil clay minerals under anaerobic conditions. They have the ability to use ferric iron as a terminal electron acceptor. Many studies presented that dissimilatory iron reducing bacteria (DIRB mediate the transfer of electrons from small organic molecules like acetate and glucose to various humic materials (electron shuttles which then pass electrons abiotically to ferric iron oxyhydroxide and phyllosilicate minerals. Electron shuttles like AQDS, a tricyclic quinone, increase the rate of iron reduction by iron reducing bacteria on sites of iron oxides and oxyhydroxides. By increasing the rate of bioreduction of ferric iron, the solubility and availability of iron enhanced meaningfully. Royer et al. (2002 showed that bioreduction of hematite (common iron mineral in soils increased more than three times in the presence of AQDS and Shewanella putrefaciens comparedto control treatments. Previous works have mostly used synthetic minerals as electron acceptor in bioreduction process. Furthermore, the effect of quinones as electron acceptor for microorganisms were studied with poorly crystalline ferric iron oxides . The main objective of this study was to study the effect of AQS, humic acid and fulvic acid (as electron shuttle and Shewanella sp. and Pseudomonas aeruginosa, on bioreduction of native ferric iron in two acidic and calcareous soils. Materials and Methods: An experiment was conducted in a completely randomized design with factorial arrangement and three replications in vitro condition. The soil samples collected

  7. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure.

    Science.gov (United States)

    Ferri, Roberta; Hashim, Dana; Smith, Donald R; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G

    2015-06-15

    For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thorough washing of vegetables

  8. Absorption of radioelements from the soil by various vegetables grown under normal condition of cultivation; Absorption de radioelements du sol par divers legumes cultives dans les conditions de la pratique

    Energy Technology Data Exchange (ETDEWEB)

    Huguet; Delas; Delmas; Demias; Flanzy; Benard; Puyaubert; Fioramonti; Marty; Barbier; Le Blaye; Michon

    1961-07-01

    Various vegetables were cultivated in 4 different types of soil, having received, or receiving periodically, strontium-90 or caesium-137 in fairly strong doses, in order to facilitate the measurement of the fraction of these radioelements taken up by the vegetables. In sandy soil, whole plants absorbed 2 to 3 per cent of Sr and 3 to 9 parts per thousand of Cs approximately; in clay soils, 1 to 6 parts per thousand of Sr and 0,2 to 2 parts per thousand of Cs; Cs, however, migrates relatively more than Sr in fruits or storage organs. The experiments confirmed that the quotient of the ratios {sup 90}Sr/Ca in the vegetables and in the ploughed layer varies comparatively slightly; these would be a certain safety margin in assuming this ratio to be slightly above unity (to be confirmed after homogenising the ploughed layer). In view of the fact that in an arid climate it is necessary to apply several tens of litres of irrigation water (up to 50) in order to produce 1 kg of vegetables (fresh whole plants) and that furthermore, the radioelements of the residue from the crop harvest return to the soil, it can be expected that the limit of accumulation 1 kg of certain vegetables will contain as much of each radioelement as several tens of litres of irrigation water. (author) [French] Divers legumes ont ete cultives dans 4 types de sols differents, ayant recu ou recevant periodiquement du strontium-90 ou du cesium-137, a doses relativement fortes, de maniere a faciliter la mesure de la fraction de ces radioelements absorbee par les legumes. En sol sableux, les plantes entieres ont absorbe 2 a 3 pour cent de Sr et 3 a 9 pour mille de Cs environ, en sol argileux, 1 a 6 pour mille de Sr et 0,2 a 2 pour mille de Cs; mais Cs migre relativement plus que Sr dans les fruits ou les organes de reserve. Les experiences ont confirme que le quotient des rapports {sup 90}Sr/Ca dans les legumes et dans la couche labouree est relativement peu variable; on conserverait une certaine marge de

  9. Absorption of radioelements from the soil by various vegetables grown under normal condition of cultivation; Absorption de radioelements du sol par divers legumes cultives dans les conditions de la pratique

    Energy Technology Data Exchange (ETDEWEB)

    Huguet,; Delas,; Delmas,; Demias,; Flanzy,; Benard,; Puyaubert,; Fioramonti,; Marty,; Barbier,; Blaye, Le; Michon,

    1961-07-01

    Various vegetables were cultivated in 4 different types of soil, having received, or receiving periodically, strontium-90 or caesium-137 in fairly strong doses, in order to facilitate the measurement of the fraction of these radioelements taken up by the vegetables. In sandy soil, whole plants absorbed 2 to 3 per cent of Sr and 3 to 9 parts per thousand of Cs approximately; in clay soils, 1 to 6 parts per thousand of Sr and 0,2 to 2 parts per thousand of Cs; Cs, however, migrates relatively more than Sr in fruits or storage organs. The experiments confirmed that the quotient of the ratios {sup 90}Sr/Ca in the vegetables and in the ploughed layer varies comparatively slightly; these would be a certain safety margin in assuming this ratio to be slightly above unity (to be confirmed after homogenising the ploughed layer). In view of the fact that in an arid climate it is necessary to apply several tens of litres of irrigation water (up to 50) in order to produce 1 kg of vegetables (fresh whole plants) and that furthermore, the radioelements of the residue from the crop harvest return to the soil, it can be expected that the limit of accumulation 1 kg of certain vegetables will contain as much of each radioelement as several tens of litres of irrigation water. (author) [French] Divers legumes ont ete cultives dans 4 types de sols differents, ayant recu ou recevant periodiquement du strontium-90 ou du cesium-137, a doses relativement fortes, de maniere a faciliter la mesure de la fraction de ces radioelements absorbee par les legumes. En sol sableux, les plantes entieres ont absorbe 2 a 3 pour cent de Sr et 3 a 9 pour mille de Cs environ, en sol argileux, 1 a 6 pour mille de Sr et 0,2 a 2 pour mille de Cs; mais Cs migre relativement plus que Sr dans les fruits ou les organes de reserve. Les experiences ont confirme que le quotient des rapports {sup 90}Sr/Ca dans les legumes et dans la couche labouree est relativement peu variable; on conserverait une certaine marge de

  10. Closing the water and nutrient cycles in soilless cultivation systems

    NARCIS (Netherlands)

    Beerling, E.A.M.; Blok, C.; Maas, van der A.A.; Os, van E.A.

    2014-01-01

    Soilless cultivation systems are common in Dutch greenhouse horticulture, i.e., less than 20% of the greenhouse area is still soil grown. For long, it was assumed that in these so-called closed systems the emission of nutrients and plant protection products (PPPs) was close to zero. However, Water

  11. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  12. Structure of Fungal Communities in Sub-Irrigated Agricultural Soil from Cerrado Floodplains

    Directory of Open Access Journals (Sweden)

    Elainy Cristina A. M. Oliveira

    2016-05-01

    Full Text Available This study aimed to evaluate the influence of soybean cultivation on the fungal community structure in a tropical floodplain area. Soil samples were collected from two different soybean cropland sites and a control area under native vegetation. The soil samples were collected at a depth of 0–10 cm soil during the off-season in July 2013. The genetic structure of the soil fungal microbial community was analyzed using the automated ribosomal intergenic spacer analysis (ARISA technique. Among the 26 phylotypes with abundance levels higher than 1% detected in the control area, five were also detected in the area cultivated for five years, and none of them was shared between the control area and the area cultivated for eight years. Analysis of similarity (ANOSIM revealed differences in fungal community structure between the control area and the soybean cropland sites, and also between the soybean cropland sites. ANOSIM results were confirmed by multivariate statistics, which additionally revealed a nutrient-dependent relation for the fungal community structure in agricultural soil managed for eight consecutive years. The results indicated that land use affects soil chemical properties and richness and structure of the soil fungal microbial community in a tropical floodplain agricultural area, and the effects became more evident to the extent that soil was cultivated for soybean for more time.

  13. Utilization of organic fertilizer to increase paddy growth and productivity using System of Rice Intensification (SRI method in saline soil

    Directory of Open Access Journals (Sweden)

    V . O . Subardja

    2016-01-01

    Full Text Available Soil salinity has negative effect on soil biodiversity as well as microbial activities. Hence, rice growth also effected by salinity. Application of organic fertilizer and adoption of System of Rice Intensification (SRI cultivation might improve the (biological soil properties and increase rice yield. The aim of this study was to evaluate the effect of two different rice cultivation methods namely conventional rice cultivation method and System of Rice Intensification (SRI rice cultivation method and two kinds organic fertilizer on improvement of soil biological properties and rice yield. In this study, a split plot experimental design was applied where rice cultivation method (conventional and SRI was the main plot and two kinds of organic fertilizer (market waste and rice straw was the sub plot. The treatments had four replicates. The results showed that SRI cultivation with market waste organic fertilizer could increase soil biological properties (population of microbe, fungi and soil respiration. The same treatment also increased rice growth and production. Combination of SRI and market waste organic fertilizer yielded the highest rice production (7.21 t/ha.

  14. Effects of soil stripping and dressing for decontamination of radioactive materials on soil fertility of agricultural land

    International Nuclear Information System (INIS)

    Yoshino, Namiko; Takahashi, Yoshihiko; Kobayashi, Hiroyuki; Saitou, Kunihito

    2015-01-01

    Farms that were highly contaminated with radioactive materials following the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power plant accident were decontaminated by removing topsoil and subsequently dressing with fresh soil. We investigated the chemical properties of soils following such decontamination on farms in Iitate village, Fukushima. The nitrogen content of dressed soil was considerably lower than that of the subsoil that was not stripped for decontamination, as a result of which the amount of dressed soil greatly affected the soil fertility of decontaminated farms. The potassium (K) content of soil differs markedly depending on the type of soil dressing material used; accordingly, the type of soil dressing material affected the soil K content on decontaminated farms. On most of the decontaminated farms where sandy soils were used as the soil dressing material, soil exchangeable K contents were less than 25 mg K_2O/100 g, which is the criterion value for inhibiting cesium absorption in rice and soybean cultivation. However, even in the soil dressing material from agricultural land, soil K content after soil dressing was generally lower than that before soil dressing. During fallow management and at the restart of cultivation on decontaminated farms, it is important to know in advance the chemical properties of soil and take the necessary measures based on this information. (author)

  15. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    International Nuclear Information System (INIS)

    Pramanik, Prabhat; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2014-01-01

    Combination of leguminous and non-leguminous plant residues are preferably applied in rice paddy soils to increase the rate of organic matter mineralization and to improve plant growth. However, organic matter addition facilitates methane (CH 4 ) emission from rice paddy soil. Mineralization of organic nitrogen (N) increases NO 3 –N concentrations in soil, which are precursors for the formation of nitrous oxide (N 2 O). However, N 2 O is a minor greenhouse gas emitted from submerged rice field and hence is not often considered during calculation of total global warming potential (GWP) during rice cultivation. The hypothesis of this study was that fluxes of N 2 O emissions might be changed after removal of flooded water from rice field and the effect of cover crops on N 2 O emissions in the fallow season might be interesting. However, the effects of N-rich plant residues on N 2 O emission rates in the fallow season and its effect on annual GWP were not studied before. In this experiment, combination of barley (non-leguminous) and hairy vetch (leguminous) biomasses were applied at 9 Mg ha −1 and 27 Mg ha −1 rates in rice paddy soil. Cover crop application significantly increased CH 4 emission flux while decreased N 2 O emissions during rice cultivation. The lowest N 2 O emission was observed in 27 Mg ha −1 cover crop treated plots. Cover crop applications increased N contents in soil aggregates especially in smaller aggregates (< 250 μm), and that proportionately increased the N 2 O emission potentials of these soil aggregates. Fluxes of N 2 O emissions in the fallow season were influenced by the N 2 O emission potentials of soil aggregates and followed opposite trends as those observed during rice cultivation. Therefore, it could be concluded that the doses of cover crop applications for rice cultivation should not be optimized considering only CH 4 , but N 2 O should also be considered especially for fallow season to calculate total GWP. - Highlights:

  16. Phosphorus fertilization in sugarcane cultivation under different soil managements

    OpenAIRE

    Sousa Junior, Paulo R. de; Brunharo, Caio A. C. G.; Furlani, Carlos E. A.; Prado, Renato de M.; Maldonado Júnior, Walter; Zerbato, Cristiano

    2017-01-01

    ABSTRACT Soil preparation along with its chemical adjustment is the most important step in sugarcane plantation, especially because it provides proper conditions for plant development. The objective of the present research was to evaluate sugarcane response to the application of different phosphorus doses and their location, associated with both minimum soil tillage and conventional soil tillage. The experiment was conducted in a split-split-plot randomized block design, where the main plots ...

  17. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil.

    Science.gov (United States)

    Gonzalez, Emmanuel; Brereton, Nicholas J B; Marleau, Julie; Guidi Nissim, Werther; Labrecque, Michel; Pitre, Frederic E; Joly, Simon

    2015-10-12

    High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.

  18. The impact of informal irrigation practices on soil drainage condition, soil pollution and land suitability for agriculture in El Saf area of El Giza Governorate

    Directory of Open Access Journals (Sweden)

    Hanan E.M. El Azab

    2015-12-01

    Full Text Available The study area was selected in El Saf District of El Giza Governorate in Egypt, covering 21461.4 ha of Nile sediments and their outskirts of alluvial higher and lower terraces. The aim of this study was to assess the impact of informal irrigation practices on drainage deterioration, soil pollution and land suitability for agricultural use using the satellite LDCM data 2013. From the lower alluvial terraces (partly cultivated using wastewater, the drainage flows westward via descending slopes resulting in land deterioration in both the alluvial lower terraces and alluvial plain of River Nile. The drainage conditions are excessively drained soils in the alluvial upper terraces within soils of Typic Haplocalcids, sandy skeletal, but in the lower terraces it partly occurred within soils of Typic Torriorthents, sandy skeletal. Moderately well drained soils occurred in soils of Typic Torriorthents, sandy in the alluvial lower terraces, while in the alluvial plain of Nile sediments are Sodic Haplotorrerts, fine. Poorly drained soils in the lower alluvial terraces have soils of Typic Epiaquents, sandy associated with Sodic Psammaquents and Aquic Haplocalcids, coarse loamy, while in the alluvial plain of River Nile the soils are Halic Epiaquerts, fine. Very poorly drained soils (submerged areas are scattered spots in both the lower alluvial terraces and the alluvial plain. In the alluvial plain of River Nile, 1967.1 ha become not suitable for the traditional cultivated crops, while in the alluvial terraces 3251.0 ha are not suitable for the proposed cultivation of Jojoba plants. Heavy metals of Cadmium (Cd, Cobalt (Co, Lead (Pb and Nickel (Ni were added to the soil surface and sub-surface in the irrigated areas by wastewater in the lower alluvial terraces (moderately well drained soils, but Cd and Co exceeded the standards of permissible total concentrations in these soils. The same metals were added to soil sub-surface layers in the alluvial plain

  19. Traditional pattern of cashew cultivation : A lesson from Sumenep-Madura, Indonesia

    Science.gov (United States)

    Jadid, Nurul; Sutikno, Dewi, Dyah Santhi; Nurhidayati, Tutik; Abdulgani, Nurlita; Muzaki, Farid Kamal; Arraniry, Byan Arasyi; Mardika, Rizal Kharisma; Rakhman, R. Yuvita

    2017-11-01

    Belonging to the Anacardiaceae family, the cashew tree (Anacardium Occidentale, Linn.) is one of the important tropical plants that possess high economic value. This plant is commonly grown in Indonesian regions including Sumenep, Madura, where the red sandy loam type of soil is commonly present. This study aims to obtain rough data on the pattern of cashew cultivation and identify the cashew cultivation knowledge of local communities. Data were taken in Bringin village, Sumenep-Madura. Our field survey showed that the cashew's cultivation pattern in this village applies the so-called traditional organic farming. Cashew trees are planted along the boundaries of the owner's farm field, functioning as a fence of their farm. Nevertheless, our survey also indicated that this pattern of cultivation is still below standard of cultivation. The planting distance between the cashew trees with one another is relatively close (< 5 meters), causing the cashew branches to overlap with each other. Moreover, we observed that there was no rejuvenation of old cashew trees. Finally, knowledge of the community about post-harvest processing is limited. Therefore, we suggest that educating the community about good standard cashew cultivation is required to improve productivity as well as the quality of cashew nuts.

  20. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    OpenAIRE

    Daniel F. de Carvalho; Eliete N. Eduardo; Wilk S. de Almeida; Lucas A. F. Santos; Teodorico Alves Sobrinho

    2015-01-01

    ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L.) development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models...

  1. Azospirillum brasilense, a Beneficial Soil Bacterium: Isolation and Cultivation.

    Science.gov (United States)

    Alexandre, Gladys

    2017-11-09

    Bacteria of the genus Azospirillum comprise 15 species to date, with A. brasilense the best studied species in the genus. Azospirillum are soil bacteria able to promote the growth of plants from 113 species spanning 35 botanical families. These non-pathogenic and beneficial bacteria are ubiquitous in soils and inhabit the roots of diverse plants. These bacteria are microaerophilic, able to fix nitrogen under free-living conditions, motile, and able to navigate in gradients of various chemicals, including oxygen. These physiological traits are used to isolate these soil bacteria from soil and plant root samples, providing isolates that can be used for studying microbial physiology and plant growth promotion. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  2. Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Liduino, Vitor S; Servulo, Eliana F C; Oliveira, Fernando J S

    2018-02-01

    This study evaluated the use of commercial rhamnolipid biosurfactant supplementation in the phytoremediation of a soil via sunflower (Helianthus annuus L.) cultivation. The soil, obtained from an industrial area, was co-contaminated with heavy metals and petroleum hydrocarbons. The remediation tests were monitored for 90 days. The best results for removal of contaminants were obtained from the tests in which the sunflower plants were cultivated in soil with 4 mg kg -1 of the rhamnolipid. Under these conditions, reductions of 58% and 48% were obtained in the total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) concentrations, respectively; reductions in the concentrations of the following metals were also achieved: Ni (41%), Cr (30%), Pb (29%), and Zn (20%). The PCR-DGGE analysis of soil samples collected before and after the treatments verified that the plant cultivation and biosurfactants supplementation had little effect on the structure of the dominant bacterial community in the soil. The results indicated that sunflower cultivation with the addition of a biosurfactant is a viable and efficient technology to treat soils co-contaminated with heavy metals and petroleum hydrocarbons.

  3. Use of waste material in cultivation substrates

    Directory of Open Access Journals (Sweden)

    Petr Salaš

    2004-01-01

    Full Text Available Gardeners' practical experience and experimental work prove the affirmation that the used substrate is a very important base for the production of quality nursery products. It is important to emphasis the complexity and synergy of all factors influencing the ecosystem and there mutual relations. Physical, chemical and biological properties do not separately affect the growth and development of plants. In addition, the relations are not statical but differ in relation with other factors changes. This article is dealing with the possibility to use waste material from timber processing in cultivation substrates. The large scale use of such substrates would enable people to reach a relative independence from peat substrates, of which the global reserve is gradually decreasing.Our research activities focus on the use of bark. The basic problems of a bark substrate are easy dehydration and unbalanced nutrition of trees and shrubs. The suggested and experimented cultivation technology solves these problems. It is based on the cultivation of woody species in bark substrates, using modern irrigation systems, slow release fertilisers (Silvamix Forte and special soil conditioners (TerraCottem. This technology was tested on the following species of trees and shrubs: Malus and Buxus.

  4. Screening plant species native to Taiwan for remediation of 137Cs-contaminated soil and the effects of K addition and soil amendment on the transfer of 137Cs from soil to plants

    International Nuclear Information System (INIS)

    Chou, F.-I.; Chung, H.-P.; Teng, S.-P.; Sheu, S.-T.

    2005-01-01

    This study aims to screen plant species native to Taiwan that could be used to eliminate 137 Cs radionuclides from contaminated soil. Four kinds of vegetables and two kinds of plants known as green manures were used for the screening. The test plants were cultivated in 137 Cs-contaminated soil and amended soil which is a mixture of the contaminated one with a horticultural soil. The plant with the highest 137 Cs transfer factor was used for further examination on the effects of K addition on the transfer of 137 Cs from the soils to the plant. Experimental results revealed that plants cultivated in the amended soil produced more biomass than those in the contaminated soil. Rape exhibited the highest production of aboveground parts, and had the highest 137 Cs transfer factor among all the tested plants. The transfer of 137 Cs to the rape grown in the soil to which 100 ppm KCl commonly used in local fertilizers had been added, were restrained. Results of this study indicated that rape, a popular green manure in Taiwan, could remedy 137 Cs-contaminated soil

  5. Methodology to evaluate the impact of the erosion in cultivated floors applying the technique of the 137CS

    International Nuclear Information System (INIS)

    Gil Castillo, R.; Peralta Vital, J.L.; Carrazana, J.; Riverol, M.; Penn, F.; Cabrera, E.

    2004-01-01

    The present paper shows the results obtained in the framework of 2 Nuclear Projects, in the topic of application of nuclear techniques to evaluate the erosion rates in cultivated soils. Taking into account the investigations with the 137 CS technique, carried out in the Province of Pinar del Rio, was obtained and validated (first time) a methodology to evaluate the erosion impact in a cropland. The obtained methodology includes all relevant stages for the adequate application of the 137 CS technique, from the initial step of area selection, the soil sampling process, selection of the models and finally, the results evaluation step. During the methodology validation process in soils of the Municipality of San Juan y Martinez, the erosion rates estimated by the methodology and the obtained values by watershed segment measures (traditional technique) were compared in a successful manner. The methodology is a technical guide, for the adequate application of the 137 CS technique to estimate the soil redistribution rates in cultivated soils

  6. Coir geotextile for slope stabilization and cultivation - A case study in a highland region of Kerala, South India

    Science.gov (United States)

    Vishnudas, Subha; Savenije, Hubert H. G.; Van der Zaag, Pieter; Anil, K. R.

    A sloping field is not only vulnerable to soil erosion it may also suffer from soil moisture deficiency. Farmers that cultivate on slopes everywhere face similar problems. Conservation technologies may reduce soil and nutrient losses, and thus enhance water holding capacity and soil fertility. But although these technologies promote sustainable crop production on steep slopes, the construction of physical structure such as bench terraces are often labour intensive and expensive to the farmers, since construction and maintenance require high investments. Here we studied the efficiency of coir geotextile with and without crop cultivation in reducing soil moisture deficiency on marginal slopes in Kerala, India. From the results it is evident that the slopes treated with geotextile and crops have the highest moisture retention capacity followed by geotextiles alone, and that the control plot has the lowest moisture retention capacity. As the poor and marginal farmers occupy the highland region, this method provides an economically viable option for income generation and food security along with slope stabilization.

  7. Organic matter loss from cultivated peat soils in Sweden

    Science.gov (United States)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  8. Effectiveness assessment of soil conservation measures in reducing soil erosion in Baiquan County of Northeastern China by using (137)Cs techniques.

    Science.gov (United States)

    Zhang, Qing-Wen; Li, Yong

    2014-05-01

    Accelerated soil erosion is considered as a major land degradation process resulting in increased sediment production and sediment-associated nutrient inputs to the rivers. Over the last decade, several soil conservation programs for erosion control have been conducted throughout Northeastern China. Reliable information on soil erosion rates is an essential prerequisite to assess the effectiveness of soil conservation measures. A study was carried out in Baiquan County of Northeastern China to assess the effectiveness of soil conservation measures in reducing soil erosion using the (137)Cs tracer technique and related techniques. This study reports the use of (137)Cs measurements to quantify medium-term soil erosion rates in traditional slope farmland, contour cropping farmland and terrace farmland in the Dingjiagou catchment and the Xingsheng catchment of Baiquan County. The (137)Cs reference inventory of 2532 ± 670 Bq m(-2) was determined. Based on the principle of the (137)Cs tracer technique, soil erosion rates were estimated. The results showed that severe erosion on traditional slope farmland is the dominant soil erosion process in the area. The terrace measure reduced soil erosion rates by 16% for the entire slope. Typical net soil erosion rates are estimated to be 28.97 Mg per hectare per year for traditional slope farmland and 25.04 Mg per hectare per year for terrace farmland in the Dingjiagou catchment. In contrast to traditional slope farmland with a soil erosion rate of 34.65 Mg per hectare per year, contour cultivation reduced the soil erosion rate by 53% resulting in a soil erosion rate of 22.58 Mg per hectare per year in the Xingsheng catchment. These results indicated that soil losses can be controlled by changing tillage practices from the traditional slope farmland cultivation to the terrace or contour cultivation.

  9. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation

    NARCIS (Netherlands)

    Waghmode, Tatoba R.; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied.

  10. Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets.

    Science.gov (United States)

    Zang, Emerson; Brandes, Susanne; Tovar, Miguel; Martin, Karin; Mech, Franziska; Horbert, Peter; Henkel, Thomas; Figge, Marc Thilo; Roth, Martin

    2013-09-21

    The majority of today's antimicrobial therapeutics is derived from secondary metabolites produced by Actinobacteria. While it is generally assumed that less than 1% of Actinobacteria species from soil habitats have been cultivated so far, classic screening approaches fail to supply new substances, often due to limited throughput and frequent rediscovery of already known strains. To overcome these restrictions, we implement high-throughput cultivation of soil-derived Actinobacteria in microfluidic pL-droplets by generating more than 600,000 pure cultures per hour from a spore suspension that can subsequently be incubated for days to weeks. Moreover, we introduce triggered imaging with real-time image-based droplet classification as a novel universal method for pL-droplet sorting. Growth-dependent droplet sorting at frequencies above 100 Hz is performed for label-free enrichment and extraction of microcultures. The combination of both cultivation of Actinobacteria in pL-droplets and real-time detection of growing Actinobacteria has great potential in screening for yet unknown species as well as their undiscovered natural products.

  11. Utilization of peatlands as possible land resource for low-input agriculture: cultivation of Vaccinium species as an example

    Science.gov (United States)

    Tonutare, Tonu; Rodima, Ako; Rannik, Kaire; Shanskiy, Merrit

    2013-04-01

    The best way of soil protection is its sustainable and expedient use, which secures soils ecological functioning. Recent years, by exploitation of peat soils for their different use, has raised important issues concerning their input to global climate change as important source of greenhouse gases (GHG) emitters. The dynamics of GHG are determined by different factors as: site specific conditions including hydrology, soil type, vegetation, area management, including meteorological and climatic conditions. Therefore, in this current paper we are presenting the study results were we estimated CO2, CH4 and N2O emissions from exhausted cultivated peatland with Vaccinium species and determined the soil chemical composition. For comparision a virgin state peatland was observed. The main goals of the paper are: (1) to present the experimental results of greenhouse gases generation and peat chemical composition (antioxidant activity of peat, C/N ratio, fiber content, water extractable phenolics) relationships on different microsites either on natural plant cover or Vaccinium species cultivation area on exhausted milled peat area; (2) to discuss how peat soil quality contributes to greenhouse gases emission; (3) and what kind of relationship reveals between low input agricultural system in which Vaccinium species are cultivated on exhausted milled peat area. The study are is located in nearby Ilmatsalu (58°23'N, 26°31'E) in South Estonia, inside of which the three microsites are determined. Microsites are different from each other by exploitation and plant cover type. 1). Natural plant cover, 2). Cultivated area with Vaccinium angustifolium x V. corymbosum, 3). Cultivated area with Vaccinium angustifolium. The determined soil type according to WRB was Fibri Dystric Histosol. The main part of study focuses on the analyses of greenhouse gases. For this purpose the closed chamber method was used. The greenhouse gas samples were collected from spring to autumn 2011 throughout

  12. Effects of soil bunds on runoff, soil and nutrient losses, and crop yield in the Central Highlands of Ethiopia

    NARCIS (Netherlands)

    Adimassu Teferi, Z.; Mekonnen, K.; Yirga, C.; Kessler, A.

    2014-01-01

    The effects of soil bunds on runoff, losses of soil and nutrients, and crop yield are rarely documented in the Central Highlands of Ethiopia. A field experiment was set up consisting of three treatments: (i) barley-cultivated land protected with graded soil bunds (Sb); (ii) fallow land (F); and

  13. Validating the use of 137Cs and 210Pbex measurements to estimate rates of soil loss from cultivated land in southern Italy.

    Science.gov (United States)

    Porto, Paolo; Walling, Des E

    2012-04-01

    Soil erosion represents an important threat to the long-term sustainability of agriculture and forestry in many areas of the world, including southern Italy. Numerous models and prediction procedures have been developed to estimate rates of soil loss and soil redistribution, based on the local topography, hydrometeorology, soil type and land management. However, there remains an important need for empirical measurements to provide a basis for validating and calibrating such models and prediction procedures as well as to support specific investigations and experiments. In this context, erosion plots provide useful information on gross rates of soil loss, but are unable to document the efficiency of the onward transfer of the eroded sediment within a field and towards the stream system, and thus net rates of soil loss from larger areas. The use of environmental radionuclides, particularly caesium-137 ((137)Cs) and excess lead-210 ((210)Pb(ex)), as a means of estimating rates of soil erosion and deposition has attracted increasing attention in recent years and the approach has now been recognised as possessing several important advantages. In order to provide further confirmation of the validity of the estimates of longer-term erosion and soil redistribution rates provided by (137)Cs and (210)Pb(ex) measurements, there is a need for studies aimed explicitly at validating the results obtained. In this context, the authors directed attention to the potential offered by a set of small erosion plots located near Reggio Calabria in southern Italy, for validating estimates of soil loss provided by (137)Cs and (210)Pb(ex) measurements. A preliminary assessment suggested that, notwithstanding the limitations and constraints involved, a worthwhile investigation aimed at validating the use of (137)Cs and (210)Pb(ex) measurements to estimate rates of soil loss from cultivated land could be undertaken. The results demonstrate a close consistency between the measured rates of soil

  14. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach

    International Nuclear Information System (INIS)

    Eevers, N.; Hawthorne, J.R.; White, J.C.; Vangronsveld, J.; Weyens, N.

    2016-01-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes. - Highlights: • Cucurbita pepo accumulates DDE and can be used for phytoremediation. • Phytoremediation capacity might be enhanced with endophytic bacteria. • The differences in bacterial communities without and with DDE are investigated. • Several DDE-tolerant bacteria are discovered and might be used in phytoremediation. - DDE-exposure and DDE-uptake of Cucurbita pepo lead to increases in both diversity

  15. Managing cultivated pastures for improving soil quality in South ...

    African Journals Online (AJOL)

    There are concerns that soils under pastures in certain regions of South Africa are degrading as a result of mismanagement, which include practising continuous tillage, improper grazing management, injudicious application of fertilisers and poor irrigation management. Soil quality indicators, which include physical, ...

  16. Some heterotrophic flagellates from a cultivated garden soil in Australia

    DEFF Research Database (Denmark)

    Ekelund, Flemming; Patterson, DJ

    1997-01-01

    The flagellates of an Australian garden soil were studied by placing coverslips on wet soil and subsequently examining the coverslips by light microscopy. A number of genera and species were found which have not previously been reported from soil samples. Besides the three new species, Apusomonas...

  17. Soil Organic Matter Stability and Soil Carbon Storage with Changes in Land Use Intensity in Uganda

    Science.gov (United States)

    Tiemann, L. K.; Grandy, S.; Hartter, J.

    2014-12-01

    As the foundation of soil fertility, soil organic matter (SOM) formation and break-down is a critical factor of agroecosystem sustainability. In tropical systems where soils are quickly weathered, the link between SOM and soil fertility is particularly strong; however, the mechanisms controlling the stabilization and destabilization of SOM are not well characterized in tropical soils. In western Uganda, we collected soil samples under different levels of land use intensity including maize fields, banana plantations and inside an un-cultivated native tropical forest, Kibale National Park (KNP). To better understand the link between land use intensity and SOM stability we measured total soil C and N, and respiration rates during a 369 d soil incubation. In addition, we separated soils into particle size fractions, and mineral adsorbed SOM in the silt (2-50 μm ) and clay (fractions was dissociated, purified and chemically characterized via pyrolysis-GC/MS. Cultivated soil C and N have declined by 22 and 48%, respectively, in comparison to uncultivated KNP soils. Incubation data indicate that over the last decade, relatively accessible and labile soil organic carbon (SOC) pools have been depleted by 55-59% in cultivated soils. As a result of this depletion, the chemical composition of SOM has been altered such that clay and silt associated SOM differed significantly between agricultural fields and KNP. In particular, nitrogen containing compounds were in lower abundance in agricultural compared to KNP soils. This suggests that N depletion due to agriculture has advanced to pools of mineral associated organic N that are typically protected from break-down. In areas where land use intensity is relatively greater, increases in polysaccharides and lipids in maize fields compared to KNP indicate increases in microbial residues and decomposition by-products as microbes mine SOM for organic N. Chemical characterization of post-incubation SOM will help us better understand

  18. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Prabhat, E-mail: prabhat2003@gmail.com; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo, E-mail: pjkim@gnu.ac.kr

    2014-08-15

    Combination of leguminous and non-leguminous plant residues are preferably applied in rice paddy soils to increase the rate of organic matter mineralization and to improve plant growth. However, organic matter addition facilitates methane (CH{sub 4}) emission from rice paddy soil. Mineralization of organic nitrogen (N) increases NO{sub 3}–N concentrations in soil, which are precursors for the formation of nitrous oxide (N{sub 2}O). However, N{sub 2}O is a minor greenhouse gas emitted from submerged rice field and hence is not often considered during calculation of total global warming potential (GWP) during rice cultivation. The hypothesis of this study was that fluxes of N{sub 2}O emissions might be changed after removal of flooded water from rice field and the effect of cover crops on N{sub 2}O emissions in the fallow season might be interesting. However, the effects of N-rich plant residues on N{sub 2}O emission rates in the fallow season and its effect on annual GWP were not studied before. In this experiment, combination of barley (non-leguminous) and hairy vetch (leguminous) biomasses were applied at 9 Mg ha{sup −1} and 27 Mg ha{sup −1} rates in rice paddy soil. Cover crop application significantly increased CH{sub 4} emission flux while decreased N{sub 2}O emissions during rice cultivation. The lowest N{sub 2}O emission was observed in 27 Mg ha{sup −1} cover crop treated plots. Cover crop applications increased N contents in soil aggregates especially in smaller aggregates (< 250 μm), and that proportionately increased the N{sub 2}O emission potentials of these soil aggregates. Fluxes of N{sub 2}O emissions in the fallow season were influenced by the N{sub 2}O emission potentials of soil aggregates and followed opposite trends as those observed during rice cultivation. Therefore, it could be concluded that the doses of cover crop applications for rice cultivation should not be optimized considering only CH{sub 4}, but N{sub 2}O should also be

  19. The Influence of Cultivation System on Distribution Profile Of 137cs and Erosion / Deposition Rate

    Directory of Open Access Journals (Sweden)

    Nita Suhartini

    2016-05-01

    Full Text Available 137Cs radiogenic content in the soil can be used to estimate the rate of erosion and deposition in an area occurring since 1950’s, by comparing the content of the 137Cs in observed site with those in a stable reference site. This experiment aimed to investigate the influence of cultivation type on distribution profile of 137Cs and distribution of erosion and deposition rate in cultivated area. A study site was small cultivated area with slope steepness <10o and length 2 km located in Bojong – Ciawi. For this purpose, the top of a slope was chosen for reference site and three plot sites were selected namely Land Use I that using simple cultivation, Land Use II that using simple cultivation with ridge and furrow, and Land Use III using machine cultivation. The results showed that cultivation could make a movement of 137Cs to the deeper layer and ridges and furrows cultivation system could minimized an erosion process. The net erosion and deposition for land Use I, II and III were -25 t/ha/yr , 24 t/ha/yr and -58 t/ha/yr, respectively.

  20. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    Science.gov (United States)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  1. New Concept of Cultivation Using Limited Strip-Tillage with Strip Shallow Irrigation

    Directory of Open Access Journals (Sweden)

    Yazid Ismi Intara

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE Dry land is one of land resources which potentially used for food crop cultivation, especially in the areas which have light to medium technical obstacles. The development of technology to improve soil quality in marginal lands to be productive lands is still widely open for agricultural development in Indonesia. Rooting medium quality can be improved by changing soil tillage method and observing the proper crop irrigation technology. It can be the solution for crop cultivation in clay loam soil. This study aimed to obtain water movement model in a minimally-tilled clay soil with strip shallow irrigation. The concept is limited soil-tillage with strip shallow irrigation method, water supply technique, and crop water requirement. Method used in this study includes developing water movement model (software development in a minimally-tilled clay soil with subsurface irrigation. In the final stages, research also conducted water movement analysis testing apparatus in the laboratory, field validation of the subsurface irrigation performance, and cultivation technique testing to chili pepper growth (Capsicum annuumL.. The development of water movement simulation on a limited strip-tillage with subsurface irrigation uses the concept to quantify the amount of water in the soil. The analysis of movement pattern was demonstrated on contour patterns. It showed that the wetting process can reach depth zone – 5 cm to the rooting zone. It was an important discovery on the development of minimum stripe tillage soil with subsurface irrigation. Specifically, it can be concluded that: the result of fitting by eyes to diffusivity graphic and water content obtained the required parameter values for soil physical properties. It was then simulated on horizontal water movement model on a minimum strip-tillage with strip shallow irrigation /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso

  2. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    Directory of Open Access Journals (Sweden)

    Daniel F. de Carvalho

    2015-11-01

    Full Text Available ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L. development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models of Kostiakov-Lewis, Horton and Philip. Based on the obtained results, the combination of effects between soil tillage system and corn development stages reduces soil and water losses. The contour tillage system promoted improvements in soil physical properties, favoring the reduction of erosion in 59.7% (water loss and 86.6% (soil loss at 75 days after planting, and the increase in the stable infiltration rate in 223.3%, compared with the exposed soil. Associated to soil cover, contour cultivation reduces soil and water losses, and the former is more influenced by management. Horton model is the most adequate to represent soil water infiltration rate under the evaluated conditions.

  3. Photosynthesis and growth of young “Niágara Branca” vines (Vitis labrusca L. cultivated in soil with high levels of copper and liming

    Directory of Open Access Journals (Sweden)

    Rosa Daniel José

    2014-01-01

    Full Text Available The objective of this study was to evaluate the photosynthetic response and growth of young grape “Niagara Branca” vines grown in soil with high content of Cu and liming. The experiment was conducted in controlled environment with soil subjected to three levels of liming, with 0, 1.5 and 3.0 Mg ha−1 of lime. The effect of additional 50 mg kg−1 Cu in half of soil treatments was evaluated. The CO2 measurements, assimilation rate, stomatal conductance and transpiration were carried out in the tenth cultivation week using the IRGA equipment (Infrared Gaz Analyzer. Plant height, fresh weight and dry weight, concentration of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids were measured. For most variables, the Cu had damaging effect on 0 and 1.5 Mg ha−1 liming treatments however, there was no significant damage in the 3.0 Mg ha−1 treatment. Rates of CO2 assimilation, stomatal conductance, and transpiration were increased with the addition of 50 mg kg−1 Cu. Liming to raise the pH of the soil is an effective practice to reduce the effects of Cu toxicity in young “Niagara Branca” grape vines.

  4. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Erik H.; Hansen, Marianne; Rasmussen, Peter Have; Sloth, Jens J. [Danish Institute for Food and Veterinary Research, Department of Food Chemistry, Soeborg (Denmark); Lobinski, Ryszard; Ruzik, Rafal; Mazurowska, Lena [CNRS UMR 5034, Pau (France); Warsaw University of Technology, Department of Analytical Chemistry, Warsaw (Poland); Burger-Meyer, Karin; Scholten, Olga [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Kik, Chris [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Wageningen University and Research Centre, Centre for Genetic Resources, The Netherlands (CGN), P.O. Box 16, Wageningen (Netherlands)

    2006-07-15

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 {mu}g g{sup -1} (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that {gamma}-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of {gamma}-glutamyl-Se-methyl-selenocysteine and {gamma}-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry. (orig.)

  5. Approaches for diversity analysis of cultivable and non-cultivable bacteria in real soil

    Czech Academy of Sciences Publication Activity Database

    Štursa, P.; Uhlík, Ondřej; Kurzawová, V.; Koubek, J.; Ionescu, M.; Strohalm, M.; Lovecka, P.; Macek, Tomáš; Macková, M.

    2009-01-01

    Roč. 55, č. 9 (2009), s. 389-396 ISSN 1214-1178 Institutional research plan: CEZ:AV0Z40550506 Keywords : PCB * contaminated soil * rhizoremediation * SIP Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.697, year: 2009

  6. Effects of Land Use Changes on Some Soil Chemical Properties in Khoy, West Azerbaijan Province

    Directory of Open Access Journals (Sweden)

    Arezoo Taghipour

    2016-02-01

    Full Text Available Introduction: Intensified agriculture over a long-term is an important factor in soil change phenomena that can cause some unwanted effects on soil properties. To examine this hypothesis, chemical properties of the soils under sunflower cultivation over five decades and adjoining virgin lands were investigated in order to monitor changes caused by long-term cropping. The studied soils are influenced by continuous sunflower cultivation along with flooding irrigation and using chemical fertilizers for over five decades Materials and Methods: This research was undertaken at Khoy area (38o 10′ to 38o 40′ N latitude and 44o 15′ to 45o 10′ E latitude as the northern part of western-Azarbaijan province in the north-west Iran. The Khoy area is characterized by a semi-arid climate (mean annual rainfall of 300 mm linked with soil moisture and temperature regimes of xeric and mesic, respectively. Agriculturally, the studied area is cropped continuously by sunflower-wheat or barley rotations for over five decades and has received irrigation water from rainfall, groundwater, or seasonal river water. Forty soil surface samples (0-30 cm belonging to 10 soil series from the cultivated soils and the adjoining uncultivated soils were samplied and analyzed for the different chemical properties. In each soil serie, the samples (cultivated soil and adjacent virgin land were selected in similar slope, aspect, drainage condition, and parent materials. Soil analyses were involved soil pH and electrical conductivity (EC, soil organic carbon (SOC, Calcium carbonate equivalent (CCE, cation exchange capacity (CEC, total N, soluble K, exchangeable K, and available K. Potassium absorption ration (PAR was calculated by the concentration of solution K, Ca, Mg and exchangeable potassium percentage (EPP was calculated by exchangeable Na and CEC values Results and Discussion: This study illustrate that long-term continuous sunflower cropping had considerable effects on

  7. EXPLORING POSSIBILITIES OF CULTIVATION A UNPOLLUTED PLANT PRODUCE IN Pb AND Cd CONTAMINATED SITES

    Directory of Open Access Journals (Sweden)

    Atanas TOMOV

    2006-02-01

    Full Text Available The control of heavy metals in such way that soil function and product quality are not impeded is a prerequisite to sustainable agriculture. Growing anthropogenic fl uxes of toxic heavy metals in agro-ecosystems affect on purity of farm products and soil fertility. In the article we describe a fi eld experiment – cultivation of potatoes on soil with a medium level of pollution / Zn, Cu, Pb, Cd etc/. We studied the most toxic of them – Pb and Cd; as well as the possibilities for reducing their phytoavailability and accumulation in potatoes tubers, applying soil amendments.

  8. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    Science.gov (United States)

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  9. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China

    NARCIS (Netherlands)

    Li, Lianzhen; Wu, Huifeng; van Gestel, C.A.M.; Peijnenburg, W.J.G.M.; Allen, Herbert E.

    2014-01-01

    The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods

  10. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    Science.gov (United States)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m-1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m-1) and moderately (M) saline water (ECw = 3.5 dS m-1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.

  11. Use of Neutron Probe to Quantify the Soil Moisture Flux in Layers of Cultivated Soil by Chickpea

    International Nuclear Information System (INIS)

    El- Gendy, R.W.

    2008-01-01

    This work aims to use the neutron moisture meter and the soil moisture retention curve to quantify the soil moisture flux in the soil profile of Nubarria soil in Egypt at 15, 30, 45, and 60-cm depths during the growth season of Chickpea. This method depends on the use of in situ θ measurements via neutron moisture meter and soil matric suction using model of the soil moisture retention curve at different soil depths, which can be determined in situ. Total hydraulic potential values at the different soil depths were calculated as a function (θ) using the derivative model. The gradient of hydraulic potential at any soil depth can be obtained by detecting of the hydraulic potential within the soil profile. The soil water fluxes at the different soil depths were calculated using In situ measured unsaturated hydraulic conductivity and the gradient of hydraulic potential, which correlated with soil moisture contents as measured by neutron probe. Values of hydraulic potentials after and before irrigation indicate that the direction of soil moisture movement was downward after irrigation and was different before next irrigation. Collecting active roots for water absorption of chickpea were defined from direction of soil water movement from up and down to a certain soil depth was 19 cm depth from the soil surface. Active rooting depth was 53 cm depth, which separates between evapotranspiration and gravity effects The soil water fluxes after and before the next irrigation of chickpea were 1.2453, 0.8613, 0.8197 and 0.6588 cm/hr and 0.0037, - 0.0270,- 0.1341, and 0.2545 cm/hr at 15, 30, 45 and 60 cm depths, respectively. The negative values at 30 and 45 cm depth before the next irrigation indicates there were up ward movement for soil water flux, where finding collecting active roots for water absorption of chickpea at 19 cm depth. Direction of soil water movement, soil water flux, collecting active roots for water absorption and active rooting depth can be determined using

  12. Isolation of β-1,3-Glucanase-Producing Microorganisms from Poria cocos Cultivation Soil via Molecular Biology

    Directory of Open Access Journals (Sweden)

    Qiulan Wu

    2018-06-01

    Full Text Available β-1,3-Glucanase is considered as a useful enzymatic tool for β-1,3-glucan degradation to produce (1→3-linked β-glucan oligosaccharides with pharmacological activity properties. To validly isolate β-1,3-glucanase-producing microorganisms, the soil of Wolfiporia extensa, considered an environment rich in β-1,3-glucan-degrading microorganisms, was subjected to high throughput sequencing. The results demonstrated that the genera Streptomyces (1.90% and Arthrobacter (0.78% belonging to the order Actinomycetales (8.64% in the phylum Actinobacteria (18.64% were observed in soil for P. cocos cultivation (FTL1. Actinomycetes were considered as the candidates for isolation of glucan-degrading microorganisms. Out of 58 isolates, only 11 exhibited β-1,3-glucan-degrading activity. The isolate SYBCQL belonging to the genus Kitasatospora with β-1,3-glucan-degrading activity was found and reported for the first time and the isolate SYBC17 displayed the highest yield (1.02 U/mg among the isolates. To check the β-1,3-glucanase contribution to β-1,3-glucan-degrading activity, two genes, 17-W and 17-Q, encoding β-1,3-glucanase in SYBC17 and one gene QLK1 in SYBCQL were cloned and expressed for verification at the molecular level. Our findings collectively showed that the isolates able to secrete β-1,3-glucanase could be obtained with the assistance of high-throughput sequencing and genes expression analysis. These methods provided technical support for isolating β-1,3-glucanase-producing microorganisms.

  13. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  14. Translocation of Soil Particles during Secondary Soil Tillage along Contour Lines

    Directory of Open Access Journals (Sweden)

    Novák Petr

    2018-04-01

    Full Text Available A high percentage of arable land and erosion risk on agricultural land are typical of current agriculture. While tillage erosion is a less frequently studied issue, it impacts vast areas of agricultural land. Not all relationships between cultivation equipment, the gradient of the plot and other factors have been known until now. Intensive soil tillage can be a crucial erosive factor mainly when the cultivation equipment moves in a fall line direction. Nevertheless, even when the equipment moves along contour lines, soil particles can be translocated perpendicular to the direction of the equipment movement (in a fall line direction. This phenomenon has not yet been adequately studied. For measurements, a field trial with secondary tillage of soil was laid out (a seedbed preparation implement was used. The objective of the trial was to evaluate the effect of the working tools of the cultivation equipment on the crosswise and lengthwise translocation of soil particles during soil tillage. Aluminium cubes, with a side length of 16 mm, were used as tracers. Before the operation, the tracers were inserted in a row perpendicular (at a right angle to a direction of the equipment passes. After the equipment passes, position of tracers was evaluated within a two-axis grid. The trial was performed at three gradients of the plot (2°, 6° and 11°. For each gradient, the 1-pass, 2-pass and 3-pass treatments were tested. The equipment always moved along the plot contour line. After the equipment passes in all treatments, all tracers were localized on an orthogonal grid. The results of the trial demonstrate the effect of the slope gradient on the crosswise translocation of particles during secondary tillage of soil in the slope direction. The tillage equipment translocated particles in the fall line direction even if it passed along the contour line. With the increasing intensity of passes, the effect of the equipment on crosswise translocation increases

  15. Behaviour of cesium in contaminated soils with and without agricultural practices

    International Nuclear Information System (INIS)

    Arapis, G.; Martinez, A.; Millan, R.; Gutierrez, J.

    1992-01-01

    The migration of cesium into affected agricultural soils, five years after the Chernobyl accident, is examined in this study. Samples of soil were taken from an undisturbed non-cultivated rural area in the north of Greece, where an important contamination has been detected. The migration of 137 Cs into these soils was measured by γ spectrometry. Slight movement of 137 Cs was observed during the five year period following the accident. The agricultural practices, used in this area from 1986 up to now, have diluted the contamination into the 0-40 cm horizon and thus only low concentration of cesium in the cultivated soils was detected. (orig.)

  16. An Opto-Electronic Sensor for Detecting Soil Microarthropods and Estimating Their Size in Field Conditions

    Directory of Open Access Journals (Sweden)

    Csongor I. Gedeon

    2017-08-01

    Full Text Available Methods to estimate density of soil-dwelling arthropods efficiently, accurately and continuously are critical for investigating soil biological activity and evaluating soil management practices. Soil-dwelling arthropods are currently monitored manually. This method is invasive, and time- and labor-consuming. Here we describe an infrared opto-electronic sensor for detection of soil microarthropods in the size range of 0.4–10 mm. The sensor is built in a novel microarthropod trap designed for field conditions. It allows automated, on-line, in situ detection and body length estimation of soil microarthropods. In the opto-electronic sensor the light source is an infrared LED. Two plano-convex optical lenses are placed along the virtual optical axis. One lens on the receiver side is placed between the observation space at 0.5–1 times its focal length from the sensor, and another emitter side lens is placed between the observation space and the light source in the same way. This paper describes the setup and operating mechanism of the sensor and the control unit, and through basic tests it demonstrates its potential in automated detection of soil microarthropods. The sensor may be used for monitoring activities, especially for remote observation activities in soil and insect ecology or pest control.

  17. Determination of cesium-137 soil-to-plant concentration ratios for vegetables in Goiania City, Brazil

    International Nuclear Information System (INIS)

    Lauria, D.C.; Sachett, I.A.; Pereira, J.C.; Zenaro, R.

    1994-01-01

    The radiological accident that occurred in Goiania City, Brazil, in September 1987, led to the spreading of 137 Cs in the urban area. Even after the decontamination procedure, there was a reminiscence of 137 Cs activity in the soil of residential gardens. This activity was enough to conduct preliminary experiments for determination of soil to vegetable concentration ratios. Experiments were conducted for carrots, lettuce and radishes. Two types of experimental patterns were used to determine the concentration ratios: lysimeters cultivation under greenhouse condition and soil cultivation in open field plot. The concentration ratios measured for cultivation under greenhouse and field plot conditions are considerably higher than those mentioned in the International Union of Radioecologist (IUR) data bank for the same vegetables and cultivation condition. (author) 5 refs.; 2 figs.; 3 tabs

  18. Greenhouse gas emissions from a chinampa soil or floating gardens in Mexico

    OpenAIRE

    Ortiz-Cornejo, Nadia Livia; Luna-Guido, Marco; Rivera-Espinoza, Yadira; Vásquez-Murrieta, María Soledad; Ruíz-Valdiviezo, Víctor Manuel; Dendooven, Luc

    2015-01-01

    Agriculture in chinampas or 'floating gardens', is still found on the south of Mexico City, it is a high yield pre-Columbian cultivation system, which has soils enriched with organic matter. The objective of this research was to determine the greenhouse gas (GHG) emissions from a chinampa soil cultivated with amaranth (Amaranthus hypochondriacus L.), maize (Zea mays L.) or uncultivated. The soil was characterized and fluxes of GHG (CO2, N2O and CH4) were monitored for one year. The chinampa s...

  19. Thinking and Countermeasures for Rational Utilization of Soil Fertility in Modern Agriculture Developping

    Directory of Open Access Journals (Sweden)

    WENG Bo-qi

    2014-02-01

    Full Text Available Soil is not only an important foundation for agricultural production, but also is the safeguard of human survival. Soil quality is close-ly related with food safety and argo-ecological environment. Soil fertility is the support of modern agricultural development. Multiple disci-plines and specialties are involved in researches of soil cultivating process. Nowadays, the understanding of soil fertility has changed from a-gricultural production to environmental security and resource exploitation, even larger scales to ecological health and global soil change. In this review, the characteristics and inherent link between soil and agriculture were comprehensive expounded from the aspects of long-term fertilization trials, soil cultivation techniques, and modern agriculture development. The challenge and prospect faced in soil science research field were also analyzed. Finally, several suggestions and countermeasures were proposed to the researches of soil science in future.

  20. Mineral Element Concentrations in Vegetables Cultivated in Acidic Compared to Alkaline Areas of South Sweden

    Directory of Open Access Journals (Sweden)

    Ingegerd Rosborg

    2009-01-01

    Full Text Available A study in 1997, on mineral levels in acidic compared to alkaline well waters, and in women’s hair, revealed higher concentrations of a number of mineral elements like Ca, Mo and Se in alkaline waters and hair. Thus, median Ca levels were six times higher in well water and five times higher in hair from the alkaline area compared to the acidic area. This finding raised the probability of similar differences in vegetables from these areas. Thus, in the year 2006, 60 women who had participated in the study in 1997 were asked to cultivate parsley, lettuce, carrot and chive. During the spring of 2006, the women from the water and hair study of 1997, 30 of them from the acidic area and 30 women from the alkaline district cultivated vegetables: carrot (Daucus carota L, parsley (Petroselinum crispum, chive (Allium schoenoprasum and lettuce (Eruca sativa. The vegetables were harvested, and rinsed in tap water from the kitchens of the participating women in August. The concentrations of about 35 elements and ions were determined by ICP OES and ICP-MS predominantly. In addition, soil samples from the different cultivators were also analyzed for a number of elements. Lettuce and parsley showed the highest concentrations of mineral elements per gram dry weight. Only Mo concentrations were significantly higher in all the different vegetables from the alkaline district compared to vegetables from the acidic areas. On the other hand, the concentrations of Ba, Br, Mn, Rb and Zn were higher in all the different vegetables from the acidic area. In the soil, only pH and exchangeable Ca from the alkaline area were higher than from the acidic area, while exchangeable Fe, Mn and Na concentrations were higher in soils from the acidic area. Soil elements like Al, Fe, Li, Ni, Pb, Si, Ti, V, Zn and Zr were found in higher concentrations in lettuce and parsley, which were attributed to soil particles being splashed on the plants by the rain and absorbed by the leaves

  1. Liming in the sugarcane burnt system and the green harvest practice affect soil bacterial community in northeastern São Paulo, Brazil.

    Science.gov (United States)

    Val-Moraes, Silvana Pompeia; de Macedo, Helena Suleiman; Kishi, Luciano Takeshi; Pereira, Rodrigo Matheus; Navarrete, Acacio Aparecido; Mendes, Lucas William; de Figueiredo, Eduardo Barretto; La Scala, Newton; Tsai, Siu Mui; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-12-01

    Here we show that both liming the burnt sugarcane and the green harvest practice alter bacterial community structure, diversity and composition in sugarcane fields in northeastern São Paulo state, Brazil. Terminal restriction fragment length polymorphism fingerprinting and 16S rRNA gene cloning and sequencing were used to analyze changes in soil bacterial communities. The field experiment consisted of sugarcane-cultivated soils under different regimes: green sugarcane (GS), burnt sugarcane (BS), BS in soil amended with lime applied to increase soil pH (BSL), and native forest (NF) as control soil. The bacterial community structures revealed disparate patterns in sugarcane-cultivated soils and forest soil (R = 0.786, P = 0.002), and overlapping patterns were shown for the bacterial community structure among the different management regimes applied to sugarcane (R = 0.194, P = 0.002). The numbers of operational taxonomic units (OTUs) found in the libraries were 117, 185, 173 and 166 for NF, BS, BSL and GS, respectively. Sugarcane-cultivated soils revealed higher bacterial diversity than NF soil, with BS soil accounting for a higher richness of unique OTUs (101 unique OTUs) than NF soil (23 unique OTUs). Cluster analysis based on OTUs revealed similar bacterial communities in NF and GS soils, while the bacterial community from BS soil was most distinct from the others. Acidobacteria and Alphaproteobacteria were the most abundant bacterial phyla across the different soils with Acidobacteria Gp1 accounting for a higher abundance in NF and GS soils than burnt sugarcane-cultivated soils (BS and BSL). In turn, Acidobacteria Gp4 abundance was higher in BS soils than in other soils. These differential responses in soil bacterial community structure, diversity and composition can be associated with the agricultural management, mainly liming practices, and harvest methods in the sugarcane-cultivated soils, and they can be detected shortly after harvest.

  2. PRODUCTIVITY OF SUNFLOWER DEPENDING ON PROCESSING METHOD OF SOIL IN THE AREA OF UNSTABLE MOISTENING ON BLACK LEACHED SOIL

    OpenAIRE

    Kasmynin G. G.

    2014-01-01

    The basic amount of oilseeds in the Russian Federation, including the Stavropol region is produced by sunflowers. Using the best ways and methods of soil cultivation and improving the technology of sunflower cultivation in relation to specific growing conditions - the main way to increase the yield and gross yield of seeds of this valuable crop

  3. Effects of Urbanization-Induced Cultivated Land Loss on Ecosystem Services in the North China Plain

    Directory of Open Access Journals (Sweden)

    Wei Song

    2015-06-01

    Full Text Available Since the implementation of market oriented economic reform in 1978, China has been on the track of rapid urbanization. The unprecedented urbanization in China has resulted in substantial cultivated land loss and rapid expansion of urban areas. The cultivated land loss due to urbanization not only threatens food security in China, but has also led to ecological system degradation to which close attention should be paid. Therefore, we examined the effects of the conversion from cultivated to urban areas on the ecosystem service in the North China Plain on the basis of a net primary productivity based ecosystem service model (NESM and a buffer comparison method. Cultivated land loss due to urbanization in the North China Plain led to a total loss of ecosystem service value of 34.66% during the period 1988–2008. Urban expansion significantly decreased the ecosystem service function of water conservation (–124.03%, nutrient cycling (–31.91%, gas regulation (−7.18%, and organic production (–7.18%, while it improved the soil conservation function (2.40%. Land use change accounted for 57.40% of the changes in ecosystem service and had a major influence on the changes in nutrient cycling and water conservation. However, climate change mainly determined the changes in gas regulation, organic production, and soil conservation.

  4. Study the Soil Quality Changes Indicators Using Nemoro and Integrated Quality Index Models in Some Khuzestan’s Soils

    Directory of Open Access Journals (Sweden)

    F. Ramezani

    2016-09-01

    Full Text Available Introduction: Aspects of the physical, chemical and biological are considered. Land degradation for soil quality, or improve soil quality assessment is important.This study was conducted to evaluate soil quality indicators using quantitative models in some lands of Khuzestan province (Iran.Such studies, which are carried out to create a balance between the biological production and the maintenance and improvement of land resource quality, provide a framework for land degradation control and also for identification of sustainable management. Such studies, which are carried out to create a balance between the biological production and the maintenance and improvement of land resource quality, provide a framework for land degradation control and also for identification of sustainable management. Materials and Methods: In order to evaluate the effect of crop management and cultivation on soil quality, Select several Khuzestan region and Samples were taken from the surrounding cultivated land. Physiochemical characteristics of soil samples from a depth of0-30 cm such as soil texture, bulk density (Db, mean weight diameter of wet aggregates (MWD, relative field capacity (RFC, air capacity (FA,plant available water capacity (AWC, saturated hydraulic conductivity (Ks, organic carbon (OC,electrical conductivity (EC, pH, soluble cations (Mg, Ca, Na,sodium absorption ratio (SAR, exchange sodium percent (ESP and cation exchange capacity were determined (CEC. The soil quality was evaluated by integrated quality index (IQI and Nemero quality index (NQI in two data sets of soil properties including MDS and TDS. In these models, a set of characteristics that affect the quality of the soil in the form of a mathematical model incorporating and to propose a numerical quantity this number serve as general indicator of soil quality, Reflect the characteristics of the target. Results and Discussion: The results showed that there was significant correlation between

  5. Phytoremediation of soil contaminated with sulfentrazone by the cultivation time of Canavalia ensiformis = Fitorremediação de solo contaminado com sulfentrazone em função do tempo de cultivo de Canavalia ensiformis

    Directory of Open Access Journals (Sweden)

    João Carlos Madalão

    2016-06-01

    Full Text Available Phytoremediation is an option for the decontamination of areas that have received intensive applications of herbicide. Determining the minimum period that a species should remain for remediation of the soil is critical for the optimisation of areas to be cultivated without the risks of carryover. The aim of this study was to evaluate the cultivation time of Canavalia ensiformis in soil contaminated with the herbicide sulfentrazone, for the species to remediate the soil to satisfactory levels. The experiment was set up in a greenhouse, using 10 dm3 pots in a randomised block design and a 5 x 2 factorial scheme, with four replications. The factors comprised five periods of phytoremediation, i.e. cultivation times of the green-manure species of phytoremediator (0, 25, 50, 75 and 100 days after sowing - DAS, cultivated both with and without the presence of sulfentrazone (400 g ha-1. The species of bio-indicator was Pennisetum glaucum, grown for 42 DAS. During this period the following variables were evaluated: plant height (cm; visual toxicity (%, using a scale from 0 to 100 for the absence of symptoms and death of the plant respectively; and shoot dry matter (g. At 75 days of growth of the phytoremediator species, there was no difference between the soil that received the herbicide application and the soil with no application, for the variables visual toxicity, height and shoot dry matter of the bio-indicator species. Cultivation of C. ensiformis needs to be for a minimum period of 75 days to decontaminate soils with sulfentrazone to satisfactory levels. = A fitorremediação é uma alternativa para a descontaminação de áreas que receberam intensas aplicações de herbicidas. Determinar o período mínimo que as espécies devem permanecer remediando o solo é fundamental para a otimização das áreas a serem cultivadas sem riscos de carryover. Objetivouse com este trabalho avaliar o tempo de cultivo de Canavalia ensiformis em solos contaminados

  6. Exploring biophysical potential and sustainability of wheat cultivation in Uruguay at the national level

    NARCIS (Netherlands)

    Mantel, S.; Engelen, van V.W.P.; Molfino, J.H.; Resink, J.W.

    2000-01-01

    A methodology is presented that explores soil survey information at the national level (1:1 M), generating sustainability indicators for wheat cultivation in Uruguay. Potential yields were calculated for simplified crop production situations under several constraints, such as limitation of water

  7. EFFECT OF BLUE GREEN ALGAE ON SOIL NITROGEN

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... associated with soil dessication at the end of the cultivation cycle and algal growth ... blue-green algae (BGA) on soil nitrogen was carried out from June to December 2005. .... Nitrogen fixation by free living Micro-organisms.

  8. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands

    Science.gov (United States)

    Mosier, A.; Bronson, K.; Schimel, D.; Valentine, D.; Parton, W.

    1991-03-01

    Measurements of CH4 uptake and N2O emissions in native, nitrogen-fertilized, and wheat-growing prairie soils from spring to late autumn, 1990 are reported. It is found that nitrogen fertilization and cultivation can both decrease CH4 uptake and increase N2O production, thereby contributing to the increasing atmospheric concentrations of these gases.

  9. Improving Former Shifted Cultivation Land Using Wetland Cultivation in Kapuas District, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Wahyudi Wahyudi

    2016-06-01

    Full Text Available Degraded forest area in Kalimantan could be caused by shifted cultivation activity that be conducted by local peoples in the surrounding forest areas. Efforts to improve the former shifted cultivation area (non productive land is developing the settled cultivation by use of irrigation system, better paddy seed, land processing, fertilizing, spraying pesticide, weeding, and better acces to the market.  Local peoples, especially in Kalimantan, has been depended their food on the shifted cultivation pattern since the long time ago.  This tradition could cause forest damage, forest fire, forest degradation, deforestation, and lose out of children education because they were following shifted cultivation activity although itsspace is very far from their home.  This research was aimed to improve former shifted cultivation lands using wetland cultivation in order to improve land productivity and to support food securityin the local community. This research was administratively located in Tanjung Rendan Village, Kapuas Hulu Sub-Ddistrict, Kapuas District, Central Kalimantan Province, Indonesia.  Data of rice yield from settled cultivation and shifted cultivation were got from 15 households that was taking by random at 2010 to 2011. Homogeneity test, analysis of variants, and least significant different (LSD test using SPSS 15.0 for Windows. Result of this research showed that     paddy yield at settled cultivation was significantly differentand better than shifted cultivation at 0.05 level. LSD test also indicated that all paddy yields from settled cultivation were significantly different compare to shifted cultivation at the 0.05 level.  The community in Tanjung Rendan Villages preferred settled cultivation than shifted cultivation, especially due to higher paddy production. Profit for settled cultivation was IDR10.95 million ha-1, meanwhile profit for shifted cultivation was just IDR 2.81 million ha-1 only.  Settled cultivation pattern could

  10. Studying soil organic carbon in Mediterranean soils. Different techniques and the effects of land management and use, climatic and topographic conditions, organic waste addition

    Science.gov (United States)

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2014-05-01

    Soil organic carbon (SOC) is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. The ability of soil to store SOC depends to a great extent on climate and some soil properties, in addition to the cultivation system in agricultural soils. Soils in Mediterranean areas are very poor in organic matter and are exposed to progressive degradation processes. Therefore, a lot of actions are conducted to improve soil quality and hence mitigate the negative environmental and agronomic limitations of these soils. Improved cultivation systems (conversion of cropland to pastoral and forest lands, conventional tillage to conservation tillage, no manure use to regular addition of manure) have been introduced in recent years, increasing the contents in SOC and therefore, enhancing the soil quality, reducing soil erosion and degradation, improving surface water quality and increasing soil productivity. Moreover, the organic waste addition to the soils is especially useful in Mediterranean regions, where the return of organic matter to soil not only does it help soils store SOC and improve soil structure and soil fertility but also it allows to reuse a wide range of agro-industrial wastes.

  11. On the use of selective environments in microalgal cultivation

    NARCIS (Netherlands)

    Mooij, P.R.

    2016-01-01

    This thesis deals with selective environments in microalgal cultivation. As explained in Chapter 1 microalgae have changed the course of life on Earth dramatically by performing oxygenic photosynthesis. In oxygenic photosynthesis electrons from water are used to reduce carbon dioxide to

  12. Plutonium as a tracer for soil erosion assessment in northeast China

    DEFF Research Database (Denmark)

    Xu, Yihong; Qiao, Jixin; Pan, Shaoming

    2015-01-01

    soil cores followed an exponential decline with soil depth, whereas at cultivated sites, Pu was homogenously distributed in plow horizons. Factors such as planted crop types, as well as methods and frequencies of irrigation and tillage were suggested to influence the distribution of radionuclides...... in cultivated land. The baseline inventories of 239+240Pu and 137Cs were 88.4 and 1688Bqm-2 respectively. Soil erosion rates estimated by 239+240Pu tracing method were consistent with those obtained by the 137Cs method, confirming that Pu is an effective tracer with a similar tracing behavior to that of 137Cs...

  13. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M. III.

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO 2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs

  14. Phosphorus conditions at various depths in some mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1963-05-01

    Full Text Available The fractionation method of CHANG and JACKSON (2 was used for the analysing of the distribution of inorganic phosphorus in the topsoil and subsoil of twelve virgin and twelve cultivated soils from various parts of the country; two virgin soils and twenty cultivated soils were studied down to the depths of 60 cm or 70 cm, one even to 2 m. In the more intensively podsolized virgin soils the surface layers, particularly the A2-horizon, are very poor in all the forms of inorganic phosphorus while the enrichment layer will contain fairly high amounts of iron and aluminium bound phosphorus. The application of fertilizers and the other cultivation managements tend to accumulate aluminium and iron bound phosphorus in the plough layer. In some soils the minimum content of calcium bound phosphorus occurs in the layer below the plough layer, but an increase with the depth seems to be typical to it in all the non-Litorina soils, while the first two fractions usually decrease with the depth. In the Litorina soils the iron bound phosphorus is dominant in all the layers studied, but the content of reductant soluble phosphorus is low in these soils, and their content of calcium bound phosphorus is higher than the content of phosphorus bound by aluminium. The predominance of calcium phosphate in the subsoil and the rather low content of reductant soluble and occluded fractions indicate that the chemical weathering in most of our soils is not yet at an advanced stage. The test values determined were in accordance with the results of the fractionation and the estimation of ammonium oxalate soluble aluminium and iron.

  15. The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, V. [Institut fuer Agrartechnik Bornim e.V., Potsdam (Germany); Ellerbrock, R. [Zentrum fuer Agrarlandschafts- und Landnutzungsforschung e.V. Muencheberg (Germany)

    2002-07-01

    Energy plants, cultivated on set-aside land, could substitute nearly 3% of the primary energy in Germany and could raise the income of farmers. However, the substitution of fossil fuels by plants requires the selection of plant species with high site suitability, an ecologically benign farming system and high yields. This paper describes results of the cultivation of 10 energy plant species suitable for combustion. Over a period of 6 yr, yield, energy gain, and environmentally relevant substances in the plant and the soil were determined under practical conditions. Fertilization was carried out in four variants each ranging from 0 to 150 kgNha{sup -1} and with wood- and straw-ashes, as well as basic mineral fertilizer. Plant protection products were entirely dispensed with. The results show that, except for topinambur haulm (Jerusalem artichoke) and short rotation coppice with undersown crops, the mean yield ranges between 8 and 12 t{sub DM} ha{sup -1} and that a reduction of nitrogen application from 150 to 75 kgNh{sup -1} causes only slight yield losses. Without fertilization, yields diminish by 20-40% after 6 years, except for poplars, which reach similarly a high yield level as with fertilization. The contents of the emission- and combustion-relevant plant nutrients, such as nitrogen, potassium, sulfur and chlorine, are significantly lower in poplars and willows than in grass, rye, triticale and hemp. Heavy metals, such as cadmium, copper, zinc, and lead, are absorbed differently. Hemp, poplars, and winter rye allow high-energy yields to be achieved. Even if nitrogen fertilization is reduced, net energy gains of more than 120 GJha{sup -1} yr{sup -1} (3.2 kl oil equivalent ha{sup -1} yr{sup -1}) are reached. (author)

  16. Optimization of Cultivation and Storage Conditions on Red Cabbage Seed Sprouts

    International Nuclear Information System (INIS)

    Baek, K.H.; Jo, D.J.; Park, J.H.; Kwon, J.H.; Kim, G.R.; Lee, G.D.; Kim, J.S.; Kim, Y.R.; Han, B.S.; Yoon, S.R.

    2013-01-01

    This study was carried out to find the optimal conditions for red cabbage seed sprouts in terms of their physicochemical and sensory qualities by electron-beam irradiation, cultivation and storage using the response surface methodology (RSM). Moisture content (R2 = 0.9638) was affected by irradiation dose and cultivation time. Total phenolics content (R2 = 0.9117) was mainly affected by irradiation dose, but carotenoid content (R2 = 0.8338) was affected in the order of irradiation dose, cultivation time and storage time. Sensory properties were also affected by irradiation dose, and thus scores decreased as irradiation dose increased. The optimum conditions estimated by superimposing total phenolics content and overall acceptance were 2.2-3.8 kGy of the irradiation dose, 3.0-4.0 days of cultivation and 2.0-3.0 days of storage

  17. Soil properties related to 60Co bioavailability in tropical soils

    International Nuclear Information System (INIS)

    Bartoly, Flavia; Wasserman, Maria Angelica; Rochedo, Elaine Ruas Rodriguez; Viana, Aline Gonzalez; Souza, Rodrigo Camara; Oliveira, Giselle Rodrigues; Reis, Wagner Goncalves Soares; Perez, Daniel Vidal

    2005-01-01

    This work presents the results of field experiments to obtain soil to plants Transfer factor (TF) for 60 Co in reference plants cultivated in Ferralsol, Acrisol and Nitisol. These soils represent the majority of Brazilian agricultural area. Values of TF varied from 0.001 to 0.05 for corn and from 0.001 to 0.81 for cabbage. Results of 60 Co TF were discussed in relation to the physical and chemical properties of the soils and 60 Co geochemical partition. The sequential chemical extraction showed that more than 40% of the 60 Co present in the soils are associated to manganese oxides. These results will provide regional values for parameters used in the environmental radiological modeling aiming to optimize the planning of emergency interventions or the waste management related to tropical soils. (author)

  18. The carbon count of 2000 years of rice cultivation.

    Science.gov (United States)

    Kalbitz, Karsten; Kaiser, Klaus; Fiedler, Sabine; Kölbl, Angelika; Amelung, Wulf; Bräuer, Tino; Cao, Zhihong; Don, Axel; Grootes, Piet; Jahn, Reinhold; Schwark, Lorenz; Vogelsang, Vanessa; Wissing, Livia; Kögel-Knabner, Ingrid

    2013-04-01

    More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to elucidate the long-term rates of carbon accrual in surface and subsurface soil horizons relative to those of soils under nonpaddy management. We assessed changes in total soil organic as well as of inorganic carbon stocks along a 2000-year chronosequence of soils under paddy and adjacent nonpaddy management in the Yangtze delta, China. The initial organic carbon accumulation phase lasts much longer and is more intensive than previously assumed, e.g., by the Intergovernmental Panel on Climate Change (IPCC). Paddy topsoils accumulated 170-178 kg organic carbon ha(-1) a(-1) in the first 300 years; subsoils lost 29-84 kg organic carbon ha(-1) a(-1) during this period of time. Subsoil carbon losses were largest during the first 50 years after land embankment and again large beyond 700 years of cultivation, due to inorganic carbonate weathering and the lack of organic carbon replenishment. Carbon losses in subsoils may therefore offset soil carbon gains or losses in the surface soils. We strongly recommend including subsoils into global carbon accounting schemes, particularly for paddy fields. © 2012 Blackwell Publishing Ltd.

  19. Culture alternation, effect on soil in tobacco zones of Pinar del Río province

    Directory of Open Access Journals (Sweden)

    Alexei Yoán Martínez Robaina

    2018-01-01

    Full Text Available The tobacco constitutes an important source of income to the Pinar del Río province. However, production technologies have contributed to the degradation of soils; crop alternating is one of the effective measures to mitigate this effect. The objective of the investigation was to evaluate the incidence of different variants of alternation in some chemical and physic - chemical properties of the soil. The work was developed in areas dedicated to the tobacco crop, the variants of alternation evaluated were uncultivated soil, tobacco - fallow, tobacco - corn and tobacco - polycultures. In the selected areas, 96 samples were collected at depths of 20 cm and 40 cm and 40 producers were surveyed. Descriptive statistical methods were applied to compare the means in each variant of land use. The results showed that the predominant pH was slightly acidic, the tobacco-fallow variant showed values close to neutrality. The content of organic matter did not exceed 1% in the variants of cultivated soils inferior to those not cultivated, changeable bases and cation exchange capacity were similar in the cultivated soils, and the calcium showed the highest values in tobacco-fallow. It is concluded that the different land use variants did not have a marked effect on the pH values. The content of soluble phosphorus increased in all the variants of cultivated soils. The alternation of crops, as the only measure of improvement, does not guarantee an improvement in the chemical and physic - chemical properties of the soils.

  20. Short communication. Response of bacterial community composition to long-term applications of different composts in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Ros, M; Knapp, B A; Peintner, U; Insam, H

    2011-07-01

    Differences in the bacterial community composition of agricultural soils caused by a long-term (12 year) application of different composts were identified by cultivation-dependent and -independent methods (PCR-DGGE and 16S rRNA clone libraries). The number of colony forming units indicated that the successive incorporation of organic amendments increased the bacterial abundance (6.41-5.66 log10 cfu g-1dry soil) compared to control and mineral soils (5.54-3.74 log10 cfu g-1 dry soil). Isolated bacteria were dominated by Actinobacteria, whereby compost-amended soils and green compost-amended soils showed, respectively, higher number of members of Actinobacteria (100% and 64%) than control and mineral soils (50% and 40%). The 16S rRNA clone libraries were dominated by Proteobacteria (43%), Acidobacteria (21%) and Actinobacteria (13%). Proteobacteria and Actinobacteria were most abundant in compost amended soils while Acidobacteria were more frequently found in mineral fertilizer and control soils. Partial 16S rRNA gene clone libraries revealed a higher bacterial diversity than cultivation. In conclusion, we found differences of bacterial community composition with a cultivation approach and clone libraries between compost amended soils and control and mineral soil. (Author) 31 refs.

  1. Dynamics of Panax ginseng Rhizospheric Soil Microbial Community and Their Metabolic Function

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The bacterial communities of 1- to 6-year ginseng rhizosphere soils were characterized by culture-independent approaches, random amplified polymorphic DNA (RAPD, and amplified ribosomal DNA restriction analysis (ARDRA. Culture-dependent method (Biolog was used to investigate the metabolic function variance of microbe living in rhizosphere soil. Results showed that significant genetic and metabolic function variance were detected among soils, and, with the increasing of cultivating years, genetic diversity of bacterial communities in ginseng rhizosphere soil tended to be decreased. Also we found that Verrucomicrobia, Acidobacteria, and Proteobacteria were the dominants in rhizosphere soils, but, with the increasing of cultivating years, plant disease prevention or plant growth promoting bacteria, such as Pseudomonas, Burkholderia, and Bacillus, tended to be rare.

  2. Estimating soil erosion losses in Korea with fallout cesium-137

    International Nuclear Information System (INIS)

    Menzel, R.G.; Pilkyun Jung; Kwanshig Ryu; Kitai Um

    1987-01-01

    The contents of fallout 137 Cs in soil profiles were used to estimate erosion losses from steeply sloping croplands in Korea. Seven undisturbed sites with no apparent erosion or deposition, and 15 cropland sites were examined to a depth of 30 cm. The cropland sites had been cultivated for periods ranging from 5 to more than 80 y (median 10 y), and their slopes ranged from 5 to 26% (median 13%). All except one of the cropland sites contained less 137 Cs than undisturbed sites in the same area. Three cropland sites contained essentially no 137 Cs, indicating erosion of the entire cultivated layer of soil in from 6 to 10 years. Other cropland sites, particularly those with sandy texture, showed little loss of 137 Cs over longer periods of cultivation. Cesium-137 measurements may be useful in identifying site characteristics that reduce the vulnerability of sloping soils to erosion damage. (author)

  3. Biodegradation of glyphosate in rhizospheric soil cultivated with Glycine max, Canavalia ensiformis e Stizolobium aterrimum Biodegradação de glyphosate em solo rizosférico de Glycine max, Canavalia ensiformis e Stizolobium aterrimum

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2009-01-01

    Full Text Available Biodegradation of glyphosate was evaluated in rhizospheric soil cultivated with Glycine max (soybean, var. BRS245-RR, Canavalia ensiformis and Stizolobium aterrimum. After these species were cultivated for 60 days, soil samples were collected, placed in flasks and treated with 14C-glyphosate. After 30 days of incubation, the total release rate of C-CO2 was determined along with microbial biomass (MBC, metabolic quotient (qCO2, and degradation percentage of the radio-labeled glyphosate released as 14C-CO2. A higher mass of rhizosphere-associated microorganisms was verified in the soil samples from pots cultivated with soybean, regardless of glyphosate addition. However, in the presence of the herbicide, this characteristic was the most negatively affected. Microorganisms from the C. ensiformis rhizosphere released a lower amount of 14C-CO2, while for those originated from S. aterrimum, the amount released reached 1.3% more than the total carbon derived from the respiratory activity. The rhizospheric soil from S. aterrimum also presented higher glyphosate degradation efficiency per microbial biomass unit. However, considering qCO2, the microbiota of the rhizospheric soil cultivated with soybean was more efficient in herbicide degradation.Avaliou-se neste trabalho a degradação de glyphosate em solo rizosférico proveniente do cultivo de Glycine max (soja var. BRS245-RR, Canavalia ensiformis e Stizolobium aterrimum. Para isso, após o cultivo, em vasos, das citadas espécies por 60 dias, coletaram-se amostras de solo, as quais foram acondicionadas em frascos e tratadas com 14C-glyphosate. Após 32 dias de incubação, foram determinados a taxa de desprendimento total de C-CO2, a biomassa microbiana (MBC, o quociente metabólico (qCO2 e a porcentagem de degradação do glyphosate radiomarcado liberado na forma de 14C-CO2. Verificou-se a maior massa de microrganismos associados à rizosfera em amostras de solo proveniente de vasos cultivados com a

  4. Características hidráulicas e perdas de solo e água sob cultivo do feijoeiro no semi-árido Hydraulic characteristics and soil and water losses under bean cultivation in the semiarid

    Directory of Open Access Journals (Sweden)

    Thais E. M. dos Santos

    2009-06-01

    Full Text Available A região semi-árida apresenta chuvas escassas, irregulares e de secas freqüentes, sendo usual a ocorrência de eventos de alta intensidade. Os solos são pedregosos e rasos, dificultam a prática regular da agropecuária, comprometem freqüentemente a produtividade e tornam esses ambientes vulneráveis à erosão. Objetivou-se avaliar o desempenho de práticas conservacionistas sob a cultura do feijoeiro, no controle de perdas de solo e água por erosão hídrica, em Neossolo Flúvico do semi-árido, com cultivo de sequeiro. Chuvas simuladas com intensidades de 60 mm h-1 foram aplicadas sobre os seguintes tratamentos: cultivo em nível (N1 com barramentos de pedra entre cada fileira de plantio, no espaçamento de 0,5 m; cultivo em nível (N2 com barramentos de pedra no espaçamento de 1,0 m; cultivo morro abaixo (MA; cultivo em nível com cobertura morta (CM, de palha de feijão; parcelas desmatadas (D e com cobertura natural (CN. Dentre os tratamentos avaliados, verificou-se que a adoção de cobertura morta permitiu, em média, redução nas perdas de solo de 86,91% em relação à parcela sem cobertura, com valores próximos ao da condição ideal de cobertura, que é a condição natural, durante todo o ciclo da cultura.The semiarid zone presents scarce and irregular rainfall with frequent droughts, with the occurrence of high intensity events being usual. The soils are shallow and stony, which limits regular agriculture practice, usually reducing productivity and turning this environment susceptible to erosion. The objective of this study was to evaluate the influence of conservation practices, under bean crop, upon soil and water losses by the hydric erosion, in a Fluvic Neossol in the semiarid zone, with rainfed crop. Simulated rainfall has been applied with 60 mm h-1 intensity under the following treatments: cultivation in contour lines (N1 with rock barriers between each row of plantation, spacing 0.5 m; cultivation in contour lines

  5. Design, Fabrication and Performance Evaluation of an Inter-Row Cultivator for Sugarcane Fields

    Directory of Open Access Journals (Sweden)

    Yuttana Khaehanchanpong

    2017-09-01

    Full Text Available The aims of this research were to design and fabricate an inter-row cultivator for mounting on a medium-sized tractor (25.3 or 37.3 kW for sugarcane fields, and to assess the performance of the cultivator when harvesting is conducted either by hand or with a sugarcane harvester. Moreover, this study was also designed to assess the performance of the cultivator in mixing sugarcane residues in the field. The inter-row cultivator has a working width of 80 cm, a rotor shaft speed of 500 rpm, and a total weight of 518 kg. The cultivator comprises 18 European C-type blades attached to three disk holder flanges arranged in a spiral formation. Two notch-cutting discs were mounted on the front to cut and press the sugarcane leaves before they were chopped and mixed by the inter-row cultivator. The working performance test was conducted for different thicknesses of trash blankets while using the inter-row cultivator mounted on 25.3 kW- and 37.3 kW-size tractors. The effective field capacity for trash incorporation of the inter-row cultivator was 0.30 ha·h−1 when trash was left through harvesting by hand. On the other hand, effective field capacity was 0.31 ha·h−1 when a sugarcane harvester was used. Moreover, the field efficiency exceeded 90% in all tested fields, with greater soil inversion. The results also showed that the fuel consumption of both tractors was higher when harvesting by hand compared with harvesting using a harvester.

  6. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, Roberta [Occupational Health, University of Brescia (Italy); Hashim, Dana [Occupational and Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York (United States); Smith, Donald R. [Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA (United States); Guazzetti, Stefano [Public Health Service, Reggio Emilia (Italy); Donna, Filippo [Occupational Health, University of Brescia (Italy); Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina [Department of Food Chemistry, Metal Laboratory, IZSLER, Brescia (Italy); Beone, Gian Maria [Institute of Agricultural and Environmental Chemistry, Università Cattolica, Piacenza (Italy); Lucchini, Roberto G. [Occupational Health, University of Brescia (Italy); Occupational and Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York (United States); Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA (United States)

    2015-06-15

    Background: For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods: Home gardens (n = 63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results: Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions: Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1 + F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references

  7. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure

    International Nuclear Information System (INIS)

    Ferri, Roberta; Hashim, Dana; Smith, Donald R.; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G.

    2015-01-01

    Background: For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods: Home gardens (n = 63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results: Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions: Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1 + F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references

  8. Effect of decontamination of planting soil using zeolite slurry that inhibits transition of radioactive cesium from soil to plant bodies

    International Nuclear Information System (INIS)

    Ikeda, Yutaka; Akita, Hiroyuki; Kikawada, Kazuya

    2013-01-01

    The accident of Fukushima Daiichi nuclear energy plant by the tsunami resulting from the Great Eastern Japan Earthquake in 2011 caused the radiation contamination of cultivated field in Fukushima Prefecture. Some decontamination techniques such as surface soil grab, deep cultivation, and adding zeolite to the soil were tested in the rice fields of Fukushima Prefecture. Zeolite is usually used in the form of particle. It inhibits the transition of radioactive cesium from soil to plant bodies. Here, zeolite slurry was also used. The inhibition effect of the zeolite slurry was checked not only in the field but also in a laboratory experiment using some vegetables. The laboratory test results proved the effect of decontamination for vegetable; however, the field test showed uncertainness owing to the low passage coefficient of rice. (author)

  9. Validating the use of 137Cs and 210Pbex measurements to estimate rates of soil loss from cultivated land in southern Italy

    International Nuclear Information System (INIS)

    Porto, Paolo; Walling, Des E.

    2012-01-01

    Soil erosion represents an important threat to the long-term sustainability of agriculture and forestry in many areas of the world, including southern Italy. Numerous models and prediction procedures have been developed to estimate rates of soil loss and soil redistribution, based on the local topography, hydrometeorology, soil type and land management. However, there remains an important need for empirical measurements to provide a basis for validating and calibrating such models and prediction procedures as well as to support specific investigations and experiments. In this context, erosion plots provide useful information on gross rates of soil loss, but are unable to document the efficiency of the onward transfer of the eroded sediment within a field and towards the stream system, and thus net rates of soil loss from larger areas. The use of environmental radionuclides, particularly caesium-137 ( 137 Cs) and excess lead-210 ( 210 Pb ex ), as a means of estimating rates of soil erosion and deposition has attracted increasing attention in recent years and the approach has now been recognised as possessing several important advantages. In order to provide further confirmation of the validity of the estimates of longer-term erosion and soil redistribution rates provided by 137 Cs and 210 Pb ex measurements, there is a need for studies aimed explicitly at validating the results obtained. In this context, the authors directed attention to the potential offered by a set of small erosion plots located near Reggio Calabria in southern Italy, for validating estimates of soil loss provided by 137 Cs and 210 Pb ex measurements. A preliminary assessment suggested that, notwithstanding the limitations and constraints involved, a worthwhile investigation aimed at validating the use of 137 Cs and 210 Pb ex measurements to estimate rates of soil loss from cultivated land could be undertaken. The results demonstrate a close consistency between the measured rates of soil loss and

  10. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  11. Aluminium release from acidic forest soil following deforestation and ...

    African Journals Online (AJOL)

    Acidic tropical soils often have high Al3+ concentrations in soil solutions, which can be toxic to plants and, thereby, reduce agricultural yields. This study focuses on the impact of deforestation and cultivation on the short and long-term Al geochemistry of acidic soils in Ghana, West Africa. Site-specific investigations were ...

  12. Characterization of uranium- and plutonium-contaminated soils by electron microscopy

    International Nuclear Information System (INIS)

    Buck, E.C.; Dietz, N.L.; Fortner, J.A.; Bates, J.K.; Brown, N.R.

    1995-01-01

    Electron beam techniques have been used to characterize uranium-contaminated soils from the Fernald Site in Ohio, and also plutonium-bearing 'hot particles, from Johnston Island in the Pacific Ocean. By examining Fernald samples that had undergone chemical leaching it was possible to observe the effect the treatment had on specific uranium-bearing phases. The technique of Heap leaching, using carbonate solution, was found to be the most successful in removing uranium from Fernald soils, the Heap process allows aeration, which facilitates the oxidation of uraninite. However, another refractory uranium(IV) phase, uranium metaphosphate, was not removed or affected by any soil-washing process. Examination of ''hot particles'' from Johnston Island revealed that plutonium and uranium were present in 50--200 nm particles, both amorphous and crystalline, within a partially amorphous aluminum oxide matrix. The aluminum oxide is believed to have undergone a crystalline-to-amorphous transition caused by alpha-particle bombardment during the decay of the plutonium

  13. Effects of Nanoscale Carbon Black Modified by HNO3 on Immobilization and Phytoavailability of Ni in Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Jiemin Cheng

    2015-01-01

    Full Text Available A surface-modified nanoscale carbon black (MCB as Ni adsorbent in contaminated soil was prepared by oxidizing the carbon black with 65% HNO3. The surface properties of the adsorbent were characterized by zeta potential analysis, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FTIRs. Batch experiments were conducted to evaluate the improvement of Ni2+ adsorption by MCB. Greenhouse cultivation experiments were conducted to examine the effect of MCB on the DTPA-extractable Ni2+ in soil, Ni2+ uptake of ryegrass shoot, and growth of ryegrass. Results indicated that MCB had much lower negative zeta potential, more functional groups for exchange and complexation of cation, and more heterogeneous pores and cavities for the adsorption of cation than the unmodified parent one (CB. MCB showed enhanced sorption capacity for Ni (qmax, 49.02 mg·g−1 compared with CB (qmax, 39.22 mg·g−1. Greenhouse cultivation experiment results showed that the biomass of ryegrass shoot and the Ni uptake of the ryegrass shoot were significantly increased and the concentrations of DTPA-extractable Ni in soil were significantly decreased with the increasing of MCB amount. It is clear from this work that the MCB had good adsorption properties for the Ni and could be applied in the in situ immobilization and remediation of heavy metal contaminated saline-alkali soils.

  14. Relationships between greenhouse gas emissions and cultivable bacterial populations in conventional, organic and long-term grass plots as affected by environmental variables and disturbances

    NARCIS (Netherlands)

    Bruggen, van A.H.C.; He, M.; Zelenev, V.V.; Semenov, V.M.; Semenov, A.M.; Kuznetsova, T.V.; Khodzaeva, Anna K.; Kuznetsov, A.M.; Semenov, M.V.

    2017-01-01

    Daily dynamics of greenhouse gas (GHG) emissions and cultivable bacterial populations have rarely been examined. The objectives were: (1) to investigate if dynamics of GHG emissions can be described by harmonics and are related to those of cultivable bacteria after soil disturbances in three

  15. Effect of land use types in Miesa Watershed on soil quality and ...

    African Journals Online (AJOL)

    This study was undertaken to investigate the effects of land use types on physicochemical and biological properties of soil and hence on soil fertility and soil productivity. In order to investigate soil fertility status, soil samples collected from different land use types (cultivated land, grazing land and natural forest) from the ...

  16. Water Use for Cultivation Management of Watermelon in Upland Field on Sand Dune

    Science.gov (United States)

    Hashimoto, Iwao; Senge, Masateru; Itou, Kengo; Maruyama, Toshisuke

    Early-maturing cultivation of watermelon in a plastic tunnel was invetigated in upland field on sand dune on the coast of the Japan Sea to find water use to control blowing sand and to transplant seedlings. This region has low precipitation, low humidity, and strong wind in March and April, when sand is readily blown in the field. Water is used to control blowing sand on days with precipitation below 5 mm, minimum humidity below the meteorological average in April, and maximum wind velocity above the meteorological average in April. For the rooting and growth of watermelon seedlings, soil temperature needs to be raised because it is low in April. Ridges are mulched with transparent, porous polyethylene films 10 or more days before transplanting the seedlings and irrigated with sprinklers on fine days for the thermal storage of solar energy. The stored heat steams the mulched ridges to raise soil temperature to 15°C or higher on the day of transplanting the seedlings. The total amount of irrigation water used for watermelon cultivation was 432.7 mm, of which 23.6 mm was for blowing sand control and 26.6 mm was for transplanting the seedlings. The combined amount, 50.2 mm, is 11.6% of the total amount of water used for cultivation management.

  17. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Souza Silva

    2014-04-01

    Full Text Available Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

  18. Phylogenetic changes in soil microbial and diazotrophic diversity with application of butachlor.

    Science.gov (United States)

    Yen, Jui-Hung; Wang, Yei-Shung; Hsu, Wey-Shin; Chen, Wen-Ching

    2013-01-01

    We investigated changes in population and taxonomic distribution of cultivable bacteria and diazotrophs with butachlor application in rice paddy soils. Population changes were measured by the traditional plate-count method, and taxonomic distribution was studied by 16S rDNA sequencing, then maximum parsimony phylogenic analysis with bootstrapping (1,000 replications). The bacterial population was higher after 39 than 7 days of rice cultivation, which indicated the augmentation of soil microbes by rice root exudates. The application of butachlor increased the diazotrophic population in both upper (0-3 cm) and lower (3-15 cm) layers of soils. Especially at day 39, the population of diazotrophs was 1.8 and 1.6 times that of the control in upper and lower layer soils, respectively. We found several bacterial strains only with butachlor application; examples are strains closest to Bacillus arsenicus, B. marisflavi, B. luciferensis, B. pumilus, and Pseudomonas alvei. Among diazotrophs, three strains closely related to Streptomyces sp. or Rhrizobium sp. were found only with butachlor application. The population of cultivable bacteria and the species composition were both changed with butachlor application, which explains in part the contribution of butachlor to augmenting soil nitrogen-fixing ability.

  19. Water Productivity of Irrigated Rice under Transplanting, Wet Seeding and Dry Seeding Methods of Cultivation

    Directory of Open Access Journals (Sweden)

    Murali, NS.

    1997-01-01

    Full Text Available Water productivity (WP of irrigated lowland rice was determined during the 1994 dry (January to May and wet (August to December seasons on a heavy clay acid sulphate soil. Treatments consisted of three cultivation methods : transplanted rice, pregerminated seeds broadcasted on puddled soil (wet seeding and dry seeds broadcasted on unpuddled soil (dry seeding. In wet and dry seeded plots, continuous standing water condition was initiated 17 days after sowing. Total water requirement for rice production was highest in transplanted plots (755 mm in wet season and 1154 mm in dry season and was lowest in dry seeded plots (505 mm in wet season and 1040 mm in dry season. Dry seeding required no water for land preparation but transplanting and wet seeding methods required 18 - 20 % of total water requirement in dry season and 27 - 29 % in wet season. Total percolation was maximum (99 mm in wet season and 215 mm in dry season in dry seeding method and was minimum (62 mm in wet season and 94 mm in dry season in transplanting method. In dry and wet seeding methods, daily percolation gradually decreased with the age of the crop. Total seepage loss did not show any significant difference between the cultivation methods in the two seasons. Grain yield was not affected by the three cultivation methods in both seasons. Water productivity (the ratio between grain yield and total amount of water used in production was 3.5 - 4.1 kg ha-1 mm-1, 3.8 - 4.4 kg ha-1 mm-1 and 4.1 - 5.5 kg ha-1 mm-1 in transplanted, wet seeded and dry seeded rice, respectively. Labour requirement for land preparation and sowing was maximum in transplanted (219 - 226 man-hours ha-1 followed by wet (104 -112 man-hours ha-1 and dry seeded (94 - 99 man-hours ha-1 methods. However, in wet season extra labour (77 man-hours ha-1 was required for weeding after crop establishment in dry and wet seeding methods. Crop maturity was 20 days earlier in wet and dry seeding methods compared to

  20. Migratory bird habitat in relation to tile drainage and poorly drained hydrologic soil groups

    Science.gov (United States)

    Kastner, Brandi; Christensen, Victoria G.; Williamson, Tanja N.; Sanocki, Chris A.

    2016-01-01

    The Prairie Pothole Region (PPR) is home to more than 50% of the migratory waterfowl in North America. Although the PPR provides an abundance of temporary and permanent wetlands for nesting and feeding, increases in commodity prices and agricultural drainage practices have led to a trend of wetland drainage. The Northern Shoveler is a migratory dabbling duck species that uses wetland habitats and cultivated croplands in the PPR. Richland County in North Dakota and Roberts County in South Dakota have an abundance of wetlands and croplands and were chosen as the study areas for this research to assess the wetland size and cultivated cropland in relation to hydrologic soil groups for the Northern Shoveler habitat. This study used geographic information system data to analyze Northern Shoveler habitats in association with Natural Resource Conservation Service soil data. Habitats, which are spatially associated with certain hydrologic soil groups, may be at risk of artificial drainage installations because of their proximity to cultivated croplands and soil lacking in natural drainage that may become wet or inundated. Findings indicate that most wetlands that are part of Northern Shoveler habitats were within or adjacent to cultivated croplands. The results also revealed soil hydrologic groups with high runoff potential and low water transmission rates account for most of the soil within the Northern Shoveler‘s wetland and cropland habitats. Habitats near agriculture with high runoff potential are likely to be drained and this has the potential of reducing Northern Shoveler habitat.

  1. Soils in an agricultural landscape of Jokioinen, south-western Finland

    Directory of Open Access Journals (Sweden)

    M. YLI-HALLA

    2008-12-01

    Full Text Available Eleven pedons in an agricultural landscape at elevations 80-130 m above sea level in Jokioinen, south-western Finland were investigated and classified according to Soil Taxonomy, the FAO-Unesco system (FAO, and the World Reference Base for Soil Resources system (WRB. The soils were related to geomorphology of the landscape which is characterized by clayey fields and forested bedrock high areas covered with glacial till. A Spodosol/Podzol was found in a coarse-sandy soil in an esker while the sandy loam in a bedrock high area soils did not have an E horizon. A man-made mollic epipedon was found in a cultivated soil which had a sandy plow layer while clayey plow layers were ochric epipedons. Cambic horizons, identified by structure and redox concentrations, were common in cultivated soils. In a heavy clay soil, small slickensides and wedge-shaped aggregates, i.e., vertic characteristics, were found. Histosols occurred in local topographic depressions irrespective of the absolute elevation. According to the three classification systems, the following catenas are recognized: Haplocryods - Dystro/Eutrocryepts -Haplocryolls - Cryaquepts - Cryosaprists (Soil Taxonomy, Podzols - Regosols - Cambisols - Histosols (FAO-Unesco, and Podzols - Cambisols - Phaeozems - Gleysols - Histosols (WRB.;

  2. EFFECT OF CROP ROTATION AND LONG TERM FERTILIZATION ON THE CARBON AND GLOMALIN CONTENT IN THE SOIL

    Directory of Open Access Journals (Sweden)

    Piotr WOJEWÓDZKI

    2012-12-01

    Full Text Available The research was performed on the basis of soil samples taken from a multi-year long fertilization experiment carried out in Skierniewice. The source of samples was soil under potato and rye cultivated in monoculture and in the 5-fields rotation system. The following combinations of fertilization were concerned: Ca, NPK and CaNPK (doses since 1976: 1.6 t·ha-1 CaO every 4 years in monoculture and 2 t·ha-1 CaO every 5 years in crop rotation, 90 kg·ha-1 N, 26 kg·ha-1 P, 91 kg·ha-1 K. Laboratory analyzes involved determination of total organic carbon (TOC and glomalin operationally described as a total glomalin related soil protein (TGRSP. It was found that regardless of cultivated plants and the method of fertilization, only cultivation system such as rotation and monoculture significantly influenced the content of TGRSP. TOC was significantly influenced by interaction between species of cultivated plant and the system of cultivation. The analyzed factors within the method of cultivation (monoculture and crop rotation did not influence significantly the TGRSP content while cultivated plant species, in monoculture, significantly influenced on TOC content. There was also noted positive correlation (r = 0.72 between TGRSP and TOC.

  3. Soil fertility and growth of Eucalyptus grandis in Brazil under ...

    African Journals Online (AJOL)

    Silvicultural operations such as soil preparation, logging residue management and application of fertilisers can influence soil fertility, and hence nutrient uptake and tree growth. This paper reports the effect of site management practices of minimum and intensive cultivation of the soil on the growth of a stand of Eucalyptus ...

  4. Fourier and granulometry methods on 3D images of soil surfaces for evaluating soil aggregate size distribution

    DEFF Research Database (Denmark)

    Jensen, T.; Green, O.; Munkholm, Lars Juhl

    2016-01-01

    The goal of this research is to present and compare two methods for evaluating soil aggregate size distribution based on high resolution 3D images of the soil surface. The methods for analyzing the images are discrete Fourier transform and granulometry. The results of these methods correlate...... with a measured weight distribution of the soil aggregates. The results have shown that it is possible to distinguish between the cultivated and the uncultivated soil surface. A sensor system suitable for capturing in-situ high resolution 3D images of the soil surface is also described. This sensor system...

  5. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We...... believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths...... (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial...

  6. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-08-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications . Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  7. Scanning electronic microscopy on clays in soils used as road foundations

    International Nuclear Information System (INIS)

    Barelli, N.

    1982-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the morphology, texture and fabric of clays in soils used as road foundation. It is also seen that certain samples are easier to examine by SEM because of their larger crystallite sizes, better crystallinities and open textures. (C.L.B.) [pt

  8. Soil Health Management under Hill Agroecosystem of North East India

    Directory of Open Access Journals (Sweden)

    R. Saha

    2012-01-01

    Full Text Available The deterioration of soil quality/health is the combined result of soil fertility, biological degradation (decline of organic matter, biomass C, decrease in activity and diversity of soil fauna, increase in erodibility, acidity, and salinity, and exposure of compact subsoil of poor physicochemical properties. Northeast India is characterized by high soil acidity/Al+3 toxicity, heavy soil, and carbon loss, severe water scarcity during most parts of year though it is known as high rainfall area. The extent of soil and nutrient transfer, causing environmental degradation in North eastern India, has been estimated to be about 601 million tones of soil, and 685.8, 99.8, 511.1, 22.6, 14.0, 57.1, and 43.0 thousand tones of N, P, K, Mn, Zn, Ca, and Mg, respectively. Excessive deforestation coupled with shifting cultivation practices have resulted in tremendous soil loss (200 t/ha/yr, poor soil physical health in this region. Studies on soil erodibility characteristics under various land use systems in Northeastern Hill (NEH Region depicted that shifting cultivation had the highest erosion ratio (12.46 and soil loss (30.2–170.2 t/ha/yr, followed by conventional agriculture system (10.42 and 5.10–68.20 t/ha/yr, resp.. The challenge before us is to maintain equilibrium between resources and their use to have a stable ecosystem. Agroforestry systems like agri-horti-silvi-pastoral system performed better over shifting cultivation in terms of improvement in soil organic carbon; SOC (44.8%, mean weight diameter; MWD (29.4%, dispersion ratio (52.9%, soil loss (99.3%, soil erosion ratio (45.9%, and in-situ soil moisture conservation (20.6% under the high rainfall, moderate to steep slopes, and shallow soil depth conditions. Multipurpose trees (MPTs also played an important role on soil rejuvenation. Michelia oblonga is reported to be a better choice as bioameliorant for these soils as continuous leaf litter and root exudates improved soil physical

  9. Caesium Radionuclide Uptake from Wet Soil to Kangkung Plant (Ipomoea sp)

    International Nuclear Information System (INIS)

    Putu Sukmabuana; Poppy Intan Tjahaja

    2009-01-01

    Caesium radionuclide transfer from soil to kangkung plant (Ipomoea sp) generally consumed by people had been examined to obtain transfer factor value for internal radiation dose assessment via soil-plant-human pathway. The kangkung plants were cultivated on watered soil medium containing 134 Cs with concentration of about 80 Bq/g, and the 134 Cs uptake by plants, i.e root, stem, and leaves, were measured using gamma spectrometer. The 134 Cs plant uptake was expressed as transfer factor, i.e. ratio of plant 134 Cs concentration to 134 Cs concentration on soil medium. From this research it was obtained transfer factor value of 134 C from soil to plant is 0.07, and the transfer factor for root, stem, and leaves are 0.34 ; 0.05 ; 0,03 respectively, after 45 days cultivation. The transfer factor values are less than one, indicate that kangkung plant do not accumulate Cs radionuclide from soil. (author)

  10. Study and monitoring of the contamination of cultivated soils; Etude et controle de la contamination des sols cultives

    Energy Technology Data Exchange (ETDEWEB)

    Bovard, P.; Grauby, A.

    1960-07-15

    Arable lands are directly concerned by radioactive fallouts as a large part of radio-elements is fixed in the soil first centimetres in which roots of many plants are growing. The authors report the study of fixations at the level of roots, of the movements of radio-elements in the soil solution at their neighbourhood, and of the influence of leaching (by rainfalls or irrigation). Variations of soil content in calcium and strontium have been achieved to highlight dispersion and inhibition factors. The authors present the implemented experimental method, i.e. how soils have been contaminated, how crop pots have been prepared, and how the experiment is performed. Experiments are performed by using ray grass as a crop. The authors assessed radioactive uptake by aerial parts of the plant, studied the rhizosphere, and discussed radiographies obtained on different pots (contaminated, seeded or not, watered or not, with addition of different quantities of strontium or calcium compound)

  11. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    Science.gov (United States)

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  12. UNDERSTANDING AND APPLICABILITY OF THE FOREST SOIL CONCEPT

    Directory of Open Access Journals (Sweden)

    Ana Paula Moreira Rovedder

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810563The forestry sector plays an important role in the socioeconomic and environmental Brazilian context, therefore the improvement of the knowledge about forest soil becomes essential for its sustainable use as a conservation base of natural heritage as resource for economical development. Forest soil can be characterized by pedogenesis occurred under influence of a forestry typology or under a currently natural or cultivated forest coverage. Differentiating forest soils from those occupied with other uses helps the understanding of possible alterations related to vegetal coverage and the developing of better management strategies to soil and forest use. Nevertheless, there is no consensus about this term because the soils present variations according to the forest characteristics, stimulating the discussion concerning its interpretation and applicability. This review aimed to analyze the utilization of forest soil concept, highlighting the differentiation characteristics and the relation with coverage type, natural or cultivated. Aspects related to deposition, quality and management of residues, nutrients cycling, soil compaction and site productivity are emphasized. The forest soil concept is widely used by specific literature and useful to collect specific information and to plan the sustainable use of soil and forest. The improvement of knowledge about these resources provides the creation of a common identity, supporting comparative studies and consolidating the research regarding to this theme.

  13. Soil mineral concentrations and soil microbial activity in grapevine inoculated with arbuscular mycorrhizal (AM fungus in Chile

    Directory of Open Access Journals (Sweden)

    Eduardo von Bennewitz

    2008-01-01

    Full Text Available A two year-experiment was carried out to study an effect of root inoculation with arbuscular mycorrhizal (AM fungus on soil mineral concentrations and soil microbial activity in grapevine (Vitis vi­ni­fe­ra cv. “Cabernet Sauvignon” cultivated in Chile. Plants were inoculated with a commercial granular inoculant (Mycosym Tri-ton® and cultivated in 20 L plastic pots filled with an unsterilized sandy clay soil from the Vertisols class under climatic conditions of Curicó (34°58´ S; 71°14´ W; 228 m ASL, Chile.Soil analyses were carried out at the beginning of the study and after two years (four samples of rhizospheric soil for each treatment to assess the effects of mycorrhizal infection on soil mineral concentration and physical properties. Soil microbial activity was measured by quantifying the soil production of CO2 in ten replications of 50 g of soil from each treatment. Root mycorrhizal infection was assessed through samples of fresh roots collected during 2005 and 2006. Fifty samples for each treatment were analyzed and the percentage of root length containing arbuscules and vesicles was assessed.During both years (2005 and 2006 all treatments showed mycorrhizal infection, even the Control treatment where no AM was applied. Mycorrhizal colonization did not affect the soil concentrations of N, P, K, Ca, Mg, K, Ca, Mg, Mn, Zn, Cu, Fe, B, organic matter, pH/KCl and ECe. Soil CO2-C in vitro production markedly decreased during the period of the study. No significant differences where detected among treatments in most cases.

  14. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya

    Directory of Open Access Journals (Sweden)

    Nathaniel A. Lyngwi

    2013-03-01

    Full Text Available The Northeastern part of India sprawls over an area of 262 379km² in the Eastern Himalayan range. This constitutes a biodiversity hotspot with high levels of biodiversity and endemism; unfortunately, is also a poorly known area, especially on its microbial diversity. In this study, we assessed cultivable soil bacterial diversity and distribution from lowlands to highlands (34 to 3 990m.a.s.l.. Soil physico-chemical parameters and forest types across the different altitudes were characterized and correlated with bacterial distribution and diversity. Microbes from the soil samples were grown in Nutrient, Muller Hinton and Luria-Bertani agar plates and were initially characterized using biochemical methods. Parameters like dehydrogenase and urease activities, temperature, moisture content, pH, carbon content, bulk density of the sampled soil were measured for each site. Representative isolates were also subjected to 16S rDNA sequence analysis. A total of 155 cultivable bacterial isolates were characterized which were analyzed for richness, evenness and diversity indices. The tropical and sub-tropical forests supported higher bacterial diversity compared to temperate pine, temperate conifer, and sub-alpine rhododendron forests. The 16S rRNA phylogenetic analysis revealed that Firmicutes was the most common group followed by Proteobacteria and Bacteroidetes. Species belonging to the genera Bacillus and Pseudomonas were the most abundant. Bacterial CFU showed positive but insignificant correlation with soil parameters like pH (r=0.208, soil temperature (r=0.303, ambient temperature (r=0.443, soil carbon content (r=0.525, soil bulk density (r=0.268, soil urease (r=0.549 and soil dehydrogenase (r=0.492. Altitude (r=0.561 and soil moisture content (r=-0.051 showed negative correlation. Altitudinal gradient along with the vegetation and soil physico-chemical parameters were found to influence bacterial diversity and distribution. This study points out

  15. Microbial activity of soil with sulfentrazone associated with phytoremediator species and inoculation with a bacterial consortium

    Directory of Open Access Journals (Sweden)

    Christiane Augusta Diniz Melo

    Full Text Available ABSTRACT Phytostimulation plays a key role in the process of rhizodegradation of herbicides in soil. Additionally, bio-enhancement associated with phytoremediation may increase the efficiency of the decontamination process of soils with herbicides. Therefore, the objective of this study was to evaluate the biomass and microbial activity of soil contaminated with sulfentrazone and cultivated with phytoremediator species plus a bacterial consortium. The experiment was conducted in a greenhouse, carried out with a 2 × 4 × 4 completely randomized factorial design with 4 replications. The first factor consisted of the presence or absence of bio-enhancement with a bacterial consortium composed of Pseudomonas bacteria; the second factor consisted of a monoculture or mixed cultivation of 2 phytoremediator species Canavalia ensiformis and Helianthus annuus, besides the absence of cultivation; the third factor was made up by the bio-remediation time (25, 45, 65, and 85 days after thinning. Uncultivated soils displayed low values of microbial biomass carbon and microbial quotient as well as high values of metabolic quotient throughout the bio-remediation time, indicating the importance of cultivating phytoremediator species for the stimulation of soil microbiota. Bio-enhancement with the bacterial consortium, in general, promoted an increase in the microbial biomass and activity of soil contaminated with sulfentrazone. In the presence of the bacterial consortium, Canavalia ensiformis stimulated a greater activity of associated microbiota and supported a higher microbial biomass. Phytoremediation associated with microbial bio-enhancement are thus promising techniques for the bio-remediation for soils contaminated with sulfentrazone. This technique enhances the biomass and activity of soil microorganisms.

  16. Soil Susceptibility to Macropore Flow Across a Desert-Oasis Ecotone of the Hexi Corridor, Northwest China

    Science.gov (United States)

    Zhang, Yongyong; Zhao, Wenzhi; He, Jianhua; Fu, Li

    2018-02-01

    Macropore flow not only provides a fast pathway for water and solute transport and increases the risks of water and nutrient loss but also enhances soil aeration and groundwater recharge. However, macropore flow characteristics in irrigated oasis soils subject to continuous crop cultivation are poorly understood. This study was to investigate the effect of continuous cultivation on soil properties and macropore flow and to quantify the changes in macropore flow characteristics in an old oasis field (>50 years of cultivation, OOF), young oasis field (20 years, YOF), and adjacent uncultivated sandy area (0 year, USL) in Northwest China. Triplicate soil samples were collected from each site to investigate soil properties. Dye tracer experiments with also three replicates were conducted at each site. The degree of macropore flow (i.e., parameters of macropore flow) was highest at the OOF, intermediate at the YOF, and minimal at the USL. The macropore flow fraction (i.e., fraction of total infiltration flows through macropore flow pathways) at the OOF was 3.4 times greater than at the USL. The heterogeneous infiltration pattern at the OOF was dominated by macropore flow, while funnel flow was predominant at the USL. Long-term irrigation with silt-laden river water has increased silt + clay contents of the oasis soils. Irrigation and high-input crop cultivation also increased organic matter. These changes in soil properties contributed to the interaggregate voids formation. The conversion of native desert soils to irrigated croplands increases the degree of macropore flow, which might enhance groundwater recharge in the desert-oasis ecotone.

  17. Disposal of Low-Activity Waste and Accumulation in Cultivated Soils

    International Nuclear Information System (INIS)

    Barbier, G.; Michon, G.

    1960-01-01

    The paper describes a method of accumulating long-lived radioisotopes in soils and calculating the maximum contamination they would cause in vegetables grown on these soils. The authors suggest a way of expressing this contamination and a formula by which the maximum contamination of one kilogramme of the harvested produce in relation to the tolerated contamination per litre of irrigation water could be calculated. (author) [fr

  18. Disposal of Low-Activity Waste and Accumulation in Cultivated Soils

    Energy Technology Data Exchange (ETDEWEB)

    Baubier, G. [Central Agricultural Research Station, Versailles (France); Michon, G. [Atomic Health Physics Service, Saclay Nuclear Research Centre (France)

    1960-07-01

    The paper describes a method of accumulating long-lived radioisotopes in soils and calculating the maximum contamination they would cause in vegetables grown on these soils. The authors suggest a way of expressing this contamination and a formula by which the maximum contamination of one kilogramme of the harvested produce in relation to the tolerated contamination per litre of irrigation water could be calculated. (author)

  19. A Comprehensive and Comparative Study of Wolfiporia extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-Fast Liquid Chromatography.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available Nowadays, Wolfiporia extensa as a popular raw material in food and medicine industry has received increasing interests. Due to supply shortage, this species of edible and medicinal mushroom has been cultivated in some provinces of China. In the present study, cultivated W. extensa collected from six regions in Yunnan Province of China were analyzed by an integrated method based on Fourier transform infrared (FT-IR spectroscopy and ultra-fast liquid chromatography (UFLC coupled with multivariate analysis including partial least squares discriminant analysis (PLS-DA and hierarchical cluster analysis (HCA in order to investigate the differences and similarities in different origins and parts. In the tested mushroom samples, characteristic FT-IR spectra were obtained for acquiring comprehensive fuzz chemical information and pachymic acid was determinated as a biomarker in the meantime. From the results, the comparison of samples was achieved successfully according to their geographical regions and different parts. All the samples displayed regional dependence and the inner parts showed better quality consistency. In addition, the chemical constituents of cultivated W. extensa could be also affected by the cultivation methods. Meanwhile, there was an interesting finding that the soil properties of cultivation regions may have a relationship with the chemical constituents of the epidermis of soil-cultured W. extensa, rather than the inner parts. Collectively, it demonstrated that the present study could provide comprehensive chemical evidence for the critical complement of quality evaluation on the cultivated W. extensa. Moreover, it may be available for the further researches of complicated mushrooms in practice.

  20. A Comprehensive and Comparative Study of Wolfiporia extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-Fast Liquid Chromatography

    Science.gov (United States)

    Li, Yan; Zhang, Ji; Li, Tao; Liu, Honggao

    2016-01-01

    Nowadays, Wolfiporia extensa as a popular raw material in food and medicine industry has received increasing interests. Due to supply shortage, this species of edible and medicinal mushroom has been cultivated in some provinces of China. In the present study, cultivated W. extensa collected from six regions in Yunnan Province of China were analyzed by an integrated method based on Fourier transform infrared (FT-IR) spectroscopy and ultra-fast liquid chromatography (UFLC) coupled with multivariate analysis including partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) in order to investigate the differences and similarities in different origins and parts. In the tested mushroom samples, characteristic FT-IR spectra were obtained for acquiring comprehensive fuzz chemical information and pachymic acid was determinated as a biomarker in the meantime. From the results, the comparison of samples was achieved successfully according to their geographical regions and different parts. All the samples displayed regional dependence and the inner parts showed better quality consistency. In addition, the chemical constituents of cultivated W. extensa could be also affected by the cultivation methods. Meanwhile, there was an interesting finding that the soil properties of cultivation regions may have a relationship with the chemical constituents of the epidermis of soil-cultured W. extensa, rather than the inner parts. Collectively, it demonstrated that the present study could provide comprehensive chemical evidence for the critical complement of quality evaluation on the cultivated W. extensa. Moreover, it may be available for the further researches of complicated mushrooms in practice. PMID:28036354

  1. Detection of irradiation induced changes on the activity and diversity of soil organisms: the effect of soil type

    International Nuclear Information System (INIS)

    Parekh, N.R.; Beresford, N.A.; Black, H.I.J.; Potter, E.D.; Poskitt, J.M.; Dodd, B.A.

    2004-01-01

    Whilst non-radiological environmental impact assessments consider impacts on ecosystem function by assessing soil health the techniques of doing so have rarely been applied to radiological studies. Our aim in the study described was to measure the effects of irradiation treatments on soil communities from three different soils. Undisturbed soil cores from two temperate woodland sites (deciduous and coniferous) and a grassland site were irradiated to give a range of cumulative doses from 0 160 Gy. All cores were incubated at 15 deg C and three cores from each treatment sampled after <1, 3 and 8 days post irradiation. Soil samples were analysed for the presence and abundance of fauna, fungi and heterotrophic bacteria. The activity and functional diversity of soil microbial communities was also assessed in terms of their potential to utilise a range of carbon sources. There was a small impact on Oribatid mites at the highest dose but no significant effect on other soil faunal groups. Although significant changes in the numbers of cultivable fungi or fast growing heterotrophic bacteria were not observed at any of the treatment doses, the numbers of cultivable Pseudomonas spp. declined in all three soil types after irradiation at 80 and 160 Gy. This decline was greatest in the coniferous forest soil. Microbial communities from this soil also showed a dramatic decrease in metabolic activity and in the number of substrates utilised after irradiation at 160 Gy as compared with control non-irradiated samples. Our results show that the affects of gamma irradiation on soil microorganisms are more pronounced in the two organic forest soils as compared to the mineral grassland soil. These differences can be related to two factors; variations in the physico-chemical shielding properties of the soils and differences in the indigenous communities in terms of radioresistant species. (author)

  2. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness......The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays...... with test soils mixed with sand, and barley seeds inoculated with F. culmorum. After 19 days, disease severity was evaluated on the barley seedlings. Soil cellulolytic activities were measured using 4-methylumbelliferyl-labelled fluorogenic substrates, and were expressed as V-max values obtained by using...

  3. The effect of soil biodiversity on soil quality after agricultural reclamation at the eastern coast of China

    Science.gov (United States)

    Wang, Xiaohan; Yang, Jianghua; Pu, Lijie; Chen, Xinjian

    2017-04-01

    Large area of tidal flats in Chinese coast has been reclaimed to support agriculture and urban development because of rapid population and economic growth. Knowledge of soil development mechanisms is essential for efficient management of land resources in coastal zone. So far, most studies have focused on consequences of soil physico-chemical properties on soil quality evolution after tideland reclamation for cultivation; yet a large part of soil bioprocess drives many soil processes. The effect of organism composition on the performance of soil development remains unclear. The purpose of our work was to reveal the organism composition change and its influence on soil quality impotent. In this study, we choose seven reclamation districts along a chronosequence in eastern coast of China, which were respectively reclaimed in 1956, 1971, 1980, 1997, 2009, 2013 and unenclosed tidal flat. The latest districts reclaimed in 2013 were left to succession fallow which were covered with halophytic vegetation and the rest districts were agriculturally managed. Soil samples at 0-20 cm were collected in each district. Soil physical, chemical and biological properties and wheat yields were measured. The result showed after the transformation from tidal flat to cropland, longer tillage time (>5 year) lead to higher soil clay and silt, SOC contents and lower bulk density, while soil clay and C contents declined within the first 5 years after reclamation. Agricultural reclamation significantly improved SOC contents of 0-20 cm depth form 0.11±0.05% to 0.77±0.10%. It needs about 35 years to achieve stable yield level after reclamation. Meanwhile, the soil community composition changed strongly over time. More significant relationships were found among soil physicochemical properties and bacteria community. And the variation trend of soil community richness (chao1) is similar to soil C contents, dropped at first 5 years and then significantly increased. Our results indicate that the

  4. Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage

    International Nuclear Information System (INIS)

    Ryu, Hong-Duck; Lim, Chae-Sung; Kang, Min-Koo; Lee, Sang-Ill

    2012-01-01

    Highlights: ► Recovered struvite from semiconductor wastewater was evaluated as fertilizer. ► The struvite showed more outstanding fertilizing effects than commercial fertilizers. ► Cu, Cd, As, Pb and Ni were observed at very low level in the vegetable tissue. ► The optimum struvite dosage for the cultivation of Chinese cabbage was 1.6 g struvite/kg soil. - Abstract: The present work evaluated the fertilizing value of struvite deposit recovered from semiconductor wastewater in cultivating Chinese cabbage. The fertilizing effect of struvite deposit was compared with that of commercial fertilizers: complex, organic and compost. Laboratory pot test results clearly showed that the growth of Chinese cabbage was better promoted when the struvite deposit was used than with organic and compost fertilizers even though complex fertilizer was the most effective in growing Chinese cabbage. It was revealed that potassium (K) was a key element in the determination of growth rate of Chinese cabbage. Also, the abundant nutrients such as nitrogen (N), phosphorus (P), K, calcium (Ca) and magnesium (Mg) were observed in the vegetable tissue of struvite pot. Specifically, P was the most-founded component in the vegetable tissue of struvite pot. Meanwhile, the utilization of struvite as a fertilizer led to the lowest accumulation of copper (Cu) and no detection of cadmium (Cd), arsenic (As), lead (Pb) and nickel (Ni) in the Chinese cabbage. It was found that the optimum struvite dosage for the cultivation of Chinese cabbage was 1.6 g struvite/kg soil. Based on these findings, it was concluded that the struvite deposits recovered from semiconductor wastewater were effective as a multi-nutrient fertilizer for Chinese cabbage cultivation.

  5. CHEMICAL AND MICROBIOLOGICAL ATTRIBUTES UNDER DIFFERENT SOIL COVER

    Directory of Open Access Journals (Sweden)

    Elaine Novak

    2017-03-01

    Full Text Available A challenge for the environmental recovery of degraded areas is the search for soil data. In this process, the microbiological parameters and soil chemicals are potential indicators of soil quality. This study aimed to evaluate soil quality based on microbiological and chemical soil attributes in different areas involving environmental recovery, sugarcane cultivation and remnants of native vegetation located in a rural private property farm in State of Mato Grosso do Sul, Brazil, in Hapludox Eutrophic soil. The microbiological (microbial biomass carbon, basal respiration, microbial quotient and metabolic quotient and chemical parameters (organic matter, carbon, pH, cationic exchange capacity, sum of bases, potassium, phosphorus, magnesium, calcium, saturation base and potential acidity were assessed. Data were assessed by variance and multivariate analysis (Principal Component Analysis and cluster analysis. Overall, the results showed highest alteration in the chemical and microbiological characteristics of the soil in sugarcane cultivation area in comparison with other areas. Considering the studied recovery areas, REC1, REC5 and REC7 show chemical and microbiological conditions with most similarity to native vegetation. Despite the short period of the resilience enhancement of environmental recovery areas, the development of vegetation cover and establishment of the microbial community were determined to be important factors for improving soil quality and environmental recovery in several of the areas studied.

  6. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  7. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system.

    Science.gov (United States)

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-04-03

    Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50-1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86-92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.

  8. Determination of 238Pu and 239+240Pu in soils of different agricultural regions of Guatemala

    International Nuclear Information System (INIS)

    Gutierrez Martinez, Edwin Ariel

    1999-01-01

    This study allowed to determine the concentration of radioactivity alpha, due to contamination for plutonium in cultivated soils of different regions of Guatemala. They were carried out samplings for convenience in cultivated soils of 15 departments of the republic, determined in each soils sample, the activity concentration for plutonium 2 38 Plutonium and 239+240 Plutonium expressed in mili-becquerel by kilogram (mBq/Kg), which has been caused from all over the world by the different provoked liberations or accidents of radioactive particles to the atmosphere

  9. Building organic matter of long-term sugarcane soils in a temperate environment

    Science.gov (United States)

    Mineral soils with a history of sugarcane monoculture cropping contain less soil organic matter (-35%), and plant macro- and micronutrients, including N (-20%), K (-26%), S (-7%), Ca (-8%), B (-33%), Zn (-88%), Mn (-29%), and Cu (-26%), than adjacent non-cultivated soils. Harvesting sugarcane ‘green...

  10. Dynamic aspects of soil organic matter and its relationship to the physical properties and fertility of soils

    International Nuclear Information System (INIS)

    Wagner, G.H.

    1980-01-01

    Soil organic matter plays a critical role in determining the physical, chemical, and biological nature of soils. Its dynamic nature is explored with reference to the cycling of C and N in the biosphere. Optimum soil structure is developed under a grass sod, but adequate water stable aggregates can be maintained under proper cultivation to ensure deep root penetration, rapid water infiltration for storage in the rooting zone, and the prevention of surface crusting. Perhaps the most important role of organic material is its prevention of soil erosion by directly stabilizing the soil during the growing season, providing residues for protection between crops, and improving surface aggregation to make the soil less subject to erosion. (author)

  11. Myco-Flora of a Kerosene-Polluted Soil in Nigeria | WEMEDO ...

    African Journals Online (AJOL)

    The myco-flora of a Kerosene-polluted soil was investigated. Soil samples collected from a fallow patch of land were polluted with 90 ml, 180 ml, and 270 ml concentrations of kerosene. The 0 ml (untreated soil) served as control. Cultivation of the organisms was done on potato dextrose agar (PDA) after 2 days, 7 days and ...

  12. Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system

    Science.gov (United States)

    Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soils are the largest C reservoir of terrestrial ecosystems and play an important role in regulating the concentration of CO2 in the atmosphere. The exchange of CO2 between the atmosphere and soil controls the balance of C in soils. The CO2 fluxes may be influenced by climate conditions and land use and cover change especially in the upper soil organic layer. Understanding C dynamics is important for maintaining C stocks to sustain and improve soil quality and to enhance sink C capacity of soils. This study focuses on the response of the CO2 emitted to rainfall events from different land uses (i.e. forest, abandoned cultivated soils and winter cereal cultivated soils) in a representative Mediterranean agroforestry ecosystem in the central part of the Ebro basin, NE Spain (30T 4698723N 646424E). A total of 30 measurement points with the same soil type (classified as Calcisols) were selected. Soil CO2 flux was measured in situ using a portable EGM-4 CO2 analyzer PPSystems connected to a dynamic chamber system (model CFX-1, PPSystems) weekly during autumn 2016. Eleven different rainfall events were measured at least 24 hours before (n=7) and after the rainfall event (n=4). Soil water content and temperature were measured at each sampling point within the first 5 cm. Soil samples were taken at the beginning of the experiment to determine soil organic carbon (SOC) content using a LECO RC-612. The mean SOC for forest, abandoned and cultivated soils were 2.5, 2.7 and 0.6 %, respectively. The results indicated differences in soil CO2 fluxes between land uses. The field measurements of CO2 flux show that before cereal sowing the highest values were recorded in the abandoned soils varying from 56.1 to 171.9 mg CO2-C m-2 h-1 whereas after cereal sowing the highest values were recorded in cultivated soils ranged between 37.8 and 116.2 mg CO2-C m-2 h-1 indicating the agricultural impact on CO2 fluxes. In cultivated soils, lower mean CO2 fluxes were measured after direct seeding

  13. Soil Quality Impacts of Current South American Agricultural Practices

    Directory of Open Access Journals (Sweden)

    Ana B. Wingeyer

    2015-02-01

    Full Text Available Increasing global demand for oil seeds and cereals during the past 50 years has caused an expansion in the cultivated areas and resulted in major soil management and crop production changes throughout Bolivia, Paraguay, Uruguay, Argentina and southern Brazil. Unprecedented adoption of no-tillage as well as improved soil fertility and plant genetics have increased yields, but the use of purchased inputs, monocropping i.e., continuous soybean (Glycine max (L. Merr., and marginal land cultivation have also increased. These changes have significantly altered the global food and feed supply role of these countries, but they have also resulted in various levels of soil degradation through wind and water erosion, soil compaction, soil organic matter (SOM depletion, and nutrient losses. Sustainability is dependent upon local interactions between soil, climate, landscape characteristics, and production systems. This review examines the region’s current soil and crop conditions and summarizes several research studies designed to reduce or prevent soil degradation. Although the region has both environmental and soil resources that can sustain current agricultural production levels, increasing population, greater urbanization, and more available income will continue to increase the pressure on South American croplands. A better understanding of regional soil differences and quantifying potential consequences of current production practices on various soil resources is needed to ensure that scientific, educational, and regulatory programs result in land management recommendations that support intensification of agriculture without additional soil degradation or other unintended environmental consequences.

  14. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Everglades Research and Education Center, Belle Glade, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States); McCray, J. Mabry [Univ. of Florida, Gainesville, FL (United States)

    2012-07-01

    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrient requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  15. [Dendrobium officinale stereoscopic cultivation method].

    Science.gov (United States)

    Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui

    2014-12-01

    The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor.

  16. Study of the weekly irrigation cycle of a cultivated field in a semi-arid area (Marrakech region, Morocco) by using CR-39 and LR-115 II track detectors and radon as a natural tracer

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Essaouif, Z.

    2007-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations were measured in the soil of a cultivated field situated in a semi-arid area (Marrakech, Morocco) by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). The same track detectors were used for measuring alpha- and beta-activities due to radon and thoron gases emanating from the soil of the studied irrigated agricultural field. The influence of the humidity (soil water content), soil depth and climate conditions on the weekly irrigation cycle of the studied cultivated field was investigated by exploiting radon measurements

  17. Evaluation of copper and lead immobilization in contaminated soil ...

    African Journals Online (AJOL)

    The effectiveness of natural clay, calcium phosphate, poultry manure and rice husks as cheap and ecologically non-invasive amendments for immobilizing Cu and Pb in contaminated soil was assessed. A moderately contaminated soil was sampled from a cultivated field in the vicinity of an active waste dump, characterized ...

  18. The impact of soil redistribution on SOC pools in a Mediterranean agroforestry catchment

    Science.gov (United States)

    Quijano, Laura; Gaspar, Leticia; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soil redistribution processes play an important role influencing the spatial distribution patterns of soil and associated soil organic carbon (SOC) at landscape scale. Information on drivers of SOC dynamics is key for evaluating both soil degradation and SOC stability that can affect soil quality and sustainability. 137Cs measurements provide a very effective tool to infer spatial patterns of soil redistribution and quantify soil redistribution rates in different landscapes, but to date these data are scarce in mountain Mediterranean agroecosystems. We evaluate the effect of soil redistribution on SOC and SOC pools in relation to land use in a Mediterranean mountain catchment (246 ha). To this purpose, two hundred and four soil bulk cores were collected on a 100 m grid in the Estaña lakes catchment located in the central sector of the Spanish Pyrenees (31T 4656250N 295152E). The study area is an agroforestry and endorheic catchment characterized by the presence of evaporite dissolution induced dolines, some of which host permanent lakes. The selected landscape is representative of rainfed areas of Mediterranean continental climate with erodible lithology and shallow soils, and characterized by an intense anthropogenic activity through cultivation and water management. The cultivated and uncultivated areas are heterogeneously distributed. SOC and SOC pools (the active and decomposable fraction, ACF and the stable carbon fraction SCF) were measured by the dry combustion method and soil redistribution rates were derived from 137Cs measurements. The results showed that erosion predominated in the catchment, most of soil samples were identified as eroded sites (n=114) with an average erosion rate of 26.9±51.4 Mg ha-1 y-1 whereas the mean deposition rate was 13.0±24.2 Mg ha-1 y-1. In cultivated soils (n=54) the average of soil erosion rate was significantly higher (78.5±74.4 Mg ha-1 y-1) than in uncultivated soils (6.8±10.4 Mg ha-1 y-1). Similarly, the mean of soil

  19. Uptake of plutonium, americium, curium, and neptunium in plants cultivated under greenhouse conditions

    International Nuclear Information System (INIS)

    Pimpl, M.; Schmidt, W.

    1984-01-01

    The root-uptake of Np, Pu, Am, and Cm from three different artificially contaminated soils in grass, maize, spring wheat, and potatoes was investigated under greenhouse conditions in pots filled with 9 kg contaminated soil and in lysimeters with a surface area of 0,5 m 2 containing the soils in undisturbed profils up to a depth of 80 cm. Only the plough layer of 30 cm was contaminated with Np, Pu, Am, and Cm. Crop cultivation was done corresponding to usual practice in agriculture. Results of the 1st vegetation period are represented. Transfer factors obtained deviate considerably from those which are recommended for the estimation of long-term exposure of man in the Federal Republic of Germany. (orig.)

  20. Space distribution of a weed seedbank in a bean cultivation area

    Directory of Open Access Journals (Sweden)

    Jefferson Luis Meirelles Coimbra

    2009-12-01

    Full Text Available The objective of this work was to elucidate the characteristics of space distribution of a weed seedbank in order to assist in decision-making for the adoption of management techniques applied to an area under bean monoculture. Agricultural precision tools, as well as techniques of geostatistic analysis, were utilized. The samples were composed of 24 soil samples from georeferenced points, within a quadratic mesh consisting of 20x20 meter cells. The samples of soil were conditioned in plastic trays to provide ideal conditions for seed germination. Some samples presented a potential weed infestation of about 8000 plants m-2 constituting a problem for bean cultivation, disfavoring its development and grain yield.

  1. Plutonium as a tracer for soil erosion assessment in northeast China.

    Science.gov (United States)

    Xu, Yihong; Qiao, Jixin; Pan, Shaoming; Hou, Xiaolin; Roos, Per; Cao, Liguo

    2015-04-01

    Soil erosion is one of the most serious environmental and agricultural problems faced by human society. Assessing intensity is an important issue for controlling soil erosion and improving eco-environmental quality. The suitability of the application of plutonium (Pu) as a tracer for soil erosion assessment in northeast China was investigated by comparing with that of 137Cs. Here we build on preliminary work, in which we investigated the potential of Pu as a soil erosion tracer by sampling additional reference sites and potential erosive sites, along the Liaodong Bay region in northeast China, for Pu isotopes and 137Cs. 240Pu/239Pu atomic ratios in all samples were approximately 0.18, which indicated that the dominant source of Pu was the global fallout. Pu showed very similar distribution patterns to those of 137Cs at both uncultivated and cultivated sites. 239+240Pu concentrations in all uncultivated soil cores followed an exponential decline with soil depth, whereas at cultivated sites, Pu was homogenously distributed in plow horizons. Factors such as planted crop types, as well as methods and frequencies of irrigation and tillage were suggested to influence the distribution of radionuclides in cultivated land. The baseline inventories of 239+240Pu and 137Cs were 88.4 and 1688 Bq m(-2) respectively. Soil erosion rates estimated by 239+240Pu tracing method were consistent with those obtained by the 137Cs method, confirming that Pu is an effective tracer with a similar tracing behavior to that of 137Cs for soil erosion assessment. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions.

    Science.gov (United States)

    Chen, Lei; Kang, Young-Hwa

    2014-03-12

    An adaptation of cultural management to the specific cultural system, as well as crop demand, can further result in the improvement of the quality of horticultural products. Therefore, this study focused on the antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) grown in hydroponics in comparison with those of the plant grown in soil. The antioxidant activities of Plebeian herba extract were measured as 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities as well as the reducing power by decreasing nitric oxide (NO) and superoxide dismutase activity (SOD) in vitro. Interestingly, by comparison with hydroponics and traditional cultivation, Plebeian herba cultivated in nutrition-based soil improved inhibitory effect on free radicals of DPPH, ABTS, and NO and increased the contents of phenolics such as caffeic acid (1), luteolin-7-glucoside (2), homoplantaginin (3), hispidulin (4), and eupatorin. Free radical scavenging and SOD activity, as well as α-glucosidase inhibitory effect, were higher in Plebeian herba grown in nutrition-based soil than in plants grown in hydroponics and traditional condition.

  3. Plant cultivation aspects of biogas production in organic farming; Pflanzenbauliche Aspekte der Biogasproduktion im oekologischen Landbau

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Bernhard [Amt fuer Ernaehrung Landwirtschaft und Forsten, Bamberg (Germany); Miller, Hubert [Biolandhof Miller (Germany)

    2012-11-01

    The authors of the contribution under consideration report on plant cultivation aspects of biogas production in organic farming. The power generation, the economic aspects of this operating sector, the potential impact on the performance of crop production as well as soil fertility are considered.

  4. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao

    2017-03-01

    Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH 4 and N 2 O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH 4 emissions and GWP per unit of grain yield (yield-scaled CH 4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH 4 emissions and GWP, leading to higher yield-scaled CH 4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.

  5. Review: Biodiversity conservation strategy in a native perspective; case study of shifting cultivation at the Dayaks of Kalimantan

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2010-07-01

    Full Text Available Setyawan AD. 2010. Biodiversity conservation strategy in a native perspective; case study of shifting cultivation at the Dayaks of Kalimantan. Nusantara Bioscience 2: 97-108. Native tribes generally are original conservationists; they build genuine conservation strategy of natural resources and environment for sustainable living. Dayak is a native tribe of Kalimantan that has been living for thousands of years; they use shifting cultivation to manage the communal forest lands due to Kalimantan’s poor soil of minerals and nutrients, where the presence of phosphorus becomes a limiting factor for crops cultivation. In tropical forests, phosphorus mostly stored in the trees, so to remove it, the forest burning is carried out. Nutrients released into the soil can be used for upland rice (gogo cultivation, until depleted; after that, cultivators need to open a forest, while the old land was abandoned (fallow until it becomes forest again (for 20-25 years. The consecutive land clearing causes the formation of mosaics land with different succession ages and diverse biodiversity. This process is often combined with agroforestry systems (multicultural forest gardens, where the will-be-abandoned fields are planted with a variety of useful trees that can be integrated in forest ecosystems, especially rubber and fruits. These systems of shifting cultivation are often blamed as the main factor of forest degradation and fires, but in the last 300 years, this system has little impact on forest degradation. But, this is relatively low in productivity and subsistent, so it is not suitable for the modern agriculture which demands high productivity and measurable, mass and continuous yield, as well as related to the market. The increased population and industrial development of forestry, plantation, mining, etc. make the communal forest become narrower, so the fallow periods are shortened (5-15 years and the lands are degraded into grasslands. In the future

  6. Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study.

    Science.gov (United States)

    Trinchera, Alessandra; Pandozy, Gianmarco; Rinaldi, Simona; Crinò, Paola; Temperini, Olindo; Rea, Elvira

    2013-12-15

    In order to develop a non-chemical method such as grafting effective against well-known artichoke soil borne diseases, an anatomical study of union formation in artichoke grafted onto selected wild and cultivated cardoon rootstocks, both resistant to Verticillium wilt, was performed. The cardoon accessions Belgio (cultivated cardoon) and Sardo (wild cardoon) were selected as rootstocks for grafting combinations with the artichoke cv. Romolo. Grafting experiments were carried out in the autumn and spring. The anatomical investigation of grafting union formation was conducted by scanning electron microscopy (SEM) on the grafting portions at the 3rd, 6th, 10th, 12th day after grafting. For the autumn experiment only, SEM analysis was also performed at 30 d after grafting. A high affinity between artichoke scion and cardoon rootstocks was observed, with some genotype differences in healing time between the two bionts. SEM images of scion/rootstock longitudinal sections revealed the appearance of many interconnecting structures between the two grafting components just 3d after grafting, followed by a vascular rearrangement and a callus development during graft union formation. De novo formation of many plasmodesmata between scion and rootstock confirmed their high compatibility, particularly in the globe artichoke/wild cardoon combination. Moreover, the duration of the early-stage grafting process could be influenced not only by the scion/rootstock compatibility, but also by the seasonal conditions, being favored by lower temperatures and a reduced light/dark photoperiod. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Effects of long-term organic material applications and green manure crop cultivation on soil organic carbon in rain fed area of Thailand

    Directory of Open Access Journals (Sweden)

    Tomohide Sugino

    2013-12-01

    Full Text Available A long-term field experiment on organic material application and crop rotation with green manure crops has been conducted since 1976 at Lopburi Agricultural Research and Development Center, Department of Agriculture, Lop Buri Province, Thailand, to clarify the effect of organic materials and green manure crop on soil organic carbon changes. The stock change factors that stand for the relative change of soil organic carbon on the carbon stock in a reference condition (native vegetation that is not degraded or improved. Stock change factor for input of organic matter (FI, representing different levels of C input to soil such as organic material application, crop residue treatment and green manure crop cultivation, was computed with the present field experimental results. While the computed FI of "High input with manure" was within the range of IPCC default FI value, some of the computed FI of " High input without manure" was much higher than the IPCC default though it was varied due to the biomass production and nutrient contents of the green manure crops planted as the second crops after corn. Therefore, the FI computed by field experimental results can contribute to more accurate estimation of SOC changes in farm land especially in Southeast Asia because the default FI mostly depends on the experimental data in temperate zones. Moreover, the field experiment has focused the effect of reduced tillage practices on SOC changes and corn yield since 2011. The results of the experiment will be used to compute Stock change factor for management regime (FMG which represents the effects of tillage operations.

  8. Influência do oeríodo de cultivo de Panicum maximum (cultivar Tanzânia na fitorremediação de solo contaminado com picloram Influence of Panicum maximum cultivation period on phytoremediation of soil contaminated with picloram

    Directory of Open Access Journals (Sweden)

    M.L. Carmo

    2008-06-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência do tempo de cultivo de Panicum maximum (cultivar Tanzânia sobre a fitorremediação de solo contaminado com picloram. O experimento foi conduzido em casa de vegetação no período de setembro de 2006 a fevereiro de 2007. Os fatores foram compostos pela combinação entre quatro períodos de cultivo da espécie vegetal Panicum maximum (cultivar Tanzânia (0, 60, 80 e 100 dias e três doses do picloram (0, 80 e 160 g ha-1, totalizando 12 tratamentos. O delineamento experimental utilizado foi o inteiramente casualizado em esquema fatorial 4 x 3, com quatro repetições. Como substrato utilizaram-se amostras de solo classificado como Latossolo Vermelho eutroférrico. Após o tempo estabelecido de atuação da espécie fitorremediadora, efetuou-se a semeadura das espécies bioindicadoras da presença do picloram: tomate e soja. As espécies bioindicadoras demonstraram alta sensibilidade à presença do picloram no solo, sendo inviável o cultivo dessas culturas em áreas contaminadas com esse herbicida sem a execução de algum procedimento remediador. O cultivo prévio de Tanzânia por 60 dias garantiu crescimento inicial satisfatório das plantas de soja e tomate quando a contaminação inicial não foi maior que 80 g ha-1 de picloram. Acima desse valor, a fitorremediação ocorrida proporcionou menor crescimento das plantas de soja e tomate, sendo necessário maior tempo de descontaminação.The objective of this study was to evaluate the influence of cultivation time of Panicum maximum (cv. Tanzania on phyto-remediation of soil contaminated with picloram. The experiment was carried out under greenhouse conditions from September 2006 to February 2007, using euthroferric Red Latosol samples as substrate for plant growth. The experiment was arranged in a completely randomized design, with four replicates, with treatments in a 4 x 3 factorial scheme. The treatments comprised twelve combinations of

  9. Indicadores de qualidade do solo em sistemas de cultivo orgânico e convencional no semi-árido cearense Soil quality indicators in organic and conventional cultivation systems in the semi arid areas of Ceara - Brazil

    Directory of Open Access Journals (Sweden)

    Herdjania Veras de Lima

    2007-10-01

    Full Text Available A qualidade do solo pode mudar com o passar do tempo, em decorrência de eventos naturais ou ações antrópicas. A adoção de práticas de cultivo orgânico reduz o revolvimento do solo, favorecendo a recuperação de suas propriedades físicas e químicas. Este trabalho teve como objetivo comparar propriedades físicas, químicas e biológicas de solos cultivados com algodão em bases orgânicas e no sistema convencional, assim como identificar as que possam ser utilizadas como indicadores de qualidade do solo. Selecionaram-se seis áreas submetidas ao cultivo orgânico e três ao cultivo convencional para coleta de amostras de solo deformadas e indeformadas, nas camadas de 0-10, 10-20 e 20-30 cm. Técnicas de estatística univariada e multivariada foram utilizadas para análise dos dados. Os resultados mostraram que os indicadores físicos e químicos testados individualmente não foram sensíveis para diferenciar as áreas sob sistema de cultivo orgânico daquelas sob cultivo convencional. No entanto, a aplicação de técnicas de análise multivariada - no caso, componentes principais e a discriminante de Anderson - permitiu a distinção entre algumas áreas cultivadas sob cultivo orgânico comparativamente às convencionais, até mesmo as que estavam em transição. Dos indicadores biológicos, a fauna edáfica mostrou-se mais precisa na avaliação da qualidade do solo, distinguindo de forma satisfatória as áreas sob sistema de cultivo orgânico das que estavam sob sistema convencional.Soil quality can change along the time due to natural events or anthropic activities. The use of organic management practices reduces soil tillage and favors the recovery of soil physical and chemical properties. The objective of this study was to compare the physical, chemical and biological properties of cultivated soils under organic system or conventional tillage system. Six organic and three conventional cultivated areas were selected and soil

  10. Estimate of the latent flux by the energy balance in protected cultivation of sweet pepper

    International Nuclear Information System (INIS)

    Cunha, A.R. da; Escobedo, J.F.; Klosowski, E.S.

    2002-01-01

    The aim of this work was to characterize and bring into relationship the net radiation with the latent heat flux equivalent to water mm, in sweet pepper crops in the field and in protected cultivation. The estimate of latent heat flux was made by the energy balance method through the Bowen ratio. Instantaneous measures were made of net radiation (Rn), sensitive (H) and latent (LE) heat fluxes, heat flux into the soil (G), and of psychrometers gradients in the crop canopy. In protected cultivation, the conversion of the available net radiation in total dry matter and fruit productivity was more efficient than in the field, in spite of lower amounts of global solar radiation received by the crop. Ratios of G/Rn and LE/Rn were lower, and that of H/Rn was higher in protected cultivation, with an equivalent latent heat flux in millimeters, 45.43% lower than that determined in the field. Available net radiation and energy losses were also lower in protected cultivation, showing a higher water use efficiency. (author) [pt

  11. Hydraulic conductivity in sugar cane cultivated in soils previous vin aza application

    International Nuclear Information System (INIS)

    Musso, M.; Pereira, S.; Fajardo, L.

    2012-01-01

    This work analyzes the hydraulic conductivity in soil clay loams developed in Libertad formation in Bella Union where grows sugar cane with vinaza. In the agricultural activities are used different chemical additives such as organic and inorganic fertilizers, herbicides and pesticides, which interact with the biotic (roots, soil microbiology) and abiotic (clay, soil solution, etc.) elements

  12. Diversity of cultivated aerobic poly-hydrolytic bacteria in saline alkaline soils

    NARCIS (Netherlands)

    Sorokin, Dimitry Y.; Kolganova, Tatiana V.; Khijniak, Tatiana V.; Jones, Brian E.; Kublanov, Ilya V.

    2017-01-01

    Alkaline saline soils, known also as ''soda solonchaks'', represent a natural soda habitat which differs from soda lake sediments by higher aeration and lower humidity. The microbiology of soda soils, in contrast to the more intensively studied soda lakes, remains poorly explored. In this work we

  13. Closure of mass exchange under use of a vegetable conveyer cultivated on a neutral and soil-like substrates as applied to BLSS

    Science.gov (United States)

    Velitchko, Vladimir; Tikhomirov, Alexander; Ushakova, Sofya

    To increase a closure level of mass exchange processes in bioregenerative life support systems (BLSS) including a human a technology of plants cultivation on a soil-like substrate (SLS) consisting in a gradual decomposition of inedible plants biomass under its addition in the SLS was developed at the Institute of Biophysics SB RAS (Russia). In the given work the effect of periodical introduction of inedible plant biomass in the SLS on plants photosynthetic productivity and on the closure of mass exchange has been analyzed. Thereupon CO2 gas exchange and the certain vegetables' productivity under their cultivation in a conveyor regime on the SLS and on a neutral substrate with reference to the closure of mass exchange processes in BLSS have been studied in this work. The vegetables Raphanus sativus L., Brassica caulorapa L. Daucus carota L. and Beta vulgaris L. being prospective plantsrepresentatives of the BLSS phototrophic unit were taken as the research objects. The SLS was taken as an experiment substrate and an expanded clay aggregate as the control. The changeable Knop solution was used for the control, and an irrigation solution with the SLS extract was used for the experiment. Rapidity dynamics of CO2 consumption showed sharp distinctions of the ‘plants-SLS' system from the ‘plantsexpanded clay aggregate' system connected with the oxidation processes coursing in the SLS. The intensity of CO2 evolution from the SLS on average was 70% of the total plants conveyor's respiration. Thus a balance between the system's respiration and photosynthesis was often determined by the processes coursing in the SLS. Here the sharp CO2 evolution was recorded after introduction of the plants inedible biomass in the SLS. That peak was gradually coming down during 10-14 days after the beginning of every cycle of plants cultivation that was connected with intensification of plants photosynthesis and drop of decomposition intensity of the biomass introduced. Comparative

  14. The effect of irrigation, soil cultivation system and nitrogen fertilizer on the vitality and content of selected sugars in Vicia faba seed

    Energy Technology Data Exchange (ETDEWEB)

    Kurasiak-Popowska, D.; Szukala, J.; Gulewicz, K.

    2009-07-01

    In this study the influence of sprinkler irrigation, various soil cultivation systems (conventional, reduced tillage, zero tillage system) and the level (0, 30, 60, 90 kg N ha{sup -}1) of nitrogen (N) fertilization on the vitality and content of selected sugars in faba bean seeds (Vicia faba L.) of the cultivar Nadwislanski was examined. Sprinkler irrigation of faba bean improved seed energy and germination in all three years of the study (1999-2001) - on average germination energy by 8.8% and total germination by 3.2%-. Germination of faba bean seed under conventional tillage in the drier years was significantly higher than in the zero tillage system. In the wetter year, seed from both simplified systems produced seeds with higher germination than in traditional conventional tillage. Nitrogen (N) fertilizer affected germination energy, but had no effect on faba bean germination. Sprinkler irrigation and N fertilization had no effect on the content of the sugars studied in the faba bean seed. However, the stachyose content of faba bean seeds from conventional tilled plants was significantly higher than in seed of zero tilled plants (0.78 mg g{sup -}1 seed dm), and the galactose content of seed from zero tilled plants was significantly higher than in the other two cultivation systems - 0.34 and 0.28 mg g{sup -}1 seed dm in seeds from conventional and reduced tillage system, respectively. Additional key words: agronomic treatment, faba bean seeds, RFOs sugars. (Author) 24 refs.

  15. Impact of land use change on soil carbon loss of the Sikkim Himalayan piedmont

    Science.gov (United States)

    Prokop, Pawel; Ploskonka, Dominik

    2014-05-01

    Natural and human causes of change in land use on soil carbon were studied at the outlet of the Tista River from the Sikkim Himalayas over the last 150 years. Analysis of topographic maps and satellite images indicates that the land reforms related to location of tea gardens in the piedmont caused rapid deforestation of terraces in the late 19th century. Continuous population growth after 1930 initiated the replacement of floodplain forest by rice cultivation. Both processes changed soil carbon content and intensified fluvial activity expressed through terrace erosion. The replacement of natural forest by tea cultivation reduced the soil carbon content within terraces from 1.95 kg to 1.77 kg (in 1 m of topsoil) respectively. The replacement of natural forest by rice reduced the soil carbon content within floodplains from 0.42 kg to 0.23 kg (in 1 m topsoil) respectively. Much more dangerous, was terrace erosion leading to permanent removal of sediment including soil. The total loss of soil carbon in a 1 m thick soil layer due to conversion of 5 km2 forest to tea cultivation was about 900 t between 1930 and 2010. While the total soil carbon removed due to 1.8 km2 terrace erosion reached 3510 t in the same period. Result is the outcome of research project 2012/05/B/ST10/00309 of the National Science Centre (Poland).

  16. Natural and human impact on the land use and soil properties of the Sikkim Himalayas piedmont in India.

    Science.gov (United States)

    Prokop, P; Płoskonka, D

    2014-06-01

    Natural and human causes of change in land use and soil properties were studied in the Sikkim Himalayas piedmont over the last 150 years, with a special emphasis on the period 1930-2010. Analysis of historical reports, combined with the visual interpretation of topographic maps and satellite images, indicates that the land reforms related to the location of tea gardens caused rapid deforestation of the higher elevated terraces in the late 19th century. Continuous population growth between 1930 and 2010 caused a shift in the major land use changes from the terraces to the floodplains. As a consequence, a gradual extension of tea plantation and forestry development helped in stabilizing the land use of the terraces, while the parallel deforestation of mountain catchments and floodplains for rice cultivation intensified fluvial activity. The enlargement of river-channel area by about 42% between 1930 and 2010 excluded a large part of the floodplains from cultivation and increased risk of soil degradation. The replacement of natural forest by monocultural tea and rice cultivation influenced the physical and chemical properties of the soil. Statistically significant changes were observed only in some chemical properties of the topsoil. Tea cultivation reduced the total carbon content by 26% and total nitrogen content by 33% in the surface soil horizon. The influence of rice tillage on the soil properties is masked by the fluvial activity. The combined effect of flooding and rice cultivation is reflected in the lower content of total carbon and nitrogen in the surface of the soil, namely, 76% and 77% respectively. Taking into account the long-term nature of the plantation, the soil still has the capability to support tea production. The productivity of rice depends partly on fertilization levels and partly on the natural deposition of fresh sediment eroded from mountains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Conversion of Forests to Arable Land and its Effect on Soil Physical ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Conversion of Forests to Arable Land and its Effect on Soil ... greater hydraulic conductivity than those under cultivation and this may indicate greater pore ... stability and clay dispersion index were 10% higher and 28% lower in the .... degraded the physical properties, making the soil more prone to soil erosion by water.

  18. Evaluation of the Nutraceutical and Cosmeceutical Potential of Two Cultivars of Rubus fruticosus L. under Different Cultivation Conditions.

    Science.gov (United States)

    Papaioanou, Maria; Chronopoulou, Evangelia G; Ciobotari, Gheorghii; Efrose, Rodica C; Sfichi-Duke, Liliana; Chatzikonstantinou, Marianna; Pappa, Evangelia; Ganopoulos, Ioannis; Madesis, Panagiotis; Nianiou-Obeidat, Irini; Zeng, Taofen; Labrou, Nikolaos E

    2017-01-01

    The starting point for the development of new, functional products derived from Rubus fruticosus L. is to determine the optimal cultivation conditions that produce maximal yield of fruits containing desirable bioactive properties. Towards that goal, the effect of soil, soil/peat mixture and light intensity on the nutraceutical and cosmeceutical potential of two cultivars ('Thornfree' and 'Loch Ness') of Rubus fruticosus L. were evaluated. The assessment was carried out employing a range of methods for evaluating fruit properties associated with promoting good health such as total antioxidant capacity, secondary metabolites content (vitamin C, polyphenols, flavonoids and anthocyanins) and inhibition analysis of skin-regulating enzymes. 'Thornfree' cultivar produced fruits in all light conditions, while 'Loch Ness' did not produce fruits in low light conditions. The results showed that in Rubus fruticosus L. fruit, the chemical composition and bioactivity are strongly affected by both genetics factors and growing conditions. Extract from 'Thornfree' fruits obtained under low light and soil/peat conditions displayed superior properties such as high antioxidant capacity, high concentrations of phenolics, flavonoids and anthocyanins and high inhibitory potency towards the enzymes tyrosinase and elastase. This extract was used for the development of a topical skin care cream with excellent compatibility and stability. Our findings conclude that Rubus fruticosus L. cultivation may be efficiently and effectively manipulated through conventional cultivation techniques to produce promising bioactive ingredients with potential use in commercial cosmetics and pharmaceuticals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Plutonium as a tracer for soil erosion assessment in northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yihong [School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023 (China); Qiao, Jixin [Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, DK-4000 Roskilde (Denmark); Pan, Shaoming, E-mail: span@nju.edu.cn [School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023 (China); Hou, Xiaolin, E-mail: xiho@dtu.dk [Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, DK-4000 Roskilde (Denmark); Xi' an AMS Center, SKLLQG, Institute of Earth Environment, CAS, Xi' an 710075 (China); Roos, Per [Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, DK-4000 Roskilde (Denmark); Cao, Liguo [School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023 (China)

    2015-04-01

    Soil erosion is one of the most serious environmental and agricultural problems faced by human society. Assessing intensity is an important issue for controlling soil erosion and improving eco-environmental quality. The suitability of the application of plutonium (Pu) as a tracer for soil erosion assessment in northeast China was investigated by comparing with that of {sup 137}Cs. Here we build on preliminary work, in which we investigated the potential of Pu as a soil erosion tracer by sampling additional reference sites and potential erosive sites, along the Liaodong Bay region in northeast China, for Pu isotopes and {sup 137}Cs. {sup 240}Pu/{sup 239}Pu atomic ratios in all samples were approximately 0.18, which indicated that the dominant source of Pu was the global fallout. Pu showed very similar distribution patterns to those of {sup 137}Cs at both uncultivated and cultivated sites. {sup 239+240}Pu concentrations in all uncultivated soil cores followed an exponential decline with soil depth, whereas at cultivated sites, Pu was homogenously distributed in plow horizons. Factors such as planted crop types, as well as methods and frequencies of irrigation and tillage were suggested to influence the distribution of radionuclides in cultivated land. The baseline inventories of {sup 239+240}Pu and {sup 137}Cs were 88.4 and 1688 Bq m{sup −2} respectively. Soil erosion rates estimated by {sup 239+240}Pu tracing method were consistent with those obtained by the {sup 137}Cs method, confirming that Pu is an effective tracer with a similar tracing behavior to that of {sup 137}Cs for soil erosion assessment. - Highlights: • The potential for the use of Pu as a soil erosion tracer was investigated. • Pu would be a good tracer given its long half-life. • Depth profiles of Pu in soils were systematically studied and compared to {sup 137}Cs. • Pu is an effective soil erosion tracer with behavior similar to that of {sup 137}Cs. • Thus, Pu provides a means of

  20. What are the effects of agricultural management on soil organic carbon in boreo-temperate systems?

    DEFF Research Database (Denmark)

    Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.

    2015-01-01

    Background Soils contain the largest stock of organic carbon (C) in terrestrial ecosystems and changes in soil C stocks may significantly affect atmospheric CO2. A significant part of soil C is present in cultivated soils that occupy about 35 % of the global land surface. Agricultural intensifica...

  1. Initial growth of Schizolobium parahybae in Brazilian Cerrado soil under liming and mineral fertilization

    Directory of Open Access Journals (Sweden)

    Ademilson Coneglian

    Full Text Available ABSTRACT High prices and the scarcity of hardwoods require the use of alternative wood sources, such as the Guapuruvu (Schizolobium parahybae, an arboreal species native to the Atlantic Forest, which has fast growth and high market potential. However, there is no information on its cultivation in the Brazilian Cerrado. Thus, this study aimed to analyze the contribution of mineral fertilization and liming in a Cerrado soil on the initial growth of Schizolobium parahybae. The experiment was set in a randomized block design, with 4 treatments (Cerrado soil; soil + liming; soil + fertilizer; and soil + fertilizer + liming and 15 replicates. The following variables were analyzed: plant height, stem diameter, number of leaves, total, shoot, leaf, root and stem dry matter, and root/shoot ratio. The obtained data were subjected to the analysis of variance, Tukey test and regression analysis. During the initial growth, Schizolobium parahybae can be cultivated in a Brazilian Cerrado soil only under mineral fertilization, with no need for soil liming.

  2. Separation of Aeruginosin-865 from Cultivated Soil Cyanobacterium (Nostoc sp.) by Centrifugal Partition Chromatography combined with Gel Permeation Chromatography.

    Science.gov (United States)

    Cheel, José; Minceva, Mirjana; Urajová, Petra; Aslam, Rabya; Hrouzek, Pavel; Kopecký, Jiří

    2015-10-01

    Aeruginosin-865 was isolated from cultivated soil cyanobacteria using a combination of centrifugal partition chromatography (CPC) and gel permeation chromatography. The solubility of Aer-865 in different solvents was evaluated using the conductor-like screening model for real solvents (COSMO-RS). The CPC separation was performed in descending mode with a biphasic solvent system composed of water-n-BuOH-acetic acid (5:4:1, v/v/v). The upper phase was used as a stationary phase, whereas the lower phase was employed as a mobile phase at a flow rate of 10 mL/min. The revolution speed and temperature of the separation column were 1700 rpm and 25 degrees C, respectively. Preparative CPC separation followed by gel permeation chromatography was performed on 50 mg of crude extract yielding Aer-865 (3.5 mg), with a purity over 95% as determined by HPLC. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, HRESI-MS, HRESI-MS/MS) with those of an authentic standard and data available in the literature.

  3. Evaluation of soil conservation technologies from the perspective of selected physical soil properties and infiltration capacity of the soil

    Directory of Open Access Journals (Sweden)

    Miroslav Dumbrovský

    2011-01-01

    Full Text Available This paper evaluates different technologies of soil cultivation (conventional and minimization in terms of physical properties and water regime of soils, where infiltration of surface water is a major component of subsurface water. Soil physical properties (the current humidity, reduced bulk density, porosity, water retention capacity of soil, pore distribution and soil aeration is determined from soil samples taken from the organic horizon according to standard methodology. To observe the infiltration characteristics of surface layers of topsoil, the drench method (double ring infiltrometers was used. For the evaluation of field measurements of infiltration, empirical and physically derived equations by Kostiakov and Philip and the three-parameter Philip-type equation were used. The Philip three-parameter equation provides physical based parameters near the theoretical values, a good estimation of saturated hydraulic conductivity Ks and sorptivity C1. The parameter S of Philip’s equation describes the real value of the sorptivity of the soil. Experimental research work on the experimental plots H. Meziříčko proceeded in the years 2005–2008.

  4. The history and assessment of effectiveness of soil erosion control measures deployed in Russia

    Directory of Open Access Journals (Sweden)

    Valentin Golosov

    2013-09-01

    Full Text Available Research activities aimed at design and application of soil conservation measures for reduction of soil losses from cultivated fields started in Russia in the last quarter of the 19th century. A network of "zonal agrofor-estry melioration experimental stations" was organized in the different landscape zones of Russia in the first half of the 20th century. The main task of the experiments was to develop effective soil conservation measures for Russian climatic,soil and land use conditions. The most widespread and large-scale introduction of coun-termeasures to cope with soil erosion by water and wind into agricultural practice supported by serious governmental investments took place during the Soviet Union period after the Second World War. After the Soviet Union collapse in 1991 ,general deterioration of the agricultural economy sector and the absence of investments resulted in cessation of organized soil conservation measures application at the nation-wide level. However, some of the long-term erosion control measures such as forest shelter belts, artificial slope terracing, water diversion dams above formerly active gully heads survived until the present. In the case study of sediment redistribution within the small cultivated catchment presented in this paper an attempt was made to evaluate average annual erosion rates on arable slopes with and without soil conservation measures for two time intervals. It has been found that application of conservation measures on cultivated slopes within the experimental part of the case study catchment has led to a decrease of average soil loss rates by at least 2. 5 2. 8 times. The figures obtained are in good agreement with previously published results of direct monitoring of snowmelt erosion rates, reporting approximately a 3 -fold decrease of average snowmelt erosion rates in the experimental sub-catchment compared to a traditionally cultivated control sub-catchment. A substantial decrease of soil

  5. Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-05-01

    Full Text Available Exogenous silicates can enhance plant resistance to pathogens and change soil microbial communities. However, the relationship between changes in soil microbial communities and enhanced plant resistance remains unclear. Here, effects of exogenous sodium silicate on cucumber (Cucumis sativus L. seedling resistance to Fusarium wilt caused by the soil-borne pathogen Fusarium oxysporum f.sp. cucumerinum Owen (FOC were investigated by drenching soil with 2 mM sodium silicate. Soil bacterial and fungal community abundances and compositions were estimated by real-time PCR and high-throughput amplicon sequencing; then, feedback effects of changes in soil biota on cucumber seedling resistance to FOC were assessed. Moreover, effects of sodium silicate on the growth of FOC and Streptomyces DHV3-2, an antagonistic bacterium to FOC, were investigated both in vitro and in the soil environment. Results showed that exogenous sodium silicate enhanced cucumber seedling growth and resistance to FOC. In bare soil, sodium silicate increased bacterial and fungal community abundances and diversities. In cucumber-cultivated soil, sodium silicate increased bacterial community abundances, but decreased fungal community abundances and diversities. Sodium silicate also changed soil bacterial and fungal communality compositions, and especially, decreased the relative abundances of microbial taxa containing plant pathogens but increased these with plant-beneficial potentials. Moreover, sodium silicate increased the abundance of Streptomyces DHV3-2 in soil. Soil biota from cucumber-cultivated soil treated with sodium silicate decreased cucumber seedling Fusarium wilt disease index, and enhanced cucumber seedling growth and defense-related enzyme activities in roots. Sodium silicate at pH 9.85 inhibited FOC abundance in vitro, but did not affect FOC abundance in soil. Overall, our results suggested that, in cucumber-cultivated soil, sodium silicate increased cucumber seedling

  6. Electron microscopic examination of uncultured soil-dwelling bacteria.

    Science.gov (United States)

    Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi

    2008-05-01

    Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.

  7. Effect of blue-green algae on soil nitrogen | Paudel | African Journal ...

    African Journals Online (AJOL)

    Effect of blue-green algae on soil nitrogen. ... African Journal of Biotechnology ... In paddy fields, the death of algal biomass is most frequently associated with soil dessication at the end of the cultivation cycle and algal growth has frequently resulted in a gradual build up of soil fertility with a residual effect on succeeding crop ...

  8. Impact of urban gardening in equatorial zone on soils and metal transfer to vegetables

    Directory of Open Access Journals (Sweden)

    Ondo Aubin Jean

    2013-01-01

    Full Text Available This study aimed at assessing the impact of urban agriculture on physicochemical soil properties and the metal uptake by some leafy vegetables cultivated in urban soils of Libreville, Gabon. Cultivated and uncultivated top-soil and vegetable samples were collected on two urban garden sites, and analyzed. The results showed that there was strong acidification and a decrease of nutrient and metal concentrations in soils due of agricultural practices. The metal transfer to plants was important, with the exception of iron. The non-essential metal cadmium and lead were not detectable in plant tissues. Amaranth accumulated more metals than other vegetables. Amaranth and Roselle were vegetables that preferentially concentrated metals in their leaves and can therefore be used for metal supplementation in food chain.

  9. Soil erosion determinations using 137Cs technique in the agricultural regions of Gediz Basin, Western Turkey

    International Nuclear Information System (INIS)

    Sac, M.; Ymurtaci, E.; Yener, G.; Ugur, A.; Ozden, B.; Camgoz, B.

    2004-01-01

    Gediz basin is one of the regions where intense agricultural activities take place in Western Turkey. Erosion and soil degradation has long been causing serious problems to cultivated fields in the basin. This work describes the application of two different 137 Cs models for estimating soil erosion rates in cultivated sites of the region. Soil samples were collected from five distinct cultivated regions subject to soil erosion. The variations of 137 Cs concentrations with depth in soil profiles were investigated. Soil loss rates were calculated from 137 Cs inventories of the samples using both Proportional Model (PM) and Simplified Mass Balance Model (SMBM). When Proportional Model was used, erosion and deposition rates varied from -15 to -28 t ha -1 y -1 and from +5 to +41 t ha ha -1 y -1 , respectively, they varied from -16 to -33 t ha -1 y -1 and from +5 to +55 t ha -1 y -1 with Simplified Mass Balance Model. A good agreement was observed between the results of two models up to 30 t ha -1 y -1 soil loss and gain in the study area. Ulukent, a small representative agricultural field, was selected to compare the present data of 137 Cs techniques with the results obtained by Universal Soil Loss Equation (USLE) applied in the area before. (authors)

  10. Soil amendments effects on radiocesium translocation in forest soils.

    Science.gov (United States)

    Sugiura, Yuki; Ozawa, Hajime; Umemura, Mitsutoshi; Takenaka, Chisato

    2016-12-01

    We conducted an experiment to investigate the potential of phytoremediation by soil amendments in a forest area. To desorb radiocesium ( 137 Cs) from variable charges in the soil, ammonium sulfate (NH 4 + ) and elemental sulfur (S) (which decrease soil pH) were applied to forest soil collected from contaminated area at a rate of 40 and 80 g/m 2 , respectively. A control condition with no soil treatment was also considered. We defined four groups of aboveground conditions: planted with Quercus serrata, planted with Houttuynia cordata, covered with rice straw as litter, and unplanted/uncovered (control). Cultivation was performed in a greenhouse with a regular water supply for four months. Following elemental sulfur treatment, soil pH values were significantly lower than pH values following ammonium sulfate treatment and no treatment. During cultivation, several plant species germinated from natural seeds. No clear differences in aboveground tissue 137 Cs concentrations in planted Q. serrata and H. cordata were observed among the treatments. However, aboveground tissue 137 Cs concentration values in the germinated plants following elemental sulfur treatment were higher than the values following the ammonium sulfate treatment and no treatment. Although biomass values for Q. serrata, H. cordata, and germinated plants following elemental sulfur treatment tended to be low, the total 137 Cs activities in the aboveground tissue of germinated plants were higher than those following ammonium sulfate treatment and no treatment in rice straw and unplanted conditions. Although no significant differences were observed, 137 Cs concentrations in rice straw following ammonium sulfate and elemental sulfur treatments tended to be higher than those in the control case. The results of this study indicate that elemental sulfur lowers the soil pH for a relatively long period and facilitates 137 Cs translocation to newly emerged and settled plants or litter, but affects plant growth in

  11. The transfer of 137Cs through the soil-plant-sheep food chain in different pasture ecosystems

    Directory of Open Access Journals (Sweden)

    A. PAASIKALLIO

    2008-12-01

    Full Text Available A grazing experiment with sheep was carried out in 1990-1993 on natural, semi-natural and cultivated pasture on clay soil. The pastures were located in Southern Finland and were moderately contaminated with 137 Cs by Chernobyl fallout. Natural pasture refers to forest pasture and semi-natural pasture to set-aside field pasture, the latter having been under cultivation about 15 years ago. The transfer of 137 Cs to sheep was clearly higher from forest pasture than from the other two pastures and it was lowest from cultivated pasture. The transfer was higher to muscle and kidney than to liver and heart. The transfer of 137 Cs to plants and to meat varied with years. Seasonal variation in the plant 137 Cs was followed-up on forest and set-aside field pasturerespect to 137 Cs transfer to plants, the mean soil-plant transfer factors of 137 Cs for forest, set-aside field and cultivated pastures were 1.78, 0.36 and 0.09, and soil-meat aggregated transfer factors 11.0, 0.28 and 0.03, respectively.;

  12. The transfer of 137Cs through the soil-plant-sheep food chain in different pasture ecosystems

    International Nuclear Information System (INIS)

    Paasikallio, Arja; Sormunen-Cristian, Riitta

    1996-01-01

    A grazing experiment with sheep was carried out in 1990-1993 on natural, semi-natural and cultivated pasture on clay soil. The pastures were located in Southern Finland and were moderately contaminated with 137 Cs by Chernobyl fallout. Natural pasture refers to forest pasture and semi-natural pasture to set-aside field pasture, the latter having been under cultivation about 15 years ago. The transfer of 137 Cs to sheep was clearly higher from forest pasture than from the other two pastures and it was lowest from cultivated pasture. The transfer was higher to muscle and kidney than to liver and heart. The transfer of 137 Cs to plants and to meat varied with years. Seasonal variation in the plant 137 Cs was followed-up on forest and set-aside field pasturerespect to 137 Cs transfer to plants, the mean soil-plant transfer factors of 137 Cs for forest, set-aside field and cultivated pastures were 1.78, 0.36 and 0.09, and soil-meat aggregated transfer factors 11.0, 0.28 and 0.03, respectively

  13. Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota.

    Science.gov (United States)

    Gao, Weimin; Navarroli, Dena; Naimark, Jared; Zhang, Weiwen; Chao, Shih-Hui; Meldrum, Deirdre R

    2013-01-09

    The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches. Although recent new technologies such as metagenomics and metatranscriptomics can provide more functionality information about the microbial communities, it is still important to develop the capacity to isolate and cultivate individual microbial species or strains in order to gain a better understanding of microbial physiology and to apply isolates for various biotechnological applications. We have developed a new system to cultivate bacteria in an array of droplets. The key component of the system is the microbe observation and cultivation array (MOCA), which consists of a Petri dish that contains an array of droplets as cultivation chambers. MOCA exploits the dominance of surface tension in small amounts of liquid to spontaneously trap cells in well-defined droplets on hydrophilic patterns. During cultivation, the growth of the bacterial cells across the droplet array can be monitored using an automated microscope, which can produce a real-time record of the growth. When bacterial cells grow to a visible microcolony level in the system, they can be transferred using a micropipette for further cultivation or analysis. MOCA is a flexible system that is easy to set up, and provides the sensitivity to monitor growth of single bacterial cells. It is a cost-efficient technical platform for bioassay screening and for cultivation and isolation of bacteria from natural environments.

  14. [Study on High-yield Cultivation Measures for Arctii Fructus].

    Science.gov (United States)

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  15. Expanded algal cultivation can reverse key planetary boundary transgressions

    Directory of Open Access Journals (Sweden)

    Dean Calahan

    2018-02-01

    Full Text Available Humanity is degrading multiple ecosystem services, potentially irreversibly. Two of the most important human impacts are excess agricultural nutrient loading in our fresh and estuarine waters and excess carbon dioxide in our oceans and atmosphere. Large-scale global intervention is required to slow, halt, and eventually reverse these stresses. Cultivating attached polyculture algae within controlled open-field photobioreactors is a practical technique for exploiting the ubiquity and high primary productivity of algae to capture and recycle the pollutants driving humanity into unsafe regimes of biogeochemical cycling, ocean acidification, and global warming. Expanded globally and appropriately distributed, algal cultivation is capable of removing excess nutrients from global environments, while additionally sequestering appreciable excess carbon. While obviously a major capital and operational investment, such a project is comparable in magnitude to the construction and maintenance of the global road transportation network. Beyond direct amelioration of critical threats, expanded algal cultivation would produce a major new commodity flow of biomass, potentially useful either as a valuable organic commodity itself, or used to reduce the scale of the problem by improving soils, slowing or reversing the loss of arable land. A 100 year project to expand algal cultivation to completely recycle excess global agricultural N and P would, when fully operational, require gross global expenses no greater than $2.3 × 1012 yr−1, (3.0% of the 2016 global domestic product and less than 1.9 × 107 ha (4.7 × 107 ac, 0.38% of the land area used globally to grow food. The biomass generated embodies renewable energy equivalent to 2.8% of global primary energy production.

  16. Almond tree for soil quality improvement in southern Italy

    International Nuclear Information System (INIS)

    Macci, C.; Doni, S.; Peruzzi, F.; Masciandaro, G.; Ceccanti, B.; Mennone, C.

    2009-01-01

    Soil degradation is one of the most important environmental problems worldwide recognized. The Mediterranean region, characterized by long dry periods followed by heavy bursts of rainfall, is particularly prone to soil erosion. The main goal of this study is to demonstrate the efficacy and suitability of the cultivation of almond trees as an environmental approach to improve soil organic carbon and biological conditions in order to mitigate risks of soil degradation due to topographic, climatic, and un proper farming managements. (Author)

  17. Tillage systems and cover crops on soil physical properties after soybean cultivation

    Directory of Open Access Journals (Sweden)

    Rafael B. Teixeira

    Full Text Available ABSTRACT Soil management alters soil physical attributes and may affect crop yield. In order to evaluate soil physical attributes in layers from 0 to 0.40 m and soybean grain yield, in the 2012/2013 agricultural year, an essay was installed in the experimental area of the Federal University of Mato Grosso do Sul (UFMS/CPCS. Soil tillage systems were: conventional tillage (CT, minimum tillage (MT and no tillage (DS, the cover crops used were millet, sunn hemp and fallow. The experimental design was randomized blocks with split plots. For the layer of 0.20-0.30 m, millet provided the best results for soil bulk density, macro and microporosity. The resistance to penetration (RP was influenced in the layer of 0-0.10 m, and millet provided lower RP. The DS provided the lowest RP values for the layer of 0.10-0.20 m. The treatments did not influence yield or thousand-seed weight.

  18. The presence of embedded bacterial pure cultures in agar plates stimulate the culturability of soil bacteria

    DEFF Research Database (Denmark)

    Burmølle, Mette; Johnsen, Kaare; Abu Al-Soud, Waleed Mohamad Abdel F

    2009-01-01

    Traditional methods for bacterial cultivation recover only a small fraction of bacteria from all sorts of natural environments, and attempts have been made to improve the bacterial culturability. Here we describe the development of a cultivation method, based on the embedment of pure bacterial...... cultures in between two layers of agar. Plates containing either embedded Pseudomonas putida or Arthrobacter globiformis resulted in higher numbers of CFUs of soil bacteria (21% and 38%, respectively) after 833 h of incubation, compared to plates with no embedded strain. This indicates a stimulatory effect...... of the bacterial pure cultures on the cultivation of soil bacteria. Analysis of partial 16S rRNA gene sequences revealed a phylogenetical distribution of the soil isolates into 7 classes in 4 phyla. No difference was observed at the phylum or class level when comparing isolates grouped according to embedded strain...

  19. Soil, water and nutrient losses by interrill erosion from green cane cultivation

    Directory of Open Access Journals (Sweden)

    Gilka Rocha Vasconcelos da Silva

    2012-06-01

    Full Text Available Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface, and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.

  20. Soil workability as a basis for advice on tillage activities

    NARCIS (Netherlands)

    Cadena Zapata, M.

    1999-01-01

    In the tropical area of Mexico, when and how to carry out tillage is a qualitative decision. There is no quantified information about the interaction between a chosen process of cultivation, soil type and weather, which dictate the tool and power requirements. Waste of energy and soil

  1. Effect of desertification and soil salinity on land productivity in the Sudan

    International Nuclear Information System (INIS)

    El-Karouri, M.O.H.

    1980-01-01

    Although the Sudan contains one of the largest reserves of cultivable and irrigable land in the world, desertification and salinization have had a severe effect on soil productivity. Irrational cultivation of marginal lands and the abuse of tractor power have led to severe erosion problems. Deforestation, overgrazing and the use of fire in land clearing have destroyed natural vegetation. Desertification has claimed most of the land between latitudes 15 0 and 17 0 N and continues to move rapidly. The wild life habitants has been drastically altered with many species becoming extinct. Conflicts have arisen between nomads and cultivators. The government has thus developed a six year programme with emphasis on range seeding, afforestation, water conservation, fire control, sand dune stabilization and shelter belt development. Soil salinity and sodicity present both chemical and physical soil problems especially in irrigated regions. Since the Sudan is increasing its irrigated area from 2 to 4 million ha the problems will increase. Gypsum has not been effective in reclaimation but cultural practices such as ridge planting, timely seeding, and crop selection have shown promise. (author)

  2. Assessment of Cultivation Method for Energy Beet Based on LCA Method

    OpenAIRE

    Zhang, Chunfeng; Liu, Feng; Zu, Yuangang; Meng, Qingying; Zhu, Baoguo; Wang, Nannan

    2014-01-01

    In order to establish a supply system for energy resource coupled with the environment, the production technology of sugar beets was explored as a biological energy source. The low-humic andosol as the experimental soil, the panting method was direct planting, and cultivation technique was minimum tillage direct planting method. The control was conventional tillage transplant and no tillage direct planting. The results demonstrated that data revealed that the energy cost of no tillage and a d...

  3. Assessment of Fertility Status of Soils Supporting Coconut ( Cocus ...

    African Journals Online (AJOL)

    Coconut cultivation is mostly practiced in the Western and Central regions of Ghana. Information on the fertility status of the soils on which coconuts are grown and possible fertilizer recommendation is not common. Since coconut yield is generally related to the fertility status of the soil, a study was conducted to evaluate the ...

  4. Molecular mechanisms underlying the close association between soil Burkholderia and fungi

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  5. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.

  6. Levels of essential and non-essential metals in ginger (Zingiber officinale) cultivated in Ethiopia.

    Science.gov (United States)

    Wagesho, Yohannes; Chandravanshi, Bhagwan Singh

    2015-01-01

    Ginger (Zingiber officinale Roscoe) is a common condiment for various foods and beverages and widely used worldwide as a spice. Its extracts are used extensively in the food, beverage, and confectionary industries in the production of products such as marmalade, pickles, chutney, ginger beer, ginger wine, liquors, biscuits, and other bakery products. In Ethiopia, it is among the important spices used in every kitchen to flavor stew, tea, bread and local alcoholic drinks. It is also chiefly used medicinally for indigestion, stomachache, malaria, fevers, common cold, and motion sickness. The literature survey revealed that there is no study conducted on the determination of metals in ginger cultivated in Ethiopia. Hence it is worthwhile to determine the levels of essential and non-essential metals in ginger cultivated in Ethiopia. The levels of essential (Ca, Mg, Fe, Zn, Cu, Co, Cr, Mn, and Ni) and non-essential (Cd and Pb) metals in ginger (Zingiber officinale Roscoe) cultivated in four different regions of Ethiopia and the soil where it was grown were determined by flame atomic absorption spectrometry. 0.5 g of oven dried ginger and soil samples were digested using 3 mL of HNO3 and 1 mL of HClO4 at 210°C for 3 h and a mixture of 6 mL aqua-regia and 1.5 mL H2O2 at 270°C for 3 h, respectively. The mean metal concentration (μg/g dry weight basis) ranged in the ginger and soil samples, respectively, were: Ca (2000-2540, 1770-3580), Mg (2700-4090, 1460-2440), Fe (41.8-89.0, 21700-46900), Zn (38.5-55.2, 255-412), Cu (1.1-4.8, 3.80-33.9), Co (2.0-7.6, 48.5-159), Cr (6.0-10.8, 110-163), Mn (184-401, 1760-6470), Ni (5.6-8.4, 14.1-79.3) and Cd (0.38-0.97, 0.24-1.1). The toxic metal Pb was not detected in both the ginger and soil samples. There was good correlation between some metals in ginger and soil samples while poor correlation between other metals (Fe, Ni, Cu). This study revealed that Ethiopian gingers are good source of essential metals and free from toxic

  7. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    Science.gov (United States)

    Huerta, Esperanza

    2015-04-01

    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  8. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  9. Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil

    OpenAIRE

    Tejeda Agredano, M. C.; Gallego, Sara; Vila, Joaquim; Ortega Calvo, J. J.; Cantos, Manuel

    2013-01-01

    Reduced bioavailability to soil microorganisms is probably the most limiting factor in the bioremediation of polycyclic aromatic hydrocarbons PAH-polluted soils. We used sunflowers planted in pots containing soil to determine the influence of the rhizosphere on the ability of soil microbiota to reduce PAH levels. The concentration of total PAHs decreased by 93% in 90 days when the contaminated soil was cultivated with sunflowers, representing an improvement of 16% compared to contaminated soi...

  10. Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils

    International Nuclear Information System (INIS)

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Xiong, Tiantian; Foucault, Yann

    2014-01-01

    The influence of earthworm activity on soil-to-plant metal transfer was studied by carrying out six weeks mesocosms experiments with or without lettuce and/or earthworms in soil with a gradient of metal concentrations due to particles fallouts. Soil characteristics, metal concentrations in lettuce and earthworms were measured and soil porosity in the mesocosms was determined. Earthworms increased the soil pH, macroporosity and soil organic matter content due to the burying of wheat straw provided as food. Earthworm activities increased the metals concentrations in lettuce leaves. Pb and Cd concentrations in lettuce leaves can increase up to 46% with earthworm activities … These results and the low correlation between estimated by CaCl 2 and EDTA and measured pollutant phytoavailability suggest that earthworm bioturbation was the main cause of the increase. Bioturbation could affect the proximity of pollutants to the roots and soil organic matter. - Highlights: • Earthworm bioturbation increases phytoavailability of Pb, Cd, Zn and Cu. • Earthworm activity influences soil structure and increases pH. • Plant metal uptake was not correlated with CaCl 2 , EDTA estimated phytoavailability. • Increased metal phytoavailability with bioturbation could increase human exposure. - Earthworm activities can increase metal phytoavailability and subsequent human exposure to metals in consumed vegetables

  11. Soil-Water Storage Predictions for Cultivated Crops on the Záhorská Lowlands

    Directory of Open Access Journals (Sweden)

    Jarabicová Miroslava

    2016-06-01

    Full Text Available The main objective of this paper is to evaluate the impact of climate change on the soil-water regime of the Záhorská lowlands. The consequences of climate change on soil-water storage were analyzed for two crops: spring barley and maize. We analyzed the consequences of climate change on soil-water storage for two crops: spring barley and maize. The soil-water storage was simulated with the GLOBAL mathematical model. The data entered into the model as upper boundary conditions were established by the SRES A2 and SRES B1 climate scenarios and the KNMI regional climate model for the years from 2071 to 2100 (in the text called the time horizon 2085 which is in the middle this period. For the reference period the data from the years 1961-1990 was used. The results of this paper predict soil-water storage until the end of this century for the crops evaluated, as well as a comparison of the soil-water storage predictions with the course of the soil-water storage during the reference period.

  12. Heavy metal dynamics in the soil-leaf-fruit system under intensive apple cultivation

    Directory of Open Access Journals (Sweden)

    Murtić Senad

    2014-01-01

    Full Text Available One of the major problems confronting agricultural production is heavy metal contamination of agricultural soils, which imposes considerable limitations on productivity and leads to great consumer health and safety concerns about the products obtained on these soils. The objective of this study was to evaluate heavy metal dynamics in the soil-leaf-fruit system in an intensive apple cv. 'Idared' planting located in the Municipality of Goražde. Heavy metal contents in the soil samples and plant material were determined by atomic absorption spectrophotometry using a Shimadzu 7000 AA device, according to the instructions specified in the ISO 11047 method. The dynamics of the heavy metals analyzed, excepting zinc, in the soil-leaf-fruit system was characterized by relatively high total levels of heavy metals in the soil and a very low degree of their accumulation in the leaves and in particular the fruits. No fruit sample was found to have toxic levels of any of the heavy metals analyzed. In terms of soil contamination, this suggests the suitability of the study location for safe apple fruit production.

  13. Mitigating Soil Moisture Evaporation via Organic Mulch Application in Cultivated Agricultural Environments

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Avery, William A.; Dercon, Gerd; Heng, Lee

    2017-01-01

    Soil evaporation constitutes one of the most significant sources of water loss from agricultural soils around the world, particularly in arid regions. Changing climate and precipitation patterns combined with population growth will drive a need to reduce soil water evaporation for better water resource management. This work represents a preliminary effort to develop simple tools for determining the fate of crop residues, or mulch, when applied to an agricultural field, over the course of a growing season

  14. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau

    Science.gov (United States)

    Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun

    2017-06-01

    Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.

  15. Decontamination Trials for the Bed-Log Cultivation of Mushroom in Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Kahori; Arai, Shio; Hirano, Yurika; Yoshida, Hirohisa [Graduate School of Urban Environmental Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Ogawa, Hideki [Graduate School of Urban Environmental Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Fukushima Prefectural Forestry Research Centre, Nishi-Shimasaka, Asaka, Koriyama, Fukushima 963-0112 (Japan); Ito, Hirohisa; Kumata, Atsushi [Fukushima Prefectural Forestry Research Centre, Nishi-Shimasaka, Asaka, Koriyama, Fukushima 963-0112 (Japan); Murayama, Kazunari [Macoho Co. Ltd., Nagaoka, Niigata (Japan); Suzuki, Kin-ichi [Abukuma Cooperative for Best Use of Broad-leaved Trees (Japan)

    2014-07-01

    Radioactive nuclear dispersed in environment from Fukushima Dai-ichi Nuclear Power Plant (FNP) Accident-contaminated forests in Fukushima Prefecture, especially in Abukuma mountainous region located 10 to 20 Km west from FNP. Broad-leaved trees such as Quercus serrata, chestnut tree, oak, chinquapin tree, Japanese beech are widely planting in Abukuma area. Many prefectures in Japan depends on supply of bed-log from Fukushima prefecture, especially Abukuma area. North part of Abukuma mountain area has highly contaminated by radioactive nuclear, however, the contamination level in the south part of Abkuma area was about ten times lower than the north part. The outside (bark, leaves and twigs) of broad-leaved trees was highly contaminated above 10,000 Bq/kg in Iidate and Kawamata villages located the north part of Abkuma ears, 35 to 40 km from FNP. On the other hand, the contamination level of the outside of broad-leaved trees in the south part of Abukuma ears was 100-500 Bq/kg and the contamination of the inside tree was lower than 10 Bq/kg. For the bed-log cultivation of mushrooms using broad-leaved trees, two methods were used in Japan. The mushrooms incubated broad-leaved trees (90 cm of length and 15 cm of diameter) were setting in the lack on the ground in forest from winter to autumn. This method was mainly used for the cultivation of shiitake mushroom (Lentinus edodes). The second method was used for Maitake (Grifola frondosa) cultivation. The mushroom incubated broad-leaved trees (20 cm of length and 20 cm of diameter) were setting in the ground holes and covered by soil (2 cm) and litters. The maitake (Grifola frondosa) mushrooms harvesting October 2013 at Iidate, the evaluation area, contained 120 Bq/kg, even though the soil on the broad-leaved trees contained more than 20,000 Bq/kg. The outside contamination of broad-leaved trees supplied from the south part of Abkuma ears were washed by the wet blasting. 80 % of radiocesium on the bark was efficiently

  16. Chemical soil attributes after wheat cropping under nitrogen fertilization and inoculation with Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    Fernando Shintate Galindo

    2017-05-01

    Full Text Available Azospirillum brasilense plays an important role in biological nitrogen fixation (BNF in grasses. However, further studies are needed to define how much mineral N can be applied while simultaneously maintaining BNF contribution and maximizing crop yield and to determine the impact of these practices on soil fertility. Thus, we aimed to investigate the effect of inoculation with A. brasilense, in conjunction with varying N doses and sources in a Cerrado soil, on soil chemical attributes after two years of irrigated wheat production. The experiment was initiated in Selvíria - MS under no-tillage production in an Oxisol in 2014 and 2015. The experimental design was a randomized block design with four replications, and treatments were arranged in a 2 x 5 x 2 factorial arrangement as follows: two N sources (urea and Super N - urea with inhibitor of the enzyme urease NBPT (N - (n-butyl thiophosphoric triamide, five N rates (0, 50, 100, 150 and 200 kg ha-1, and with or without seed inoculation with A. brasilense. The increase in N rates did not influence the chemical soil attributes. Super N acidified the soil more compared to urea. A. brasilense inoculation reduced the effect of soil acidification in intensive irrigated wheat cultivation; however, the base extraction was higher, resulting in a lower soil CEC after cultivation with inoculation. Therefore, the cultivation of wheat inoculated with A. brasilense was not harmful to soil fertility because it did not reduce the base saturation and organic matter content (P, K, Ca, Mg, and S.

  17. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem.

    Science.gov (United States)

    Mikhailova, Elena A; Post, Christopher J

    2006-01-01

    Little is known about changes in soil inorganic carbon (SIC) stocks with depth and with land use in grassland ecosystems. This study was conducted to determine SIC stocks under different management regimes in the Mollisol, one of the typical soils in grasslands. Four sites were sampled: a native grassland field (not cultivated for at least 300 yr), an adjacent 50-yr continuous fallow field, a yearly cut hay field in the V.V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. Significant differences occurred in SIC stocks between cultivated and grassland soil. The inorganic carbon stocks in the top 2 m were 107 Mg ha(-1) for the native grassland, 91 Mg ha(-1) for the yearly cut hay field, 242 Mg ha(-1) for the continuously cropped field, and 196 Mg ha(-1) for the 50-yr continuous fallow. The SIC was in the form of calcium carbonate and was mostly stored below the 1-m depth. The largest difference between inorganic carbon stocks was observed between the continuously cropped field and native grassland. The increase in inorganic carbon in the continuously cropped field and continuous fallow was attributed to initial cultivation and fertilization. Soil inorganic carbon in Mollisols is not accounted for in the current global carbon estimates.

  18. Mean age distribution of inorganic soil-nitrogen

    Science.gov (United States)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  19. Effect of two organic fertilizers on food webs of soil cultivated with blackberry

    Directory of Open Access Journals (Sweden)

    Martha Orozco Aceves

    2017-09-01

    Full Text Available Soil fertilization with organic fertilizers comprises a practice that improves the soil biological properties; however, the effect of these on the soil food web (SFW has been scarcely studied. The aim of this study was to determine the effect of two commercial organic fertilizers on the structure of the SFW associated with roots of blackberry plants (Rubus adenotrichos. The research was conducted in two blackberry plantations located one in San Martín de León Cortés, and the other one in Buena Vista de Pérez Zeledón in San José, Costa Rica, from August to December, 2010. In the two plantations, plants were fertilized with compost or vermicompost. The roots of blackberry plants surrounding soil were sampled in order to quantify groups of the SFW through the following techniques: bacteria and filamentous fungi by plate count, protozoa by the most probable number, spores from arbuscular mycorrhizal fungi and nematodes by flotation-centrifugation, microarthropods, macroarthropods, and worms were directly counted in soil samples. The dataset was analyzed by multidimensional scaling analysis. The addition of organic fertilizers to soil caused a differential effect on the structure of the SFW (as compared with non-fertilized soils. The effect differed in soil from each of the experimental plantations according to fertilizer type. The groups of organisms mainly affected were actinomycetes and protozoa, which implies that the structure of SFW and consequently, the function of soil were not affected by the addition of organic fertilizers.

  20. Zinc solubility and fractionation in cultivated calcareous soils irrigated with wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Nazif, W. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Marzouk, E.R. [Division of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Suez Canal University, North Sinai 45516 (Egypt); Perveen, S. [Department of Soil and Environmental Sciences, Khyber Pakhtunkhwa Agricultural University, Peshawar (Pakistan); Crout, N.M.J. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Young, S.D., E-mail: scott.young@nottingham.ac.uk [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom)

    2015-06-15

    The solubility, lability and fractionation of zinc in a range of calcareous soils from Peshawar, Pakistan were studied (18 topsoils and 18 subsoils). The lability (E-value) of Zn was assessed as the fraction isotopically exchangeable with {sup 70}Zn{sup 2+}; comparative extractions included 0.005 M DTPA, 0.43 M HNO{sub 3} and a Tessier-style sequential extraction procedure (SEP). Because of the extremely low concentration of labile Zn the E-value was determined in soils suspended in 0.0001 M Na{sub 2}-EDTA which provided reliable analytical conditions in which approximately 20% of the labile Zn was dissolved. On average, only 2.4% of soil Zn was isotopically exchangeable. This corresponded closely to Zn solubilised by extraction with 0.005 DTPA and by the carbonate extraction step (F1 + F2) of the Tessier-style SEP. Crucially, although the majority of the soil CaCO{sub 3} was dissolved in F2 of the SEP, the DTPA dissolved only a very small proportion of the soil CaCO{sub 3}. This suggests a superficial carbonate-bound form of labile Zn, accessible to extraction with DTPA and to isotopic exchange. Zinc solubility from soil suspended in 0.01 M Ca(NO{sub 3}){sub 2} (PCO{sub 2} controlled at 0.03) was measured over three days. Following solution speciation using WHAM(VII) two simple solubility models were parameterised: a pH dependent ‘adsorption’ model based on the labile (isotopically exchangeable) Zn distribution coefficient (Kd) and an apparent solubility product (Ks) for ZnCO{sub 3}. The distribution coefficient showed no pH-dependence and the solubility model provided the best fit to the free ion activity (Zn{sup 2+}) data, although the apparent value of log{sub 10} Ks (5.1) was 2.8 log units lower than that of the mineral smithsonite (ZnCO{sub 3}). - Highlights: • Isotopically exchangeable Zn in the calcareous soils of Peshawar is extremely low. • There is no evidence of topsoil enrichment from the use of wastewater for irrigation. • Solubility

  1. Zinc solubility and fractionation in cultivated calcareous soils irrigated with wastewater

    International Nuclear Information System (INIS)

    Nazif, W.; Marzouk, E.R.; Perveen, S.; Crout, N.M.J.; Young, S.D.

    2015-01-01

    The solubility, lability and fractionation of zinc in a range of calcareous soils from Peshawar, Pakistan were studied (18 topsoils and 18 subsoils). The lability (E-value) of Zn was assessed as the fraction isotopically exchangeable with 70 Zn 2+ ; comparative extractions included 0.005 M DTPA, 0.43 M HNO 3 and a Tessier-style sequential extraction procedure (SEP). Because of the extremely low concentration of labile Zn the E-value was determined in soils suspended in 0.0001 M Na 2 -EDTA which provided reliable analytical conditions in which approximately 20% of the labile Zn was dissolved. On average, only 2.4% of soil Zn was isotopically exchangeable. This corresponded closely to Zn solubilised by extraction with 0.005 DTPA and by the carbonate extraction step (F1 + F2) of the Tessier-style SEP. Crucially, although the majority of the soil CaCO 3 was dissolved in F2 of the SEP, the DTPA dissolved only a very small proportion of the soil CaCO 3 . This suggests a superficial carbonate-bound form of labile Zn, accessible to extraction with DTPA and to isotopic exchange. Zinc solubility from soil suspended in 0.01 M Ca(NO 3 ) 2 (PCO 2 controlled at 0.03) was measured over three days. Following solution speciation using WHAM(VII) two simple solubility models were parameterised: a pH dependent ‘adsorption’ model based on the labile (isotopically exchangeable) Zn distribution coefficient (Kd) and an apparent solubility product (Ks) for ZnCO 3 . The distribution coefficient showed no pH-dependence and the solubility model provided the best fit to the free ion activity (Zn 2+ ) data, although the apparent value of log 10 Ks (5.1) was 2.8 log units lower than that of the mineral smithsonite (ZnCO 3 ). - Highlights: • Isotopically exchangeable Zn in the calcareous soils of Peshawar is extremely low. • There is no evidence of topsoil enrichment from the use of wastewater for irrigation. • Solubility products for smithsonite and hydrozincite fail to describe Zn 2

  2. Assessment of inceptisols soil quality following long-term cropping in a calcareous environment.

    Science.gov (United States)

    Rezapour, Salar; Samadi, A

    2012-03-01

    The combination of morphological, clay mineralogy, physicochemical, and fertilitical properties of inceptisols were compared for monitoring soil quality response following long-term agricultural activities. For this target, fifty-nine paired surface soils belonging to five subgroups of inceptisols from the major sugar beet growing area and the adjoining virgin lands were described, sampled, and analyzed. The soils were alkaline and calcareous as characterized by high pH, ranging from 7.2 to 8, and calcium carbonate equivalent, ranging from 60 to 300 g kg(-1). Following long-term sugar beet cultivation, morphological properties modifications were reflected as weakening of structure, hardening of consistency, and brightening of soil color. Although, the quantity of clay minerals did not significantly change through long-term cropping, some modifications in the XRD pattern of illite and smectite were observed in the cultivated soils compared to the adjoining virgin lands mainly as a result of potassium depletion. Without significant variation, sand content decreased by 4-55% and silt and clay increased by 3-22% and 2-15%, respectively, in the cultivated soils than to that of the virgin lands. Both negative and positive aspects of soil quality were reflected regarding soil chemical and fertilitical properties and the role of negative effects far exceeded the role of positive effects. Typic calcixerepts was known to be more degraded through a significant decrease (P ≤ 0.001) in mean value of soil organic carbon (a drop of 24%), total N (a drop of 23%), available K (a drop of 42%), exchangeable K (a drop of 45%), potassium adsorption ratio and potassium saturation ratio (a drop of 44% and 42%, respectively) and a significant increase (P ≤ 0.001) in EC (a rise of 53%). Soil quality index, calculated based on nine soil properties [coarse fragments, pH, SOC, total N, ESP, exchangeable cations (Ca, Mg, and K), and available phosphorus], indicated that 60% of the all soil

  3. INNOVATIVE TECHNOLOGIES FOR SOIL PROCESSING AND EFFICIENCY OF THEIR APPLICATION IN THE GROWING OF GRAIN CULTURES IN CHERKASY REGION

    Directory of Open Access Journals (Sweden)

    Ulanchuk V.

    2018-01-01

    Full Text Available Introduction. Scientific and technological progress plays an important role in improving the efficiency of the production of grain products. At the same time, it also has a negative impact on the ecology of soils. World experience shows the possibility of suspending and overcoming destructive land processes by introducing innovative soil cultivation technologies in the cultivation of agricultural crops. Purpose. This article aims to substantiate expediency of introduction of innovative resource-saving technologies of soil cultivation at cultivation of grain crops in Cherkasy region. Results. In the article it is proved that the efficiency of grain production in agricultural enterprises of Cherkasy region, which are using minimal (Mini-till and zero (No-till tillage technologies, in comparison with enterprises that use traditional grain growing technology, have indicators, as the price of sale of 1 centner of grain, the profit per 1 centner of grain and the level of profitability, that are much higher. Thus, the price of 1 centner of grain produced by the “LNZ-Agro” (Mini-till in 2013-2015 was higher 573.86 UAH, at the “Shpola-Agro-Industry” (No-till at 390,94 UAH, profit per 1 centner grain is higher than 477.23 and 249.14 UAH; the level of profitability of grain – higher than 201.5 and 71.8 percentage points. A similar situation is observed in the production of the main grain crops (wheat and maize for grain. With the application of the newest soil cultivation technologies, there is a decrease in the calculation of fuel consumption and depreciation deductions per hectare. The expediency of using resource-saving technologies for soil tillage during the cultivation of grain products in agricultural enterprises of the Cherkasy region also indicates by such indicator as the amount of profit per 1 hectare of crops. So, LNZ-Agro (Mini-till for one hectare of crops received a profit of 43947 UAH, “Shpola-Agro-Industry” (No-till –16491

  4. Nutrients, Trace Elements and Water Deficit in Greek Soils Cultivated with Olive Trees

    Directory of Open Access Journals (Sweden)

    Theodore Karyotis

    2014-11-01

    Full Text Available The studied soils consist of alluvial and/or colluvial deposits  located in the Prefecture of Messinia, Western Peloponnese (Greece. A total number of 263 surface soil layers were selected and analysed for the main properties. Minimum and maximum values and  the distribution of soil properties varied greatly and can be attributed mainly to various fertilization practices adopted by  farmers, inputs of nutrients by irrigation water and differences due to inherent soil conditions. Lower variability was recorded for the parameters pH, Cation Exchange Capacity (CEC, total soil nitrogen (N and soil organic matter (SOM, while coefficients of variation for properties that can be affected easily by human activities such as available phosphorus and micronutrients, are much higher. Minor content for trace elements was observed in the following order:Zinc (Zn>Manganese (Mn>Boron (B>Iron (Fe. During the dry period, irrigation of olive trees is recommended and the appropriate irrigation demands were defined, taking into account rainfall and  water requirements.

  5. Water Use Efficiency in Saline Soils under Cotton Cultivation in the Tarim River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhao

    2015-06-01

    Full Text Available The Tarim River Basin, the largest area of Chinese cotton production, is receiving increased attention because of serious environmental problems. At two experimental stations (Korla and Aksu, we studied the influence of salinity on cotton yield. Soil chemical and physical properties, soil water content, soil total suction and matric suction, cotton yield and water use efficiency under plastic mulched drip irrigation in different saline soils was measured during cotton growth season. The salinity (mS·cm−1 were 17–25 (low at Aksu and Korla, 29–50 (middle at Aksu and 52–62 (high at Aksu for ECe (Electrical conductivity measured in saturation-paste extract of soil over the 100 cm soil profile. The soil water characteristic curves in different saline soils showed that the soil water content (15%–23% at top 40 cm soil, lower total suction power (below 3500 kPa and lower matric suction (below 30 kPa in low saline soil at Korla had the highest water use efficiency (10 kg·ha−1·mm−1 and highest irrigation water use efficiency (12 kg·ha−1·mm−1 and highest yield (6.64 t·ha−1. Higher water content below 30 cm in high saline soil increased the salinity risk and led to lower yield (2.39 t·ha−1. Compared to low saline soils at Aksu, the low saline soil at Korla saved 110 mm irrigation and 103 mm total water to reach 1 t·ha−1 yield and increased water use efficiency by 5 kg·ha−1·mm−1 and 7 kg·ha−1·mm−1 for water use efficiency (WUE and irrigation water use efficiency (IWUE respectively.

  6. Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil

    Directory of Open Access Journals (Sweden)

    Linda Y. Gorim

    2017-06-01

    Full Text Available Increasingly unpredictable annual rainfall amounts and distribution patterns have far reaching implications for pulse crop biology. Seedling and whole plant survival will be affected given that water is a key factor in plant photosynthesis and also influences the evolving disease spectrum that affects crops. The wild relatives of cultivated lentil are native to drought prone areas, making them good candidates for the evaluation of drought tolerance traits. We evaluated root and shoot traits of genotypes of cultivated lentil and five wild species grown under two water deficit regimes as well as fully watered conditions over a 13 week period indoors. Plants were grown in sectioned polyvinyl chloride (PVC tubes containing field soil from the A, B, and C horizons. We found that root distribution into different soil horizons varied among wild lentil genotypes. Secondly, wild lentil genotypes employed diverse strategies such as delayed flowering, reduced transpiration rates, reduced plant height, and deep root systems to either escape, evade or tolerate drought conditions. In some cases, more than one drought strategy was observed within the same genotype. Sequence based classification of wild and cultivated genotypes did not explain patterns of drought response. The environmental conditions at their centers of origin may explain the patterns of drought strategies observed in wild lentils. The production of numerous small seeds by wild lentil genotypes may have implications for yield improvement in lentil breeding programs.

  7. Enzymatic activity of anthropogenic proto-organic soils in soilless farming

    Science.gov (United States)

    Bireescu, Geanina; Dazzi, Carmelo; Laudicina, Vito Armando; Lo Papa, Giuseppe

    2017-04-01

    In soilless agriculture and horticulture coir is the more used substratum to grow plants because it is widely available and more environmentally friendly than sphagnum or peat. In Italy, soilless agriculture concerns an area of about 1,000 hectares, particularly concentrated in Sicily. The southern coastal belt of this region is the area interested by the most significant experiences in the application of techniques of soilless cultivation that, recently, has been used also for growing table grapes. Starting from the above consideration we suppose that the features of the coconut fiber underlay an evident transformation and that even after few years of table grape cultivation, such organic material undergone to a transformation that allows for the formation of a proto-organic soil (a proto-Histosol, we supposed). If this is true, we believe that, in this case, to speak about soilless cultivation is for sure misleading for the common people, as we should define this cultivation "on anthropogenic soils" instead. To fit the aims of this survey we used a big greenhouse devoted to soilless cultivation of table grape in a farm in the Southern Sicily We have considered the enzymatic activity that characterized the coconut fiber after 3 cycles of cultivation of table grapes. We used as a control the coconut fiber that the farmer used to prepare pots for soilless cultivation and coconut fiber of: 6 pots at the end of the first productive cycle 6 pots at the end of the second cycle and 3 pots at the end of the third cycle. On these organic samples we investigated three enzymes, belonging to oxydoreductase (catalase and dehydrogenase) and hydrolase (urease) classes. Statistical analysis of the investigated enzymes was developed using IBM Statistic SPSS v20 by ANOVA, Tukey test HSD for p ≤ 0.01 and Multivariate Statistical Analysis. Results have shown significant differences in enzymes content and quality among coir tests. The use of the coco fiber, as nutritive substratum

  8. A Comparative Study of the Soil Fauna in forests and cultivated land on sandy soils in Suriname

    NARCIS (Netherlands)

    Drift, van der J.

    1963-01-01

    1. In the coastal area of Suriname the soil and surface fauna were studied in various types of agricultural land, and compared with the fauna in the adjacent forests. 2. In primeval forest the soil macroarthropods are less numerous than in secondary forest (Formicidae excluded). They range generally

  9. Natural environmental radioactivity and estimation of radiation exposure from saline soils

    International Nuclear Information System (INIS)

    Akhtar, N.; Tufail, M.; Ashraf, M.

    2005-01-01

    The study was conducted for the investigation of amount of radioactivity in the barren and cultivated soil of Bio saline Research Station in Pakka Anna, established by Nuclear Institute for Agriculture and Biology in 1990, 34 km. away from the city of Faisalabd, in the Punjab Province of Pakistan. The studies were done on an area of about 100 hectares of two types of virgin and fertilized saline soils. The technique of gamma ray spectrometry was applied using High Purity Germanium gamma ray detector and a P C based MCA. Activity concentration levels due to 40 K, 137 Cs, 226 Ra and 232 Th were measured in 250 saline soil samples collected at a spacing of about 4 hectares at the depth level of 0-25 cm. with a step of 5 cm. depth. Activity concentration ranges of the concerned radionuclides for both of the soils were as follows: 40 K, for virgin and cultivated saline soil was 500-610.2 and Bq/kg 560.2-635.6 respectively; 137 Cs, 3.57-3.63 and 1.98-5.15 Bq/kg 238 U, 26.3-31.6 and 30.6-38.7 Bq/kg, and 232 Th, 50.6-55.3 and 50.6-64.0 Bq/kg respectively. The absorbed dose rate in air lies in the region 63-73 nGyh -1 and 68-83 nGyh -1 for virgin and fertilized soils respectively. This indicates that this region lies in the area of higher radiation background, while comparing with the worlds' average. The slightly higher value of dose in the fertilized farm may be due to the use of fertilizers for cultivation. Before the radiometric measurements, chemical analysis for concentration of Na, Ca and Mg was also carried out along with the measurement of electrical conductivity and p H of the soil samples

  10. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China.

    Science.gov (United States)

    Wang, He; Liang, Hong; Gao, Da-Wen

    2017-08-01

    This study looks at the pollution status of six priority control phthalate esters (PAEs) under different cultivation of agricultural soils in the Sanjiang Plain, northeast China. Results show the total concentration of PAEs ranged from 162.9 to 946.9 μg kg -1 with an average value of 369.5 μg kg -1 . PAE concentrations in three types of cultivated soils exhibited decreasing order paddy field (532.1 ± 198.1 μg kg -1 ) > vegetable field (308.2 ± 87.5 μg kg -1 ) > bean field (268.2 ± 48.3 μg kg -1 ). Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the most abundant PAEs congeners. Compared with previous studies, agricultural soils in the Sanjiang Plain showed relatively low contamination levels. Anthropogenic activities such as cultivation practices and industrial emissions were associated with the distribution pattern of PAEs. Furthermore, human health risks of PAEs were estimated and the non-cancer risk shown negligible but carcinogenic risk of DEHP exceeded the threshold limits value. PAE contaminants originated from cultivation practices and intense anthropogenic activities result in placing the agricultural soils under a potential risk to human health and also to ecosystems in the Sanjiang Plain. Therefore, the contamination status of PAEs in agricultural soil and potential impacts on human health should attract considerable attention.

  11. Acúmulo de macronutrientes na soja influenciado pelo cultivo prévio do capim-marandu, correção e compactação do solo Macronutrient accumulation in the soybean influenced by prior cultivation of Marandu grass and soil remediation and compaction

    Directory of Open Access Journals (Sweden)

    Marcos André Silva Souza

    2012-12-01

    Full Text Available O presente trabalho foi desenvolvido com o objetivo de avaliar o efeito do cultivo prévio do capim-Marandu (Brachiaria brizantha cv. Marandu, da aplicação de corretivos e da compactação do solo no acúmulo de macronutrientes pela soja cultivada em sucessão. O delineamento experimental foi inteiramente casualizado em esquema fatorial 4 x 6 x 2, com três repetições. Os fatores de estudo foram quatro densidades do solo: 1,0; 1,20; 1,40 e 1,60 Mg m-3; seis tratamentos de correção: 1 controle, sem correção; 2 calcário; 3 silicato de cálcio; 4 gesso; 5 calcário + gesso; 6 silicato de cálcio + gesso; além de dois sistemas de cultivo: com e sem cultivo prévio do capim-Marandu. As unidades experimentais foram compostas por vasos de tubos de PVC de 20 cm de diâmetro, compostos por dois anéis: o anel inferior, de 40 cm de altura, recebeu o solo sob condições naturais e densidade de 1,0 Mg m-3; o anel superior, com 20 cm de altura representando 6,28 dm³, recebeu os tratamentos de densidades, correção e gesso como descrito adiante. Em cada um foram conduzidas três plantas de soja (cv. Conquista até o final do ciclo, quando o acúmulo de macronutrientes pela cultura foi avaliado. Os resultados mostraram que o cultivo prévio do capim-Marandu e o uso de corretivos amenizaram os efeitos negativos da compactação do solo sobre a nutrição da soja. A utilização de corretivos do solo contribuiu para o aumento no acúmulo de macronutrientes na parte aérea da soja, porém o incremento na compactação diminuiu o acúmulo de N, P, K, Ca, Mg e S. A compactação do solo persistiu parcialmente mediante o cultivo prévio com o capim marandu.The present work was developed with the objective of evaluating the effect of the prior cultivation of marandu grass (Brachiaria brizantha cv. Marandu, conditioning applications and soil compaction on macronutrient accumulation in soybeans grown under successive cultivation. The experimental design

  12. Effects of different soil management practices on soil properties and microbial diversity

    Science.gov (United States)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.; Furtak, Karolina M.; Grządziel, Jarosław; Stanek-Tarkowska, Jadwiga

    2018-01-01

    The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction - denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.

  13. Effect of rice husk biochar application to soil insect diversity on potato cultivation

    Science.gov (United States)

    Meilin, A.; Rubiana, R.

    2018-02-01

    High intensity of disease infection and the intensive use of fertilizers and pesticidescause saturated fertilizer and pesticide to the land. Remediation using biochar rice husk is one of the technology to decrease fertilizer and pesticide residue. The diversity of soil insects can be used as bioindicators because of their existence dependsg on soil structure and condition. This study was aimed to study the diversity and structure communities of soil insect in potatoes on difference husk rice biochar application. The sampling of soil insects was done on potato farmer’s land with four treatments i.e control (farmers’ technique), trichokompos without biochar, trichokompos + biochar with dose 1 ton/ha, and trichokompos + biochar with dose 2 ton / ha. At each point a single pitfall trap was installed for two nights and then it was taken for identification. The results showed that biochar application had significant effect on the number of soil insect species (P = 0.037). The soil insect species composition pattern also showed significant differences between the four treatments (R: 0.2306, Pvalue = 0.001). This mean that the application of biochar affects the number of insects species and plays a role in the formation of soil insect diversity beta patterns.

  14. Metatranscriptomic census of active protists in soils

    NARCIS (Netherlands)

    Geisen, Stefan; Tveit, A.T.; Clark, I.M.; Richter, A.; Svenning, M.; Bonkowski, M.; Urich, T.

    2015-01-01

    The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce

  15. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  16. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions

    Science.gov (United States)

    Tikhomirov, A.; Ushakova, S.; Gribovskaya, I.; Tirranen, L.; Manukovsky, N.; Zolotukhin, I.

    To investigate feasibility of enhancing closedness in a new generation of biological life support systems (LSS) to involve the inedible phytomass into intrasystem mass exchange the vermicomposting method we have chosen made possible to produce soil-like substrate (SLS) suitable for growing plants. However, to use the SLS in life support systems call for investigation of its physical, chemical and other parameters. Of special importance among them is the capacity of SLS to provide the LSS photosynthesizing component with required mineral elements in selected cultivation conditions. In this connection the aim of this work was to study opportunities of enhancing pr4oduction activity of wheat and radish cenoses by varying the intensity of photosynthetically active radiation (PAR) without decreasing the harvest index. Increase of light intensity to 250 W/m 2 PAR decreased the intensity of visible photosynthesis of wheat cenosi and slightly increased visible photosynthesis of radish cenosis as compared to 200 W/m 2 PAR. The maximum productivity of wheat cenosis both total and seeds corresponded to the irradiance of 200 W/m 2 PAR. The light intensity of 250 W/m2 PAR decreased productivity of wheat plants and had no significant effect of the productivity of radish cenosis as compared to 200 W/m 2 PAR. Qualitative and quantitative composition of microflora of the watering solution and SLS was determined by the condition of plants, development phase and PAR intensity. By the end of wheat vegetation under 250 W/m 2 there were an order more bacteria of the colon rod group and phytopathogenic bacteria in the watering solution and SLS than under other illumination conditions. Investigation of the mineral composition of SLS and the watering solution demonstrated that one of the reasons of inadequate response of the cenosis under study to elevated PAR intensity may be deficiency of accessible forms of some mineral elements, e.g. nitrogen. The above said materials evidence that

  17. Changes in soil quality and plant available water capacity following systems re-design on commercial vegetable farms

    NARCIS (Netherlands)

    Alliaume, F.; Rossing, W.A.H.; Garcia, M.; Giller, K.E.; Dogliotti Moro, S.

    2013-01-01

    Loss of ecological functions due to soil degradation impacts viability of crop production systems world-wide, particularly in vegetable cropping systems commonly located in the most productive areas and characterized by intensive soil cultivation. This paper reports soil degradation caused by

  18. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils

    International Nuclear Information System (INIS)

    Dumat, C.; Quenea, K.; Bermond, A.; Toinen, S.; Benedetti, M.F.

    2006-01-01

    The role of metals in the behaviour of soil organic matter (SOM) is not well documented. Therefore, we investigated the influence of metals (Pb, Zn, Cu and Cd) on the dynamic of SOM in contaminated soils where maize (C 4 plant) replaced C 3 cultures. Three pseudogley brown leached soil profiles under maize with a decreasing gradient in metals concentrations were sampled. On size fractions, stable carbon isotopic ratio (δ 13 C), metals, organic carbon and nitrogen concentrations were measured in function of depth. The determined sequence for the amount of C 4 organic matter in the bulk fractions: M 3 (0.9) > M 2 (0.4) > M 1 (0.3) is in agreement with a significant influence of metals on the SOM turnover. New C 4 SOM, mainly present in the labile coarser fractions and less contaminated by metals than the stabilised C 3 SOM of the clay fraction, is more easily degraded by microorganisms. - Measure of δ 13 C and total metal concentrations in size fractions of contaminated soils suggests an influence of metals on the soil organic matter dynamic

  19. Management options to increase soil organic matter and nitrogen availability in cultivated drylands

    International Nuclear Information System (INIS)

    Grace, P.R.

    1998-01-01

    Cropping of dryland soils in marginal regions with an emphasis on economic rather than ecological sustainability has generally led to decline in soil organic matter reserves and hence nutrient availability. Outputs commonly exceed inputs, with degradation of soil structure, reduction in infiltration and increase in runoff. Biological productivity is severely affected, leading to a vicious cycle of events usually culminating in decreased N release, excessive soil loss and ultimately desertification. Reducing the incidence of bare fallow, increasing crop-residue retention, strategic N-fertilizer application and shifting to cereal-legume rotations (as opposed to monocultures) and intercropping can slow the spiral. Simulation models such as DSSAT and SOCRATES provide suitable and easy-to-use platforms to evaluate these management strategies in terms of soil organic matter accumulation and yield performance. Through the linkage of these models to global information systems and the use of spatial-characterization software to identify zones of similarity, it is now possible to examine the transportability and risk of a particular management strategy under a wide range of climatic and soil conditions. (author)

  20. Cumulative impacts of human activities on urban garden soils: Origin and accumulation of metals

    International Nuclear Information System (INIS)

    Szolnoki, Zs.; Farsang, A.; Puskás, I.

    2013-01-01

    The concentration of heavy metals and soil properties in fifty urban garden soils of Szeged (SE Hungary) were determined to evaluate the cumulative impacts of urbanization and cultivation on these soils. Using two enrichment factors (EFs) (based on reference horizon; Ti as reference element) and multivariate statistical analysis (PCA), the origin of the studied elements was defined. According to statistical coincidence of EFs confirmed by t-test, anthropogenic enrichment of Cu (EF = 4), Zn (EF = 2.7) and Pb (EF = 2.5) was significant in topsoils. Moreover, PCA also revealed the geogenic origin of Ni, Co, Cr and As and differentiated two groups of the anthropogenic metals [Pb, Zn] [Cu]. Spatial distribution of the metals visualized by GIS reflected the traffic origin of Pb; while based on ANOVA, the anthropogenic source of Cu is relevant (mainly pesticides) and there is a statistically significant difference in its concentration depending on land use. -- Highlights: ► We determined heavy metal concentrations in urban garden soils of Szeged, Hungary. ► We used different statistical methods, enrichment factors to identify metal origin. ► Enrichment degree and sources of anthropogenic metals were successfully evaluated. ► Anthropogenic enrichment of Cu, Pb and Zn was significant in urban garden topsoils. ► Traffic emission and soil cultivation together are responsible for metal enrichment. -- Metal enrichment and sources in urban garden soils due to urban activities and cultivation were successfully identified by combining more methods (enrichment factors, statistical analysis, spatial distribution)