WorldWideScience

Sample records for cultivated rice fields

  1. Deciphering Community Structure of Methanotrophs Dwelling in Rice Rhizospheres of an Indian Rice Field Using Cultivation and Cultivation-Independent Approaches.

    Science.gov (United States)

    Pandit, Pranitha S; Rahalkar, Monali C; Dhakephalkar, Prashant K; Ranade, Dilip R; Pore, Soham; Arora, Preeti; Kapse, Neelam

    2016-04-01

    Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37 %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India.

  2. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongbo, E-mail: liuyb@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Liu, Fang [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Chao [Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380 (China); Quan, Zhanjun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Junsheng, E-mail: lijsh@creas.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. - Highlights: • We detect fusion Cry1Ab/1Ac proteins from Bt rice entering into aquatic ecosystems. • Bt-transgenic rice cultivation have no significant effect on zooplankton community. • Bt-transgenic rice cultivation have indirect effect on phytoplankton community. • Water quality explains the difference of plankton communities in adjacent ditches.

  3. The archaeobotany of Asian rice expansion and the development of wet-field cultivation

    Science.gov (United States)

    Fuller, D.

    2008-12-01

    Archaeobotanical evidence provides direct data on past human diet and agriculture, including a geographical and chronological framework for studying the expansion of rice agriculture. The growth of systematic archaeobotanical sampling in recent years has allowed for the past presence of rice to be seen in relation to cultivation of other crops and associated weeds. The weed flora provides a basis for inferring the nature of cultivation systems, whether rain-fed dry rice or wetland "paddy" rice, a key distinction for considerations of past methane production. Nevertheless, current data is very unevenly distributed. This poster will summarize available evidence for the origins and spread of rice in South Asia (India and Pakistan), and mainland and Island Southeast Asia deriving from an earlier Chinese domestication. Where possible, such as in India or China, the potential of the weed flora remains for distinguishing wetland rice crops will be summarized. In broad terms, although the origins of rice use and cultivation begins by or during the Middle Holocene (6000- 3000 BC), rice cultivation spread outside the regions of the wild progenitor after this time. Two phases of rice expansion can be distinguished. Phase 1, between 3000 and 1500 BC, introduced rice to Southeast Asia, probably under wetland cultivation, and the spread of dry rice over northern India and Pakistan. Phase 2, taking place between 1000 and 0 BC, sees the spread of rice throughout the Southern Indian Peninsula, with weed evidence suggesting irrigated wetland rice. Similarly, this period sees the spread of intensive paddy agriculture through Korea and Japan, but in Southeast Asia is probably related to a spread of rice in upland, dry field systems.

  4. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao

    2017-03-01

    Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH4) and nitrous oxide (N2O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH4 and N2O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH4 emissions and GWP per unit of grain yield (yield-scaled CH4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH4 emissions and GWP, leading to higher yield-scaled CH4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.

  5. Distribution and identification of proteolytic Bacillus spp. in paddy field soil under rice cultivation.

    Science.gov (United States)

    Watanabe, K; Hayano, K

    1993-07-01

    Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.

  6. Effect of flaring of natural gas in oil fields of Assam on rice cultivation.

    Science.gov (United States)

    Sharma, K K; Hazarika, S; Kalita, B; Sharma, B

    2011-07-01

    Assam (India) is endowed with natural resources like oil, coal and natural gas. The crude oil, one of the most precious natural resources, is found in the districts of upper Assam. During the process of extraction of crude oil, low-pressure natural gas is burnt in the air. Most of the oil wells in upper Assam are located near rice fields and therefore, rice crop grown near the oil wells is exposed to light uninterruptedly causing grain sterility resulting significant loss in grain yield. To identify promising varieties for these areas, we studied the effect of flare on rice varieties with different photoperiod sensitivity. The high light intensity and increased light hours were the factors responsible for substantial loss in grain yield near the flare resulting from delay in flower initiation, reduction of panicle length, having less number of grains per panicle and more grain sterility. To prevent significant loss in yield, photoperiod-sensitive traditional and improved rice varieties should not be grown up to the distance of 80 and 100 m, respectively from the boundary wall of the flare pit. Modern weakly-photoperiod sensitive varieties like Ranjti and Mahsuri can be grown 40 m away from the wall while modern photoperiod insensitive variety like Jaya, can be cultivated 20 m away from the wall without significant loss in yield.

  7. Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice.

    Science.gov (United States)

    Tian, Yuan; Wang, Xiaorong; Luo, Jun; Yu, Hongxia; Zhang, Hao

    2008-10-15

    Measurements of metals in soils by diffusive gradients in thin films (DGT) have previously been shown to be linearly related to metals measured in shoots of plants grown in pots. We examine the relationships between metals measured by DGT and other techniques with metals in the roots and unpolished grains of rice cultivated under field conditions at 18 sites in Jiangsu province, China. Rhizosphere soils of rice were collected and the concentrations of Cd, Cu, Pb, and Zn were determined on soil solution, acetic acid, and calcium chloride (CaCl2) extractions and by DGT. Simple linear regression analyses between concentrations of metals in plants and those measured using DGT and chemical extractions showed a very good fit for DGT measurements of the concentrations of all four metals in both rice roots and unpolished grains. Good fits were also found using soil solution and acetic acid extractions, but the correlation coefficients were lower than those obtained by DGT. CaCl2 extractions provided the poorest fits for all four metals. Multivariate analyses were used to assess the impact of pH, dissolved organic carbon (DOC), soil organic carbon (SOC), cation exchange capacity (CEC), and texture. Two principal components were extracted. The first was well correlated with SOC, DOC, and clay proportion and is therefore representative of "organic matter". The second primarily correlated positively with pH and negatively with CEC and is representative of "inorganic ions". When these principle components were included in multiple linear regression, correlation coefficients for plots involving metals in soil solution and in extractions using acetic acid and CaCl2 were improved, but there was little change in the correlation coefficients for comparable plots using metals measured by DGT. These results show for the first time that the DGT measurement quantitatively incorporates the main factors affecting bioavailability.

  8. The Origin of Flooded Rice Cultivation

    Directory of Open Access Journals (Sweden)

    Hiroshi IKEHASHI

    2007-09-01

    Full Text Available Rice cultivation has long been considered to have originated from seeding of annual types of wild rice somewhere in subtropics, tropics or in the Yangtze River basin. That idea, however, contains a fatally weak point, when we consider the tremendous difficulty for primitive human to seed any cereal crop in the warm and humid climate, where weed thrives all year round. Instead of the accepted theory, we have to see a reality that vegetative propagation of edible plants is a dominant form of agriculture in such regions. The possibility is discussed that Job's tears and rice, two cereal crops unique to the region, might have been developed via vegetative propagation to obtain materials for medicine or herb tea in backyard gardens prior to cereal production. This idea is supported by the fact that rice in temperate regions is still perennial in its growth habit and that such backyard gardens with transplanted taro can still be seen from Yunnan Province of China to Laos. Thanks to detailed survey of wild rice throughout China for 1970–1980, it is now confirmed that a set of clones of wild rice exist in shallow swamps in Jiangxi Province, an area with severe winter cold. In early summer ancient farmers may have divided the sprouting buds and spread them by transplanting into flooded shallow marsh. Such way of propagation might have faster improved less productive rice through a better genetic potential for response to human interference than quick fixation in seed propagation, because vegetative parts are heterogeneous. Obviously, such a primitive manner of rice cultivation did include the essential parts of rice farming, i.e., nursery bed, transplanting in flooded field of shallow marsh like. Transfer from the primitive nursery to true nursery by seed may have later allowed rice cultivation to be extended to northern regions. In thus devised flooded cultivation there were a series of unique advantages, i.e.; continuous cropping of rice in a same

  9. The Origin of Flooded Rice Cultivation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rice cultivation has long been considered to have originated from seeding of annual types of wild ricesomewhere in subtropics, tropics or in the Yangtze River basin. That idea, however, contains a fatally weak point, when we consider the tremendous difficulty for primitive human to seed any cereal crop in the warm and humid climate, where weed thrives all year round. Instead of the accepted theory, we have to see a reality that vegetative propagation of edible plants is a dominant form of agriculture in such regions. The possibility is discussed that Job's tears and rice, two cereal crops unique to the region, might have been developed via vegetative propagation to obtain materials for medicine or herb tea in backyard gardens prior to cereal production. This idea is supported by the fact that rice in temperate regions is still perennial in its growth habit and that such backyard gardens with transplanted taro can still be seen from Yunnan Province of China to Laos. Thanks to detailed survey of wild rice throughout China for 1970-1980, it is now confirmed that a set of clones of wild rice exist in shallow swamps in Jiangxi Province, an area with severe winter cold. In early summer ancient farmers may have divided the sprouting buds and spread them by transplanting into flooded shallow marsh. Such way of propagation might have faster improved less productive rice through a better genetic potential for response to human interference than quick fixation in seed propagation, because vegetative parts are heterogeneous. Obviously, such a primitive manner of rice cultivation did include the essential parts of rice farming, i.e., nursery bed, transplanting in flooded field of shallow marsh like. Transfer from the primitive nursery to true nursery by seed may have later allowed rice cultivation to be extended to northern regions. In thus devised flooded cultivation there were a series of unique advantages, i.e.; continuous cropping of rice in a same plot, no soil erosion

  10. Uncertainties in the national inventory of methane emissions from rice cultivation: field measurements and modeling approaches

    Science.gov (United States)

    Zhang, Wen; Sun, Wenjuan; Li, Tingting

    2017-01-01

    Uncertainties in national inventories originate from a variety of sources, including methodological failures, errors, and insufficiency of supporting data. In this study, we analyzed these sources and their contribution to uncertainty in the national inventory of rice paddy methane emissions in China and compared the differences in the approaches used (e.g., direct measurements, simple regressions, and more complicated models). For the 495 field measurements we collected from the scientific literature, the area-weighted 95 % CI (confidence interval) ranged from 13.7 to 1115.4 kg CH4 ha-1, and the histogram distribution of the measurements agreed well with parameterized gamma distributions. For the models, we compared the performance of methods of different complexity (i.e., the CH4MOD model, representing a complicated method, and two less complex statistical regression models taken from literature) to evaluate the uncertainties associated with model performance as well as the quality and accessibility of the regional datasets. Comparisons revealed that the CH4MOD model may perform worse than the comparatively simple regression models when no sufficient input data for the model is available. As simulated by CH4MOD with data of irrigation, organic matter incorporation, and soil properties of rice paddies, the modeling methane fluxes varied from 17.2 to 708.3 kg CH4 ha-1, covering 63 % of the range of the field measurements. When applying the modeling approach to the 10 km × 10 km gridded dataset of the model input variables, the within-grid variations, made via the Monte Carlo method, were found to be 81.2-95.5 % of the grid means. Upscaling the grid estimates to the national inventory, the total methane emission from the rice paddies was 6.43 (3.79-9.77) Tg. The fallacy of CH4MOD contributed 56.6 % of the total uncertainty, with the remaining 43.4 % being attributed to errors and the scarcity of the spatial datasets of the model inputs. Our analysis reveals the

  11. Suppressive effect of magnesium oxide materials on cadmium accumulation in winter wheat grain cultivated in a cadmium-contaminated paddy field under annual rice-wheat rotational cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tetsuro, E-mail: tetsu-k@hino.meisei-u.ac.jp [Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Okazaki, Masanori, E-mail: masaok24@cc.tuat.ac.jp [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Motobayashi, Takashi, E-mail: takarice@cc.tuat.ac.jp [Field Science Center for Education and Research, Tokyo University of Agriculture and Technology, 3-7-1 Hommachi, Fuchu, Tokyo 183-0027 (Japan)

    2009-08-30

    The effectiveness of two kinds of magnesium oxide (MgO) materials, commercial MgO (2250 kg ha{sup -1}) and a material derived from MgO and magnesium silicate minerals named 'MgO-SH-A' (2250 and 4500 kg ha{sup -1}1), in suppression of uptake and accumulation of cadmium (Cd) into grain of winter wheat (Triticum aestivum L. cv. Ayahikari) was examined in a Cd-contaminated alluvial paddy field under annual rice-wheat rotational system. The MgO materials were mixed into the plough-layer soil only once prior to the preceding rice cultivation. Cadmium concentration in wheat grain produced from the non-amendment control exceeded the maximum limit of Cd in wheat grain adopted by FAO/WHO (0.2 mg kg{sup -1}). All of the treatments with the MgO materials significantly lowered plant available Cd fraction in the plough-layer soil. However, only the treatment with the commercial MgO at 2250 kg ha{sup -1} produced wheat grain whose Cd concentration was not only significantly lower than that from the control but also less than 0.2 mg kg{sup -1}. It is suggested that the significant suppressive effect of the commercial MgO on Cd accumulation in wheat grain would be mainly attributed to its high soil neutralizing capacity as compared to that of MgO-SH-A.

  12. Can the co-cultivation of rice and fish help sustain rice production?

    Science.gov (United States)

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-06-28

    Because rice feeds half of the world's population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one "rice-fish system" (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers' net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability.

  13. Environmental profile of paddy rice cultivation with different straw management.

    Science.gov (United States)

    Fusi, Alessandra; Bacenetti, Jacopo; González-García, Sara; Vercesi, Annamaria; Bocchi, Stefano; Fiala, Marco

    2014-10-01

    Italy is the most important European country in terms of paddy rice production. North Italian districts such as Vercelli, Pavia, Novara, and Milano are known as some of the world's most advanced rice cultivation sites. In 2013 Italian rice cultivation represented about 50% of all European rice production by area, and paddy fields extended for over 216,000 ha. Cultivation of rice involves different agricultural activities which have environmental impacts mainly due to fossil fuels and agrochemical requirements as well as the methane emission associated with the fermentation of organic material in the flooded rice fields. In order to assess the environmental consequences of rice production in the District of Vercelli, the cultivation practices most frequently carried out were inventoried and evaluated. The general approach of this study was not only to gather the inventory data for rice production and quantify their environmental impacts, but also to identify the key environmental factors where special attention must be paid. Life Cycle Assessment methodology was applied in this study from a cradle-to-farm gate perspective. The environmental profile was analyzed in terms of seven different impact categories: climate change, ozone depletion, human toxicity, terrestrial acidification, freshwater eutrophication, marine eutrophication, and fossil depletion. Regarding straw management, two different scenarios (burial into the soil of the straw versus harvesting) were compared. The analysis showed that the environmental impact was mainly due to field emissions, the fuel consumption needed for the mechanization of field operations, and the drying of the paddy rice. The comparison between the two scenarios highlighted that the collection of the straw improves the environmental performance of rice production except that for freshwater eutrophication. To improve the environmental performance of rice production, solutions to save fossil fuel and reduce the emissions from

  14. Origin, dispersal, cultivation and variation of rice.

    Science.gov (United States)

    Khush, G S

    1997-09-01

    There are two cultivated and twenty-one wild species of genus Oryza. O. sativa, the Asian cultivated rice is grown all over the world. The African cultivated rice, O. glaberrima is grown on a small scale in West Africa. The genus Oryza probably originated about 130 million years ago in Gondwanaland and different species got distributed into different continents with the breakup of Gondwanaland. The cultivated species originated from a common ancestor with AA genome. Perennial and annual ancestors of O. sativa are O. rufipogon and O. nivara and those of O. glaberrima are O. longistaminata, O. breviligulata and O. glaberrima probably domesticated in Niger river delta. Varieties of O. sativa are classified into six groups on the basis of genetic affinity. Widely known indica rices correspond to group I and japonicas to group VI. The so called javanica rices also belong to group VI and are designated as tropical japonicas in contrast to temperate japonicas grown in temperate climate. Indica and japonica rices had a polyphyletic origin. Indicas were probably domesticated in the foothills of Himalayas in Eastern India and japonicas somewhere in South China. The indica rices dispersed throughout the tropics and subtropics from India. The japonica rices moved northward from South China and became the temperate ecotype. They also moved southward to Southeast Asia and from there to West Africa and Brazil and became tropical ecotype. Rice is now grown between 55 degrees N and 36 degrees S latitudes. It is grown under diverse growing conditions such as irrigated, rainfed lowland, rainfed upland and floodprone ecosystems. Human selection and adaptation to diverse environments has resulted in numerous cultivars. It is estimated that about 120,000 varieties of rice exist in the world. After the establishment of International Rice Research Institute in 1960, rice varietal improvement was intensified and high yielding varieties were developed. These varieties are now planted to 70

  15. Comparative Study of Rice Morphogenesis wit Different Cultivation Methods

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] The aim of this study was to compare the morphological char- acteristics of rice (Oryza sativa L.) with different cultivation methods and investigate the dynamics of organ growth and development characteristics of different rice culti- vars. [Method] Based on continuous field observation and destructive sampling over a growing season, detailed organ morphological data were obtained including leaf length, node number, plant height, tiller number, leaf angle, leaf area and specific leaf weight, to compare organ morphological differences among 4 rice cultivars of Baidao (indica), Jinnanfeng (japonica), 9325 (japonica) and 9915 (japonica) with 3 cultivation methods of field planting in Weigang, pot planting in Weigang, and field planting in Jiangpu. [Result] Maximum leaf length of each node gradually increased at the early growth stage and decreased at the later growth stage, the relationship between maximum leaf length and node position can be described by the equations y=a,,-~ and y=ax+b; node number, growth duration, leaf length and plant height of pot planting rice in Weigang were smaller than that of the other two field planting meth- ods; the relationship between plant height and sunshine duration, plant height and GDD (growing degree days) can be described by the equation y=ax+b, 19.23 ℃.d of GDD (≥10 ≥-d) and 8.12 h of sunshine duration were required to increase 1 cm of plant height; plant height, tiller number, and leaf area of Baidao were higher than that of the other 3 laponica rice cultivars, but the specific leaf weight and leaf angle were smaller. [Conclusion] Comparison of morphological characteristic differ- ences among rice cultivars is an important way to select water-saving and drought- tolerant rice varieties. In this study, the experimental results can be integrated into a rice functional-architectural model to simulate rice organ growth dynamics in a three- dimensional space, thereby providing reference for selecting water

  16. Effects of N loading rate on CH4 and N2O emissions during cultivation and fallow periods from forage rice fields fertilized with liquid cattle waste.

    Science.gov (United States)

    Riya, S; Zhou, S; Kobara, Y; Sagehashi, M; Terada, A; Hosomi, M

    2015-09-15

    The use of liquid cattle waste (LCW) as a fertilizer for forage rice is important for material recycling because it can promote biomass production, and reduce the use of chemical fertilizer. Meanwhile, increase in emission of greenhouse gases (GHGs), especially CH4 and N2O would be concerned. We conducted a field study to determine the optimum loading rate of LCW as N to promote forage rice growth with lower GHG emissions. The LCW was applied to forage rice fields, N100, N250, N500, and N750, at four different N loading rates of 107, 258, 522, and 786 kg N ha(-1), respectively, including 50 kg N ha(-1) of basal chemical fertilizer. The above-ground biomass yields increased 14.6-18.5 t ha(-1) with increases in N loading rates. During the cultivation period, both the CH4 and N2O fluxes increased with increases in LCW loading rates. In the treatments of N100, N250, N500, and N750, the cumulative CH4 emissions during the entire period, including cultivation and fallow period were 29.6, 18.1, 54.4, and 67.5 kg C ha(-1), respectively, whereas those of N2O were -0.15, -0.02, 1.49, and 5.82 kg N ha(-1), respectively. Considering the greenhouse gas emissions and above-ground biomass, the yield-scaled CO2-equivalents (CO2-eqs) were 66.3, 35.9, 161, and 272 kg CO2 t(-1) for N100, N250, N500, and N750, respectively. These results suggest that N250 is the most appropriate LCW loading rate for promoting forage rice production with lower GHG emissions.

  17. Can the co-cultivation of rice and fish help sustain rice production?

    Science.gov (United States)

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-06-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability.

  18. Much Improved Water Use Efficiency of Rice under Non-Flooded Mulching Cultivation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water shortage is increasingly limiting the luxury use of water in rice cultivation. In this study, non-flooded mulching cultivation of rice only consumed a fraction of the water that was needed for traditional flooded cultivation and largely maintained the grain yield. We also investigated the growth and development of rice plants and examined grain yield formation when rice was subjected to non-flooded mulching cultivation. One indica hybrid rice combination was grown in a field experiment and three cultivation methods, traditional flooding (TF), non-flooded straw mulching cultivation (SM) and non-flooded plastic mulching cultivation (PM), were conducted during the whole season. Grain yield showed that there was no significant difference between SM and TF rice, but the grain yield of SM cultivation was significantly higher than that of PM. The tiller numbers were inhibited in the early stage under non-flooded mulching cultivation, but the situation was reversed at the later period. Both SM and PM rice reduced dry matter accumulation of shoot, but increased root dry weight,enhanced the remobilization of assimilates from stems to grains and increased the harvest index. During the middle and later grain filling period, mulched plants showed a faster decrease in chlorophyll concentrations, photosynthetic rates of flag leaves and root activity than TF rice, indicating that non-flooded mulching cultivation enhanced plant senescence. In comparison, SM treatment produced higher grain yield and, more dry matter accumulation and panicle numbers than the PM treatment. The overall results suggest that high yield of non-flooded mulching cultivation of rice can be achieved with much improved irrigational water use efficiency.

  19. Spread of herbicide-resistant weedy rice (red rice, Oryza sativa L.) after 5 years of Clearfield rice cultivation in Italy.

    Science.gov (United States)

    Busconi, M; Rossi, D; Lorenzoni, C; Baldi, G; Fogher, C

    2012-09-01

    The weedy relative of cultivated rice, red rice, can invade and severely infest rice fields, as reported by rice farmers throughout the world. Because of its close genetic relationship to commercial rice, red rice has proven difficult to control. Clearfield (Cl) varieties, which are resistant to the inhibiting herbicides in the chemical group AHAS (acetohydroxyacid synthase), provide a highly efficient opportunity to control red rice infestations. In order to reduce the risk of herbicide resistance spreading from cultivated rice to red rice, stewardship guidelines are regularly released. In Italy, the cultivation of Cl cultivars started in 2006. In 2010, surveillance of the possible escape of herbicide resistance was carried out; 168 red rice plants were sampled in 16 fields from six locations containing Cl and traditional cultivars. A first subsample of 119 plants was analysed after herbicide treatment and the resistance was found in 62 plants. Of these 119 plants, 78 plants were randomly selected and analysed at the level of the AHAS gene to search for the Cl mutation determining the resistant genotype: the Cl mutation was present in all the resistant plants. Nuclear and chloroplast microsatellite markers revealed a high correlation between genetic similarity and herbicide resistance. The results clearly show that Cl herbicide-resistant red rice plants are present in the field, having genetic relationships with the Cl variety. Finding plants homozygous for the mutation suggests that the crossing event occurred relatively recently and that these plants are in the F2 or later generations. These observations raise the possibility that Cl red rice is already within the cultivated rice seed supply.

  20. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.

    Science.gov (United States)

    Dai, Lei; Dai, Weimin; Song, Xiaoling; Lu, Baorong; Qiang, Sheng

    2014-01-01

    Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  1. Effect of rice cultivation on malaria transmission in central Kenya.

    Science.gov (United States)

    Muturi, Ephantus J; Muriu, Simon; Shililu, Josephat; Mwangangi, Joseph; Jacob, Benjamin G; Mbogo, Charles; Githure, John; Novak, Robert J

    2008-02-01

    A 12-month field study was conducted between April 2004 and March 2005 to determine the association between irrigated rice cultivation and malaria transmission in Mwea, Kenya. Adult mosquitoes were collected indoors twice per month in three villages representing non-irrigated, planned, and unplanned rice agro-ecosystems and screened for blood meal sources and Plasmodium falciparum circumsporozoite proteins. Anopheles arabiensis Patton and An. funestus Giles comprised 98.0% and 1.9%, respectively, of the 39,609 female anophelines collected. Other species including An. pharoensis Theobald, An. maculipalpis Giles, An. pretoriensis Theobald, An. coustani Laveran, and An. rufipes Gough comprised the remaining 0.1%. The density of An. arabiensis was highest in the planned rice village and lowest in the non-irrigated village and that of An. funestus was significantly higher in the non-irrigated village than in irrigated ones. The human blood index (HBI) for An. arabiensis was significantly higher in the non-irrigated village compared with irrigated villages. For An. funestus, the HBI for each village differed significantly from the others, being highest in the non-irrigated village and lowest in the planned rice village. The sporozoite rate and annual entomologic inoculation rate (EIR) for An. arabiensis was 1.1% and 3.0 infective bites per person, respectively with no significant difference among villages. Sporozoite positive An. funestus were detected only in planned rice and non-irrigated villages. Overall, 3.0% of An. funestus samples tested positive for Plasmodium falciparum sporozoites. The annual EIR of 2.21 for this species in the non-irrigated village was significantly higher than 0.08 for the planned rice village. We conclude that at least in Mwea Kenya, irrigated rice cultivation may reduce the risk of malaria transmission by An. funestus but has no effect on malaria transmission by An. arabiensis. The zoophilic tendency of malaria vectors in irrigated areas

  2. StudyandApplicationof¨ThreeHighandOneEnsuring¨Cultivation Mode of Double Cropping Rice

    Institute of Scientific and Technical Information of China (English)

    Chunrui PENG; Jinshui XIE; Caifei QIU; Yinfei QIAN; Xianjiao GUAN; Xiaohua PAN

    2012-01-01

    A set of "three high and one ensuring" cultivation mode of double cropping rice, the core of which was high panicle bearing tiller rate, high seed setting rate, high grain plumpness and ensuring high quality, was explored through many years of research. In this study, the effect of "three high and one ensuring" cultivation mode of double cropping rice was compared and investigated by field experiment and multiple location demonstration. The field experiment indicated that "three high and one ensuring" cultivation mode promoted the vegetative growth during early stage, inhibited the formation of ineffective tillers, promoted the growth of effective tillers and the formation of panicles, improved the panicle bearing tiller rate, in- creased the total number of spikelets, enhanced the seed setting rate and grain plumpness, increased the grain yield by 12.22%-19.73% at highly significant level, and improved the rice quality. Furthermore, the field demonstration also verified the results of field experiment.

  3. Irrigation Difference and Productivity Variations in Paddy Cultivation: Field Evidences from Udalguri District of Assam

    OpenAIRE

    Phanindra GOYARI

    2014-01-01

    Using field survey data, the paper examines the seasonal variation of irrigation facilities for cultivation of paddy with special emphasis on summer paddy in Assam. Paddy is cultivated in three seasons: autumn, winter and summer. In terms of acreage and production, winter rice has traditionally been the most dominant. However, the acreage shares of winter and autumn rice in total rice area have been declining continuously over the years. On the contrary, the importance of summer rice has been...

  4. Interaction of Arsenic with Zinc and Organics in a Rice (Oryza sativa L.–Cultivated Field in India

    Directory of Open Access Journals (Sweden)

    Dilip Kumar Das

    2005-01-01

    Full Text Available A laboratory experiment on an Inceptisol with pH 7.6, organic carbon 6.8 g kg–1, and 0.5 M NaHCO3 extractable arsenic 0.4 mg kg–1 was conducted to study the interaction effect of graded levels of arsenic (0, 5, and 10 mg kg–1 with zinc (0, 10, and 20 mg kg–1 and organics (0, 1, and 2% on soil weight basis separately on the mobilization of arsenic in soils.The results show that the amount of 0.5 M NaHCO3 extractable arsenic at pH 8.5 increased with the progress of submergence up to 35 days. However, the increase in arsenic concentration was correlated with decreasing application of graded levels of Zn as zinc sulfate. The intensity of reduction varied with varying levels of Zn, being higher (0.73–2.72 mg kg–1 in the treatment where Zn was at 10 mg kg–1 and lower (0.70–1.08 mg kg–1 with Zn at 20 mg kg–1 application.The amount of arsenic content in the soil significantly decreased with the application of varying levels of organics. However, such depressive effect was found more pronounced with well-decomposed farm yard manure than that of vermicompost. The results of field experiments showed that the grain yield between continuous flooding (4.84 t ha–1 and intermittent flooding up to 40 days after transplanting then continuous flooding (4.83 t ha–1 with the application of ZnSO4 at 25 kg ha–1 did not vary. The lowest grain yield (3.65 t ha–1 was recorded in the treatment where intermittent flooding was maintained throughout the growth period without the application of Zn. The amount of arsenic content was, however, recorded much lower in the treatment where intermittent flooding throughout the growth period was maintained with ZnSO4.

  5. Rice cultivation on floating-beds in different natural waters

    Institute of Scientific and Technical Information of China (English)

    SONGXiangfu; WUWeiming; JINGQianyu; YINGHuodong; ZHUMing; ZOUGuoyan

    1997-01-01

    Following the success in rice cultivation on floating-beds in natural water in 1990, the ecological adaptability of growing rice on floatingbeds was studied during the period of 1991-1993. Experiments were conducted in five different types of natural waters in Zhejiang Province from 28°35′ to 30°58′N and from 119°05′ to 121°11′E.

  6. Effect of Rice Cultivation in the South of China on Hunan Civilization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Ancient cultivated rice: important archaeological findings Rice, a crop cultivated by man with long history, is the staple food on which half of the world population lives. When and where did rice farming originate? Is rice in China an indigenous plant or the one introduced from abroad? Different opinions have been held for over one hundred years. People once thought that rice was firstly cultivated in India, afterwards introduced into China and Southeast Asia from South Asia.

  7. Nutritional aspects of rice cultivation in Nyanza province, Kenya

    NARCIS (Netherlands)

    Niemeijer, R.

    1985-01-01

    Leiden [etc.] : African Studies Centre [etc.] (FNSP Report, no. 14), p. 156, 1985.Based on a survey conducted in 1984, the authors discuss the nutritional conditions prevailing among farming households engaged in irrigated rice cultivation in the Kano plain, Nyanza Province, Kenya. The survey covere

  8. Rice cultivation in the farming systems of Sukumaland, Tanzania

    NARCIS (Netherlands)

    Meertens, H.C.C.

    1999-01-01

    This thesis investigates options for sustainable rice cultivation and general agricultural development in the Mwanza and Shinyanga regions in northwestern Tanzania, often called Sukumaland due to the predominance of Wasukuma people. Generally Sukumaland has a semi-arid climate; agriculture is constr

  9. How to Evaluate the Rice Cultivation Suitability?

    Institute of Scientific and Technical Information of China (English)

    Wenxi; LI; Yueping; ZHANG; Changsong; WANG; Wei; MAO; Tianwen; HANG; Ming; CHEN; Bingning; ZHANG

    2013-01-01

    To rationally allocate farmland resources,and scientifically make farming industrial planning,we take Yizheng City in Jiangsu Province as the research object,and select 13 indicators.Based on Farmland Resources Management Information System in Yizheng City,we establish AHP model,and membership function model,for the evaluation of farmland suitability of rice.The results show that the farmland area in the highly suitable areas accounts for 10.2%of the total farmland area;the farmland area in the suitable areas accounts for 56.08%of the total farmland area;the farmland area in the marginally suitable areas accounts for 25.50%of the total farmland area;the farmland area in the unsuitable areas accounts for 8.22%of the total farmland area.There is significant positive correlation between the actual yield of rice surveyed and suitability index obtained through evaluation(R2=0.1964,319 samples);the actual yield of rice in the highly suitable areas is higher than in the marginally suitable areas and suitable areas,and the rice yield is the lowest in the unsuitable areas.

  10. Abandoned Rice Fields Make Streams Go Dry in Upland Landscapes

    Science.gov (United States)

    Jayawickreme, D.

    2015-12-01

    In South Asia, new economic realities are driving many rural rice farmers out of agriculture. With increasing neglect, abandonment, and rising conversions of centuries old rice fields into other uses, ecological and environmental consequences of these transitions are becoming progressively clear. Field observations in Sri Lanka's central highlands suggest that small shifts in rice to non-rice land uses in headwater watersheds can have a domino effect on the productivity and viability of rice fields and other ecological systems downstream by inflicting groundwater recharge reductions, lowering groundwater yields, and causing other hydrological changes. Preliminary analysis shows that although rice itself is a very water intensive crop, the presence of rain-fed upland rice-fields is hugely beneficial to the watersheds they reside. In particular, water benefits of rice appear to be derived from ponded conditions (3-5 inches of standing water) in which rice is grown, and the contribution rice fields makes to enhance water retention and storage capacity of their watersheds during the monsoon season that coincide with the cropping season. In the absence of well managed rice-fields, hilly upland landscapes produce more runoff and retain little rainwater during the wet season. Furthermore, after centuries of intensive use, much of South Asia's rice fields are nutrient poor and minimally productive without fertilizer applications and other interventions. Consequently, when abandoned, soil erosion and other impacts that affect aquatic ecosystems and watershed health also emerge. Despite these multiple concerns however, little research is currently done to better understand the environmental significance of rice cultivations that are a dominant land-use in many South Asian landscapes. The aim of this presentation is to stir interest among the scientific community to engage more broadly in rice, water, and environmental change research in the face of new economic realities in

  11. Effects of Non-flooded Cultivation with Straw Mulching on Rice Agronomic Traits and Water Use Efficiency

    Institute of Scientific and Technical Information of China (English)

    QIN Jiang-tao; HU Feng; LI Hui-xin; WANG Yi-ping; HUANG Fa-quan; HUANG Hua-xiang

    2006-01-01

    A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice under flooded cultivation (FC) was 2.42 and 3.31 times as much as that by rice under the non-flooded cultivation with and without straw mulching, respectively. The average water seepage was 13 560 m3/ha under the flooded cultivation, 4 750 m3/ha under the non-flooded cultivation without straw mulching (ZM)and 4 680 m3/ha under non-flooded cultivation with straw mulching (SM). The evapotranspiration in the SM treatment was only 38.2% and 63.6% of the FC treatment and ZM treatment, respectively. Compared with the ZM treatment, straw mulching significantly increased leaf area per plant, main root length, gross root length and root dry weight per plant of rice. The highest grain yield under the SM treatment (6 747 kg/ha) was close to the rice cultivated in flooded soil (6 811.5 kg / ha). However, the yield under the ZM treatment (4 716 kg/ha) was much lower than that under the FS treatment and SM treatment. The order of water use efficiency and irrigation water use efficiency were both as follows: SM> ZM> FC.

  12. Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance

    NARCIS (Netherlands)

    Senthilkumar, K.; Bindraban, P.S.; Thiyagarajan, T.M.; Ridder, de N.; Giller, K.E.

    2008-01-01

    The looming water crisis and water-intensive nature of rice cultivation are driving the search for alternative management methods to increase water productivity in rice cultivation. Experiments were conducted under on-station and on-farm conditions to compare rice production using modified methods

  13. Rice cultivation in the farming systems of Sukumaland, Tanzania

    OpenAIRE

    1999-01-01

    This thesis investigates options for sustainable rice cultivation and general agricultural development in the Mwanza and Shinyanga regions in northwestern Tanzania, often called Sukumaland due to the predominance of Wasukuma people. Generally Sukumaland has a semi-arid climate; agriculture is constrained by unreliable and low rainfall. In the past fifty years the population density has doubled in most parts. This has triggered several changes in farming systems. One important change is a redu...

  14. On-farm trials with rice fish cultivation in the west Kano rice irrigation scheme, Kenya

    OpenAIRE

    Rasowo, J.; Auma, E.O.

    2006-01-01

    The viability of integrating rice farming with fish culture was studied in ten (10) rice plots. The on-farm research was done during one rice-growing season starting May 2003. The rice variety used was IR 2793-80-1 while the fish species was the Nile tilapia, Oreochromis niloticus. The fish culture period lasted 77 days. An average fish production of 132.4 kg/ha was obtained. The mean recovery rate of tilapia was 43 per cent. Total rice yield from the fields stocked with fish was lower than f...

  15. Characteristics of High Quality Rice Xiang 5 and the Supporting Cultivation Techniques

    Institute of Scientific and Technical Information of China (English)

    Deze XU; Haiya CAI; Feng ZHAO; Jianping WU; Aiqing YOU

    2016-01-01

    The high quality rice,Xiang 5,is a new strain bred by Institute of Food Crops of Hubei Academy of Agricultural Sciences which first hybridizes Chinese scented rice with 9311,and then re-crosses it with Ezhong 5 for continuous generations. The strain has good quality,high yield,suitable maturity period,strong scent,strong combining ability and other features. This paper summarizes the appearance characteristics of Xiang 5 and main points of the supporting cultivation techniques,aimed at providing technical support and theoretical reference for its field production.

  16. Genetic shift in local rice populations during rice breeding programs in the northern limit of rice cultivation in the world.

    Science.gov (United States)

    Fujino, Kenji; Obara, Mari; Ikegaya, Tomohito; Tamura, Kenichi

    2015-09-01

    The rapid accumulation of pre-existing mutations may play major roles in the establishment and shaping of adaptability for local regions in current rice breeding programs. The cultivated rice, Oryza sativa L., which originated from tropical regions, is now grown worldwide due to the concerted efforts of breeding programs. However, the process of establishing local populations and their origins remain unclear. In the present study, we characterized DNA polymorphisms in the rice variety KITAAKE from Hokkaido, one of the northern limits of rice cultivation in the world. Indel polymorphisms were attributed to transposable element-like insertions, tandem duplications, and non-TE deletions as the original mutation events in the NIPPONBARE and KITAAKE genomes. The allele frequencies of the KITAAKE alleles markedly shifted to the current variety types among the local population from Hokkaido in the last two decades. The KITAAKE alleles widely distributed throughout wild rice and cultivated rice over the world. These have accumulated in the local population from Hokkaido via Japanese landraces as the ancestral population of Hokkaido. These results strongly suggested that combinations of pre-existing mutations played a role in the establishment of adaptability. This approach using the re-sequencing of local varieties in unique environmental conditions will be useful as a genetic resource in plant breeding programs in local regions.

  17. Effect of Nitrogen Application from Selected Manures on Growth, Nitrogen Uptake and Biomass Production of Cultivated Forage Rice

    Directory of Open Access Journals (Sweden)

    Gusmini Gusmini

    2015-04-01

    Full Text Available Cultivation of forage rice (Oryza sativa L. in paddy field is considered as a promising way to enhanced livestock feed supply. Pot experiment was conducted to evaluate the effects of fermented cattle and poultry manures in different levels of N application on the growth, N uptake and biomass production of forage rice. Rice cv. Tachisuzuka, Kusanohoshi and Hinohikari were grown and treated with five levels of N: 0,7,14,21, and 28 g N m-2.  The results showed that the effects of manures on plant significantly with all levels of N application. The findings indicated that in forage rice cultivation, Tachisuzuka prospects as whole crop silage (WCS because of its highest straw biomass production and suitable feed with WCS quality compared with Kusanohoshi and Hinohikari.  Application of 14 g N m-2 was considered effective for high production of Tachisuzuka forage rice and useful for the reduction of N loading of the environment.

  18. Cultivation of rice for animal feed with circulated irrigation of treated municipal wastewater for enhanced nitrogen removal: comparison of cultivation systems feeding irrigation water upward and downward.

    Science.gov (United States)

    Muramatsu, A; Ito, H; Sasaki, A; Kajihara, A; Watanabe, T

    2015-01-01

    To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.

  19. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia

    Directory of Open Access Journals (Sweden)

    Louca Vasilis

    2009-07-01

    Full Text Available Abstract Background Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. Methods Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. Results At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0–100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. Conclusion Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to

  20. Genetic Diversity Based on Allozyme Alleles of Chinese Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    TANG Sheng-xiang; WEI Xing-hua; JIANG Yun-zhu; D S Brar; G S Khush

    2007-01-01

    Genetic diversity was analyzed with 6 632 core rice cultivars selected from 60 282 Chinese rice accessions on the basis of 12 allozyme loci, Pgil, Pgi2, Ampl, Amp2, Amp3, Amp4, Sdh1, Adh1, Est1, Est2, Est5 and Est9, by starch gel electrophoresis. Among the materials examined, 52 alleles at 12 polymorphic loci were identified, which occupied 96.3% of 54 alleles found in cultivated germplasm of O.sativa L. The number of alleles per locus ranged from 2 to 7 with an average of 4.33. The gene diversity (He) each locus varied considerably from 0.017 for Amp4 to 0.583 for Est2 with an average gene diversity (Ht) 0.271, and Shannon-Wiener index from 0.055 to 0.946 with an average of 0.468. The degree of polymorphism (DP) was in a range from 0.9 to 46.9% with an average of 21.4%. It was found that the genetic diversity in japonica (Keng) subspecies was lower in terms of allele's number, Ht and S-W index, being 91.8, 66.2 and 75.7% of indica (Hsien) one, respectively. Significant genetic differentiation between indica and japonica rice has been appeared in the loci Pgil, Amp2, Pgi2, and Est2, with higher average coefficient of genetic differentiation (Gst) 0.635, 0.626, 0.322 and 0.282, respectively. Except less allele number per locus (3.33) for modern cultivars, being 76.9% of landraces, the Ht and S-W index showed in similar between the modern cultivars and the landraces detected. In terms of allozyme, the rice cultivars in the Southwest Plateau and Central China have richer genetic diversity. The present study reveals again that Chinese cultivated rice germplasm has rich genetic diversity, showed by the allozyme allele variation.

  1. Effects of Phosphorus on Grain Quality of Upland and Paddy Rice under Different Cultivation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-jie; HUA Jing-jing; LI Ya-chao; CHEN Ying-ying; YANG Jian-chang

    2012-01-01

    We investigated how upland and paddy japonica rice responded to phosphorous (P) fertilizer under two cultivation methods.The upland rice Zhonghan 3 and the paddy rice Yangfujing 8 were both grown under moist cultivation (MC,control) and bare dry cultivation (DC) with three P levels,low (LP,45 kg/hm2),normal (NP,90 kg/hm2) and high (HP,135 kg/hm2).As P level increased,grain yields of both upland and paddy rice increased under DC.There were no significant differences in grain yields between HP and NP for either rice,although upland rice slightly increased and paddy rice slightly decreased in grain yield.Under DC at LP,Zhonghan 3 showed a higher head milled rice rate and better appearance,cooking and eating qualities than at HP or NP.Yangfujing 8 was similar to Zhonghan 3 except that Yangfujing 8 had better appearance quality at NP.Under MC,Zhonghan 3 had a higher head milled rice rate at LP and better cooking and eating qualities at NP.Yangfujing 8 was similar to Zhonghan 3 except in appearance quality.DC improved head milled rice rate and appearance quality of both upland and paddy rice,and cooking and nutrient qualities of paddy rice.Compared with paddy rice,upland rice had better processing,nutrient and eating qualities.The results suggest that upland and paddy rice respond differently to cultivation method and phosphorus level.

  2. 模拟栽培条件的改变对稻田主要温室气体排放的影响%Simulation of greenhouse gas emissions as affected by cultivation practices in rice fields

    Institute of Scientific and Technical Information of China (English)

    孙园园; 孙永健; 杨志远; 徐徽; 马均; 李首成

    2013-01-01

    Using the high resolution(1 m)IKONOS satellite and employing typical sampling and terrain→land use→land cover→comprehensive information extraction method,representative of the middle Jintang hilly area feature were selected .Detailed farmer investigations were carried out,including crop diversity,tillage,fertilizer,manure type,irri-gationsoil pH,meteorological data.Emissions of CO2,N2O and CH4 emissions of rice fields with farmers crop production conditions simulated using DNDC model .In-depth analysis of factors contributing to emissions of CO2,N2O,CH4,and global warming potential (GWP)was performed by changing a factor of production conditions of the winter water paddy rice field (winter paddy field area accounts for 58 .07%of the area of research)in the target area .The results show that nitrogen fertilizer,organic fertilizer number and variety types,animal dung urine into quantity,middle-stage drainage, depth of cultivated fields,average temperature,rainfall,soil pH,content of soil organic matter,soil texture have signifi-cant influence on greenhouse gas emissions in paddy field .GWP of CO2,CH4,and N2O emissions of one year from three kinds of paddy field-permanently flooded paddy fields (PF),rapeseed-paddy rice fields (RR)and winter wheat-paddy rice fields (RW)were in the order of RW>RR>PF .%利用IKONOS高分辨率(1 m)卫星遥感图,运用典型抽样和地形→土地利用→土地覆盖→综合信息提取的方法,选定了川中丘陵区代表区域,通过对研究区域农业生产情况、土样、水样和气象资料的调查和分析,利用DNDC模型模拟农户作物生产条件下稻田CO2、CH4和N2 O排放情况,在此基础上,通过改变目前的研究区域冬水田(PF)(PF占研究区域面积的58.07%)生产条件中的某一影响因子,进一步研究这一因子的改变对CO2、CH4和N2O排放的影响及全球增温潜势(GWP)变化情况。结果表明:氮肥种类和数量、有机肥种

  3. Effect of Different Water Management and Nitrogen Forms on Characteristics of Iron Nutrition of Rice Cultivated Under Aerobic Condition

    Institute of Scientific and Technical Information of China (English)

    QIAN Xiao-qing; SHEN Qi-rong; WANG Juan-juan; YANG Jian-chang; ZHOU Ming-yao; BAI Yan-chao

    2003-01-01

    Although available iron is usually abundant for the growth of rice cultivated in waterlogged condition, the rice crop may suffer from its deficiency when cultivated in aerobic soil since the soil properties are totally different from waterlogged. Solubility of iron is very low in soils with high Eh and/or high Ph. A field experiment with five different depth (10, 20, 30, 40 and 50 cm) of groundwater, and a pot-experiment with five treatments of ammonium-nitrate ratio (100/0, 75/25, 50/50, 25/75 and 0/100) were conducted to study the characteristics of iron nutrition of rice in non-full irrigation condition. Moreover, the contents of iron extracted by 1 mol L-1 HCl of rice plant samples of 8 cultivars from both aerobic and waterlogged cultivation were analyzed to study the effect of water regimes on iron content of rice plants. The results were as follows: (1) The average content of available Fe (2.70 mg kg-1) of 5 layers of the soil treated with 10-cm depth of groundwater was significantly higher than that (0.83 mg kg-1) with 50-cm depth of groundwater, and the iron concentration of rice plant of the former was much higher than that of the later. (2) Iron deficiency of rice became much severe when high ratio of nitrate (more than 75 percent) in nitrogen fertilizer applied at different intervals in aerobic cultivation. (3) The iron concentrations of 3 cultivars, Wuyujing3 (99 mg kg-1), Yangdao4 (87 mg kg-1) and 9520 (95 mg kg-1), of rice plants cultivated in aerobic condition were significantly less than those(195, 197 and 175 mg kg-1) respectively in waterlogged condition at tillering stage. And even much significant differences existed in the iron concentrations of different cultivars growing in the aerobic and waterlogged condition at maturity.

  4. Effects of different mulching materials on rice yield in transplanting field with semiarid cultivation method%半干旱栽培稻田不同秸秆覆盖材料的产量效应

    Institute of Scientific and Technical Information of China (English)

    陶诗顺; 王学春; 徐健蓉

    2012-01-01

    panicles by 4% -8% , weight of 1000 grains by0.6% - 1.7% under straw mulching treatments, compared with that under no mulching treatment. (2) Integrated with semiarid cultivation method, straw mulching method could significantly increase rice yield in transplanting field in the northwest region of Sichuan Province. The average yield of Cangyou 725 and Dyou 363 under mulching treatments with rapeseed husk, winter wheat husk and winter wheat straw increased by 10.2% , 7.0% and 7. 7% respectively, compared with that under no mulching treatment.

  5. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization

    Science.gov (United States)

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589

  6. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization.

    Science.gov (United States)

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11-4.28 and 4.78-7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52-3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48-4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26-9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield.

  7. Modelling the Geographical Origin of Rice Cultivation in Asia Using the Rice Archaeological Database.

    Directory of Open Access Journals (Sweden)

    Fabio Silva

    Full Text Available We have compiled an extensive database of archaeological evidence for rice across Asia, including 400 sites from mainland East Asia, Southeast Asia and South Asia. This dataset is used to compare several models for the geographical origins of rice cultivation and infer the most likely region(s for its origins and subsequent outward diffusion. The approach is based on regression modelling wherein goodness of fit is obtained from power law quantile regressions of the archaeologically inferred age versus a least-cost distance from the putative origin(s. The Fast Marching method is used to estimate the least-cost distances based on simple geographical features. The origin region that best fits the archaeobotanical data is also compared to other hypothetical geographical origins derived from the literature, including from genetics, archaeology and historical linguistics. The model that best fits all available archaeological evidence is a dual origin model with two centres for the cultivation and dispersal of rice focused on the Middle Yangtze and the Lower Yangtze valleys.

  8. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation.

    Science.gov (United States)

    Duarah, I; Deka, M; Saikia, N; Deka Boruah, H P

    2011-12-01

    It has been reported that phosphate solubilizing bacteria (PSB) are the most promising bacteria among the plant growth promoting rhizobacteria (PGPR); which may be used as biofertilizers for plant growth and nutrient use efficiency. Moreover, these soil micro-organisms play a significant role in regulating the dynamics of organic matter decomposition and the availability of plant nutrients such as nitrogen (N), phosphorus (P), potassium (K) and other nutrients. Through this study, the management of nutrient use efficiency by the application of PSB was targeted in order to make the applied nutrients more available to the plants in the rice (Oryza sativa) and yardlong bean (Vigna unguiculata) cultivation. Results have shown that the treatments with PSB alone or in the form of consortia of compatible strains with or without the external application of chemical NPK gave more germination index (G. I.) from 2.5 to 5 in rice and 2.7 to 4.8 in bean seeds. They also showed a higher growth in both shoot and root length and a higher biomass as compared to the control. This gives us an idea about the potentiality of these PSB strains and their application in rice and yardlong bean cultivation to get a better harvest index. Their use will also possibly reduce the nutrient runoff or leaching and increase in the use efficiency of the applied fertilizers. Thus, we can conclude that the NPK uptake and management can be improved by the use of PSB in rice and yardlong bean cultivation, and their application may be much more beneficial in the agricultural field.

  9. Energy input-output analysis of rice cultivation in the coastal region of Bangladesh

    Directory of Open Access Journals (Sweden)

    Masudur Rahman

    2015-08-01

    Full Text Available An analysis of energy input-output in boro rice cultivation was undertaken for well recognized salinity classes (S1 -S5 and farm categories (landless, marginal, small, medium, and large in south-west coastal Bangladesh. A total of 125 target farmers were surveyed by using structured questionnaire during the boro season (January-May 2011. Survey data were converted into energy by using the respective energy co-efficient equivalents. The results revealed that the sequences of total energy input were S1 > S5 > S2 > S4 > S3 and medium > large > landless > small > marginal among salinity regimes and farm categories, respectively. The seedbed stage consumed the highest energy followed by growing stage, and harvesting and threshing. Inorganic fertilizers accounted for a major share (59.98% of energy input in rice field, while the lowest share was estimated for manpower (0.75%. Among fertilizers, nitrogen category was the most dominant source (54.94% of energy input following phosphate (3.82% and potassium (1.22%. The total output energy was in the sequences of S1 > S4 > S5 > S2 >S3 and landless > marginal > small > medium > large. Energy from main product (rice grains was higher than that of byproduct (straw. The study also found that total output energy decreases with increases in farm size. In case of energy efficiency (output-input ratio, S4 was found to be the most energy efficient (2.43 regime followed by S3, S1, S5 and S2, whereas marginal sized farmers were the most energy efficient (2.12 followed by landless, small, medium and large. This study shows that increased energy input in rice cultivation is not always necessary to get higher output energy in the salinity affected coastal Bangladesh. Therefore, it is necessary to practice environmentally sound management systems for sustainable rice production.

  10. Methane emission from wetland rice fields.

    OpenAIRE

    H.A.C. Denier van der Gon

    1996-01-01

    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic methane emission. Methane fluxes from wetland rice fields in the Philippines were monitored with a closed chamber technique in close cooperation with the International Rice Research Institute (IRRI). The field studies were complemented by laboratory and greenhouse ex...

  11. Nutrient Removal by Rice Cultivated in Newly Opened Wetland Rice in Bulungan District, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Sukristiyonubowo

    2012-05-01

    Full Text Available Highly weathered Indonesian soils and potential acid sulphate soils are mainly granted for developing newlyopened wetland rice field to meet rice growing demand in Indonesia. Nutrient removal by rice harvest product ofCiliwung variety planted in newly opened wetland rice was studied in Bulungan District, in 2009. The aims were toexamine the nutrient taken out by rice harvest product and to properly manage its fertility status to sustain ricefarming. Six treatments were studied including T0: farmers practices, T1: farmer practices + compost + dolomite, T2:NPK recommended rate, N and K were split two times, T3: NPK recommended rate, N and K were split three times,T4: NPK recommended rate, N and K were split three times + compost + dolomite and T5: NPK recommended rate,N and K were split two times + compost + dolomite. The results indicated that the highest concentrations of N, P,and K in rice grain and rice straw were observed at NPK with recommendation rate in which N and K were split threetimes + straw compost + dolomite (T4. The T4 (NPK with recommendation rate in which N and K were split threetimes + straw compost + dolomite also showed the highest nutrient removal by harvest product. Depending on thetreatments, total nutrients removal through rice grains and rice straw varied from 61.81 to 101.71 kg N, 4.31 to13.69 kg P and from 95.77 to 171.16 kg K ha-1 season-1, meaning that at least about 137 to 225 kg urea, 50 to 160kg SP-36 and 190 to 339 kg KCl ha-1 season-1 should be given to replace nutrient removed by harvest product andto avoid any nutrients depletion. When all rice straws were returned to the field as compost, about 55 to 133 kg urea,25 to 110 kg SP-36 and 10 to 19 kg KCl ha-1 season-1 should be added to substitute nutrient removed by rice grain.

  12. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    Science.gov (United States)

    Maltchik, Leonardo; Rolon, Ana Silvia; Stenert, Cristina; Machado, Iberê Farina; Rocha, Odete

    2011-12-01

    Conservation of species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1) Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2) Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006). A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production.

  13. Characteristics of Channeling Flow in Cultivated Horizon of Saline Rice Soil

    Institute of Scientific and Technical Information of China (English)

    LUO Jinming; DENG Wei; ZHANG Xiaoping; YANG Fan; LI Xiujun

    2006-01-01

    By applying bromide ion as tracer, the channeling flow has been quantitatively described in saline rice soil and alkaline soil of Da'an City, Jilin Province of China. Breakthrough curves of bromide ion in the saline rice soils after 1-year cultivation and 5-year cultivation and alkaline soil have been attained. Results show that the rice cultivation practice can improve the alkaline soil structure, however, it can accelerate the development of channeling flow pathway.Therefore, the channeling flow pathway has been developed widely in saline rice soil, but rarely in the alkaline soil.Three models of convection-dispersion equation (CDE), transfer functional model (TFM) and Back-Progation Network (BP Network) were used to simulate the transportation process of bromide ion. The peaks of probability density function of saline rice soil are higher with left skewed feature compared with that of the alkaline soil. It shows that the TFM and CDE can simulate the transportation process of the bromide ion in saline rice soil after 5-year cultivation, however, some deviation exists when it was used to simulate transportation process of bromide ion in saline rice soil after 1-year cultivation and alkaline soil; BP network can effectively simulate transportation process of bromide ion in both saline rice soil and alkaline soil.

  14. Effects of cultivation patterns on rice yield and soil properties in cold waterlogged paddy fields%耕作模式对冷浸田水稻产量和土壤特性的影响

    Institute of Scientific and Technical Information of China (English)

    王思潮; 曹凑贵; 李成芳; 熊又升; 汪金平

    2014-01-01

    为探明不同耕作模式对冷浸田的影响机制,挖掘冷浸田的生产潜力,以冷浸田为研究对象,通过田间试验,以常规平作模式为对照,研究了垄作和稻鱼共作模式对冷浸田水稻产量以及土壤团聚体、温度、pH及有机质和还原性物质含量以及酶活性的影响。结果表明:相比对照(CK),垄作模式(T1)能显著降低土壤微团聚体(1 mm) and organic matter content increased respectively by 67.6%and 28.0%at rice maturity stage. Treatment T2 had less effect on soil physical and chemical properties in cold waterlogged paddy fields. However, it significantly increased soil available nutrients (mainly available potassium and phosphorus) contents. Soil available potassium content increased 18.2% and 69.2% at booting and mature stages, compared with CK. It provided good soil environment and nutrition for rice growth, promoted rice growth and development, and improved rice yield. Further analysis showed that treatments T1 and T2 significantly improved rice yield in cold waterlogged paddy fields and increased yield in the range of 8.8%-25.8%. The effect of T1 on increasing rice production was the most significant, with actual output reaching 7 623 kg·hm-2. In conclusion, treatment T1 effectively improved soil properties in cold waterlogged paddy fields and increased rice yield. The effect of increasing production of treatment T2 was mainly drived by increased water and soil available nutrients in cold paddy waterlogged fields.

  15. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes

    DEFF Research Database (Denmark)

    Xu, Xun; Liu, Xin; Ge, Song;

    2012-01-01

    Rice is a staple crop that has undergone substantial phenotypic and physiological changes during domestication. Here we resequenced the genomes of 40 cultivated accessions selected from the major groups of rice and 10 accessions of their wild progenitors (Oryza rufipogon and Oryza nivara) to >15 ...

  16. A Markov Random Field Model for Image Segmentation of Rice Planthopper in Rice Fields

    OpenAIRE

    Hongwei Yue; Ken Cai; Hanhui Lin; Hong Man; Zhaofeng Zeng

    2016-01-01

    It is meaningful to develop the automation segmentation of rice planthopper pests based on imaging technology in precision agriculture. However, rice planthopper images affected by light and complicated backgrounds in open rice fields make the segmentation difficult. This study proposed a segmentation approach of rice planthopper images based on the Markov random field to conduct effective segmentation. First, fractional order differential was introduced into the extraction proces...

  17. Benthic macroinvertebrates in Italian rice fields

    Directory of Open Access Journals (Sweden)

    Daniela Lupi

    2013-02-01

    Full Text Available Rice fields can be considered man-managed temporary wetlands. Five rice fields handled with different management strategies, their adjacent channels, and a spring were analysed by their benthic macroinvertebrate community to i evaluate the role of rice agroe- cosystem in biodiversity conservation; ii find indicator species which can be used to compare the ecological status of natural wetlands with rice agroecosystems; and iii find the influence of environmental variables on biodiversity. Different methods of data analysis with increasing degree of complexity – from diversity index up to sophisticated multivariate analysis – were used. The investigation provided a picture of benthic macroinvertebrates inhabiting rice agroecosystems where 173 taxa were identified, 89 of which detected in rice paddies. Among them, 4 phyla (Mollusca, Annelida, Nematomorpha, and Arthropoda, 8 classes (Bivalvia, Gastropoda, Oligochaeta, Hirudinea, Gordioida, Insecta, Branchiopoda, and Malacostraca, 24 orders, 68 families, 127 genera and 159 species have been found. Ten threatened and 3 invasive species were detected in the habitats examined. The information obtained by the different methods of data analysis allowed a more comprehensive view on the value of the components of rice agroecosystems. Data analyses highlighted significant differences between habitats (feeding channel and rice field, with higher diversity observed in channels, and emphasised the role of the water chemical-physical parameters. The period of water permanence in rice fields resulted to be only one of the factors influencing the community of benthic macroinvertebrates. The presence of rare/endangered species allowed characterising some stations, but it was less informative about management strategies in rice paddies because most of these species were absent in rice fields.

  18. Allele distributions at hybrid incompatibility loci facilitate the potential for gene flow between cultivated and weedy rice in the US.

    Science.gov (United States)

    Craig, Stephanie M; Reagon, Michael; Resnick, Lauren E; Caicedo, Ana L

    2014-01-01

    The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds.

  19. Allele distributions at hybrid incompatibility loci facilitate the potential for gene flow between cultivated and weedy rice in the US.

    Directory of Open Access Journals (Sweden)

    Stephanie M Craig

    Full Text Available The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL, have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds.

  20. Phosphorus critical levels and availability in lowland soils cultivated with flooded rice

    Directory of Open Access Journals (Sweden)

    Mariano Isabela Orlando dos Santos

    2002-01-01

    Full Text Available Lowland soils present a great potential for the flooded rice crop. This work aimed to estimate critical levels of P in waterlogged soils cultivated with rice using Mehlich 1 and anion exchange resin as soil-P extractors, compare the performance of these extractors as for the evaluation of the P availability, and study the soil-P fractions involved in the P nutrition of the rice crop. Studied soils consisted of four Histosols: Low Humic Gley (GP, Aluvial (A, Humic Gley (GH and Bog Soil (O which were previously cultivated with beans. The experimental design was completely randomized, in a factorial scheme, using four soils, five P rates (75, 150, 300, 500 and 800 mg dm-3 and two liming treatments (with and without liming, with three replicates. After 60 days of flooding, soil samples were submitted to P extraction by Mehlich 1 and resin, and phosphorous fractionation. Two rice plants were cultivated in pots containing 3 dm³ of waterlogged soils. The labile P and the moderately labile P of the soils contributed for rice nutrition. The two tested extractors presented efficiency in the evaluation of P availability for the rice cultivated in lowland waterlogged soils.

  1. The carbon count of 2000 years of rice cultivation

    NARCIS (Netherlands)

    Kalbitz, K.; Kaiser, K.; Fiedler, S.; Kölbl, A.; Amelung, W.; Bräuer, T.; Cao, Z.; Don, A.; Grootes, P.; Jahn, R.; Schwark, L.; Vogelsang, V.; Wissing, L.; Kögel-Knabner, I.

    2013-01-01

    More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to eluc

  2. 水稻高产创建栽培技术%High Yield and Create Cultivation Techniques of Rice

    Institute of Scientific and Technical Information of China (English)

    姜田英; 彭昌家

    2015-01-01

    This paper introduces the high yield and creates cultivation techniques of rice, such as the selection of seed, timely sowing, soil preparation,fertilization, specification transplanting, reasonable density planting, strengthen the man-agement of the field and timely harvest. To guide farmers to do scientific and reasonable rice super-high-yield strengthen-ing cultivation, improve the yield of rice and increase farmers' income, to ensure the rice production could continue to in-crease and ensure the safety of food production.%介绍了选用良种、适时播种、整好本田、配方施肥、规范移栽,合理密植、加强田间管理和适时收获等水稻高产创建栽培技术,旨在指导农民科学合理做好水稻超高产强化栽培,从而提高水稻单产,增加农民收益,确保水稻总产量持续增加,保障粮食生产安全。

  3. Fine mapping of a gene causing hybrid pollen sterility between Yunnan weedy rice and cultivated rice (Oryza sativa L.) and phylogenetic analysis of Yunnan weedy rice.

    Science.gov (United States)

    Wang, Yong; Zhong, Zheng Zheng; Zhao, Zhi Gang; Jiang, Ling; Bian, Xiao Feng; Zhang, Wen Wei; Liu, Ling Long; Ikehashi, H; Wan, Jian Min

    2010-02-01

    Weedy rice represents an important resource for rice improvement. The F(1) hybrid between the japonica wide compatibility rice cultivar 02428 and a weedy rice accession from Yunnan province (SW China) suffered from pollen sterility. Pollen abortion in the hybrid occurred at the early bicellular pollen stage, as a result of mitotic failure in the microspore, although the tapetum developed normally. Genetic mapping in a BC(1)F(1) population (02428//Yunnan weedy rice (YWR)/02428) showed that a major QTL for hybrid pollen sterility (qPS-1) was present on chromosome 1. qPS-1 was fine-mapped to a 110 kb region known to contain the hybrid pollen sterility gene Sa, making it likely that qPS-1 is either identical to, or allelic with Sa. Interestingly, F(1) hybrid indicated that Dular and IR36 were assumed to carry the sterility-neutral allele, Sa ( n ). Re-sequencing SaM and SaF, the two component genes present at Sa, suggested that variation for IR36 and Dular may be responsible for the loss of male sterility, and the qPS-1 sequence might be derived from wild rice or indica cultivars. A phylogenetic analysis based on microsatellite genotyping suggested that the YWR accession is more closely related to wild rice and indica type cultivars than to japonica types. Thus it is probable that the YWR accession evolved from a spontaneous hybrid between wild rice and an ancient cultivated strain of domesticated rice.

  4. Changes in Soil Properties of Paddy Fields Across A Cultivation Chronosequence in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-Pei; ZHANG Tao-Lin; LI De-Cheng; B.VELDE; HAN Feng-Xiang

    2005-01-01

    Rice production plays a crucial role ia the food supply of China and a better understanding of the changes in paddy soil fertility and the management effects is of practical importance for increasing rice productivity. In this study, field sampling in a typical red soil region of subtropical China, Jiangxi Province, was used to observe changes in the soil physical, chemical,and biological properties in a cultivation chronosequence of paddy fields. After cultivation, clay (< 0.002 mm) content in the soil, which was 39% in the original uncultivated wasteland, decreased to 17% in the 80-year paddy field, while silt(0.02-0.002 mm) content increased. Additionally, macroporosity increased and pore shapes became more homogeneous.Soil pH generally increased. Soil organic C and total N contents of the 0-10 cm layer increased from 4.58 and 0.39 g kg-1to 19.6 and 1.62 g kg-1, respectively, in the paddy fields after 30-year cultivation and then remained stable. Soil total P content increased from 0.5 to 1.3 g kg-1 after 3 years of rice cultivation, indicating that application of phosphate fertilizer could accelerate phosphorous accumulation in the soil. Total K content in the 0-10 cm soil layer for the 80-year paddy field decreased by 28% compared to that of the uncultivated wasteland land. Total Fe and free Fe contents declined with years of cultivation. The bacterial population increased and urease activity noticeably intensified after years of cultivation.In this chronosequence it appeared that it took 30 years to increase soil fertility to a relatively constant value that was seen after 80 years of cultivation.

  5. Phylogenetic and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields.

    Science.gov (United States)

    Tago, Kanako; Ishii, Satoshi; Nishizawa, Tomoyasu; Otsuka, Shigeto; Senoo, Keishi

    2011-01-01

    Denitrifiers can produce and consume nitrous oxide (N(2)O). While little N(2)O is emitted from rice paddy soil, the same soil produces N(2)O when the land is drained and used for upland crop cultivation. In this study, we collected soils from two types of fields each at three locations in Japan; one type of field had been used for continuous cultivation of rice and the other for rotational cultivation of rice and soybean. Active denitrifiers were isolated from these soils using a functional single-cell isolation method, and their taxonomy and denitrifying properties were examined. A total of 110 denitrifiers were obtained, including those previously detected by a culture-independent analysis. Strains belonging to the genus Pseudogulbenkiania were dominant at all locations, suggesting that Pseudogulbenkiania denitrifiers are ubiquitous in various rice paddy soils. Potential denitrifying activity was similar among the strains, regardless of the differences in taxonomic position and soil of origin. However, relative amounts of N(2) in denitrification end products varied among strains isolated from different locations. Our results also showed that crop rotation had minimal impact on the functional diversity of the denitrifying strains. These results indicate that soil and other environmental factors, excluding cropping systems, could select for N(2)-producing denitrifiers.

  6. Dynamics of decadal changes in the distribution of double-cropping rice cultivation in China

    Institute of Scientific and Technical Information of China (English)

    DUAN JuQi; ZHOU GuangSheng

    2013-01-01

    Quantitative description of changes in the distribution of paddy rice cultivation in response to recent climate change provides a reference for rice cultivation patterns and formulation of countermeasures to cope with future climate change in China.This study analyzes the dynamics of decadal changes in distribution of double-cropping rice in China during 1961-2010 in relation to climate change based on the maximum entropy method.Decadal changes in the double-cropping rice cultivation area and climatic suitability in China were apparent.The total area of climatically suitable regions was highest in the 1960s,and subsequently showed an increasing trend at first and then a decreasing trend from the 1970s to 2000s.However,the low climatic suitability area decreased,which implied that the moderate and high climatic suitability areas increased.Among the latter,the high climatic suitability area showed the highest increase in extent to 4.4 times that of the 1990s and four times that of the 1960s.The areas of double-cropping rice cultivation most sensitive to climate change are mainly located in central Jiangsu,central Anhui,the eastern Sichuan Basin,southern Henan and central Guizhou.Transformation of areas between low and moderate climatic suitability was observed in northern Zhejiang,southern Anhui and Hubei,and northern Guangxi.Transformation of areas between moderate and high climatic suitability was observed in central Jiangxi and Leizhou Peninsula.The northern boundary of double-cropping rice cultivation in China shifted southwards and contracted eastwards in the 1970s,and extended northwards in the 1980s.However,the northern boundary did not shift northwards in response to climate warming in the 2000s.

  7. Greenhouse gas budget from a rice paddy field in the Albufera of Valencia, Spain.

    Science.gov (United States)

    Meijide, Ana; López-Ballesteros, Ana; Calvo-Roselló, Esperanza; López-Jiménez, Ramón; Recio-Huetos, Jaime; Calatayud, Vicent; Carrara, Arnaud; Serrano-Ortiz, Penelope

    2017-04-01

    Rice paddy fields are large sources of anthropogenic methane (CH4) and therefore many studies have assessed CH4 fluxes from rice paddy fields, mainly in Asia where most of the rice cultivation takes place. However, rice is also cultivated in the Mediterranean, where climatic and management conditions greatly differ. In the Albufera of Valencia, the largest freshwater lagoon in Spain, rice paddy fields have the particularity of being flooded not only while the rice grows, but also after the harvest during the winter. These flooding conditions might result in emissions which are very specific of this ecosystem, and cannot be extrapolated from other studies. We studied CH4 fluxes in a rice paddy field in the Albufera of Valencia at different stages of rice cultivation using the eddy covariance technique and static chambers. We additionally measured carbon dioxide (CO2), water fluxes and nitrous oxide (N2O) fluxes with eddy covariance and chamber methods respectively, in order to obtain a full greenhouse gas (GHG) budget. Our study also aimed at providing a mechanistic understanding of GHG emissions at different stages of rice cultivation, and therefore we also used the Enhanced and Normalized Vegetation Indexes (EVI and NDVI, respectively), derived from remote sensing images. The general ecosystem functioning encompasses three different phases. The first one, over the autumn and the winter, a biological dormancy period causes low CO2 emissions (ca. 1-5 µmol m-2 s-1), which coincides with the EVI and NDVI. The intermittent flooding taking place during this period is expected to cause CH4 emissions. Then, during the spring months (March-May), larger CO2 respiratory emissions take place during the daytime (> 5 µmol m-2 s-1) due to an increase in air temperature, which turn to neutral at the end of spring due to the start of photosynthesis by the rice. The third phase corresponds to the vegetation growth, when the net CO2 uptake increases gradually up to maximum CO2

  8. Aerobic rice genotypes displayed greater adaptation to water-limited cultivation and tolerance to polyethyleneglycol-6000 induced stress.

    Science.gov (United States)

    Sandhu, Nitika; Jain, Sunita; Battan, K R; Jain, R K

    2012-01-01

    Water scarcity and drought have seriously threatened traditional rice cultivation practices in several parts of the world including India. In the present investigation, experiments were conducted to see if the water-efficient aerobic rice genotypes developed at UAS, Bangalore (MAS25, MAS26 and MAS109) and IRRI, Philippines (MASARB25 and MASARB868), are endowed with drought tolerance or not. A set of these aerobic and five lowland high-yielding (HKR47 and PAU201, Taraori Basmati, Pusa1121 and Pusa1460) indica rice genotypes were evaluated for: (i) yield and yield components under submerged and aerobic conditions in field, (ii) root morphology and biomass under aerobic conditions in pots in the nethouse, (iii) PEG-6000 (0, -1, -2 and -3 bar) induced drought stress at vegetative stage using a hydroponic culture system and (iv) polymorphism for three SSR markers associated with drought resistance traits. Under submerged conditions, the yield of aerobic rice genotypes declined by 13.4-20.1 % whereas under aerobic conditions the yield of lowland indica/Basmati rice varieties declined by 23-27 %. Under water-limited conditions in pots, aerobic rice genotypes had 54-73.8 % greater root length and 18-60 % higher fresh root biomass compared to lowland indica rice varieties. Notably, root length of MASARB25 was 35 % shorter than MAS25 whereas fresh and dry root biomass of MASARB25 was 10 % and 64 % greater than MAS25. The lowland indica were more sensitive to PEG-stress with a score of 5.9-7.6 for Basmati and 6.1-6.7 for non-aromatic indica rice varieties, than the aerobic rice genotypes (score 2.7-3.3). A set of three microsatellite DNA markers (RM212, RM302 and RM3825) located on chromosome 1 which has been shown to be associated with drought resistance was investigated in the present study. Two of these markers (RM212 and RM302) amplified a specific allele in all the aerobic rice genotypes which were absent in lowland indica rice genotypes.

  9. Mapping regional risks from climate change for rainfed rice cultivation in India.

    Science.gov (United States)

    Singh, Kuntal; McClean, Colin J; Büker, Patrick; Hartley, Sue E; Hill, Jane K

    2017-09-01

    Global warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are dependent on natural rainfall (i.e. non-irrigated). Given that many crops grown under rainfed conditions support the livelihoods of low-income farmers, it is important to highlight the vulnerability of rainfed areas to climate change in order to anticipate potential risks to food security. In this paper, we focus on India, where ~ 50% of rice is grown under rainfed conditions, and we employ statistical models (climate envelope models (CEMs) and boosted regression trees (BRTs)) to map changes in climate suitability for rainfed rice cultivation at a regional level (~ 18 × 18 km cell resolution) under projected future (2050) climate change (IPCC RCPs 2.6 and 8.5, using three GCMs: BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES). We quantify the occurrence of rice (whether or not rainfed rice is commonly grown, using CEMs) and rice extent (area under cultivation, using BRTs) during the summer monsoon in relation to four climate variables that affect rice growth and yield namely ratio of precipitation to evapotranspiration (PER), maximum and minimum temperatures (Tmax and Tmin ), and total rainfall during harvesting. Our models described the occurrence and extent of rice very well (CEMs for occurrence, ensemble AUC = 0.92; BRTs for extent, Pearson's r = 0.87). PER was the most important predictor of rainfed rice occurrence, and it was positively related to rainfed rice area, but all four climate variables were important for determining the extent of rice cultivation. Our models project that 15%-40% of current rainfed rice growing areas will be at risk (i.e. decline in climate suitability or become completely unsuitable). However, our models project considerable variation across India in the impact of future climate change: eastern and northern India are the locations most at risk, but parts of central and western India may benefit from increased

  10. CULTIVATION OF P. FLORIDA SUPLEMENTED OF RICE BRAIN ON BEECH WOOD WASTE

    Directory of Open Access Journals (Sweden)

    Hüseyin SİVRİKAYA

    1998-03-01

    Full Text Available Cultivation of Pleurotus spp. reached to the second largest in amount after Agaricus bisporus (Lange sing. in the world. There recently has also been growing interest to cultivate them on wastes of forest and agricultural plants in Turkey. In the scope of study Pleurotus florida was produced on beech wood sawmill waste and rice brain. Beech wood sawmill waste (Fagus orientalis Lipsky were used as main substrate and supplemented with rice brain as co-substrate by 10 % W/W, 0 % W/W, 40 % W/W mixing ratios based on dry weights. To produce P. florida substrates were ground, air dried, moistured up to 70-80 % by tap water, supplemented, pasteurized with live steam and spawned. Highest yields (440 gr/kg of P. florida were obtained by supplementing wood waste and rice brain (% 80 + % 20. Furthermore, the best mycelia development were obtained by % 90 + % 10.

  11. Massive gene losses in Asian cultivated rice unveiled by comparative genome analysis

    Directory of Open Access Journals (Sweden)

    Itoh Takeshi

    2010-02-01

    Full Text Available Abstract Background Rice is one of the most important food crops in the world. With increasing world demand for food crops, there is an urgent need to develop new cultivars that have enhanced performance with regard to yield, disease resistance, and so on. Wild rice is expected to provide useful genetic resources that could improve the present cultivated species. However, the quantity and quality of these unexplored resources remain unclear. Recent accumulation of the genomic information of both cultivated and wild rice species allows for their comparison at the molecular level. Here, we compared the genome sequence of Oryza sativa ssp. japonica with sets of bacterial artificial chromosome end sequences (BESs from two wild rice species, O. rufipogon and O. nivara, and an African rice species, O. glaberrima. Results We found that about four to five percent of the BESs of the two wild rice species and about seven percent of the African rice could not be mapped to the japonica genome, suggesting that a substantial number of genes have been lost in the japonica rice lineage; however, their close relatives still possess their counterpart genes. We estimated that during evolution, O. sativa has lost at least one thousand genes that are still preserved in the genomes of the other species. In addition, our BLASTX searches against the non-redundant protein sequence database showed that disease resistance-related proteins were significantly overrepresented in the close relative-specific genomic portions. In total, 235 unmapped BESs of the three relatives matched 83 non-redundant proteins that contained a disease resistance protein domain, most of which corresponded to an NBS-LRR domain. Conclusion We found that the O. sativa lineage appears to have recently experienced massive gene losses following divergence from its wild ancestor. Our results imply that the domestication process accelerated large-scale genomic deletions in the lineage of Asian

  12. Ionome of rice seed response to rice cultivation patterns%水稻种植模式对水稻籽粒离子组的影响

    Institute of Scientific and Technical Information of China (English)

    沙之敏; 袁婧; 赵峥; 岳玉波; 姚健; 曹林奎

    2016-01-01

    subcellular compartment, cell, tissue or organism is termed as ionome, which involves of all mineral elements of life, regardless of chemical forms these occur. Ionome is the inorganic chemical element fingerprint of plant that quantitatively and accurately reflects inorganic response of plants to environment stimuli. A field experiment was conducted to explore the differences and correlations of mineral elements in rice seeds cultivated in conventional cultivation ecosystem, green rice-frog ecosystem and organic rice-frog ecosystem under long-term management. The study also determined the transportability of available elements from soil to rice seeds to explore the correlation of elements between soil and rice seed. The concentrations of 21 mineral elements in the rice samples and soil were determined using high-throughput elemental analysis technology such as inductively coupled plasma optical emission and mass spectrometry (ICP-MS). Statistical method used to profile multi-elemental composition, and principle component analysis (PCA) to discriminate differences among treatments. Then ANOVA analysis was used to compare the differences among treatments for each element. The results showed the ranked order of the concentrations of 21 elements in rice seeds was:potassium (K)>phosphorus (P)>magnesium (Mg)>calcium (Ca)>manganese (Mn)>zinc (Zn)>ion (Fe)>copper (Cu)>rubidium (Rb)>sodium (Na)>barium (Ba)>molybdenum (Mo)>boron (B)>nickel (Ni)>strontium (Sr)>arsenic (As)>chromium (Cr)>cadmium (Cd)>selenium (Se)>cobalt (Co)>cesium (Cs). PCA analysis showed that ionome of rice seeds was significantly affected by different cultivation patterns. The fist component accounted for 32.7% of the total variation, which separated organic rice-frog ecosystem from organic rice-frog ecosystem. The second component accounted for 27.1%of the total variation, which discriminated conventional cultivation system from the other two ecosystems. Compared with conventional cultivation, the concentrations

  13. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    Science.gov (United States)

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice.

  14. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  15. Methane emission from wetland rice fields.

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01

    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic methane emission. Methane fluxes fro

  16. Rice improvement through radiation-induced mutation for cultivation in South Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Do Khac Thinh; Hung Phi Oanh; Nguyen Thi Cuc; Nguyen Ngoc Quynh [Institute of Agricultural Science of South Vietnam, Ho Chi Minh (Viet Nam)

    2001-03-01

    For past years, rice varieties cultivated in South Vietnam originated from domestic hybridisation or from IRRI. Rice mutation breeding has been initiated for recent years. To meet the requirement of rice production diversification in different agro-ecological areas and rice genetic resources, from 1993 Institute of Agricultural Science of South Vietnam has carried out rice improvement by induced mutation of radiation. The mutagen was gamma rays of {sup 60}Co. The goal is to create inherited variations, which cannot be obtained from other breeding methods, specially important characters of rice varieties (high tolerance to acid sulfate soil, lodging resistance combined with early maturity), which were difficult to gain by hybridisation. With {sup 60}Co gamma rays, doses of 10-20 krad, dose rate of 280 krad/h, dry and germinated seeds of introduced and local rice varieties (IR 64, IR 9729, IR 50404, IR 59606, Jasmine 85, Nang Huong, Tam Xoan) were irradiated. The irradiated seeds were immediately sown within 24 and 94 hrs for wet seeds and dry seeds after treatment, respectively. Population of 10,000-15,000 plants were established and evaluated by IRRI evaluation standard from M2-M7 generations. 365 lines, varieties were selected with better behaviours than original varieties as lodging resistance, earliness, potential yield, leaf characters, tolerant ability to adverse conditions etc. Some good varieties (VND95-19, VND95-20) have been approved as leading national varieties and released for large-scale production in South Vietnam. (author)

  17. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    Science.gov (United States)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.

  18. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management.

    Science.gov (United States)

    Liu, Wei; Hussain, Saddam; Wu, Lishu; Qin, Ziguo; Li, Xiaokun; Lu, Jianwei; Khan, Fahad; Cao, Weidong; Geng, Mingjian

    2016-01-01

    Straw management during fallow season may influence crop productivity, soil quality, and greenhouse gas (GHG) emissions from rice field. A 3-year field experiment was carried out in central China to examine the influence of different fallow season straw management practices on rice yield, soil properties, and emissions of methane (CH4) and nitrous oxide (N2O) from a mono-rice cultivation system. The treatments comprised an unfertilized control (CK), inorganic fertilization (NPK), rice straw burning in situ (NPK + RSB), rice straw mulching (NPK + RSM), and rice straw strip mulching with green manuring (NPK + RSM + GM). The maximum rice yield, soil organic carbon, soil total nitrogen, and available potassium were observed in NPK + RSM + GM treatment. Compared with NPK, the NPK + RSM + GM recorded 9% higher grain yield averaged across 3 years. However, NPK + RSM and NPK + RSB were statistically similar with NPK regarding grain yield. The NPK + RSM and NPK + RSM + GM recorded significantly higher CH4 emission during rice growing season as well as winter fallow; however, the response of N2O emissions was variable. The NPK + RSM and NPK + RSM + GM were statistically similar for annual cumulative CH4 and N2O emissions. The NPK + RSM + GM recorded 103 and 72% higher straw-induced net economic benefits and soil organic carbon sequestration rate, and reduced net global warming potential by 27% as compared with NPK + RSM. Considering the benefits of soil fertility, higher crop productivity, and environmental safety, the NPK + RSM + GM could be the most feasible and sustainable option for mono-rice cultivation system in central China.

  19. Estimation of methane and nitrous oxide emissions from rice field with rice straw management in Cambodia.

    Science.gov (United States)

    Vibol, S; Towprayoon, S

    2010-02-01

    To estimate the greenhouse gas emissions from paddy fields of Cambodia, the methodology of the Intergovernmental Panel on Climate Change (IPCC) guidelines, IPCC coefficients, and emission factors from the experiment in Thailand and another country were used. Total area under rice cultivation during the years 2005-2006 was 2,048,360 ha in the first crop season and 298,529 ha in the second crop season. The emission of methane from stubble incorporation with manure plus fertilizer application areas in the first crop season was estimated to be 192,783.74 ton higher than stubble with manure, stubble with fertilizer, and stubble without fertilizer areas. The fields with stubble burning emitted the highest emission of methane (75,771.29 ton) followed by stubble burning with manure (22,251.08 ton), stubble burning with fertilizer (13,213.27 ton), and stubble burning with fertilizer application areas (3,222.22 ton). The total emission of methane from rice field in Cambodia for the years 2005-2006 was approximately 342,649.26 ton (342.65 Gg) in the first crop season and 36,838.88 ton (36.84 Gg) in the second crop season. During the first crop season in the years 2005-2006, Battambang province emitted the highest amount of CH(4) (38,764.48 ton) and, in the second crop season during the years 2005-2006, the highest emission (8,262.34 ton) was found in Takeo province (8,262.34 ton). Nitrous oxide emission was between 2.70 and 1,047.92 ton in the first crop season and it ranged from 0 to 244.90 ton in the second crop season. Total nitrous oxide emission from paddy rice field was estimated to be 9,026.28 ton in the first crop season and 1,091.93 ton in the second crop season. Larger area under cultivation is responsible for higher emission of methane and nitrous oxide. Total emission of nitrous oxide by using IPCC default emission coefficient was approximately 2,328.85 ton. The total global warming potential of Cambodian paddy rice soil is 11,723,217.03 ton (11,723 Gg

  20. Cultivation Techniques of Bacteria-Melon-Rice Cultivation Pattern%菌-瓜-稻耕作模式示范栽培技术

    Institute of Scientific and Technical Information of China (English)

    颜舜杨

    2014-01-01

    In recent year, Bacteria-Melon-Rice Cultivation Pattern was promoted in Jianyang county, which achieved good economic benefits. In this paper, we introduced planting performance and high-yielding cultivation techniques of Bacteria-Melon-Rice cultivation pattern.%近年建阳市进行菌—瓜—稻模式试验示范,取得很好的经济效益。介绍了菌—瓜—稻模式示范的栽培技术。

  1. Effects of cultivation of Osr HSA transgenic rice on functional diversity of microbial communities in the soil rhizosphere

    Institute of Scientific and Technical Information of China (English)

    Xiaobing; Zhang; Xujing; Wang; Qiaoling; Tang; Ning; Li; Peilei; Liu; Yufeng; Dong; Weimin; Pang; Jiangtao; Yang; Zhixing; Wang

    2015-01-01

    With the widespread cultivation of transgenic crops, there is increasing concern about unintended effects of these crops on soil environmental quality. In this study, we used the Biolog method and ELISA to evaluate the possible effects of Osr HSA transgenic rice on soil microbial utilization of carbon substrates under field conditions. There were no significant differences in average well-color development(AWCD) values, Shannon–Wiener diversity index(H), Simpson dominance indices(D) and Shannon–Wiener evenness indices(E) of microbial communities in rhizosphere soils at eight samplings between Osr HSA transgenic rice and its non-transgenic counterpart. The main carbon sources utilized by soil microbes were carbohydrates, carboxylic acids, amino acids and polymers. The types,capacities and patterns of carbon source utilization by microbial communities in rhizosphere soils were similar throughout the detection period. We detected no Osr HSA protein in the roots of Osr HSA transgenic rice. We concluded that Osr HSA transgenic rice and the r HSA protein it produced did not alter the functional diversity of microbial communities in the rhizosphere.

  2. Uptake of Arsenic in Rice Plant Varieties Cultivated with Arsenic Rich Groundwater

    Directory of Open Access Journals (Sweden)

    Piyal Bhattacharya

    2010-07-01

    Full Text Available Groundwater of many areas of West Bengal, India is severely contaminated with arsenic. The paddy soil gets con¬taminated from the groundwater and thus there is a probability of bioaccumulation of arsenic in rice plants cultivated with arsenic contaminated groundwater and soil. This study aims at assessing the level of arsenic in irrigation water and soil and to investigate the seasonal bioaccumulation of arsenic in the various parts (straw, husk and grain of the rice plant of differ¬ent varieties in the arsenic affected two blocks (Chakdaha and Ranaghat-I of Nadia district, West Bengal. It was found that the arsenic uptake in rice during the pre-monsoon season is more than that of the post-monsoon season. The accumulation of arsenic found to vary with different rice varieties; the maximum accumulation was in White minikit (0.31±0.005 mg/kg and IR 50 (0.29±0.001 mg/kg rice varieties and minimum was found to be in the Jaya rice variety (0.14±0.002 mg/kg. In rice plant maximum arsenic accumulation occurred in the straw part (0.89±0.019-1.65±0.021 mg/kg compared to the ac¬cumulation in husk (0.31±0.011-0.85±0.016 mg/kg and grain (0.14±0.002-0.31±0.005 mg/kg parts. For any rice sample concentration of arsenic in the grain did not exceed the WHO recommended permissible limit in rice (1.0 mg/kg.

  3. Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls

    Science.gov (United States)

    Zhang, Bowen; Tian, Hanqin; Ren, Wei; Tao, Bo; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Pan, Shufen

    2016-09-01

    Given the importance of the potential positive feedback between methane (CH4) emissions and climate change, it is critical to accurately estimate the magnitude and spatiotemporal patterns of CH4 emissions from global rice fields and better understand the underlying determinants governing the emissions. Here we used a coupled biogeochemical model in combination with satellite-derived contemporary inundation area to quantify the magnitude and spatiotemporal variation of CH4 emissions from global rice fields and attribute the environmental controls of CH4 emissions during 1901-2010. Our study estimated that CH4 emissions from global rice fields varied from 18.3 ± 0.1 Tg CH4/yr (Avg. ±1 SD) under intermittent irrigation to 38.8 ± 1.0 Tg CH4/yr under continuous flooding in the 2000s, indicating that the magnitude of CH4 emissions from global rice fields is largely dependent on different water schemes. Over the past 110 years, our simulated results showed that global CH4 emissions from rice cultivation increased by 85%. The expansion of rice fields was the dominant factor for the increasing trends of CH4 emissions, followed by elevated CO2 concentration, and nitrogen fertilizer use. On the contrary, climate variability had reduced the cumulative CH4 emissions for most of the years over the study period. Our results imply that CH4 emissions from global rice fields could be reduced through optimizing irrigation practices. Therefore, the future magnitude of CH4 emissions from rice fields will be determined by the human demand for rice production as well as the implementation of optimized water management practices.

  4. Soil concentration of glyphosate and AMPA under rice cultivation with contrasting levels of fertilization

    Science.gov (United States)

    Rey Montoya, Tania; Micaela Biassoni, María; Graciela Herber, Luciana; De Geronimo, Eduardo; Aparicio, Virginia

    2017-04-01

    Rice (Oryza sativa) is the world's most important crop species and occupies c. 150 mill ha. The province of Corrientes in Argentina leads the national production of rice cultivation. Glyphosate is a non-selective herbicide commonly used to control weeds. The molecule is inactivated once applied due to its adsorption in the soil, and once desorbed is degraded by soil microflora resulting in sarcosine and aminomethylphosphoric acid (AMPA) molecules. The objective of this investigation was to compare glyphosate and AMPA concentration in soil under different levels of fertilization along the growth season of the rice crop. A field experiment following a completely randomized design was carried out with four replicates. We evaluated four levels of fertilization (0-18-40): Control: 0 kg ha-1, Dose 1: 120 kg ha-1, Dose 2: 150 kg ha-1, Dose 3: 180 kg ha-1; and two levels of Glyphosate: with (Gly) or without (No) application. Four sampling moments were defined: pre-sowing (taken as reference), vegetative stage (V4, 30 days after application), in floral primordial differentiation-DPF (80 days post-application), and at physiological maturity-MF (125 days after application). Flooding was applied in V4 after sampling. The method used for determination and quantification was by ultra high-pressure liquid chromatography coupled to ESI UHPLC-MS / MS tandem mass spectrometer (+/-) (Acquit-Quattro Premier). We found that glyphosate and AMPA varied their concentration in soil according to the time of sampling. Detected levels of both molecules at pre-sowing indicate the persistence of this herbicide from earlier crop seasons. The highest concentration was measured in MF followed by V4. Interestingly, AMPA concentration showed higher values in V4 without application compared to the treatment with glyphosate application. On the other hand, in flooded soil both molecules presented a decrease in their concentration probably because of their dilution in water, increasing it again after

  5. Detection of Inorganic Arsenic in Rice Using a Field Test Kit: A Screening Method.

    Science.gov (United States)

    Bralatei, Edi; Lacan, Severine; Krupp, Eva M; Feldmann, Jörg

    2015-11-17

    Rice is a staple food eaten by more than 50% of the world's population and is a daily dietary constituent in most South East Asian countries where 70% of the rice export comes from and where there is a high level of arsenic contamination in groundwater used for irrigation. Research shows that rice can take up and store inorganic arsenic during cultivation, and rice is considered to be one of the major routes of exposure to inorganic arsenic, a class I carcinogen for humans. Here, we report the use of a screening method based on the Gutzeit methodology to detect inorganic arsenic (iAs) in rice within 1 h. After optimization, 30 rice commodities from the United Kingdom market were tested with the field method and were compared to the reference method (high-performance liquid chromatography-inductively coupled plasma-mass spectrometry, HPLC-ICP-MS). In all but three rice samples, iAs compound can be determined. The results show no bias for iAs using the field method. Results obtained show quantification limits of about 50 μg kg(-1), a good reproducibility for a field method of ±12%, and only a few false positives and negatives (<10%) could only be recorded at the 2015 European Commission (EC) guideline for baby rice of 100 μg kg(-1), while none were recorded at the maximum level suggested by the World Health Organization (WHO) and implemented by the EC for polished and white rice of 200 μg kg(-1). The method is reliable, fast, and inexpensive; hence, it is suggested to be used as a screening method in the field for preselection of rice which violates legislative guidelines.

  6. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  7. Mapping of a new gene for brown planthopper resistance in cultivated rice introgressed from Oryza eichingeri

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Wild rice species is an important source of useful genes for cultivated rice improvement. Some accessions of Oryza eichingeri (2n = 24, CC) from Africa confer strong resistance to brown planthopper (BPH), whitebacked planthopper (WBPH) and bacterial blight (BB). In the present study, restriction fragments length polymorphism (RFLP) and simple sequence repeats (SSR) analysis were performed on disomic backcross plants between Oryza sativa (2n = 24, AA) and O. eichingeri in order to identify the presenee of O. eichingeri segments and further to localize BPH-resistant gene. In the introgression lines, 1-6O. eichingeri segments were detected on rice chromosomes 1, 2, 6, or/and 10. The dominant BPH resistant gene, tentatively named Bph13(t), was mapped to chromosome 2, being 6.1 and 5.5 cM away from two microsatellite markers RM240 and RM250, respectively. The transfer and localization of this gene from O. eichingeri will contribute to the improvement of BPH resistance in cultivated rice.``

  8. Nitrogen Losses from Flooded Rice Field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A field microplot experiment was conducted during the tillering stage of paddy rice to investigate nitrogen (N) losses from flooded rice fields following fertilizer application. After application of ammonium bicarbonate,most of nitrogen in the floodwater was present as NHq-N and its concentration varied widely with time.Concentrations of both NO3-N and NO2-N in the floodwater were low due to the weakened nitrification.Under flooded anaerobic reducing conditions, soil solution concentrations of NO3-N and NH4-N were not high, ranging from 0.6 mg L- 1 to 4.8 mg L-1, and decreased with soil depth. However, the groundwater was still contaminated with NO3-N and NH4-N. Rainfall simulation tests showed that the N losses via runoff in rice fields were closely related to the time intervals between fertilizer applications and rainfall events. When a large rain fell for a short period after fertilizer application, the N losses via runoff could be large, which could have a considerable effect on surface water quality. Both irrigation and N fertilizer application must be controlled and managed with great care to minimize N losses via runoff from agricultural land.

  9. Predicting and Monitoring Drought for a Rice Cultivation Season in the Humid Tropics

    Science.gov (United States)

    Fernando, D. N.; Robinson, D. A.

    2010-12-01

    The study presents an operational tool for predicting and monitoring drought applicable to the humid tropics. Using Sri Lanka as a case example, it examines the operational predictability of drought and investigates how moisture stress could be monitored as a season unfurls. Drought occurs frequently in Sri Lanka when rainfall associated with the main cultivation season - the Maha (October to March) - fails. During the period 1951-2008, there were 4 extreme [Standardized Precipitation Index (SPI) seasonal droughts can be predicted on an operational basis by predicting the failure of the two rainfall regimes that supply moisture during the season. The contemporaneous westerly zonal wind at 850hPa (U850) over the domain 60°E-105°E and 5°S-15°N controls the strength of the October-November convective rainfall season - with failure of the season associated with anomalously strong U850. The contemporaneous northerly vertical shear of the mean meridional wind (Vs) in the domain 80°E-90°E and 0°N-20°N controls the strength of the December-February northeast monsoon season - with failure of the season associated with an anomalously weak Vs. Drought forecast skill was assessed for the period 1981-2002 using predicted fields of U850 issued in September, and Vs, issued in November from three Global Climate Model ensembles - i.e. the fully coupled Climate Forecast System of the National Centers for Environmental Prediction (NCEP_CFS); the ECHAM4.5 forced with persisted sea surface temperature anomalies (ECHAM4.5_PSST) and the ECMAM4.5 forced with constructed analogues of sea surface temperature anomalies (ECHAM4.5_CA). The failure of October-November rainfall can be predicted with good skill over the rice cultivation regions in the central and southeastern parts of Sri Lanka using predicted fields of U850 generated from the two versions of the ECHAM4.5. The failure of December-February rainfall can be predicted with good skill in the rice cultivation regions in the

  10. A Markov Random Field Model for Image Segmentation of Rice Planthopper in Rice Fields

    Directory of Open Access Journals (Sweden)

    Hongwei Yue

    2016-04-01

    Full Text Available It is meaningful to develop the automation segmentation of rice planthopper pests based on imaging technology in precision agriculture. However, rice planthopper images affected by light and complicated backgrounds in open rice fields make the segmentation difficult. This study proposed a segmentation approach of rice planthopper images based on the Markov random field to conduct effective segmentation. First, fractional order differential was introduced into the extraction process of image texture features to gain complete texture information of rice planthopper images. Observation data modeling was established by a combination of image color features and texture features to overcome the disadvantages of insufficient image texture information. Finally, the improved potential function models, the neighborhood relationship between the pixel labels, and the attributes of pixels were defined. The segmentation results were assessed by quantitative evaluation. The experiments showed that the proposed improved approach in the study was more robust, especially with the changes in the illumination condition. This approach can effectively improve segmentation accuracy and promote vision segmentation results of rice planthopper images.

  11. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice.

    Science.gov (United States)

    Takahashi, Yasuyuki; Shimamoto, Ko

    2011-01-01

    During the domestication of rice (Oryza sativa L.), diversification of flowering time was important in expanding the areas of cultivation. Rice is a facultative short day (SD) plant and requires certain periods of dark to induce flowering. Heading date 1 (Hd1), a regulator of the florigen gene Hd3a, is one of the main factors used to generate diversity in flowering. Loss-of-function alleles of Hd1 are common in cultivated rice and cause the diversity of flowering time. However, it is unclear how these functional nucleotide polymorphisms of Hd1 accumulated in the course of evolution. Nucleotide polymorphisms within Hd1 and Hd3a were analyzed in 38 accessions of ancestral wild rice Oryza rufipogon and compared with those of cultivated rice. In contrast to cultivated rice, no nucleotide changes affecting Hd1 function were found in 38 accessions of wild rice ancestors. No functional changes were found in Hd3a in either cultivated or ancestral rice. A phylogenetic analysis indicated that evolution of the Hd1 alleles may have occurred independently in cultivars descended from various accessions of ancestral rice. The non-functional Hd1 alleles found in cultivated rice may be selected during domestication, because they were not found or very rare in wild ancestral rice. In contrast with Hd3a, which has been highly conserved, Hd1 may have undergone human selection to diversify the flowering times of rice during domestication or the early stage of the cultivation period.

  12. Effects of Soaking Cultivated Rice Seeds with Fulvic Acid on Physiological and Ecological Properties of Weedy Rice%黄腐植酸浸种栽培稻对杂草稻生理生态特性的影响

    Institute of Scientific and Technical Information of China (English)

    王晓琳; 尹书剑; 张卓亚; 张勇; 李贵

    2014-01-01

    Objective] This study aimed to investigate the effects of soaking cultivated rice seeds with fulvic acid (FA) on physiological and ecological properties of weedy rice in the direct seeding cultivated rice field. [Method] Weedy rice JS-Y1 and culti-vated rice Nanjing 44 were used as experimental materials for field plot trials to an-alyze the effects of soaking cultivated rice seeds with 0 (water as control), 4, 6, 8 g/L FA on til ering dynamics, plant height, chlorophyl content, photosynthetic perfor-mance, gas exchange parameters and yield components of weedy rice at different growth stages. [Result] Among the 4 plants/m2 weedy rice plots, with the increase of FA concentration, til er number, plant height, chlorophyl content, net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of weedy rice were reduced. Under the 4-6 g/L FA concentration, til er numbers of weedy rice at differ-ent growth stages were reduced by 13.84%-35.71% compared with control at the same density and the most significant reduction was on the 22nd d after weedy rice germination; chlorophyl contents of weedy rice at the jointing stage were significant-ly reduced by 7.90%-8.88%. Furthermore, in the plots with 4 g/L FA, weedy rice plant heights at the heading stage and grain fil ing stage were significantly reduced by 6.37%-9.10%; Pn, Gs and Tr of weedy rice at the jointing stage and grain fil ing stage were significantly reduced by 10.19%-16.05%, 12.57%-23.33% and 10.28%-19.76%, respectively; 1 000-grain weight, effective panicle number per plant and panicles weight per plant of weedy rice at the maturity stage were significantly re-duced by 3.19%, 21.21% and 27.27%, correspondingly. [Conclusion] In 4 plants/m2 weedy rice plots, because soaking cultivated rice seeds with 4 g/L FA could regu-late the growth and development of cultivated rice, the soaking with FA could change the ecological relationship between cultivated rice and weedy rice, affect weedy rice

  13. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence.

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-10-27

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.

  14. Water Productivity of Irrigated Rice under Transplanting, Wet Seeding and Dry Seeding Methods of Cultivation

    Directory of Open Access Journals (Sweden)

    Murali, NS.

    1997-01-01

    Full Text Available Water productivity (WP of irrigated lowland rice was determined during the 1994 dry (January to May and wet (August to December seasons on a heavy clay acid sulphate soil. Treatments consisted of three cultivation methods : transplanted rice, pregerminated seeds broadcasted on puddled soil (wet seeding and dry seeds broadcasted on unpuddled soil (dry seeding. In wet and dry seeded plots, continuous standing water condition was initiated 17 days after sowing. Total water requirement for rice production was highest in transplanted plots (755 mm in wet season and 1154 mm in dry season and was lowest in dry seeded plots (505 mm in wet season and 1040 mm in dry season. Dry seeding required no water for land preparation but transplanting and wet seeding methods required 18 - 20 % of total water requirement in dry season and 27 - 29 % in wet season. Total percolation was maximum (99 mm in wet season and 215 mm in dry season in dry seeding method and was minimum (62 mm in wet season and 94 mm in dry season in transplanting method. In dry and wet seeding methods, daily percolation gradually decreased with the age of the crop. Total seepage loss did not show any significant difference between the cultivation methods in the two seasons. Grain yield was not affected by the three cultivation methods in both seasons. Water productivity (the ratio between grain yield and total amount of water used in production was 3.5 - 4.1 kg ha-1 mm-1, 3.8 - 4.4 kg ha-1 mm-1 and 4.1 - 5.5 kg ha-1 mm-1 in transplanted, wet seeded and dry seeded rice, respectively. Labour requirement for land preparation and sowing was maximum in transplanted (219 - 226 man-hours ha-1 followed by wet (104 -112 man-hours ha-1 and dry seeded (94 - 99 man-hours ha-1 methods. However, in wet season extra labour (77 man-hours ha-1 was required for weeding after crop establishment in dry and wet seeding methods. Crop maturity was 20 days earlier in wet and dry seeding methods compared to

  15. Research Advances in High-Yielding Cultivation and Physiology of Super Rice

    Institute of Scientific and Technical Information of China (English)

    FU Jing; YANG Jian-chang

    2012-01-01

    In 1996,China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types.Today,approximately 80 super rice varieties have been released and some of them show high grain yields of 12-21 t/hm2 in field experiments.The main reasons for the high yields of super rice varieties,compared with those of conventional varieties,can be summarized as follows:more spikelets per panicle and larger sink size (number of spikelets per square meter); larger leaf area index,longer duration of green leaf,greater photosynthetic rate,higher lodging resistance,greater dry matter accumulation before the heading stage,greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period; and larger root system and greater root activity.However,there are two main problems in super rice production:poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets),and low and unstable seed-setting rate.Here,we review recent research advances in the crop physiology of super rice,focusing on biological features,formation of yield components,and population quality.Finally,we suggest further research on crop physiology of super rice.

  16. Synthetic control of flowering in rice independent of the cultivation environment.

    Science.gov (United States)

    Okada, Ryo; Nemoto, Yasue; Endo-Higashi, Naokuni; Izawa, Takeshi

    2017-03-27

    For genetically homogeneous crops, the timing of flowering is determined largely by the cultivation environment and is strongly associated with the yield and quality of the harvest(1). Flowering time and other agronomical traits are often tightly correlated, which can lead to difficulty excluding the effects of flowering time when evaluating the characteristics of different genetic varieties(2). Here, we describe the development of transgenic rice plants whose flowering time can be controlled by specific agrochemicals. We first developed non-flowering rice plants by overexpressing a floral repressor gene, Grain number, plant height and heading date 7 (Ghd7)(3,4), to inhibit any environmentally induced spontaneous flowering. We then co-transformed plants with a rice florigen gene, Heading date 3a (Hd3a)(5), which is induced by the application of specific agrochemicals. This permitted the flowering time to be experimentally controlled regardless of the cultivation environment: some transgenic plants flowered only after agrochemical treatment. Furthermore, plant size and yield-related traits could, in some cases, be increased owing to both a longer duration of vegetative growth and an increased panicle size. This ability to control flowering time experimentally, independently of environmental variables, may lead to production of crops suitable for growth in different climates and facilitate breeding for various agronomical traits.

  17. Estimate of CH4 Emissions from Year-Round Flooded Rice Fields During Rice Growing Season in China

    Institute of Scientific and Technical Information of China (English)

    CAI Zu-Cong; KANG Guo-Ding; H. TSURUTA; A. MOSIER

    2005-01-01

    A special kind of rice field exists in China that is flooded year-round. These rice fields have substantially large CH4emissions during the rice-growing season and emit CH4 continuously in the non-rice growing season. CH4 emission factors were used to estimate the CH4 emissions from year-round flooded rice fields during the rice-growing season in China.The CH4 emissions for the year-round flooded rice fields in China for the rice growing season over a total area of 2.66Mha were estimated to be 2.44 Tg CH4 year-1. The uncertainties of these estimations are discussed as well. However,the emissions during the non-rice growing season could not be estimated because of limited available data. Nevertheless,methane emissions from rice fields that were flooded year-round could be several times higher than those from the rice fields drained in the non-rice-growing season. Thus, the classification of "continuously flooded rice fields" in the IPCC(International Panel on Climate Change) Guidelines for National Greenhouse Gas Inventories is suggested to be revised and divided into "continuously flooded rice fields during the rice growing season" and "year-round flooded rice fields".

  18. Studies on mosquitoes (Diptera: Culicidae and anthropicenvironment: 5- Breeding of Anopheles albitarsis in flooded rice fields in South-Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Forattini Oswaldo Paulo

    1994-01-01

    Full Text Available Studies on breeding Anopheles albitarsis and association with rice growth in irrigated paddy fields were carried out during the rice cultivation cycle from December 1993 to March 1994. This period corresponded to the length of time of permanent paddy flooding. Breeding occurred in the early stage up until five weeks after transplantation when rice plant height was small. That inverse correlation may give potential direction to control measures.

  19. Studies on mosquitoes (Diptera: Culicidae and anthropicenvironment: 5- Breeding of Anopheles albitarsis in flooded rice fields in South-Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1994-10-01

    Full Text Available Studies on breeding Anopheles albitarsis and association with rice growth in irrigated paddy fields were carried out during the rice cultivation cycle from December 1993 to March 1994. This period corresponded to the length of time of permanent paddy flooding. Breeding occurred in the early stage up until five weeks after transplantation when rice plant height was small. That inverse correlation may give potential direction to control measures.

  20. Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit.

    Science.gov (United States)

    Pantalião, Gabriel Feresin; Narciso, Marcelo; Guimarães, Cléber; Castro, Adriano; Colombari, José Manoel; Breseghello, Flavio; Rodrigues, Luana; Vianello, Rosana Pereira; Borba, Tereza Oliveira; Brondani, Claudio

    2016-12-01

    The identification of rice drought tolerant materials is crucial for the development of best performing cultivars for the upland cultivation system. This study aimed to identify markers and candidate genes associated with drought tolerance by Genome Wide Association Study analysis, in order to develop tools for use in rice breeding programs. This analysis was made with 175 upland rice accessions (Oryza sativa), evaluated in experiments with and without water restriction, and 150,325 SNPs. Thirteen SNP markers associated with yield under drought conditions were identified. Through stepwise regression analysis, eight SNP markers were selected and validated in silico, and when tested by PCR, two out of the eight SNP markers were able to identify a group of rice genotypes with higher productivity under drought. These results are encouraging for deriving markers for the routine analysis of marker assisted selection. From the drought experiment, including the genes inherited in linkage blocks, 50 genes were identified, from which 30 were annotated, and 10 were previously related to drought and/or abiotic stress tolerance, such as the transcription factors WRKY and Apetala2, and protein kinases.

  1. Effects of CaMSRB2-Expressing Transgenic Rice Cultivation on Soil Microbial Communities.

    Science.gov (United States)

    Sohn, Soo-In; Oh, Young-Ju; Kim, Byung-Yong; Cho, Hyun-Suk

    2016-07-28

    Although many studies on the effects of genetically modified (GM) crops on soil microorganisms have been carried out over the past decades, they have provided contradictory information, even for the same GM crop, owing to the diversity of the soil environments in which they were conducted. This inconsistency in results suggests that the effects of GM crops on soil microorganisms should be considered from many aspects. In this study, we investigated the effects of the GM drought-tolerant rice MSRB2-Bar-8, which expresses the CaMSRB2 gene, on soil microorganisms based on the culture-dependent and culture-independent methods. To this end, rhizosphere soils of GM and non-GM (IM) rice were analyzed for soil chemistry, population densities of soil microorganisms, and microbial community structure (using pyrosequencing technology) at three growth stages (seedling, tillering, and maturity). There was no significant difference in the soil chemistry between GM and non-GM rice. The microbial densities of the GM soils were found to be within the range of those of the non-GM rice. In the pyrosequencing analyses, Proteobacteria and Chloroflexi were dominant at the seedling stage, while Chloroflexi showed dominance over Proteobacteria at the maturity stage in both the GM and non-GM soils. An UPGMA dendrogram showed that the soil microbial communities were clustered by growth stage. Taken together, the results from this study suggest that the effects of MSRB2-Bar-8 cultivation on soil microorganisms are not significant.

  2. Estimate of Methane Emission from Rice Paddy Fields in Taihu Region,China

    Institute of Scientific and Technical Information of China (English)

    CAIZU-CONG; JINJI-SHENG; 等

    1994-01-01

    Methane fluxes from late rice and single cropping rice fields in Taihu region were measured using closed chamber method in 1992 and 1993 and CH4 emission from this region (total area of paddy soils was about 1.88 million hectares,of which 0.63 million hectares are distibuted in the south of Jiangsu province) was estimated on the basis of the meam CH4 fluxes observed.The results showed that the mean CH4 flaxes from late rice and single cropping rice field were quite similar under the prevailing cultivation practices in the region,being around 5 mg CH4/m2/h(4.31-5.31mg CH4/m2/h for various cultivars of the late rice and 3.20-6.22mg CH4/m2/h for various treatments of the single cropping rice).Total CH4 emission from paddy soils in the region was estimated to e 0.185-0.359 Tg CH4 per year.Continuously flooding the soil with a water layer till ripening caused higher mean CH4 flux;and addition of nitrification inhibitor(thiourea) stimulated CH4 emission.There was no simple repationship between CH4 flux and either soil temperature or soil Eh.

  3. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation.

    Science.gov (United States)

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-01

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH(4)) emission resulting from rice cultivation. In laboratory incubations, CH(4) production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt(-1)), while observed CO(2) production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH(4) emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha(-1)) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha(-1) application level of the amendments, total seasonal CH(4) emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH(4) production rates as well as total seasonal CH(4) flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH(4) emissions as well as sustaining rice productivity.

  4. 不同水稻种植模式对氮磷流失特征的影响%Effects of rice cultivation patterns on nitrogen and phosphorus leaching and runoff losses

    Institute of Scientific and Technical Information of China (English)

    岳玉波; 沙之敏; 赵峥; 陆欣欣; 张金秀; 赵琦; 曹林奎

    2014-01-01

    The loss of nitrogen and phosphorus due to excessive fertilizer application has become a major form in agricultural non-point pollution. In order to explore the impact of different planting patterns (conventional cultivation, green rice-frog ecosystem, organic rice-frog ecosystem) on nitrogen and phosphorus loss, a field experiment was conducted and the characteristics of nitrogen and phosphorus in surface water, runoff, leakage as well as rice yield differences analyzed in three paddy ecosystems. The results showed that among the paddy ecosystems, the order of average concentration of total nitrogen (TN) in surface water was:conventional cultivation (18.87 mg·L−1) > green rice-frog ecosystem (8.98 mg·L−1) > organic rice-frog ecosystem (8.20 mg·L−1). Compared with conventional cultivation, green rice-frog ecosystem and organic rice-frog ecosystem decreased TN loss during rice growth season by 15.27% and 25.76%, respectively. The TN runoff loss was in the following order: green rice-frog ecosystem >conventional cultivation>organic rice-frog ecosystem. NH4+-N was the main form of TN runoff. The order of TN leaching loss of was conventional cultivation > green rice-frog ecosystem > organic rice-frog ecosystem, with NO3−-N as the main form of TN leaching. Also the ratio of total TN loss to nitrogen fertilizer use in the three treatments was in the range of 1.25%ԟ2.38%, all less than 3%. Average total phosphorus (TP) concentration of surface water was in the following order:organic rice-frog ecosystem (0.82 mg·L−1)>green rice-frog ecosystem (0.64 mg·L−1)>conventional cultivation (0.37 mg·L−1). Total loss of TP was in the order of:organic rice-frog ecosystem > green rice-frog ecosystem > conventional cultivation. Then the order of proportion of total loss of phosphorous fertilizer was:green rice-frog ecosystem>conventionally cultivation treatment>organic rice-frog ecosystem, most of which was dissolved phosphorus. The order of rice yield under the

  5. Population Dynamics Among six Major Groups of the Oryza rufipogon Species Complex, Wild Relative of Cultivated Asian Rice

    OpenAIRE

    Kim, Hyunjung; Jung, Janelle; Singh, Namrata; Greenberg, Anthony; Jeff J. Doyle; Tyagi, Wricha; Chung, Jong-Wook; Kimball, Jennifer; Hamilton, Ruaraidh Sackville; McCouch, Susan R.

    2016-01-01

    Background Understanding population structure of the wild progenitor of Asian cultivated rice (O. sativa), the Oryza rufipogon species complex (ORSC), is of interest to plant breeders and contributes to our understanding of rice domestication. A collection of 286 diverse ORSC accessions was evaluated for nuclear variation using genotyping-by-sequencing (113,739 SNPs) and for chloroplast variation using Sanger sequencing (25 polymorphic sites). Results Six wild subpopulations were identified, ...

  6. Avian foods, foraging and habitat conservation in world rice fields

    Science.gov (United States)

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.

    2010-01-01

    Worldwide, rice (Oryza sativa) agriculture typically involves seasonal flooding and soil tillage, which provides a variety of microhabitats and potential food for birds. Water management in rice fields creates conditions ranging from saturated mud flats to shallow (seed mass from North America ranging from 66672 kg/ha. Although initially abundant after harvest, waste rice availability can be temporally limited. Few abundance estimates for other foods, such as vertebrate prey or forage vegetation, exist for rice fields. Outside North America, Europe and Japan, little is known about abundance and importance of any avian food in rice fields. Currently, flooding rice fields after harvest is the best known management practice to attract and benefit birds. Studies from North America indicate specific agricultural practices (e.g. burning stubble) may increase use and improve access to food resources. Evaluating and implementing management practices that are ecologically sustainable, increase food for birds and are agronomically beneficial should be global priorities to integrate rice production and avian conservation. Finally, land area devoted to rice agriculture appears to be stable in the USA, declining in China, and largely unquantified in many regions. Monitoring trends in riceland area may provide information to guide avian conservation planning in rice-agriculture ecosystems.

  7. A Water Demand Curve for Rice Paddy Field

    OpenAIRE

    佐藤, 豊信

    1989-01-01

    Demand for water use in rice paddy fields in Japan has traditionally been measured according to a unit known as "Gensuishin" However, it does not consider farmer decisions on how much water to use in rice production, while the quantity of water measured by "Gensuishin" takes into account biologocal and physical conditions. This paper reports that analysis of water demand in rice production ought to incorporate a farmer's subjective equilibrium and water demand quantity. The water demand cu...

  8. 水稻梯式栽培下野鸡野鸭生态种养设计与思考%Designs of Rice-pheasant-mallard Complex Ecosystem under Rice Terrace Cultivation Model and Its Thoughts

    Institute of Scientific and Technical Information of China (English)

    郑华斌; 高文娟; 扈婷; 陈杨; 龙攀; 黄璜

    2011-01-01

    This paper proposes one type of rice-pheasant-mallard complex ecological planting and breeding technique of under rice terrace cultivation model, which can carry out rice terrace cultivation and realize water storage in ditch and dry-wet alternation infiltrating irrigation in ridging. The cultivation model opens living space for pheasants and mallards, the former acts and predates on the ridge, and the latter plays and predates in the ditch. So, this cultivation model can reduce water consumption of rice-duck complex ecosystem, methane emission in paddy field due to long time flooded* amount of pesticides, and chemical fertilizers due to the stalks of manure which can reduce environmental pollution. In general. Rice-pheasant-mallard complex ecological planting and breeding technique of under rice terrace cultivation model can realize higher economic benefits, social benefits and ecological benefit than other ecological planting and breeding model.%提出了一种水稻梯式栽培下野鸡野鸭生态种养技术.通过改变传统的水稻生产模式,实行水稻梯式栽培,实现垄沟蓄水,垄上半浸润式灌溉,从而为野鸡的生长活动开辟空间,野鸡在垄上活动和捕食,野鸭在垄沟游戏和捕食,最终减少稻田养鸭的耗水量,降低由于长期淹水的稻田甲烷排放量,减少农药的使用量.同时鸡鸭粪还田能减少肥料的施用量,降低由于大量施用化肥造成的环境污染.水稻梯式栽培下鸡鸭生态种养技术的经济效益、社会效益和生态效益明显高于其他生态种养模式.

  9. The Interactive Effect of Diversification and Farming Scale on Productivity of Family Farm:Taking Rice Cultivation as An Example

    Science.gov (United States)

    Wei, Zhou

    2017-05-01

    Based on the diversification and cultivation scale, the rice cropping data of rural fixed observation points in 2011 were selected and the effect of diversification degree on rice productivity was analyzed by the Tobit model. The empirical results of the model show that diversification of sample farm will lead to loss of rice production efficiency. With the increase of rice planting scale, the loss of rice production efficiency will need to be further increased by diversification. Thus, we should stick to the family farm of specialized production operation. The transfer of land, the price and quantity of leasing, respecting the law of the market; the raising of funds can be considered non-subsidized capital market financing to help, while maintaining a certain degree of diversification, to avoid idle assets, low resource efficiency loss.

  10. Changes in Soil C and N Contents and Mineralization Across a Cultivation Chronosequence of Paddy Fields in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-Pei; ZHANG Tao-Lin; HAN Feng-Xiang; P. FELIX-HENNINGSEN

    2005-01-01

    Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratory incubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cm soil contained 19.6 g kg-1 organic C and 1.62 g kg-1 total N, with the corresponding values of 18.1 g kg-1 and 1.50 g kg-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation the mineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%,respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organic C and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and then increased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass N increased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm)contained 332.8 mg kg-1 of microbial biomass C and 23.85 mg kg-1 of microbial biomass N, which were 111% and 47% higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation in subtropical China would have attained a steady state of organic C content, being about 19 g kg-1.

  11. An Investigation of Factors Affecting the Management of Risk for the Rice Cultivating Women in Sari Town with LISREL Application

    Directory of Open Access Journals (Sweden)

    M. charmchian Langerodi

    2016-03-01

    . To determine the validity of the questionnaire, copies were distributed to experts in the field and their comments were recorded and relevant corrections were made. Corrected content validity was determined by experts at the Agricultural Organization of Mazandaran province, then reliability of the questionnaire was assessed by random completion of 30 questionnaires by women rice farmers in Qaem Shahr by interview and survey. Cronbach’s alpha and ordinal theta were 0.84 and 0.89, respectively. The questionnaire contained questions about age, work experience, area of owned land, extent of financial difficulty related to rice farming, and educational level of the women rice farmers. The questionnaire contained questions about risk management approaches (17 questions, sources of information for women rice farmers in Sari (12 questions and sources for borrowing funds (7 questions. The Likert scale was: none (0, very low (1, low (2, moderate (3, high (4, and very high (5. Results and Discussion: The average age range of women in the study was 46.68 years and their relative work experience was 26.17 years. The average financial difficulty for the women was high. The woman rice farmers were most likely to obtain loans from friends and neighbors and also to obtain financing from winning lottery. There was a significant positive relationship between information resources, borrowing resources, extent of financial difficulty, rice cultivation experience, and educational level with risk management methods. Tabatabaee et al. (30 stated that the extent of borrowing affected risk management. Tiraee (31 pointed to agricultural experience affecting risk management. Monfared (21, Torkamani and Ezatabadi (33 and Garavandi and Alibige (10 believe that the level of education affects risk management,which is consistent with the results of this study. Structural equation modeling showed that information sources influenced the use of risk management methods.Structural equation modeling

  12. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    Science.gov (United States)

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-02-20

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.

  13. Eliminating Aluminum Toxicity in an Acid Sulfate Soil for Rice Cultivation Using Plant Growth Promoting Bacteria

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2015-02-01

    Full Text Available Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB, ground magnesium limestone (GML and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0 at various Al concentrations (0, 50 and 100 μM. Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB, GML and basalt were applied (4 t·ha−1 each. Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.

  14. Effects of landscape features on waterbird use of rice fields

    Science.gov (United States)

    King, S.; Elphick, C.S.; Guadagnin, D.; Taft, O.; Amano, T.

    2010-01-01

    Literature is reviewed to determine the effects of landscape features on waterbird use of fields in regions where rice (Oryza sativa) is grown. Rice-growing landscapes often consist of diverse land uses and land cover, including rice fields, irrigation ditches, other agricultural fields, grasslands, forests and natural wetlands. Numerous studies indicate that local management practices, such as water depth and timing of flooding and drawdown, can strongly influence waterbird use of a given rice field. However, the effects of size and distribution of rice fields and associated habitats at a landscape scale have received less attention. Even fewer studies have focused on local and landscape effects simultaneously. Habitat connectivity, area of rice, distance to natural wetlands, and presence and distance to unsuitable habitat can be important parameters influencing bird use of rice fields. However, responses to a given landscape vary with landscape structure, scale of analysis, among taxa and within taxa among seasons. A lack of multi-scale studies, particularly those extending beyond simple presence and abundance of a given species, and a lack of direct tests comparing the relative importance of landscape features with in-field management activities limits understanding of the importance of landscape in these systems and hampers waterbird conservation and management.

  15. Investigation of possible horizontal gene transfer from transgenic rice to soil microorganisms in paddy rice field.

    Science.gov (United States)

    Kim, Sung Eun; Moon, Jae Sun; Kim, Jung Kyu; Choi, Won Sik; Lee, Sang Han; Kim, Sung Uk

    2010-01-01

    In order to monitor the possibility of horizontal gene transfer between transgenic rice and microorganisms in paddy rice field, the gene flow from bifunctional fusion (TPSP) rice containing trehalose-6-phosphate synthase and phosphatase to microorganisms in soils was investigated. The soil samples collected every month from the paddy rice field during June, 2004 to March, 2006 were investigated by multiplex PCR, Southern hybridization, and amplified fragment length polymorphism (AFLP). The TPSP gene from soil genomics DNAs was not detected by PCR. Soil genomic DNAs were not shown its homologies on the Southern blotting data, indicating that gene-transfer did not occur during the last two years in paddy rice field. In addition, the AFLP band patterns produced by both soil genomic DNAs extracted from transgenic and non-transgenic rice field appeared similar to each other when analyzed by NTSYSpc program. Thus, these data suggest that transgenic rice does not give a significant impact on the communities of soil microorganisms although long-term observation may be needed.

  16. Rice cultivation in the farming systems of Sukumaland, Tanzania : a quest for sustainable production under structural adjustment programmes

    NARCIS (Netherlands)

    Meertens, H.C.C.

    1999-01-01

    This thesis investigates options for sustainable rice cultivation and general agricultural development in the Mwanza and Shinyanga regions in northwestern Tanzania, often called Sukumaland due to the predominance of Wasukuma people. Generally Sukumaland has a semi-arid climate; agriculture

  17. Elemental Content in Brown Rice by Inductively Coupled Plasma Atomic Emission Spectroscopy Reveals the Evolution of Asian Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    Yawen Zeng; Luxiang Wang; Juan Du; Jiafu Liu; Shuming Yang; Xiaoying Pu; Fenghui Xiao

    2009-01-01

    The phylogenetic relationship for classification traits and eight mineral elements in brown rice (Oryza sativa L.) from Yunnan Province in China was carried out using microwave assisted digestion followed by inductively coupled plasma atomic emission spectroscopy, and the analytical procedures were carefully controlled and validated. In general, the results show that the mean levels of K, Ca, Mg, Fe and Cu in brown rice for 789 accessions of rice landraces was distinctly lower than that of improved cultivars. They further demonstrate that Ca plays an important role in the differentiation of subspecies indica-japonica, especially to enhance adaptation of cold stress, and that five mineral elements in brown rice enhance the eurytopicity from landrace to improved cultivar. Hierarchical cluster analysis, using average linkage from SPSS software based on eight mineral elements in brown rice, showed that Yunnan rice could be grouped into rice landrace and improved cultivar, with the rice landrace being further clustered into five subgroups, and that, interestingly, purple rice does not cluster with either of the groups. Our present data confirm that indica is the closest relative of late rice and white rice, and that they constitute rice landraces together, whereas japonica is the closest relatives of non-nuda, early-mid and glutinous rice. It is further shown that japonica, non-nuda, early-mid, glutinous, white and red rice might be more primitive than indica, nuda, late, non-glutinous and purple rice, respectively.

  18. Impact of volunteer rice infestation on yield and grain quality of rice.

    Science.gov (United States)

    Singh, Vijay; Burgos, Nilda R; Singh, Shilpa; Gealy, David R; Gbur, Edward E; Caicedo, Ana L

    2017-03-01

    Volunteer rice (Oryza sativa L.) grains may differ in physicochemical traits from cultivated rice, which may reduce the quality of harvested rice grain. To evaluate the effect of volunteer rice on cultivated rice, fields were surveyed in Arkansas in 2012. Cropping history that included hybrid cultivars in the previous two years (2010 and 2011) had higher volunteer rice infestation (20%) compared with fields planted previously with inbred rice (5.5%). The total grain yield of rice was reduced by 0.4% for every 1% increase in volunteer rice density. The grain quality did not change in fields planted with the same cultivar for three years. Volunteer rice density of at least 7.6% negatively impacted the head rice and when infestation reached 17.7%, it also reduced the rice grain yield. The protein and amylose contents of rice were not affected until volunteer rice infestation exceeded 30%. Crop rotation systems that include hybrid rice are expected to have higher volunteer rice infestation than systems without hybrid rice. It is predicted that, at 8% infestation, volunteer rice will start to impact head rice yield and will reduce total yield at 18% infestation. It could alter the chemical quality of rice grain at >30% infestation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Mitigation of methane emissions from rice fields: Possible adverse effects of incorporated rice straw

    Science.gov (United States)

    Sass, R. L.; Fisher, F. M.; Harcombe, P. A.; Turner, F. T.

    1991-09-01

    Increased world demand for rice production may lead to an increase in methane emission to the atmosphere and future global warming. One suggested way to reduce methane emission is to discourage the practice of incorporating previous crop residue prior to planting rice, since the residue may enhance methane emission from flooded rice fields. This concept is supported by data from a 2-year study of flooded rice fields on two different soil types in Texas. In 1990, rice stubble from 1989 was incorporated into both soils. Seasonal methane emission from a Lake Charles clay field increased from 15.9 g m-2 in 1989 to 31.0 g m-2 in 1990. In the Beaumont clay field, seasonal methane emission increased from 4.5 to 11.4 g m-2. While methane emission increased between 1989 and 1990, grain yield dropped by 2100 and 840 kg ha-1 in the Lake Charles and Beaumont fields, respectively. Visual inspection at harvest indicated that the 1990 rice yield decrease resulted from grain abortion, presumably caused by the rice cultivar's sensitivity to soil anaerobiosis. The calculated amount of organic carbon not translocated to grain was comparable to the estimated amount of organic carbon required for the increased methane emission. We hypothesize that labile carbon in straighthead susceptible rice cultivars can "leak" from roots damaged by excessively anaerobic soil and be metabolized to its equivalent in methane. These data suggest that minimizing incorporation of crop residue prior to planting can decrease methane emission from flooded rice and reduce the potential for yield loss, particularly with some cultivars and in soils with low rates of seepage and percolation.

  20. Assessment of rice fields by GIS/GPS-supported classification of MODIS data

    Institute of Scientific and Technical Information of China (English)

    程乾; 黄敬峰; 王人潮

    2004-01-01

    The new Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite image offers a large choice of opportunities for operational applications. The 1-km Advanced Very High Resolution Radiometer (AVHRR) image is not suitable for retrieval of field level parameter and Landsat data are not frequent enough for monitoring changes in crop parameters during the critical crop growth periods.A methodology to map areas of paddy fields using MODIS,geographic information system (GIS) and global position system (GPS) is introduced in this paper. Training samples are selected and located with the help of GPS to provide maximal accuracy.A concept of assessing areas of potential cultivation of rice is suggested by means of GIS integration. By integration of MODIS with GIS and GPS technologies the actual areas of rice fields in 2002 have been mapped. The classification accuracy was 95.7% percent compared with the statistical data of the Agricultural Bureau of Zhejiang Province.

  1. Assessment of rice fields by GIS/GPS-supported classification of MODIS data

    Institute of Scientific and Technical Information of China (English)

    程乾; 黄敬峰; 王人潮

    2004-01-01

    The new Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite image offers a large choice of opportunities for operational applications. The 1-km Advanced Very High Resolution Radiometer (AVHRR) image is not suitable for retrieval of field level parameter and Landsat data are not frequent enough for monitoring changes in crop parameters during the critical crop growth periods. A methodology to map areas of paddy fields using MODIS, geographic information system (GIS) and global position system (GPS) is introduced in this paper. Training samples are selected and located with the help of GPS to provide maximal accuracy. A concept of assessing areas of potential cultivation of rice is suggested by means of GIS integration. By integration of MODIS with GIS and GPS technologies the actual areas of rice fields in 2002 have been mapped. The classification accuracy was 95.7% percent compared with the statistical data of the Agricultural Bureau of Zhejiang Province.

  2. Rice field agroecosystem investigation : environmental and toxicological assessment; Indagine su una risaia campione: analisi ambientali e chimico-tossicologiche

    Energy Technology Data Exchange (ETDEWEB)

    Bari, A.; Minciardi, M.; Rossi, G. [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Ambiente; Bonotto, F.; Paonessa, F.; Troiani, F. [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Energia; Rosa, S. [ENEA, Centro Ricrche Casaccia, Rome (Italy). Dip. Ambiente; Cormegna, M. [Ente Nazionale Risi, Centro Ricerche sul Riso, Castello d`Agogna, Pavia (Italy)

    1995-10-01

    The rice-field agroecosystem, even if deeply anthropically determined, can be considered substitute of the plain wet lands, now almost all disappeared in the part of the territory has been considering. The aim of the research we started was the analysis and the ecological characterization of this environment and the assessment of the effects of the different agronomical practices, relating to the conservation of the biodiversity in a plain wetland. The ENEA Environmental Biology and Nature Conservation Division of Saluggia (VC) and Casaccia (Roma), in co-operation with ENEA ERG-RAD-LAB Division of Saluggia and the Rice Research Center of Castello d`Agogna (PV) associated to Rice National Society, started a preliminary research on a sample rice field, aiming to evaluate, using different methodologies, the destiny of the chemical substances (herbicides, fungicidals, heavy metals and other chemical compounds) introduced through cultivation practices or arrived by irrigation systems.

  3. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression

    Directory of Open Access Journals (Sweden)

    Li Xin

    2012-07-01

    Full Text Available Abstract Background DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild relatives, Oryza rufipogon and Oryza nivara. Results The overall methylation level of rice genomes is four times higher than that of Arabidopsis. Consistent with the results reported for Arabidopsis, methylation in promoters represses gene expression while gene-body methylation generally appears to be positively associated with gene expression. Interestingly, we discovered that methylation in gene transcriptional termination regions (TTRs can significantly repress gene expression, and the effect is even stronger than that of promoter methylation. Through integrated analysis of genomic, DNA methylomic and transcriptomic differences between cultivated and wild rice, we found that primary DNA sequence divergence is the major determinant of methylational differences at the whole genome level, but DNA methylational difference alone can only account for limited gene expression variation between the cultivated and wild rice. Furthermore, we identified a number of genes with significant difference in methylation level between the wild and cultivated rice. Conclusions The single-base resolution methylomes of rice obtained in this study have not only broadened our understanding of the mechanism and function of DNA methylation in plant genomes, but also provided valuable data for future studies of rice epigenetics and the epigenetic differentiation between wild and cultivated rice.

  4. On-farm Conservation of Landraces of Rice (Oryza Sativa L.) through Cultivation in the Kumaun Region of Indian Central Himalaya

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Himalayan region is a known hot spot of crop diversity. Traditional varieties (usually called primitive cultivars or landraces), having withstood the rigors of time (including harsh climatic conditions as well as attacks of insects, pests and diseases), can still be found in crop fields in rural parts of Indian Central Himalaya (ICH). These landraces harbor many desired traits from which, for example, varieties that are tolerant/resistant to abiotic/biotic stresses could be developed. In addition to the above benefits,landraces provide a basis for food security and a more varied and interesting diet. Some landraces are also known to be of medicinal value. These, along with some lesser known hill crops, are often referred to by different names such as under exploited crops, crops for marginal lands, poor person crops, and neglected mountain crops. The Himalayan region continues to be a reservoir of a large number of landraces and cultivars whose economic and ecological potential is yet to be fully understood and/or exploited. Indians have had a history of rice cultivation since ancient times. Farmers, including tribals inhabiting the IHR, still cultivate a plethora of landraces of rice and thus directly contribute towardson-farm conservation of valuable germplasm and help in the preservation of crop diversity. The present paper looks at the on-farm conservation of rice germplasm, which is still practised in the Kumaun region of ICH.

  5. High-yielding Cultivation Technology for Middle Rice- succeeded Black Fungus%中稻—袋料黑木耳高产栽培技术

    Institute of Scientific and Technical Information of China (English)

    吴火金

    2015-01-01

    为充分利用土地闲置田的空间,种植一季水稻后,再放置黑木耳,既发挥土地资源,又提高经济效益,从而增加农民收入.主要阐述了浦城县种植一季中稻后袋料黑木耳的主要高产栽培技术,病虫发生与防治.%In this paper, to make full use of idle land field space, after the rice planting season, again to place black fungus, both play land resources, and improve the economic benefit, increasing farmers' income. In this paper, we mainly expounds middle rice planting season succeeded after black fungus main high-yield culti-vation techniques, the occurrence and prevention of diseases and pests.

  6. Pollutants dynamics in a rice field and an upland field during storm events

    Science.gov (United States)

    Kim, Jin Soo; Park, Jong-Wha; Jang, Hoon; Kim, Young Hyeon

    2010-05-01

    We investigated the dynamics of pollutants such as total nitrogen (TN), total phosphorous (TP), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and suspended sediment (SS) in runoff from a rice field and an upland field near the upper stream of the Han river in South Korea for multiple storm events. The upland field was cropped with red pepper, sweet potato, beans, and sesame. Runoff from the rice field started later than that from the upland field due to the water storage function of rice field. Unlike the upland field, runoff from the rice field was greatly affected by farmers' water management practices. Overall, event mean concentrations (EMCs) of pollutants in runoff water from the upland field were higher than those from the rice field. Especially, EMCs of TP and SS in runoff water from the upland field were one order of magnitude higher than those from the rice field. This may be because ponding condition and flat geographical features of the rice field greatly reduces the transport of particulate phosphorous associated with soil erosion. The results suggest that the rice field contributes to control particulate pollutants into adjacent water bodies.

  7. Elucidation of molecular dynamics of invasive species of rice

    Science.gov (United States)

    Cultivated rice fields are aggressively invaded by weedy rice in the U.S. and worldwide. Weedy rice results in loss of yield and seed contamination. The molecular dynamics of the evolutionary adaptive traits of weedy rice are not fully understood. To understand the molecular basis and identify the i...

  8. Identification of β-phenylalanine as a non-protein amino acid in cultivated rice, Oryza sativa.

    Science.gov (United States)

    Yokoo, Takayuki; Takata, Ryo; Yan, Jian; Matsumoto, Fuka; Teraishi, Masayoshi; Okumoto, Yutaka; Jander, Georg; Mori, Naoki

    2015-01-01

    Non-protein amino acids, often analogs of the standard 20 protein amino acids, have been discovered in many plant species. Recent research with cultivated rice (Oryza sativa) identified (3R)-β-tyrosine, as well as a tyrosine amino mutase that synthesizes (3R)-β-tyrosine from the protein amino acid (2S)-α-tyrosine. Gas chromatography-mass spectrometry (GC-MS) assays and comparison to an authentic standard showed that β-phenylalanine is also a relatively abundant non-protein amino acid in rice leaves and that its biosynthesis occurs independently from that of β-tyrosine.

  9. Satellite-based investigation of flood-affected rice cultivation areas in Chao Phraya River Delta, Thailand

    Science.gov (United States)

    Son, N. T.; Chen, C. F.; Chen, C. R.; Chang, L. Y.

    2013-12-01

    The occurrence of catastrophic floods in Thailand in 2011 caused significant damage to rice agriculture. This study investigated flood-affected rice cultivation areas in the Chao Phraya River Delta (CRD) rice bowl, Thailand using time-series moderate resolution imaging spectroradiometer (MODIS) data. The data were processed for 2008 (normal flood year) and 2011, comprising four main steps: (1) data pre-processing to construct time-series MODIS vegetation indices (VIs), to filter noise from the time-series VIs by the empirical mode decomposition (EMD), and to mask out non-agricultural areas in respect to water-related cropping areas; (2) flood-affected area classification using the unsupervised linear mixture model (ULMM); (3) rice crop classification using the support vector machines (SVM); and (4) accuracy assessment of flood and rice crop mapping results. The comparisons between the flood mapping results and the ground reference data indicated an overall accuracy of 97.9% and Kappa coefficient of 0.62 achieved for 2008, and 95.7% and 0.77 for 2011, respectively. These results were reaffirmed by close agreement (R2 > 0.8) between comparisons of the two datasets at the provincial level. The crop mapping results compared with the ground reference data revealed that the overall accuracies and Kappa coefficients obtained for 2008 were 88.5% and 0.82, and for 2011 were 84.1% and 0.76, respectively. A strong correlation was also found between MODIS-derived rice area and rice area statistics at the provincial level (R2 > 0.7). Rice crop maps overlaid on the flood-affected area maps showed that approximately 16.8% of the rice cultivation area was affected by floods in 2011 compared to 4.9% in 2008. A majority of the flood-expanded area was observed for the double-cropped rice (10.5%), probably due to flood-induced effects to the autumn-summer and rainy season crops. Information achieved from this study could be useful for agricultural planners to mitigate possible impacts

  10. 粉垄栽培对水稻产量和品质的影响%Effect of Fenlong Cultivation on Yield and Quality of Rice

    Institute of Scientific and Technical Information of China (English)

    韦本辉; 刘斌; 甘秀芹; 申章佑; 胡泊; 李艳英; 吴延勇; 陆柳英

    2012-01-01

    more than 10%, total number of root and white roots increased by 14.83%-25.36% and 20.18%-97.78%, respectively, the plant biological yield increased by 29.96%-31.89%, seed setting rate increased by 7.62%, yield increased by 23.87%, the whole head rice rate and protein increased by 15.95% and 14.61%, respectively; In no-tillage and seedling-throwing late rice, compared with CK, Fenlong total number of root and white roots increased by 6.02%-22.75% and 48.03%-65.91%, and yield increased by 9.25%, the whole head rice rate and protein increased by 7.43% and 5.61%. The early and late rice total yield increased by 16.48%, income increased by 6 706.5 Yuan/hm2. Compared with the CK, the third time planted rice after Fenlong farming, soil compactness reduced by 68.00%-333.33%, and yield increased by 7.97%. [Conclusion] Fenlong cultivation of early rice and no-tillage late rice are feasible and it can increase rice production, improve rice quality, and increase net income. Fenlong still can increase the yield of the third time planted rice, the rice paddy field possess the sustainable yield increasing ability after Fenlong farming.

  11. Geochemical Modeling of Zinc Bioavailability for Rice

    NARCIS (Netherlands)

    Gao, X.; Schröder, T.J.; Hoffland, E.; Zou, C.; Zhang, F.; Zee, van der S.E.A.T.M.

    2010-01-01

    The transition from anaerobic to aerobic rice (Oryza sativa L.) cultivation has been reported to decrease Zn bioavailability. To determine and understand the differences in plant Zn uptake between anaerobic and aerobic rice cultivation systems, a field plot experiment was conducted with direct-seede

  12. Hybrids between wild and cultivated carrots in Danish carrot fields

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Bjørn, G. K.

    2001-01-01

    It is well known that wild carrots may pollute the seed crops of cultivated carrots, but whether cultivated carrots can also disperse pollen and seed, and thereby introduce genes into wild carrot populations, is only little described. In Denmark, there is no commercial seed production of carrots...... seeds. Pollen and seed dispersal from fields into wild carrot populations is probably rather frequent in Denmark. A closer inspection of the morphology of flowering plants indicate that some of these (2-60%) are bolters of pure cultivar origin, as indicated primarily by orange root colour. The remainder...... is probably first or advanced generation hybrids between wild and cultivated plants, as indicated by their white roots and combinations of morphological characters from either plant type. Some of these hybrids are imported to Denmark together with the sowing seed, as indicated by significantly different...

  13. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    Science.gov (United States)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance of archaeal followed a similar trend to that of bacterial but showing an increasing trend with prolonged rice cultivation in both sand and clay fractions. Change in community diversity with sizes of aggregate fractions was found of fungi and weakly of bacterial but not of archaeal. Soil respiration ratio (Respired CO2-C to SOC) was highest in silt fraction, followed by the fine sand fraction but lowest in sand and clay fractions in the rice soils cultivated over 100 years. Again, scaled by total gen concentration, respiration was

  14. Malaysian water footprint accounts: Blue and green water footprint of rice cultivation and the impact of water consumption in Malaysia

    Science.gov (United States)

    Fadillah, M. G. Nor; Marlia, M. H.

    2016-11-01

    Following water footprint approach, this study estimates the blue and green water consumption of rice cultivation in 11 states located in Peninsular Malaysia. The latter part evaluates the potential of water deprivation for freshwater resources in Malaysia. Climate data such as rainfall, temperature, humidity, sunshine and wind speed were used to calculate evapotranspiration rate and crop water use. The water footprint for cultivating rice was estimated for both main and off seasons range between 1600 m3/ton to 3300 m3/ton. The result of this study showed that the green water footprint is higher compared to the blue water footprint for both seasons. In conclusion, the potential water deprivation can be determined by integrating the water footprint and water stress index of different watersheds of Malaysia.

  15. Gene tree discordance of wild and cultivated Asian rice deciphered by genome-wide sequence comparison.

    Science.gov (United States)

    Yang, Ching-chia; Sakai, Hiroaki; Numa, Hisataka; Itoh, Takeshi

    2011-05-15

    Although a large number of genes are expected to correctly solve a phylogenetic relationship, inconsistent gene tree topologies have been observed. This conflicting evidence in gene tree topologies, known as gene tree discordance, becomes increasingly important as advanced sequencing technologies produce an enormous amount of sequence information for phylogenomic studies among closely related species. Here, we aim to characterize the gene tree discordance of the Asian cultivated rice Oryza sativa and its progenitor, O. rufipogon, which will be an ideal case study of gene tree discordance. Using genome and cDNA sequences of O. sativa and O. rufipogon, we have conducted the first in-depth analyses of gene tree discordance in Asian rice. Our comparison of full-length cDNA sequences of O. rufipogon with the genome sequences of the japonica and indica cultivars of O. sativa revealed that 60% of the gene trees showed a topology consistent with the expected one, whereas the remaining genes supported significantly different topologies. Moreover, the proportions of the topologies deviated significantly from expectation, suggesting at least one hybridization event between the two subgroups of O. sativa, japonica and indica. In fact, a genome-wide alignment between japonica and indica indicated that significant portions of the indica genome are derived from japonica. In addition, literature concerning the pedigree of the indica cultivar strongly supported the hybridization hypothesis. Our molecular evolutionary analyses deciphered complicated evolutionary processes in closely related species. They also demonstrated the importance of gene tree discordance in the era of high-speed DNA sequencing.

  16. Comparison of Cheng's Index-and SSR Marker-based Classification of Asian Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    WANG Cai-hong; XU Qun; YU Ping; YUAN Xiao-ping; YU Han-yong; WANG Yi-ping; TANG Sheng-xiang

    2013-01-01

    A total of 100 cultivated rice accessions,with a clear isozyme-based classification,were analyzed based on Cheng's index and simple sequence repeat (SSR) marker.The results showed that the isozyme-based classification was in high accordance with that based on Cheng's index and SSR markers.Mantel-test revealed that the Euclidean distance of Cheng's index was significantly correlated with Nei's unbiased genetic distance of SSR markers (r =0.466,P ≤ 0.01).According to the model-based group and cluster analysis,the Cheng's index-and SSR-based classification coincided with each other,with the goodness of fit of 82.1% and 84.7% in indica,97.4% and 95.1% in japonica,respectively,showing higher accordance than that within subspecies.Therefore,Cheng's index could be used to classify subspecies,while SSR marker could be more efficient to analyze the subgroups within subspecies.

  17. Rice Production without Insecticide in Smallholder Farmer's Field

    Directory of Open Access Journals (Sweden)

    M. P. Ali

    2017-05-01

    Full Text Available Highlights:Use of perching, sweeping, and need based insecticide (IPM technique useage produce at par yields compared to prophylactic insecticide useage in rice fields.There exists a technique that can reduce 75% of insecticide useage in rice field.The results were obtained in cooperation between smallholder rice farmers and researchers of Bangladesh.Currently rice protection from insect pests solely depends on chemical pesticides which have tremendous impact on biodiversity, environment, animal, and human health. To reduce their impact from our society we need to cut pesticide use from agricultural practices. To address this issue, we did an experiment to identify realistic solutions that could help farmers build sustainable crop protection systems and minimize useage of insecticides and thus reduce the impact of pesticides in the environment. Innovations developed jointly by farmers and researchers and evaluated for their potential to be adopted by more farmers. In this paper we tested four management practices jointly with smallholder farmer fields in order to select the best one. Four management practices were used namely, T1 = Prophylactic use of insecticide where insecticide was applied in rice field at every 15 days interval without judging the infestation level; T2 = Perching (that is, placing roosting (perching sites for insectivorous birds within the rice field and concurrent sweep net samples along with need-based insecticide application; T3 = Perching only; and T4 = Farmer's own practices. The results revealed that routine application of insecticides for crop protection is not mandatory which is commonly found at use in rice farmers. In our experiment, where prophylactic method or farmers used 3–4 times insecticides without judging the insect pests infestation level, the similar pest population was found when compared to the field where insecticide was not applied. Our management system reduced by 75% the use of insecticides even

  18. Cultivation of different strains of king oyster mushroom (Pleurotus eryngii) on saw dust and rice straw in Bangladesh

    Science.gov (United States)

    Moonmoon, Mahbuba; Uddin, Md. Nazim; Ahmed, Saleh; Shelly, Nasrat Jahan; Khan, Md. Asaduzzaman

    2010-01-01

    Pleurotus eryngii is a popular mushroom due to its excellent consistency of cap and stem, culinary qualities and longer shelf life. In Bangladesh, where Pleurotus mushrooms are very popular, P. eryngii may take position among the consumers, but currently this mushroom is not cultivated in large scale there. In this study, 3 strains of P. eryngii such as Pe-1 (native to Bangladesh), Pe-2 (germplasm collected from China) and Pe-3 (germplasm collected from Japan) were cultivated on saw dust and rice straw and their growth and yield parameters were investigated. Pe-1 on saw dust showed the highest biological yield and efficiency (73.5%) than other strains. Also, the mycelium run rate and number of fruiting bodies were higher in Pe-1 than other two strains. The quality of mushroom strains was near about similar. On saw dust, the yield and efficiency were better than those cultivated on rice straw, however, on straw; the mushroom fruiting bodies were larger in size. This study shows the prospects of P. eryngii cultivation in Bangladesh and suggests further study in controlled environment for higher yield and production. PMID:23961095

  19. Effects of Cropping System Change for Paddy Field with Double Harvest Rice on the Crops Growth and Soil Nutrient

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of the cropping system change for paddy field with double harvest rice on crops growth and soil nutrient in red soil were studied. The results indicated that the economic benefit and the ratio of the output to input were all increased in terms of the market price for the crops under various treatments. The greatest economic benefit was obtained in the treatment of paddy-upland rotation, and the corresponding economic benefit was increased by 34.7, 21.4, and 2.2% in comparison with that of control (rice-rice-astragali), pasture, and upland cropping treatments. The economic benefits in pasture and upland cultivation treatments were increased by 11.0 and 31.8%, respectively, when compared with that of the control treatment (CK). The ratio of output to input in pasture, paddy-upland rotation, and upland cropping treatments was enhanced by 0.9, 0.6, and 0.3, respectively, in comparison with that of control. To grow pasture is beneficial for improving soil fertility since the contents of soil organic matter, total nitrogen, total phosphorus, and available phosphorus are all enhanced significantly. However, the concentrations of the soil available nitrogen, the total potassium, the available potassium were somewhat reduced in all the treatments, suggesting that increasing the input of nitrogen,particularly potassium, was necessary under the present fertilization level. Based on the conditions of fertility, climate,cultivation, and management of paddy field with double harvest rice in red soil regions, it is feasible to alter the cultivation system of paddy field with bad irrigation condition. In particular, cultivation systems such as pasture and paddy-upland rotation can be selected to extend because better economic benefit and improvement of soil fertility in the purpose region were obtained.

  20. Differentiation of a Miniature Inverted Transposable Element (MITE) System in Asian Rice Cultivars and Its Inference for a Diphyletic Origin of Two Subspecies of Asian Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we report a survey on a Miniature Inverted Transposable Element (MITE) system known as mPing in 102 varieties of Asian cultivated rice (Oryza sativa L.). We found that mPing populations could be generalized into two families, mping-1 and mPing-2, according to their sequence structures. Further analysis showed that these two families of mPing had significant bias in their distribution pattern in two subspecies of rice, namely O. sativa ssp. japonica and indica. O. sativa japonica has a higher proportion of mPing-1 as a general trait, whereas O. sativa indica has a higher proportion of mPing-2. We also examined the mPing system in a doubled haploid (DH) cross-breeding population of jingxi 17 (japonica) and zhaiyeqing 8 (indica) varieties and observed that the mPing system was not tightly linked to major subspecies-determining genes.Furthermore, we checked the mPing system in 28 accessions of Asian common wild rice O. rufipogon and found the mPing system in O. rufipogon. The distribution pattern of the mping system in O. rufipogon indicated a diphyletic origin of the Asian cultivated rice O. sativa species. We did not find the mPing system in another 20 Oryza species. These results substantiated a previous hypothesis that O. rufipogon and O. nivara species were the closest relatives of O. sativa and that the two extant subspecies of O. sativa were evolved independently from corresponding ecotypes of O. rufipogon.

  1. Study on the Practice and High-yielding Mechanism of Super-sparse-cultivation Associated with Maximum-tiller Seedling of Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    MA Jun; TAO Shi-shun

    2002-01-01

    In this paper, a new cultivation practice-super-sparse-cultivation associated with maximumtiller seedling (SSCMTS) of hybrid rice was proposed and its high-yielding mechanism was studied. The results showed that the practice of SSCMTS in hybrid rice could not only increase grain yield but also save seeds and labor. It was a new high-yielding way for the late transplanting seedlings and heavy panicle type hybrid rice cultivars to further utilize the high-yielding potential of hybrid rice cultivars. The increasing number of spikelets and ideal grain -filling were the direct factors for the high yield of SSCMTS in hybrid rice, and those high-yielding factors relied on high quality seedlings, sturdy individuals, high quality population and vigorous later growth.

  2. Aflatoxin B1 degradation during co-cultivation of Aspergillus flavus and Pleurotus ostreatus strains on rice straw.

    Science.gov (United States)

    Das, Arijit; Bhattacharya, Sourav; Palaniswamy, Muthusamy; Angayarkanni, Jayaraman

    2015-06-01

    Aflatoxin B1 (AFB1) produced by Aspergillus flavus is known to have carcinogenic and teratogenic effects on animal health. Accidental feeding of AFB1-contaminated rice straw may be detrimental to dairy cattle. White-rot basidiomycetous fungus Pleurotus ostreatus can grow on different agronomic wastes by synthesizing different ligninolytic enzymes. These extracellular enzymes are capable of degrading many environmentally hazardous compounds including AFB1. The present study examines the ability of different strains of P. ostreatus to degrade AFB1 in contaminated rice straw. Different strains of A. flavus were inoculated on rice straw for AFB1 production. The moldy straw was then subjected to co-cultivation by different strains of P. ostreatus. The extent of AFB1 degradation was determined by high performance liquid chromatography. Results indicated the presence of AFB1 in the moldy straw samples at levels of 27.95 ± 0.23 and 21.26 ± 0.55 µg/g of dry substrate for A. flavus MTCC 2798 and A. flavus GHBF09, respectively. Co-cultivation of P. ostreatus strains on AFB1-contaminated rice straw revealed their ability to rapidly colonize the substrate by profuse hyphal ramification. Highest degradation of AFB1 (89.41 %) was recorded in the straw containing co-cultures of A. flavus MTCC 2798 and P. ostreatus GHBBF10. Natural isolate P. ostreatus GHBBF10 demonstrated higher AFB1-degradation potential than P.ostreatus MTCC 142. This basidiomycete strain can be further exploited to effectively degrade moderate concentrations of AFB1 in contaminated moldy rice straw.

  3. Monitoring of pesticide leaching from cultivated fields in Denmark

    DEFF Research Database (Denmark)

    Brüsch, Walter; Rosenbom, Annette E; Badawi, Nora;

    2016-01-01

    The Danish Pesticide Leaching Assessment Programme (PLAP) was initiated in 1998 by the Danish Parliament in order to evaluate whether the use of approved pesticides will result in an unacceptable contamination of the groundwater, if applied under field conditions in accordance with current Danish...... regulation. In this programme, water samples from variably saturated soil and groundwater collected at five cultivated fields are analysed for selected pesticides and their degradation products. The PLAP results are summarised and evaluated in yearly reports and used by the Danish Environmental Protection...

  4. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field

    Science.gov (United States)

    Gruening, Carsten; Meijide, Ana; Manca, Giovanni; Goded, Ignacio; Seufert, Guenther; Cescatti, Alessandro

    2016-04-01

    Rice paddy fields are one of the biggest anthropogenic sources of methane (CH4), the second most important greenhouse gas (GHG) after carbon dioxide (CO2). Therefore most studies on greenhouse gases (GHG) in these agricultural systems focus on the evaluation of CH4 production. However, there are other GHGs such as CO2 and nitrous oxide (N2O) also exchanged within the atmosphere. Since each of the GHGs has its own radiative forcing effect, the total GHG budget of rice cultivation and its global warming potential (GWP) must be assessed. For this purpose a field experiment was carried out in a Mediterranean rice paddy field in the Po Valley (Italy), the largest rice producing region in Europe. Ecosystem CO2 and CH4 fluxes were assessed using the eddy covariance technique, while soil respiration and soil CH4 and N2O fluxes were measured with closed chambers for two complete years. Combining all GHGs measured, the rice paddy field acted as a sink of -368 and -828 g CO2 eq m-2 year-1 in the first and second years respectively. Both years, it was a CO2 sink and a CH4 source, while the N2O contribution to the GWP was relatively small. Differences in the GHG budget between the two years of measurements were mainly caused by the greater CH4 emissions in the first year (37.4 g CH4 m-2 compared to 21.03 g CH4 m-2 in the second year), probably as a consequence of the drainage of the water table in the middle of the growing season during the second year, which resulted in lower CH4 emissions without significant increases of N2O and CO2 fluxes. However, midseason drainage also resulted in small decreases of yield, indicating that GHG budget studies from agricultural systems should consider carbon exports through the harvest. The balance between net GWP and carbon yield indicated a loss of carbon equivalents from the system, which was more than 30-fold higher in the first year. Our results therefore suggest that an adequate management of the water table has the potential to be an

  5. Utilizing NASA Earth Observations to Monitor Land Management Practices and the Development of Marshlands to Rice Fields in Rwanda

    Science.gov (United States)

    Dusabimana, M. R.; Blach, D.; Mwiza, F.; Muzungu, E.; Swaminathan, R.; Tate, Z.

    2014-12-01

    Rwanda, a small country with the highest population density in Sub-Saharan Africa, is one of the world's poorest countries. Although agriculture is the backbone of Rwandan economy, agricultural productivity is extremely low. Over 90 % of the population is engaged in subsistence farming and only 52 % of the total land surface area is arable. Of this land, approximately 165,000 hectares are marshlands, of which only 57 % has been cultivated. Rwandan government has invested in the advancement of agriculture with activities such as irrigation, marshland reclamation, and crop regionalization. In 2001, Ministry of Agriculture and Animal Resources (MINAGRI) released the Rural Sector Support Program (RSSP), which aimed at converting marshlands into rice fields at various development sites across the country. The focus of this project was to monitor rice fields in Rwanda utilizing NASA Earth observations such as Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager. Modified Normalized Difference Water Index (MNDWI) was used to depict the progress of marshland to rice field conversion as it highlights the presence of irrigated rice fields from the surrounding area. Additionally, Decision Support System for Agrotechnology Transfer (DSSAT) was used to estimate rice yield at RSSP sites. Various simulations were run to find perfect conditions for cultivating the highest yield for a given farm. Furthermore, soil erosion susceptibility masks were created by combining factors derived from ASTER, MERRA, and ground truth data using Revised Universal Soil Loss Equation (RUSLE). The end results, maps, and tutorials were delivered to the partners and policy makers in Rwanda to help make informed decisions. It can be clearly seen that Earth observations can be successfully used to monitor agricultural and land management practices as a cost effective method that will enable farmers to improve crop yield production and food security.

  6. Runoff of pesticides from rice fields in the Ile de Camargue (Rhone river delta, France): Field study and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Comoretto, Laetitia; Arfib, Bruno; Talva, Romain; Chauvelon, Philippe; Pichaud, Marc; Chiron, Serge [Laboratoire Chimie et Environnement, Universite de Provence, Case 29, 3, Place Victor Hugo, F-13331 Marseille Cedex 3 (France); Hoehener, Patrick [Laboratoire Chimie et Environnement, Universite de Provence, Case 29, 3, Place Victor Hugo, F-13331 Marseille Cedex 3 (France)], E-mail: hoehener@up.univ-mrs.fr

    2008-02-15

    A field study on the runoff of pesticides was conducted during the cultivation period in 2004 on a hydraulically isolated rice farm of 120 ha surface with one central water outlet. Four pesticides were studied: Alphamethrin, MCPA, Oxadiazon, and Pretilachlor. Alphamethrin concentrations in runoff never exceeded 0.001 {mu}g L{sup -1}. The three other pesticides were found in concentrations between 5.2 and 28.2 {mu}g L{sup -1} in the runoff water shortly after the application and decreased thereafter. The data for MCPA compared reasonably well with predictions by an analytical runoff model, accounting for volatilization, degradation, leaching to groundwater, and sorption to soil. The runoff model estimated that runoff accounted for as much as 18-42% of mass loss for MCPA. Less runoff is observed and predicted for Oxadiazon and Pretilachlor. It was concluded that runoff from rice paddies carries important loads of dissolved pesticides to the wetlands in the Ile de Camargue, and that the model can be used to predict this runoff. - Runoff of dissolved pesticides was measured on a rice farm in the Camargue (France) and modeled with an analytical model.

  7. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    OpenAIRE

    Maria Lígia de Souza Silva; Godofredo Cesar Vitti; Anderson Ricardo Trevizam

    2014-01-01

    Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different re...

  8. Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.

    Science.gov (United States)

    Ohba, S Y; Matsuo, T; Takagi, M

    2013-03-01

    Fallow field biotopes that develop from abandoned rice fields are man-made wetlands that provide new habitats for various aquatic animals. Although consideration of such biotopes generally focuses on their positive aspects, this study evaluated the negative aspects of establishing fallow field biotopes with regard to mosquito breeding sites. To determine whether fallow field biotopes become breeding habitats for vector mosquitoes, we evaluated mosquito fauna in fallow field biotopes and adjacent rice fields. We found larvae of Anopheles lesteri, Anopheles sinensis and Culex tritaeniorhynchus (all: Diptera: Culicidae) in the biotopes. Although abundances of mosquito larvae in the biotopes and rice fields were statistically similar, mosquito abundances in rice fields increased dramatically in August when the water level reduced after the rainy season. The abundance and variety of the mosquitoes' natural predators were greater in biotopes than in rice fields because the former are a permanent and stable aquatic environment. A generalized linear mixed model showed a negative effect of predator diversity on mosquito larvae abundance in both habitats. Although fallow field biotopes become breeding habitats for vector mosquitoes, establishing biotopes from fallow fields in order to protect various aquatic animals, including mosquito insect predators, may help to control mosquito breeding. © 2012 The Royal Entomological Society.

  9. Performance of Hybrids between Weedy Rice and Insect-resistant Transgenic Rice under Field Experiments: Implication for Environmental Biosafety Assessment

    Institute of Scientific and Technical Information of China (English)

    Qian-Jin Cao; Hui Xia; Xiao Yang; Bao-Rong Lu

    2009-01-01

    Transgene escape from genetically modified (GM) rice Into weedy rice via gene flow may cause undesired environmental consequences. Estimating the field performance of crop-weed hybrids will facilitate our understanding of potential introgression of crop genes (including transgenes) into weedy rice populations, allowing for effective biosafety assessment. Comparative studies of three weedy rice strains and their hybrids with two GM rice lines containing different insect-resistance transgenes (CpTl or BtlCpTI) indicated an enhanced relative performance of the crop-weed hybrids, with taller plants, more tillers, panicles, and spikelets per plant, as well as higher 1000-seed weight, compared with the weedy rice parents, although the hybrids produced less filled seeds per plant than their weedy parents. Seeds from the F1 hybrids had higher germination rates and produced more seedlings than the weedy parents, which correlated positively with 1000-seed weight. The crop-weed hybrids demonstrated a generally enhanced relative performance than their weedy rice parents in our field experiments. These findings indicate that transgenes from GM rice can persist to and introgress into weedy rice populations through recurrent crop-to-weed gene flow with the aid of slightly increased relative fitness in F1 hybrids.

  10. Estimation of the rice-planting field in Bangladesh by satellite remote sensing

    Science.gov (United States)

    Furuta, E.; Suzuki, G.; Yamassaki, M.; Teraoka, T.; Fujiwara, H.; Ogino, Y.; Akashi, M.; Lahrita, L.; Naruse, N.; Takahashi, Y.

    2016-12-01

    In Bangladesh, price of rice has been unstable due to a large increase in production. To control the price can become a political issue, because rice agriculture is one of the most important industries in Bangladesh, whereas the total area of the paddy field is accurately unknown, owing to unsustainable and on-site surveys for the area (1). Satellite remote sensing is an effective solution to research the all area of domestic paddy field. Microwave satellite imaging has a large merit to be observable regardless of the weather conditions, however, research institutions have been limited to observing continuously since the cost is high for developing countries, such as Bangladesh. This study aims to establish the way to grasp the paddy field using optical satellite images for free of charge (Landsat-8). We have focused on seasonal changes in the water and the vegetation indices obtained from paddy fields. We have performed image calculations of Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) of the well-known paddy field in Bangladesh Rice Research Institute. We found that there are seasonal changes of NDVI and NDWI calculated from paddy field. The characteristics are as follows; the NDVI and the NDWI values varies by 0.17-0.25 up and 0.11-0.19 down, respectively, at the transition from the dry to the rainy season, on the other hand, the NDVI and the NDWI changes by 0.21-0.29 down and 0.09-0.17 up from the rainy to the dry season. These features make us to distinguish the paddy field from the other cultivated area. The decrease of NDVI means that rice bares, The increase of NDWI can be interpreted that the paddy field is covered with water for the preparation for planting it. Our estimated area of paddy field in Bangladesh (85,900km ) corresponds well with the previous reported value of 117,700km (1). We have established the way to grasp the paddy field using optical satellite images for free of charge, on the bases of the

  11. Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GIS

    Science.gov (United States)

    Ayoade, Modupe Alake

    2017-08-01

    Rice is one of the most preferred food crops in Nigeria. However, local rice production has declined with the oil boom of the 1970s causing demand to outstrip supply. Rice production can be increased through the integration of Geographic Information Systems (GIS) and crop-land suitability analysis and mapping. Based on the key predictor variables that determine rice yield mentioned in relevant literature, data on rainfall, temperature, relative humidity, slope, and soil of Oyo state were obtained. To develop rice suitability maps for the state, two MCE-GIS techniques, namely the Overlay approach and weighted linear combination (WLC), using fuzzy AHP were used and compared. A Boolean land use map derived from a landsat imagery was used in masking out areas currently unavailable for rice production. Both suitability maps were classified into four categories of very suitable, suitable, moderate, and fairly moderate. Although the maps differ slightly, the overlay and WLC (AHP) approach found most parts of Oyo state (51.79 and 82.9 % respectively) to be moderately suitable for rice production. However, in areas like Eruwa, Oyo, and Shaki, rainfall amount received needs to be supplemented by irrigation for increased rice yield.

  12. Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GIS

    Science.gov (United States)

    Ayoade, Modupe Alake

    2016-07-01

    Rice is one of the most preferred food crops in Nigeria. However, local rice production has declined with the oil boom of the 1970s causing demand to outstrip supply. Rice production can be increased through the integration of Geographic Information Systems (GIS) and crop-land suitability analysis and mapping. Based on the key predictor variables that determine rice yield mentioned in relevant literature, data on rainfall, temperature, relative humidity, slope, and soil of Oyo state were obtained. To develop rice suitability maps for the state, two MCE-GIS techniques, namely the Overlay approach and weighted linear combination (WLC), using fuzzy AHP were used and compared. A Boolean land use map derived from a landsat imagery was used in masking out areas currently unavailable for rice production. Both suitability maps were classified into four categories of very suitable, suitable, moderate, and fairly moderate. Although the maps differ slightly, the overlay and WLC (AHP) approach found most parts of Oyo state (51.79 and 82.9 % respectively) to be moderately suitable for rice production. However, in areas like Eruwa, Oyo, and Shaki, rainfall amount received needs to be supplemented by irrigation for increased rice yield.

  13. RICE (Oryza sativa L. CULTIVATION AND IT’S GEOGRAPHICAL DISTRIBUTIONIN TURKEY

    Directory of Open Access Journals (Sweden)

    Nuran TAŞLIGİL

    2011-06-01

    Full Text Available Rice is one of the staple foods in the world. Rice in the husk is a cereal whose breeding depends on a special access because of the climate it needs can create a malaria epidemic. Turkey is one of the major countries in rice in the husk breeding. In Turkey, the accretion in the amount of the rice for each person especially after 1980, caused an accretion in the export of the notch. As a matter of fact, the production and the breeding of the notch changes every year acording to the economy, ecology and the marketing channels. However, according to the last istatistics it has been understood that the rice plantation areas in Marmara Region and Edirne showed distinction among the whole country.

  14. THE EFFECT OF RICE CULTIVARS ON METHANE EMISSION FROM IRRIGATED RICE FIELD

    Directory of Open Access Journals (Sweden)

    P. Setyanto

    2016-10-01

    Full Text Available Rice plants have been reported to affect methane (CH4 emission from rice fields. The objectives of this study were to determine the effect of rice cultivars on CH4 emission from flooded rice and to develop crop management strategies with low emitting rice cultivars while sustaining high yield. The four rice cultivars studied were Memberamo, Cisadane, IR64, and Way Apoburu. The CH4 emissions were determined in the wet season of 2001/2002 (November-February using an automated closed chamber technique in an irrigated field condition. Farmyard manure at the rate of 5 t ha-1 was given to the plots to ensure carbon was not limited. Root weight, root length, biomass, and number of tillers were determined at 17, 36, and 57 days after transplanting (DAT. The results showed that the mean CH4 emission was highest in the plot planted with Cisadane (94.8 kg CH4 ha-1, and the lowest with IR64 (37.7 kg CH4 ha-1. The plots treated with emberamo and Way Apoburu resulted an intermediate CH4 emission at the average of 61.1 and 58.9 kg CH4 ha-1, respectively. There was no significant difference in yield between the cultivars tested. The yield of Memberamo, Cisadane, IR64, and Way Apoburu were 5.882, 5.764, 5.873 and 6.065 t ha-1, respectively. Statistical analysis showed that there were no significant differences in the root weight and root length among cultivars. However, Cisadane gave the highest dry matter weight (222 g hill-1 at 57 DAT compared to the other cultivars (175-190 g hill-1. Plant tillers did not show significant differences between the cultivars. Regression analysis showed that CH4 flux was significantly related with root weight, root length, aboveground biomass, and number of plant tillers. This finding shows that the use of selected cultivars, such as IR64, can potentially lower CH4 emission without scarifying yield.

  15. Fracionamento de metais pesados em solo contaminado antes e após cultivo de arroz Fractionation of heavy metals in polluted soil before and after rice cultivation

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2008-01-01

    Full Text Available The objective of the present work was to evaluate the distribution of Cd, Cu, Mn, Pb and Zn among the different fractions of contaminated soil, before and after rice cultivation. Seven soil samples with different degrees of contamination were studied using a randomized experimental design, with four replicates. Using an ICP-OES we analyzed the contents of heavy metals in fractions of soil, the organic matter therein, the oxides and the residual content before and after rice cultivation. The largest concentrations of Cd, Cu, Mn and Zn in the soil are found in the fractions with stable chemical bonds.

  16. Natural herbicide resistance (HR) to broad-spectrum herbicide, glyphosate among traditional and inbred-cultivated rice (Oryza sativa L.) varieties in Sri Lanka.

    Science.gov (United States)

    Weerakoon, S R; Somaratne, S; Wijeratne, R G D; Ekanyaka, E M S I

    2013-08-15

    Weeds along with insect pests and plant diseases are sources of biotic stress in crop systems. Weeds are responsible for serious problems in rice worldwide affecting growth and causing a considerable reduction in quality and quantity in yield. High concentrations of pre-emergent-broad-spectrum systemic herbicide, Glyphosate is prevalently applied to control rice weeds which intern causes severe damages to cultivated rice varieties, susceptible to Glyphosate. However, there may be rice varieties with natural Herbicide Resistance (HR) which are so far, has not been evaluated. In this study Six traditional and eighteen developed-cultivated rice varieties (Bg, Bw, At and Ld series developed by Rice Research Development Institute, Sri Lanka) were used to screen their natural HR. RCBD with five replicates and three blocks in each treatment-combination was used as the experimental design. As observations, time taken-to seed germination, time taken to flowering; plant height and number of leaves at 12-weeks after sawing, leaf-length, breadth, panicle-length, number of seeds/panicle of resistant plants and controls were recorded. Plants with > or = 40% resistance were considered as resistant to Glyphosate. Ten inbred-cultivated rice varieties (Bg250, Bg94-1, Bg304, Bg359, Bg406, Bg379-2, Bg366, Bg300, Bw364, At362) and three traditional rice varieties ("Kalu Heenati", "Sudu Heenati", "Pachchaperumal") were naturally resistant to 0.25 g L(-1) Glyphosate concentration and when increased the concentration (0.5 g L(-1)) resistance was reduced. This study showed the usefulness of modern statistical method, classification and regression tree analysis (CART) in exploring and visualizing the patterns reflected by a large number of rice varieties (larger experimental database) on herbicide resistance in future.

  17. Influence of Crop Nutrition on Grain Yield, Seed Quality and Water Productivity under Two Rice Cultivation Systems

    Directory of Open Access Journals (Sweden)

    Y.V. SINGH

    2013-03-01

    Full Text Available The system of rice intensification (SRI is reported to have advantages like lower seed requirement, less pest attack, shorter crop duration, higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation. With this background, SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute, New Delhi, India during two wet seasons (2009–2011. In the experiment laid out in a factorial randomized block design, two methods of rice cultivation [conventional transplanting (CT and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44 were used under seven crop nutrition treatments, viz. T1, 120 kg/hm2 N, 26.2 kg/hm2 P and 33 kg/hm2 K; T2, 20 t/hm2 farmyard manure (FYM; T3, 10 t/hm2 FYM + 60 kg/hm2 N; T4, 5 t/hm2 FYM + 90 kg/hm2 N; T5, 5 t/hm2 FYM + 60 kg/hm2 N + 1.5 kg/hm2 blue green algae (BGA; T6, 5 t/hm2 FYM + 60 kg/hm2 N + 1.0 t/hm2 Azolla, and T7, N0P0K0 (control, no NPK application to study the effect on seed quality, yield and water use. In SRI, soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2–3 cm was maintained during the reproductive phase of rice, however, in CT, standing water was maintained in crop growing season. Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI. Seed quality was superior in SRI as compared to CT. Integrated nutrient management (INM resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties. Grain yield attributes such as number of effective tillers per hill, panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone. Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer. The grain yield

  18. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    Science.gov (United States)

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  19. STUDY ON RESIDUES OF 14C-FENITROTHION IN MODEL RICE-FISH ECOSYSTEM AND FIELD RICE-FISH ECOSYSTEM

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Residues of 14C-fenitrothion in a model rice-fish ecosystem and field rice-fish ecosystem were studied.When equal amounts of the pesticide were applied.the extractable residues in brown rice (equivalent to 34.3±1.9ug/kg fenitrothion) and rice stems and leaves(20.9±1.5ug/kg) of the model rice-fish ecosystem were 10-15times higher than that of the field rice-fish ecosystem(4.48±0.13ug/kg and 1.27±0.34ug/kg respectively).Residues in upper part of the soil (6.50±0.1-8.10±0.2ug/kg)and lower part of the soil(1.30±0.1-1.50±0.1ug/kg)of the model rice-fish ecosystem were 10-40 times higher than that of the field rice-fish ecosystem (0.17±0.01ug/kg).The extractable residues in paddy water of the model ecosystem (0.30±0.01ug/kg)were similar to that of the field ecosystem(0.20±0.02ug/kg),When the fenitrothion was sprayed on the rice plants.residues in brown rice,fish body.soil and paddy water were lower than those when the pesticide was sprayed on the surface of the soil.

  20. Genotypic Differences in Growth and Physiological Responses to Transplanting and Direct Seeding Cultivation in Rice

    Institute of Scientific and Technical Information of China (English)

    CHEN Song; CAI Sheng-guan; CHEN Xin; ZHANG Guo-ping

    2009-01-01

    The field experiments were conducted to investigate the growth and physiological responses of six super hybrid rice combinations to two planting methods, transplanting (TP) and direct seeding (DS) during 2006-2007 and 2007-2008. The 1000-grain weight and number of tillers per plant at the early growth stage, the maximum quantum yield of PSII (Fv/Fm) and transpiration rate (Tr) were higher in DS plants than in TP ones, whereas the grain yield, number of panicles per square meter, seed setting rate, net photosynthetic rate (Pn) and stomatal conductance were lower in DS plants. However, little difference was detected in number of grains per panicle, stem (shoot) and leaf weight between the combinations in the two planting methods. The responses of plant growth and physiological traits to planting method differed greatly among the six combinations. In both planting methods, Chouyou 58 and Yongyou 6 had the highest and lowest panicle biomass and Pn, respectively. The higher yield of Chunyou 58 was associated with more numbers of panicles per square meter and grains per panicle in both planting methods. The results indicate that lower grain yield in DS relative to TP is attributed to more excessive tillers at the early stage, lower leaf biomass and photosynthetic rate at the late stage.

  1. The Early Rice Project: From Domestication to Global Warming

    Directory of Open Access Journals (Sweden)

    Dorian Q. Fuller

    2011-10-01

    Full Text Available The Early Rice Project, at the UCL Institute of Archaeology, is clarifying the origins of Asian rice agriculture. In the Lower Yangtze region of China, we have found the tipping point when domesticated forms first outnumber wild types c.4600 BC. Investigations of assorted weed flora are also revealing how the cultivation of rice changed over time, with early cultivation in small, irregular, dug-out paddy fields in the Lower Yangtze from c.4000 BC, providing a means for the careful control of water conditions. We also work on early rice cultivation in Thailand and India. By better characterising how rice was cultivated across its entire range, we aim to model the ancient output of atmospheric methane from wet rice fields, as this was a potential contributor to the long story of human-caused global warming.

  2. Little white lies: pericarp color provides insights into the origins and evolution of Southeast Asian weedy rice

    Science.gov (United States)

    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy ...

  3. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice

    Directory of Open Access Journals (Sweden)

    Yi-Chien Wu

    2016-01-01

    Full Text Available Typical japonica type rice is sensitive to high temperature. Pon-Lai rice is a special japonica type with adaptation to the subtropical climate in Taiwan. Facing climate change, rising temperatures would damage the yield and quality of rice production. This research was conducted using Pon-Lai rice in the field of a subtropical climate. We conducted 2 experiments, including a year-round experiment and collection of samples from different districts for building different temperature conditions. We analyzed the correlation between rising temperature and rice yield or quality. In our results, the critical period of temperature effect is 0–15 days after heading (H15. The threshold of high temperature damage in yield and appearance quality was 25–27 °C. Grain weight decreased about 2–6%, while the temperature of H15 was raised 1 °C above the thresholds. Perfect grain ratio and chalky grain ratio decreased and increased, respectively, while the temperature of H15 was raised above the thresholds. However, the high temperature in H15 affected the physicochemical characteristics. In addition, we found positive correlation between grain length to width ratio and perfect grain ratio. Grain length to width ratio could be an index of temperature effects for grain quality. In our study, when the temperature was below 30 °C, a rising temperature of H15 could damage rice yield and appearance quality, and change grain shape. Our results could provide reference for dealing with the warming future in other temperate rice-cultivated countries.

  4. ANALYSIS ON THE DYNAMICS OF SPATIAL DISTRIBUTION PATTERN OF MIXED SPIDER POPULATION IN RICE FIELD

    Institute of Scientific and Technical Information of China (English)

    ZhiWang; Zhe-mingYuan; Da-xiangSong; Ming-shengZhu

    2004-01-01

    The results make it clear that there are total 11 families, 29 genera and 43 species of spiders in the rice field of Dong Fang Hong Farm. Among them, there are 8 families, 19 genera and 28 species in the early rice field, and 10 families, 27 genera and 36 species in the late rice field. The spatial distribution pattern of mixed spider populations in rice fields was different during different development stages of rice plant. During the prophase, metaphase and anaphase of early rice plant development, the spatial distribution pattern of mixed spider populations was aggregative, random and aggregative respectively. During the prophase, metaphase and anaphase of late rice plant development, the spatial distribution pattern was uniform, aggregative and uniform respectively.

  5. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Souza Silva

    2014-04-01

    Full Text Available Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

  6. Arsenic translocation in rice cultivation and its implication for human health

    Directory of Open Access Journals (Sweden)

    José M Bastías

    2016-03-01

    Full Text Available Arsenic (As is a toxic metalloid for plants and animals. Large amounts of As have been released in arable soils through anthropogenic activities, use of contaminated irrigation water, and mining among others. Rice (Oryza sativa L. is one of the most consumed cereals worldwide; it is an important route of exposure for As. The objective of this review was to explain possible mechanisms involved in As absorption that contaminate rice plant through the soil and water, and to mention studies that have been conducted to minimize the risk of human exposure. The root is able to absorb and accumulate large amounts of As, but only small amounts are translocated to the grain and tillers. Arsenic concentrations in rice tissues decrease from the root to the grain. Information about As translocation in rice is sparse and research is directed toward studying the molecular mechanism of absorption and accumulation in the grain because it has not yet been explained. Some rice varieties have been developed that are resistant to high soil As concentrations and are not able to translocate the metalloid toward the root. Many studies suggest that not all ingested inorganic As accumulated in the gastrointestinal tract is absorbed into the bloodstream and produces toxicity. It is therefore recommended that As bioavailability be evaluated in imported or domestic Chilean rice to more precisely estimate human health risk

  7. Non-Destructive Monitoring of Rice by Hyperspectral In-Field Spectrometry and Uav-Based Remote Sensing: Case Study of Field-Grown Rice in North Rhine-Westphalia Germany

    Science.gov (United States)

    Willkomm, M.; Bolten, A.; Bareth, G.

    2016-06-01

    In the context of an increasing world population, the demand for agricultural crops is continuously rising. Especially rice plays a key role in food security, not only in Asia. To increase crop production of rice, either productivity of plants has to be improved or new cultivation areas have to be found. In this context, our study investigated crop growth of paddy rice (Oryza Sativa J.) in Germany. An experimental field in the vegetation period of 2014 with two nitrogen treatments was conducted using remote sensing methods. The research project focussed on two main aspects: (1) the potential of UAV-based and hyperspectral remote sensing methods to monitor selected growth parameters at different phenological stages; (2) the potential of paddy rice cultivation under the present climate condition in western Germany. We applied a low-cost UAV-system (Unmanned Aerial Vehicle) to generate high resolution Crop Surface Models (CSM). These were compared with hyperspectral in-field measurements and directly measured agronomic parameters (fresh and dry aboveground biomass (AGB), leaf-area-index (LAI) and plant nitrogen concentration (PNC)). For all acquisition dates we could determine single in-field structures in the CSM (e.g. distribution of hills) and different growth characteristics between the nitrogen treatments. Especially in the second half of the growing season, the plants with higher nitrogen availability were about 25 - 30 % larger. The plant height in the CSM correlates particularly with fresh AGB and the LAI (R2 > 0.8). Thus, the conducted methods for plant growth monitoring can be a contribution for precision agriculture approaches.

  8. Effects of cultivation conditions on the diversity of microbes involved in the conversion of rice straw to fodder

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-yan; GAO Li-juan; WANG Xiao-fen; WANG Wei-dong; CUI Zong-jun

    2007-01-01

    To confirm the optimum cultivation conditions for analyzing lactic acid bacterial communities and to provide the cultivation foundation for lactic acid bacterial communities that were used to convert straw into fodder, fermented rice straw was inoculated into 13 different broths. After 48 h of cultivation, pH values, volatile products, and microbial diversity were analyzed. Except for LAB broth, the pH values of the other broths could decrease to approximately 4.5. GC/MS analysis showed that lactic acid in Tomato MRS broth, MRS broth, LAB broth, and Tomato juice broth was higher than that in the other broths. DNA concentration analysis showed that the counts of microbes in Tomato MRS broth were 2.5 times higher than those in other broths and that tomato juice favored the reproduction of the microbes. Denaturing gradient gel electrophoresis (DGGE) analysis showed that the number of lactic acid bacterial species in HYA broth, Tomato juice broth, and Tomato MRS broth were higher than those in the other broths.

  9. Rice re-cultivation in southern China:An option for enhanced climate change resilience in rice production%中国南方调整水稻种植格局——一种水稻生产预先适应气候变化的选择

    Institute of Scientific and Technical Information of China (English)

    MA Xin; WU Shaohong; LI Yu'e; ZHANG Xueyan; GAO Qingzhu; WU Yang

    2013-01-01

    @@%Rice planted in southern China accounts for 94% of the total in sown acreage and 88% of the total in production,which matters a lot to Chinese food security.However,due to the prolonged conflict between water availability and rice growth in spatial/temporal distribution,rice production suffers from seasonal drought at acreage of 16%-22%,which compromises food production capacity and food security.Focusing on the spatial distribution of seasonal drought with rice and the practices to adapt to it,and based on an analysis of balanced water supply for and demand by rice at a growing season scale during 1981-2030,this paper assesses the changing seasonal drought in the process of rice production under the changing climate in the future,and identifies general rice re-cultivation options for climate change adaptation.Some conclusions can be drawn as follows.(1) Rice suggests a decline in seasonal drought,with early season rice (early rice hereafter) by 12,500 km2,middle season rice (middle rice) by 80,000 km2,and in particular late season rice (late rice) by 25,000 km2,which accounts for almost 20% of its cultivated acreage.It is indicated that due to climate change,seasonal drought in major rice producing areas tends to alleviate in general,late season rice in particular.(2) Future climate change brings about a significant impact on the spatial/temporal distribution of water resources in rice producing areas in China.Based on 'pre-designed' adaptation actions for rice-re-cultivation,the rice cultivation pattern undergoes a significant alteration between 1981-2000 and 2001-2030.In eastern Guizhou and western Hunan,the pattern of single early plus single dry farming is changed into double cropping.In eastern Hunan,the pattern of dry cropping is changed into single early plus single dry farming.In northern Anhui,the pattern of dry farming cropping is changed into middle rice.All this is aimed at a potential adequate availability of water for rice production in

  10. Parkinson's Disease Prevalence and Proximity to Agricultural Cultivated Fields

    Science.gov (United States)

    Yitshak Sade, Maayan; Zlotnik, Yair; Kloog, Itai; Novack, Victor; Peretz, Chava; Ifergane, Gal

    2015-01-01

    The risk for developing Parkinson's disease (PD) is a combination of multiple environmental and genetic factors. The Negev (Southern Israel) contains approximately 252.5 km2 of agricultural cultivated fields (ACF). We aimed to estimate the prevalence and incidence of PD and to examine possible geographical clustering and associations with agricultural exposures. We screened all “Clalit” Health Services members in the Negev (70% of the population) between the years 2000 and 2012. Individual demographic, clinical, and medication prescription data were available. We used a refined medication tracer algorithm to identify PD patients. We used mixed Poisson models to calculate the smoothed standardized incidence rates (SIRs) for each locality. We identified ACF and calculate the size and distance of the fields from each locality. We identified 3,792 cases of PD. SIRs were higher than expected in Jewish rural localities (median SIR [95% CI]: 1.41 [1.28; 1.53] in 2001–2004, 1.62 [1.48; 1.76] in 2005–2008, and 1.57 [1.44; 1.80] in 2009–2012). Highest SIR was observed in localities located in proximity to large ACF (SIR 1.54, 95% CI 1.32; 1.79). In conclusion, in this population based study we found that PD SIRs were higher than expected in rural localities. Furthermore, it appears that proximity to ACF and the field size contribute to PD risk. PMID:26357584

  11. Rice Combine Harvester: Its Effects to the Livelihood of Rice-Field Tenants in a Second Class Municipality

    Directory of Open Access Journals (Sweden)

    Jesrael Medrano

    2016-11-01

    Full Text Available Over the past few years, the advancement of modern technology has intensely overhauled society. People use and benefit from modern technology, and the tremendous opportunities it provides play a significant role in almost all aspects of human life. However, too much usage of this has its repercussions as well. Technological and mechanical change in agricultural sector and its impact on the work force have already become one of the neglected concerns of farmers in Amulung, a second class municipality of Cagayan. The newly introduced rice combine harvesters are already dominating the rice fields in Amulung during harvesting seasons. Thus, it replaces the conventional system of harvesting using human labor and sickles. This study is conducted to determine the effects of rice combine harvesters to the livelihood of rice field tenants in Amulung, Cagayan. Using purposive sampling through site selection approach and networking, 25 rice field tenants were selected as participants of this study. In–depth conversations and guided interview had served as the main instruments used by the researchers to gather the needed data. The results showed that rice combine harvesters cause unemployment and migration among the participants and degrade their sense of solidarity and camaraderie. As a result, the participants sought alternative activities which they can be paid off. Also, they engage themselves in livestock and poultry production, and even in informal sector economy just to cope with the prevalence of rice combine harvesters.

  12. The effect of motor vehicle emission towards lead (Pb content of rice field soil with different clay content

    Directory of Open Access Journals (Sweden)

    C.C.Wati

    2015-10-01

    Full Text Available Motor vehicle gas emission contains lead (Pb which is a hazardous and toxic substance. Agricultural land, especially rice field, which is located nearby roads passed by many motor vehicle, are susceptible to the accumulation of Pb. If Pb is permeated by plants cultivated in the rice field, it will be very hazardous for humans as they are the final consumers. Hence, it is essential to identify Pb content of rice-field soil initiated by motor vehicle gas emission. This study was aimed to identify the effects of motor vehicle density, the distance between rice-field and road, and the clay content of soil towards Pb content of soils in Blitar and Ngawi Regencies of East Java. The method used for the study was survey method managed by using three-factor nested design with three replicates. The results of this study showed that motor vehicle density and the distance of rice field to road provide significant affected the total of Pb content of soil. However, the dissemination pattern of Pb in the soil was irregular due to the factors of climate and environment. Before Pb reached soil surface, Pb was spread out in the air due to the effect of temperature, wind velocity, vehicle velocity, size of vehicle, and road density. Consequently, the location with low motor vehicle density and positioned faraway to the road had higher total rate of Pb than the location with high motor vehicle density and positioned nearby the road. Clay content affected the total rate of Pb content as much as 37%, every 1% increase of clay content increased the total rate of Pb as much as 0.08 mg/kg.

  13. Azolla-Anabaena as a Biofertilizer for Rice Paddy Fields in the Po Valley, a Temperate Rice Area in Northern Italy

    Directory of Open Access Journals (Sweden)

    Stefano Bocchi

    2010-01-01

    Full Text Available Azolla is a floating pteridophyte, which contains as endosymbiont the nitrogen-fixing cyanobacterium Anabaena azollae (Nostocaceae family. Widely cultivated in the Asian regions, Azolla is either incorporated into the soil before rice transplanting or grown as a dual crop along with rice. To examine the feasibility of its use in flooded rice fields sited in the Temperate European Areas, we carried out a series of experiments in PVC tanks during 2000–2002 in Po Valley (northern Italy conditions, to study the growth-development dynamics and the resistance/tolerance to low temperatures and to commonly used herbicides of several different Azolla strains. Three out of five strains tested survived the winter, with an increase in biomass from March to May producing approximately 30–40 kg ha−1 of nitrogen. One of these strains, named “Milan”, emerged as the most resistant to herbicide and the most productive. Of the herbicides tested, Propanil permitted the survival of growing Azolla.

  14. Comparative Study of Rice Morphogenesis with Different Cultivation Methods%不同栽培方式下水稻形态发生比较研究

    Institute of Scientific and Technical Information of China (English)

    严定春

    2012-01-01

    The aim of this study was to compare the morphological characteristics of rice ( Oryza sativa L. ) with different cultivation methods and investigate the dynamics of organ growth and development characteristics of different rice cultivars. [ Method ] Based on continuous field observation and destructive sampling over a growing season, detailed organ morphological data were obtained including leaf length, node number, plant height, tiller number, leaf angle, leaf area and specific leaf weight, to compare organ morphological differences a-mong 4 rice cultivars of Baidao (indica) , Jinnanfeng (japonica) , 9325 (japonica) and 9915 (japonica) with 3 cultivation methods of field planting in Weigang, pot planting in Weigang, and field planting in Jiangpu. [Result] Maximum leaf length of each node gradually increased at the early growth stage and decreased at the later growth stage, the relationship between maximum leaf length and node can be described with the equations y -ax and y = ax + b; node number, growth duration, leaf length and plant height of pot planting rice in Weigang were smaller than that of the other two field planting methods; the relationship between plant height and sunshine duration, plant height and GDD (growing degree days) can be described with the equation y = ax + b, 19.23 ℃ o d of GDD ( ≥ 10℃ o d) and 8.12 h of sunshine duration were required to increase 1 cm of plant height; plant height, tiller number, and leaf area of Baidao were higher than that of the other 3 japonica rice cultivars, but the specific leaf weight and leaf angle were smaller. .[ Conclusion ] Comparison of morphological characteristic differences among rice cultivars is an important way to select water-saving and drought-tolerant rice varieties. In this study, the experimental results can be integrated into a rice functional-architectural model to simulate rice organ growth dynamics in a three-dimensional space, thereby providing reference for selection of water

  15. African rice (Oryza glaberrima) cultivation in the Togo Hills: ecological and socio-cultural cues in farmer seed selection and development

    NARCIS (Netherlands)

    Teeken, B.W.E.

    2015-01-01

    Abstract

    Teeken B (2015). African rice (Oryza glaberrima) cultivation in the Togo Hills: ecological and socio-cultural cues in farmer seed selection and development. PhD thesis, Wageningen University, The Netherlands, 306 pp. The low adoption rates of

  16. Methane mitigation in transplanting and direct-wet seeding rice fields treated with fertilizers under condition of alternately flooding and soil aerating

    Directory of Open Access Journals (Sweden)

    Sanwangsi, M.

    2006-05-01

    Full Text Available Rice is main staple crop of the world. Growing rice in flooded water entails methane (CH4 emission. CH4 is one of greenhouse gases contributing to global warming. The experiment aimed to clarify the influence of fertilizer and water management on total methane emission (TME, methane mitigation and rice yields (RY. The experimental design was a split - split plot with 3 replications taking 2 cultivation in main plots, transplanting (TP rice and direct-wet seeding (DWS rice fields; 2 basal fertilizers, 16-16-8, 20 kg/rai and chicken manure pallet (CMP, 105 kg/rai in sub plots; and 3 top dressing fertilizers 1 none, 2 urea (46% N, 15 kg/rai and 3 ammonium sulfate (AS, 21% N, 30 kg/rai in sub-sub plots. It also examined relationship between quantity of paddy-soil water, TME and RY of both cultivations. Methane emission rate (MER occurred during the whole growth period and was characterized by 2 large peaks: one from after transplanting or broadcasting to maximum tillering stage and the other from flowering to yellow ripening stage. Rapid declines of MER were dictated by soil aeration recognized as 3-5 days cracks. In TP rice plot based with CMP, 105 kg/rai, topped with AS, 30 kg/rai, TME decreased to 73.0% and RY increased to 14.7% over that of untreated plots with top dressing fertilizer, while in that topped with urea, 15 kg/rai, TME decreased to 68.9% and RY increased to 16.9%. In all of DWS rice plots which were topped with AS or urea, declines of TME ranged from 27.3 to 56.4% and increase of RY ranged from 31.3 to 47.9% over those without top dressing. In both TP and DWS plots, TMEs were closely correlated with the quantity of paddy-soil water (r = 0.83 and 0.86, respectively and with submergence days (r = 0.94 and 0.89, respectively. Hence, saturated condition in paddy soil is a primary factor for methanogenesis. Moreover, for TP rice, the relationship between TME and RY was weakly positive (r = 0.16, whereas that for DWS rice was obviously

  17. Coupling of Belowground Carbon Cycling and Stoichiometry from Organisms to Ecosystems along a Soil C Gradient Under Rice Cultivation

    Science.gov (United States)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2015-12-01

    Ecological stoichiometry is a framework linking biogeochemical cycles to organism functional traits that has been widely applied in aquatic ecosystems, animals and plants, but is poorly explored in soil microbes. We evaluated relationships among soil stoichiometry, carbon (C) cycling, and microbial community structure and function along a soil gradient spanning ~5-25% C in cultivated rice fields with experimental nitrogen (N) amendments. We found rates of soil C turnover were associated with nutrient stoichiometry and phosphorus (P) availability at ecosystem, community, and organism scales. At the ecosystem scale, soil C turnover was highest in mineral soils with lower C content and N:P ratios, and was positively correlated with soil inorganic P. Effects of N fertilization on soil C cycling also appeared to be mediated by soil P availability, while microbial community composition (by 16S rRNA sequencing) was not altered by N addition. Microbial communities varied along the soil C gradient, corresponding with highly covariant soil %C, N:P ratios, C quality, and carbon turnover. In contrast, we observed unambiguous shifts in microbial community function, imputed from taxonomy and directly assessed by shotgun sequenced metagenomes. The abundance of genes for carbohydrate utilization decreased with increasing soil C (and declining C turnover), while genes for aromatic C uptake, N fixation and P scavenging increased along with potential incorporation of C into biomass pools. Ecosystem and community-scale associations between C and nutrient substrate availability were also reflected in patterns of resource allocation among individual genomes (imputed and assembled). Microbes associated with higher rates of soil C turnover harbored more genes for carbohydrate utilization, fewer genes for obtaining energetically costly forms of C, N and P, more ribosomal RNA gene copies, and potentially lower C use efficiency. We suggest genome clustering by functional gene suites might

  18. ECOLOGICAL INVESTIGATION OF APPLICATION OF PESTICIDES IN RICE FIELDS

    Directory of Open Access Journals (Sweden)

    J. Nouri

    2000-12-01

    Full Text Available Among several pests of rice as one of the main agricultural products in Iran, rice borer, Chilo suppressalis is one of the most important pests of this crop. Use of pesticides coincided with the occurrence of this pest in the northern region of Iran in 1972. At present in order to control this pest, more than 12000 tones of pesticides granules are used annually. Ecological effects of pesticides application and the use of Trichograma sp. as a natural enemy, for assessing the impacts of pesticides in environments, especially on different living organisms on the plant, in irrigation water, and in 5 cm depth of surface soil, were investigated in two regions of Amol, named Osk. Mahalleh and Capik Field of Tashbandan. Results indicated that the two treatments were not different on croploss. One the contrary, in the pesticide treatment, there was a considerable decrease in the population of living organisms, particularly, no organism was observed in 5 cm depth of surface soil. It is recommended that in order to maintain the balance of environment, the use of chemicals for controlling rice borer must be with extreme care, only in the inevitable was with the use of principles of Integrated Pest Management.

  19. Study on Analysis of Variance on the indigenous wild and cultivated rice species of Manipur Valley

    Science.gov (United States)

    Medhabati, K.; Rohinikumar, M.; Rajiv Das, K.; Henary, Ch.; Dikash, Th.

    2012-10-01

    The analysis of variance revealed considerable variation among the cultivars and the wild species for yield and other quantitative characters in both the years of investigation. The highly significant differences among the cultivars in year wise and pooled analysis of variance for all the 12 characters reveal that there are enough genetic variabilities for all the characters studied. The existence of genetic variability is of paramount importance for starting a judicious plant breeding programme. Since introduced high yielding rice cultivars usually do not perform well. Improvement of indigenous cultivars is a clear choice for increase of rice production. The genetic variability of 37 rice germplasms in 12 agronomic characters estimated in the present study can be used in breeding programme

  20. Utilization of composted sugar industry waste (pressmud) to improve properties of sodic soil for rice cultivation.

    Science.gov (United States)

    Seth, Rashi; Chandra, R; Kumar, Narendra; Tyagi, A K

    2005-07-01

    Sulphitation pressmud (SPM) and its composts were prepared by heap, pit, NADEP and vermicomposting methods and their effects were compared with soil properties and growth, yield and nutrient uptake by rice in a sodic soil under pot conditions. Application of 15 t ha(-1) SPM and its different composts significantly increased the plant height and dry matter accumulation at different intervals, grain and straw yields and N, P and K uptake by the crop over the control. NADEP compost of SPM alone recorded the maximum and significant plant height by 8.5 to 19.3% and plant dry matter by 14.6 to 32.8% over the raw SPM at different intervals. NADEP composts of SPM alone and SPM + rice straw were also found to be superior than raw SPM by recording 34.8 and 27.8% more grain yield respectively. The SPM composts prepared by NADEP and SPM by vermicomposting methods significantly accumulated higher N and K in rice grains and straw, while NADEP compost of SPM and SPM + rice straw recorded more P in grains and straw than raw SPM. Application of SPM and its composts reduced the pH, EC and bulk density of the soil after rice harvesting, though the reductions were not significant in comparison to the control. However, these treatments increased the soil organic C by 33.33 to 69.0%, available N by 41.4 to 74.8%, available P by 47.1 to 97.8%, available K by 11.8 to 59.2% and available S by 10.3 to 90.7% over the control. NADEP composts, in general, were found to be superior than the raw SPM and other composts in residual soil nutrient content after rice crop.

  1. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    Science.gov (United States)

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  2. Measurement of Ammonia Emission Following Surface Application of Urea Fertilizer from Irrigated Paddy Rice Fields

    Institute of Scientific and Technical Information of China (English)

    Md.Toufiq Iqbal; TIAN Guang-ming; LIANG Xin-qiang; Fatima Rukshana

    2005-01-01

    Ammonia emission is one of the most important pathways of nitrogen loss from agricultural cultivated field. In this paper, we report the measurement of ammonia emission from paddy rice field obtained by surface application of urea fertilizer with water management. The main objective of the present study were to assess the amount of NH3 emission and the loss of nitrogen from paddy field as affected by various N doses, i.e., 0 (control), 90 (N1), 180 (N2), 270 (N3) and 360 (N4) kg ha-1, following field surface application of urea fertilizer with water management. Ammonia emissions were measured by continuous airflow enclosure method from plots fertilized with the application of surface urea. Increase in urea-N dosage increased NH3 emission thatwas measured from paddy rice field. Ammonia emission started immediately and was almost complete within 12 days after top dressing of urea application to the soils. Ammonia emissions were nearly constant in all treatments from 12 days after fertilizer application. Highest ammonia emission rate was 28 g/day and total amount of ammonia emission was 56.21 kg ha-1 for 360 kg N ha-1 dose. No remarkable observation was found about temperature for ammonia emission. Due to proper water management practices less emission was observed throughout the experiment period. The results also show that N loss through NH3 emission accounted for 11 to 16% during the ricegrowing season. These magnitudes of loss of N appear to be most important for environmental point of view.

  3. Greenhouse Gas Emissions and Global Warming Potential of Traditional and Diversified Tropical Rice Rotation Systems including Impacts of Upland Crop Management Practices i.e. Mulching and Inter-crop Cultivation

    Science.gov (United States)

    Janz, Baldur; Weller, Sebastian; Kraus, David; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-04-01

    systems SOC stocks were unaffected. This trend for R-M systems needs to be followed since it has significant consequences not only for the GWP balance but also with regard to soil fertility. New upland crop management practices where first implemented during land-preparation for dry season (July) 2015 where i) 6t/ha rice straw was returned to the field and incorporated into soil as mulch treatment and ii) mungbean was grown as a cover-crop between dry and wet season in addition to the rice straw application. The input of organic material led to higher methanogenic substrate availability during the following wet season. GHG measurements for upland cropping systems (R-M and R-A) indicate increased CH4 and N2O emissions with mulching and inter-crop cultivation when compared to a control treatment. Subsequent measurements will be necessary to further quantify and assess the mitigation potentials or risks of new management practices. Nevertheless, regarding a future increase of water scarcity it can be expected that mixed lowland-upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops.

  4. Pollen and phytolith evidence for rice cultivation and vegetation change during the mid-late holocene at the Jiangli site, Suzhou, East China.

    Directory of Open Access Journals (Sweden)

    Zhenwei Qiu

    Full Text Available Pollen and phytolith analyses were undertaken at the Jiangli site in Suzhou, Jiangsu Province, combined with studies on macrofossils by flotation. The concentration of pollen decreased while the percentage of Poaceae pollen in the profile increased from the late phase of the Majiabang Culture to the Songze Culture suggesting that human impact on the local environment intensified gradually. The discovery of rice paddy implies a relatively advanced rice cultivation in this area during the middle-late Holocene. Other than phytoliths, the high percentage of Oryza-type Poaceae pollen (larger than 40 µm supplied robust evidence for the existence of rice paddy. Moreover, the fact that the farther from the rice paddy, the lower the concentration and percentage of Poaceae pollen also proves that the dispersal and deposition of pollen is inversely proportional to the distance.

  5. Pollen and phytolith evidence for rice cultivation and vegetation change during the mid-late holocene at the Jiangli site, Suzhou, East China.

    Science.gov (United States)

    Qiu, Zhenwei; Jiang, Hongen; Ding, Jinlong; Hu, Yaowu; Shang, Xue

    2014-01-01

    Pollen and phytolith analyses were undertaken at the Jiangli site in Suzhou, Jiangsu Province, combined with studies on macrofossils by flotation. The concentration of pollen decreased while the percentage of Poaceae pollen in the profile increased from the late phase of the Majiabang Culture to the Songze Culture suggesting that human impact on the local environment intensified gradually. The discovery of rice paddy implies a relatively advanced rice cultivation in this area during the middle-late Holocene. Other than phytoliths, the high percentage of Oryza-type Poaceae pollen (larger than 40 µm) supplied robust evidence for the existence of rice paddy. Moreover, the fact that the farther from the rice paddy, the lower the concentration and percentage of Poaceae pollen also proves that the dispersal and deposition of pollen is inversely proportional to the distance.

  6. Pollen and phytolith evidence for rice cultivation and vegetation change during the mid-late Holocene at the Jiangli site, Suzhou, East China.

    Directory of Open Access Journals (Sweden)

    Zhenwei Qiu

    Full Text Available Pollen and phytolith analyses were undertaken at the Jiangli site in Suzhou, Jiangsu Province, combined with studies on macrofossils by flotation. The concentration of pollen decreased while the percentage of Poaceae pollen in the profile increased from the late phase of the Majiabang Culture to the Songze Culture suggesting that human impact on the local environment intensified gradually. The discovery of rice paddy implies a relatively advanced rice cultivation in this area during the middle-late Holocene. Other than phytoliths, the high percentage of Oryza-type Poaceae pollen (larger than 40 μm supplied robust evidence for the existence of rice paddy. Moreover, the fact that the farther from the rice paddy, the lower the concentration and percentage of Poaceae pollen also proves that the dispersal and deposition of pollen is inversely proportional to the distance.

  7. Performance indices for pumping stations in irrigated rice fields

    Directory of Open Access Journals (Sweden)

    Luciana Marini Köpp

    2016-08-01

    Full Text Available ABSTRACT: Performance indices can be used as indices of energy use in irrigation systems. Pumping stations (PSs are elements that require energy for irrigation of rice fields by conventional flood irrigation. Interplay of physical, hydraulic, and electrical parameters generates indices that determine the performance in the diagnosis of PSs, operation, and projects for new sets. In this study, it was proposed and classified performance indices for PSs in rice fields, focusing on the efficient use of energy. The study was carried out through an investigation of 160 PSs in operation, located at the western border of Rio Grande do Sul, Brazil, which constituted an actual field situation. Next, PSs were optimized in relation to the selection of a piping system, using the lowest total cost, the choice of pump, and motors with better performance for the necessary situation as criteria. Results provided nine indices that classified the performance as "excellent", "very good", "good", "poor", and "very poor", which allowed the assessment of projects and the diagnosis of PSs.

  8. Microbial degradation of clomazone under simulated California rice field conditions.

    Science.gov (United States)

    Tomco, Patrick L; Holstege, Dirk M; Zou, Wei; Tjeerdema, Ronald S

    2010-03-24

    Clomazone (trade names Cerano and Command) is a popular herbicide used on California rice fields to control aquatic weeds. Its physicochemical characteristics indicate that it will persist primarily in the water column, where microbial degradation may drive its environmental fate. The objectives were to determine microbial degradation rates and compare the metabolic products under aerobic and anaerobic conditions similar to those in California rice fields during the summer. Time-series samples were extracted and analyzed by LC/MS/MS. Metabolic profiling revealed the following clomazone-derived transitions: m/z 240 --> 125 (clomazone), m/z 242 --> 125 (ring-open clomazone), m/z 256 --> 125 (5-hydroxyclomazone), m/z 256 --> 141 (aromatic hydroxyclomazone), m/z 268 --> 125 (unknown metabolite), and m/z 272 --> 141 (4'5-dihydroxyclomazone). Results indicate an anaerobic half-life of 7.9 days, with ring-open clomazone reaching 67.4% of application at 38 days. Aerobically, clomazone degraded more slowly (t(1/2) = 47.3 days), forming mostly soil-bound residues. Thus, under summer conditions, clomazone is likely to dissipate rapidly from fields via anaerobic degradation.

  9. Complex evolution of S5, a major reproductive barrier regulator, in the cultivated rice Oryza sativa and its wild relatives.

    Science.gov (United States)

    Du, Hongyi; Ouyang, Yidan; Zhang, Chengjun; Zhang, Qifa

    2011-07-01

    • The hybrid sterility gene S5 comprises three types of alleles in cultivated rice. Such tri-allelic system provided a unique opportunity to study the molecular bases of evolutionary changes underlying reproductive isolation in plants. • We analysed the sequence diversity and evolutionary history of S5 in 138 Oryza accessions. We also examined the effect of the two functional variations (C819A and C1412T) in determining hybrid sterility by transformation. • Nineteen haplotypes were identified, which were classified into the indica-like, the japonica-like and the wide-compatibility gene (WCG)-like group, according to the sequence features of the tri-allelic system. The origin and evolutionary course of the three allelic groups were investigated, thus confirming the independent origins of indica and japonica subspecies. There were perfect associations between C819A and C1412T in the rice germplasm assayed, and the combination of C819 and C1412 was required for hybrid sterility. Evidence of positive selection in the WCG-like alleles suggested that they might have been favored by selection for higher compatibility in hybrids. • The complex evolution of S5 revealed the counteractive function of the three allelic groups at the species level. S5 might perform an important primary function in an evolutionary scale, and hybrid sterility acts as a 'byproduct' of this speciation gene.

  10. Comparison of Genetic Diversity Between Local Cultivated Aromatic and Non-aromatic Rice in Yunnan Province%云南地方香稻与非香稻遗传多样性比较

    Institute of Scientific and Technical Information of China (English)

    白现广; 程在全; 蔺忠龙; 吕广磊; 黄兴奇

    2009-01-01

    [Objective] The genetic diversity of the local cultivated aromatic rice and non-aromatic rice in Yunnan Province were compared to provide further genetic resources for breeding practice.[Method] Genetic diversity of 10 aromatic rice and 45 non-aromatic rice were analyzed by 64 SSR primers covered on 12 rice chromosomes. [Result] Per locus 5.44 and 7.98 alleles in average were detected, ranging from 2 to 12 and from 2 to 17 in aromatic and non-aromatic rice , respectively. Average genetic multiplicity index(Hs) was 0.46 and 0.67 respectively. The average polymorphism information content (PIC) was 0.43 and 0.58 in aromatic and non-aromatic rice respectively.[Conclusion] The results indicated that genetic diversity was higher in non-aromatic rice than in aromatic rice.

  11. Efficiency of experimental rice (Oryza sativa L.) fields in mitigating diazinon runoff toxicity to Hyalella azteca.

    Science.gov (United States)

    Moore, Matthew T; Lizotte, Richard E; Kröger, Robert

    2009-06-01

    This study assessed the viability of using planted, mature rice fields in mitigating diazinon (an organophosphate insecticide) runoff toxicity using aqueous 48 h Hyalella azteca whole effluent toxicity bioassays. Rice fields decreased diazinon concentrations 80.1%-99.9% compared with 10.8% in the unvegetated field control. H. azteca survival responses coincided with observed diazinon concentrations. Estimated LC50 effects dilutions (%) ranged from 1.15 to 1.47 for inflow samples and 1.66 (unvegetated), 6.44 (rice field A), and >100 (rice field B) outflow samples. Decreases in inflow versus outflow aqueous toxicity were 77.1%-100% in rice fields compared with 18.7% in the unvegetated field.

  12. Automatic mapping of rice fields in the Sacramento Valley for water resources management

    Science.gov (United States)

    Zhong, L.; Yin, H.; Reyes, E.; Chung, F. I.

    2015-12-01

    Water use by rice fields is one of the most important components in hydrologic model simulation of the Sacramento Valley, California. In this study, rice fields were mapped by an automatic approach using Landsat imagery. The automatic approach is advantageous for its capacity of mapping rice fields repeatedly, consistently and timely without the need to collect training data. Seasonal dynamics of Enhanced Vegetation Index (EVI) and Normalized Difference Moisture Index (NDMI) were employed to identify rice based on its phenological characteristics. Classification could be conducted around planting date for early response to cropland use change, or for the full growing season to monitor rice growth. Two studies are illustrated as the applications of this mapping method: 1. A rice map was produced before mid-June to forecast rice acreage and water use in the 2015 drought. Due to continuous drought, rice acreage in the Sacramento Valley reached the historical minimum of the past 20 years in 2014, and further reduction is occurring in 2015. A quantitative measure of rice field extent is needed to forecast rice water use as early as possible. The automatic mapping method utilized the spectral dynamics during initial flooding to identify rice fields. Based on the map product, the forecast of rice water demand was made to facilitate the simulation of current-year hydrologic conditions. 2. Rice field extent has been mapped since 1989 and phenological metrics have been derived to study the change in growing season. The increasing use of short-season rice varieties and special weather condition (like El Nino in 2015) may alter the seasonal pattern of water demand by rice. Rice fields were identified based on the temporal profiles of NDMI and EVI derived from series of segmented images. Validation using field survey data and other land use maps showed a promising accuracy. The start and the end of the growing season and other phenological metrics were extracted from object

  13. QUALITY EVALUATION OF STEVIA REBAUDIANA CULTIVATED IN FARMERS FIELD

    Directory of Open Access Journals (Sweden)

    Chauhan Nirpendra

    2011-05-01

    Full Text Available Among the potential industrial crops Stevia rebaudiana introduce in newly develop state Uttarakand for cultivated as well as quality evaluations of farmers produced and its comparative assessment with other parts of northern areas. Stevia rebaudiana is a natural, non-caloric, sweet-tasting plant used globally for its sweeter properties. Stevia rebaudiana cultivated in different region of north India, stevioside vary 6.0- 9.5%, rebaudioside vary ranging 1.60-3.90 % within different location.

  14. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields.

    Science.gov (United States)

    Liu, Gang; Yu, Haiyang; Ma, Jing; Xu, Hua; Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH4 emission by 280-1370%, while decreasing N2O emission by 7-13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH4 emission by 7-13% and 6-12%, respectively, whereas reduced N2O emission by 10-27% and 9-24%, respectively. The higher CH4 emission could be attributed to the higher soil CH4 production potential triggered by the combined application of straw and microbial inoculant, and the lower N2O emission to the decreased inorganic N content. As a whole, the benefit of lower N2O emission was completely offset by increased CH4 emission, resulting in a higher GWP for NPKSR (5-12%) and NPKSJ (5-11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3-6% and 2-4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone.

  15. Efficiency of experimental rice (Oryza sativa L.) fields in mitigating diazinon runoff toxicity to Hyalella azteca

    Science.gov (United States)

    This study assessed the viability of using planted, mature rice fields in mitigating diazinon (an organophosphate insecticide) runoff toxicity using aqueous 48 h Hyalella azteca whole effluent toxicity bioassays. Rice fields decreased diazinon concentrations 80.1-99.9% compared with 10.8% in the unv...

  16. Relationship between CH4 and N2O emissions from rice field and its impacting factors

    Institute of Scientific and Technical Information of China (English)

    HOUAixin; CHENGuanxiong; WUJie; WANGZhengping

    1998-01-01

    To find out the relationship between CH4 and N2O emissions from rice field and determine the key factors affecting the emissions, and give a scientifie basis for working out mitigation options of their emissions from flooded rice field, we measured the emissions and their impacting environmental factors systematically and simultaneously from Mar to Dee in 1995-1996 in northern China.

  17. [Effects of no-tillage and stubble-remaining on soil enzyme activities in broadcasting rice seedlings paddy field].

    Science.gov (United States)

    Ren, Wan-Jun; Huang, Yun; Wu, Jin-Xiu; Liu, Dai-Yin; Yang, Wen-Yu

    2011-11-01

    A field experiment was conducted to study the effects of four cultivation modes (conventional tillage, no-tillage, conventional tillage + stubble-remaining, and no-tillage + stubble-remaining) on the activities of urease, acid phosphatase, protease, and cellulose in different soil layers in a broadcasting rice seedlings paddy field. Under the four cultivation modes, the activities of test enzymes were higher in upper than in deeper soil layers, and had a greater difference between the soil layers under no-tillage + stubble-remaining. In upper soil layers, the activities of test enzymes were higher in the treatments of no-tillage than in the treatments of conventional tillage, being the highest under no-tillage + stubble-remaining and the lowest under conventional tillage. In deeper soil layers, the test enzyme activities were the highest under conventional tillage + stubble-remaining, followed by no-tillage + stubble-remaining, no-tillage, and conventional tillage. During the growth period of rice, soil urease and cellulose activities were lower at tillering stage, increased to the maximum at booting stage, and decreased then, soil acid phosphatase activity was higher at tillering stage but lower at elongating stage, whereas soil protease activity peaked at tillering and heading stages.

  18. [Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic film mulching cultivation].

    Science.gov (United States)

    Zhang, Yi; Lü, Shi-Hua; Ma, Jing; Xu, Hua; Yuan, Jiang; Dong, Yu-Jiao

    2014-03-01

    A field experiment was conducted to assess the effect of controlled release fertilizer on N2O emission in paddy field under plastic film mulching cultivation (PM) with water-saving irrigation. Results showed that in the rice growing season, cumulative N2O emissions from the plots applied with urea (PM+U) and with controlled release fertilizer (PM+CRF) were (38.2 +/- 4.4) and (21.5 +/- 5.2) mg N x m(-2), respectively. The N2O emission factors were 0.25% and 0.14% in the treatments PM+U and PM+CRF, respectively. The controlled release fertilizer decreased the total N2O emission by 43.6% compared with urea, of which 49.6% was reduced before the drying period. It also reduced the peak of N2O emission by 52.6%. However, it did not affect soil microbial biomass N and soil NH(4+)-N content at any rice growing stage, and grain yield either. No significant correlation was observed between N2O flux and soil Eh or soil temperature at the depth of 5 cm.

  19. Investigating Within-Field Variability of Rice from High Resolution Satellite Imagery in Qixing Farm County, Northeast China

    Directory of Open Access Journals (Sweden)

    Quanying Zhao

    2015-02-01

    Full Text Available Rice is a primary staple food for the world population and there is a strong need to map its cultivation area and monitor its crop status on regional scales. This study was conducted in the Qixing Farm County of the Sanjiang Plain, Northeast China. First, the rice cultivation areas were identified by integrating the remote sensing (RS classification maps from three dates and the Geographic Information System (GIS data obtained from a local agency. Specifically, three FORMOSAT-2 (FS-2 images captured during the growing season in 2009 and a GIS topographic map were combined using a knowledge-based classification method. A highly accurate classification map (overall accuracy = 91.6% was generated based on this Multi-Data-Approach (MDA. Secondly, measured agronomic variables that include biomass, leaf area index (LAI, plant nitrogen (N concentration and plant N uptake were correlated with the date-specific FS-2 image spectra using stepwise multiple linear regression models. The best model validation results with a relative error (RE of 8.9% were found in the biomass regression model at the phenological stage of heading. The best index of agreement (IA value of 0.85 with an RE of 13.6% was found in the LAI model, also at the heading stage. For plant N uptake estimation, the most accurate model was again achieved at the heading stage with an RE of 11% and an IA value of 0.77; however, for plant N concentration estimation, the model performance was best at the booting stage. Finally, the regression models were applied to the identified rice areas to map the within-field variability of the four agronomic variables at different growth stages for the Qixing Farm County. The results provide detailed spatial information on the within-field variability on a regional scale, which is critical for effective field management in precision agriculture.

  20. GENE FLOW BETWEEN RED RICE AND CULTIVATED RICE ESTIMATED BY MICROSATELLITE MARKERS FLUXO GÊNICO ENTRE ARROZ VERMELHO E ARROZ CULTIVADO ESTIMADO POR MEIO DE MARCADORES MICROSSATÉLITES

    Directory of Open Access Journals (Sweden)

    Francisco , Moura Neto

    2007-09-01

    Full Text Available

    The study aimed to evaluate the capacity of SSR markers to detect the gene flow between the red rice (RR and the cultivated rice (CR. SSR is currently used in plant genomic analysis due to the high information content, to be co-dominant, and based on the PCR reaction. The field experiment was organized in ten concentric circles, 5 m to 50 m apart from a central red rice plant, assumed as the pollen donor. One hundred twenty rice CR plants, cv. BR-Irga 409, were planted in the intersections of the concentric circles and the twelve radii. From 51 SSR markers, four were selected due to their capacity to detect the polymorphism between RR and CR, aiming to identify RR alleles in seeds produced by BR-Irga 409 plants. The maximum distance found for gene flow between RR and CR plants was 10 m from the RR plant. In theory, at 0.1% cross pollination rate, this distance can generate 4,710 hybrids between RR and CR. In the next generation, about 3,532 plants would produce exclusively rice grains with red color. The SSR markers were able to identify the gene flow between RR and CR; therefore, they can be useful to increase the precision of cross pollination rate estimates in rice, mainly if used with other methodologies (e.g., herbicide tolerant plants.

    KEY WORDS: Cross pollination; microsatellite markers; Oryza sativa.

    Este trabalho objetivou avaliar a capacidade de marcadores SSR em detectar a ocorrência de fluxo gênico entre o arroz vermelho (AV e o arroz cultivado (AC. Marcadores SSR são utilizados em análise genômica de plantas devido ao alto conteúdo informativo, serem co-dominantes e baseados na reação de PCR. O ensaio de campo foi realizado em dez círculos concêntricos de 5 m a 50 m de distância, a partir de uma planta AV central, que foi a fonte

  1. Rice methylmercury exposure and mitigation: a comprehensive review.

    Science.gov (United States)

    Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E

    2014-08-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  2. Identifying neutral allele Sb at pollen-sterility loci in cultivated rice with Oryza rufipogon origin

    Institute of Scientific and Technical Information of China (English)

    SHI LeiGang; LIU XiangDong; LIU Bo; ZHAO XingJuan; WANG Lan; LI JinQuan; LU YongGen

    2009-01-01

    Pollen sterility is commonly found in the intra-specific hybrids of indica and japonica rice, which is one of the main constrains for the utilization of heterosis between indica and japonica. Six loci controlling the pollen sterility of F1 between indica and japonica have been identified from previous studies. Neu-tral alleles at each locus are potential to overcome the F1 pollen sterility associated with the locus. Therefore, exploitation and utilization of neutral alleles are of significant importance. The present re-search was based on fine mapping of the F_1 pollen-sterility gene Sb and the abundant genetic diversity of Oryza rufipogon Griff. indigenous to Gaozhou, Guangdong Province (referred to as Gaozhou wild rice). Crosses were made using Taichung65 (with the genotype of S_b~jS_b~j and referred to as E_1) and its near-isogenic line of F_1 pollen sterility gene Sb(with the genotype of S_b~iS_b~i, E_2) as female parents, and 12 different accessions of Gaozhou wild rice as male parents. F_1 pollen fertility was examined to identify the materials having the neutral alleles at the F_1 pollen-sterility locus. Segregation of 4 molecular markers tightly linked with the Sb locus was analyzed in the F_2 populations derived from the F_1s car-rying the neutral gene. The pollen fertility related to the 3 genotypes of the molecular markers was also checked by statistical test to determine whether it was consistent with the hypothesis. The results showed that the pollen fertility of two F_1s from one accession of Gaozhou wild rice (GZW099) with E_1 and E_2 was (89.22±1.07)% and (85.65±1.05)%, respectively. Both of them were fertile and showed no significant difference by t-test. Segregation of the 3 genotypes of the 4 molecular markers followed the expected Mendelian ratio (1:2:1) in the F_2 populations. There was no significant difference for the av-eraged pollen fertility of the plants related to the 3 genotypes, suggesting that no interaction exists between the

  3. The Dynamics Of Rice Field Conversion Into Settlement In The District Of Bandung

    Directory of Open Access Journals (Sweden)

    Ivan Chofyan

    2016-12-01

    Full Text Available Bandung District as one of the rice-producing areas in West Java has a strong interest in maintaining rice field. However, the land conversion of rice field in the Bandung District continues to occur with various factors. This study aims to identify the elements that make up the structure of the phenomenon and the linkages between these elements which lead to the conversion of rice fields and recommend some policy alternatives that are useful for efforts to control the conversion of rice field. In order to achieve the stated goals, this study uses system dynamics which is one method of thinking system that could see the various aspects of integral and structurally enable to explain the phenomenon of land conversion happens. On this study determines 4 scenarios consists of a basic scenario, rice field cropping intensity scenarios (RFCI, necessity standard of land settlement scenarios (NSLS, and food diversification scenarios (FD. The final result of this study states that the necessity standard of land settlement scenarios result in a decrease in the rate of land conversion is smaller and the rice stock inventory is more stable compared to other scenarios. Under these conditions, policies that support the above scenario should be established, namely the policy of land-saving settlement development and establishment of sustainable rice field.

  4. Automatic Rice Crop Height Measurement Using a Field Server and Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Tanakorn Sritarapipat

    2014-01-01

    Full Text Available Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  5. Automatic rice crop height measurement using a field server and digital image processing.

    Science.gov (United States)

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-07

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  6. Mapping rice field anopheline breeding habitats in Mali, West Africa, using Landsat ETM+ sensor data.

    Science.gov (United States)

    Diuk-Wasser, M A; Bagayoko, M; Sogoba, N; Dolo, G; Touré, M B; Traoré, S F; Taylor, C E

    2004-01-01

    The aim of this study was to determine whether remotely sensed data could be used to identify rice-related malaria vector breeding habitats in an irrigated rice growing area near Niono, Mali. Early stages of rice growth show peak larval production, but Landsat sensor data are often obstructed by clouds during the early part of the cropping cycle (rainy season). In this study, we examined whether a classification based on two Landsat Enhanced Thematic Mapper (ETM)+ scenes acquired in the middle of the season and at harvesting times could be used to map different land uses and rice planted at different times (cohorts), and to infer which rice growth stages were present earlier in the season. We performed a maximum likelihood supervised classification and evaluated the robustness of the classifications with the transformed divergence separability index, the kappa coefficient and confusion matrices. Rice was distinguished from other land uses with 98% accuracy and rice cohorts were discriminated with 84% accuracy (three classes) or 94% (two classes). Our study showed that optical remote sensing can reliably identify potential malaria mosquito breeding habitats from space. In the future, these 'crop landscape maps' could be used to investigate the relationship between cultivation practices and malaria transmission.

  7. Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.).

    Science.gov (United States)

    Wan, J; Yamaguchi, Y; Kato, H; Ikehashi, H

    1996-02-01

    Female gamete abortion in Indica-Japonica crosses of rice was earlier identified to be due to an allelic interaction at the S-5 locus on chromosome 6. Recently, in other crosses of rice, similar allelic interactions were found at loci designated as S-7 and S-8, located on chromosomes 7 and 6 respectively. All of them are independent of each other. At the S-5 locus, Indica and Japonica rice have S-5 (i) and S-5 (j) alleles respectively and Javanicas, such as Ketan Nangka, have a neutral allele S-5 (n) .The S-5 (i) /S-5 (j) genotype is semi-sterile due to partial abortion of female gametes carrying S-5 (j) , but both the S-5 (n) /S-5 (i) and S-5 (n) /S-5 (j) genotypes are fertile. The S-5 (n) allele is thus a "wide-compatibility gene" (WCG), and parents homozygous for this allele are called wide-compatible varieties (WCV). Such parents when crossed with Indica or Japonica varieties do not show F1 hybrid sterility. Wide-compatible parents have been used to overcome sterility barriers in crosses between Indica and Japonica rice. However, a Javanica variety, Ketan Nangka (WCV), showed typical hybrid sterility when crossed to the Indian varieties N22 and Jaya. Further, Dular, another WCV from India, showed typical hybrid sterility when crossed to an IRRI line, IR2061-628-1-6-4-3(IR2061-628). By genetic analyses using isozyme markers, a new locus causing hybrid sterility in crosses between Ketan Nangka and the Indicas was located near isozyme loci Est-1 and Mal-1 on chromosome 4, and was designated as S-9. Another new locus for hybrid sterility in the crosses between Dular and the IR2061-628 was identified and was found linked to four isozyme loci, Sdh-1, Pox-2, Acp-1 and Acp-2, on chromosome 12. It was designated as S-15. On the basis of allelic interactions causing female-gamete abortion, two alleles were found at S-9, S-9 (kn) in Ketan Nangka and S-9 (i) in N22 and Jaya. In the heterozygote, S-9 (kn) /S-9 (i) , which was semisterile, female gametes carrying S-9 (kn

  8. BASIC CONCEPT AND APPLICATION IPM RICE FIELD AT THE FARMER

    Directory of Open Access Journals (Sweden)

    IGP. Alit Diratmaja

    2015-01-01

    Full Text Available One of the problems is the rice farming Plant Pest Organisms disorders (OPT, which can reduce the quality and quantity of even causing crop failure. In pest control, the government has been introducing technology Integrated Pest Management (IPM is a way of controlling pests that are completely environmentally sound. Some components are still difficult to apply is the use of LCC and PUTS, irrigation epektif and efficient manner, and Legowo row planting system; utilization of natural enemies; the use of botanical pesticides; observation of pest populations and determination of economic threshold. The application of pest control through IPM approach has positive benefits. For that we need the support of various stakeholders, especially government policies and increased support officer pest observers in the field

  9. Adsorption Kinetics of Carbamate Pesticide in Rice Field Soil

    Directory of Open Access Journals (Sweden)

    Soontree Khuntong

    2010-07-01

    Full Text Available Ultrasonic extraction (75.55% with petroleum ether:acetone (1:1, v/v was employed for extraction of carbofuran in rice field soil. The amounts of carbofuran were determined by reverse phase HPLC. The analytical method provided high precision and accuracy with the relative error of 0.47%. The percentage of recoveries varied from 84% to 77% in the con¬centration ranges of 10–40 mg/L of spiked soil samples. The carbofuran residues in the rice field soil significantly decreased year by year because of pesticide properties, soil properties and degradation conditions. A high amount of residues was found in the plots that contained high organic contents. The adsorption of carbofuran in soil reached equilibrium within 23 h. The percentage of adsorption varied from almost 30% to 80% depending on concentrations of carbofuran. The adsorption of carbofuran agreed with Freundlich isotherms; q = 7.07 x 10-5Cf2.5092; with the correlation coefficient of 0.9281. Organic carbon coefficient, Koc, was 1.91 x 10-3 mg/L calculated from Kd, and half-life (8.9 d of adsorbed carbofuran. The GUS index (6.37 calculated from Koc presented a high lixiviation potential. The positive ΔG indicated the non-spontaneous reaction. Carbofuran rapidly desorbed from soil at the desorption rate of 0.0228 mg/kg soil d. Kinetic studies provided the first order reaction with the reaction rate of 0.0779 mg/d and half-life of 8.9 days.

  10. Variação diária da emissão de metano em solo cultivado com arroz irrigado no Sul do Brasil Diurnal variation of methane emission from a paddy field under rice cultivation in the Southern Brazil

    Directory of Open Access Journals (Sweden)

    Falberni de Souza Costa

    2008-10-01

    de arroz no Sul do Brasil (região litorânea e Sul do RS e região Sul de SC pelo fato destas apresentarem comportamento diário similar de radiação solar e de temperatura do ar. A adequação do procedimento deve ser confirmada para as demais sub-regiões produtoras do Sul do Brasil, mas principalmente para outras regiões que apresentem condições ambientais diversas.Methane (CH4 has a global warming potential 23 to 32 times higher than carbon dioxide and its emission rate in rice fields should vary daily with water and soil temperature, and plant metabolism. This study aimed to identify the appropriate time interval for air sampling in order to quantify the mean daily CH4 emission rate, key information to future studies aiming the derivation of regional indexes of CH4 emission. Three campaigns were performed to evaluate diurnal variation in CH4 emissions (3h interval from continuously flooded rice (Oryza sativa L. cv. 'IRGA-422 CL' fields at different crop stages (panicle differentiation and ripening and management systems (conventional tillage-CT and no-tillage-NT during 2002/2003 crop season in long-term experiment at the Instituto Rio Grandense do Arroz (IRGA, in Cachoeirinha, RS, Brazil. Static chamber method was used and the air samples collected with polystyrene syringes were analyzed by gas chromatography. Methane emission showed a same diurnal pattern in the three campaigns in the both tillage systems. The maximum range of emission (8-33mg CH4m-2 h-1 was observed in the early afternoon (12.00 to 15.00p.m. followed by a decline to a minimum around midnight to next morning (4-19mg CH4 m-2 h-1, in which fluxes were related to flood water temperature (campaign 1 and 3 or soil temperature (campaign 2. Taking into account the daily emission curves, plus operational aspects like chromatographic analysis of samples into the 24h period after air sampling, the time interval from 9.00 to 12.00a.m. is recommended to studies aiming to evaluate mean daily CH4

  11. 江淮丘陵区旱稻栽培技术探讨%Discussion on Cultivation Techniques of Upland Rice in Hilly Area of Jianghuai

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    旱稻具有抗旱性较强的生理特性。从播前准备、适时播种、水肥管理和病虫害防治等方面对江淮丘陵旱稻高产栽培技术进行了介绍,为该区旱稻生产提供了技术借鉴。%Upland rice had a physiological characteristic of strong drought resistance. The cultivation techniques of upland rice in hilly area of Jianghuai were introduced from the following aspects, including preparation before sowing, sowing, fertilizer management and pest control and others. The results provided technical references for upland rice production.

  12. Key Throwing-seedling Cultivation Techniques of Post-tobacco Super Rice%烟后超级稻抛秧栽培关键技术

    Institute of Scientific and Technical Information of China (English)

    王朝清

    2012-01-01

    针对烟稻轮作和抛秧的特点,提出了烟后超级稻抛栽要因地制宜,选好稻种,合理安排播种期,采用塑料软盘培育壮秧,合理的抛栽密度,促控高产群体生长,病虫害综合防治等高产栽培技术。%According to the characteristics of tobacco-rice rotation and throwing-seedling, the paper put forward to some high-yielding cultivation techniques by throwing-seedling for post-tobacco super rice with adjusting measures to local conditions, such as selecting fine hybrid rice seed, arranging suitable sowing time, raising healthy and robust seedling based on plastic soft-plate with holes, reasonable planting density, accommodating high-yielding population growth, and the integration of pest control.

  13. Nutritional composition of aquatic species in Laotian rice field ecosystems : possible impact of reduced biodiversity

    OpenAIRE

    Nurhasan, Mulia

    2008-01-01

    The population density of Laos PDR has increased from 15 persons per square km in 1985 to 19 persons in 1995 and to 24 persons in 2005. This has threatened food security, which in Laos PDR is generally synonymous with rice availability. Rice production in Laos rose by 70 percent from 1990 to 2004. Evidence from Vietnam, Malaysia and Central Thailand has shown that the rise of rice production steadily decreases the population of aquatic animals in rice field ecosystems, as a result of higher a...

  14. Influence of fipronil compounds and rice-cultivation land-use intensity on macroinvertebrate communities in streams of southwestern Louisiana, USA

    Energy Technology Data Exchange (ETDEWEB)

    Mize, Scott V. [US Geological Survey, 3535 S. Sherwood Forest Blvd., Suite 120, Baton Rouge, LA 70816 (United States)], E-mail: svmize@usgs.gov; Porter, Stephen D. [US Geological Survey, Denver Federal Center, PO Box 25046, MS406, Lakewood, CO 80225 (United States); Demcheck, Dennis K. [US Geological Survey, 3535 S. Sherwood Forest Blvd., Suite 120, Baton Rouge, LA 70816 (United States)

    2008-03-15

    Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC{sub 50}) of <0.5 {mu}g/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC{sub 50}. The abundance ({rho} = -0.64; p = 0.015) and taxa richness (r{sup 2} = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r{sup 2} = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 {mu}g/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences. - Aquatic macroinvertebrate commmunities in southwestern Louisiana streams respond to a gradient of fipronil compounds in water.

  15. Influence of fipronil compounds and rice-cultivation land-use intensity on macroinvertebrate communities in streams of southwestern Louisiana, USA

    Science.gov (United States)

    Mize, S.V.; Porter, S.D.; Demcheck, D.K.

    2008-01-01

    Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC50) of <0.5 ??g/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC50. The abundance (?? = -0.64; p = 0.015) and taxa richness (r2 = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r2 = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 ??g/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences.

  16. High-yielding cultivation techniques of ratooning rice in Changting county%长汀县再生稻丰产栽培技术

    Institute of Scientific and Technical Information of China (English)

    黄玉娥

    2011-01-01

    通过两年千亩再生稻示范,总结出一套再生稻丰产栽培技术。主要技术环节包括选用高产优质、再生力强品种;掌握播种期控制秧龄、适当早插;配方施肥、水分管理增强根系活力;合理留桩促进再生芽生长;及时防治病虫害。%Ratooning rice was planted in 66.7hm2 demonstration field in Changting for two years, a set of high-yielding cultivation techniques were summarized. The techniques included the selection of varieties with traits of high quality and strong regenerative ability, timely sowing and adjusting seedling age, appropriately early transplanting, fomula fertilization and water management to strengthen the vigor of root system, maintaining suitalbe stubble height for promoting the development of regenerated buds, disease and oest control.

  17. The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss

    OpenAIRE

    2009-01-01

    Runoff, sediment, total phosphorus and total dissolved phosphorus losses in overland flow were measured for two years on unbounded plots cropped with wheat and oats.\\ud \\ud Half of the field was cultivated with minimum tillage (shallow tillage with a tine cultivator) and half was conventionally ploughed. Within each cultivation treatment there were different treatment areas (TAs). In the first year of the experiment, one TA was cultivated up and down the slope, one TA was cultivated on the co...

  18. Geographical variation in inorganic arsenic in paddy field samples and commercial rice from the Iberian Peninsula.

    Science.gov (United States)

    Signes-Pastor, Antonio J; Carey, Manus; Carbonell-Barrachina, Angel A; Moreno-Jiménez, Eduardo; Green, Andy J; Meharg, Andrew A

    2016-07-01

    This study investigated total arsenic and arsenic speciation in rice using ion chromatography with mass spectrometric detection (IC-ICP-MS), covering the main rice-growing regions of the Iberian Peninsula in Europe. The main arsenic species found were inorganic and dimethylarsinic acid. Samples surveyed were soil, shoots and field-collected rice grain. From this information soil to plant arsenic transfer was investigated plus the distribution of arsenic in rice across the geographical regions of Spain and Portugal. Commercial polished rice was also obtained from each region and tested for arsenic speciation, showing a positive correlation with field-obtained rice grain. Commercial polished rice had the lowest i-As content in Andalucia, Murcia and Valencia while Extremadura had the highest concentrations. About 26% of commercial rice samples exceeded the permissible concentration for infant food production as governed by the European Commission. Some cadmium data is also presented, available with ICP-MS analyses, and show low concentration in rice samples.

  19. Transfer function control strategy of Subak rice field land and agricultural development in Denpasar city

    Science.gov (United States)

    Lanya, Indayati; Netera Subadiyasa, N.; Sardiana, Ketut; Putu Ratna Adi, Gst.

    2017-01-01

    The success of tourism development in Bali gave a negative impact on Subak rice fields, especially on land convertion over 2579 ha year-1 (2002-2013) to the area awakened. Denpasar city has lost rice fields 185 ha year-1 and six Subak, as well as potentially losing 10 Subak, as a result of the allocation of space in the region in the Spatial Planing. UNESCO, in 2012 the establishment of Subak as a cultural heritage. Most Subak rice fields designated as an Urban Green Open Space ( UGOS). Satellite image Iconos 2002, World 2015 View Coverage of Denpasar, and ArcGIS 10.3 software used for mapping the balance of rice field and violation of land use in the area of UGOS. The control strategy over the convertion of spatial land-based environment is done through zoning map. Land conversion of rice fields for 13 years (2002-2015) in Denpasar (572.76 ha), comes standard acreage of rice fields in 2015. Denpasar city has experienced of food deficits, even in the UGOS has awakened 96.04 ha (24.04 ha year-1). A period of 50 years into the future, rice fields which needs to be protected 872.83 ha, buffer area 984.77 ha, and can be converted 499.81 ha.

  20. Studies on Yield and Quality of Organic Cultivated Rice%有机栽培对水稻产量和品质影响的研究

    Institute of Scientific and Technical Information of China (English)

    侯立刚; 马巍; 孙洪娇; 付胜; 李楠; 赵国臣

    2012-01-01

    通过研究有机栽培对水稻产量以及品质的影响,指出不同养分需求类型有机栽培产量差异较大,吉粳81在有机生产条件下,产量达到6 426 kg/hm2,减产25.2%,而吉粳88产量仅6 370 kg/hm2,减产高达41.5%.品质影响方面有机栽培相对常规栽培加工品质有小幅下降,外观品质提升幅度较大.有机栽培极显著提升胶稠度、降低蛋白质含量,从而极显著提高稻米食味值.%Through studies on yield and quality of organic cultivated rice, it was pointed out the yield of organic cultivated rice was quite different among varieties of different nutrient requirements. Under the organic production conditions, the yield of 'Jijing 81' was 6426 kg / hm2, which was 25.2% less than the control, while yield of 'Jijing 88' was only 6370 kg / hm2, which was 41.5 less than the control. Compared with conventional cultivation, the processing quality of the organic cultivation has declined slightly, while the exterior quality improved largely. With the gel consistency promoted and the protein content reduced by organic cultivation, the taste value of rice was improved greatly

  1. Rice methylmercury exposure and mitigation: a comprehensive review

    Science.gov (United States)

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, price percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  2. [Effects of different rice farming systems on paddy field weed community].

    Science.gov (United States)

    Zhang, Dan; Min, Qing-Wen; Cheng, Sheng-Kui; Yang, Hai-Long; He, Lu; Jiao, Wen-Jun; Liu, Shan

    2010-06-01

    Taking the paddy fields planted with glutinous rice and hybrid rice in the traditional agricultural region in Congjiang County of Guizhou Province as the case, and by using semi-experiment combined with random sampling investigation, this paper studied the characteristics of weed community in the paddy fields under rice monoculture (R), rice-fish culture (R-F), and rice-fish-duck culture (R-F-D). Under the three rice farming systems, glutinous rice had higher capability in inhibiting weeds, compared with hybrid rice. Farming system R-F-D decreased the weed density significantly, with the control effect on Monochoia vaginalis and Rotala indica being 100%. The overall weed-inhibiting effect of R-F-D was significantly higher than that of the other farming systems. Under R-F-D, the species richness and Shannon diversity index of weed community decreased markedly, while the Pielou evenness index increased, indicating that the species composition of weed community changed greatly, and the occurrence of native dominant weed species decreased. It was concluded that R-F-D was a feasible farming system for the control of paddy field weed community.

  3. 册亨县水稻覆膜直播栽培试验%Experiment of Plastic Film Mulching Cultivation by Direct Seeding of Rice in Ceheng County

    Institute of Scientific and Technical Information of China (English)

    黄如泽

    2014-01-01

    册亨县水稻覆膜直播栽培试验研究结果表明,地膜覆盖直播栽培能耐干旱、没有杂草、病虫害少,只是开始时用工较多,但整体上分析,覆膜直播比旱育稀植移栽的效果好。%The results of experiment of plastic film mulching cultivation by direct seeding of rice in Ceheng County showed that plastic film mulching cultivation by direct seeding had drought tolerance,no weeds,fewer pests and diseases,just the employment was more at the beginning,but on the whole,plastic film mulching cultivation by direct seeding had better effect than dry nursery and sparse planting transplant.

  4. Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice.

    Science.gov (United States)

    Jamil, Muhammad; Zeb, Salma; Anees, Muhammad; Roohi, Aneela; Ahmed, Iftikhar; ur Rehman, Shafiq; Rha, Eui Shik

    2014-01-01

    Heavy metal contamination in soil is an important environmental problem and it has negative effect on agriculture. Bacteria play a major role in phytoremediation of heavy metals contaminated soil. In this study, the effect of Bacillus licheniformis NCCP-59, a halophilic bacterium isolated from salt mines near Karak, Pakistan, were determined on a three week old greenhouse grown seedling and germinating seeds of two rice varieties (Basmati-385 (B-385) and KSK-282) in soil contaminated with different concentrations (0, 100, 250, 500, and 1000 ppm) of Nickel. Nickel significantly reduced the germination rate and germination percentage mainly at 500 and 1000 ppm. Significant decrease in ion contents (Na, K, and Ca) was observed while Ni ion concentration in the plant tissues increases as the concentration of Ni applied increases. The photosynthetic pigments (chlorophyll a (chl a), chlorophyll b (chl b), and carotenoids) were also decreased by the application of different concentrations of Ni. Total protein and organic nitrogen were found to be reduced at higher concentrations of Nickel. Inoculation of Bacillus licheniformis NCCP-59 improved seed germination and biochemical attribute of the plant under Ni stress. It is clear from the results that the Bacillus Licheniformis NCCP-59 strain has the ability to protect the plants from the toxic effects of nickel and can be used for the phytoremediation of Ni contaminated soil.

  5. Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses

    Directory of Open Access Journals (Sweden)

    Atsuo Sugano

    2005-01-01

    Full Text Available The succession and phylogenetic profiles of methanogenic archaeal communities associated with rice straw decomposition in rice-field soil were studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE analysis followed by 16S rDNA sequencing. Nylon bags containing either leaf sheaths or blades were buried in the plowed layer of a Japanese rice field under drained conditions during the off-crop season and under flooded conditions after transplanting. In addition, rice straw samples that had been buried in the rice field under drained conditions during the off-crop season were temporarily removed during spring plowing and then re-buried in the same rice field under flooded conditions at transplanting. Populations of methanogenic archaea were examined by amplification of the 16S rRNA genes in the DNA extracted from the rice straw samples. No PCR product was produced for samples of leaf sheath or blade prior to burial or after burial under drained conditions, indicating that the methanogen population was very small during decomposition of rice straw under oxic conditions. Many common bands were observed in rice straw samples of leaf sheath and blade during decomposition of rice straw under flooded conditions. Cluster analysis based on DGGE patterns divided methanogenic archaeal communities into two groups before and after the mid-season drainage. Sequence analysis of DGGE bands that were commonly present were closely related to Methanomicrobiales and Rice cluster I. Methanomicrobiales, Rice cluster I and Methanosarcinales were major members before the mid-season drainage, whereas the DGGE bands that characterized methanogenic archaeal communities after the mid-season drainage were closely related to Methanomicrobiales. These results indicate that mid-season drainage affected the methanogenic archaeal communities irrespective of their location on rice straw (sheath and blade and the previous history of decomposition

  6. Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops

    Science.gov (United States)

    Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.

    2005-10-01

    Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).

  7. Ecological Characterization of White Grubs (Coleoptera: Melolonthidae) Community in Cultivated and Noncultivated Fields.

    Science.gov (United States)

    Cherman, M A; Morón, M A; Dal Prá, E; Valmorbida, I; Guedes, J V C

    2014-06-01

    Comparative studies on the density and diversity of white grubs community (Coleoptera: Melolonthidae) occurring in cultivated and noncultivated fields of the Planalto region of the state of Rio Grande do Sul, Brazil, are presented. Sampling was carried out in 23 municipalities during the 2009 and 2010 winter seasons. Cultivated and noncultivated fields were chosen in each locality. Melolontid larvae were collected for identification and counted to determine the population density. A mean of 12.9 larvae m(-2) were collected in cultivated areas against 10.5 larvae m(-2) in noncultivated areas. The latter were more diverse (H' = 2.52) than cultivated areas (H' = 2.26). Despite the high evenness index (J = 0.75 noncultivated and J = 0.74 cultivated), faunistic parameters indicated Cyclocephala flavipennis Arrow and Diloboderus abderus Sturm as an extremely dominant species in cultivated areas. These results showed that the population density of white grubs increases, and their community composition is affected in cultivated areas.

  8. Control Effects of Two-Batch-Duck Raising with Rice Framing on Rice Diseases, Insect Pests and Weeds in Paddy Field

    Directory of Open Access Journals (Sweden)

    Kai-ming Liang

    2012-10-01

    Full Text Available Rice-duck farming system is one of the means of organic rice farming, in which the weeds, diseases and insects could be effectively controlled with minimal or no pesticide and herbicide application. Whereas in conventional rice-duck farming system the controlling effect on diseases, insect pests and weeds was slowly disappeared after the rice heading stage at which ducks were driven out of the paddy field. To fill up the blank period of pasture activities of ducks, this study put forward two new rice-duck farming systems innovated from the conventional rice-duck farming system, in these new systems, two batches of ducks were raised with rice within one rice planting season. The results revealed that the overall controlling effect of ducks on rice diseases, insect pest and weeds was significantly enhanced in the two new rice-duck farming systems without agrochemicals application. It might be suggested that these two new systems have potential application as biocontrol agent for the organic rice agriculture.

  9. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang; Yu, Haiyang [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Jing [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Xu, Hua, E-mail: hxu@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing [Zhenjiang Institute of Agricultural Science of Hilly Regions in Jiangsu, Jurong 212400 (China)

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH{sub 4} emission by 280–1370%, while decreasing N{sub 2}O emission by 7–13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH{sub 4} emission by 7–13% and 6–12%, respectively, whereas reduced N{sub 2}O emission by 10–27% and 9–24%, respectively. The higher CH{sub 4} emission could be attributed to the higher soil CH{sub 4} production potential triggered by the combined application of straw and microbial inoculant, and the lower N{sub 2}O emission to the decreased inorganic N content. As a whole, the benefit of lower N{sub 2}O emission was completely offset by increased CH{sub 4} emission, resulting in a higher GWP for NPKSR (5–12%) and NPKSJ (5–11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3–6% and 2–4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone. - Highlights: • This paper presents 3-year measurements of CH

  10. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation

    Institute of Scientific and Technical Information of China (English)

    SHAO Jing'an; LI Yangbing; WEI Chaofu; XIE Deti

    2009-01-01

    A research trial with four land management practices, I.e., traditional tillage-fallow (TTF), traditional till-age-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indi-cated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And,different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.

  11. Changing cultural landscape in post-productivism of rice field in Nyuh Kuning Village Bali

    Science.gov (United States)

    Maulidi, C.; Wulandari, L. D.

    2017-06-01

    Natural landscape in developing countries is facing a challenge due to economic growth, a cultural shift, and population dynamics. Farm land where is close to urban areas tending to be converted into more economically valuable spaces. Watershed Pakerisan listed as World Heritage of UNESCO, rich of cultural value on its landscape, especially the Subak, a traditional irrigation system, has a close relationship to the philosophy of Hindu-Bali culture. Nyuh Kuning, a village (local terms is Banjar) located adjacent to the Pakerisan Watershed, and has a spatial pattern in synergic ally connected with tradition, culture, and their religion. Rice field not only for economical but also its place to worship the Goddess (Dewi Sri). Rice Field in Nyuh Kuning declined significantly along past 10 years. The changing landscape of Nyuh Kuning traced through serial of aerial photographs from 2005 until 2015. Along with the broad decline of rice field, villager’s attachment on their cultural space is also changing. An economic motive pronounces a winner in the bargaining between the motives of economic value and cultural value in the Nyuh Kuning. Villagers revealed arguments that necessities nowadays prosecute high consumption, both for household and for education. Therefore conversion of rice fields to become more economical is understandable among communities. Villagers rent the rice fields to foreigners (migrants), and then foreigners take rice-fields as personal assets, not for the villagers (ritual activities and the cultural traditions) any longer. In theoritical term, villager’s emotional bond to the cultural landscape in post—productivism of rice field, is weakened. Wawedangan Desa and its complex cultural values are not part of their identity anymore. However, place dependence become the reason why the shifting place attachment is happening. Functional economic bond is mentioned as place dependence dominats in villager’s attachment. Certainly it’s not a

  12. Mitigation options for methane emissions from rice fields in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  13. Phosphorus Concentration and Forms in Surface and Subsurface Drainage Water from Wetland Rice Fields in the Shaoxing Plain

    Institute of Scientific and Technical Information of China (English)

    ZHANG MINGKUI; JIANG HONG; LIU XINGMEI

    2003-01-01

    Phosphorus (P) is the limiting factor for eutrophication in most freshwater ecosystems. In China, Ptransported from intensively cultivated land has been reported as an important source of P in surface waters.In this study, we investigated P concentration and forms in surface and subsurface drainage from wetland ricefields in the Shaoxing plain, Zhejiang Province, China. From selected rice fields, surface drainage sampleswere collected at rice-growing, non-growing and fertilization periods, and subsurface drainage samples atdrought and rewetting (irrigation or precipitation after 5~10 d drought period in the surface soils) and wet(drainage under long-term wet soil condition) periods. Water samples were characterized for their totalreactive P (TRP), dissolved reactive P (DRP) and particulate reactive P (PRP). Concentrations of the TRPand DRP in the surface drainage ranged from 0.08 to 1.50 and 0.06 to 1.27 mg L-1, respectively. The TRPand DRP were dependent on field operation activities, and decreased in the order of fertilization period >rice-growing period > non-growing period. Phosphorus concentration of runoff receiving P fertilizer can bean environmental concern. The PRP concentration in the surface drainage, ranging from 0.01 to 0.57 mgL-1, accounted for 8%~78% of the TRP. Concentration of the TRP in the subsurface drainage was from0.026 to 0.090 mg L-1, consisting of 29%~90 % of the DRP and 10%~71% of the PRP. In the droughtand rewetting period, the PRP accounted for, on average, 63% of the TRP, much higher than in the wetperiod (23%), suggesting that there was transport of P in preferential flow during drainage events after ashort-term drought period in the surface soils. Therefore, P losses in particulate form may be importantin the subsurface drainage from rice fields when surface soils form cracks and favor rapid flow downwardthrough the soil profiles, suggesting the important role of water-dispersible colloid particles in mediating andco

  14. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI in transgenic rice field.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    Full Text Available BACKGROUND: The spread of insect-resistance transgenes from genetically engineered (GE rice to its coexisting weedy rice (O. sativa f. spontanea populations via gene flow creates a major concern for commercial GE rice cultivation. Transgene flow to weedy rice seems unavoidable. Therefore, characterization of potential fitness effect brought by the transgenes is essential to assess environmental consequences caused by crop-weed transgene flow. METHODOLOGY/PRINCIPAL FINDINGS: Field performance of fitness-related traits was assessed in advanced hybrid progeny of F(4 generation derived from a cross between an insect-resistant transgenic (Bt/CpTI rice line and a weedy strain. The performance of transgene-positive hybrid progeny was compared with the transgene-negative progeny and weedy parent in pure and mixed planting of transgenic and nontransgenic plants under environmental conditions with natural vs. low insect pressure. Results showed that under natural insect pressure the insect-resistant transgenes could effectively suppress target insects and bring significantly increased fitness to transgenic plants in pure planting, compared with nontransgenic plants (including weedy parent. In contrast, no significant differences in fitness were detected under low insect pressure. However, such increase in fitness was not detected in the mixed planting of transgenic and nontransgenic plants due to significantly reduced insect pressure. CONCLUSIONS/SIGNIFICANCE: Insect-resistance transgenes may have limited fitness advantages to hybrid progeny resulted from crop-weed transgene flow owning to the significantly reduced ambient target insect pressure when an insect-resistant GE crop is grown. Given that the extensive cultivation of an insect-resistant GE crop will ultimately reduce the target insect pressure, the rapid spread of insect-resistance transgenes in weedy populations in commercial GE crop fields may be not likely to happen.

  15. EFFECTS OF MULCHING AND TILLAGE ON SOIL FERTILITY OF UPLAND RICE FIELD%不同耕作方式下覆草旱作稻田土壤肥力特征

    Institute of Scientific and Technical Information of China (English)

    王栋; 李辉信; 胡锋

    2011-01-01

    A field experiment was carried out during the period from 2005 to 2007 to investigate the effects of straw mulching and tillage on soil physical, chemical and biological properties of upland rice field that has been under the double-rice cropping system since 2003 in the seasonal arid region of South China (Yujiang County, Jiangxi Province). Results show that there was no significant difference between the treatments, I. E. conventional flooded rice cultivation (CF) , upland rice cultivation with straw mulching (SM) , and non-tillage upland rice cultivation with straw mulching (N-SM) in soil bulk density and total porosity in 0 - 15 cm depth soil layer. But Treatment N-SM significantly increased soil organic matter, total N, alkalystic N and soil basal respiration, and both Treatments SM and N-SM significantly increased soil microbial biomass carbon content and the activities of urease and saccharase, as was compared with Treatment CF. Therefore, the findings suggest that upland rice cultivation with straw mulching and non-tillage upland rice cultivation with straw mulching may be cited as novel water-saving and fertility building rice cultivation models for extrapolation in this region.%通过始建于2003年中国南方季节性干旱区(江西省余江县)的双季稻田定位试验,于2005~2007年研究了水稻覆草旱作和免耕覆草旱作对稻田土壤理化性质和生物学性质的影响.结果表明,覆草旱作、免耕覆草旱作的耕层土壤容重和总孔隙度与常规水作的差异不显著.与常规水作相比,免耕覆草旱作显著提高土壤有机质、全氮、碱解氮和土壤基础呼吸;与常规水作相比,覆草旱作和免耕覆草旱作均显著提高土壤微生物生物量碳含量、脲酶和蔗糖酶活性.由此可知,覆草旱作和免耕覆草旱作可以作为该区积极推行的具有培肥地力作用的节水型稻作栽培模式.

  16. Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510

    Science.gov (United States)

    Kaneko, Takakazu; Minamisawa, Kiwamu; Isawa, Tsuyoshi; Nakatsukasa, Hiroki; Mitsui, Hisayuki; Kawaharada, Yasuyuki; Nakamura, Yasukazu; Watanabe, Akiko; Kawashima, Kumiko; Ono, Akiko; Shimizu, Yoshimi; Takahashi, Chika; Minami, Chiharu; Fujishiro, Tsunakazu; Kohara, Mitsuyo; Katoh, Midori; Nakazaki, Naomi; Nakayama, Shinobu; Yamada, Manabu; Tabata, Satoshi; Sato, Shusei

    2010-01-01

    We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3 311 395 bp) and six plasmids, designated as pAB510a (1 455 109 bp), pAB510b (723 779 bp), pAB510c (681 723 bp), pAB510d (628 837 bp), pAB510e (537 299 bp), and pAB510f (261 596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N2 fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C4-dicarboxylate during its symbiotic relationship with the host plant. PMID:20047946

  17. Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices

    Directory of Open Access Journals (Sweden)

    Youngjoo Kwak

    2015-11-01

    Full Text Available Flood mapping, particularly hazard and risk mapping, is an imperative process and a fundamental part of emergency response and risk management. This paper aims to produce a flood risk proxy map of damaged rice fields over the whole of Bangladesh, where monsoon river floods are dominant and frequent, affecting over 80% of the total population. This proxy risk map was developed to meet the request of the government on a national level. This study represents a rapid, straightforward methodology for estimating rice-crop damage in flood areas of Bangladesh during the large flood from July to September 2007, despite the lack of primary data. We improved a water detection algorithm to achieve a better discrimination capacity to discern flood areas by using a modified land surface water index (MLSWI. Then, rice fields were estimated utilizing a hybrid rice field map from land-cover classification and MODIS-derived indices, such as the normalized difference vegetation index (NDVI and enhanced vegetation index (EVI. The results showed that the developed method is capable of providing instant, comprehensive, nationwide mapping of flood risks, such as rice field damage. The detected flood areas and damaged rice fields during the 2007 flood were verified by comparing them with the Advanced Land Observing Satellite (ALOS AVNIR-2 images (a 10 m spatial resolution and in situ field survey data with moderate agreement (K = 0.57.

  18. Carbofuran promotes biochemical changes in carp exposed to rice field and laboratory conditions.

    Science.gov (United States)

    Clasen, Bárbara; Leitemperger, Jossiele; Murussi, Camila; Pretto, Alexandra; Menezes, Charlene; Dalabona, Fabrícia; Marchezan, Enio; Adaime, Martha Bohrer; Zanella, Renato; Loro, Vania Lucia

    2014-03-01

    Effects of carbofuran commercial formulation on oxidative stress parameters were studied in carps (Cyprinus carpio) exposed to 50µg/L for 7 and 30 days under rice field and laboratory conditions. Thiobarbituric acid reactive substance (TBARS) levels were increased in the brain of fish after 7 and 30 days under rice field and laboratory conditions. In the liver and muscle, TBARS levels increased after 7 and 30 days under laboratory conditions, whereas in rice field the levels increased only after 30 days. Protein carbonyl content in the liver increased after 7 and 30 days under both experimental conditions. Acetylcholinesterase (AChE) activity was decreased in the brain and muscle after 7 and 30 days under both experimental conditions evaluated. The superoxide dismutase (SOD) activity increased in the liver after 7 and 30 days under rice field condition, whereas under laboratory condition this enzyme increased only after 30 days. The catalase (CAT) activity in the liver decreased after 30 days under rice field condition, whereas no changes were observed under laboratory conditions. In rice field, glutathione S-transferase (GST) decreased after 7 days but increased after 30 days, whereas no change was observed in fish exposed to carbofuran under laboratory conditions. These results suggest that environmental relevant carbofuran concentrations may cause oxidative stress, affecting biochemical and enzymatic parameters on carps. Some parameters could be used as biomarkers to carbofuran exposure.

  19. Composite fish culture for mosquito control in rice fields in southern India.

    Science.gov (United States)

    Victor, T J; Chandrasekaran, B; Reuben, R

    1994-09-01

    Composite culture of edible fishes (common carp, Cryprinus carpio; silver carp, Hypopthalmithys molitrix, grass carp, Ctenopharyngodon idella; catla, Catla catla; rohu, Labeo rohita; and mrigal, Cirrhinus mrigala) in rice fields in the Cauvery delta of Tamil Nadu, southern India, resulted in 81.0% reduction in the immature mosquito population of anophelines and 83.5% of culicines. Analysis of fish feces for mosquito larval head capsules showed that common carp and silver carp are effective larvivores. The selective feeding of common carp on culicines and silver carp on anophelines is correlated to their trophic niches. Net profit in the fish-cum-rice fields was 2.5 times greater than fields in which rice alone was cultured. Hence, rice-cum-fish culture can be recommended to the farming community in this area.

  20. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes.

    Science.gov (United States)

    Banik, Avishek; Mukhopadhaya, Subhra Kanti; Dangar, Tushar Kanti

    2016-03-01

    The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ. Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36-155.83 nmole C2H4 mg(-1) dry bacteria h(-1) and among them nitrogenase activity of 11 potent isolates was complemented by nifH-sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95-100 % sequence homology with type strains) belonging to five classes-alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44-7.4 µg ml(-1)), ammonia (0.18-6 mmol ml(-1)), nitrite (0.01-3.4 mol ml(-1)), and siderophore (from 0.16-0.57 μmol ml(-1)) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the

  1. [N2O and CH4 emission from Japan rice fields under different long-term fertilization patterns and its environmental impact].

    Science.gov (United States)

    Luo, Liang-guo; Kondo, Motohiko; Itoh, Sumio

    2010-12-01

    This study intended to investigate the greenhouse gases emission from Japan single cropping paddy fields after 75-year continuous application of ammonium sulfate, composted rice straw with soybean cake, and fresh clover, as well as the environmental impact of the emission. During this long period, field management remained constant in terms of rice cultivation density, irrigation, and equivalent net N fertilization. No significant differences were observed in N2O emission among the fertilization treatments, but the CH4 emission differed significantly between organic amendment and ammonium sulfate application, indicating that long-term organic fertilization didn' t increase N2O emission but promoted CH4 emission. The cumulative global warming potential (GWP) of the CH4 and NO2O from the paddy ecosystem was the greatest (310.7 g CO2e x m(-2)) under fresh clover application, followed by composted rice straw plus soybean cake addition (151 g CO2e x m(-2)), and the least (60.6 g CO2e x m(-2)) under ammonium sulfate application. This study showed that for paddy system, it was CH4 instead of N2O the major factor affecting global warming, and thereby, to control and reduce the CH4 emission from paddy system would be the core in mitigating greenhouse gases emission from paddy field. Long-term consecutive application of composted rice straw plus soybean cake could increase soil organic matter, improve soil fertility, promote rice high-yielding, and as well, mitigate CH4 emission, being the recommendable paddy rice production mode in practice.

  2. Identification of rice field using Multi-Temporal NDVI and PCA method on Landsat 8 (Case Study: Demak, Central Java)

    Science.gov (United States)

    Sukmono, Abdi; Ardiansyah

    2017-01-01

    Paddy is one of the most important agricultural crop in Indonesia. Indonesia’s consumption of rice per capita in 2013 amounted to 78,82 kg/capita/year. In 2017, the Indonesian government has the mission of realizing Indonesia became self-sufficient in food. Therefore, the Indonesian government should be able to seek the stability of the fulfillment of basic needs for food, such as rice field mapping. The accurate mapping for rice field can use a quick and easy method such as Remote Sensing. In this study, multi-temporal Landsat 8 are used for identification of rice field based on Rice Planting Time. It was combined with other method for extract information from the imagery. The methods which was used Normalized Difference Vegetation Index (NDVI), Principal Component Analysis (PCA) and band combination. Image classification is processed by using nine classes, those are water, settlements, mangrove, gardens, fields, rice fields 1st, rice fields 2nd, rice fields 3rd and rice fields 4th. The results showed the rice fields area obtained from the PCA method was 50,009 ha, combination bands was 51,016 ha and NDVI method was 45,893 ha. The accuracy level was obtained PCA method (84.848%), band combination (81.818%), and NDVI method (75.758%).

  3. Geostatistics applied to the study of the spatial distribution of Tibraca limbativentris in flooded rice fields

    Directory of Open Access Journals (Sweden)

    Juliano de Bastos Pazini

    2015-06-01

    Full Text Available Tibraca limbativentris (rice stem bug is an insect highly injurious to the rice crop in Brazil. The aim of this research was to define the spatial distribution of the T. limbativentris and improve the sampling process by means of geostatistical application techniques and construction of prediction maps in a flooded rice field located in the "Planalto da Campanha" Region, Rio Grande do Sul (RS, Brazil. The experiments were conducted in rice crop in the municipality of Itaqui - RS, in the crop years of 2009/10, 2010/11 and 2011/12, counting fortnightly the number of nymphs and adults in a georeferenced grid with points spaced at 50m in the first year and in 10m in the another years. It was performed a geostatistical analysis by means adjusting semivariogram and interpolation of numeric data by kriging to verify the spatial dependence and the subsequent mapping population. The results obtained indicated that the rice stem bug, T. limbativentris, has a strong spatial dependence. The prediction maps allow estimating population density of the pest and visualization of the spatial distribution in flooded rice fields, enabling the improvement of the traditional method of sampling for rice stem bug

  4. Cultivating Kuumba: Applying Art Based Strategies to Any Field

    Science.gov (United States)

    Ellis, Auburn Elizabeth

    2015-01-01

    There are many contemporary issues to address in adult education. This paper explores art-based strategies and the utilization of creativity (Kuumba) to expand learning for global communities in any field of practice. Benefits of culturally grounded approaches to adult education are discussed. Images from ongoing field research can be viewed at…

  5. The Source of Genes Related to Rice Grain Starch Synthesis Among Cultivated Varieties and Its Contribution to Quality

    Institute of Scientific and Technical Information of China (English)

    YAN Chang-jie; TIAN Shun; ZHANG Zheng-qiu; HAN Yue-peng; CHEN Feng; LI Xin; GU Ming-hong

    2007-01-01

    The property of starch in rice grain endosperm is a very important determinant for rice quality, and it is essential to understand the genetic effect of the genes related to starch synthesis in high-yielding rice varieties for rice quality improvement. The physicochemical properties (e.g., amylose content, gel consistency, and RVA profile) were assessed on 53 rice varieties, including certain typical indica/japonica landraces and certain high-yielding modern varieties. And molecular markers for Sbel, Sbe3 developed on the basis of sequence diversities between the rice subspecies indica and japonica, together with PCR-Acc Ⅰ marker for Wx gene were used to investigate the genotypes of 53 rice cultivars. The result showed that the developed molecular markers for Wx, Sbel, Sbe3 could distinguish indica or japonica alleles at three loci. Among all the 53 rice cultivars, six genotypes were observed when Sbel, Sbe3, and Wx loci were considered together, while the genotypes of WxiSbeljSbe3i and WxiSbeljSbe3j were absent. In order to explore the genetic effects of the three genes, especially for starch branching enzyme genes, ANOVA and multiple comparison analysis were conducted.The results showed that rice cultivars with different genotypes exhibited different phenotypes, including amylose content,gel consistency and certain RVA characteristics, and the significant differences among the six genotypes were observed.It was concluded that these three genes had randomly recombined during the process of the rice variety development.And the genetic effects of indica and japonica alleles at three gene loci were different, of which, Wx gene plays a major role in determining the starch properties, followed by Sbel and Sbe3, and the genetic effects of Sbel and Sbe3 in different backgrounds (Wxi, Wxj) are different. The results have provided a clue for rice good quality variety development, and the molecular markers will benefit to the improvement in quality of rice.

  6. Biodiversity and Dynamics of Planthoppers and Their Natural Enemies in Rice Fields with Different Nitrogen Regimes

    Institute of Scientific and Technical Information of China (English)

    LU Zhong-xian; S.VILLAREAL; YU Xiao-ping; K.L.HEONG; HU Cui

    2006-01-01

    A field experiment was conducted to study the effect of different nitrogen fertilizer rates I.e. 200, 100 and 0 kg N/ha in paddy fields at International Rice Research Institute, Manila, Philippines. Biodiversity of arthropods sampled by Blower-Vac, and dynamics of planthoppers, egg parasitoids of Homoptera trapped by rice plants with eggs of brown planthoppers (BPH) Nilaparvata lugens (St(ā)l), and web spiders on rice canopy collected by sweeping net, were analyzed at different rice growth stages. The most abundant arthropods were sampled at the milking stage of rice, totalling 116 species identified into 14 insect orders and 15 species of spider in all samples. Meanwhile the number of arthropod species significantly increased with rice growth and the diversity indices increased with the increase of nitrogen rate at the booting stage. On the other hand, in the dominant predators, Pardosa pseudoannulata, Callitrichi formosana, Micraspis sp., Cyrtorhinus lividipennis, Veliidae sp. And Mesoveliidae sp., only C. Lividipennis and Micraspis sp. Were increased significantly in abundance following the application of nitrogen at the milking stage of rice. The egg parasitoids of plant-hoppers were predominated by Anagrus flaveolus and Oligosita sp. And their densities in the field without nitrogen fertilizer were markedly higher than those in fields with 100 and 200 kg N/ha at both booting and milking stages of rice. The number and web area of dominant residential spiders Tetragnatha sp. And Araneus sp. In rice canopy significantly reduced with the increase of nitrogen fertilizer. The population density of planthoppers, included BPH and the white-backed planthoppers (WBPH) Sogatella furcifera Horváth, peaked during the booting stage, however, the number of BPH in rice field with 200 kg N/ha was considerably higher than those in other two rice fields with 100 kg N/ha and 0 kg N/ha at the booting as well as the milking stage. These results indicated that the rapid growth in

  7. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L. grown at four international field sites.

    Directory of Open Access Journals (Sweden)

    Gareth J Norton

    Full Text Available The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼ 300 accessions and 36.9 k single nucleotide polymorphisms (SNPs. The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel. This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.

  8. Field Evaluation of Four Spatial Repellent Devices Against Arkansas Rice-Land Mosquitoes

    Science.gov (United States)

    2014-03-01

    FIELD EVALUATION OF FOUR SPATIAL REPELLENT DEVICES AGAINST ARKANSAS RICE-LAND MOSQUITOES DAVID A. DAME,1 MAX V. MEISCH,2 CAROLYN N. LEWIS,2 DANIEL L... mosquitoes to locate a host. There are many commercially available spatial repellent products currently on the market. These products include...a large rice growing area where late-spring and summer agricultural irriga- tion generates dense mosquito populations. Spatial repellent devices

  9. Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields

    DEFF Research Database (Denmark)

    Mutero, C M; Ng'ang'a, P N; Wekoyela, P

    2004-01-01

    Field experiments were conducted in central Kenya, to study the effect of ammonium sulphate fertiliser ((NH(4))(2)SO(4)) on mosquito larval populations in rice fields. The experiments used a complete randomised block design having four blocks with two experimental ponds per block, and the fertili......Field experiments were conducted in central Kenya, to study the effect of ammonium sulphate fertiliser ((NH(4))(2)SO(4)) on mosquito larval populations in rice fields. The experiments used a complete randomised block design having four blocks with two experimental ponds per block...... populations of An. arabiensis (Pmosquitoes (P... in rice fields, thereby making them visually more attractive for egg-laying by An. arabiensis and culicine mosquitoes....

  10. Preliminary studies on microbiological mechanism of the dynamics of CH4 and N2O emission from rice field

    Institute of Scientific and Technical Information of China (English)

    HOUAixin; CHENGuanxiong; WUjie; WANGZhengping

    1998-01-01

    Greenhouse gases, CH4 and N2O emitted from rice field, are the products of microbial metabolism. So the characteristics of CH4 and N2O production and emission in rice field can be understood through microbiological study. In this paper, the relationships between the dynamics of CH4 and N2O emission from rice field in northern China and the related soil bacteria groups were discussed.

  11. Characterization of Leaf Photosynthetic Properties for No-Tillage Rice

    Institute of Scientific and Technical Information of China (English)

    CHEN Song; XIA Guo-mian; ZHAO Wei-ming; WU Fei-bo; ZHANG Guo-ping

    2007-01-01

    A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carried out at three locations (Jiaxing, Hangzhou,and Xiaoshan, Zhejiang Province, China) for two years (2005 and 2006). Grain yield was constant in Jiaxing, but slightly higher in Hangzhou and Xiaoshan under no-tillage cultivation than that under conventional cultivation. In comparison with the conventional cultivation, no-tillage cultivation showed less biomass accumulation before heading and higher capacity of matter production during grain filling. A significantly higher leaf net photosynthetic rate was observed for the plants under no-tillage than for those under conventional tillage. The fluorescence parameter (Fv/Fm) in leaf did not show any difference between the two cultivations. The effect of cultivation management on transpiration rate (Tr) and SPAD value of rice leaf was dependent on the location and year.

  12. Characterization of Leaf Photosynthetic Properties for No-Tillage Rice

    Directory of Open Access Journals (Sweden)

    Song CHEN

    2007-12-01

    Full Text Available A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carried out at three locations (Jiaxing, Hangzhou, and Xiaoshan, Zhejiang Province, China for two years (2005 and 2006. Grain yield was constant in Jiaxing, but slightly higher in Hangzhou and Xiaoshan under no-tillage cultivation than that under conventional cultivation. In comparison with the conventional cultivation, no-tillage cultivation showed less biomass accumulation before heading and higher capacity of matter production during grain filling. A significantly higher leaf net photosynthetic rate was observed for the plants under no-tillage than for those under conventional tillage. The fluorescence parameter (Fv/Fm in leaf did not show any difference between the two cultivations. The effect of cultivation management on transpiration rate (Tr and SPAD value of rice leaf was dependent on the location and year.

  13. Measuring Radionuclides Concentration in Rice Field Soils Using Gamma Spectroscopy in Northern Iran

    Directory of Open Access Journals (Sweden)

    MZ Zareh

    2012-02-01

    Full Text Available Background: A few elements of soil are radioactive. Soil can transfer radionuclide into plants feeding human. Sometimes their levels are as high as to be concern of human healthy. Rice has an important share for Iranian foods especially in north of Iran. Therefore we decided to obtain radionuclides concentration emitting g rays in Lahijan City (Northern Iran rice fields using g spectroscopy.Methods: Twenty eight samples from rice field's soils and 12 samples from superficial soils were collected at a square of 10*10 m2 to get 2kg weight. To make dry samples were put into oven at 105oC for 24h. Then they were milled and 950 gr of each sample was transferred to Marinelli container with 1000cc volume, sealed and left for 40 days to get secular equilibrium. After measuring Ph, Electric conductivity and organic carbon, g spectroscopy was done to get sample gamma spectrum at 2000-6000 sec using HpGe detector.Results: It was found 226Ra activity in rice fields of 29.273±0.72 Bqkg-1 and city soil of 31.02±1.1 Bqkg-1 and also 232Th activity of 37.47±1.12 Bqkg-1 for rice fields' soils and 40.47±1.68 Bqkg-1 for city soil were in standard mode.Conclusion: 40K activities mean value according to UNSCEAR; 2000 was found a little greater than standard. A little value of 137Cs was found in Lahijan rice fields and city soils that could be as a result of Chernobyl accident. In except of 137Cs, for three other under studied city soil elements, activities were greater than that of rice fields.

  14. Monitoring of pesticide leaching from cultivated fields in Denmark

    DEFF Research Database (Denmark)

    Brüsch, Walter; Rosenbom, Annette E; Badawi, Nora

    2016-01-01

    The Danish Pesticide Leaching Assessment Programme (PLAP) was initiated in 1998 by the Danish Parliament in order to evaluate whether the use of approved pesticides will result in an unacceptable contamination of the groundwater, if applied under field conditions in accordance with current Danish...... Agency in the regulation of pesticides in Denmark (Brüsch et al. 2015). In order to represent typical farming scenarios in Denmark, the test fields are situated on meltwater and marine sands, and on tile-drained clayey soils in till areas....

  15. Characteristics of Growth and Yield Formation of Rice in Rice-Fish Farming System

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; ZHANG Hong-cheng; HU Xiao-jun; DAI Qi-gen; ZHANG Yong-jiang

    2006-01-01

    By using single rice cultivation as a control, the effect of rice-fish culture on growth dynamic, plant type and yield formation of rice was studied. The results showed as follows: rice-fish culture improved the physical-chemical properties of arable layer soil of paddy field, extended growth period of rice, increased dry matter and LAI of different growth stages,improved three top leaves area, deterred the degeneration of leaves function, increased the diameter of stem, promoted the growth of roots and the formation of roots in the extended stem. At the same time, rice-fish culture extended the length of basal internodes, increased the number of internodes, uplifted the gravity of plant, and depressed the root vigor. For the grain yield and yield structure of rice, rice-fish culture decreased ear/tillering ratio, spikelet/panicle and seed set percentage,increased grain weight. If variety choice and cultivation technology were controlled appropriately, rice-fish culture could increase the effective panicles and improve grain yield of rice.

  16. Agent-based modelling of shifting cultivation field patterns, Vietnam

    DEFF Research Database (Denmark)

    Jepsen, Martin Rudbeck; Leisz, S.; Rasmussen, K.;

    2006-01-01

    costs associated with fencing of fields, and are faced with physical constraints. The simulation results are compared with land-cover data obtained from remote sensing. Comparisons are made on patterns as detected visually and using the mean nearest-neighbour ratio. Baseline simulation outputs show high...

  17. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  18. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields.

    Science.gov (United States)

    Wang, Hong-Yan; Wen, Shi-Lin; Chen, Peng; Zhang, Lu; Cen, Kuang; Sun, Guo-Xin

    2016-02-01

    A field experiment was established to support the hypothesis that application of different silicon (Si) fertilizers can simultaneously reduce cadmium (Cd) and arsenic (As) concentration in rice grain. The "semi-finished product of Si-potash fertilizer" treatment at the high application of 9000 kg/ha (NP+S-KSi9000) significantly reduced the As concentration in rice grain by up to 20.1%, compared with the control. Si fertilization reduces the Cd concentration in rice considerably more than the As concentration. All Si fertilizers apart from sodium metasilicate (Na2SiO3) exhibited a high ability to reduce Cd concentration in rice grain. The Si-calcium (CaSi) fertilizer is the most effective in the mitigation of Cd concentration in rice grain. The CaSi fertilizer applied at 9000 kg/ha (NPK+CaSi9000) and 900 kg/ha (NPK+CaSi900) reduced the Cd concentration in rice grain about 71.5 and 48.0%, respectively, while the Si-potash fertilizer at 900 kg/ha (NP+KSi900), the semi-finished product of Si-potash fertilizer at both 900 kg/ha (NP+S-KSi900) and 9000 kg/ha (NP+S-KSi9000), and the rice straw (NPK+RS) treatments reduced the Cd concentration in rice grain about 42, 26.5, 40.7, and 23.1%, respectively. The results of this investigation demonstrated the potential effects of Si fertilizers in reducing Cd and As concentrations in rice grain.

  19. Population dinamics of Lymnaea rubiginosa in rice fields and its infection with larvae of trematodes

    Directory of Open Access Journals (Sweden)

    Suhardono

    2000-12-01

    Full Text Available Field of irrigated rice paddy was the most suitable habitat as breeding site of snail Lymnaea rubiginosa, the intermadiate host of Fasciola gigantica and other trematodes. Fluctuations in the population of fresh water snail, L. rubiginosa in irrigated rice fields and their infection with L. rubiginosa and other trematodes were studied in five villages in the subdistrict of Surade, provivine of West Java. Snail were sampled based on time collection (half man hour each site of collection. The samples of the snails were further counted and examined for the presence of larval trematodes. The result indicated that snails died during the dry season except those in persistent aquatic refuges such as streams and springs. Surviving snails recolonised rice fields near villages by passive transfer with water from refuges early in the wet season. Some recolonosation may also have resulted from haching of snail eggs deposited in habitats which had not been dried for more than a few weeks. Recolonisation with snails of further rice fields from a village occurred during the later period of the wet season. No snail infected with F. gigantica was found in the distance of more than 200 m from a village. Snail with the highest prevalence of infection occurred in rice fields which received effluent from a cattle pen were fertilised with bovine faeces. Each snail was only infected with one species of tramatodes. Infection with echinostone larvae was most common.

  20. [Chromosomal localization of the hormone-sensitive lipase gene (Hsl) in rice field eel].

    Science.gov (United States)

    Ji, Fu-Yun; Yu, Qi-Xing; Pan, Pei-Wen

    2003-03-01

    Adipose tissue triacylglycerols are the quantitatively most important source of stored energy in animals. Hormone-sensitive lipase encoded by hormone-sensitive lipase gene (Hsl) is a multifunctional enzyme that catalyzes the hydrolysis of triacylglycerol stored in adipose tissue and cholesterol esters in the adrenals, ovaries, testes and macrophages. Using pig Hsl gene inserted into pBS labeled by the radioactive isotope and the digoxigenin as the probes respectively one band, 11.5kb, has been shown to hybridized with total DNA of rice field eel digested with Pst I by Southern blotting and Hsl gene has been assigned to metaphase chromosome 5, at the position of 78.35+/-1.26 from the centromere in rice field eel by fluorescent in situ hybridization (FISH). The mapping results are corresponding to that of "specific-chromosomal DNA pool" obtained by chromosome microisolation used to map gene and the mapping result is more accurate. The results of the study further illustrate the importance of the presence of Hsl gene in rice field eel genome and provide the first FISH mapping data for rice field eel chromosome 5. The current studies would advance the addition of known genetic markers and the construction of high resolution genetic map in rice field eel genome.

  1. Occurrence and Population Dynamics of Chironomids in Early-Season Rice Fields

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-yu; YANG Hong; LAI Feng-xiang; FU Qiang; HU Yang

    2011-01-01

    The chironomid is one of the world wide distributed insects and normally occurs in a great abundance among many kinds of water bodies.Currently,our knowledge about the chironomid in rice fields is limited to the species survey,and it is considered as a group insect at the family level,termed as a kind of the neutral insects.By using the specially designed emergence traps,the species richness and the occurrence of the chironomid in rice fields were studied throughout the early season in Fuyang City,Zhejiang Province,China.There were four species,namely,Tanytarsus formosanus,Chironomus sinicus,Polypedilum nubifer and Tanypus punctipennis of chironomids collected from rice fields.All of them are widely distributed species.T.formosanus and C.sinicus were the most dominant species in rice fields.The succession of chironomids in the early season could be divided into two phases,the early and the late phases.The abundance of the chironomid was higher in the early phase than that in the late phase.It was estimated that there were around 3 million individuals of chironomids emerged from 667 m2 rice field throughout the early season.It was also found that the sex ratio of T.formosanus was female-biased during the early phase,whereas male-biased during the late phase.In contrast,the sex ratio of C.sinicus was male-biased throughout the early season.

  2. Seasonal Production and Emission of Methane from Rice Fields, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M. Aslam K.; Rasmussen,Reinhold A.

    2002-12-03

    B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

  3. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process.

    Science.gov (United States)

    Pinal, L; Cornejo, E; Arellano, M; Herrera, E; Nuñez, L; Arrizon, J; Gschaedler, A

    2009-05-01

    The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.

  4. Soil properties and crop yield under different tillage methods for rapeseed cultivation in paddy fields

    Directory of Open Access Journals (Sweden)

    Alizadeh Mohammad Reza

    2015-01-01

    Full Text Available A two-year research was conducted to investigate the effect of different tillage methods on some soil physical characteristics and crop yield in rapeseed cultivation after rice harvesting. Five tillage treatments including: (i using rotavator, once to depth of 10-15 cm (T1, (ii using rotavator, twice to depth of 10-15 cm (T2, (iii using moldboard plow to depth of 25 cm + rotavator, once to depth of 10-15 cm (T3, (iv no-till planting through removing rice stubbles from plots (T4, and (v no-till planting without removing rice stubbles from plots (T5, were evaluated under randomized complete block design (RCBD in three replications. The biannual results revealed that the effect of tillage methods was significant (p<0.01 on soil bulk density, surface residues after tillage, dry mass of weeds, seed germination, and grain yield. T2 and T3 made considerable reduction in soil bulk density compared to other treatments for the 15- to 30-cm tillage depths. In T1, T2, T3, and T4, surface residues after tillage decreased in comparison with T5 by up to 35.37, 50.71, 69.92, and 75.75%, respectively. Having 71.48 g m-2, T5 had the maximum dry mass of weeds while T3 had the minimum one with 37.50 g m-2. Means comparison represented that in T2 and T3, seed germination reached the shortest length of 6.4 days in average. The highest and lowest grain yields were acquired in T3 (1,571 kg ha-1 and T5 (1,339 kg ha-1, respectively. Statistically, there was no significant difference between T1 (1,432 kg ha-1 and T2 (1,537 kg ha-1 compared with T3 in terms of grain yield.

  5. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  6. Screening of filamentous fungi to produce xylanase and xylooligosaccharides in submerged and solid-state cultivations on rice husk, soybean hull, and spent malt as substrates.

    Science.gov (United States)

    da Silva Menezes, Bruna; Rossi, Daniele Misturini; Ayub, Marco Antônio Záchia

    2017-03-01

    We investigated the enzymatic complex produced by selected fungi strains isolated from the environment using the agro-industrial residues rice husk, soybean hull, and spent malt as substrates. Microbial growth was carried out in solid-state cultivation (SSC) and in submerged cultivations (SC) and the enzymatic activities of xylanase, cellulase, β-xylosidase, and β-glucosidase were determined. All substrates were effective in inducing enzymatic activities, with one strain of Aspergillus brasiliensis BLf1 showing maximum activities for all enzymes, except for cellulases. Using this fungus, the enzymatic activities of xylanase, cellulase, and β-glucosidase were generally higher in SSC compared to SC, producing maxima activities of 120.5, 25.3 and 47.4 U g(-1) of dry substrate, respectively. β-xylosidase activity of 28.1 U g(-1) of dry substrate was highest in SC. Experimental design was carried out to optimize xylanase activity by A. brasiliensis BLf1 in SSC using rice husk as substrate, producing maximum xylanase activity 183.5 U g(-1) dry substrate, and xylooligosaccharides were produced and characterized. These results suggest A. brasiliensis BLf1 can be used to produce important lytic enzymes to be applied in the preparation of xylooligosaccharides.

  7. Living in the paddies: a social science perspective on how inland valley irrigated rice cultivation affects malaria in Northern Côte d'Ivoire.

    Science.gov (United States)

    De Plaen, Renaud; Geneau, Robert; Teuscher, Thomas; Koutoua, Amalaman; Seka, Marie-Louise

    2003-05-01

    The potential impact of irrigated agriculture on water-related vector-borne diseases has been an increasing source of concern for researchers from the bio-medical sector. While most research on the potential impacts of irrigation on the health of local populations focuses on vector densities, levels of exposures, health services and technologies (prophylaxis, mosquito nets), we argue that it is essential to enlarge the scope of investigation and consider the complex mechanisms by which factors such as agriculture-generated changes in ecosystems, gender repositioning in the family organization as a result of access to new crops, and production activities combine together in increasing disease risks and producing new scenarios in the management of disease. This paper presents the results of an investigation of how transformations induced on the local society by the intensification of inland valley irrigated rice cultivation influence malaria health care systems and modulate risks to the health of local populations, within well-defined geographical boundaries in northern Côte d'Ivoire. Our results indicate that socio-economic transformations and gender repositioning induced, or facilitated, by the intensification of inland valley irrigated rice cultivation lead to a reduction of the capacity of women to manage disease episodes, contributing therefore to increase malaria incidence among farming populations.

  8. Cultivating the Pedagogy of Experience Through International Field Trips

    Directory of Open Access Journals (Sweden)

    Tan Yigitcanlar

    2013-03-01

    Full Text Available Urban and regional planners, in the era of globalization, require being equipped with necessary skill sets to better deal with complex and rapidly changing economic, sociocultural, political, and environmental fabrics of cities and their regions. To provide such skill sets, urban and regional planning curriculum of Queensland University of Technology, Brisbane, Australia, offers planning practice in the international context. This article, first, reports the findings of pedagogic analyses of the international field trips conducted to Malaysia, Korea, Turkey, and Taiwan. The article, then, discusses the opportunities and constraints of exposure of students to planning practice beyond the Australian context.

  9. Review on greenhouse gases emission and the reduction technology in rice fields%稻田温室气体排放与减排研究综述

    Institute of Scientific and Technical Information of China (English)

    邵美红; 孙加焱; 阮关海

    2011-01-01

    水稻是我国最重要的粮食作物之一,甲烷和氧化亚氮作为稻田两大温室气体,在全球温室效应中起着很大作用.文章综述了水分管理条件、施肥方式、品种选择差异、农作模式差异及土壤气候条件等因素对稻田甲烷和氧化亚氮排放的主要因素,并从综合温室效应方面提出品种和栽培措施、合理施肥和用药、改进农作制度、发展农村沼气能等技术措施,为发展稻田低碳提供一定的参考.%Rice is one of the most important food crops in our country. Two major greenhouse gases, methane ( CH4 ) and nitrous oxide ( N2O) , play significant roles in global greenhouse effect. This paper reviewed the effects of irrigation, fertilization, rice varieties, cropping patterns, soil-climatic conditions and other factors on emissions of CH4 and N2O from rice fields. Considering the synthetic greenhouse effect, some measures of reducing greenhouse gas emission in rice fields were also put forward such as varieties and cultivation, fertilization and pesticide application, improving farming system, development of biogas energy technologies, etc. This paper might provide some references for developing low carbon technology in rice field.

  10. Management of Rice Fields for Birds during the Non-growing Season

    NARCIS (Netherlands)

    Elphick, Chris S.; Taft, Oriane; Lourenco, Pedro M.

    2010-01-01

    Fields planted with rice (Oryza saliva) are used by a wide variety of bird species during the non-growing season and play an important conservation role in many parts of the world. Management of fields affects the variety and number of birds that use them, and a thorough understanding of these issue

  11. Application and Discussion of Factory Darkening Seedlings Cultivation Technology for Rice Combination%水稻工厂化暗化育秧技术应用探讨

    Institute of Scientific and Technical Information of China (English)

    刘清亮

    2015-01-01

    当前水稻育秧技术是机械插秧的重要配套,是机械化插秧的技术保障和支撑,是农艺和农机的有机结合.育秧技术的好坏,是机械化插秧技术成功与否的关键环节.通过这几年生产实践,总结水稻工厂化暗化育秧关键技术,为大面积推广水稻工厂化育秧提供参考.%In currently, rice seedlings technology is one of the important supporting mechanical transplanting, is the technical guarantee and supporting mechanization planting, and is the combination of agronomy and farm machinery. What,s more, the cultivation technology is the key to the success of mechanization planting technology. Through recent year research, we summarizes the rice factory darkening boards for key technologies, provide reference for large extension rice seedlings.

  12. Field and greenhouse inoculation methods for assessment of sheath blight resistance in rice

    Directory of Open Access Journals (Sweden)

    Leila Garcês de Araújo

    2007-01-01

    Full Text Available Field and greenhouse inoculation methods were compared to determine the genetic variation for resistance toRhizoctonia solani in 38 somaclones of rice cultivar Metica-1. Rice plants in pots were inoculated with isolate 4F1 at the ageof sixty four days, with 2.0 g of the fungal culture, multiplied on rice grain and hull medium and placed on the soil surfacearound the plant. The differences among somaclones in relation to lesion height were significant and varied from 6.5 to 15.5cm. In the field trial of artificial inoculation with fungal culture, 52 days after planting, the lesion height varied from 6.2 to 17.7cm. The correlation between disease severity in the greenhouse and the field was positive and highly significant (r=0.44;P< 0.01, indicating the greenhouse inoculation as a safe method for screening germplasm for sheath blight resistance.

  13. A possible alternative method for collecting mosquito larvae in rice fields

    Directory of Open Access Journals (Sweden)

    Goff Gilbert

    2002-04-01

    Full Text Available Abstract Background Rice fields are efficient breeding places for malaria vectors in Madagascar. In order to establish as easily as possible if a rice field is an effective larval site for anophelines, we compared classical dipping versus a net as methods of collecting larvae. Results Using similar collecting procedures, we found that the total number of anopheline larvae collected with the net was exactly double (174/87 that collected by dipping. The number of anopheline species collected was also greater with a net. Conclusions The net is an effective means of collecting anopheline larvae and can be used for qualitative ecological studies and to rapidly determine which rice fields are containing malaria vectors.

  14. Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China

    Science.gov (United States)

    Wang, Guodong; Middleton, Beth; Jiang, Ming

    2013-01-01

    Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.

  15. Towards higher nitrogen efficiency in European rice cultivation. A case study for the Camargue, South of France.

    OpenAIRE

    Stutterheim, N.C.

    1995-01-01

    This study focuses on an increase in the efficiency of fertilizer nitrogen in irrigated, direct seeded rice. Three indicators for efficiency were used: agronomic efficiency, utilization efficiency and recovery. Experiments were conducted in the Camargue in the South of France, to quantify these indicators for standard non-coated prilled urea under conventional management of irrigated rice. The results were compared to those derived from data originating from other surveys within the Mediterra...

  16. Efficiency Test of IRRI Fertilizing Recommendations on Rainfed Low Land Rice Field in West Kalimantan

    Directory of Open Access Journals (Sweden)

    Muhammad Hatta

    2014-06-01

    Full Text Available Fertilizing recommendation for lowland rice field in West Kalimantan is still in national scale and tends to be excessive. It is less relevant due to various factors such as the test method competence, the carrying capacity of the land, and the diverse condition of rice field agro-ecosystem. Site-specific nutrient management (SSNM is an approach for rice fertilizing on paddy plot based on science, history of land fertilization, and nutrient sources surrounding the area which can affect soil fertility level and soil conservation.This study was aimed to examine fertilizing efficiency of N, P, and K and the increased productivity of rice by utilizing software (website of the IRRI. The study was conducted in farmers fields in two villages, i.e. Anjongan and Pak Bulu, Pontianak Regency, West Kalimantan. The results showed that the SSNM fertilization on rice increased yields by the average of 0.62 t ha-1 (13.47% per growing season. The efficiency of SSNM fertilization was on the average of 22.05% N, 48.25% P2O5, and 31.50% K2O. The additional profits obtained from the SSNM recommendation was on the average of IDR 1,886,317 per ha pergrowing season compared to the profits from the FFP (farmer fertilizer practice.

  17. Impact of fungicide and insecticide use on non-target aquatic organisms in rice paddy fields

    Directory of Open Access Journals (Sweden)

    Alana Cristina Dorneles Wandscheer

    Full Text Available ABSTRACT: The intensive use of plant protection products in rice paddy fields ( Oryza sativa L. has caused concern about the environmental impact on communities of non-target organisms that are natural inhabitants in these agroecosystems. The purpose of this review is to analyze the data currently available in the literature about some important fungicides and insecticides (such as trifloxystrobin, tebuconazole, tricyclazole, lambda-cyhalothrin, and thiamethoxam, which are currently used to control pests and diseases in rice paddy fields, as well as their effects on the community of non-target aquatic organisms.

  18. A scheme for regional rice yield estimation using ENVISAT ASAR data

    Institute of Scientific and Technical Information of China (English)

    LE; TOAN; Thuy

    2009-01-01

    Information on rice growing areas and rice production is critical for most rice growing countries to make state and economic policies. However, the areas where rice crop is cultivated are often cloudy and rainy, which entails the use of radar remote sensing data for rice monitoring. In this paper, a practical scheme to integrate multi-temporal and multi-polarization ENVISAT ASAR data into rice crop model for regional rice yield estimation has been presented. To achieve this, rice distribution information should be obtained first by rice mapping method to retrieve rice fields from ASAR images, and then an assimilation method is applied to use the observed multi-temporal rice backscattering coefficients which are grouped for each rice pixel to re-initialize ORYZA2000 to predict rice yield. The assimilation method re-initializes the model with optimal input parameters, allowing a better temporal agreement between the rice backscattering coefficients retrieved from ASAR data and the rice backscattering coefficients simulated by a coupled model, i.e., the combination of ORYZA2000 and a semi-empirical rice backscatter model through LAI. The SCE-UA optimization algorithm is employed to determine the optimal set of input parameters. After the re-initialization, rice yield for each rice pixel is calculated, and the yield map over the area of interest is produced. The scheme was validated over Xinghua study area located in the middle of Jiangsu Province of China by using the data set of an experimental campaign carried out during the 2006 rice season. The result shows that the obtained rice yield map generally overestimates the actual rice production by 13% on average and with a root mean square error of approximately 1133 kg/ha on validation sites, but the tendency of rice growth status and spatial variation of the rice yield are well predicted and highly consistent with the actual production variation.

  19. Size-resolved culturable airborne bacteria sampled in rice field, sanitary landfill, and waste incineration sites.

    Science.gov (United States)

    Heo, Yongju; Park, Jiyeon; Lim, Sung-Il; Hur, Hor-Gil; Kim, Daesung; Park, Kihong

    2010-08-01

    Size-resolved bacterial concentrations in atmospheric aerosols sampled by using a six stage viable impactor at rice field, sanitary landfill, and waste incinerator sites were determined. Culture-based and Polymerase Chain Reaction (PCR) methods were used to identify the airborne bacteria. The culturable bacteria concentration in total suspended particles (TSP) was found to be the highest (848 Colony Forming Unit (CFU)/m(3)) at the sanitary landfill sampling site, while the rice field sampling site has the lowest (125 CFU/m(3)). The closed landfill would be the main source of the observed bacteria concentration at the sanitary landfill. The rice field sampling site was fully covered by rice grain with wetted conditions before harvest and had no significant contribution to the airborne bacteria concentration. This might occur because the dry conditions favor suspension of soil particles and this area had limited personnel and vehicle flow. The respirable fraction calculated by particles less than 3.3 mum was highest (26%) at the sanitary landfill sampling site followed by waste incinerator (19%) and rice field (10%), which showed a lower level of respiratory fraction compared to previous literature values. We identified 58 species in 23 genera of culturable bacteria, and the Microbacterium, Staphylococcus, and Micrococcus were the most abundant genera at the sanitary landfill, waste incinerator, and rice field sites, respectively. An antibiotic resistant test for the above bacteria (Micrococcus sp., Microbacterium sp., and Staphylococcus sp.) showed that the Staphylococcus sp. had the strongest resistance to both antibiotics (25.0% resistance for 32 microg ml(-1) of Chloramphenicol and 62.5% resistance for 4 microg ml(-1) of Gentamicin).

  20. Soil organic carbon in riparian forests, rice fields, and pastures in Piedras, Tolima, Colombia.

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2016-06-01

    Full Text Available The aim of the study was to estimate the soil organic carbon (SOC storage in the interface between riparian forests and a matrix of rice fields and pastures with organic management. The study took place in Piedras, Tolima, Colombia. Two plots in production (rice and pasture were selected and SOC was estimated in these areas and in the edge and the interior of adjacent riparian forests at a depth of 0 to 20 cm. Bulk density and SOC concentration were quantified between May and July, 2013. Potential change in SOC storage due to land use change among rice fields, pastures, and riparian forests was estimated. The interfaces rice field-riparian forest and pasture-riparian forest stored an average of 65.6 and 61.3 t C/ha, respectively, with no statistical differences (p>0.05. Statistical differences were not detected (p>0.05 between agricultural matrices (rice fields and pastures in any of the variables. The sampling position (matrix and the edge and interior of forests had a significant impact (p<0.05 just in bulk density: 1.7 vs 1.1 vs 1.0 g/cm3 in interior and edge of the riparian forests and the matrix, respectively. SOC was not statistically affected (p>0.05 by the position in the riparian forest-matrix interface. Conversion from riparian forests to rice fields or pastures with organic management is not emitting greenhouse gases, on the contrary, it is increasing SOC in 3.2 t C/ha. 

  1. Factors Affecting Methane Emission from Rice Paddies

    Institute of Scientific and Technical Information of China (English)

    于心科; 王卫东; 等

    1995-01-01

    A comparative study of rice paddies and the uncovered water field in Taoyuan(Hunan) showed that methane emission from rice-vegetated paddy fields in 1993 was different from that in 1992(I,e,lower in rates and irregular in pattern).Climate has obvious influence on methane emission .And ebullition made a considerable contribution to the total flux of methane emission from rice paddies (45%).This implies that the intensification of paddy cultivation of rice might not be,as was proposed,the main con-tributor to the observed gradual increasing of atmospheric methane.24-hour automatic measurements of atmospheric temperature,air temperature and methane concentration in the static sampling boxes revealed that temperature,in addition to fertilization and irrigation style,is one of the most important factors that control the emission of methane from rice paddies.

  2. Fertilizer nitrogen recovery of rice: /sup 15/N field studies (a short review)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.; Katyal, J.C. (Punjab Agricultural Univ., Ludhiana (India). Dept. of Soils)

    1980-12-01

    Reliable quantitative estimates of fertilizer nitrogen recovery by rice are obtained in field investigations with /sup 15/N-labelled materials. Values obtained by conventional 'difference method' of comparing fertilized and unfertilized plots are typically larger than the actual values. Estimating the recovery of fertilizer nitrogen is not a goal in itself. Although it has been an essential component of limited number of /sup 15/N-field experiments conducted with rice so far; these provide little or no information about crop growth stages when fertilizer N is most efficiently utilized by rice plant. Recently, the path coefficient analysis has been used to analyse the effect of N uptake on the development of yield components and their contribution to grain yield. Nitrogen-15 fertilizers along with path coefficient analysis can prove particularly useful in comparing the efficiency of different N fertilizers and in the development of new and more efficient nitrogen sources and management practices.

  3. Dissipation of the herbicide benzobicyclon hydrolysate in a model California rice field soil.

    Science.gov (United States)

    Williams, Katryn L; Gladfelder, Joshua J; Quigley, Lindsay L; Ball, David B; Tjeerdema, Ronald S

    2017-09-29

    The herbicide benzobicyclon (BZB; 3-(2-chloro-4-(methylsulfonyl)benzoyl)-2-phenylthiobicyclo[3.2.1]oct-2-en-4-one) has recently been approved for use on California rice fields by the United States Environmental Protection Agency (USEPA). Hydrolysis of BZB rapidly forms the active compound, benzobicyclon hydrolysate (BH), whose fate is currently not well understood. A model California rice soil was used to determine BH soil dissipation. The pKa and aqueous solubility were also determined, as experimental values are not currently available. Sorption data indicate BH does not bind tightly, or irreversibly, with this soil. Flooding resulted in decreased BH loss, indicating anaerobic microbes are less likely to transform BH compared to aerobic microorganisms. Temperature increased dissipation, while autoclaving decreased BH loss. Overall, dissipation was slow regardless of treatment. Further investigation is needed to elucidate the exact routes of loss in soil, though BH is expected to dissipate slowly in flooded rice field soil.

  4. Biodegradation of clomazone in a California rice field soil: carbon allocation and community effects.

    Science.gov (United States)

    Tomco, Patrick L; Holmes, William E; Tjeerdema, Ronald S

    2013-03-20

    Degradation pathways for the herbicide clomazone in a California rice field soil were characterized via pulse-labeling of anaerobic (flooded) and aerobic (moist) soil microcosms. Clomazone-derived (13)C in the major C pools of a rice ecosystem and soil phospholipid fatty acid (PLFA) profiles were analyzed over time to determine if (1) the compound accumulates in the microbial biomass, (2) it affects temporal microbial population dynamics, and (3) it is either preferentially metabolized or cometabolized. In anaerobic microcosms, the compound was rapidly biotransformed to ring-open clomazone, upon which it persisted in the aqueous phase, whereas aerobic microcosms degraded it slower but a greater percentage was mineralized. Anaerobic biomass decreased after clomazone was added, and aerobic actinomycete abundance differed between treatments and controls. Additionally, PLFA and (13)C PLFA were statistically similar between treatment and controls. Thus, microbial cometabolism is likely to be the dominant degrading mechanism governing clomazone fate in California rice fields.

  5. Agromorphological characterization of some rice species in the main ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences ... of the samples of the prospection-collection from October 2005 to Mars 2006 revealed the existence of three types of rice in the zone: wild rice, adventitious rice and cultivated rice.

  6. Evaluation of Nitrogen and Potassium Uptake and Efficiency of Two Rice Varieties Cultivated on an Acid Soil

    Directory of Open Access Journals (Sweden)

    Shajarutulwardah M. Yusob

    2007-01-01

    Full Text Available A pot study was carried with the following objectives: (i To investigate N and K uptake of MR 220 and ARC 2 rice varieties grown on Bekenu series (Tipik Tualemkuts, and (ii To investigate N and K use efficiency of MR 220 and ARC 2 grown on Bekenu series. Treatments evaluated were: (i MR 220 and ARC 2 under fertilized condition (T1, and (ii MR 220 and ARC 2 under unfertilized condition (T0. The experiment was conducted in a glasshouse at Universiti Putra Malaysia Bintulu Campus, Sarawak, Malaysia. Altogether 24 pots were used having a completely randomized design (CRD with 6 replications (for each treatment and each variety. Nitrogen and K were applied in the forms of urea (46 % N and muriate of potash (60 % K2O for the two varieties. For T1 of MR 220, N, K, and P were applied at the rates of 4.0 g N, 1.10 g K2O and 2.13 g P2O5 per pot, respectively in split. In the case of T1 of ARC 2, N, K, and P rates used were 1.30 g N, 0.8 g K2O, and 1.70 g P2O5 per pot, respectively in split. At 65 days (ARC 2 and 70 days (MR 220 after planting, plants were sampled and partitioned into roots and stem, and their dry weight, N, and K concentrations determined using standard procedures. Soil sampling was done before and after fertilization. Soil total N was determined using the Kjeldahl method while exchangeable K, Ca, Mg, and Na were extracted by the double acid method and their concentrations determined by atomic absorption spectrophotometry. The dry ashing method was used for the determination of K, Ca, Mg and Na concentrations in plant tissues while the Kjeldahl method was used to determine total N in plant tissues. The concentrations multiplied by the oven dried weight of roots and stem provided N, K, Ca, Mg and Na uptake in these plant parts. The N and K use efficiency was then calculated using the subtraction method. With the exception of Ca, urea and KCl application significantly increased soil N, K, Mg, and Na concentrations. Application of K

  7. Prevalence, isolation and characterization of Bacillus cereus strains from rice of local cultivators of Sabah, Sarawak, and Peninsular Malaysia

    Science.gov (United States)

    Sawei, Jelin; Sani, Norrakiah Abdullah

    2016-11-01

    Bacillus cereus is a spore-forming, facultative anaerobic, motile microorganism that has been identified as a causative agent of two types of gastrointestinal diseases such as emetic and diarrhea. This foodborne pathogen is found in both vegetative cells and endospores form in foods such as rice either raw or cooked. The aim of this study is to investigate and determine the prevalence, characterize and identify the isolation of vegetative cells and endospores of B. cereus in thirty varieties (n=3) of raw rice from Sabah, Sarawak and Peninsular Malaysia. A total of 90 (n=90) raw rice were examined and 84 (93.33%) samples were positive to vegetative cells of B. cereus. However, only 32 (35.56%) samples were positive for endospore cells that able to germinate after samples were heated at 75°C for 15 mins. The mean log cfu/g for vegetative cells were higher range (0.00 - 4.1533) than visible endospores (0.00 - 3.7533 mean log cfu/g). Sample of raw red rice (UKMRC9) had significantly higher contamination by both vegetative cells and endospores at p<0.05, than the other raw rice samples.

  8. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice.

    Science.gov (United States)

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E; Qiang, Sheng

    2015-05-27

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.

  9. Ecosystem manipulation for increasing biological N2 fixation by blue-green algae (CYANOBACTERIA) in lowland rice fields

    OpenAIRE

    Grant, I.F.; Roger, Pierre-Armand; Watanabe, I.

    1986-01-01

    An introduction to the soil/floodwater ecosystem of lowland rice fields is given. Two primary consumers are particularly important in limiting the growth and N2-fixing activities of blue-green algae in irrigated rice ; the OSTRACODA (Class CRUSTACEA) and the PULMONATA (MULUSCA). Control of grazing by neem seeds AZADIRACHTA INDICA A. Juss and cultural practices enhanced BGA biomass and increased N2-fixation ten fold. Significant increases in rice grain protein occur if heterocystous algae bloo...

  10. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima).

    Science.gov (United States)

    Wang, Kai; Wambugu, Peterson W; Zhang, Bin; Wu, Alex Chi; Henry, Robert J; Gilbert, Robert G

    2015-09-20

    The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Weed-Suppressing Effect and Mechanism of Allelopathic Rice Accessions

    Institute of Scientific and Technical Information of China (English)

    HU Fei; KONG Chui-hua; XU Xiao-hua; ZHANG Chao-xian; CHEN Xiong-hui

    2004-01-01

    Two allelopathic rice accessions, PI312777 and Allelopathyl, significantly suppressedthe growth of associated weeds in the field. Moreover, their weed-suppressing effectswere correlated with the cultivation patterns. The weed-suppressing effects of throwingand transplanting were more effective than that of direct seeding. Furthermore, theamounts of allelochemicals (resorcinols, flavones and hydroxamic acids) produced andreleased from two allelopathic rice accessions were much higher than that from a non-allelopathic rice variety Hua-Jing-Xian 1, and reached the maximum concentration at the6th leaf stage. Differences in the weed-suppressing effects of rice accessions appear toresult from the accessions producing and releasing different amounts of allelochemicalsin the field. Further research confirmed that in PI312777 plants, allelochemicals weresynthesized by the above-ground parts, and then secreted through the root tissues. Roottissues of PI312777 plants never produced the allelochemicals. Root exudates fromPI312777 could significantly inhibit the growth of E. crus-galli surrounding rice plantsin water culture. However, when activated carbon was added to the culture solution, whichcould absorb allelochemicals from root exudates, the growth of E. crus-galli was nolonger significantly inhibited. Weed-suppressing effects of rice accessions depended onallelopathy, cultivation patterns and other factors in rice fields, while allelopathywas one of important factors. Interestingly, the amounts of allelochemicals produced andreleased from allelopathic rice plants may be induced by the presence of E. crus-galli.This suggests that there is a possible chemical recognition between rice and E. crus-galli.

  12. Climatic Risk of Field Cultivation of Cucumber (Cucumis sativus L.) in Poland

    OpenAIRE

    2010-01-01

    The goal of the present work was to separate zones of pickling cucumber field cultivation in Poland according to the various degrees of climatic risk. The study used 40-years of (1966-2005) data from 28 experimental stations of the Research Centre for Cultivar Testing. The data characterised the course of the growth, development, cucumber crop productivity and also the agrotechnical dates. Additionally, the work considered agrometeorological data of 7 development stages of the analysed plant:...

  13. Parkinson’s Disease Prevalence and Proximity to Agricultural Cultivated Fields

    OpenAIRE

    2015-01-01

    The risk for developing Parkinson’s disease (PD) is a combination of multiple environmental and genetic factors. The Negev (Southern Israel) contains approximately 252.5 km2 of agricultural cultivated fields (ACF). We aimed to estimate the prevalence and incidence of PD and to examine possible geographical clustering and associations with agricultural exposures. We screened all “Clalit” Health Services members in the Negev (70% of the population) between the years 2000 and 2012. Individual de...

  14. Fields of rice: health hazards for women and unborn children.

    Science.gov (United States)

    Batliwala, S

    1988-01-01

    A death information study, to determine why the infant mortality rate failed to fall below 75/1000, was begun in January 1982, after 9 years of accomplishments by the rural health research project in Raigad district of coastal Maharashtra. All data were collected by 27 female rural health workers, some of whom were illiterate but received help from villagers. Death records included name, sex, age, date and time of death, and cause of death or symptoms before death. In the 0-6 age group, 64% of the deaths were girls. 80% of the dead children were infant deaths, and of these, 75% were neonatal, suggesting the influence of prenatal, obstetric and postnatal factors and maternal nutrition. The majority were related to premature and low birth weight babies. Another striking observation was that 40% of all infant deaths occurred in July-October, and 50% of these were stillbirths and premature births. July and August are the months when all women (and no men) work transplanting rice seedlings. This work is done by bending or squatting from dawn to dusk. Thus, rice culture must be considered an occupational hazard for women in late pregnancy.

  15. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients.

    Science.gov (United States)

    Endo, Satoru; Kajimoto, Tsuyoshi; Shizuma, Kiyoshi

    2013-02-01

    The transfer coefficient (TF) from soil to rice plants of (134)Cs and (137)Cs in the form of radioactive deposition from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 was investigated in three rice paddy fields in Minami-Soma City. Rice crops were planted in the following May and harvested at the end of September. Soil cores of 30-cm depth were sampled from rice-planted paddy fields to measure (134)Cs and (137)Cs radioactivity at 5-cm intervals. (134)Cs and (137)Cs radioactivity was also measured in rice ears (rice with chaff), straws and roots. The rice ears were subdivided into chaff, brown rice, polished rice and rice bran, and the (134)Cs and (137)Cs radioactivity concentration of each plant part was measured to calculate the respective TF from the soil. The TF of roots was highest at 0.48 ± 0.10 in the field where the (40)K concentration in the soil core was relatively low, in comparison with TF values of 0.31 and 0.38 in other fields. Similar trends could be found for the TF of whole rice plants, excluding roots. The TF of rice ears was relatively low at 0.019-0.026. The TF of chaff, rice bran, brown rice and polished rice was estimated to be 0.049, 0.10-0.16, 0.013-0.017 and 0.005-0.013, respectively.

  16. Field evaluation of four spatial repellent devices against Arkansas rice-land mosquitoes

    Science.gov (United States)

    Four commercially available spatial repellent devices were tested in a rice land habitat near Stuttgart, Arkansas after semi-field level assessments had been made at the Center for Medical, Agricultural, and Veterinary Entomology, ARS, USDA in Gainesville, FL. OFF! Clip-On® (a.i. metofluthrin, S.C....

  17. Heavy metals in freshwater snails of Kuala Klawang's rice field, Negeri Sembilan, Malaysia.

    Science.gov (United States)

    Ismail, A

    1994-09-01

    A study of heavy metal contents in freshwater snails from rice fields have been made. The results indicate that the levels of heavy metals, Pb, Cu, Zn and Cd, are low and within the permissible limit of Malaysian Food Regulations. The results can serve as background data for further reference.

  18. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  19. The phenology of malaria mosquitos in irrigated rice fields in Mali

    NARCIS (Netherlands)

    Klinkenberg, E.; Takken, W.; Huibers, F.P.; Touré, Y.T.

    2003-01-01

    A field study was carried out in the large-scale rice irrigation scheme of the Office du Niger in Mali to investigate the relation between anopheline mosquito larval development and small-scale differences in irrigation practices, such as water level, irrigation application and irrigation frequency.

  20. The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase

    NARCIS (Netherlands)

    Boison, G.; Steingen, C.; Stal, L.J.; Bothe, H.

    2006-01-01

    Anabaena azotica FACHB-118 and Anabaena sp. CH1, heterocystous cyanobacteria isolated from Chinese and Taiwanese rice fields, expressed vanadium-containing nitrogenase when under molybdenum deficiency. This is the second direct observation of an alternative nitrogenase in cyanobacteria. The vanadium

  1. ESTIMATE OF METHANE EMISSIONS FROM RICE FIELDS IN CHINA BY CLIMATE-BASED NET PRIMARY PRODUCTIVITY

    Institute of Scientific and Technical Information of China (English)

    KANG Guo-ding; CAI Zu-cong; ZHANG Zi-heng; XIAO Peng-feng

    2004-01-01

    Rice fields provide food for over half of the world population but are also an important source of atmospheric CH4. Using the climate-based GIS empirical model and the meteorological data collected from 600 meteorological stations in China, with county as the basic unit, the net primary productivity (NPP) of rice fields in China in 1990, 1995, 1998, and 2000 were estimated to be in the range from 202.19×1012g C in 1990 to 163.46×1012g C in 2000. From the measured data of the factors affecting CH4 emission and NPP, the conversion ratio of the NPP into CH4 emission for the rice fields of China was determined to be 1.8%. Using this ratio and estimated NPP, the CH4 emissions from rice fields of China in 1990, 1995, 1998, and 2000 were estimated to be 7.24×1012, 6.31×1012, 6.77×1012 and 5.85×1012g CH4, respectively.

  2. Field evidence for the potential of Rhodobacter capsulatus as Biofertilizer for flooded rice.

    Science.gov (United States)

    Gamal-Eldin, Hosny; Elbanna, Khaled

    2011-02-01

    In a previous study, we evaluated the effects of inoculating rice plants with the phototrophic purple nonsulfur bacterium Rhodobacter capsulatus (Rc) on growth and yield of rice in pots and lysimeter experiments and the results obtained have been highly encouraging. In this study, we carried out two field experiments: one in the experimental farm of the Faculty of Agriculture, Fayoum University, and the second in a farmer's field in Kafr El-sheikh, to assess the effects of Rc on growth and yield of rice in comparison and in combination with chemical nitrogen fertilizer (CNF) and farmyard manure. The results indicated that both biological and grain yields in all the Rc inoculated treatments were significantly higher than those in the uninoculated corresponding treatments in both fields. With regard to grain yield, the major factor for determining the effectiveness of any agricultural treatment, inoculation with Rc in combination with 50% of the recommended CNF rate gave a grain yield that was statistically equivalent to that obtained with 100% of the recommended CNF rate. These results provide a clear evidence for the potential of Rc as biofertilizer for flooded rice under field conditions.

  3. Photoinhibitive and Recovery Properties of Hybrid Rice Ⅱ You 129 under Field Conditions

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-ming; TANG Yun-lai; WANG Ying; LU Wei; DAI Xin-bin; ZHANG Rong-xian; KUANG Ting-yun

    2003-01-01

    Photoinhibitive properties of super-high-yielding hybrid rice Ⅱ you 129 and its adaptation mechanism to strong light stress were investigated by measuring the light-response curve, diurnal variations of net photosynthetic rate and chlorophyll fluorescence parameters of Ⅱ you 129 leaves and compared with Shanyou 63. Photoinhibition of rice flag leaves under field conditions mainly resulted from the increase of thermal dissipation, especially for thermal dissipation depended on the xanthophyll circle, but no destruction of photosynthetic apparatus occurred. Potentially super-high-yielding hybrid rice Ⅱyou 129 was more tolerant to photoinhibition than Shanyou 63, because it had higher light saturation intensity and maximum net photosynthetic rate; more active xanthophyll cycle, and more rapid recovery ability after photoinhibition.

  4. Mexican rice borer (Lepidoptera: Crambidae) oviposition site selection stimuli on sugarcane, and potential field applications.

    Science.gov (United States)

    Showler, Allan T; Castro, Boris A

    2010-08-01

    The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), a key pest of sugarcane (Saccharum spp.) and rice, Oryza sativa L., in Texas, has not been controlled with chemical insecticides or biological agents, but some sugarcane varieties have shown degrees of resistance. Assessment of selected sugarcane leaf characteristics indicate that preference for oviposition sites is mostly determined by the presence of a leaf fold and secondarily by the availability of dry leaf tissue, both of which are antixenotic nonchemical stimuli. We suggest that breeding sugarcane lines bearing leaves that do not fold on drying could provide substantial antixenotic resistance against the Mexican rice borer. Previously identified antixenotic chemical stimuli, i.e., low quantities or absence of important nutrients in green leaf tissue, only become apparent when resistant and susceptible sugarcane varieties are compared. Varietal differences in oviposition preference, however, were not observed on excised dry leaf tissue, indicating that expression of resistance in terms of chemical stimuli requires detection of biochemicals in nearby living leaf tissue. Excised dry sugarcane leaves retain the two dominant nonchemical oviposition preference stimuli for Mexican rice borers, and the leaves effectively trapped eggs away from intact plants when dry leaves were used as "mulch" at the bottom of greenhouse cages. Under commercial sugarcane field conditions, bundled dry leaves also collected Mexican rice borer eggs. Possible applications of dry sugarcane leaf substrate for egg scouting and for trapping eggs are discussed.

  5. Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation.

    Directory of Open Access Journals (Sweden)

    Pandolfini Tiziana

    2002-04-01

    Full Text Available Abstract Background Parthenocarpy, or fruit development in the absence of fertilization, has been genetically engineered in eggplant and in other horticultural species by using the DefH9-iaaM gene. The iaaM gene codes for tryptophan monoxygenase and confers auxin synthesis, while the DefH9 controlling regions drive expression of the gene specifically in the ovules and placenta. A previous greenhouse trial for winter production of genetically engineered (GM parthenocarpic eggplants demonstrated a significant increase (an average of 33% increase in fruit production concomitant with a reduction in cultivation costs. Results GM parthenocarpic eggplants have been evaluated in three field trials. Two greenhouse spring trials have shown that these plants outyielded the corresponding untransformed genotypes, while a summer trial has shown that improved fruit productivity in GM eggplants can also be achieved in open field cultivation. Since the fruits were always seedless, the quality of GM eggplant fruits was improved as well. RT-PCR analysis demonstrated that the DefH9-iaaM gene is expressed during late stages of fruit development. Conclusions The DefH9-iaaM parthenocarpic gene is a biotechnological tool that enhances the agronomic value of all eggplant genotypes tested. The main advantages of DefH9-iaaM eggplants are: i improved fruit productivity (at least 30–35% under both greenhouse and open field cultivation; ii production of good quality (marketable fruits during different types of cultivation; iii seedless fruit with improved quality. Such advantages have been achieved without the use of either male or female sterility genes.

  6. Comparison of pooled standard deviation and standardized-t bootstrap methods for estimating uncertainty about average methane emission from rice cultivation

    Science.gov (United States)

    Kang, Namgoo; Jung, Min-Ho; Jeong, Hyun-Cheol; Lee, Yung-Seop

    2015-06-01

    The general sample standard deviation and the Monte-Carlo methods as an estimate of confidence interval is frequently being used for estimates of uncertainties with regard to greenhouse gas emission, based on the critical assumption that a given data set follows a normal (Gaussian) or statistically known probability distribution. However, uncertainty estimated using those methods are severely limited in practical applications where it is challenging to assume the probability distribution of a data set or where the real data distribution form appears to deviate significantly from statistically known probability distribution models. In order to solve these issues encountered especially in reasonable estimation of uncertainty about the average of greenhouse gas emission, we present two statistical methods, the pooled standard deviation method (PSDM) and the standardized-t bootstrap method (STBM) based upon statistical theories. We also report interesting results of the uncertainties about the average of a data set of methane (CH4) emission from rice cultivation under the four different irrigation conditions in Korea, measured by gas sampling and subsequent gas analysis. Results from the applications of the PSDM and the STBM to these rice cultivation methane emission data sets clearly demonstrate that the uncertainties estimated by the PSDM were significantly smaller than those by the STBM. We found that the PSDM needs to be adopted in many cases where a data probability distribution form appears to follow an assumed normal distribution with both spatial and temporal variations taken into account. However, the STBM is a more appropriate method widely applicable to practical situations where it is realistically impossible with the given data set to reasonably assume or determine a probability distribution model with a data set showing evidence of fairly asymmetric distribution but severely deviating from known probability distribution models.

  7. Effects of Changing Cultivation System on Soil Carbon Dynamics in Cotton Field of Northwestern China

    Science.gov (United States)

    Li, Z.; Wang, X.; Tian, C.

    2010-12-01

    There has being a change in cotton cultivative practice in the northwestern China, i.e., from the traditional cultivation (TF) of no mulching with flood-irrigation to the modern cultivation (PM) of plastic film mulching with drip-irrigation. Little is known how this change affects soil carbon dynamics. This paper presents a field study that includes comparisons of soil organic carbon (SOC), soil CO2 concentration and soil surface CO2 efflux during cotton growing season. At the initial growing stage, SOC content was similar between TF and PM, showing a clear decreasing trend over depth (i.e., ~9 g/kg, ~7.5 g/kg and ~3 g/kg at 0-20 cm, 20-30 cm and 30-70 cm, respectively). After five months, SOC generally decreased at 0-20 cm but increased below 30 cm. Overal, SOC was higher in the surface soil in the PM than in the TF, particularly at 20-30 cm where SOC reached ~9 g/kg in the PM. In general, CO2 concentration in soil profile was higher in the PM (3107 - 9212 ppmv) than in the TF (1275 - 8994 ppmv). However, rate of CO2 efflux was lower in the PM than in the TF, primarily owing to plastic film covering. For the whole cotton growing season, accumulated rates of CO2 efflux were 300 g C m-2 and 394 g C m-2 in the PM and the TF, respectively. Fig. 1. Soil organic carbon (SOC) in (a) May (b) August and (c) October between plastic film mulching cultivation (PM) and traditional flooding cultivation (TF). Table 1. Soil surface CO2 efflux during different growing stages in different systems ADR: averaged daily rate during each stage; AE: accumulative efflux for each stage.

  8. Towards higher nitrogen efficiency in European rice cultivation. A case study for the Camargue, South of France.

    NARCIS (Netherlands)

    Stutterheim, N.C.

    1995-01-01

    This study focuses on an increase in the efficiency of fertilizer nitrogen in irrigated, direct seeded rice. Three indicators for efficiency were used: agronomic efficiency, utilization efficiency and recovery. Experiments were conducted in the Camargue in the South of France, to quantify these indi

  9. Towards higher nitrogen efficiency in European rice cultivation : a case study for the Camargue, South of France

    NARCIS (Netherlands)

    Stutterheim, N.C.

    1995-01-01

    This study focuses on an increase in the efficiency of fertilizer nitrogen in irrigated, direct seeded rice. Three indicators for efficiency were used: agronomic efficiency, utilization efficiency and recovery. Experiments were conducted in the Camargue in the South of France, to quantify t

  10. Nitrous Oxide Emissions from Fields with Different Wheat and Rice Varieties

    Institute of Scientific and Technical Information of China (English)

    B. GOGOI; K.K. BARUAH

    2012-01-01

    Plant species of cropping systems may affect nitrous oxide (N2O) emissions.A field experiment was conducted to investigate dynamics of N2O emissions from rice-wheat fields from December 2006 to June 2007 and the relationships of soil and plant parameters with N2O emissions.The results indicated that N2O emissions from different wheat varieties ranged from 12 to 291 μg N2O-N m-2 h-1 and seasonal N2O emissions ranged from 312 to 385 mg N2O-N m-2.In the rice season,it was from 11 to 154 μg N2O-N m-2 h-1 with seasonal N2O emission of 190-216 mg N2O-N m-2.The seasonal integrated flux of N2O differed significantly among wheat and rice varieties.The wheat variety HUW 234 and rice variety Joymoti showed higher seasonal N2O emissions.In the wheat season,N2O emissions correlated with soil organic carbon (SOC),soil NO-3-N,soil temperature,shoot dry weight,and root dry weight.Among the variables assessed,soil temperature followed by SOC and soil NO-3-N were considered as the important variables influencing N2O emission.N2O emission in the rice season was significantly correlated with SOC,soil NO-3-N,soil temperature,leaf area,shoot dry weight,and root dry weight.The main driving forces influencing N2O emission in the rice season were soil NO-3-N,leaf area,and SOC.

  11. Diversity of malaria in rice growing areas of the Afrotropical region.

    Science.gov (United States)

    Carnevale, P; Guillet, P; Robert, V; Fontenille, D; Doannio, J; Coosemans, M; Mouchet, J

    1999-09-01

    It is well known that 'in many instances the rice agrosystem perfectly fits the ecological requirements of pathogens or vectors' and in fact 'malaria, schistosomiasis and Japanese encephalitis are important vector-borne diseases associated with rice production in developing countries' (IRRI, 1987). In spite of these fears, rice cultivation has been on the increase in the African region in response to demographic and economic pressures. However, although rice fields provide suitable breeding places for Anopheles mosquitoes and rice cultivation leads to an increase in the biting rates, the species which are adapted to these sites are not the same in all parts of Africa. Several examples illustrate this phenomenon: An. funestus in the rice fields of Madagascar, An. pharoensis in saline water rice fields in the delta of the Senegal river, An. arabiensis in northern Cameroon and Burundi, An. gambiae Mopti form in the Kou Valley (Burkina Faso) and An. gambiae Savanna form in the rice fields of Kafine near Bouaké (Côte d'Ivoire). The vectorial capacities of these species are not the same and malaria inoculation rates are not necessarily increased in the riceland agroecosystem. The consequences for malaria of introducing rice cultivation depend on the situation before its introduction: it could be worsened in unstable malaria areas but not in stable malaria areas. Therefore, sound epidemiological and entomological knowledge are needed before causing any environmental modifications for agricultural purposes and there should be regular monitoring to avoid any outbreak.

  12. Greenhouse Gas Emissions from Northeast China Rice Fields in Fallow Season

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CH4, N2O and CO2 emissions from northeast Chinese rice fields were measured in the fallow season (November to March) to investigate the effects of freezing-thawing on the emissions. Both CH4 emission from and atmospheric CH4oxidation by the soil occurred, but the flux was small. During the fallow season, rice fields acted as a minor source of atmospheric CH4, which accounted for about 1% of the CH4 emission during the rice growing period. The field was also a substantial source of atmospheric N2O, which ranged between 40 to 77 mg m-2 and accounted for 40%-50% of the annual N2O emission. The largest N2O flux was observed in the thawing period during the fallow season. Laboratory incubation tests showed that the largest N2O flux came from the release of N2O trapped in frozen soil. Tillage and rice straw application (either mulched on the soil surface or incorporated in the soil) stimulated the CH4 and CO2 emissions during the fallow season, but only straw application stimulated N2O emission substantially.

  13. Between Archaeology and Text: The Origins of Rice Consumption and Cultivation in the Middle East and the Mediterranean

    Directory of Open Access Journals (Sweden)

    Sureshkumar Muthukumaran

    2014-09-01

    Full Text Available Asiatic Rice 'Oryza sativa' L. (Poaceae is a domesticated grain crop native to the tropical and subtropical regions of Asia, which presently ranks among the most important grains in a global diet. 'Oryza sativa' is comprised of two distinct phylogenetic subspecies, namely 'japonica' and 'indica', for which genetic evidence indicates at least two centres of domestication: the Lower Yangtze valley for the broad thick-grained japonica (c. 4000 BC and the Gangetic basin for the thin elongated indica variety (c. 2500 BC (Fuller et al 2010; idem 2011; Nesbitt et al 2010: 325–7. Modern genetics of landraces from northeast India may indicate a third distinct origin for the so-called 'aus' rice varieties (Londo et al 2006: 9581–2. The genetic history of this taxon is further complicated by post-domestication hybridisation between domesticates and their wild ancestors as well as the presence of rarer forms like the aromatic rice varieties ('basmati' in South Asia and 'sadri' from Iran which may be of independent origin (Nesbitt et al 2010: 324–5. In South Asia domesticated rice is attested at various archaeological sites in the Ganges basin from the mid-3rd millennium BC onwards. It subsequently appears at mature and late Harappan levels in north-western India (c. 2000 BC before arriving at the edge of the eastern Iranian plateau at Pirak on the north Kachi plain in the early 2nd millennium BC (Costantini 1981; Fuller 2006: 36; Sato 2005. The presence of rice at Pirak heralds its gradual westward movement along the Iranian plateau via overland and perhaps even coastal routes into western Iran and Mesopotamia.

  14. Methane emission from rice fields in relation to management of irrigation water.

    Science.gov (United States)

    Khosa, Maninder Kaur; Sidhu, B S; Benbi, D K

    2011-03-01

    A field experiment was conducted for two years to find out best water management practice to mitigate methane emission from the rice-fields. Continuously flooded conditions yielded two major flushes of methane emission and on an average resulted in relatively higher rate of methane emission (2.20 and 1.30 mg m(-2) hr(-1), respectively in 2005 and 2006) during the kharif season. The methane flux was reduced to half (1.02 and 0.47 mg m(-2) hr(-1), respectively in 2005 and 2006) when rice fields were irrigated 2-3 days after infiltration of flood water into the soil. Irrigating the field at 0.15 bar matric potential reduced seasonal methane flux by 60% (0.99 and 0.41 mg m(-2) hr(-1), respectively in 2005 and 2006) as compared to completely flooded conditions, without any decline in grain yield (60 q ha(-1)).

  15. Levels of dioxins in rice, wheat, soybean, and adzuki bean cultivated in 1999 to 2002 in Japan and estimation of their intake.

    Science.gov (United States)

    Otani, Takashi; Seike, Nobuyasu; Miwa, Tetsuhisa

    2006-08-01

    A total of 369 samples of rice (n = 311), wheat (n = 10), soybean (n = 44), and adzuki bean (n = 4) collected from various locations in Japan between 1999 and 2002 were analyzed for PCDDs, PCDFs (PCDD/Fs) and coplanar PCBs. Sampling points within about 1 km of operational municipal waste incinerators that were considered sources of dioxins were defined as "near-source" areas, and all other sampling points were defined as "general" areas. The toxic equivalent quantity (TEQ) values of soybean samples collected from near-source areas were significantly higher (p pollution. The TEQs of the crops varied widely, but the median value of each crop was quite low, at 0.000021, 0.00013, 0.0000095, and 0.00016 pg-TEQ/g wet wt. in rice, wheat, soybean and adzuki bean, respectively. On the basis of these survey results, the daily intake of PCDD/Fs and coplanar PCBs from rice, wheat, soybean, and adzuki bean was calculated. The daily intakes from these crops were estimated to be 0.0056 pg-TEQ/kg B.W./day on the assumption that "not detected" (ND) could be taken as zero, ND = 0, and 0.18 pg-TEQ/kg B.W./day if ND is put equal to 1/2 LOD (half the limit of detection). In comparison with the tolerable daily intake set in Japan for PCDD/Fs and coplanar PCBs (4 pg-TEQ/kg B.W./day), it was considered that the levels of contamination by PCDD/Fs and coplanar PCBs in these crops cultivated in the environment of Japan do not present a problem.

  16. Mosquito species succession and physicochemical factors affecting their abundance in rice fields in Mwea, Kenya.

    Science.gov (United States)

    Muturi, Ephantus J; Mwangangi, Joseph; Shililu, Josephat; Muriu, Simon; Jacob, Benjamin; Kabiru, Ephantus; Gu, Weidong; Mbogo, Charles; Githure, John; Novak, Robert

    2007-03-01

    The succession of mosquito species and abiotic factors affecting their distribution and abundance in rice (Oryza spp.) fields was investigated over a 16-wk rice growing cycle covering the period between January and May 2006. Fifteen experimental rice plots were sampled for mosquito larvae and characterized based on rice height, number of tillers, floating vegetation cover, water depth, water temperature, turbidity, salinity, pH, dissolved oxygen, total dissolved solids, and conductivity. Microscopic identification of 3,025 larvae yielded nine mosquito species predominated by Anopheles arabiensis Patton (45.0%), Culex quinquefasciatus Say (35.8%), Anopheles pharoensis Theobald (9.0%) and Ficalbia splendens Theobald (7.1%). Other species, including Anopheles rufipes Gough, Anopheles coustani Laveran, Anonopheles maculipalpis Giles, Culex annulioris Theobald, and Culex poicilipes Theobald made up 3.1% of the total collection. Anopheles gambiae s.l., Cx. quinquefasciatus, and An. pharoensis occurred throughout the cycle, but they were more abundant up to 4 wk posttransplanting with peaks after fertilizer application. As rice plants became established, three groups of mosquitoes were recognized: the first groups included An. rufipes, Fl. splendens, and Cx. annulioris, which occurred throughout much of the second half of the rice cycle, whereas the second group included Cx. poicilipes, which was found in the middle of the rice cycle. An. coustani and An. maculipalpis formed the third group occurring toward the end of the cycle. Dissolved oxygen, number of tillers, and rice height were negatively associated with the abundance ofAn. arabiensis and Cx. quinquefasciatus larvae. In addition, Cx. quinquefasciatus also was associated with water depth (-ve) and turbidity (+ve). Abundance of An. pharoensis larvae was significantly associated with water temperature (+ve), the number of tillers (-ve), and rice height (-ve), whereas Fl. splendens was significantly associated with

  17. Sesquiterpene lactone content in leaves of in vitro and field cultivated Arnica montana.

    Science.gov (United States)

    Schmidt, T J; Bomme, U; Alfermann, A W

    1998-04-01

    On the basis of GC and GC/MS analyses we report on the full qualitative and quantitative sesquiterpene lactone (STL) content of in vitro cultivated A. montana plantlets consisting of helenalin and 11alpha,13-dihydrohelenalin esters in approximately equal amounts. The accumulation of STL was shown to be correlated with tissue differentiation in the above-ground parts. The seasonal variation of STL content in leaves of A. montana cultivated in the proving field was investigated. Changes in the composition of the STL fraction were detected. While young plants accumulate mainly helenalin derivatives, the content of such compounds decreases to almost zero within about 6 weeks from the beginning of leaf formation while that of dihydrohelenalin type compounds increases at the same rate and remains constant for a longer period.

  18. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De; Guo, Hu; Li, Ruiyue [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Li, Lianqing, E-mail: lqli@njau.edu.cn [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Pan, Genxing [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Chang, Andrew [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Joseph, Stephen [Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha{sup −1}. Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35–91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69–80% and 72–80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. - Highlights: • Biochar sustainably reduced soil Cd availability and Cd translocation in rice plant. • Indica conventional cultivars had lower Cd but higher Zn in grains than hybrid ones. • Biochar significantly reduced grain Cd and Cd/Zn ratio

  19. Taste of Super-Dwarf Rice Cultured in Space

    Science.gov (United States)

    Hirai, Hiroaki; Kitaya, Yoshiaki

    2016-07-01

    The interest of food production for lunar base and manned Mars mission has increased recently. So far, plants cultured long duration in space were leafy vegetables, arabidopsis, wheat, barley and so on. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. Rice symbolizes the rice-eating culture of Japan, is extremely useful as a specific cultured plant candidate of Japan in space. In the previous report, 'Kozo-no-sumika' found from seedlings in raising of seedling was introduced as a super-dwarf rice to culture in space. Considering this rice as food in space, we investigate the taste characteristics of this rice. At present, waxy 'Kozo-no-sumika' and nonwaxy 'Hosetsu dwarf' of super-dwarf rice and 'Nipponbare' of previous standard rice for sensory test are cultured in paddy field. Hereafter, we will harvest rice, investigate yield, evaluate taste.

  20. The use of 32P Method to Evaluate the Growth of Lowland Rice Cultivated in a System of Rice Intensification (SRI

    Directory of Open Access Journals (Sweden)

    A. Citraresmini

    2013-08-01

    Full Text Available A pot experiment has been conducted to evaluate the growth of the Dyah Suci, a lowland rice variety, in an SRI (System of Rice Intensification planting system. The phosphorus-32 (32P isotope technique was used to evaluate the growth of plants in relation with their phosphorus uptake. The uptake was assumed to vary in the same direction as the growth of the plant. The 32P uptake is assumed to vary in the opposite direction to the plant’s total phosphorus uptake. Here the 32P uptake is expressed in count per minutes (cpm which is then transformed to disintegration per minute (dpm. The results show that, in terms of promoting the plant’s uptake of phosphorus, the SRI planting system is superior to the conventional planting system, and it is manifested in the higher dry weight of straw and grain. From this experiment it is concluded that the 32P method can be used satisfactorily as a tool for explaining the relation between P-uptake and plant growth

  1. Rice evapotranspiration at the field and canopy scales under water-saving irrigation

    Science.gov (United States)

    Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang

    2017-02-01

    Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as ET_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, ET_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, ET_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of ET_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between ET_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation (R n) is the dominant factor for rice ET, and soil moisture (θ) is another significant factor (p < 0.01) in WSI rice fields. The difference between ETCML and ET_{EC}^{*} (ET_{CML} - ET_{EC^{*} ) were significantly (p < 0.05) correlated with R n, air temperature (T a), and air vapor pressure deficit (D), and its partial correlation coefficients to R n and T a were slightly greater than D. Thus, R n, T a and D are important variables for understanding the spatial

  2. Unravelling trophic subsidies of agroecosystems for biodiversity conservation: food consumption and nutrient recycling by waterbirds in Mediterranean rice fields.

    Science.gov (United States)

    Navedo, Juan G; Hahn, Steffen; Parejo, Manuel; Abad-Gómez, José M; Gutiérrez, Jorge S; Villegas, Auxiliadora; Sánchez-Guzmán, Juan M; Masero, José A

    2015-04-01

    Waterbirds can reallocate a considerable amount of nutrients within agricultural fields and between agriculture sites and wetlands. However their effects on biogeochemical cycles have rarely been quantified. We estimated bird numbers, diet (from stable isotope analysis), food supply, and the food consumption on rice fields by overwintering waterbirds in one of the most important areas for rice production in southwestern Europe and a key area for various migrating and resident waterbird species. Herein, we modelled the nutrient (N and P) recycling in rice fields, and their transport to reservoirs. The energy consumption by waterbirds (96,605±18,311 individuals) on rice fields during winter averaged at 89.9±39.0 kJ·m(-2), with its majority (89.9%) belonging to foraging on rice seeds. Thus, the birds removed about 26% of rice seeds leftover after harvest (estimated in 932.5±504.7 seeds·m(-2) in early winter) wherein common cranes and dabbling ducks (four species) were the most important consumers. Waterbirds foraging and roosting in the rice fields recycled more than 24.1 (1.0 kg·ha(-1)) of N and an additional 5.0 tons (0.2 kg·ha(-1)) of P in the Extremadura's rice fields during winter. Additionally, we estimated that 2.3 tons of N and 550 kg of P were removed from rice fields and transported to reservoirs. The seasonal foraging of wildlife should result in a direct benefit for rice farmers by improving nutrient recycling through defecation by waterbirds with respect to artificial fertilisation. Additionally, rice fields located in the cranes' core wintering areas can provide sufficient food supply to induce habitat shift from their traditional wintering habitat in 'dehesas' to rice fields, which causes indirect socioeconomic benefit through reduced acorn consumption by cranes. Our modelling approach may thus be especially helpful for management decisions regarding rice agroecosystems in areas which are also important for the conservation of migratory

  3. Characteristics and land suitability of newly establish rice field in Lesung Batu Muda, Rawas Ulu, Musi Rawas, South Sumatera

    Directory of Open Access Journals (Sweden)

    R Sudaryanto

    2015-04-01

    Full Text Available Rice field has a strategic function because it is the main provider of food for the population of Indonesia. The data of the land use for the rice field in Indonesia showed that around 41% in Java Island. Agricultural technology at the level of industry experienced rapid progress, but the technology implementation at the level by farmer is relatively slow. Increased production of rice in Indonesia was reported of less than 1% per year. The research aimed to study the characteristics and land suitability of newly established rice field in Lesung Batu Muda, Rawas Ulu, Musi Rawas, South Sumatera. There were two soil land units that were tested included water availability, rooting medium, level of erosion, soil chemical properties and land preparation. The results of the study showed that newly established rice fields in Lesung Batu Muda, Rawas Ulu, Musi Rawas, South Sumatera could be used to open new rice fields by planting twice a year. In opening new rice fields, the application of organic matter and creation of terracing on sloping areas were needed.

  4. Waste rice seed in conventional and stripper-head harvested fields in California: Implications for wintering waterfowl

    Science.gov (United States)

    Fleskes, Joseph P.; Halstead, Brian J.; Casazza, Michael L.; Coates, Peter S.; Kohl, Jeffrey D.; Skalos, Daniel A.

    2012-01-01

    Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field

  5. Plant/microbe cooperation for electricity generation in a rice paddy field.

    Science.gov (United States)

    Kaku, Nobuo; Yonezawa, Natsuki; Kodama, Yumiko; Watanabe, Kazuya

    2008-05-01

    Soils are rich in organics, particularly those that support growth of plants. These organics are possible sources of sustainable energy, and a microbial fuel cell (MFC) system can potentially be used for this purpose. Here, we report the application of an MFC system to electricity generation in a rice paddy field. In our system, graphite felt electrodes were used; an anode was set in the rice rhizosphere, and a cathode was in the flooded water above the rhizosphere. It was observed that electricity generation (as high as 6 mW/m(2), normalized to the anode projection area) was sunlight dependent and exhibited circadian oscillation. Artificial shading of rice plants in the daytime inhibited the electricity generation. In the rhizosphere, rice roots penetrated the anode graphite felt where specific bacterial populations occurred. Supplementation to the anode region with acetate (one of the major root-exhausted organic compounds) enhanced the electricity generation in the dark. These results suggest that the paddy-field electricity-generation system was an ecological solar cell in which the plant photosynthesis was coupled to the microbial conversion of organics to electricity.

  6. Wolbachia infections in mosquitoes and their predators inhabiting rice field communities in Thailand and China.

    Science.gov (United States)

    Wiwatanaratanabutr, Itsanun; Zhang, Chongxing

    2016-07-01

    Wolbachia are inherited, endocytoplasmic bacteria that infect a wide range of arthropods. Here is the first systematic report on the study of Wolbachia infection in mosquitoes and their predators from both Thailand and China. In Thailand, 632 mosquito specimens (20 spp.) and 424 insect predators (23 spp.) were collected from the rice agroecosystem, mostly from the Central region, followed by the Northeast, the North and the South and were inhabiting rice fields, wetlands and ditches. In China, 928 mosquitoes (15 spp.) and 149 insect predators (16 spp.) were collected from rice fields along the Weishan Lake in Shandong province. Specimens were classified in the orders Diptera, Coleoptera, Odonata and Hemiptera. Using wsp, ftsZ, 16S rRNA and groE gene amplifications, Wolbachia were detected in 12 mosquito spp. and 6 predator spp. from Thailand and 11 mosquito spp. and 5 predator spp. from China. The relative Wolbachia densities of these species were determined using quantitative real-time PCR. The mosquito, Aedes albopictus, and the predator, Agriocnemis femina, had the highest bacterial densities. These results imply that Wolbachia of supergroup B are distributed throughout these insects, probably via horizontal transmission in rice agroecosystems.

  7. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil.

    Directory of Open Access Journals (Sweden)

    Zhe Lü

    Full Text Available BACKGROUND: Methanocellales contributes significantly to anthropogenic methane emissions that cause global warming, but few pure cultures for Methanocellales are available to permit subsequent laboratory studies (physiology, biochemistry, etc.. METHODOLOGY/PRINCIPAL FINDINGS: By combining anaerobic culture and molecular techniques, a novel thermophilic methanogen, strain HZ254(T was isolated from a Chinese rice field soil located in Hangzhou, China. The phylogenetic analyses of both the 16S rRNA gene and mcrA gene (encoding the α subunit of methyl-coenzyme M reductase confirmed its affiliation with Methanocellales, and Methanocella paludicola SANAE(T was the most closely related species. Cells were non-motile rods, albeit with a flagellum, 1.4-2.8 µm long and by 0.2-0.3 µm in width. They grew at 37-60 °C (optimally at 55 °C and salinity of 0-5 g NaCl l(-1 (optimally at 0-1 g NaCl l(-1. The pH range for growth was 6.4-7.2 (optimum 6.8. Under the optimum growth condition, the doubling time was 6.5-7.8 h, which is the shortest ever observed in Methanocellales. Strain HZ254(T utilized H(2/CO(2 but not formate for growth and methane production. The DNA G+C content of this organism was 52.7 mol%. The sequence identities of 16S rRNA gene and mcrA gene between strain HZ254(T and SANAE(T were 95.0 and 87.5% respectively, and the genome based Average Nucleotide Identity value between them was 74.8%. These two strains differed in phenotypic features with regard to substrate utilization, possession of a flagellum, doubling time (under optimal conditions, NaCl and temperature ranges. Taking account of the phenotypic and phylogenetic characteristics, we propose strain HZ254(T as a representative of a novel species, Methanocella conradii sp. nov. The type strain is HZ254(T ( = CGMCC 1.5162(T = JCM 17849(T = DSM 24694(T. CONCLUSIONS/SIGNIFICANCE: Strain HZ254(T could potentially serve as an excellent laboratory model for studying Methanocellales due to its

  8. Marker-assisted introgression of broad-spectrum blast resistance genes into the cultivated MR219 rice variety.

    Science.gov (United States)

    Miah, Gous; Rafii, Mohd Y; Ismail, Mohd R; Puteh, Adam B; Rahim, Harun A; Latif, Mohammad A

    2017-07-01

    The rice cultivar MR219 is famous for its better yield and long and fine grain quality; however, it is susceptible to blast disease. The main objective of this study was to introgress blast resistance genes into MR219 through marker-assisted selection (MAS). The rice cultivar MR219 was used as the recurrent parent, and Pongsu Seribu 1 was used as the donor. Marker-assisted foreground selection was performed using RM6836 and RM8225 to identify plants possessing blast resistance genes. Seventy microsatellite markers were used to estimate recurrent parent genome (RPG) recovery. Our analysis led to the development of 13 improved blast resistant lines with Piz, Pi2 and Pi9 broad-spectrum blast resistance genes and an MR219 genetic background. The RPG recovery of the selected improved lines was up to 97.70% with an average value of 95.98%. Selected improved lines showed a resistance response against the most virulent blast pathogen pathotype, P7.2. The selected improved lines did not express any negative effect on agronomic traits in comparison with MR219. The research findings of this study will be a conducive approach for the application of different molecular techniques that may result in accelerating the development of new disease-resistant rice varieties, which in turn will match rising demand and food security worldwide. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal soil depth without restriction for rice root elongation

  10. Dynamics, Residue and Risk Assessment of Nitenpyram in Rice and Paddy Field

    Directory of Open Access Journals (Sweden)

    YUAN Xue-xia

    2016-09-01

    Full Text Available Residues dynamics, final residual levels and dietary intake risk of nitenpyram in rice and paddy field were investigated in three dif-ferent regions of China(Shandong, Henan and Anhui. A method was illustrated to detect nitenpyram residues in paddy, plant, brown rice, paddy water and soil. The residues in paddy and rice were extracted with methanol+phosphate buffer(0.2 mol·L-1, pH=7.0(60+40, adjust pH to 2.5, then cleaned up with solid phase extraction column and 0.22 μm filter membrane, and then analyzed by HPLC with an ul-traviolet detector at 260 nm. When spiked 0.05, 0.5, 1.0 mg·kg-1, the recoveries of nitenpyram in paddy plant and brown rice were 78.4%~94.7% and 84.0%~94.2%, respectively. The residues in paddy water and soil were extracted with phosphate buffer (0.2 mol·L-1, pH=7.0, when spiked 0.01, 0.5, 1.0 mg·kg-1, the recoveries of nitenpyram in paddy water and soil were 84.6%~98.0% and 93.7%~97.1%, respective-ly, which indicated this method match the requirement of the detection. Two years results showed that nitenpyram belongs to easily degraded pesticides, because all half-lives were below 1.4 d in rice plant, as well as below 4.2 d in paddy water. Final residual levels of nitenpyram in rice were all below 0.05 mg·kg-1,which was far below the Japanese maximum residue limit(0.5 mg·kg-1. The risk quotients (RQs were low for different populations in China, which indicated its low risk in rice. Therefore, the rice with nitenpyram applied, according to the recom-mend method, 45 g·hm-2 application once, with 21 days collection interval, was safe.

  11. Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application

    Science.gov (United States)

    Wassmann, R.; Neue, H. U.; Lantin, R. S.; Aduna, J. B.; Alberto, M. C. R.; Andales, M. J.; Tan, M. J.; van der Gon, H. A. C. Denier; Hoffmann, H.; Papen, H.; Rennenberg, H.; Seiler, W.

    1994-08-01

    Methane emission rates from wetland rice fields were determined in Los Baños (Philippines) using an automatic system that allows continuous measurements over time. Methane emission was monitored in an irrigated Aquandic Epiaqualf planted to rice cultivar IR72. Urea fertilizer was applied using four modes: (1) broadcast 10 days after transplanting, (2) broadcast at transplanting, (3) broadcast and incorporated at final harrowing, and (4) deep placement as sulfur-coated granules. The treatments were laid out in a randomized complete block design with four replicates. Measurements were done in the 1991 wet season, 1992 dry season (four treatments), and the 1992 wet season (only treatment 3). Methane emission rates from the experimental plots showed pronounced seasonal and diel variations. The diel pattern of methane emission rates followed a consistent pattern, with highest rates observed in the early afternoon and lowest rates in the early morning. Methane emission rate was generally highest at the ripening stage. The average methane emission rate during the 1992 dry season (190 mg CH4 m-2 d-1) exceeded the average flux rates of the 1992 wet season (79 mg CH4 m-2 d-1) by a factor of 2.4. The total methane emitted from these flooded rice fields amounted to 19 g CH4 m-2 in the dry season with rice yields of 5.2-6.3 t ha-1 and 7 g CH4 m-2 in the wet season with rice yields of 2.4-3.3 t ha-1 regardless of the mode of N application. Significant amounts corresponding to 20% of the methane released under waterlogged conditions were released when the soil was drained after harvest. Emission rates increased sharply when the floodwater receded and macropores started to drain. Emission of methane stopped only when the soil became fully aerated.

  12. A simplified sampling procedure for the estimation of methane emission in rice fields.

    Science.gov (United States)

    Khokhar, Nadar Hussain; Park, Jae-Woo

    2017-08-24

    Manual closed chamber methods are widely used for CH4 measurement from rice paddies. Despite diurnal and seasonal variations in CH4 emissions, fixed sampling times, usually during the day, are used. Here, we monitored CH4 emission from rice paddies for one complete rice-growing season. Daytime CH4 emission increased from 0800 h, and maximal emission was observed at 1200 h. Daily averaged CH4 flux increased during plant growth or fertilizer application and decreased upon drainage of plants. CH4 measurement results were linearly interpolated and matched with the daily averaged CH4 emission calculated from the measured results. The time when daily averaged emission and the interpolated CH4 curve coincided during the daytime was largely invariant within each of the five distinctive periods. One-hourly sampling during each of these five periods was utilized to estimate the emission during each period, and we found that five one-hourly samples during the season accurately reflected the CH4 emission calculated based on all 136 hourly samples. This new sampling scheme is simple and more efficient than current sampling practices. Previously reported sampling schemes yielded estimates 9 to 32% higher than the measured CH4 emission, while our suggested scheme yielded an estimate that was only 5% different from that based on all 136-h samples. The sampling scheme proposed in this study can be used in rice paddy fields in Korea and extended worldwide to countries that use similar farming practices. This sampling scheme will help in producing more accurate global methane budget from rice paddy fields.

  13. Ecotoxicological effects of rice field waters on selected planktonic species: comparison between conventional and organic farming.

    Science.gov (United States)

    Suárez-Serrano, Andrea; Ibáñez, Carles; Lacorte, Silvia; Barata, Carlos

    2010-11-01

    The aim of this study was to assess the ecotoxicological effects of water coming from untreated organic and conventional rice field production areas in the Ebro Delta (Catalonia, Spain) treated with the herbicides oxadiazon, benzofenap, clomazone and bensulfuron-methyl and the fungicides carbendazim, tricyclazole and flusilazole. Irrigation and drainage channels of the study locations were also included to account for potential toxic effects of water coming in and out of the studied rice fields. Toxicity tests included four species (Pseudokirchneriella subcapitata, Desmodesmus subcapitatus, Chlorella vulgaris and Daphnia magna), three endpoints (microalgae growth, D. magna mortality and feeding rates), and two trophic levels: primary producers (microalgae) and grazers (D. magna). Pesticides in water were analyzed by solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS). Negative effects on algae growth and D. magna feeding rates were detected mainly after application of herbicides and fungicides, respectively, in the conventional rice field. Results indicated that most of the observed negative effects in microalgae and D. magna were explained by the presence of herbicides and fungicides. The above mentioned analyses also denoted an inverse relationship between phytoplankton biomass measured as chlorophyll a and herbicides. In summary, this study indicates that in real field situations low to moderate levels of herbicides and fungicides have negative impacts to planktonic organisms and these effects seem to be short-lived.

  14. The World of Rice

    Institute of Scientific and Technical Information of China (English)

    VALERIE SARTOR

    2010-01-01

    @@ Pilafs, risottos, soups, snacks, paellas,stuffing, vinegars, wines and desserts-rice is used all over the world in myriad ways as food and drink.Although rice is one of the world's most ancient foods and it is impossible to know exactly where and when cultivation of this marvelous grain began, China is popularly acknowledged as the homeland of rice. Chinese people have many legends about rice. Some describe a benevolent goddess in silk robes whose gown accidentally picked up stray rice grains, which she dropped from the heavens to humans below. It's also said that Shennong, the Divine Farmer in Chinese myth, sowed the first rice on earth.

  15. Potencial de emissão de metano em lavouras de arroz irrigado Methane emission potential in flooded rice fields

    Directory of Open Access Journals (Sweden)

    Dirceu Agostinetto

    2002-12-01

    responsible for such phenomenon. The main gases that cause the greenhouse effect are carbon dioxide (CO2, methane (CH4, nitrous oxide (N2O, and chlorofluorocarbons (CFCs. Methane stands out amongst them by the amount produced and by its activity in the absorbing atmospheric heat. The main methane producing sources are soils naturally flooded or cultivated under flooding conditions, which represent approximately 40% of the total methane emitted; from this amount, 37% is emitted by rice cultivated under flooding conditions. In this context, the present review has as main purposes to describe processes responsible for methane production and emission, as well as to discuss management practices and rice plant characteristics which affect emission of this gas. From the total methane originated in rice fields during its growth cycle, between 60 to 90% comes from rice plants. Although methane is not the main gas responsible for the greenhouse effect and rice crop does not represent the main methane source, the reduction in the emission could be accomplished through changes in rice cultural practices. Amongst alternatives that can be worked out are management of irrigation water and fertilizer applied, and cropping of rice cultivars that present lower number of aerenchyma and lower biomass production, whereas maintaining rice grain yields potential.

  16. Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives

    Science.gov (United States)

    Rice (Oryza sativa L.) cultivation is critically important for global food security, yet it also represents a significant fraction of agricultural greenhouse gas (GHG) emissions and water resource use. Alternate wetting and drying (AWD) of rice fields has been shown to reduce both methane (CH4) emis...

  17. The dominant factors affecting agricultural land use (rice field change in Yogyakarta Special Province

    Directory of Open Access Journals (Sweden)

    Hadi Sabari Yunus

    2013-07-01

    The research shows that the period of 1980 - 2000 in Yogyakarta Special Province has indicated very significantly the increase in population, the development of road and the extension of built up area. For the time being, agricultural land mainly in Sleman Regency, Bantul Regency and Yogyakarta Municipality has decreased. Sleman regency performed the largest decrease of rice field and followed after then by Bantul regency and Yogyakarta Municipality. The regency of Kulon Progo and Gunung Kidul have experienced reverse phenomenon i.e. the increase of rice field during this period. Individually or simultaneously, three variables used in this research (number of people, road's length and built up area have significantly influenced the agricultural land use.

  18. Remote sensing of rice fields and sea pollution by SIR-B

    Science.gov (United States)

    Fugono, N.; Furuhama, Y.; Takasugi, T.; Okamoto, K.; Fujita, M.; Yoshikado, S.; Masuko, H.; Shinozuka, T.; Inomata, H.; Shiro, I.

    1984-01-01

    Sensor calibration, rice fields, and sea pollution are to be investigated with respect to shuttle imaging radar-B (SIR-B). It is planned that the resolution characteristics of the SIR-B be evaluated, the sidelobe characteristics of the SIR-B be investigated, and the relationship between backscatter cross section and image intensity be established. The microwave-scattering characteristics of rice fields are to be studied using SIR-B data. The possibility of classifying crops from SIR-B data is to be explored. The characteristics of the radar image of oil-like surface films under several sea surface conditions are to be determined. The absolute measurement capability of the sea surface scattering cross section is to be estimated using the SIR.

  19. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility.

  20. N2O Emission from Paddy Field under Different Rice Planting Modes

    Institute of Scientific and Technical Information of China (English)

    WANG Yuying; ZHU Bo; WANG Yanqiang; GAO Meirong; MA Xiumei

    2006-01-01

    Measurements of N2O emissions from conventional rice cultivation (CRC), CRC with straw mulching, system of rice intensification (SRI) and SRI with plastic film mulching were conducted through static chamber/gas-chromatography techniques. The results show that daily fluctuation of N2O emissions in jointing stage are much higher than in others. A type peak of N2O seasonal emission presented between jointing and bearing stages companying with high daily average temperature and low precipitation. Biomass and leaf stomatal conductance were observed. Total quantities of N2O emission were budgeted. The results showed that after jointing stage the average N2O emission flux of SRI with plastic film mulching increased significantly than CRC with straw mulching and SRI, the leaf stomatal conductance of those showed the same trend (p<0.05). Yield and total quantity of N2O emission in CRC with straw mulching enhanced 13.7% and 10.7% compared with those of CRC, respectively. The total quantity of N2O emissions reduced 3.6% in SRI with plastic film mulching compared with CRC, however, the yield increase of that was not significant.

  1. Pathological Study of Blood Parasites in Rice Field Frogs, Hoplobatrachus rugulosus (Wiegmann, 1834)

    OpenAIRE

    Achariya Sailasuta; Jetjun Satetasit; Malinee Chutmongkonkul

    2011-01-01

    One hundred and forty adult rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834), were collected in Srakaew province, Thailand. For blood parasite examination, thin blood smears were made and routinely stained with Giemsa. The results showed that 70% of the frogs (98/140) were infected with 5 species of blood parasites, including a Trypanosoma rotatorium-like organism, Trypanosoma chattoni, Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima. Pathological examination of the li...

  2. 五优662水稻种植表现及抛秧高产栽培技术%Planting Performance and High Yield Cultivation Techniques of Wuyou 662 Rice

    Institute of Scientific and Technical Information of China (English)

    胡泽生; 胡桂英; 欧阳美友

    2015-01-01

    Planting performance of Wuyou 662 rice was elaborated,high yield cultivation techniques were summarized from timely planting,cultivating strong seedling,seedling throwing,rational fertilization,scientific water management etc,so as to provide reference.%阐述了五优662水稻的种植表现,并从适时播种、培育壮秧、抛栽、合理施肥、科学管水等方面总结了其高产栽培技术,以供参考。

  3. Main Planting Patterns and Their Relevant Cultivation Practices for the Double Rice in Jiangxi Province%江西双季稻主要种植方式及其配套栽培对策

    Institute of Scientific and Technical Information of China (English)

    潘晓华; 李木英; 曾勇军; 程飞虎; 石庆华; 吴建富; 谭雪明; 黄山; 吴自明

    2013-01-01

    就江西双季水稻的发展、种植方式的演变与现状,不同种植方式下的双季水稻产量与效益进行了分析.基于江西双季水稻种植方式多样化的现状,针对手插,抛秧,机插,免耕抛秧,直播和再生稻等不同种植方式,分别提出了适宜不同稻区的双季超级稻品种及高产对策.%This study reviewed the history, evolution, and present situation of planting patterns of the double rice in Jiangxi Province. In addition, the differences in the grain yield and profitability of the double rice under various planting patterns were investigated. Given the diversity of planting patterns of the double rice in Jiangxi Province, to gain a high yield under hand transplanting, throwing, mechanical transplanting, no-tillage throwing, direct seeding, and rationing-rice planting, the authors suggested the selection of super rice cultivars and their relevant cultivation practices suitable for specific planting patterns in different double rice cropping regions of Jiangxi Province.

  4. Unravelling trophic subsidies of agroecosystems for biodiversity conservation: Food consumption and nutrient recycling by waterbirds in Mediterranean rice fields

    Energy Technology Data Exchange (ETDEWEB)

    Navedo, Juan G., E-mail: jgnavedo@uach.cl [Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Facultad de Ciencias, Campus Isla Teja, 5090000 Valdivia (Chile); Conservation Biology Research Group, Universidad de Extremadura, Avda. Elvas s/n, 06002 Badajoz (Spain); Hahn, Steffen [Department Bird Migration, Swiss Ornithological Institute, Seerose 1, 6204 Sempach (Switzerland); Parejo, Manuel; Abad-Gómez, José M. [Conservation Biology Research Group, Universidad de Extremadura, Avda. Elvas s/n, 06002 Badajoz (Spain); Gutiérrez, Jorge S. [Conservation Biology Research Group, Universidad de Extremadura, Avda. Elvas s/n, 06002 Badajoz (Spain); Department of Marine Ecology, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB Den Burg, Texel (Netherlands); Villegas, Auxiliadora; Sánchez-Guzmán, Juan M.; Masero, José A. [Conservation Biology Research Group, Universidad de Extremadura, Avda. Elvas s/n, 06002 Badajoz (Spain)

    2015-04-01

    Waterbirds can reallocate a considerable amount of nutrients within agricultural fields and between agriculture sites and wetlands. However their effects on biogeochemical cycles have rarely been quantified. We estimated bird numbers, diet (from stable isotope analysis), food supply, and the food consumption on rice fields by overwintering waterbirds in one of the most important areas for rice production in southwestern Europe and a key area for various migrating and resident waterbird species. Herein, we modelled the nutrient (N and P) recycling in rice fields, and their transport to reservoirs. The energy consumption by waterbirds (96,605 ± 18,311 individuals) on rice fields during winter averaged at 89.9 ± 39.0 kJ·m{sup −2}, with its majority (89.9%) belonging to foraging on rice seeds. Thus, the birds removed about 26% of rice seeds leftover after harvest (estimated in 932.5 ± 504.7 seeds·m{sup −2} in early winter) wherein common cranes and dabbling ducks (four species) were the most important consumers. Waterbirds foraging and roosting in the rice fields recycled more than 24.1 (1.0 kg·ha{sup −1}) of N and an additional 5.0 tons (0.2 kg·ha{sup −1}) of P in the Extremadura's rice fields during winter. Additionally, we estimated that 2.3 tons of N and 550 kg of P were removed from rice fields and transported to reservoirs. The seasonal foraging of wildlife should result in a direct benefit for rice farmers by improving nutrient recycling through defecation by waterbirds with respect to artificial fertilisation. Additionally, rice fields located in the cranes' core wintering areas can provide sufficient food supply to induce habitat shift from their traditional wintering habitat in ‘dehesas’ to rice fields, which causes indirect socioeconomic benefit through reduced acorn consumption by cranes. Our modelling approach may thus be especially helpful for management decisions regarding rice agroecosystems in areas which are also important

  5. Effects of Fipronil Insecticide Application on Sympetrum sp. Larvae and Adults in Experimental Rice Paddy Field

    Science.gov (United States)

    Jinguji, Hiroshi; Ueda, Tetsuyuki; Tsunoda, Manami; Aihara, Shoko; Saito, Mitsuo

    The effect of on sowing and before transplanting application of the phenyl pyrazole insecticide, fipronil, on the survivorship Sympetrum spp. was investigated in plots of an experimental rice paddy field. In addition, the effect of two pesticide applications on rice weevils was investigated. A total of nine paddy plots were used in this study: three were treated with fipronil at the before transplanting application , three at the on sowing application, and the three remaining plots were left untreated for use as controls. Fipronil concentrations in paddy water at the time of application in before transplanting and on sowing treatments reached 1.45 and 1.20 μg/L, respectively. A comparison of experimental and control plots revealed a marked absence of Sympetrum frequens larvae, exuviae and adults from fipronil-treated fields. Adult density of Sympetrum sp. and members of Lestidae in paddy fields before transplanting application were considerably lower than in control plots. Our results show that before transplanting application is more effective than on sowing application for treating rice weevils, but that on sowing application may still be harm against dragonflies.

  6. Development of specific chromosomal DNA pool for rice field eel and their application to gene mapping

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The chromosomes 1, 3, 5, 6, 7, 10 and 12 of rice field eel (Monopterus albus Zuiew) have been microdissected successfully from meiosis I diakinesis spreads by using glass microneedle under an inverted microscope. And the DOP-PCR products of the single chromosome dotted on the nylon membrane as "specific chromosomal DNA pool", have been hybridized with 6 probes to map these genes. The mapping results show that Zfa has been mapped to chromosome 1, rDNA to chromosomes 3 and 7, both Gh and Pdeg to chromosome 10, Hsl to chromosome 5 and Hox genes have been detected on chromosomes 1, 3, 6 and 10 meantime. It has initiatively been suggested that chromosome 10 of rice field eel might possess the commom conserved synteny to that on chromosome 17 of human, chromosome 11 of mouse,chromosome 12 of pig and chromosome 19 of bovine. And so chromosome 3 of rice field eel might also contain the commom conserved synteny to that on chromosome 2 of zebrafish. Our study is an attempt to establish a new and feasible method to advance the study of gene mapping and chromosome evolution in fish, and also to provide a new idea to distinguish each chromosome on the base of molecular markers for fish.

  7. Identification of Quantitative Trait Loci Affecting Hemicellulose Characteristics Based on Cell Wall Composition in a Wild and Cultivated Rice Species

    Institute of Scientific and Technical Information of China (English)

    Si-Ju Zhang; Xue-Qin Song; Bai-Sheng Yu; Bao-Cai Zhang; Chuan-Qing Sun; J. Paul Knox; Yi-Hua Zhou

    2012-01-01

    Cell wall hemicellulosic polysaccharides are structurally complex and diverse.Knowledge about the synthesisof cell wall hemicelluloses and their biological roles is limited.Quantitative trait loci (QTL) mapping is a helpful tool for the dissection of complex phenotypes for gene identification.In this study,we exploited the natural variation in cell wall monosaccharide levels between a common wild rice,Yuanj,and an elite indica cultivar,Teqing,and performed QTL mapping with their introgression lines (ILs).Chemical analyses conducted on the culms of Yuanj and Teqing showed that the major alterations are found in glucose and xylose levels,which are correlated with specific hemicellulosic polymers.Glycosidic linkage examination revealed that,in Yuanj,an increase in glucose content results from a higher level of mixed linkage β-glucan (MLG),whereas a reduction in xylose content reflects a low level of xylan backbone and a varied arabinoxylan (AX) structure.Seventeen QTLs for monosaccharides have been identified through composition analysis of the culm residues of 95 core ILs.Four major QTLs affecting xylose and glucose levels are responsible for 19 and 21% of the phenotypic variance,respectively.This study provides a unique resource for the genetic dissection of rice cell wall formation and remodeling in the vegetative organs.

  8. Rice Fields Mapping in Fragmented Area Using Multi-Temporal HJ-1A/B CCD Images

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2015-03-01

    Full Text Available Rice is one of the most important crops in the world; meanwhile, the rice field is also an important contributor to greenhouse gas methane emission. Therefore, it is important to get an accurate estimation of rice acreage for both food production and climate change related studies. The eastern plain region is one of the major single-cropped rice (SCR growing areas in China. Subjected to the topography and intensified human activities, the rice fields are generally fragmented and irregular. How remote sensing can meet this challenge to accurately estimate the acreage of the rice in this region using medium-resolution imagery is the topic of this study. In this study, the applicability of the Chinese HJ-1A/B satellites and a two-band enhanced vegetation index (EVI2 was investigated. Field campaigns were carried out during the rice growing season and ground-truth data were collected for classification accuracy assessments in 2012. A stepwise classification strategy utilizing the EVI2 signatures during key phenology stages, i.e., the transplanting and the vegetative to reproductive transition phases, of the SCR was proposed, and the overall classification accuracy was 91.7%. The influence of the mixed pixel and boundary effects to classification accuracy was also investigated. This work demonstrates that the Chinese HJ-1A/B data are suitable data source to estimating SCR cropping area under complex land cover composition.

  9. Preliminary Study on Mechanized Cultivation Technologies of Male Parent in Indica-Japonica Hybrid Rice Seed Production%籼粳杂交水稻制种父本机插机收技术初探

    Institute of Scientific and Technical Information of China (English)

    陆惠斌; 马寅超

    2016-01-01

    The paper introduced the trials and demonstration of male parent machine transplanting and machine harvesting in indica-japonica hybrid rice seed production in Ningbo City about four years. The costs and seed yield of male parent with different cultivation method were analyzed, and put forward the mechanized cultivation techniques of male parent in indica-japonica hybrid rice seed pro-duction.%介绍了宁波市4年来籼粳杂交水稻制种父本机插机收的试验示范情况,分析比较了父本机插机收与人工插种收割的成本和制种产量,提出了杂交水稻父本机插机收的配套栽培技术。

  10. Climatic Risk of Field Cultivation of Cucumber (Cucumis sativus L. in Poland

    Directory of Open Access Journals (Sweden)

    Robert KALBARCZYK

    2010-12-01

    Full Text Available The goal of the present work was to separate zones of pickling cucumber field cultivation in Poland according to the various degrees of climatic risk. The study used 40-years of (1966-2005 data from 28 experimental stations of the Research Centre for Cultivar Testing. The data characterised the course of the growth, development, cucumber crop productivity and also the agrotechnical dates. Additionally, the work considered agrometeorological data of 7 development stages of the analysed plant: sunshine duration, soil temperature at a height of 5 cm, air temperature at a height of 2 m and 5 cm above ground level and atmospheric precipitation. The agrometeorological data was collected from 53 meteorological stations, in the Polish network of the Institute of Meteorology and Water Management. Weather-yield regression equations were used to determine unfavourable agrometeorological elements which is the best way to determined the quantity of the cucumber total and marketable yield. The highest climatic risk of pickling cucumber field cultivation occurred in about 7% of Poland’s area. This is the area covering the southwestern, southeastern, the northern and northeastern parts of the country. In these areas, very high occurrence frequency of agrometeorological elements was noted. These elements were: air and soil temperatures that were too low during the whole growing season and, too short of a duration of the period without frost, lasting ≤120 days.

  11. Methane emissions from rice fields under continuous straw return in the middle-lower reaches of the Yangtze River

    Institute of Scientific and Technical Information of China (English)

    Pengfu Hou; Ganghua Li; Shaohua Wang; Xin Jin; Yiming Yang; Xiaoting Chen; Chengqiang Ding

    2013-01-01

    A three-year experiment was conducted in the middle-lower reaches of the Yangtze River in China to study the influence of continuous wheat straw return during the rice season and continuous rice straw return in wheat on methane (CH4) emissions from rice fields in which,the rice-wheat rotation system is the most dominant planting pattern.The field experiment was initiated in October 2009 and has continued since the wheat-growing season of that year.The analyses for the present study were conducted in the second (2011) and third (2012) rice growing seasons.Four treatments,namely,the continuous return of wheat straw and rice straw in every season (WR),of rice straw but no wheat straw return (R),of wheat straw but no rice straw return (W) and a control with no straw return (CK),were laid out in a randomized split-plot design.The total seasonal CH4 emissions ranged from 107.4 to 491.7 kg/ha (2011) and 160.3 to 909.6 kg/ha (2012).The increase in CH4 emissions for treatments WR and W were 289% and 230% in the second year and 185% and 225% in the third year,respectively,in relation to CK.We observed less methane emissions in the treatment R than in CK by 14%-43%,but not statistically significant.Treatment R could increase rice productivity while no more CH4 emission occurs.The difference in the total CH4 emissions mainly related to a difference in the methane flux rate during the first 30-35 days after transplant in the rice growing season,which was caused by the amount of dissolved oxygen in paddy water and the amount of reducible soil materials.

  12. Comparative Metagenomics of Anode-Associated Microbiomes Developed in Rice Paddy-Field Microbial Fuel Cells

    Science.gov (United States)

    Kouzuma, Atsushi; Kasai, Takuya; Nakagawa, Gen; Yamamuro, Ayaka; Abe, Takashi; Watanabe, Kazuya

    2013-01-01

    In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors. PMID:24223712

  13. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kasai, Takuya; Nakagawa, Gen; Yamamuro, Ayaka; Abe, Takashi; Watanabe, Kazuya

    2013-01-01

    In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.

  14. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Kouzuma

    Full Text Available In sediment-type microbial fuel cells (sMFCs operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.

  15. Lime and Phosphate Amendment Can Significantly Reduce Uptake of Cd and Pb by Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Rongbo Xiao

    2017-03-01

    Full Text Available Agricultural soils are suffering from increasing heavy metal pollution, among which, paddy soil polluted by heavy metals is frequently reported and has elicited great public concern. In this study, we carried out field experiments on paddy soil around a Pb-Zn mine to study amelioration effects of four soil amendments on uptake of Cd and Pb by rice, and to make recommendations for paddy soil heavy metal remediation, particularly for combined pollution of Cd and Pb. The results showed that all the four treatments can significantly reduce the Cd and Pb content in the late rice grain compared with the early rice, among which, the combination amendment of lime and phosphate had the best remediation effects where rice grain Cd content was reduced by 85% and 61%, respectively, for the late rice and the early rice, and by 30% in the late rice grain for Pb. The high reduction effects under the Ca + P treatment might be attributed to increase of soil pH from 5.5 to 6.7. We also found that influence of the Ca + P treatment on rice production was insignificant, while the available Cd and Pb content in soil was reduced by 16.5% and 11.7%, respectively.

  16. Genetic and field management strategies to enhance the nutritional value of rice grains and limit accumulation of undesirable elements such as arsenic

    Science.gov (United States)

    Enhancing the nutritional value of rice grains is of particular interest because rice is a primary dietary component for more than half of the world’s population, and is a primary source of nutrients in many underdeveloped countries. Because rice can be grown under both flooded and unflooded field ...

  17. A digital photography and analysis system for estimation of root and shoot development in rice weed suppression studies in the field

    Science.gov (United States)

    Rice germplasm with an inherent ability to suppress weeds can potentially improve the economics and sustainability of weed control in rice. We devised a simple, rapid, and inexpensive digital imaging system to quantify several shoot and root growth characteristics in field-grown rice plants that ha...

  18. Spatial and Height Distribution of Harvested Rupestrian Field Species in Preserved and Cultivated Communities

    Directory of Open Access Journals (Sweden)

    Henrique Nery Cipriani

    Full Text Available ABSTRACT This study aimed to compare the spatial and the height distribution of three plant species between two rupestrian field communities, one preserved (A and the other cultivated (B. One 50 × 100 m plot was delimited in each community and the populations of Eremanthus incanus, Lychnophora pinaster and Vellozia caruncularis were assessed for height and spatial distribution (using the Ripleys’s L-function. In community A, 4,098 individuals were counted, mostly L. pinaster, against 220 individuals in community B, prevailing E. incanus. An inverted-J pattern was observed for height distribution in both communities, however, with lower frequencies in B. Regular spatial distribution was found for E. incanus and V. caruncularis in community A, whereas the pattern for L. pinaster depended on the scale of analysis. The spatial distribution of all species differed between communities. The Ecological Park Quedas do Rio Bonito contributes to the conservation of these rupestrian field species.

  19. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    Directory of Open Access Journals (Sweden)

    A. Meijide

    2011-09-01

    Full Text Available Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4, the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem.

    For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd. was installed in an eddy-covariance field set-up in a rice paddy field in the Po Valley (Northern Italy. Methane fluxes were measured during the rice growing season, both with EC and with manually operated closed chambers. Methane fluxes were strongly influenced by the presence of the water table, with emissions peaking when it was above 10–12 cm. Further studies are required to evaluate if water table management could decrease CH4 emissions. The development of rice plants and soil temperature were also responsible of the seasonal variation on the fluxes. The EC measured showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between both measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.8 g CH4 m−2

  20. EFFECT OF FLUCTUATION OF WETTING AND DRYING PHENOMENA ON SOIL FERTILITY STATUS UNDER RICE CULTIVATION IN WETLAND SOIL IN RWANDA

    Directory of Open Access Journals (Sweden)

    Hamudu Rukangantambara

    2014-01-01

    Full Text Available Since 1980, wetland s in Rwanda have been considered as important areas for agriculture intensification through improving food security and incomes to the farmers. However, changes in the soil nutrient status due to repeatedly wetting and drying phenomena may considerably affect soil fertility status thus leading to low crop productivity of the wetlands. This has consequently created fear to the wetland users especially the local farmers, extension workers and agronomists. The comparative study was conducted to assess the effect of drained and irrigated phenomena at Mamba, Rwasave and Rugeramigozi marshlands on soil fertility change under rice growing. 24 samples were taken with 12 samples under drained and 12 under irrigated areas. The samples were collected randomly from top soil ( 0- 20 cm. The following parameters were quantified; soil pH( H 2O in soil water suspension with ratio 1:2.5; Al exchangeable( 1N Kcl, organic carbon( walkely and black method in Sumner method modified (1984, Total nitrogen kjeldahl (TNK in Bremner modified method, available phosphorus ( bray 1. Bases exchangeable with 1 N ammonium acetate following AAS and CEC and available Fe, Zn, Cu and Mn (DTDA diethylenetriaminepentaacetic acid. Data analyses were processed with GEN STAT version 3. The results showed that the fluctuation of wet and dry water have significantly affected soil fertility status at p= 0,05. The phosphorus and potassium are in the low levels of deficiency 2.32 ppm and 47.72 ppm in irrigated area while crop requirement nutrients are 20 ppm and 200 ppm respectively. And Al is in toxic level conditions, 27.5% in drained area while rice tolerance is 20%. Fe was 641.51 ppm in irrigated area while requirement narrowed to 300 ppm. As conclusion, the soil fertility is low and toxic which constitutes a limitation. The wetland soil in Rwanda should offer opportunities for paddy growing ( rice, etc, if soil fertility factors would be amended by lime for its

  1. NITROUS OXIDE EMISSION AND NITROGEN UPTAKE AFFECTED BY SOIL AMENDMENT AND NEMATICIDE IN RAINFED RICE SOILS AT CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    A. Wihardjaka

    2013-10-01

    Full Text Available Rice cultivation is one of the antropogenic sources of nitrous oxide (N2O emission that is produced by microbiological nitrification-denitrification processes. Incorporating soil amendment in rainfed rice soil attempted to increase soil productivity, while nematicide application aimed to maintain root growth system. Incorporating soil amendment and nematicide application are predicted to suppress N2O production in lowland rice. The objective of this research was to study the interaction of soil organic amendment and nematicide on N2O emission and nitrogen uptake from rainfed lowland rice soils. A field experiment was conducted in rainfed lowland rice soils during 2010/2011 wet season (direct seeded rice and 2011 dry season (transplanted rice. The 3 x 3 factorial trial was arranged in a randomized completely block design with three replications. The first factor was soil amendment consisted of without rice straw, fresh rice straw and composted rice straw. The second factor was nematicide application consisted of without nematicide, neemcake and carbofuran. Variables measured were N2O flux, rice grain yield and nitrogen uptake. Incorporation of fresh and composted rice straws reduced N2O flux about 49.2% and 59.9% in transplanted rice, and 32.9% and 28.2% in direct seeded rice, respectively. The neemcake application reduced N2O emission about 44-50%, while carbofuran application decreased N2O emission by 23-35%. Neemcake has a good potential as nitrification inhibitor of N2O emission, so the neem trees have a prospect to be cultivated intensively. The reduction of N2O emission was effective in direct seeded rice system with the application of neemcake and fresh rice straw, however, in transplanted rice system it was effective with neemcake and composted rice straw applications.

  2. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    Energy Technology Data Exchange (ETDEWEB)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, Georg C.; Wang, F.; Schnrer, Anna; Sun, Chuanxin

    2015-07-22

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4,6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2, conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane

  3. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    Science.gov (United States)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; Schnürer, A.; Sun, C.

    2015-07-01

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  4. Rice Germplasm Resources in China

    Institute of Scientific and Technical Information of China (English)

    YINGCunshan

    1994-01-01

    China is one of the origin countries in Asia of cultiv ated rice (O. sativaL.), and rice is one of the aged-long food crops in the country. The results of the 14C evaluation on the carbonified rice grains unearthed from Hemudu in Yuyao County and Luojiajiao in Tongxiang County of Zhejiang Province indicated that rice in these area has been planted more than 7,000 yrs and indica (hsien) and japonica (keng) rices coexisted with each other.

  5. 旱作条件下旱稻和水稻叶片光合特性及RuBP羧化酶活性的比较%Comparison of photosynthetic characteristics and RuBPcase activity between upland rice and rice in leaves under dry cultivation

    Institute of Scientific and Technical Information of China (English)

    陈展宇; 徐克章; 吴磊; 张治安; 凌凤楼

    2012-01-01

    [Objective] The study was performed to explore changes of photosynthetic characteristics and RuBPcase activity in leaves of uplan rice varieties and rice varieties under dry cultivation condition. The purpose was to provide physiological basis for uplan rice varieties breeding and high-yield cultivation. [Method] With two uplan rice varieties(Han 9710, Qinai)and two rice varieties(Jinong No. 8, Changbai No. 12)as experimentals materials, photosynthetic characteristics and RuBPcase activity at seedling stage, flowering stage,filling stage and maturation stage were measured under dry cultivation. [Result] Under dry cultivation, the contents of chlorophyll, net photosynthetic rate(Pn) and RuBPcase activity of leaves in upland rice varieties during different durations were significantly(P〈0.05) higher than those in rice varieties. Transpiration rate(Tr) of leaf in upland rice varieties was significantly(P〈0.05)lower than that in rice varieties,and utilization efficiency of water(WUE) of upland rice varieties was very significantly(P〈 0.01) higher than that in rice varieties. The net Pn of uplan rice varieties showed significantly positive correlation with stomatal conductance(Gs) ,WUE and RuBPcase activity. [Conclusion] Compared with rice varieties leaves of upland rice varieties have contents of chlorophyll, strong activity of RuBPcase, weak transpiration and increasing WUE, which make for enhancing the drought resistance of upland rice and maintain higer photosynthetic efficiency.%【目的】探讨旱作条件下旱稻、水稻品种叶片光合特性及RuBP羧化酶活性的变化规律,为旱稻品种的选育和高产栽培提供依据。【方法】选择2个旱稻品种("旱9710"、"秦爱")和2个水稻品种("吉农8号"、"长白12号")为试验材料进行田间旱作试验,于苗期、开花期、灌浆期、成熟期测定其叶片光合特性及RuBP羧化酶活性。【结果】旱作条

  6. Use of Forward-Scattering Algorithm for Growth Stage Determination of Rice Fields

    Science.gov (United States)

    Yuzugullu, Onur; Erten, Esra; Hajnsek, Irena

    2015-04-01

    Rice is one of the major crops that is highly consumed worldwide. Therefore, there is a requirement for frequent monitoring. The aim of the growth stage monitoring is to optimize crop management practices and reduce the environmental impacts. This study aims to provide a novel approach to determine the growth stage of rice fields by means of polarimetric Synthetic Aperture Radar (PolSAR) data. To estimate the growth stage of rice fields, firstly a hyper space is simulated using a forward scattering model. Then, by assuming that the plant morphology for different polarimetric channels have to be similar, to reduce the size of the simulated hyper space, a set of constraints are applied. Finally, to determine the most possible growth stage the probabilities of the morphological parameters in the minimized hyper spaces are calculated. The proposed method is tested over co-polar TerraSAR-X (TSX) data by exploiting a single acquisition and a priori information. Results of the analysis show that, proposed method is able to estimate growth stage with a ± 5 BBCH accuracy.

  7. Aquaporins are major determinants of water use efficiency of rice plants in the field.

    Science.gov (United States)

    Nada, Reham M; Abogadallah, Gaber M

    2014-10-01

    This study aimed at specifying the reasons of unbalanced water relations of rice in the field at midday which results in slowing down photosynthesis and reducing water use efficiency (WUE) in japonica and indica rice under well-watered and droughted conditions. Leaf relative water content (RWC) decreased in the well-watered plants at midday in the field, but more dramatically in the droughted indica (75.6 and 71.4%) than japonica cultivars (85.5 and 80.8%). Gas exchange was measured at three points during the day (9:00, 13:00 and 17:00). Leaf internal CO2 (Ci) was not depleted when midday stomatal depression was highest indicating that Ci was not limiting to photosynthesis. Most aquaporins were predominantly expressed in leaves suggesting higher water permeability in leaves than in roots. The expression of leaf aquaporins was further induced by drought at 9:00 without comparable responses in roots. The data suggest that aquaporin expression in the root endodermis was limiting to water uptake. Upon removal of the radial barriers to water flow in roots, transpiration increased instantly and photosynthesis increased after 4h resulting in increasing WUE after 4h, demonstrating that WUE in rice is largely limited by the inadequate aquaporin expression profiles in roots.

  8. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    Directory of Open Access Journals (Sweden)

    Rehmani Muhammad

    2011-12-01

    Full Text Available Abstract To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time.

  9. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    Directory of Open Access Journals (Sweden)

    A. Meijide

    2011-12-01

    Full Text Available Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4, the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem.

    For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd. was installed in a rice paddy field in the Po Valley (Northern Italy. Methane fluxes were measured during the rice growing season with both EC and manually operated closed chambers. Methane fluxes were strongly influenced by the height of the water table, with emissions peaking when it was above 10–12 cm. Soil temperature and the developmental stage of rice plants were also responsible of the seasonal variation on the fluxes. The measured EC fluxes showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between the two measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.7 g CH4 m−2 measured with chambers and EC respectively and even greater differences are found if shorter periods with high chamber sampling

  10. Using possibilities of some agricultural wastes in open-field banana cultivation

    Directory of Open Access Journals (Sweden)

    Mehmet ÖTEN

    2016-06-01

    Full Text Available Usage of farmyard manure is the one of the major factors to increase production cost in banana cultivation. Besides increasing the production costs, other disadvantages of farmyard manure are playing active role on carrying diseases and pests and also difficulty in obtaining. Due to the stated disadvantages, the use farmyard manure of banana farmers is decreasing. Therefore, we need alternative ways to increase the organic matter capacity of the soil. The effects of alternative applications to farmyard manure, namely banana waste and mushroom compost were investigated. The objective of the study was to evaluate effects of these applications on some morphological properties (plant height, plant circumference and number of leaves, yield (number of hands, number of fingers, bunch weight, finger weight and length and quality properties (flesh/skin ratio, total soluble solids matter, sugars etc. under open-field banana cultivation. The experiment was conducted in Kargıcak location of Alanya in randomized complete block design (RCBD with 3 replications. Experimental results revealed that using of farmyard manure and waste treatments positively affected the yield parameters like the number of hands and fingers, finger length, finger weight and bunch weight. On the other hand, treatments did not have a statistically significant effect on fruit quality parameters like soluble solids content, titratable acidity, pH and ash.

  11. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields.

    Science.gov (United States)

    Kuroda, Yosuke; Kaga, Akito; Tomooka, Norihiko; Yano, Hiroshi; Takada, Yoshitake; Kato, Shin; Vaughan, Duncan

    2013-07-01

    The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple-site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self-pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self-pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles.

  12. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Minfeng Xue

    Full Text Available Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus.

  13. RICE CULTIVATION ASPECTS OF DEVELOPMENT TIDAL SWAMPS AGRICULTURE SUPPORTED TO FOOD SECURITY (Case study of Danda Besar Unit, Barito Kuala district

    Directory of Open Access Journals (Sweden)

    Agus Supriyo

    2017-09-01

    Full Text Available k of reclamation. Research was carried out in July 2012. Method: "participatory rural appraisal" and interviews. Secondary data were obtained from "desk study". Data were analyzed using SWOT. Results: aspects of rice cultivating in land development tidal marsh consisting problem: (a land management (land arrangement lowland system start area upstream to downstream, low soil fertility, ground is not yet mature, (b arrangements water (macro and micro, (c participation of farmers (labor and skills are limited, and (d external support (KUD is not functioning optimally, number of extension limited to one PPL serves 659 farmers and "cover" area of land covering an area of 1,546 ha. Scenario development of tidal marsh Danda Besar can be divided into (a arrangement of land, (b setting micro water management by creating a channel quarter and channel worms and sanitation channel tertiary (c mechanization of agriculture by means of pre-harvest and post-harvest systems business services, training, technological innovation swamp land for farmer groups, and (d revitalizing function of cooperatives, increasing number of personnel PPLn and labor observers water associated with task forces village

  14. Detection of Distorted Segregation in Genotype of Pollen Calli Derived from Hybrid F1 of Cultivated Rice (Oryza sativa L.) Using SSR Markers

    Institute of Scientific and Technical Information of China (English)

    YAO Yan; LU Yong-gen; LIU Xiang-dong; FENG Jiu-huan; ZHANG Gui-quan

    2006-01-01

    S-a, S-b and S-c are three loci for F1 pollen sterility in cultivated rice (Oryza sativa L.). Taichung 65 (T65) is all Sj/Sj at these three loci, while its F1 pollen sterile near-isogenic lines, TISL2 (S-b), TISL4 (S-a) and TISL5 (S-c) is Si/Si according to their respective sterility locus. Using SSR molecular marker to detect the segregation of the allele Si and Sj in pollen calli population induced from different hybrid F1, which have different pollen sterility locus, showed that the segregation of allele Si and Sj was distorted. The distorted direction of pollen calli population in vitro was not the same as F2 population in vivo. The quantities of pollen callus carrying Sj were much more than that of carrying Si at S-a and S-c locus, the ratio of Si and Sj were 1:4.81 and 1:1.96 respectively. But the opposite tendency was observed at S-b locus, the ratio of Si and Sj being 1:0.35. At the same time, all these results were undisturbed by either culture medium or culture period.

  15. Design and experiment on critical component of cultivator for straw returning in paddy field and dry land%水旱两用秸秆还田耕整机关键部件设计与试验

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 张居敏; 夏俊芳; 张顺; 翟建波; 吴昊

    2015-01-01

    As the main producing area of rice, the Yangtze River basin usually had various multiple cropping systems, such as rape-rice, wheat-rice, green manure-rice, the double cropping of rice, triple-cropping. Rice is planted immediately after the harvest of the previous crop. So the straws are buried in the field in a busy harvesting and planting season. Crop residues incorporated in farmland by mechanical technique can improve soil physics properties and fertility, increase the yield and farm income. Straw returning to field practice can reduce the problem of crop residue burning and also the amount of chemical fertilizer application. Based on our previous research on the 1GMC-70, the cultivator for high stubble returning in paddy field, a new roller of cultivator for straw returning both in paddy field and dry land was designed. The helical rotary blades, bent blades and the IIT245 rotary blade were the main tillage parts of the machine, and its power consumption was an important technical parameter to consider for the overall performance. The former two types of blade are used to cut soil, while the latter one to bury straw. In this study, based on the roller structural and working principle of the main parts of the cultivator, the parameters of key components were tested for the rotary blades IIT245 and spiral blades. Furthermore, their interrelationships and interactions were analyzed in detail. An advisable arrangement of rotary blades IIT245 fixed on the rotor was provided. The tillage width was 2 000 mm. The rotor speed was 335 rev/min. The forward velocity was 0.7 to 1.1 m/s. The lower forward velocity was used in dry land, while the higher forward velocity was for wet land tillage. Experiments of crop straw burying rotary tillage were conducted repeatedly both in wet land and dry land. The field test showed when tillage in fields of soil compaction value under 1260 kPa at about 150 mm depth, the cultivator could realize the straw mulching and returning, soil

  16. Maximizing establishment and survivorship of field-collected and greenhouse-cultivated biocrusts in a semi-cold desert

    Science.gov (United States)

    Antoninka, Anita; Bowker, Matthew A.; Chuckran, Peter; Barger, Nicole N.; Reed, Sasha C.; Belnap, Jayne

    2017-01-01

    AimsBiological soil crusts (biocrusts) are soil-surface communities in drylands, dominated by cyanobacteria, mosses, and lichens. They provide key ecosystem functions by increasing soil stability and influencing soil hydrologic, nutrient, and carbon cycles. Because of this, methods to reestablish biocrusts in damaged drylands are needed. Here we test the reintroduction of field-collected vs. greenhouse-cultured biocrusts for rehabilitation.MethodsWe collected biocrusts for 1) direct reapplication, and 2) artificial cultivation under varying hydration regimes. We added field-collected and cultivated biocrusts (with and without hardening treatments) to bare field plots and monitored establishment.ResultsBoth field-collected and cultivated cyanobacteria increased cover dramatically during the experimental period. Cultivated biocrusts established more rapidly than field-collected biocrusts, attaining ~82% cover in only one year, but addition of field-collected biocrusts led to higher species richness, biomass (as assessed by chlorophyll a) and level of development. Mosses and lichens did not establish well in either case, but late successional cover was affected by hardening and culture conditions.ConclusionsThis study provides further evidence that it is possible to culture biocrust components from later successional materials and reestablish cultured organisms in the field. However, more research is needed into effective reclamation techniques.

  17. Transportability of confined field trial data from cultivation to import countries for environmental risk assessment of genetically modified crops.

    Science.gov (United States)

    Nakai, Shuichi; Hoshikawa, Kana; Shimono, Ayako; Ohsawa, Ryo

    2015-12-01

    Requirement of in-country confined field trials for genetically modified (GM) crops prior to unrestricted release is well-established among countries with domestic regulations for the cultivation approval of GM crops. However, the requirement of in-country confined field trials is not common in countries where the scope of the application does not include cultivation. Nonetheless, Japan and China request in-country confined field trials for GM crops which are intended only for use as food, feed and processing. This paper considers the transportability of confined field trial data from cultivation countries (e.g. United States, Canada, and South American countries) to import countries like Japan for the environmental risk assessment of GM crops by reviewing: (1) the purpose of confined field trial assessment, (2) weediness potential, defined as "an ability to establish and persist in an unmanaged area that is frequently disturbed by human activity", of host crops, and (3) reliability of the confined field trial data obtained from cultivation countries. To review the reliability of the confined field data obtained in the US, this paper describes actual examples of three confined field trials of approved GM corn events conducted both in the US and Japan. Based on the above considerations, this paper concludes that confined field data of GM corn and cotton is transportable from cultivation countries to importing countries (e.g. from the US to Japan), regardless of the characteristics of the inserted gene(s). In addition, this paper advocates harmonization of protocols for confined field trials to facilitate more efficient data transportability across different geographies.

  18. Mosquito (Diptera: Culicidae) and predator abundance in irrigated and rain-fed rice fields in north Sulawesi, Indonesia.

    Science.gov (United States)

    Mogi, M; Memah, V; Miyagi, I; Toma, T; Sembel, D T

    1995-05-01

    Immature mosquito species composition and abundance were studied in irrigated and rain-fed rice fields of North Sulawesi, Indonesia. Irrigated rice fields were characterized by the prevalence of aquatic macrophytes and cyprinodont larvivorous fish, Aplocheilus panchax (Hamilton), but abundance per dip of most aquatic insect predators was lower than that in rain-fed rice fields. Anopheles peditaeniatus (Leicester), Culex vishnui Theobald, and Culex tritaeniorhynchus Giles, were dominant in both irrigated and rain-fed fields, but the abundance of the Culex species was lower in irrigated fields. The effect of irrigation system introduction on regional mosquito abundance cannot be evaluated by the enlarged surface water area alone. Changes in habitat quality, expressed as the abundance per dip (index of density per unit water area), also need to be considered.

  19. Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil

    Directory of Open Access Journals (Sweden)

    MARIA HELENA L.R. RECHE

    2016-03-01

    Full Text Available ABSTRACT This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin.

  20. Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil.

    Science.gov (United States)

    Reche, Maria Helena L R; Machado, Vilmar; Saul, Danilo A; Macedo, Vera R M; Marcolin, Elio; Knaak, Neiva; Fiuza, Lidia M

    2016-03-01

    This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin.

  1. Feasibility of Field Evaluation of Rice Nitrogen Status From Reflectance Spectra of Canopy

    Institute of Scientific and Technical Information of China (English)

    WANGRENCAHO; WANGKE; 等

    1998-01-01

    Techniques for measurement of the N status of rice can be an aid to making manaement decisions with economic and environmental implications.A field experiment was conuced to identify spectral variables most sensitive to N deficiency detection in rice canopy with the possibiliy for their use as a management tool. Spectral and agronomic measurements were collected in the evaluation experiment of N status from rice canopy under vive N treatments in a silt loam soil ,Nitroen fertilization effects were seen across the entire wavelength measured .Red refectance decreased and near infrared reflectance increased with increasing N fertilizer application.Spectral differences between treatments were seen throughout the test period.The naer infrared refectnce/red reflectance ration (RVI) differed mored between treatment than between single bands.Variations in canopy reflectances due to other environmental factors were reduced by the use of RVI.In the spectral variables examined ,the RVI separated the treatments most effectively,and three or four treatments can be separated.Differences in spetral responses betwenn the treatments were attributable to leaf area index ,leaf chlorophyll concentration and phtomass,wich all changed with N fertilization.

  2. Cultivation, identification and quantification of one species of yeast-like symbiotes, Candida, in the rice brown planthopper, Nilaparvata lugens

    Institute of Scientific and Technical Information of China (English)

    Kun Pang; Sheng-Zhang Dong; Yun Hou; Ya-Lin Bian; Ke Yang; Xiao-Ping Yu

    2012-01-01

    The brown planthopper (BPH),Nilaparvata lugens St(a)l,which is one of the most destructive pests of rice,has been confirmed to harbor yeast-like symbiotes (YLS) in the fat body.Several morphologically different YLS have been previously isolated and cultured in vitro from BPH,but direct evidence is lacking to further clarify whether the cultured YLS were from BPH.In this study,one species of YLS was successfully cultured in vitro and simultaneously verified to exist in the fat body of BPH by sequence analysis and nested polymerase chain reaction (PCR).The cultured YLS isolate in vitro was identified as a member of the genus Candida on the basis of 18S rDNA (ribosomal DNA) and 5.8S-ITS (internal transcribed spacer) rDNA sequence and a phylogenetic analysis of ITS sequences from yeast.Therefore,this yeast isolate was named as Candida-like symbiotes.Candida-like symbiotes was found to exist in fat bodies,ovaries and newly laid eggs of the BPH,but not in the heads,thoraxes and mid-guts.In addition,the number of Candida-like symbiotes in 1 x 106 of purified YLS from BPH fat bodies was speculated to be (5.32 ± 0.22) × 104 on the basis of a quantitative PCR analysis.

  3. Rice Crop Field Monitoring System with Radio Controlled Helicopter Based Near Infrared Cameras Through Nitrogen Content Estimation and Its Distribution Monitoring

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-03-01

    Full Text Available Rice crop field monitoring system with radio controlled helicopter based near infrared cameras is proposed together with nitrogen content estimation method for monitoring its distribution in the field in concern. Through experiments at the Saga Prefectural Agricultural Research Institute: SPARI, it is found that the proposed system works well for monitoring nitrogen content in the rice crop which indicates quality of the rice crop and its distribution in the field in concern. Therefore, it becomes available to maintain the rice crop fields in terms of quality control.

  4. Eficiência de Metarhizium anisopliae no controle do Percevejo-do-Colmo Tibraca limbativentris (Heteroptera: Pentatomidae em lavoura de arroz irrigado Efficiency of Metarhizium anisopliae on rice stem bug Tibraca limbativentris (Heteroptera: Pentatomidae control in flooded rice field

    Directory of Open Access Journals (Sweden)

    José Francisco da Silva Martins

    2004-12-01

    , pode provavelmente reduzir a taxa de disseminação do fungo nos arrozais e, por conseqüência, ser desfavorável à ocorrência de epizootias.The rice stem bug, Tibraca limbativentris Stal, 1860 (Heteroptera: Pentatomidae, is an important pest of rice (Oryza sativa L. in Brazil, mainly in flooded system of cultivation. The effect of two ways of application (conidia in aqueous suspension and on rice grain of Metarhizium anisopliae strain 172 for the control of the rice stem bug, was evaluated in three experiments conducted in 1991, 1992 and 1994 in commercial irrigated rice. In 1991, the spraying of conidia suspension and manual distribution of rice grain covered with fungal material at dose of 7.2 x 10(13 conidia.ha-1, on soil and among rice stems, where the bugs were located, reduced significantly the insect natural population with control efficiencies of 52.6 and 61.8%, respectively. Studies about establishment and persistence of fungal conidia in soil, using the colony forming unity (CFU counts, indicated that the fungus persisted in the soil between two rice crop seasons, up to 216 days after application, when new rice crops were established. The number of CFU was greater in the plots treated with rice grain covered with fungal material. The linear growth of CFU in the control plots showed that the fungus spread to the untreated areas of the rice field. Significant control efficiency was obtained in 1993 for grain and aqueous fungus treatment with 48.2% and 51.8%, respectively. In 1994, the conidial suspension at dose of 5x10(13 conidia.ha-1 resulted in control efficiency of 39.5%. The level of insect mycosis, however, was low in both 1993 and 1994, reaching a maximum of 20% mycosis in 1993. The low numbers of insect with mycosis compared with the level of mortality, may probably reduce the rate of fungal dissemination in rice fields and, consequently, be detrimental to the occurrence of epizootics.

  5. Biological control of golden apple snail, Pomacea canaliculata by Chinese soft-shelled turtle, Pelodiscus sinensis in the wild rice, Zizania latifolia field

    Directory of Open Access Journals (Sweden)

    Shengzhang Dong

    2012-04-01

    Full Text Available The wild rice, Zizania latifolia Turcz, used to be one of the important aquatic vegetables cultivated in China. Recently, the golden apple snail - GAS (Pomacea canaliculata (Lamarck was found to be a major invasive pest attacking Z. latifolia. To control efficiently GAS, predation by the Chinese soft-shelled turtles (Pelodiscus sinensis on GAS was evaluated in laboratory and field trials. P. sinensis had a strong predatory capacity and selectivity for GAS both in laboratory and field conditions. All the sizes of P. sinensis prefer to capture smaller snails. The optimum number of P. sinensis released in Z. latifolia field was dependent on the density of over-wintered GAS, and varied between 30 and 50 turtles per 666.7 m². The number of GAS declined in the fields with turtles as compared to turtle-free field. A pattern of releasing P. sinensis in Z. latifolia fields was developed and widely adopted by farmers because of much more benefit besides biologically controlling GAS.

  6. Parkinson’s Disease Prevalence and Proximity to Agricultural Cultivated Fields

    Directory of Open Access Journals (Sweden)

    Maayan Yitshak Sade

    2015-01-01

    Full Text Available The risk for developing Parkinson’s disease (PD is a combination of multiple environmental and genetic factors. The Negev (Southern Israel contains approximately 252.5 km2 of agricultural cultivated fields (ACF. We aimed to estimate the prevalence and incidence of PD and to examine possible geographical clustering and associations with agricultural exposures. We screened all “Clalit” Health Services members in the Negev (70% of the population between the years 2000 and 2012. Individual demographic, clinical, and medication prescription data were available. We used a refined medication tracer algorithm to identify PD patients. We used mixed Poisson models to calculate the smoothed standardized incidence rates (SIRs for each locality. We identified ACF and calculate the size and distance of the fields from each locality. We identified 3,792 cases of PD. SIRs were higher than expected in Jewish rural localities (median SIR [95% CI]: 1.41 [1.28; 1.53] in 2001–2004, 1.62 [1.48; 1.76] in 2005–2008, and 1.57 [1.44; 1.80] in 2009–2012. Highest SIR was observed in localities located in proximity to large ACF (SIR 1.54, 95% CI 1.32; 1.79. In conclusion, in this population based study we found that PD SIRs were higher than expected in rural localities. Furthermore, it appears that proximity to ACF and the field size contribute to PD risk.

  7. Ammonia Volatilization and Nitrogen Utilization Efficiency in Response to Urea Application in Rice Fields of the Taihu Lake Region, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.

  8. Special rice in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Xianggu Rice: The rice originated from Jiangyong County, Hunan Province. Its characteristics were: even in grain shape, white in color, special fragrant in taste, and sticky in quality. Handongzao: It was from Wannian County, Jiangxi Province. The rice had big, fertile, and white grain, which was soft with fragrant smell, and it had high head rice rate. So, the local peasants liked to plant it. It was one of the "Tribute rice " in old time. Shizhu "Imperial Rice": The rice was also called "Fragrant Rice", was from Siyuan Village, Yuelai Town, Shizhu County, Sichuan Province. It was the treasure among the rices. The grain was bright in color. When it was cooked, the smell was fragrant. It was said that the rice was from "Han Dynasty", and has become the "Tribute Rice " since then. Blood Glutinous Rice: Originated from Changshu City, Jiangsu Province, the rice has been cultivated more than one hundred years. It had high nutrition value. Among the people, the Blood Glutinous Rice was often used as health food for lying-in women and patients. Qufu Fragrant Rice: Its characteristics were: clean, bright, and translucent in grain color, sticky in quality. It was suitable for cooking gruel and was also called "Fragrant Rice" in the local due to its strong fragrance. It was one of the "Tribute Rice" in old time. Taihu Lake Fragrant Japonica: The rice was from the Region of Taihu Lake, Jiangsu Province. The characteristics were: even and big in grain shape, soft in quality, white in color, fragrant in taste. The local people liked to plant and eat it.□ (To be continued) Translated by CHEN Wenhua, From "China Rice",No.1,1994

  9. [China's rice field greenhouse gas emission under climate change based on DNDC model simulation].

    Science.gov (United States)

    Tian, Zhan; Niu, Yi-long; Sun, Lai-xiang; Li, Chang-sheng; Liu, Chun-jiang; Fan, Dong-li

    2015-03-01

    In contrast to a large body of literature assessing the impact of agriculture greenhouse gas (GHG) emissions on climate change, there is a lack of research examining the impact of climate change on agricultural GHG emissions. This study employed the DNDC v9.5, a state-of-art biogeochemical model, to simulate greenhouse gas emissions in China' s rice-growing fields during 1971-2010. The results showed that owing to temperature rising (on average 0.49 °C higher in the second 20 years than in the first 20 year) and precipitation increase (11 mm more in the second 20 years than in the first 20 years) during the rice growing season, CH4 and N2O emissions in paddy field increased by 0.25 kg C . hm-2 and 0.25 kg N . hm-2, respectively. The rising temperature accelerated CH4 emission and N2O emission increased with precipitation. These results indicated that climate change exerted impact on the mechanism of GHG emissions in paddy field.

  10. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication

    OpenAIRE

    Zhang, Fantao; Xu, Tao; Mao, Linyong; Yan, Shuangyong; Chen, Xiwen; Wu, Zhenfeng; Chen, Rui; Luo, Xiangdong; Xie, Jiankun; Gao, Shan

    2016-01-01

    Background It is widely accepted that cultivated rice (Oryza sativa L.) was domesticated from common wild rice (Oryza rufipogon Griff.). Compared to other studies which concentrate on rice origin, this study is to genetically elucidate the substantially phenotypic and physiological changes from wild rice to cultivated rice at the whole genome level. Results Instead of comparing two assembled genomes, this study directly compared the Dongxiang wild rice (DXWR) Illumina sequencing reads with th...

  11. Morphological Variation of Six Pigmented Rice Local Varieties Grown in Organic Rice Field in Sengguruh Village, Kepanjen District, Malang Regency

    Directory of Open Access Journals (Sweden)

    Shinta

    2014-05-01

    Full Text Available Indonesia is the third richest country for pigmented rice source such as Wojalaka black rice of East Nusa Tenggara (NTT, Manggarai of NTT, Toraja of South Sulawesi, Cempo Ireng of Central Java and red rice of Aek Sibundong (leading variety and Baubau of Southeast Sulawesi. However, the morphological character of pigmented rice in Indonesia is less reported. The objective of research was to compare the morphological variation of root, stem, leaf, panicle, floret and the colour of milk mature grain and mature grain by observing the vegetative and generative parts of six local rice varieties. Research had been conducted from February 2012 to February 2014 in Sengguruh Village, Kepanjen District, Malang Regency. This study type was quasi-experiment with eleven replications. Group Random Design was used. The observation was given upon vegetative, reproductive and maturity phases as groups. Independent variables in this study were six rice varieties, while the dependent variable was morphological variation (root, stem, leaf, panicle, floret, milk mature grain and mature grain. The analysis of multivariate data in cluster and bip lot was carried out with PAST. The result of the study indicated that there was morphological difference on stem, leaf, panicle, floret, milk mature grain and mature grain. The colour of the stem in Aek Sibundong variety was purple, while that of other varieties was green. Toraja and Manggarai varieties had the highest height with 163-168 cm, followed by Cempo Ireng with 139 cm, Wojalaka and Baubau with 110-112 cm. Aek Sibundong Variety had the lowest height with 99 cm. Aek Sibundong and Wojalaka varieties had 6-7 internodes which were the greatest number of internode, while other varieties only had 4-5 internodes. Some varieties, such as Aek Sibundong, Wojalaka and Baubau had short and small leaf. The leaflet angle of Aek Sibundong and Baubau were 14o and it might be said as upright, while that of Wojalaka was 43o or moderate

  12. Evaluating health of paddy rice field ecosystem with remote sensing and GIS in Lower Yangtze River Plain, China

    Science.gov (United States)

    Li, Jingjing; Qin, Zhihao; Li, Wenjuan; Lin, Lu

    2008-10-01

    A paddy rice ecosystem is a farming system composed of paddy, animals, microbes and other environmental factors in specific time and space, with particular temporal and spatial dynamics. Since paddy rice is a main grain crop to feed above half of population in China, the performance of paddy rice ecosystem is highly concerned to yield level of paddy and food supply safety in China. Therefore, monitoring the performance of paddy rice ecosystem is very important to obtain the required information for evaluation of ecosystem health. In the study we intend to develop an approach to monitor the ecosystem performance spatially and dynamically in a regional scale using MODIS remote sensing data and GIS spatial mapping. On the basis of key factors governing the paddy rice ecosystem, we accordingly develop the following three indicators for the evaluation: Crop growing index (CGI), environmental Index (EI), and pests-diseases index (PDI). Then, we integrated the three indicators into a model with different weight coefficients to calculate Comprehensive ecosystem health index (CEHI) to evaluate the performance and functioning of paddy rice ecosystem in a regional scale. CGI indicates the health status of paddy rice calculated from the normalizing enhanced vegetation Index (EVI) retrieved from MODIS data. EI is estimated from temperature Index (TI) and precipitation Index (PI) indicating heat and water stress on the rice field. PDI reflects the damage brought by pests and diseases, which can be estimated using the information obtained from governmental websites. Applying the approach to Lower Yangtze River Plain, we monitor and evaluate the performance of paddy rice ecosystem in various stages of rice growing period in 2006. The results indicated that the performance of the ecosystem was generally very encouraging. During booting stage and heading and blooming stage, the health level was the highest in Anhui province, which is the main paddy rice producer in the region

  13. Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields.

    Science.gov (United States)

    Mutero, C M; Ng'ang'a, P N; Wekoyela, P; Githure, J; Konradsen, F

    2004-01-01

    Field experiments were conducted in central Kenya, to study the effect of ammonium sulphate fertiliser ((NH(4))(2)SO(4)) on mosquito larval populations in rice fields. The experiments used a complete randomised block design having four blocks with two experimental ponds per block, and the fertiliser and control treatments allocated randomly among the ponds. Student's two-sample unpaired t-test was used to test for the significance of differences between the relative counts of larvae in fertiliser and control treatments. The results showed a significant overall increase in the larval populations of An. arabiensis (Price fields, thereby making them visually more attractive for egg-laying by An. arabiensis and culicine mosquitoes.

  14. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Yujiao Hua

    2016-11-01

    Full Text Available Pseudostellariae Radix (PR is an important traditional Chinese medicine (TCM, which is consumed commonly for its positive health effects. However, the chemical differences of PR from different cultivated fields and germplasms are still unknown. In order to comprehensively compare the chemical compositions of PR from different cultivated fields, in this study, 1H-NMR-based metabolomics coupled with high performance liquid chromatography (HPLC were used to investigate the different metabolites in PR from five germplasms (jr, zs1, zs2, sb, and xc cultivated in traditional fields (Jurong, Jiangsu, JSJR and cultivated fields (Zherong, Fujian, FJZR. A total of 34 metabolites were identified based on 1H-NMR data, and fourteen of them were found to be different in PR from JSJR and FJZR. The relative contents of alanine, lactate, lysine, taurine, sucrose, tyrosine, linolenic acid, γ-aminobutyrate, and hyperoside in PR from JSJR were higher than that in PR from FJZR, while PR from FJZR contained higher levels of glutamine, raffinose, xylose, unsaturated fatty acid, and formic acid. The contents of Heterophyllin A and Heterophyllin B were higher in PR from FJZR. This study will provide the basic information for exploring the influence law of ecological environment and germplasm genetic variation on metabolite biosynthesis of PR and its quality formation mechanism.

  15. Little White Lies: Pericarp Color Provides Insights into the Origins and Evolution of Southeast Asian Weedy Rice

    Directory of Open Access Journals (Sweden)

    Yongxia Cui

    2016-12-01

    Full Text Available Weedy rice is a conspecific form of cultivated rice (Oryza sativa L. that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy rice, a multiple-origin model has been proposed based on neutral markers and analyses of domestication genes for hull color and seed shattering. Here, we examined variation in pericarp (bran color and its molecular basis to address how this trait evolved in Malaysian weeds and its possible role in weed adaptation. Functional alleles of the Rc gene confer proanthocyanidin pigmentation of the pericarp, a trait found in most wild and weedy Oryzas and associated with seed dormancy; nonfunctional rc alleles were strongly favored during rice domestication, and most cultivated varieties have nonpigmented pericarps. Phenotypic characterizations of 52 Malaysian weeds revealed that most strains are characterized by the pigmented pericarp; however, some weeds have white pericarps, suggesting close relationships to cultivated rice. Phylogenetic analyses indicate that the Rc haplotypes present in Malaysian weeds likely have at least three distinct origins: wild O. rufipogon, white-pericarp cultivated rice, and red-pericarp cultivated rice. These diverse origins contribute to high Rc nucleotide diversity in the Malaysian weeds. Comparison of Rc allelic distributions with other rice domestication genes suggests that functional Rc alleles may confer particular fitness benefits in weedy rice populations, for example, by conferring seed dormancy. This may promote functional Rc introgression from local wild Oryza populations.

  16. The Use of Solar Cell in Ground Water Irrigation to Support Agricultural Cultivation in Rainfed Field

    Directory of Open Access Journals (Sweden)

    Delvi Yanti

    2016-02-01

    Full Text Available This research aims at developing the use of solar cell to water the ground water irrigation in order to support agricultural cultivation in rain-fed field. The location of this research was agricultural land (ricefield in Singkarak village, X Koto Singkarak sub-district, Solok district. This research was conducted with the design and technical test of ground water irrigation with solar cell, the analysis of irrigation water demand with crop-wat and the analysis of financial feasibility. The result of analysis showed that the potential of solar energy in Singkarak village could be used to activate the water pump of irrigation. The result of measurement showed that battery which its capacity was 12 V and 100 Ah needed four hours to be charged by five units of 50 Wp panel PV. Battery as the source of power was able to activate water pump of 125 Watt for 7,52 hours and mean debit that was able to be pumped is 17,45 litre/minute. From 24 periods of plantation time planned in rain-fed field, there were only three periods of plantation that the operational hours of their water pumps were able to be covered by the battery namely January 2, February 2, and November 2. Based on the result of financial analysis, these three periods of plantation were financially feasible in their implementation because the value of B/C ratio > 1 and NPV > 0.

  17. Archaeological and genetic insights into the origins of domesticated rice.

    Science.gov (United States)

    Gross, Briana L; Zhao, Zhijun

    2014-04-29

    Rice (Oryza sativa) is one of the most important cereal grains in the world today and serves as a staple food source for more than half of the world's population. Research into when, where, and how rice was brought into cultivation and eventually domesticated, along with its development into a staple food source, is thus essential. These questions have been a point of nearly continuous research in both archaeology and genetics, and new information has continually come to light as theory, data acquisition, and analytical techniques have advanced over time. Here, we review the broad history of our scientific understanding of the rice domestication process from both an archaeological and genetic perspective and examine in detail the information that has come to light in both of these fields in the last 10 y. Current findings from genetics and archaeology are consistent with the domestication of O. sativa japonica in the Yangtze River valley of southern China. Interestingly, although it appears rice was cultivated in the area by as early 8000 BP, the key domestication trait of nonshattering was not fixed for another 1,000 y or perhaps longer. Rice was also cultivated in India as early as 5000 BP, but the domesticated indica subspecies currently appears to be a product of the introgression of favorable alleles from japonica. These findings are reshaping our understanding of rice domestication and also have implications for understanding the complex evolutionary process of plant domestication.

  18. Archaeological and genetic insights into the origins of domesticated rice

    Science.gov (United States)

    Gross, Briana L.; Zhao, Zhijun

    2014-01-01

    Rice (Oryza sativa) is one of the most important cereal grains in the world today and serves as a staple food source for more than half of the world’s population. Research into when, where, and how rice was brought into cultivation and eventually domesticated, along with its development into a staple food source, is thus essential. These questions have been a point of nearly continuous research in both archaeology and genetics, and new information has continually come to light as theory, data acquisition, and analytical techniques have advanced over time. Here, we review the broad history of our scientific understanding of the rice domestication process from both an archaeological and genetic perspective and examine in detail the information that has come to light in both of these fields in the last 10 y. Current findings from genetics and archaeology are consistent with the domestication of O. sativa japonica in the Yangtze River valley of southern China. Interestingly, although it appears rice was cultivated in the area by as early 8000 BP, the key domestication trait of nonshattering was not fixed for another 1,000 y or perhaps longer. Rice was also cultivated in India as early as 5000 BP, but the domesticated indica subspecies currently appears to be a product of the introgression of favorable alleles from japonica. These findings are reshaping our understanding of rice domestication and also have implications for understanding the complex evolutionary process of plant domestication. PMID:24753573

  19. Comparative Analysis of Genomes in Oryza sativa, O.officinalis, and O. meyeriana with C0t-1 DNA and Genomic DNA of Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) were applied to somatic chromosomes preparations of Oryza sativa, O. officinalis, and O. meyeriana with labeled probes of C0t-1 DNA and genomic DNA from the cultivated rice. The coverage percentage (%) and size (Mb) of C0t-1 DNA in O. sativa, O. officinalis, and O. meyeriana were 47.1 ±0.16, 38.61 ±0.13, 44.38±0.13, and 212.33± 1.21,269.42 ± 0.89, 532.56± 1.68 Mb, respectively. The coverage percentage and size of genomic DNA from O. sativa in O. officinalis and O. meyeriana were 91.0, 93.6% and 634, 1 123 Mb, respectively, in which 365 and 591 Mb in O. officinalis and O. meyeriana were from O. sativa genomic DNA, but not from repetitive sequences of O. sativa, and the uncoverage genome size in O. officinalis and O. meyeriana were 64 and 78 Mb, respectively. In addition, karyotype analysis was conducted based on the signal bands of C0t-1 DNA in O. sativa, O. officinalis, and O. meyeriana. The results showed that highly and moderately repetitive sequences in Oryza genus were conserved as the functional genes during evolution. The repetitive sequences reduplication may be one of the important causes of the genome enlargement of O. officinalis and O. meyeriana, and O. officinalis genome enlarged more slowly when compared with O. meyeriana. Based on the above results, it is concluded that O. officinalis and O. meyeriana were formed by reduplication, rearrangement, and gene selective loss during the evolution process.

  20. Effects of Cultivation Techniques on Selenium Increasing and Cadmium Decreasing in Rice%栽培措施对稻米增硒降镉效果研究

    Institute of Scientific and Technical Information of China (English)

    颜送贵; 邓正春; 郝界州; 江克平; 程泽新; 李斌; 唐玉梅; 刘兴海; 张兴江

    2014-01-01

    Excessive amounts of cadmium (Cd) in rice is a big threaten to food safety, which pose a direct health threat to humans. Selenium (Se) is an essential element for human health. Se has an antagonism against Cd and it promotes removing Cd from human body. Based on three years field tests, the author found an effective way to produce fine quality rice (Se-enrich and low Cd rice) in soils of grade II(Soil Quality Standard, total Cd in soil, 0.2~0.6 mg/kg). These comprehensive measures are described as follows:fer-tilize Ca-Mg-P after plowing, spread lime during draining and sunning the fields, apply deep water management at mature stage, and fertilize Se foliar-fertilizer at heading stage and milky stage.%稻米镉含量超标是确保粮食安全的重大隐患,威胁着人类健康;硒是人体必需元素,遍布人体所有器官,而且与镉有拮抗作用,能促使镉从人体内排泄。民以食为天,为人们提供富含硒而镉含量不超标的大米,已成为目前普遍的饮食新需求。笔者通过3年的试验研究证实,采取“推广撒施钙镁磷肥,晒田排水时撒施石灰,出穗期实施深水管理,破口抽穗期-乳熟期喷施富硒叶面肥”等综合措施,可以确保在镉含量二级背景值(镉含量0.2 mg/kg~0.6 mg/kg)的土壤中生产出食用安全的“富硒而镉不超标”大米。

  1. Fipronil application on rice paddy fields reduces densities of common skimmer and scarlet skimmer.

    Science.gov (United States)

    Kasai, Atsushi; Hayashi, Takehiko I; Ohnishi, Hitoshi; Suzuki, Kazutaka; Hayasaka, Daisuke; Goka, Koichi

    2016-03-16

    Several reports suggested that rice seedling nursery-box application of some systemic insecticides (neonicotinoids and fipronil) is the cause of the decline in dragonfly species noted since the 1990s in Japan. We conducted paddy mesocosm experiments to investigate the effect of the systemic insecticides clothianidin, fipronil and chlorantraniliprole on rice paddy field biological communities. Concentrations of all insecticides in the paddy water were reduced to the limit of detection within 3 months after application. However, residuals of these insecticides in the paddy soil were detected throughout the experimental period. Plankton species were affected by clothianidin and chlorantraniliprole right after the applications, but they recovered after the concentrations decreased. On the other hand, the effects of fipronil treatment, especially on Odonata, were larger than those of any other treatment. The number of adult dragonflies completing eclosion was severely decreased in the fipronil treatment. These results suggest that the accumulation of these insecticides in paddy soil reduces biodiversity by eliminating dragonfly nymphs, which occupy a high trophic level in paddy fields.

  2. Pathological Study of Blood Parasites in Rice Field Frogs, Hoplobatrachus rugulosus (Wiegmann, 1834

    Directory of Open Access Journals (Sweden)

    Achariya Sailasuta

    2011-01-01

    Full Text Available One hundred and forty adult rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834, were collected in Srakaew province, Thailand. For blood parasite examination, thin blood smears were made and routinely stained with Giemsa. The results showed that 70% of the frogs (98/140 were infected with 5 species of blood parasites, including a Trypanosoma rotatorium-like organism, Trypanosoma chattoni, Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima. Pathological examination of the liver, lung, spleen, and kidney of the frogs that were apparently infected with one of these blood parasites were collected and processed by routine histology and subsequently stained with haematoxylin and eosin. Histopathological findings associated with the Trypanosoma rotatorium-like organism and Trypanosoma chattoni-infected frogs showed no pathological lesions. Hepatozoon sp. a and Hepatozoon sp. b-infected frogs developed inflammatory lesions predominantly in the liver, demonstrating granuloma-like lesions with Hepatozoon sp. meronts at the centre. Tissue sections of Lankesterella minima-infected frogs also showed lesions. Liver and spleen showed inflammatory lesions with an accumulation of melanomacrophage centres (MMCs surrounding the meronts and merozoites. It is suggested that Hepatozoon sp. a, Hepatozoon sp. b, and Lankesterella minima-infections are capable of producing inflammatory lesions in the visceral organs of rice field frogs, and the severity of lesions is tentatively related to levels of parasitemia.

  3. Genome analysis of rice-blast fungus Magnaporthe oryzae field isolates from southern India

    Directory of Open Access Journals (Sweden)

    Malali Gowda

    2015-09-01

    Full Text Available The Indian subcontinent is the center of origin and diversity for rice (Oryza sativa L.. The O. sativa ssp. indica is a major food crop grown in India, which occupies the first and second position in area and production, respectively. Blast disease caused by Magnaporthe oryzae is a major constraint to rice production. Here, we report the analysis of genome architecture and sequence variation of two field isolates, B157 and MG01, of the blast fungus from southern India. The 40 Mb genome of B157 and 43 Mb genome of MG01 contained 11,344 and 11,733 predicted genes, respectively. Genomic comparisons unveiled a large set of SNPs and several isolate specific genes in the Indian blast isolates. Avr genes were analyzed in several sequenced Magnaporthe strains; this analysis revealed the presence of Avr-Pizt and Avr-Ace1 genes in all the sequenced isolates. Availability of whole genomes of field isolates from India will contribute to global efforts to understand genetic diversity of M. oryzae population and to track the emergence of virulent pathotypes.

  4. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    Institute of Scientific and Technical Information of China (English)

    Cui JIN; Xiangming XIAO; Jinwei DONG; Yuanwei QIN; Zongming WANG

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation.Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500m to 1 km) images.In this study,we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery.Sixteen Landsat images from 2010-2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain,northeast China—one of the major paddy rice cultivation regions in China.Three vegetation indices,Normalized Difference Vegetation Index (NDVI),Enhanced Vegetation Index (EVI),and Land Surface Water Index (LSWI),were used to identify rice fields during the flooding/transplanting and ripening phases.The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%,respectively.The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset,which was generated through visual interpretation and digitalization on the fine-resolution images.The agricultural census data substantially underreported paddy rice area,raising serious concern about its use for studies on food security.

  5. Factors affecting the soil arsenic bioavailability, accumulation in rice and risk to human health: a review.

    Science.gov (United States)

    Azam, Shah Md Golam Gousul; Sarker, Tushar C; Naz, Sabrina

    2016-10-01

    Arsenic (As), a class one carcinogen, reflects a disastrous environmental threat due to its presence in each and every compartment of the environment. The high toxicity of As is notably present in its inorganic forms. Irrigation with As contaminated groundwater in rice fields increases As concentration in topsoil and its bioavailability for rice crops. However, most of the As in paddy field topsoils is present as As(III) form, which is predominant in rice grain. According to the OECD-FAO, rice is the second most extensively cultivated cereal throughout the world. This cereal is a staple food for a large number of populations in most of the developing countries in sub-Saharan Africa, Latin America, South and South-east Asia. Rice consumption is one of the major causes of chronic As diseases including cancer for Asian populations. Thus, this review provides an overview concerning the conditions involved in soil that leads to As entrance into rice crops, phytotoxicity and metabolism of As in rice plants. Moreover, the investigations of the As uptake in raw rice grain are compiled, and the As biotransfer into the human diet is focused. The As uptake by rice crop represents an important pathway of As exposure in countries with high rice and rice-based food consumption because of its high (more than the hygienic level) As levels found in edible plant part for livestock and humans.

  6. Aerobic rice: crop performance and water use efficiency

    Directory of Open Access Journals (Sweden)

    Chiara Grassi

    2011-11-01

    Full Text Available Rice (Oryza sativa production largely depends on traditional flooded rice systems whose sustainability is threatened by a progressive decrease in water availability and a constant increase in rice demand due to strong demographic boom in world population. A newly developed water-saving rice system is aerobic rice in which rice grows in nonflooded and unsaturated soil. From 2001, at the International Rice Research Institute in the Philippines, this system has been monitored to identify potentially promising varieties of rice able to grow as an irrigated upland crop and quantify yield potential and water use efficiency. This study reports on the results of cultivating the upland rice variety Apo under different water conditions in 2004-2005 at the IRRI farm in both the dry and wet seasons. The water treatments considered were: aerobic and flooded conditions, alternated flooded and aerobic conditions and aerobic after fallow. Yield and water productivity were compared between aerobic and flooded treatment in both seasons, with the objective of analysing the differences between water treatments. In the experiment the effect of different nitrogen (N application is also considered. The results indicate that the aerobic rice yield was lower than rice production under flood treatment, confirming that observed over past years. Nevertheless, when the aerobic condition is alternated with the anaerobic condition, or a fallow period, the production under aerobic treatment provides good yields (respectively 4.2 and 4.4 ha-1. The fallow period was introduced to observe the response of rice grown under this management. Water productivity was higher in aerobic fields, especially after fallow (0.88 g kg-1. The nitrogen application induced an increase in yield and water productivity, partially compensating for the lack of water in aerobic fields.

  7. [Occurrence dynamics of migratory pest insects Cnaphalocrocis medinalis and Sogatella furcifera in transgenic Bt rice field in Xing'an County of Guangxi Province].

    Science.gov (United States)

    Sui, He; Li, Zhi-Yi; Xu, Yan-Bo; Han, Chao; Han, Lan-Zhi; Chen, Fa-Jun

    2011-11-01

    An investigation was conducted in Xing' an County of Guangxi Province in 2010 to study the occurrence and damage characteristics of two unique migratory pest insects, rice leaffolder (Cnaphalocrocis medinalis) and white-backed planthopper (Sogatella furcifera), in a transgenic Bt rice (cv. HH1 with dual Cry1Ab+Cry1Ac genes) field, taking the corresponding non-transgenic parent (cv. MH63) field as the control. No significant differences were observed in the abundance of C. medinalis eggs and larvae in the two fields, but the percentage of fold-leaf plants and the fold-leaf rate per plant were significantly lower in transgenic Bt rice field than in the control, suggesting that transgenic Bt rice had higher resistance against the target pest insect C. medinalis. As for S. furcifera, its occurrence dynamics of nymphs, adults (including macro- and brachypterous forms), and whole population had no significant differences between the two fields, but the abundance of the nymphs and brachypterous adults at the peak stage of S. furcifera occurrence was obviously higher in transgenic Bt rice field than in the control, while the macropterous abundance was in adverse. The sex ratio of female of the macropterous adults at the late growth stage of rice was generally lower in transgenic Bt rice field than in the control. These results suggested that under the background of large area commercial production of transgenic Bt rice, the occurrence and harm of the non-target pest insect S. furcifera could become more complicated.

  8. Spatial Distribution and Minimum Sample Size for Overwintering Larvae of the Rice Stem Borer Chilo suppressalis (Walker) in Paddy Fields.

    Science.gov (United States)

    Arbab, A

    2014-10-01

    The rice stem borer, Chilo suppressalis (Walker), feeds almost exclusively in paddy fields in most regions of the world. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling procedures, and adopting precise agricultural techniques. Field experiments were conducted during 2011 and 2012 to estimate the spatial distribution pattern of the overwintering larvae. Data were analyzed using five distribution indices and two regression models (Taylor and Iwao). All of the indices and Taylor's model indicated random spatial distribution pattern of the rice stem borer overwintering larvae. Iwao's patchiness regression was inappropriate for our data as shown by the non-homogeneity of variance, whereas Taylor's power law fitted the data well. The coefficients of Taylor's power law for a combined 2 years of data were a = -0.1118, b = 0.9202 ± 0.02, and r (2) = 96.81. Taylor's power law parameters were used to compute minimum sample size needed to estimate populations at three fixed precision levels, 5, 10, and 25% at 0.05 probabilities. Results based on this equation parameters suggesting that minimum sample sizes needed for a precision level of 0.25 were 74 and 20 rice stubble for rice stem borer larvae when the average larvae is near 0.10 and 0.20 larvae per rice stubble, respectively.

  9. Object-Based Flood Mapping and Affected Rice Field Estimation with Landsat 8 OLI and MODIS Data

    Directory of Open Access Journals (Sweden)

    Phuong D. Dao

    2015-04-01

    Full Text Available Cambodia is one of the most flood-prone countries in Southeast Asia. It is geographically situated in the downstream region of the Mekong River with a lowland floodplain in the middle, surrounded by plateaus and high mountains. It usually experiences devastating floods induced by an overwhelming concentration of rainfall water over the Tonle Sap Lake’s and Mekong River’s banks during monsoon seasons. Flood damage assessment in the rice ecosystem plays an important role in this region as local residents rely heavily on agricultural production. This study introduced an object-based approach to flood mapping and affected rice field estimation in central Cambodia. In this approach, image segmentation processing was conducted with optimal scale parameter estimation based on the variation of objects’ local variances. The inundated area was identified by using Landsat 8 images with an overall accuracy of higher than 95% compared to those derived from finer spatial resolution images. Moderate Resolution Imaging Spectroradiometer (MODIS vegetation index products were utilized to identify the paddy rice field based on seasonal inter-variation between vegetation and water index during the transplanting stage. The rice classification result was well correlated with the statistical data at a commune level (R2 = 0.675. The flood mapping and affected rice estimation results are useful to provide local governments with valuable information for flooding mitigation and post-flooding compensation and restoration.

  10. [Distribution characteristics of soil profile nitrous oxide concentration in paddy fields with different rice-upland crop rotation systems].

    Science.gov (United States)

    Liu, Ping-li; Zhang, Xiao-lin; Xiong, Zheng-qin; Huang, Tai-qing; Ding, Min; Wang, Jin-yang

    2011-09-01

    To investigate the dynamic distribution patterns of nitrous oxide (N2O) in the soil profiles in paddy fields with different rice-upland crop rotation systems, a special soil gas collection device was adopted to monitor the dynamics of N2O at the soil depths 7, 15, 30, and 50 cm in the paddy fields under both flooding and drainage conditions. Two rotation systems were installed, i.e., wheat-single rice and oilseed rape-double rice, each with or without nitrogen (N) application. Comparing with the control, N application promoted the N2O production in the soil profiles significantly (P cropping treatments. The soil N2O concentrations in the treatments without N application peaked in the transitional period from the upland crops cropping to rice planting, while those in the treatments with N application peaked right after the second topdressing N of upland crops. Relatively high soil N2O concentrations were observed at the transitional period from the upland crops cropping to rice planting.

  11. Weed-Suppressing Effect and Mechanism of Allelopathic Rice Accessions

    Institute of Scientific and Technical Information of China (English)

    HUFei; KONGChui-hua; XUXiao-hua; ZHANGChao-xian; CHENXiong-hui

    2004-01-01

    Two allelopathic rice accessions, PI312777 and Allelopathy i, significantly suppressed the growth of associated weeds in the field. Moreover, their weed-suppressing effects were correlated with the cultivation patterns. The weed-suppressing effects of throwing and transplanting were more effective than that of direct seeding. Furthermore, the amounts of allelochemicals (resorcinols, flavones and hydroxamic acids) produced and released from two allelopathic rice accessions were much higher than that from a nonallelopathic rice variety Hua-Jing-Xian i, and reached the maximum concentration at the 6th leaf stage. Differences in the weed-suppressing effects of rice accessions appear to result from the accessions producing and releasing different amounts of allelochemicals in the field. Further research confirmed that in PI312777 plants, allelochemicals were synthesized by the above-ground parts, and then secreted through the root tissues. Root tissues of PI312777 plants never produced the allelochemicals. Root exudates from PI312777 could significantly inhibit the growth of E. crus-galli surrounding rice plants in water culture. However, when activated carbon was added to the culture solution, which could absorb allelochemicals from root exudates, the growth of E. crus-galli was no longer significantly inhibited. Weed-suppressing effects of rice accessions depended on allelopathy, cultivation patterns and other factors in rice fields, while allelopathy was one of important factors. Interestingly, the amounts of allelochemicals produced and released from allelopathic rice plants may be induced by the presence of E. crus-galli.This suggests that there is a possible chemical recognition between rice and E. crus-galli.

  12. Lead pollution from waterfowl hunting in wetlands and rice fields in Argentina.

    Science.gov (United States)

    Romano, Marcelo; Ferreyra, Hebe; Ferreyroa, Gisele; Molina, Fernando V; Caselli, Andrea; Barberis, Ignacio; Beldoménico, Pablo; Uhart, Marcela

    2016-03-01

    The pollution of wetlands by lead derived from waterfowl hunting with lead shot was investigated. We determined soil pellet density and Pb concentration in soil, water and vegetation in natural wetlands and rice fields in central-eastern Santa Fe province, Argentina. Pellet density varied greatly among hunting sites (between 5.5-141 pellets/m(2)) and pellets were present in some control sites. Soil Pb concentration in most hunting sites (approximately 10-20 mg kg(-1)) was not much higher than in control sites (~5-10 mg kg(-1)), with the exception of the site with highest pellet density, which also had a high Pb soil concentration. In water, on the other hand, Pb concentration was similar in all sites (~4-7 μg L(-1)), both control and hunting, and higher than reference values for aquatic media. Lead was also present in vegetation, including grasses and rice crops, in almost all cases. Most soil-collection sites were slightly acidic, and were frequently flooded. These results strongly suggest that metallic Pb from spent shot is oxidized and dissolved due to wetland conditions. Thus, the pollutant is readily mobilized and distributed across all wetland areas, effectively homogenizing its concentration in locations with and without hunting activities. The replacement of lead by nontoxic materials in pellets appears to be the only effective way to prevent Pb pollution in wetlands.

  13. Rapid detection of Aspergillus flavus in rice using biofunctionalized carbon nanotube field effect transistors.

    Science.gov (United States)

    Villamizar, Raquel A; Maroto, Alicia; Rius, F Xavier

    2011-01-01

    In the present study, we have used carbon nanotube field effect transistors (FET) that have been functionalized with protein G and IgG to detect Aspergillus flavus in contaminated milled rice. The adsorbed protein G on the carbon nanotubes walls enables the IgG anti-Aspergillus antibodies to be well oriented and therefore to display full antigen binding capacity for fungal antigens. A solution of Tween 20 and gelatine was used as an effective blocking agent to prevent the non-specific binding of the antibodies and other moulds and also to protect the transducer against the interferences present in the rice samples. Our FET devices were able to detect at least 10 μg/g of A. flavus in only 30 min. To evaluate the selectivity of our biosensors, Fusarium oxysporum and Penicillium chrysogenum were tested as potential competing moulds for A. flavus. We have proved that our devices are highly selective tools for detecting mycotoxigenic moulds at low concentrations in real samples.

  14. Effect of Spent Mushroom Substrate on Physical and Chemical Properties and Enzymic Activity of Rice

    Institute of Scientific and Technical Information of China (English)

    Hairu YU; Xue LI; Xin ZHANG; Changming GE; Renzhe PIAO; Meishan LI; Zongjun CUI; Hongyan ZHAO

    2016-01-01

    In order to explore the substitution substrate for rice seedling on upland fields,this paper uses spent mushroom substrate to study the physical and chemical properties of substrate,enzymic activity and number of tillers during the cultivation of rice seedling on upland fields.The results show that at the three stages of rice seedling cultivation( two-leaf stage,three-leaf stage,four-leaf stage),the content of organic matter and EC in spent mushroom substrate is higher than in the control soil,p H is within the range suitable for the growth of rice,and other nutrients( total nitrogen,total phosphorus,total potassium,available nitrogen,available phosphorus) are slightly different in different periods;except phosphatase,there are significant differences in urease,catalase and sucrase between spent mushroom substrate and the control soil; the number of tillers under spent mushroom substrate is larger than under the control.

  15. 荷兰豆—优质稻—甘薯高产栽培技术%Pea Pods-Quality Rice-Sweet Potato High Yield Cultivation Techniques

    Institute of Scientific and Technical Information of China (English)

    王来清; 赖德才

    2012-01-01

    Pea pods-qality rce-sweet potato high yield cultivation techniques summed up through the"Whole City Money-Grain Harvest Competition"practice that launched by Sanming municipal government,was an efficient planting pattern suitable for extension in Qingliu county.High yield cultivation techniques for pea pods,high quality rice,sweet potato were briefly introduced in this paper.%荷兰豆—优质稻—甘薯高产栽培技术是三明市政府组织的全市粮钱丰收竞赛活动实践中总结出来的适应清流县推广的高效种植模式,文章就荷兰豆、优质稻、甘薯的高产栽培技术作简要介绍。

  16. Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions?

    Science.gov (United States)

    Rodenburg, Jonne; Cissoko, Mamadou; Kayeke, Juma; Dieng, Ibnou; Khan, Zeyaur R; Midega, Charles A O; Onyuka, Enos A; Scholes, Julie D

    2015-01-01

    The parasitic weeds Striga asiatica and Striga hermonthica cause high yield losses in rain-fed upland rice in Africa. Two resistance classes (pre- and post-attachment) and several resistant genotypes have been identified among NERICA (New Rice for Africa) cultivars under laboratory conditions (in vitro) previously. However, little is known about expression of this resistance under field conditions. Here we investigated (1) whether resistance exhibited under controlled conditions would express under representative Striga-infested field conditions, and (2) whether NERICA cultivars would achieve relatively good grain yields under Striga-infested conditions. Twenty-five rice cultivars, including all 18 upland NERICA cultivars, were screened in S. asiatica-infested (in Tanzania) and S. hermonthica-infested (in Kenya) fields during two seasons. Additionally, a selection of cultivars was tested in vitro, in mini-rhizotron systems. For the first time, resistance observed under controlled conditions was confirmed in the field for NERICA-2, -5, -10 and -17 (against S. asiatica) and NERICA-1 to -5, -10, -12, -13 and -17 (against S. hermonthica). Despite high Striga-infestation levels, yields of around 1.8 t ha(-1) were obtained with NERICA-1, -9 and -10 (in the S. asiatica-infested field) and around 1.4 t ha(-1) with NERICA-3, -4, -8, -12 and -13 (in the S. hermonthica-infested field). In addition, potential levels of tolerance were identified in vitro, in NERICA-1, -17 and -9 (S. asiatica) and in NERICA-1, -17 and -10 (S. hermonthica). These findings are highly relevant to rice agronomists and breeders and molecular geneticists working on Striga resistance. In addition, cultivars combining broad-spectrum resistance with good grain yields in Striga-infested fields can be recommended to rice farmers in Striga-prone areas.

  17. Field and laboratory studies on the impact of two Bt rice lines expressing a fusion protein Cry1Ab/1Ac on aquatic organisms.

    Science.gov (United States)

    Wang, Yongmo; Huang, Jiacheng; Hu, Huawei; Li, Jianhong; Liu, Biao; Zhang, Guoan

    2013-06-01

    Genetically modified (GM) rice expressing Bt toxins is at the edge of commercial release in China. However, little information is available concerning the impact of Bt rice on aquatic organisms which are abundant in paddy field. A two-year study was conducted to assess the effects of two GM rice lines expressing a fusion protein Cry1Ab/1Ac (Bt rice) on three groups of zooplankton, rotifers, cladocerans and copepods in field conditions. Multi-factor ANOVA revealed that the population densities of rotifers, cladocerans and copepods in paddy field varied significantly between years and rice developmental stages, but did not differ significantly between Bt and non-Bt rice treatments. In all the field investigations, only one significant difference was found on copepods in the tillering stage of 2009, but the difference was not related to the presence of the Cry toxin. Under open-air conditions, we simulated the farming practice of straw mulch, using Bt rice straw as a food source for the water flea Daphnia hyalina. After one and two months of culture, the density of D. hyalina did not differ between Bt rice treatments and non-Bt rice treatments. A laboratory experiment found that purified Bt toxins Cry1Ab and Cry1Ac had no toxic effect on D. hyalina even in the treatment in which the Bt toxin concentration was as high as 2500ng/ml. Those above results indicate that the two Bt rice lines have no negative effect on the three groups of zooplankton. However, further studies are needed to compare the effects of Bt rice and non-Bt rice on the paddy zooplankton community in the context of integrated pest management which includes the use of pesticides.

  18. Statistical Analysis of Long-Term Trend of Performance, Production and Cultivated Area of 17 Field Crops Khorasan Razavi Province

    Directory of Open Access Journals (Sweden)

    H. Zareabyaneh

    2014-12-01

    Full Text Available Any planning for the future requires estimates of future conditions. It is possible to study changes over time series. In this study, changes of production and cultivated area of 17 field crops of Khorasan Razavi province in a 25-year period were determined with Mann - Kendall test, Sen’s Estimator Slope and linear regression. Analysis of the three tests showed that performance of 76.5% from yield, 88.2% from area under cultivation and 55.8% from agricultural production were significant at the 0.01 and 0.05 level. On the other hand, trend of yields 58.8% was increase, 17.7% was reduced and 23.5% was no significant trend. Similarly, trend of 23.5% from area under cultivation was acreage, 64.7% was reduction, and 11.8% was no significant trend. For production variable, 29.4% was significantly increased and 29.4% was significant reduction. More detailed analysis showed that performance, production and area under cultivation of three crops of cotton, grain and tomatoes increased significantly. Results of all three methods showed the highest trend of negatively performance and area under cultivation variation is related to pea and melon respectively. Furthermore, most of the positive trend in production of tomatoes and grain, performance in onions, potatoes and tomatoes and area under cultivation in tomato observed. The results showed that linear trend and the nonparametric tests of important products of province: wheat, barley, sugar beet, cotton, melons, watermelons and tomatoes in 0.01 were significant. This result shows the importance of these yields in gross state province product.

  19. Impacts of Bt rice expressing Cry1C or Cry2A protein on the performance of nontarget leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), under laboratory and field conditions.

    Science.gov (United States)

    Lu, Z B; Tian, J C; Wang, W; Xu, H X; Hu, C; Guo, Y Y; Peng, Y F; Ye, G Y

    2014-02-01

    Transgenic rice expressing Bacillus thuringiensis Berliner (Bt) protein can effectively control target insects including stem borers and leaf folders. However, the potential effects of Bt rice on nontarget organisms including nontarget herbivores have not been fully evaluated. In the current study, ecological fitness parameters of the nontarget herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae), fed on T1C-19 (Cry1C) or T2A-1 (Cry2A) rice were compared with non-Bt rice (MH63) under laboratory conditions. A 2-yr field trial was also conducted to monitor the population dynamics of N. cincticeps in the Bt and control rice plots using the vacuum-suction machine and yellow sticky card traps. Laboratory results showed that there were no significant differences in some of biological parameters including egg developmental duration, adult fresh weight, adult longevity, and oviposition period when N. cincticeps fed on Bt or non-Bt rice was compared. However, the survival rate of N. cincticeps nymphs fed on T2A-1 Bt rice plants was significantly higher than that on the control. When N. cincticeps fed on T1C-19 Bt rice plants, its nymphal duration was significantly longer and fecundity significantly lower compared with those fed on both T2A-1 Bt and non-Bt rice plants; the preoviposition period of N. cincticeps fed on T1C-19 and T2A-1 Bt rice was also significantly shorter than those on non-Bt rice. Nonetheless, both seasonal density and population dynamics of N. cincticeps adults and nymphs were similar between Bt (T1C-19 and T2A-1) and non-Bt rice plots under field conditions. In conclusion, our results indicate that our two tested Bt rice lines would not lead to higher population of N. cincticeps. Long-term experiments to monitor the population dynamics of N. cincticeps at large scale need to be carried out to confirm the current results.

  20. Field Efficacy Trial and Optimum Control Period of Rice False Smut(Ustilaginoidea virens) in Single Cropping Middle-late Rice

    Institute of Scientific and Technical Information of China (English)

    Liu; Huaizhen; Li; Kanghuo; Huang; Qing; Lu; Xiuming; Zhang; Bin; Li; Huifeng; Zou; Jixiang; Zhou; Shaochuan

    2014-01-01

    [Objective]The paper was to study optimum chemical agents and control periods against rice false smut( Ustilaginoidea virens) in single cropping middle-late rice. [Method]Taking chemical agents( triadimefon,armure,Jinggangmycin) as main treatments and spraying periods( within 7 d before initial heading stage,within 7 d before initial heading stage + initial heading stage,initial heading stage) as assisted treatments,the field efficacy trial and optimum control period of U. virens in single cropping middle-late rice were studied using Huanghuazhan and Jinnongsimiao as experimental materials in 2013. [Result] Three chemical agents,triadimefon,armure,Jinggangmycin,extremely reduced diseased panicle rate and disease index of U. virens,but there was no significant difference among three chemical agents. Spraying period did not have significant impact on diseased panicle rate and disease index of U. virens,whereas spraying within7 d before initial heading stage and during initial heading stage had relatively good control effect. Yield increased significantly after application of three chemical agents,and armure led to greater increase. The reason for yield increase was that seed setting rate was significantly increased,and the number of filled grains per panicle was significantly increased. Although spraying period influenced yield,the difference was not significant. [Conclusion] Triadimefon,armure and Jinggangmycin had good control effects against U. virens in single cropping middle-late rice,of which armure had better control effects. Spraying chemical agents increased seed setting rate,and further increased the number of filled grains per panicle and yield. Spraying within 7 d before initial heading stage and during initial heading stage had relatively better control effect against U. virens.

  1. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping, E-mail: jpyang@zju.edu.cn; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375 kg N/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH{sub 4} mainly appeared at the vegetative phase, and emission peaks of CO{sub 2}, and N{sub 2}O mainly appeared at reproductive phase of rice growth. The CO{sub 2} flux was significantly correlated with soil temperature, while the CH{sub 4} flux was influenced by logging water remaining period and N{sub 2}O flux was significantly associated with nitrogen application rates. This study showed that 225 kg N/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO{sub 2}-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89 t/ha in paddy fields. - Highlights: • Exploiting co-benefits of rice yield and reduction of greenhouse gas emission. • Global warming potential and rice yield increased with nitrogen fertilizer rate up. • Emission peaks of CH{sub 4,} CO{sub 2} and N{sub 2}O appeared at vegetative and reproductive phase. • 225 kg N/ha rate benefits both rice yields and GWP reduction.

  2. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    Science.gov (United States)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; Lovell, John T.; Moyers, Brook T.; Baraoidan, Marietta; Naredo, Maria Elizabeth B.; McNally, Kenneth L.; Poland, Jesse; Bush, Daniel R.; Leung, Hei; Leach, Jan E.; McKay, John K.

    2017-01-01

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution. PMID:28220807

  3. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice.

    Science.gov (United States)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P; Lovell, John T; Moyers, Brook T; Baraoidan, Marietta; Naredo, Maria Elizabeth B; McNally, Kenneth L; Poland, Jesse; Bush, Daniel R; Leung, Hei; Leach, Jan E; McKay, John K

    2017-02-21

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.

  4. Diversity of Bacillus thuringiensis in the rice field soils of different ecologies in India.

    Science.gov (United States)

    Das, J; Dangar, T K

    2007-12-01

    Diversity of the Bacillus thuringiensis (Bt) in the rice field soils of different ecologies viz. the island (Port Blair), the Himalayan (Srinagar), brackish water (Mahe) and coastal mesophilic (Mangalore) habitats was analyzed by phenotypic characterization of 5, 66, 14 and 54 Bt isolates, respectively. The Bt isolates produced either monotypic (bipyramidal or spherical) or heterotypic (polymorphic-bipyramidal or bipyramidal-rhomboidal) crystals. The organisms were generally resistant to the penicillin group of antibiotics, tolerated 5-12% NaCl and 0.5M Na-acetate. The Bt isolates contained 1-5 plasmids of 0.89-58.61 kbp sizes. The plasmid profiles had no correlation with crystal morphology or salt tolerance of different bacteria. Each soil was inhabited by different types of Bt. Two Bt strains of Mangalore and one strain each of the other places were phenotypically similar. One Bt strain each of Port Blair and Srinagar was different from all other strains.

  5. Life cycle GHG evaluation of organic rice production in northern Thailand.

    Science.gov (United States)

    Yodkhum, Sanwasan; Gheewala, Shabbir H; Sampattagul, Sate

    2017-03-09

    Greenhouse gas (GHG) emission is one of the serious international environmental issues that can lead to severe damages such as climate change, sea level rise, emerging disease and many other impacts. Rice cultivation is associated with emissions of potent GHGs such as methane and nitrous oxide. Thai rice has been massively exported worldwide however the markets are becoming more competitive than ever since the green market has been hugely promoted. In order to maintain the same level or enhance of competitiveness, Thai rice needs to be considered for environmentally conscious products to meet the international environmental standards. Therefore, it is necessary to evaluate the greenhouse gas emissions throughout the life cycle of rice production in order to identify the major emission sources and possible reduction strategies. In this research, the rice variety considered is Khao Dawk Mali 105 (KDML 105) cultivated by organic practices. The data sources were Don-Chiang Organic Agricultural Cooperative (DCOAC), Mae-teang district, Chiang Mai province, Thailand and the Office of Agricultural Economics (OAE) of Thailand with onsite records and interviews of farmers in 2013. The GHG emissions were calculated from cradle-to-farm by using the Life Cycle Assessment (LCA) approach and the 2006 IPCC Guideline for National Greenhouse Gas Inventories. The functional unit is defined as 1 kg of paddy rice at farm gate. Results showed that the total GHG emissions of organic rice production were 0.58 kg CO2-eq per kg of paddy rice. The major source of GHG emission was from the field emissions accounting for 0.48 kg CO2-eq per kg of paddy rice, about 83% of total, followed by land preparation, harvesting and other stages (planting, cultivation and transport of raw materials) were 9, 5 and 3% of total, respectively. The comparative results clearly showed that the GHG emissions of organic paddy rice were considerably lower than conventional rice production due to the advantages

  6. Remote sensing based change analysis of rice environments in Odisha, India.

    Science.gov (United States)

    Gumma, Murali Krishna; Mohanty, Samarendu; Nelson, Andrew; Arnel, Rala; Mohammed, Irshad A; Das, Satya Ranjan

    2015-01-15

    The rainfed rice-growing environment is perhaps one of the most vulnerable to water stress such as drought and floods. It is important to determine the spatial extent of the stress-prone areas to effectively and efficiently promote proper technologies (e.g., stress-tolerant varieties) to tackle the problem of sustainable food production. This study was conducted in Odisha state located in eastern India. Odisha is predominantly a rainfed rice ecosystem (71% rainfed and 29% canal irrigated during kharif-monsoon season), where rice is the major crop and staple food of the people. However, rice productivity in Odisha is one of the lowest in India and a significant decline (9%) in rice cultivated area was observed in 2002 (a drought year). The present study analyzed the temporal rice cropping pattern in various ecosystems and identified the stress-prone areas due to submergence (flooding) and water shortage. The spatial distribution of rice areas was mapped using MODIS (MOD09Q1) 250-m 8-day time-series data (2000-2010) and spectral matching techniques. The mapped rice areas were strongly correlated (R(2) = 90%) with district-level statistics. Also the class accuracy based on field-plot data was 84.8%. The area under the rainfed rice ecosystem continues to dominate, recording the largest share among rice classes across all the years. The use of remote-sensing techniques is rapid, cost-effective, and reliable to monitor changes in rice cultivated area over long periods of time and estimate the reduction in area cultivated due to abiotic stress such as water stress and submergence. Agricultural research institutes and line departments in the government can use these techniques for better planning, regular monitoring of land-use changes, and dissemination of appropriate technologies.

  7. Construction and analysis of gonad suppression subtractive hybridization libraries for the rice field eel, Monopterus albus.

    Science.gov (United States)

    Qu, Xiancheng; Jiang, Jiaoyun; Shang, Xiaoli; Cheng, Cui; Feng, Long; Liu, Qigen

    2014-04-25

    The objective of this study was to investigate gene transcription profiles of the stage IV ovary and the ovotestis of the rice field eel (Monopterus albus) in an attempt to uncover genes involved in sex reversal and gonad development. Suppression subtractive hybridization (SSH) libraries were constructed using mRNA from the stage IV ovary and the ovotestis. In total 100 positive clones from the libraries were selected at random and sequenced, and then expressed sequence tags (ESTs) were used to search against sequences in the GenBank database using the BLASTn and BLASTx search algorithms. High quality SSH cDNA libraries and 90 ESTs were obtained. Of these ESTs, 43 showed high homology with genes of known function and these are associated with energy metabolism, signal transduction, transcription regulation and so on. The remaining 47 ESTs shared no homology with any genes in GenBank and are thus considered to be hypothetical genes. Furthermore, the four genes F11, F63, R11, and R47 from the forward and reverse libraries were analyzed in gonad, brain, heart, spleen, liver, kidney and muscle tissues. The results showed that the transcription of the F11 and F63 genes was significantly increased while the expression of the R11 and R47 genes was significantly decreased from IV or V ovary. In addition, the results also indicated that the four genes' expression was not gonad-tissue specific. This results strongly suggested that they may be involved in the rice field eel gonad development and/or sex reversal.

  8. Diet and resource partitioning among anurans in irrigated rice fields in Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    L. Piatti

    Full Text Available Artificial ponds or irrigated systems scattered throughout farmlands can offer important habitats for anurans and can be interesting sites for research on species resources use in a changing landscape. This study describes the diet and resource partitioning among anurans inhabiting irrigated rice fields in the Pantanal region. Twenty categories of prey were found in the stomachs of Leptodactylus chaquensis, L. elenae, L. podicipinus and Rhinella bergi, the most frequent being Coleoptera, Hymenoptera, larvae of Hexapoda, Hemiptera, Diptera and Orthoptera. The great differences found in the diet of these species in rice fields compared to other locations, according to available records in the literature, was the increased importance of Hemipitera and Orthoptera and the decrease in importance of Hymenoptera in the diet of leptodactylids. These differences might be attributed to changes in the availability of resources in response to habitat modification. Although diet composition was very similar among species, niche overlap was larger than expected by chance, suggesting that the competition for food resources is not, or has not been, a significant force in determining the structure of this frog community. Two non-exclusive hypotheses could be considered as a justification for this result: 1 the high niche overlap could result from resource availability, which is sufficient to satisfy all species without any strong competition; 2 or the high values of niche overlap could be a selective force driving species to compete, but there has not been enough time to express a significant divergence in the species diet because the study area is characterised as a dynamic habitat influenced by frequent and cyclical changes.

  9. Organic cultivation of field pea by use of products with different action

    Directory of Open Access Journals (Sweden)

    Natalia Georgieva

    2015-12-01

    Full Text Available The possibilities for increasing the productivity and control of the pea weevil (Bruchus pisorum L. in field pea (Pisum sativum L. organic cultivation by the use of following bioproducts NeemAzal T/S and Pyrethrum FS-EC (insecticides, applied individually and in combination with Polyversum (growth regulator and fungicide and Biofa (foliar fertilizer, as well as to evaluate the stability of the used mixtures were studied. Synthetic products Nurelle D and Flordimex 420 (alone and in combination were used as a standard. The products were applied once (at budding stage or twice (at budding and flowering stages. The results showed that forage pea productivity was influenced positively by the application of all organic products. The plants treated with the organic combinations formed an average yield of 3190.2 kg/ha, which was only 4.7% lower than that for the synthetic combination of Flordimex+Nurelle D. The highest yield was produced under application of two mixtures: Biofa+Pyrethrum and Polyversum+Pyrethrum at budding and flowering stages (22.0 and 21.8% above untreated control, respectively. These combinations were also distinguished for their most pronounced protective effect against the attack of the pea weevil and decrease in its numbers of 37.0 and 38.5%, respectively. Pyrethrum was distinguished for a lower degree of damaged seeds and a toxic effect against the pea weevil in comparison with NeemAzal. Technologically the most valuable variant, which united high stability, productivity and protection against pea weevil, was the combination of Biofa+Pyrethrum applied twice. Further investigations are indispensible to expand the range of products (bioinsectides, biofertilizers and growth regulators, which provides good insect control and high productivity in pea organic farming conditions.

  10. Organic cultivation of field pea by use of products with different action

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, N.; Nikolova, I.; Delchev, G.

    2015-07-01

    The possibilities for increasing the productivity and control of the pea weevil (Bruchus pisorum L.) in field pea (Pisum sativum L.) organic cultivation by the use of following bioproducts NeemAzal T/S and Pyrethrum FS-EC (insecticides), applied individually and in combination with Polyversum (growth regulator and fungicide) and Biofa (foliar fertilizer), as well as to evaluate the stability of the used mixtures were studied. Synthetic products Nurelle D and Flordimex 420 (alone and in combination) were used as a standard. The products were applied once (at budding stage) or twice (at budding and flowering stages). The results showed that forage pea productivity was influenced positively by the application of all organic products. The plants treated with the organic combinations formed an average yield of 3190.2 kg/ha, which was only 4.7% lower than that for the synthetic combination of Flordimex+Nurelle D. The highest yield was produced under application of two mixtures: Biofa+Pyrethrum and Polyversum+Pyrethrum at budding and flowering stages (22.0 and 21.8% above untreated control, respectively). These combinations were also distinguished for their most pronounced protective effect against the attack of the pea weevil and decrease in its numbers of 37.0 and 38.5%, respectively. Pyrethrum was distinguished for a lower degree of damaged seeds and a toxic effect against the pea weevil in comparison with NeemAzal. Technologically the most valuable variant, which united high stability, productivity and protection against pea weevil, was the combination of Biofa+Pyrethrum applied twice. Further investigations are indispensible to expand the range of products (bioinsectides, biofertilizers and growth regulators), which provides good insect control and high prod. (Author)

  11. Changes of field incurred chlorpyrifos and its toxic metabolite residues in rice during food processing from-RAC-to-consumption.

    Science.gov (United States)

    Zhang, Zhiyong; Jiang, Wayne W; Jian, Qiu; Song, Wencheng; Zheng, Zuntao; Wang, Donglan; Liu, Xianjin

    2015-01-01

    The objectives of this study were to determine the effects of food processing on field incurred residues levels of chlorpyrifos and its metabolite 3,5,6-Trichloro-2-pyridinol (TCP) in rice. The chlorpyrifos and TCP were found to be 1.27 and 0.093 mg kg-1 in straw and 0.41 and 0.073 mg kg-1 in grain, respectively. It is observed that the sunlight for 2 hours does not decrease the chlorpyrifos and TCP residues in grain significantly. Their residues in rice were reduced by up to 50% by hulling. The cooking reduced the chlorpyrifos and TCP in rice to undetectable level (below 0.01 mg kg-1). Processing factors (PFs) of chlorpyrifos and TCP residues in rice during food processing were similar. Various factors have impacts on the fates of chlorpyrifos and TCP residues and the important steps to reduce their residues in rice were hulling and cooking. The results can contribute to assure the consumer of a safe wholesome food supply.

  12. Mexican rice borer (Lepidoptera: Crambidae) injury to corn greater than to sorghum and sugarcane under field conditions.

    Science.gov (United States)

    Showler, Allan T; Wilson, Blake E; Reagan, Thomas E

    2012-10-01

    The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), is the key pest of sugarcane (Saccharum spp.) in Texas; it can attack several grassy crop and noncrop host plants and has spread into Louisiana. Through small-plot, commercial field, and pheromone trap experiments, this study demonstrates that the pest uses corn, Zea mays L., more than sugarcane and sorghum, Sorghum bicolor (L.) Moench, but when corn is harvested in late summer, injury to nearby sugarcane strongly increases during the next approximately equal to 2 mo to harvest. Corn was more infested than sugarcane and sorghum in commercial fields regardless of whether sampling occurred on field edges or farther into field interiors. Differences in numbers of infested stalks and in numbers of larval entry holes between field edges and interiors were not detected. We found that Mexican rice borer infestation of corn can cause loss of ears, and lodging, shattering, and complete destruction of maturing stalks. The larger quantities of adult Mexican rice borers captured in pheromone-based traps placed at corn field edges compared with sorghum and sugarcane field edges further indicates that corn is preferred to sugarcane and sorghum. The basis for the pest's attraction to corn and implications to potential range expansion to other U.S. sugarcane-growing regions are discussed.

  13. Function of controlled release fertilizer in maintaining high agronomic use efficiency and minimizing environmental pollution in rice field of southern China

    Institute of Scientific and Technical Information of China (English)

    Ji Xionghui; Luo Lanfang; Zheng Shengxian

    2006-01-01

    Development and use of controlled release fertilizer (CRF) in southern China, potential advantages of CRF in increasing rice yield and nutrient use efficiency were introduced, as well as its role of minimizing rice field's environmental contamination was discussed. Meanwhile, some suggestions were proposed.

  14. Planting Performance and High-yielding Cultivation Techniques of Hybrid Rice Combination Yiyou 673 in Anxi Country%优质超级稻宜优673在安溪种植表现及高产栽培技术

    Institute of Scientific and Technical Information of China (English)

    肖全省

    2014-01-01

    Yiyou 673, derived from the CMS line Yixiang 1A and a restorer line Fuhui 673, was a new hybrid rice combination developed by Rice Research Institute, Fujian Academy of Agricultural Sciences. It was registered and released in 2006 in Fujian province. Yiyou 673 was introduced and planted in Anxi county of Fujian province for extensive adaptability, rice quality, high and stable yield. In this paper, we introduced planting performance and high-yielding cultivation techniques of Yiyou 673.%宜优673是福建省农业科学院水稻研究所用不育系宜香1A与恢复系福恢673配组而成的三系杂交水稻品种,于2006年通过福建省品种审定。在安溪县种植表现丰产、稳产、米质优、后期转色好等特点。介绍了宜优673在安溪县种植表现及高产栽培技术。

  15. Relationships among bulk soil physicochemical, biochemical, and microbiological parameters in an organic alfalfa-rice rotation system.

    Science.gov (United States)

    Lopes, Ana R; Bello, Diana; Prieto-Fernández, Ángeles; Trasar-Cepeda, Carmen; Manaia, Célia M; Nunes, Olga C

    2015-08-01

    The microbial communities of bulk soil of rice paddy fields under an ancient organic agriculture regimen, consisting on an alfalfa-rice rotation system, were characterized. The drained soil of two adjacent paddies at different stages of the rotation was compared before rice seeding and after harvesting. The relationships among the soil microbial, physicochemical, and biochemical parameters were investigated using multivariate analyses. In the first year of rice cropping, aerobic cultivable heterotrophic populations correlated with lineages of presumably aerobic bacteria (e.g., Sphingobacteriales, Sphingomonadales). In the second year of rice cropping, the total C content correlated with presumable anaerobic bacteria (e.g., Anaerolineae). Independently of the year of rice cropping, before rice seeding, proteolytic activity correlated positively with the cultivable aerobic heterotrophic and ammonifier populations, the soil catabolic profile and with presumable aerobes (e.g., Sphingobacteriales, Rhizobiales) and anaerobes (e.g., Bacteroidales, Anaerolineae). After harvesting, strongest correlations were observed between cultivable diazotrophic populations and bacterial groups described as comprising N2 fixing members (e.g., Chloroflexi-Ellin6529, Betaproteobacteria, Alphaproteobacteria). It was demonstrated that chemical parameters and microbial functions were correlated with variations on the total bacterial community composition and structure occurring during rice cropping. A better understanding of these correlations and of their implications on soil productivity may be valid contributors for sustainable agriculture practices, based on ancient processes.

  16. Biomphalaria species distribution and its effect on human Schistosoma mansoni infection in an irrigated area used for rice cultivation in northeast Brazil

    Directory of Open Access Journals (Sweden)

    Delmany Moitinho Barboza

    2012-09-01

    Full Text Available The role of irrigated areas for the spread of schistosomiasis is of worldwide concern. The aim of the present study was to investigate the spatial distribution of the intermediate snail host Biomphalaria in an area highly endemic for schistosomiasis due to Schistosoma mansoni, evaluating the relationship between irrigation and types of natural water sources on one hand, and the influence of place and time of water exposure on the intensity of human infection on the other. A geographical information system (GIS was used to map the distribution of the intermediate snail hosts in Ilha das Flores, Sergipe, Brazil, combined with a clinical/epidemiological survey. We observed a direct correlation between the intensity of human infection with S. mansoni and irrigation projects. Malacological studies to identify snail species and infection rates showed that B. glabrata is the main species responsible for human schistosomiasis in the municipality, but that B. straminea also plays a role. Our results provide evidence for a competitive selection between the two snail species in rice fields with a predominance of B. glabrata in irrigation systems and B. straminea in natural water sources.

  17. Spatial variability of N, P, and K in rice field in Sawah Sempadan, Malaysia

    Directory of Open Access Journals (Sweden)

    Saeed Mohamed Eltaib

    2002-04-01

    Full Text Available The variability of soil chemical properties such as total N, available P, and exchangeable K were examined on a 1.2 ha rice (Oryza sativa field. The soil (n = 72 samples were systematically taken from individual fields in Sawah Sempadan in thirty-six locations at two depths (0-20 and 20-30 cm. The Differential Global Positioning System (DGPS was used for locating the sample position. Geostatistical techniques were used to analyze the soil chemical properties variability of the samples that assist in site-specific management of the field. Results showed that areas of similarity were much greater for the soil chemical properties measured at the depth of (0-20 cm than that of the second lower (20- 30 cm. The ranges of the semivariogram for total N, available P, and exchangeable K were 12, and 13 m (0-20 cm, 12 and 38 m (20-30 cm, respectively. Point kriging calculated from the semivariogram was employed for spatial distribution map. The results suggested that soil chemical properties measured may be spatially dependent even within the small.

  18. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields

    Science.gov (United States)

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-01-01

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study. PMID:24988911

  19. Exposure to tebuconazol in rice field and laboratory conditions induces oxidative stress in carp (Cyprinus carpio).

    Science.gov (United States)

    Toni, Cândida; Loro, Vania Lucia; Santi, Adriana; de Menezes, Charlene Cavalheiro; Cattaneo, Roberta; Clasen, Bárbara Estevão; Zanella, Renato

    2011-01-01

    Pesticides can have an effect on the biochemical and physiological functions of living organisms. The changes seen in fish and their response to pesticides can be used as an example for vertebrate toxicity. In this study, carp fish (Cyprinus carpio) were exposed to different concentrations of tebuconazol fungicide, by rice field (31.95 μg/L) and laboratory (33.47 and 36.23 μg/L) conditional testing, during a 7 day period. Parameters such thiobarbituric acid-reactive substance levels (TBARS), protein carbonyl, catalase, glutathione S-transferase and acetylcholinesterase activities were studied, using the liver, brain and white muscle of the fish. The field experiment showed that the TBARS levels were increased in all the analyzed tissues. Similarly, the protein carbonyl of the liver and the brain AChE activity increased after 7 days. The laboratory experiment demonstrated that the TBARS levels in the liver were increased in both of the concentration tests. TBARS levels in the muscle increased only by the lowest test concentration. On the other hand, the protein carbonyl was increased only by the highest concentration. The results indicate that the tebuconazol exposure from the field and laboratory conditions directly affected the health of the fish, showing the occurrence of oxidative stress.

  20. Clostridium oryzae sp. nov., from soil of a Japanese rice field.

    Science.gov (United States)

    Horino, Haruka; Ito, Miyuki; Tonouchi, Akio

    2015-03-01

    An obligately anaerobic bacterial strain designated KC3(T) was isolated from a rice straw-degrading culture, for which soil of a Japanese rice field was used as the inoculum. Cells of strain KC3(T) were determined to be non-cellulolytic, Gram-stain-positive, non-motile, ellipsoidal, spore-forming rods, 0.8-1×4-25 µm. Endospores were formed at a terminal position in elongated cells (12-25 µm, mean 15 µm). The temperature range for growth was 20-50 °C, with an optimum at 37 °C. The pH range for growth was 5.0-7.5, with an optimum at pH 6.0 (slightly acidophilic). Strain KC3(T) fermented cellobiose to lactate, butyrate, acetate, formate, hydrogen and carbon dioxide. The major cellular fatty acids (>10 %) were C14 : 0, C16 : 0 and C19 : 0 cyclo 11,12 dimethylacetal. The DNA G+C content of strain KC3(T) was 37.5 mol%. 16S rRNA gene sequence analysis revealed that strain KC3(T) shared low sequence similarity (Clostridium sensu stricto (Clostridium rRNA cluster I). Analyses of the DNA gyrase A and ATP synthase beta subunit sequences supported the affiliation of strain KC3(T) to the genus Clostridium sensu stricto. The evidence presented here indicates that strain KC3(T) represents a novel species of the genus Clostridium, for which the name Clostridium oryzae sp. nov. is proposed. The type strain of Clostridium oryzae is KC3(T) ( = DSM 28571(T) = NBRC 110163(T)).

  1. Chemolithotrophic acetogenic H2/CO2 utilization in Italian rice field soil.

    Science.gov (United States)

    Liu, Fanghua; Conrad, Ralf

    2011-09-01

    Acetate oxidation in Italian rice field at 50 °C is achieved by uncultured syntrophic acetate oxidizers. As these bacteria are closely related to acetogens, they may potentially also be able to synthesize acetate chemolithoautotrophically. Labeling studies using exogenous H(2) (80%) and (13)CO(2) (20%), indeed demonstrated production of acetate as almost exclusive primary product not only at 50 °C but also at 15 °C. Small amounts of formate, propionate and butyrate were also produced from (13)CO(2). At 50 °C, acetate was first produced but later on consumed with formation of CH(4). Acetate was also produced in the absence of exogenous H(2) albeit to lower concentrations. The acetogenic bacteria and methanogenic archaea were targeted by stable isotope probing of ribosomal RNA (rRNA). Using quantitative PCR, (13)C-labeled bacterial rRNA was detected after 20 days of incubation with (13)CO(2). In the heavy fractions at 15 °C, terminal restriction fragment length polymorphism, cloning and sequencing of 16S rRNA showed that Clostridium cluster I and uncultured Peptococcaceae assimilated (13)CO(2) in the presence and absence of exogenous H(2), respectively. A similar experiment showed that Thermoanaerobacteriaceae and Acidobacteriaceae were dominant in the (13)C treatment at 50 °C. Assimilation of (13)CO(2) into archaeal rRNA was detected at 15 °C and 50 °C, mostly into Methanocellales, Methanobacteriales and rice cluster III. Acetoclastic methanogenic archaea were not detected. The above results showed the potential for acetogenesis in the presence and absence of exogenous H(2) at both 15 °C and 50 °C. However, syntrophic acetate oxidizers seemed to be only active at 50 °C, while other bacterial groups were active at 15 °C.

  2. Influence of rice field agrochemicals on the ecological status of a tropical stream

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Jes Jessen, E-mail: jr@bios.au.dk [Aarhus University, Department of Bioscience, Vejlsøvej 25, 8600 Silkeborg (Denmark); Reiler, Emilie Marie [University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Carazo, Elizabeth; Matarrita, Jessie [Centro de Investigación en Contaminación Ambiental, Ciudad Universidad de Costa Rica Universitaria Rodrigo Facio, San José (Costa Rica); Muñoz, Alejandro [Centro de Investigación en Contaminación Ambiental, Ciudad Universidad de Costa Rica Universitaria Rodrigo Facio, San José (Costa Rica); Escuela de Biología, Ciudad Universitaria Rodrigo Facio, San José (Costa Rica); Cedergreen, Nina [University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)

    2016-01-15

    Many tropical countries contain a high density of protected ecosystems, and these may often be bordered by intensive agricultural systems. We investigated the chemical and ecological status of a stream connecting an area with conventional rice production and a downstream protected nature reserve; Mata Redonda. Three sites were sampled: 1) an upstream control, 2) in the rice production area and 3) a downstream site in Mata Redonda. We sampled benthic macroinvertebrates and pesticides in water and sediments along with supporting physical and chemical data. Pesticide concentrations in water exceeded current safety thresholds at sites 2 and 3, especially during the rainy season, and sediment associated pesticide concentrations exceeded current safety thresholds in three of six samples. Importantly, the highest predicted pesticide toxicity in sediments was observed at site 3 in the Mata Redonda confirming that the nature reserve received critical levels of pesticide pollution from upstream sections. The currently used macroinvertebrate index in Costa Rica (BMWP-CR) and an adjusted version of the SPecies At Risk index (SPEAR) were not significantly correlated to any measure of anthropogenic stress, but the Average Score Per Taxon (ASPT) index was significantly correlated with the predicted pesticide toxicity (sumTU{sub D.magna}), oxygen concentrations and substrate composition. Our results suggest that pesticide pollution was likely involved in the impairment of the ecological status of the sampling sites, including site 3 in Mata Redonda. Based on our results, we give guidance to biomonitoring in Costa Rica and call for increased focus on pesticide transport from agricultural regions to protected areas. - Highlights: • Pesticides are transported via streams to protected downstream nature reserves. • Pesticide concentrations were highest during the rainy season due to flooded fields. • Pesticide concentrations in the protected area exceeded safety thresholds.

  3. Saving water? : analysis of options for rice-based farms in Tamil Nadu, India

    NARCIS (Netherlands)

    Senthilkumar, K.

    2008-01-01

    Keywords: Modified rice cultivation, Water-saving, Farm typology, Technology adoption, Policy interventions, Farmers livelihoods, Resource use efficiency and Linear programming. The looming water crisis and water-intensive nature of rice cultivation are driving the search for alternative management

  4. Human Activity Influenced by Climate Change: Response of Spatial Distribution of Ancient Rice Cultivation in China to Climate Change during the Early to Mid-Holocene%气候条件限制下的人类活动——全新世早中期中国栽培水稻分布的变化对气候变迁的响应

    Institute of Scientific and Technical Information of China (English)

    张玲; 梅孙华; 王培敏

    2013-01-01

    Rice cultivation is one of the important human activities in the Neolithic period, and the link between its development and climate change is essential for studies on rice domestication and civilization. Data of archaeological sites with excavated rice remains in China during the early to mid-Holocene (12 000 -5 500 aBP) were compiled, and the link between rice cultivation and climate change was analyzed. The results showed that the origination and early development of rice cultivation were mainly distributed on the edge of regions where wild rice distributed. The early development of rice cultivation during the early to mid-Holocene was also mainly influenced by climate change.%水稻栽培是新石器时代重要的人类活动之一,其发展同气候之间的联系是研究稻作起源和文明发展的一个关键问题.该文利用搜集到的全新世早中期(12 000~5 500 aBP)中国的栽培水稻出土遗址点数据,对全新世早中期中国水稻栽培同气候的关系进行了分析.结果表明,栽培水稻的起源与初期发展具有“边缘效应”,即分布于野生稻分布的边缘地带;而其早期的发展和分布也具有类似的特征,即主要受气候因素的影响,因此全新世早中期栽培水稻的分布范围的变化受到气候条件的限制,该时期环境变化受气候“主导”.

  5. Trace Element Management in Rice

    Directory of Open Access Journals (Sweden)

    Abin Sebastian

    2015-08-01

    Full Text Available Trace elements (TEs are vital for the operation of metabolic pathways that promote growth and structural integrity. Paddy soils are often prone to TE limitation due to intensive cultivation and irrigation practices. Apart from this, rice paddies are potentially contaminated with transition metals such as Cd, which are often referred to as toxic TEs. Deficiency of TEs in the soil not only delays plant growth but also causes exposure of plant roots to toxic TEs. Fine-tuning of nutrient cycling in the rice field is a practical solution to cope with TEs deficiency. Adjustment of soil physicochemical properties, biological process such as microbial activities, and fertilization helps to control TEs mobilization in soil. Modifications in root architecture, metal transporters activity, and physiological processes are also promising approaches to enhance TEs accumulation in grains. Through genetic manipulation, these modifications help to increase TE mining capacity of rice plants as well as transport and trafficking of TEs into the grains. The present review summarizes that regulation of TE mobilization in soil, and the genetic improvement of TE acquisition traits help to boost essential TE content in rice grain.

  6. 播种期对轻简栽培方式再生稻源库关系的影响%Effects on Source-sink of R