WorldWideScience

Sample records for cued fear learning

  1. Light enhances learned fear.

    Science.gov (United States)

    Warthen, Daniel M; Wiltgen, Brian J; Provencio, Ignacio

    2011-08-16

    The ability to learn, remember, and respond to emotional events is a powerful survival strategy. However, dysregulated behavioral and physiological responses to these memories are maladaptive. To fully understand learned fear and the pathologies that arise during response malfunction we must reveal the environmental variables that influence learned fear responses. Light, a ubiquitous environmental feature, modulates cognition and anxiety. We hypothesized that light modulates responses to learned fear. Using tone-cued fear conditioning, we found that light enhances behavioral responses to learned fear in C57BL/6J mice. Mice in light freeze more in response to a conditioned cue than mice in darkness. The absence of significant freezing during a 2-wk habituation period and during intertrial intervals indicated that light specifically modulates freezing to the learned acoustic cue rather than the context of the experimental chamber. Repeating our assay in two photoreceptor mutant models, Pde6b(rd1/rd1) and Opn4(-/-) mice, revealed that light-dependent enhancement of conditioned fear is driven primarily by the rods and/or cones. By repeating our protocol with an altered lighting regimen, we found that lighting conditions acutely modulate responses when altered between conditioning and testing. This is manifested either as an enhancement of freezing when light is added during testing or as a depression of freezing when light is removed during testing. Acute enhancement, but not depression, requires both rod/cone- and melanopsin-dependent photoreception. Our results demonstrate a modulation by light of behavioral responses to learned fear.

  2. Light enhances learned fear

    OpenAIRE

    Warthen, Daniel M.; Wiltgen, Brian J.; Provencio, Ignacio

    2011-01-01

    The ability to learn, remember, and respond to emotional events is a powerful survival strategy. However, dysregulated behavioral and physiological responses to these memories are maladaptive. To fully understand learned fear and the pathologies that arise during response malfunction we must reveal the environmental variables that influence learned fear responses. Light, a ubiquitous environmental feature, modulates cognition and anxiety. We hypothesized that light modulates responses to lear...

  3. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    Science.gov (United States)

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial.

  4. Sleep deprivation impairs consolidation of cued fear memory in rats.

    Directory of Open Access Journals (Sweden)

    Tankesh Kumar

    Full Text Available Post-learning sleep facilitates negative memory consolidation and also helps preserve it over several years. It is believed, therefore, that sleep deprivation may help prevent consolidation of fearful memory. Its effect, however, on consolidation of negative/frightening memories is not known. Cued fear-conditioning (CuFC is a widely used model to understand the neural basis of negative memory associated with anxiety disorders. In this study, we first determined the suitable circadian timing for consolidation of CuFC memory and changes in sleep architecture after CuFC. Thereafter, we studied the effect of sleep deprivation on CuFC memory consolidation. Three sets of experiments were performed in male Wistar rat (n=51. In experiment-I, animals were conditioned to cued-fear by presenting ten tone-shock paired stimuli during lights-on (7 AM (n=9 and lights-off (7 PM (n=9 periods. In experiment-II, animals were prepared for polysomnographic recording (n=8 and changes in sleep architecture after CuFC was determined. Further in experiment-III, animals were cued fear-conditioned during the lights-off period and were randomly divided into four groups: Sleep-Deprived (SD (n=9, Non-Sleep Deprived (NSD (n=9, Stress Control (SC (n=9 and Tone Control (n=7. Percent freezing amount, a hallmark of fear, was compared statistically in these groups. Rats trained during the lights-off period exhibited significantly more freezing compared to lights-on period. In CuFC trained animals, total sleep amount did not change, however, REM sleep decreased significantly. Further, out of total sleep time, animals spent proportionately more time in NREM sleep. Nevertheless, SD animals exhibited significantly less freezing compared to NSD and SC groups. These data suggest that sleep plays an important role in the consolidation of cued fear-conditioned memory.

  5. Immunization against social fear learning.

    Science.gov (United States)

    Golkar, Armita; Olsson, Andreas

    2016-06-01

    Social fear learning offers an efficient way to transmit information about potential threats; little is known, however, about the learning processes that counteract the social transmission of fear. In three separate experiments, we found that safety information transmitted from another individual (i.e., demonstrator) during preexposure prevented subsequent observational fear learning (Experiments 1-3), and this effect was maintained in a new context involving direct threat confrontation (Experiment 3). This protection from observational fear learning was specific to conditions in which information about both safety and danger was transmitted from the same demonstrator (Experiments 2-3) and was unaffected by increasing the number of the safety demonstrators (Experiment 3). Collectively, these findings demonstrate that observational preexposure can limit social transmission of fear. Future research is needed to better understand the conditions under which such effects generalize across individual demonstrators. (PsycINFO Database Record

  6. The learning of fear extinction.

    Science.gov (United States)

    Furini, Cristiane; Myskiw, Jociane; Izquierdo, Ivan

    2014-11-01

    Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD.

  7. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    Science.gov (United States)

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  8. Exploring Fear: Rousseau, Dewey, and Freire on Fear and Learning

    Science.gov (United States)

    English, Andrea; Stengel, Barbara

    2010-01-01

    Fear is not the first feature of educational experience associated with the best-known progressive educational theorists--Jean-Jacques Rousseau, John Dewey, and Paolo Freire. But each of these important thinkers did, in fact, have something substantive to say about how fear functions in the processes of learning and growth. Andrea English and…

  9. Are fear memories erasable?-reconsolidation of learned fear with fear-relevant and fear-irrelevant stimuli

    National Research Council Canada - National Science Library

    Golkar, Armita; Bellander, Martin; Olsson, Andreas; Ohman, Arne

    2012-01-01

    Recent advances in the field of fear learning have demonstrated that a single reminder exposure prior to extinction training can prevent the return of extinguished fear by disrupting the process of reconsolidation...

  10. The Class I HDAC Inhibitor RGFP963 Enhances Consolidation of Cued Fear Extinction

    Science.gov (United States)

    Bowers, Mallory E.; Xia, Bing; Carreiro, Samantha; Ressler, Kerry J.

    2015-01-01

    Evidence indicates that broad, nonspecific histone deacetylase (HDAC) inhibition enhances learning and memory, however, the contribution of the various HDACs to specific forms of learning is incompletely understood. Here, we show that the Class I HDAC inhibitor, RGFP963, enhances consolidation of cued fear extinction. However, RGFP966, a strong…

  11. The Class I HDAC Inhibitor RGFP963 Enhances Consolidation of Cued Fear Extinction

    Science.gov (United States)

    Bowers, Mallory E.; Xia, Bing; Carreiro, Samantha; Ressler, Kerry J.

    2015-01-01

    Evidence indicates that broad, nonspecific histone deacetylase (HDAC) inhibition enhances learning and memory, however, the contribution of the various HDACs to specific forms of learning is incompletely understood. Here, we show that the Class I HDAC inhibitor, RGFP963, enhances consolidation of cued fear extinction. However, RGFP966, a strong…

  12. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning.

    Science.gov (United States)

    Ohman, A; Mineka, S

    2001-07-01

    An evolved module for fear elicitation and fear learning with 4 characteristics is proposed. (a) The fear module is preferentially activated in aversive contexts by stimuli that are fear relevant in an evolutionary perspective. (b) Its activation to such stimuli is automatic. (c) It is relatively impenetrable to cognitive control. (d) It originates in a dedicated neural circuitry, centered on the amygdala. Evidence supporting these propositions is reviewed from conditioning studies, both in humans and in monkeys; illusory correlation studies; studies using unreportable stimuli; and studies from animal neuroscience. The fear module is assumed to mediate an emotional level of fear learning that is relatively independent and dissociable from cognitive learning of stimulus relationships.

  13. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats.

    Science.gov (United States)

    Moaddab, Mahsa; Dabrowska, Joanna

    2017-07-15

    Oxytocin (OT) is a hypothalamic neuropeptide that modulates fear and anxiety-like behaviors. Dorsolateral bed nucleus of the stria terminalis (BNSTdl) plays a critical role in the regulation of fear and anxiety, and expresses high levels of OT receptor (OTR). However, the role of OTR neurotransmission within the BNSTdl in mediating these behaviors is unknown. Here, we used adult male Sprague-Dawley rats to investigate the role of OTR neurotransmission in the BNSTdl in the modulation of the acoustic startle response, as well as in the acquisition and consolidation of conditioned fear using fear potentiated startle (FPS) paradigm. Bilateral intra-BNSTdl administration of OT (100 ng) did not affect the acquisition of conditioned fear response. However, intra-BNSTdl administration of specific OTR antagonist (OTA), (d(CH2)5(1), Tyr(Me)(2), Thr(4), Orn(8), des-Gly-NH2(9))-vasotocin, (200 ng), prior to the fear conditioning session, impaired the acquisition of cued fear, without affecting a non-cued fear component of FPS. Neither OTA, nor OT affected baseline startle or shock reactivity during fear conditioning. Therefore, the observed impairment of cued fear after OTA infusion resulted from the specific effect on the formation of cued fear. In contrast to the acquisition, neither OTA nor OT affected the consolidation of FPS, when administered after the completion of fear conditioning session. Taken together, these results reveal the important role of OTR neurotransmission in the BNSTdl in the formation of conditioned fear to a discrete cue. This study also highlights the role of the BNSTdl in learning to discriminate between threatening and safe stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    Science.gov (United States)

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  15. Are fear memories erasable?–reconsolidation of learned fear with fear-relevant and fear-irrelevant stimuli

    OpenAIRE

    Armita eGolkar; Martin eBellander; Andreas eOlsson; Arne eÖhman

    2012-01-01

    Recent advances in the field of fear learning have demonstrated that a single reminder exposure prior to extinction training can prevent the return of extinguished fear by disrupting the process of reconsolidation. These findings have however proven hard to replicate in humans. Given the significant implications of preventing the return of fear, the purpose of the present study was to further study the prerequisites for the putative effects of disrupting reconsolidation. In two experiments, w...

  16. Impairment in extinction of contextual and cued fear following post-training whole-body irradiation.

    Science.gov (United States)

    Olsen, Reid H J; Marzulla, Tessa; Raber, Jacob

    2014-01-01

    Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24 h later. Animals were given 2 weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall.

  17. The influence of serotonin on fear learning.

    Directory of Open Access Journals (Sweden)

    Catherine Hindi Attar

    Full Text Available Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI and dietary tryptophan depletion to reduce brain serotonin (5-HT levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.

  18. The influence of serotonin on fear learning.

    Science.gov (United States)

    Hindi Attar, Catherine; Finckh, Barbara; Büchel, Christian

    2012-01-01

    Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI) and dietary tryptophan depletion to reduce brain serotonin (5-HT) levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.

  19. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    Science.gov (United States)

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  20. Neuroimaging of Fear-Associated Learning.

    Science.gov (United States)

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning.

  1. Impairment in extinction of contextual and cued, fear following post-training whole body irradiation

    Directory of Open Access Journals (Sweden)

    Reid HJ Olsen

    2014-07-01

    Full Text Available Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.. To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear-conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation 24 hours later. Animals were given two weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22 days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole body irradiation elevates contextual and cued fear memory recall.

  2. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  3. Circadian waveform bifurcation, but not phase-shifting, leaves cued fear memory intact.

    Science.gov (United States)

    Harrison, E M; Carmack, S A; Block, C L; Sun, J; Anagnostaras, S G; Gorman, M R

    2017-02-01

    In mammals, memory acquisition and retrieval can be affected by time of day, as well as by manipulations of the light/dark cycle. Under bifurcation, a manipulation of circadian waveform, two subjective days and nights are experimentally induced in rodents. We examined the effect of bifurcation on Pavlovian fear conditioning, a prominent model of learning and memory. Here we demonstrate that bifurcation of the circadian waveform produces a small deficit in acquisition, but not on retrieval of fear memory. In contrast, repeated phase-shifting in a simulated jet-lag protocol impairs retrieval of memory for cued fear. The results have implications for those attempting to adjust to shift-work or other challenging schedules.

  4. Blood pressure variations real-time reflect the conditioned fear learning and memory.

    Directory of Open Access Journals (Sweden)

    Yuan-Chang Hsu

    Full Text Available The conditioned fear learning and memory occurs when a neutral conditioned stimulus (CS is paired with an aversive unconditioned stimulus (US. This process is critically dependent on the amygdala and inevitably involves blood pressure (BP alterations. We hypothesized that BP variations could instantaneously reveal individual steps during conditioned fear learning and memory. An implanted telemetric probe was used to monitor the BP real-time in rats during training and testing sessions of the fear-potentiated startle. Our results showed that (i the conditioned fear learning during the training sessions was reflected by light (CS-induced rapid BP elevations and by electric shock (US-evoked sympathetic tone elevations; (ii these two BP-related parameters were not only negatively correlated with each other but also coupled to each other in the training session trials; (iii both parameters closely predicted the performance of fear-potentiated startle on the next day; and (iv although local blocking of one of the two fear-conditioned pathways in the training session partially inhibited fear learning, the fear memory retrieval still used both pathways. Altogether, real-time blood pressure variations faithfully revealed the critical steps involved in conditioned fear learning and memory, and our results supported a coupling between the cued learning and the post-shock calmness.

  5. Anterograde effects of a single electroconvulsive shock on inhibitory avoidance and on cued fear conditioning

    Directory of Open Access Journals (Sweden)

    Oliveira M.G.M.

    1998-01-01

    Full Text Available A single electroconvulsive shock (ECS or a sham ECS was administered to male 3-4-month-old Wistar rats 1, 2, and 4 h before training in an inhibitory avoidance test and in cued classical fear conditioning (measured by means of freezing time in a new environment. ECS impaired inhibitory avoidance at all times and, at 1 or 2 h before training, reduced freezing time before and after re-presentation of the ECS. These results are interpreted as a transient conditioned stimulus (CS-induced anxiolytic or analgesic effect lasting about 2 h after a single treatment, in addition to the known amnesic effect of the stimulus. This suggests that the effect of anterograde learning impairment is demonstrated unequivocally only when the analgesic/anxiolytic effect is over (about 4 h after ECS administration and that this impairment of learning is selective, affecting inhibitory avoidance but not classical fear conditioning to a discrete stimulus.

  6. Enhanced discriminative fear learning of phobia-irrelevant stimuli in spider-fearful individuals

    Directory of Open Access Journals (Sweden)

    Carina eMosig

    2014-10-01

    Full Text Available Avoidance is considered as a central hallmark of all anxiety disorders. The acquisition and expression of avoidance which leads to the maintenance and exacerbation of pathological fear is closely linked to Pavlovian and operant conditioning processes. Changes in conditionability might represent a key feature of all anxiety disorders but the exact nature of these alterations might vary across different disorders. To date, no information is available on specific changes in conditionability for disorder-irrelevant stimuli in specific phobia (SP. The first aim of this study was to investigate changes in fear acquisition and extinction in spider-fearful individuals as compared to non-fearful participants by using the de novo fear conditioning paradigm. Secondly, we aimed to determine whether differences in the magnitude of context-dependent fear retrieval exist between spider-fearful and non-fearful individuals. Our findings point to an enhanced fear discrimination in spider-fearful individuals as compared to non-fearful individuals at both the physiological and subjective level. The enhanced fear discrimination in spider-fearful individuals was neither mediated by increased state anxiety, depression, nor stress tension. Spider-fearful individuals displayed no changes in extinction learning and/or fear retrieval. Surprisingly, we found no evidence for context-dependent modulation of fear retrieval in either group. Here we provide first evidence that spider-fearful individuals show an enhanced discriminative fear learning of phobia-irrelevant (de novo stimuli. Our findings provide novel insights into the role of fear acquisition and expression for the development and maintenance of maladaptive responses in the course of SP.

  7. Phenotypic responses to social defeat are associated with differences in cued and contextual fear discrimination.

    Science.gov (United States)

    Dulka, Brooke N; Lynch, Joseph F; Latsko, Maeson S; Mulvany, Jessica L; Jasnow, Aaron M

    2015-09-01

    Conflict among individuals is one of the most common forms of stressors experienced across a variety of species, including humans. Social defeat models in mice produce two phenotypic behavioral responses characterized by prolonged social avoidance (susceptibility) or continued social interaction (resistance). The resistant phenotype has been proposed as a model of resilience to chronic stress-induced depression in humans. Previously, we have found that mice that are resistant to social defeat stress display significant impairments in extinction learning and retention, suggesting that continued social interaction following the experience of social defeat may be associated with maladaptive fear responses. Here, we examined how individual differences in response to social defeat may be related to differences in cued and context fear discrimination. Following defeat, resistant mice showed increased fear to a neutral cued stimulus (CS-) compared to control and susceptible mice, but were still able to significantly discriminate between the CS+ and CS-. Likewise, both phenotypes were generally able to discriminate between the training context and neutral context at all retention intervals tested (1, 5, 14 days). However, susceptible mice displayed significantly better discrimination compared to resistant and non-defeated control mice when assessing the discrimination ratio. Thus, at a time when most animals begin exhibiting generalization to contextual cues, susceptible mice retain the ability to discriminate between fearful and neutral contexts. These data suggest that the differences observed in context and cued discrimination between susceptible and resistant mice may be related to differences in their coping strategies in response to social defeat. In particular, resistance or resilience to social defeat as traditionally characterized may be associated with altered inhibitory learning. Understanding why individual differences arise in response to stress, including

  8. Forming Competing Fear Learning and Extinction Memories in Adolescence Makes Fear Difficult to Inhibit

    Science.gov (United States)

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages.…

  9. Forming Competing Fear Learning and Extinction Memories in Adolescence Makes Fear Difficult to Inhibit

    Science.gov (United States)

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages.…

  10. Comparing electric shock and a fearful screaming face as unconditioned stimuli for fear learning.

    Science.gov (United States)

    Glenn, Catherine R; Lieberman, Lynne; Hajcak, Greg

    2012-12-01

    The potency of an unconditioned stimulus (UCS) can impact the degree of fear learning. One of the most common and effective UCSs is an electric shock, which is inappropriate for certain populations (e.g., children). To address this need, a novel fear learning paradigm was recently developed that uses a fearful female face and scream as the UCS. The present study directly compared the efficacy of the screaming female UCS and a traditional shock UCS in two fear learning paradigms. Thirty-six young adults completed two fear learning tasks and a measure of trait anxiety; fear learning was indexed with fear-potentiated startle (FPS) and self-reported fear ratings. Results indicated comparable FPS across the two tasks. However, larger overall startle responses were exhibited in the shock task, and participants rated the shock UCS and overall task as more aversive than the screaming female. In addition, trait anxiety was only related to FPS in the fear learning task that employed a shock as the UCS. Taken together, results indicate that, although both UCS paradigms can be used for fear conditioning (i.e., to produce differences between CS+ and CS-), the shock UCS paradigm is more aversive and potentially more sensitive to individual differences in anxiety.

  11. Assessing fear learning via conditioned respiratory amplitude responses.

    Science.gov (United States)

    Castegnetti, Giuseppe; Tzovara, Athina; Staib, Matthias; Gerster, Samuel; Bach, Dominik R

    2017-02-01

    Respiratory physiology is influenced by cognitive processes. It has been suggested that some cognitive states may be inferred from respiration amplitude responses (RAR) after external events. Here, we investigate whether RAR allow assessment of fear memory in cued fear conditioning, an experimental model of aversive learning. To this end, we built on a previously developed psychophysiological model (PsPM) of RAR, which regards interpolated RAR time series as the output of a linear time invariant system. We first establish that average RAR after CS+ and CS- are different. We then develop the response function of fear-conditioned RAR, to be used in our PsPM. This PsPM is inverted to yield estimates of cognitive input into the respiratory system. We analyze five validation experiments involving fear acquisition and retention, delay and trace conditioning, short and medium CS-US intervals, and data acquired with bellows and MRI-compatible pressure chest belts. In all experiments, CS+ and CS- are distinguished by their estimated cognitive inputs, and the sensitivity of this distinction is higher for model-based estimates than for peak scoring of RAR. Comparing these data with skin conductance responses (SCR) and heart period responses (HPR), we find that, on average, RAR performs similar to SCR in distinguishing CS+ and CS-, but is less sensitive than HPR. Overall, our work provides a novel and robust tool to investigate fear memory in humans that may allow wide and straightforward application to diverse experimental contexts. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  12. 3,4-Methylenedioxymethamphetamine facilitates fear extinction learning.

    Science.gov (United States)

    Young, M B; Andero, R; Ressler, K J; Howell, L L

    2015-09-15

    Acutely administered 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') has been proposed to have long-term positive effects on post-traumatic stress disorder (PTSD) symptoms when combined with psychotherapy. No preclinical data support a mechanistic basis for these claims. Given the persistent nature of psychotherapeutic gains facilitated by MDMA, we hypothesized that MDMA improves fear extinction learning, a key process in exposure-based therapies for PTSD. In these experiments, mice were first exposed to cued fear conditioning and treated with drug vehicle or MDMA before extinction training 2 days later. MDMA was administered systemically and also directly targeted to brain structures known to contribute to extinction. In addition to behavioral measures of extinction, changes in mRNA levels of brain-derived neurotrophic factor (Bdnf) and Fos were measured after MDMA treatment and extinction. MDMA (7.8 mg kg(-1)) persistently and robustly enhanced long-term extinction when administered before extinction training. MDMA increased the expression of Fos in the amygdala and medial prefrontal cortex (mPFC), whereas increases in Bdnf expression were observed only in the amygdala after extinction training. Extinction enhancements were recapitulated when MDMA (1 μg) was infused directly into the basolateral complex of the amygdala (BLA), and enhancement was abolished when BDNF signaling was inhibited before extinction. These findings suggest that MDMA enhances fear memory extinction through a BDNF-dependent mechanism, and that MDMA may be a useful adjunct to exposure-based therapies for PTSD and other anxiety disorders characterized by altered fear learning.

  13. Fear conditioning with film clips: a complex associative learning paradigm

    NARCIS (Netherlands)

    A.E. Kunze; A. Arntz; M. Kindt

    2014-01-01

    Background and objectives: We argue that the stimuli used in traditional fear conditioning paradigms are too simple to model the learning and unlearning of complex fear memories. We therefore developed and tested an adapted fear conditioning paradigm, specifically designed for the study of complex a

  14. Fear conditioning with film clips: a complex associative learning paradigm

    NARCIS (Netherlands)

    Kunze, A.E.; Arntz, A.; Kindt, M.

    2015-01-01

    Background and objectives: We argue that the stimuli used in traditional fear conditioning paradigms are too simple to model the learning and unlearning of complex fear memories. We therefore developed and tested an adapted fear conditioning paradigm, specifically designed for the study of complex a

  15. Fear conditioning with film clips: a complex associative learning paradigm

    NARCIS (Netherlands)

    Kunze, A.E.; Arntz, A.; Kindt, M.

    2015-01-01

    Background and objectives: We argue that the stimuli used in traditional fear conditioning paradigms are too simple to model the learning and unlearning of complex fear memories. We therefore developed and tested an adapted fear conditioning paradigm, specifically designed for the study of complex

  16. Encoding of fear learning and memory in distributed neuronal circuits.

    Science.gov (United States)

    Herry, Cyril; Johansen, Joshua P

    2014-12-01

    How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory.

  17. Forming competing fear learning and extinction memories in adolescence makes fear difficult to inhibit

    OpenAIRE

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages. We examined neural correlates of impaired extinction retention by detection of phosphorylated mitogen-activated protein kinase immunoreactivity (pMA...

  18. Zinc Transporter 3 Is Involved in Learned Fear and Extinction, but Not in Innate Fear

    Science.gov (United States)

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P.

    2010-01-01

    Synaptically released Zn[superscript 2+] is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles,…

  19. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning.

    Science.gov (United States)

    Li, Susan Shi Yuan; McNally, Gavan P

    2014-02-01

    A key insight of associative learning theory is that learning depends on the actions of prediction error: a discrepancy between the actual and expected outcomes of a conditioning trial. When positive, such error causes increments in associative strength and, when negative, such error causes decrements in associative strength. Prediction error can act directly on fear learning by determining the effectiveness of the aversive unconditioned stimulus or indirectly by determining the effectiveness, or associability, of the conditioned stimulus. Evidence from a variety of experimental preparations in human and non-human animals suggest that discrete neural circuits code for these actions of prediction error during fear learning. Here we review the circuits and brain regions contributing to the neural coding of prediction error during fear learning and highlight areas of research (safety learning, extinction, and reconsolidation) that may profit from this approach to understanding learning.

  20. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning

    Science.gov (United States)

    Keifer, Orion P.; Hurt, Robert C.; Ressler, Kerry J.

    2015-01-01

    The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively. PMID:26328883

  1. Conceptual similarity promotes generalization of higher order fear learning

    OpenAIRE

    Dunsmoor, Joseph E.; White, Allison J.; LaBar, Kevin S.

    2011-01-01

    We tested the hypothesis that conceptual similarity promotes generalization of conditioned fear. Using a sensory preconditioning procedure, three groups of subjects learned an association between two cues that were conceptually similar, unrelated, or mismatched. Next, one of the cues was paired with a shock. The other cue was then reintroduced to test for fear generalization, as measured by the skin conductance response. Results showed enhanced fear generalization that correlated with trait a...

  2. Developmental regulation of fear learning and anxiety behavior by endocannabinoids.

    Science.gov (United States)

    Lee, T T-Y; Hill, M N; Lee, F S

    2016-01-01

    The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety.

  3. Learning not to fear: neural correlates of learned safety.

    Science.gov (United States)

    Kong, Eryan; Monje, Francisco J; Hirsch, Joy; Pollak, Daniela D

    2014-02-01

    The ability to recognize and properly respond to instances of protection from impending danger is critical for preventing chronic stress and anxiety-central symptoms of anxiety and affective disorders afflicting large populations of people. Learned safety encompasses learning processes, which lead to the identification of episodes of security and regulation of fear responses. On the basis of insights into the neural circuitry and molecular mechanisms involved in learned safety in mice and humans, we describe learned safety as a tool for understanding neural mechanisms involved in the pathomechanisms of specific affective disorders. This review summarizes our current knowledge on the neurobiological underpinnings of learned safety and discusses potential applications in basic and translational neurosciences.

  4. Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning.

    Science.gov (United States)

    Pignatelli, Marco; Umanah, George Kwabena Essien; Ribeiro, Sissi Palma; Chen, Rong; Karuppagounder, Senthilkumar Senthil; Yau, Hau-Jie; Eacker, Stephen; Dawson, Valina Lynn; Dawson, Ted Murray; Bonci, Antonello

    2017-01-18

    Fear learning is a fundamental behavioral process that requires dopamine (DA) release. Experience-dependent synaptic plasticity occurs on DA neurons while an organism is engaged in aversive experiences. However, whether synaptic plasticity onto DA neurons is causally involved in aversion learning is unknown. Here, we show that a stress priming procedure enhances fear learning by engaging VTA synaptic plasticity. Moreover, we took advantage of the ability of the ATPase Thorase to regulate the internalization of AMPA receptors (AMPARs) in order to selectively manipulate glutamatergic synaptic plasticity on DA neurons. Genetic ablation of Thorase in DAT(+) neurons produced increased AMPAR surface expression and function that lead to impaired induction of both long-term depression (LTD) and long-term potentiation (LTP). Strikingly, animals lacking Thorase in DAT(+) neurons expressed greater associative learning in a fear conditioning paradigm. In conclusion, our data provide a novel, causal link between synaptic plasticity onto DA neurons and fear learning. Published by Elsevier Inc.

  5. Extinction of Learned Fear Induces Hippocampal Place Cell Remapping.

    Science.gov (United States)

    Wang, Melissa E; Yuan, Robin K; Keinath, Alexander T; Ramos Álvarez, Manuel M; Muzzio, Isabel A

    2015-06-17

    The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation.

  6. Joy, Distress, Hope, and Fear in Reinforcement Learning (Extended Abstract)

    NARCIS (Netherlands)

    Jacobs, E.J.; Broekens, J.; Jonker, C.M.

    2014-01-01

    In this paper we present a mapping between joy, distress, hope and fear, and Reinforcement Learning primitives. Joy / distress is a signal that is derived from the RL update signal, while hope/fear is derived from the utility of the current state. Agent-based simulation experiments replicate psychol

  7. Signal transduction mechanisms within the entorhinal cortex that support latent inhibition of cued fear conditioning.

    Science.gov (United States)

    Lewis, Michael C; Gould, Thomas J

    2007-10-01

    Latent inhibition is a phenomenon by which pre-exposure to a conditioned-stimulus (CS), prior to subsequent pairings of that same CS with an unconditioned-stimulus (US), results in decreased conditioned responding to the CS. Previous work in our laboratory has suggested that the entorhinal cortex is critically involved in the establishment of latent inhibition of cued fear conditioning. Furthermore, utilizing systemic pharmacology, we have demonstrated a role for of NMDA receptors, protein kinase A (PKA), and mitogen activated protein kinase (MAPK, also known as ERK) in latent inhibition of cued fear conditioning, but until now, where these cell signaling cascades are critically activated during latent inhibition of cued fear was unknown. Here, we use direct drug infusion to demonstrate that cell signaling via NMDA receptors, the cAMP/PKA pathway, and the MAPK pathway within the entorhinal cortex are critically involved in latent inhibition of cued fear conditioning. In the present study, CS pre-exposed mice received 20 CS pre-exposures 24h prior to two pairings of the same CS with a 0.53 mA foot shock US, while control animals receive no pre-exposure to the CS. The NMDA antagonist APV (0.25 or 2.5 microg/side), the cAMP inhibitor Rp-cAMP (1.8 or 18.0 microg/side), or the MAPK inhibitor U0126 (0.1 or 1.0 microg/side) were directly infused into the entorhinal cortex prior to pre-exposure. All three drugs produced dose-dependent disruptions in latent inhibition of cued fear conditioning. Importantly, none of the drugs had any effect on cued fear conditioning when administered on training day, suggesting that the effects of each of the drugs were specific to CS pre-exposure. These results are discussed in relation to the potential mechanisms of plasticity that support latent inhibition of cued fear conditioning.

  8. Latent inhibition of cued fear conditioning: an NMDA receptor-dependent process that can be established in the presence of anisomycin.

    Science.gov (United States)

    Lewis, Michael C; Gould, Thomas J

    2004-08-01

    Much of the research examining the biological basis for long-term memories has focused on mechanisms that support the formation of conditioned associations. Less information is available on biological mechanisms which underlie processes that modify the strength of conditioned associations. Latent inhibition is a phenomenon by which pre-exposure to a to-be-conditioned stimulus (CS) weakens subsequent conditioning of that CS to an unconditioned stimulus (US). Here we report that latent inhibition of cued fear conditioning is dependent on NMDA receptor activation. MK-801 (1 mg/kg), an NMDA receptor antagonist, abolished latent inhibition of cued fear conditioning. This dose of MK-801 administered before training did not disrupt cued fear conditioning. Conversely, anisomycin (150 mg/kg), a protein synthesis inhibitor, had no effect on latent inhibition of cued fear conditioning when administered 20 min before, immediately after, or 2, 4, 6, or 8 h after CS pre-exposure. Furthermore, continuous anisomycin administration (50 mg/kg, administered every 2 h for 6 h starting 20 min prior to pre-exposure) did not disrupt latent inhibition of cued fear conditioning. In addition, anisomycin had no effect on a long-lasting version of latent inhibition of cued fear conditioning that was maintained over a 7-day interval. Anisomycin administered before training, however, disrupted learning of the CS-US association. These findings suggest that latent inhibition of cued fear conditioning is a long-lasting NMDA receptor-dependent process that can develop during the inhibition of protein synthesis.

  9. Modeling startle eyeblink electromyogram to assess fear learning.

    Science.gov (United States)

    Khemka, Saurabh; Tzovara, Athina; Gerster, Samuel; Quednow, Boris B; Bach, Dominik R

    2017-02-01

    Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses or fear-potentiated startle. For the latter, various analysis approaches have been developed, but a systematic comparison of competing methodologies is lacking. Here, we investigate the suitability of a model-based approach to startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three independent fear-conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS+) from nonaversive stimuli (CS-, i.e., has high predictive validity). Importantly, our model-based approach captures fear-potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM-based approach to assessment of fear-potentiated startle, and qualify previous peak-scoring methods. Our proposed model represents a generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle modulation or prepulse inhibition of the acoustic startle response. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  10. Learned Fear of Gastrointestinal Sensations in Healthy Adults.

    Science.gov (United States)

    Ceunen, Erik; Zaman, Jonas; Weltens, Nathalie; Sarafanova, Ekaterina; Arijs, Vicky; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Van Diest, Ilse

    2016-11-01

    Gastrointestinal symptom-specific fear and anxiety are important determinants of gastrointestinal symptom perception. We studied learning of fear toward innocuous gastrointestinal sensations as a putative mechanism in the development of gastrointestinal symptom-specific fear and anxiety. Fifty-two healthy subjects (26 women) received 2 types of esophageal balloon distention at a perceptible but nonpainful intensity (conditioned stimulus [CS], the innocuous sensation) and at a painful intensity (unconditioned stimulus [US]). Subjects were assigned randomly to 1 of 2 groups. During the learning phase, the innocuous CS preceded the painful US in the experimental group (n = 26). In the control group (n = 26), on the contrary, the US never followed the CS directly. During a subsequent extinction phase, both groups received only CS distention-the painful US was no longer administered. Indexes of fear learning toward the innocuous CS distention included the skin conductance response, fear-potentiated startle (measured by the eye-blink electromyogram), and self-reported expectancy of the US. During the learning phase, only the experimental group learned to fear the innocuous gastrointestinal CS, based on the increase in US expectancy (compared with the control group, P = .04), increased skin conductance response (compared with the control group, P = .03), and potentiated startle reflex (compared with the control group, P = .001) in response to the CS. The differences between the experimental and control groups in US expectancy and skin conductance, but not fear-potentiated startle, disappeared during the extinction phase. Fear toward innocuous gastrointestinal sensations can be established through associative learning in healthy human beings. This may be an important mechanism in the development of fear of gastrointestinal symptoms, implicated in the pathophysiology of functional gastrointestinal disorders. Copyright © 2016 AGA Institute. Published by Elsevier Inc

  11. Worrying affects associative fear learning: a startle fear conditioning study

    NARCIS (Netherlands)

    Gazendam, F.J.; Kindt, M.

    2012-01-01

    A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve

  12. Interaction between the cholecystokinin and endogenous cannabinoid systems in cued fear expression and extinction retention.

    Science.gov (United States)

    Bowers, Mallory E; Ressler, Kerry J

    2015-02-01

    Post-traumatic stress disorder (PTSD) is thought to develop, in part, from improper inhibition of fear. Accordingly, one of the most effective treatment strategies for PTSD is exposure-based psychotherapy. Ideally, neuroscience would inform adjunct therapies that target the neurotransmitter systems involved in extinction processes. Separate studies have implicated the cholecystokinin (CCK) and endocannabinoid systems in fear; however, there is a high degree of anatomical colocalization between the cannabinoid 1 receptor (Cnr1) and CCK in the basolateral amygdala (BLA), a brain region critical for emotion regulation. Although most research has focused on GABA and GABAergic plasticity as the mechanism by which Cnr1 mediates fear inhibition, we hypothesize that a functional interaction between Cnr1 and CCKB receptor (CCKBR) is critical for fear extinction processes. In this study, systemic pharmacological manipulation of the cannabinoid system modulated cued fear expression in C57BL/6J mice after consolidation of auditory fear conditioning. Knockout of the CCKBR, however, had no effect on fear- or anxiety-like behaviors. Nonetheless, administration of a Cnr1 antagonist increased freezing behavior during a cued fear expression test in wild-type subjects, but had no effect on freezing behavior in CCKBR knockout littermates. In addition, we found that Cnr1-positive fibers form perisomatic clusters around CCKBR-positive cell bodies in the BLA. These CCKBR-positive cells comprise a molecularly heterogenous population of excitatory and inhibitory neurons. These findings provide novel evidence that Cnr1 contributes to cued fear expression via an interaction with the CCK system. Dysfunctional Cnr1-CCKBR interactions might contribute to the etiology of, or result from, fear-related psychiatric disease.

  13. Serotonergic Modulation of Conditioned Fear

    Directory of Open Access Journals (Sweden)

    Judith R. Homberg

    2012-01-01

    Full Text Available Conditioned fear plays a key role in anxiety disorders as well as depression and other neuropsychiatric conditions. Understanding how neuromodulators drive the associated learning and memory processes, including memory consolidation, retrieval/expression, and extinction (recall, is essential in the understanding of (individual differences in vulnerability to these disorders and their treatment. The human and rodent studies I review here together reveal, amongst others, that acute selective serotonin reuptake inhibitor (SSRI treatment facilitates fear conditioning, reduces contextual fear, and increases cued fear, chronic SSRI treatment reduces both contextual and cued fear, 5-HT1A receptors inhibit the acquisition and expression of contextual fear, 5-HT2A receptors facilitates the consolidation of cued and contextual fear, inactivation of 5-HT2C receptors facilitate the retrieval of cued fear memory, the 5-HT3 receptor mediates contextual fear, genetically induced increases in serotonin levels are associated with increased fear conditioning, impaired cued fear extinction, or impaired extinction recall, and that genetically induced 5-HT depletion increases fear conditioning and contextual fear. Several explanations are presented to reconcile seemingly paradoxical relationships between serotonin levels and conditioned fear.

  14. Prior fear conditioning and reward learning interact in fear and reward networks

    Directory of Open Access Journals (Sweden)

    Lisa eBulganin

    2014-03-01

    Full Text Available The ability to flexibly adapt responses to changes in the environment is important for survival. Previous research in humans separately examined the mechanisms underlying acquisition and extinction of aversive and appetitive conditioned responses. It is yet unclear how aversive and appetitive learning interact on a neural level during counterconditioning in humans. This functional magnetic resonance imaging (fMRI study investigated the interaction of fear conditioning and subsequent reward learning. In the first phase (fear acquisition, images predicted aversive electric shocks or no aversive outcome. In the second phase (counterconditioning, half of the CS+ and CS- were associated with monetary reward in the absence of electric stimulation. The third phase initiated reinstatement of fear through presentation of electric shocks, followed by CS presentation in the absence of shock or reward. Results indicate that participants were impaired at learning the reward contingencies for stimuli previously associated with shock. In the counterconditioning phase, prior fear association interacted with reward representation in the amygdala, where activation was decreased for rewarded compared to unrewarded CS- trials, while there was no reward-related difference in CS+ trials. In the reinstatement phase, an interaction of previous fear association and previous reward status was observed in a reward network consisting of substantia nigra / ventral tegmental area (SN/VTA, striatum and orbitofrontal cortex (OFC, where activation was increased by previous reward association only for CS- but not for CS+ trials. These findings suggest that during counterconditioning, prior fear conditioning interferes with reward learning, subsequently leading to lower activation of the reward network.

  15. Fear conditioning, safety learning, and sleep in humans.

    Science.gov (United States)

    Marshall, Anisa J; Acheson, Dean T; Risbrough, Victoria B; Straus, Laura D; Drummond, Sean P A

    2014-08-27

    Fear conditioning is considered an animal model of post-traumatic stress disorder. Such models have shown fear conditioning disrupts subsequent rapid eye movement sleep (REM). Here, we provide a translation of these models into humans. Using the fear potentiated startle (FPS) procedure, we examined the effects of fear conditioning and safety signal learning on subsequent REM sleep in healthy adults. We also examined the effects of changes in REM sleep on retention of fear and safety learning. Participants (n = 42 normal controls) spent 3 consecutive nights in the laboratory. The first was an adaptation night. Following the second night, we administered a FPS procedure that included pairing a wrist shock with a threat signal and a safety signal never paired with a shock. The next day, we administered the FPS procedure again, with no wrist shocks to any stimulus, to measure retention of fear and safety. Canonical correlations assessed the relationship between FPS response and REM sleep. Results demonstrated that increased safety signal learning during the initial acquisition phase was associated with increased REM sleep consolidation that night, with 28.4% of the variance in increased REM sleep consolidation from baseline accounted for by safety signal learning. Overnight REM sleep was, in turn, related to overnight retention of fear and safety learning, with 22.5% of the variance in startle retention accounted for by REM sleep. These data suggest that sleep difficulties, specifically REM sleep fragmentation, may play a mechanistic role in post-traumatic stress disorder via an influence on safety signal learning and/or threat-safety discrimination.

  16. Oxytocin Facilitates Pavlovian Fear Learning in Males.

    Science.gov (United States)

    Eckstein, Monika; Scheele, Dirk; Patin, Alexandra; Preckel, Katrin; Becker, Benjamin; Walter, Annika; Domschke, Katharina; Grinevich, Valery; Maier, Wolfgang; Hurlemann, René

    2016-03-01

    In human evolution, social group living and Pavlovian fear conditioning have evolved as adaptive mechanisms promoting survival and reproductive success. The evolutionarily conserved hypothalamic peptide oxytocin is a key modulator of human sociality, but its effects on fear conditioning are still elusive. In the present randomized controlled study involving 97 healthy male subjects, we therefore employed functional magnetic resonance imaging and simultaneous skin conductance response (SCR) measures to characterize the modulatory influence of intranasal oxytocin (24 IU) on Pavlovian fear conditioning. We found that the peptide strengthened conditioning on both the behavioral and neural levels. Specifically, subjects exhibited faster task-related responses and enhanced SCRs to fear-associated stimuli in the late phase of conditioning, which was paralleled by heightened activity in cingulate cortex subregions in the absence of changes in amygdala function. This speaks against amygdalocentric views of oxytocin having pure anxiolytic-like effects. Instead, it suggests that the peptide enables extremely rapid and flexible adaptation to fear signals in social contexts, which may confer clear evolutionary advantages but could also elevate vulnerability for the pathological sequelae of interpersonal trauma.

  17. Adrenal-dependent diurnal modulation of conditioned fear extinction learning.

    Science.gov (United States)

    Woodruff, Elizabeth R; Greenwood, Benjamin N; Chun, Lauren E; Fardi, Sara; Hinds, Laura R; Spencer, Robert L

    2015-06-01

    Post traumatic stress disorder (PTSD) is associated with altered conditioned fear extinction expression and impaired circadian function including dysregulation of glucocorticoid hormone secretion. We examined in adult male rats the relationship between conditioned fear extinction learning, circadian phase, and endogenous glucocorticoids (CORT). Rats maintained on a 12h light:dark cycle were trained and tested across 3 separate daily sessions (conditioned fear acquisition and 2 extinction sessions) that were administered during either the rats' active or inactive circadian phase. In an initial experiment we found that rats at both circadian phases acquired and extinguished auditory cue conditioned fear to a similar degree in the first extinction session. However, rats trained and tested at zeitgeber time-16 (ZT16) (active phase) showed enhanced extinction memory expression during the second extinction session compared to rats trained and tested at ZT4 (inactive phase). In a follow-up experiment, adrenalectomized (ADX) or sham surgery rats were similarly trained and tested across 3 separate daily sessions at either ZT4 or ZT16. ADX had no effect on conditioned fear acquisition or conditioned fear memory. Sham ADX rats trained and tested at ZT16 exhibited better extinction learning across the two extinction sessions compared to all other groups of rats. These results indicate that conditioned fear extinction learning is modulated by time of day, and this diurnal modulation requires the presence of adrenal hormones. These results support an important role of CORT-dependent circadian processes in regulating conditioned fear extinction learning, which may be capitalized upon to optimize effective treatment of PTSD.

  18. Adrenal-dependent diurnal modulation of conditioned fear extinction learning

    Science.gov (United States)

    Woodruff, Elizabeth R.; Greenwood, Benjamin N.; Chun, Lauren E.; Fardi, Sara; Hinds, Laura R.; Spencer, Robert L.

    2015-01-01

    Post Traumatic Stress Disorder (PTSD) is associated with altered conditioned fear extinction expression and impaired circadian function including dysregulation of glucocorticoid hormone secretion. We examined in adult male rats the relationship between conditioned fear extinction learning, circadian phase, and endogenous glucocorticoids (CORT). Rats maintained on a 12 hr light:dark cycle were trained and tested across 3 separate daily sessions (conditioned fear acquisition and 2 extinction sessions) that were administered during either the rats’ active or inactive circadian phase. In an initial experiment we found that rats at both circadian phases acquired and extinguished auditory cue conditioned fear to a similar degree in the first extinction session. However, rats trained and tested at zeitgeber time-16 (ZT16) (active phase) showed enhanced extinction memory expression during the second extinction session compared to rats trained and tested at ZT4 (inactive phase). In a follow-up experiment, adrenalectomized (ADX) or sham surgery rats were similarly trained and tested across 3 separate daily sessions at either ZT4 or ZT16. ADX had no effect on conditioned fear acquisition or conditioned fear memory. Sham ADX rats trained and tested at ZT16 exhibited better extinction learning across the two extinction sessions compared to all other groups of rats. These results indicate that conditioned fear extinction learning is modulated by time of day, and this diurnal modulation requires the presence of adrenal hormones. These results support an important role of CORT-dependent circadian processes in regulating conditioned fear extinction learning, which may be capitalized upon to optimize effective treatment of PTSD. PMID:25746455

  19. THE ROLE OF BDNF IN THE DEVELOPMENT OF FEAR LEARNING

    Science.gov (United States)

    Dincheva, Iva; Lynch, Niccola B.; Lee, Francis S.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders. PMID:27699937

  20. Complementary Roles for Amygdala and Periaqueductal Gray in Temporal-Difference Fear Learning

    Science.gov (United States)

    Cole, Sindy; McNally, Gavan P.

    2009-01-01

    Pavlovian fear conditioning is not a unitary process. At the neurobiological level multiple brain regions and neurotransmitters contribute to fear learning. At the behavioral level many variables contribute to fear learning including the physical salience of the events being learned about, the direction and magnitude of predictive error, and the…

  1. Resting heart rate variability predicts safety learning and fear extinction in an interoceptive fear conditioning paradigm.

    Directory of Open Access Journals (Sweden)

    Meike Pappens

    Full Text Available This study aimed to investigate whether interindividual differences in autonomic inhibitory control predict safety learning and fear extinction in an interoceptive fear conditioning paradigm. Data from a previously reported study (N = 40 were extended (N = 17 and re-analyzed to test whether healthy participants' resting heart rate variability (HRV - a proxy of cardiac vagal tone - predicts learning performance. The conditioned stimulus (CS was a slight sensation of breathlessness induced by a flow resistor, the unconditioned stimulus (US was an aversive short-lasting suffocation experience induced by a complete occlusion of the breathing circuitry. During acquisition, the paired group received 6 paired CS-US presentations; the control group received 6 explicitly unpaired CS-US presentations. In the extinction phase, both groups were exposed to 6 CS-only presentations. Measures included startle blink EMG, skin conductance responses (SCR and US-expectancy ratings. Resting HRV significantly predicted the startle blink EMG learning curves both during acquisition and extinction. In the unpaired group, higher levels of HRV at rest predicted safety learning to the CS during acquisition. In the paired group, higher levels of HRV were associated with better extinction. Our findings suggest that the strength or integrity of prefrontal inhibitory mechanisms involved in safety- and extinction learning can be indexed by HRV at rest.

  2. Weaving the (neuronal) web: fear learning in spider phobia.

    Science.gov (United States)

    Schweckendiek, Jan; Klucken, Tim; Merz, Christian J; Tabbert, Katharina; Walter, Bertram; Ambach, Wolfgang; Vaitl, Dieter; Stark, Rudolf

    2011-01-01

    Theories of specific phobias consider classical conditioning as a central mechanism in the pathogenesis and maintenance of the disorder. Although the neuronal network underlying human fear conditioning is understood in considerable detail, no study to date has examined the neuronal correlates of fear conditioning directly in patients with specific phobias. Using functional magnet resonance imaging (fMRI) we investigated conditioned responses using phobia-relevant and non-phobia-relevant unconditioned stimuli in patients with specific phobias (n=15) and healthy controls (n=14) by means of a differential picture-picture conditioning paradigm: three neutral geometric figures (conditioned stimuli) were followed by either pictures of spiders, highly aversive scenes or household items (unconditioned stimuli), respectively. Enhanced activations within the fear network (medial prefrontal cortex, anterior cingulate cortex, amygdala, insula and thalamus) were observed in response to the phobia-related conditioned stimulus. Further, spider phobic subjects displayed higher amygdala activation in response to the phobia-related conditioned stimulus than to the non-phobia-related conditioned stimulus. Moreover, no differences between patients and healthy controls emerged regarding the non-phobia-related conditioned stimulus. The results imply that learned phobic fear is based on exaggerated responses in structures belonging to the fear network and emphasize the importance of the amygdala in the processing of phobic fear. Further, altered responding of the fear network in patients was only observed in response to the phobia-related conditioned stimulus but not to the non-phobia-related conditioned stimulus indicating no differences in general conditionability between patients with specific phobias and healthy controls. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Hearing is believing: Birds learn fear.

    Science.gov (United States)

    Sturdy, Christopher B; Proppe, Darren S

    2016-09-01

    Although it is known that animals attend to the vocalizations of others (referred to as eavesdropping), what has been missing, or at least left experimentally unproven, until now is whether animals can learn new associations between a signal and a threat. Here Magrath and colleagues (Current Biology, 25(15), 2047-2050, 2015) have for the first time conducted a field experiment that demonstrates just this: superb fairy-wrens learned to associate a novel vocalization with a predator.

  4. Persistent Prelimbic Cortex Activity Contributes to Enhanced Learned Fear Expression in Females

    Science.gov (United States)

    Fenton, Georgina E.; Pollard, Amelia K.; Halliday, David M.; Mason, Rob; Bredy, Timothy W.; Stevenson, Carl W.

    2014-01-01

    Anxiety disorders, such as post-traumatic stress, are more prevalent in women and are characterized by impaired inhibition of learned fear and medial prefrontal cortex (mPFC) dysfunction. Here we examined sex differences in fear extinction and mPFC activity in rats. Females showed more learned fear expression during extinction and its recall, but…

  5. Sensitive Periods in Affective Development: Nonlinear Maturation of Fear Learning

    Science.gov (United States)

    Hartley, Catherine A; Lee, Francis S

    2015-01-01

    At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development. PMID:25035083

  6. The influence of personality on neural mechanisms of observational fear and reward learning.

    Science.gov (United States)

    Hooker, Christine I; Verosky, Sara C; Miyakawa, Asako; Knight, Robert T; D'Esposito, Mark

    2008-09-01

    Fear and reward learning can occur through direct experience or observation. Both channels can enhance survival or create maladaptive behavior. We used fMRI to isolate neural mechanisms of observational fear and reward learning and investigate whether neural response varied according to individual differences in neuroticism and extraversion. Participants learned object-emotion associations by observing a woman respond with fearful (or neutral) and happy (or neutral) facial expressions to novel objects. The amygdala-hippocampal complex was active when learning the object-fear association, and the hippocampus was active when learning the object-happy association. After learning, objects were presented alone; amygdala activity was greater for the fear (vs. neutral) and happy (vs. neutral) associated object. Importantly, greater amygdala-hippocampal activity during fear (vs. neutral) learning predicted better recognition of learned objects on a subsequent memory test. Furthermore, personality modulated neural mechanisms of learning. Neuroticism positively correlated with neural activity in the amygdala and hippocampus during fear (vs. neutral) learning. Low extraversion/high introversion was related to faster behavioral predictions of the fearful and neutral expressions during fear learning. In addition, low extraversion/high introversion was related to greater amygdala activity during happy (vs. neutral) learning, happy (vs. neutral) object recognition, and faster reaction times for predicting happy and neutral expressions during reward learning. These findings suggest that neuroticism is associated with an increased sensitivity in the neural mechanism for fear learning which leads to enhanced encoding of fear associations, and that low extraversion/high introversion is related to enhanced conditionability for both fear and reward learning.

  7. One-trial overshadowing: Evidence for fast specific fear learning in humans.

    Science.gov (United States)

    Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram

    2017-03-01

    Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Persistence of Amygdala-Hippocampal Connectivity and Multi-Voxel Correlation Structures During Awake Rest After Fear Learning Predicts Long-Term Expression of Fear

    NARCIS (Netherlands)

    Hermans, E.J.; Kanen, J.W.; Tambini, A.; Fernandez, G.; Davachi, L.; Phelps, E.A.

    2017-01-01

    After encoding, memories undergo a process of consolidation that determines long-term retention. For conditioned fear, animal models postulate that consolidation involves reactivations of neuronal assemblies supporting fear learning during postlearning "offline" periods. However, no human studies to

  9. Vicarious learning and unlearning of fear in childhood via mother and stranger models.

    Science.gov (United States)

    Dunne, Güler; Askew, Chris

    2013-10-01

    Evidence shows that anxiety runs in families. One reason may be that children are particularly susceptible to learning fear from their parents. The current study compared children's fear beliefs and avoidance preferences for animals following positive or fearful modeling by mothers and strangers in vicarious learning and unlearning procedures. Children aged 6 to 10 years (N = 60) were exposed to pictures of novel animals either alone (control) or together with pictures of their mother or a stranger expressing fear or happiness. During unlearning (counterconditioning), children saw each animal again with their mother or a stranger expressing the opposite facial expression. Following vicarious learning, children's fear beliefs increased for animals seen with scared faces and this effect was the same whether fear was modeled by mothers or strangers. Fear beliefs and avoidance preferences decreased following positive counterconditioning and increased following fear counterconditioning. Again, learning was the same whether the model was the child's mother or a stranger. These findings indicate that children in this age group can vicariously learn and unlearn fear-related cognitions from both strangers and mothers. This has implications for our understanding of fear acquisition and the development of early interventions to prevent and reverse childhood fears and phobias.

  10. Serotonin in fear conditioning processes.

    Science.gov (United States)

    Bauer, Elizabeth P

    2015-01-15

    This review describes the latest developments in our understanding of how the serotonergic system modulates Pavlovian fear conditioning, fear expression and fear extinction. These different phases of classical fear conditioning involve coordinated interactions between the extended amygdala, hippocampus and prefrontal cortices. Here, I first define the different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. The serotonergic system can be manipulated by administering serotonin receptor agonists and antagonists, as well as selective serotonin reuptake inhibitors (SSRIs), and these can have significant effects on emotional learning and memory. Moreover, variations in serotonergic genes can influence fear conditioning and extinction processes, and can underlie differential responses to pharmacological manipulations. This research has considerable translational significance as imbalances in the serotonergic system have been linked to anxiety and depression, while abnormalities in the mechanisms of conditioned fear contribute to anxiety disorders.

  11. Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder

    OpenAIRE

    Morey, R.A.; Dunsmoor, J E; Haswell, C C; Brown, V M; Vora, A; Weiner, J.; Stjepanovic, D; Wagner, H R; ,; Brancu, Mira; Marx, Christine E.; Naylor, Jennifer C.; Van Voorhees, Elizabeth; Taber, Katherine H.; Beckham, Jean C.

    2015-01-01

    Fear conditioning is an established model for investigating posttraumatic stress disorder (PTSD). However, symptom triggers may vaguely resemble the initial traumatic event, differing on a variety of sensory and affective dimensions. We extended the fear-conditioning model to assess generalization of conditioned fear on fear processing neurocircuitry in PTSD. Military veterans (n=67) consisting of PTSD (n=32) and trauma-exposed comparison (n=35) groups underwent functional magnetic resonance ...

  12. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits : Reversal by blockade of CRF1 receptors

    NARCIS (Netherlands)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-01-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the

  13. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits : Reversal by blockade of CRF1 receptors

    NARCIS (Netherlands)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-01-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the

  14. Cannabinoid modulation of zebrafish fear learning and its functional analysis investigated by c-Fos expression.

    Science.gov (United States)

    Ruhl, Tim; Zeymer, Malou; von der Emde, Gerhard

    2017-02-01

    It has been shown that zebrafish fear learning proceeds in the same way as reported for rodents. However, in zebrafish fear learning it is possible to substitute the use of electric shocks as unconditioned stimulus and utilize the inborn fear responses to the alarm substance Schreckstoff, instead. The skin extract Schreckstoff elicits typical fear reactions such as preferred bottom dwelling, swimming in a tighter shoal, erratic movements and freezing. This natural fear behavior can be transferred from Schreckstoff to any other sensory stimulus by associative conditioning (fear learning). We presented Schreckstoff simultaneously with a red light stimulus and tested the effectiveness of fear learning during memory retrieval. The two brain regions known to be relevant for learning in zebrafish are the medial and the lateral pallium of the dorsal telencephalon, both containing rich expressions of the endocannabinoid receptor CB1. To test the influence of the zebrafish endocannabinoid system on fear acquisition learning, an experimental group of ten fish was pretreated with the CB1 receptor agonist THC (Δ(9)-tetrahydrocannabinol; 100nM for 1h). We found that CB1 activation significantly inhibited acquisition of fear learning, possibly by impairing stimulus encoding processes in pallial areas. This was supported by analyzes of c-Fos expression in the brains of experimental animals. Schreckstoff exposure during fear acquisition learning and memory retrieval during red light presentation increased the number of labelled cells in pallial structures, but in no other brain region investigated (e.g. striatum, thalamus, and habenula). THC administration before fear conditioning significantly decreased c-Fos expression in these structures to a level similar to the control group without Schreckstoff experience, suggesting that Schreckstoff induced fear learning requires brain circuits restricted mainly to pallial regions of the dorsal telencephalon. Copyright © 2016 Elsevier

  15. Social Modulation of Associative Fear Learning by Pheromone Communication

    Science.gov (United States)

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…

  16. Social Modulation of Associative Fear Learning by Pheromone Communication

    Science.gov (United States)

    Bredy, Timothy W.; Barad, Mark

    2009-01-01

    Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…

  17. Neural substrates of individual differences in human fear learning: evidence from concurrent fMRI, fear-potentiated startle, and US-expectancy data

    NARCIS (Netherlands)

    van Well, S.; Visser, R.M.; Scholte, H.S.; Kindt, M.

    2012-01-01

    To provide insight into individual differences in fear learning, we examined the emotional and cognitive expressions of discriminative fear conditioning in direct relation to its neural substrates. Contrary to previous behavioral-neural (fMRI) research on fear learning—in which the emotional

  18. Role of conceptual knowledge in learning and retention of conditioned fear.

    Science.gov (United States)

    Dunsmoor, Joseph E; Martin, Alex; LaBar, Kevin S

    2012-02-01

    Associating sensory cues with aversive outcomes is a relatively basic process shared across species. Yet higher-order cognitive processes likely contribute to associative fear learning in many circumstances, especially in humans. Here we ask whether fears can be acquired based on conceptual knowledge of object categories, and whether such concept-based fear conditioning leads to enhanced memory representations for conditioned objects. Participants were presented with a heterogeneous collection of images of animals and tools. Objects from one category were reinforced by an electrical shock, whereas the other category was never reinforced. Results confirmed concept-based fear learning through subjective report of shock expectancy, heightened skin conductance responses, and enhanced 24h recognition memory for items from the conditioned category. These results provide novel evidence that conditioned fear can generalize through knowledge of object concepts, and sheds light on the persistent nature of fear memories and category-based fear responses symptomatic of some anxiety disorders.

  19. Opioid Receptors Mediate Direct Predictive Fear Learning: Evidence from One-Trial Blocking

    Science.gov (United States)

    Cole, Sindy; McNally, Gavan P.

    2007-01-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including [mu]-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear…

  20. Personality Predicts Individual Variation in Fear Learning : A Multilevel Growth Modeling Approach

    NARCIS (Netherlands)

    Gazendam, Femke J.; Kamphuis, Jan H.; Eigenhuis, Annemarie; Huizenga, Hilde M H; Soeter, Marieke; Bos, Marieke G N; Sevenster, Dieuwke|info:eu-repo/dai/nl/375491104; Kindt, Merel

    2015-01-01

    Although fear-learning research has tended to focus on typical responses, there is substantial individual variation in response to threat. Here, we investigated how personality is related to variability in associative fear learning. We used multilevel growth curve modeling to examine the unique and

  1. Personality predicts individual variation in fear learning: a multilevel growth modeling approach

    NARCIS (Netherlands)

    Gazendam, F.J.; Kamphuis, J.H.; Eigenhuis, A.; Huizenga, H.M.; Soeter, M.; Bos, M.G.N.; Sevenster, D.; Kindt, M.

    2015-01-01

    Although fear-learning research has tended to focus on typical responses, there is substantial individual variation in response to threat. Here, we investigated how personality is related to variability in associative fear learning. We used multilevel growth curve modeling to examine the unique and

  2. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain

    OpenAIRE

    Hefner, Kathryn; Whittle, Nigel; Juhasz, Jaynann; Norcross, Maxine; Karlsson, Rose-Marie; Saksida, Lisa M.; Bussey, Timothy J.; Singewald, Nicolas; Holmes, Andrew

    2008-01-01

    Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor for anxiety disorders. There are few examples of naturally-occurring animal models of impaired extinction. The present study compared fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The phenotypic specificity of this deficit was evaluated by comparing 129S1 and C5...

  3. Fear learning and memory across adolescent development Hormones and Behavior Special Issue: Puberty and Adolescence

    Science.gov (United States)

    Pattwell, Siobhan S.; Lee, Francis S.; Casey, B.J.

    2013-01-01

    Throughout the past several decades, studies have uncovered a wealth of information about the neural circuitry underlying fear learning and extinction that has helped to inform treatments for fear-related disorders such as post-traumatic stress and anxiety. Yet, up to 40 percent of people do not respond to such treatments. Adolescence, in particular, is a developmental stage during which anxiety disorders peak, yet little is known about the development of fear-related neural circuitry during this period. Moreover, pharmacological and behavioral therapies that have been developed are based on mature circuitry and function. Here, we review neural circuitry implicated in fear learning and data from adolescent mouse and human fear learning studies. In addition, we propose a developmental model of fear neural circuitry that may optimize current treatments and inform when, during development, specific treatments for anxiety may be most effective. PMID:23998679

  4. Fear learning and memory across adolescent development: Hormones and Behavior Special Issue: Puberty and Adolescence.

    Science.gov (United States)

    Pattwell, Siobhan S; Lee, Francis S; Casey, B J

    2013-07-01

    Throughout the past several decades, studies have uncovered a wealth of information about the neural circuitry underlying fear learning and extinction that has helped to inform treatments for fear-related disorders such as post-traumatic stress and anxiety. Yet, up to 40% of people do not respond to such treatments. Adolescence, in particular, is a developmental stage during which anxiety disorders peak, yet little is known about the development of fear-related neural circuitry during this period. Moreover, pharmacological and behavioral therapies that have been developed are based on mature circuitry and function. Here, we review neural circuitry implicated in fear learning and data from adolescent mouse and human fear learning studies. In addition, we propose a developmental model of fear neural circuitry that may optimize current treatments and inform when, during development, specific treatments for anxiety may be most effective. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Murine GRPR and stathmin control in opposite directions both cued fear extinction and neural activities of the amygdala and prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Guillaume Martel

    Full Text Available Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD. Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR. Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.

  6. Sensitization of fear learning to mild unconditional stimuli in male and female rats.

    Science.gov (United States)

    Poulos, Andrew M; Zhuravka, Irina; Long, Virginia; Gannam, Camille; Fanselow, Michael

    2015-02-01

    Stress-enhanced fear learning (SEFL) refers to the long-lasting nonassociative sensitization produced by intense stress (e.g., repeated and unpredictable footshock) that results in increased fear learning to a mild conditioning regimen (e.g., one shock). SEFL experiments suggest that one component of posttraumatic behavior is inappropriately strong fear conditioning occurring to relatively mild stressors. Past reports of SEFL have used the same intensity (1 mA) of footshock to cause both the sensitization and conditioning of new fear. SEFL would be a particularly problematic component of posttrauma behavior if intense stress results in substantial fear conditioning under conditions that would not normally support conditioning. Therefore, we determined if SEFL occurred when the conditioning shock was substantially milder than the SEFL-inducing shock. The results indicate that exposure to a sensitizing regimen of shock can convert a mild footshock that normally does not support measurable levels of fear conditioning into one that causes substantial learned fear. Moreover, as the intensity of single footshock increases, so does the capacity of the prior stressor to contribute to the sensitization of fear responses. Consistent with prior studies, males acquired and retained a greater level of fear conditioning than female rats, however the level of sensitization did not differ between sexes. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  7. AX+, BX- Discrimination Learning in the Fear-Potentiated Startle Paradigm: Possible Relevance to Inhibitory Fear Learning in Extinction

    Science.gov (United States)

    Myers, Karyn M.; Davis, Michael

    2004-01-01

    The neural mechanisms of fear suppression most commonly are studied through the use of extinction, a behavioral procedure in which a feared stimulus (i.e., one previously paired with shock) is nonreinforced repeatedly, leading to a reduction or elimination of the fear response. Although extinction is perhaps the most convenient index of fear…

  8. A reinforcement learning model of joy, distress, hope and fear

    Science.gov (United States)

    Broekens, Joost; Jacobs, Elmer; Jonker, Catholijn M.

    2015-07-01

    In this paper we computationally study the relation between adaptive behaviour and emotion. Using the reinforcement learning framework, we propose that learned state utility, ?, models fear (negative) and hope (positive) based on the fact that both signals are about anticipation of loss or gain. Further, we propose that joy/distress is a signal similar to the error signal. We present agent-based simulation experiments that show that this model replicates psychological and behavioural dynamics of emotion. This work distinguishes itself by assessing the dynamics of emotion in an adaptive agent framework - coupling it to the literature on habituation, development, extinction and hope theory. Our results support the idea that the function of emotion is to provide a complex feedback signal for an organism to adapt its behaviour. Our work is relevant for understanding the relation between emotion and adaptation in animals, as well as for human-robot interaction, in particular how emotional signals can be used to communicate between adaptive agents and humans.

  9. Individual differences in discriminatory fear learning under conditions of ambiguity: a vulnerability factor for anxiety disorders?

    NARCIS (Netherlands)

    Arnaudova, I.; Krypotos, A.M.; Effting, M.; Boddez, Y.; Kindt, M.; Beckers, T.

    2013-01-01

    Complex fear learning procedures might be better suited than the common differential fear-conditioning paradigm for detecting individual differences related to vulnerability for anxiety disorders. Two such procedures are the blocking procedure and the protection-from-overshadowing procedure. Their

  10. Cannabidiol regulation of learned fear: implications for treating anxiety-related disorders

    Directory of Open Access Journals (Sweden)

    Regimantas Jurkus

    2016-11-01

    Full Text Available Anxiety and trauma-related disorders are psychiatric diseases with a lifetime prevalence of up to 25%. Phobias and post-traumatic stress disorder (PTSD are characterized by abnormal and persistent memories of fear-related contexts and cues. The effects of psychological treatments such as exposure therapy are often only temporary and medications can be ineffective and have adverse side effects. Growing evidence from human and animal studies indicates that cannabidiol, the main non-psychotomimetic phytocannabinoid present in Cannabis sativa, alleviates anxiety in paradigms assessing innate fear. More recently, the effects of cannabidiol on learned fear have been investigated in preclinical studies with translational relevance for phobias and PTSD. Here we review the findings from these studies, with an emphasis on cannabidiol regulation of contextual fear. The evidence indicates that cannabidiol reduces learned fear in different ways: (1 cannabidiol decreases fear expression acutely, (2 cannabidiol disrupts memory reconsolidation, leading to sustained fear attenuation upon memory retrieval, and (3 cannabidiol enhances extinction, the psychological process by which exposure therapy inhibits learned fear. We also present novel data on cannabidiol regulation of learned fear related to explicit cues, which indicates that auditory fear expression is also reduced acutely by cannabidiol. We conclude by outlining future directions for research to elucidate the neural circuit, psychological, cellular, and molecular mechanisms underlying the regulation of fear memory processing by cannabidiol. This line of investigation may lead to the development of cannabidiol as a novel therapeutic approach for treating anxiety and trauma-related disorders such as phobias and PTSD in the future.

  11. Cannabidiol Regulation of Learned Fear: Implications for Treating Anxiety-Related Disorders

    Science.gov (United States)

    Jurkus, Regimantas; Day, Harriet L. L.; Guimarães, Francisco S.; Lee, Jonathan L. C.; Bertoglio, Leandro J.; Stevenson, Carl W.

    2016-01-01

    Anxiety and trauma-related disorders are psychiatric diseases with a lifetime prevalence of up to 25%. Phobias and post-traumatic stress disorder (PTSD) are characterized by abnormal and persistent memories of fear-related contexts and cues. The effects of psychological treatments such as exposure therapy are often only temporary and medications can be ineffective and have adverse side effects. Growing evidence from human and animal studies indicates that cannabidiol, the main non-psychotomimetic phytocannabinoid present in Cannabis sativa, alleviates anxiety in paradigms assessing innate fear. More recently, the effects of cannabidiol on learned fear have been investigated in preclinical studies with translational relevance for phobias and PTSD. Here we review the findings from these studies, with an emphasis on cannabidiol regulation of contextual fear. The evidence indicates that cannabidiol reduces learned fear in different ways: (1) cannabidiol decreases fear expression acutely, (2) cannabidiol disrupts memory reconsolidation, leading to sustained fear attenuation upon memory retrieval, and (3) cannabidiol enhances extinction, the psychological process by which exposure therapy inhibits learned fear. We also present novel data on cannabidiol regulation of learned fear related to explicit cues, which indicates that auditory fear expression is also reduced acutely by cannabidiol. We conclude by outlining future directions for research to elucidate the neural circuit, psychological, cellular, and molecular mechanisms underlying the regulation of fear memory processing by cannabidiol. This line of investigation may lead to the development of cannabidiol as a novel therapeutic approach for treating anxiety and trauma-related disorders such as phobias and PTSD in the future. PMID:27932983

  12. Cortisol modifies extinction learning of recently acquired fear in men.

    Science.gov (United States)

    Merz, Christian Josef; Hermann, Andrea; Stark, Rudolf; Wolf, Oliver Tobias

    2014-09-01

    Exposure therapy builds on the mechanism of fear extinction leading to decreased fear responses. How the stress hormone cortisol affects brain regions involved in fear extinction in humans is unknown. For this reason, we tested 32 men randomly assigned to receive either 30 mg hydrocortisone or placebo 45 min before fear extinction. In fear acquisition, a picture of a geometrical figure was either partially paired (conditioned stimulus; CS+) or not paired (CS-) with an electrical stimulation (unconditioned stimulus; UCS). In fear extinction, each CS was presented again, but no UCS occurred. Cortisol increased conditioned skin conductance responses in early and late extinction. In early extinction, higher activation towards the CS- than to the CS+ was found in the amygdala, hippocampus and posterior parahippocampal gyrus. This pattern might be associated with the establishment of a new memory trace. In late extinction, the placebo compared with the cortisol group displayed enhanced CS+/CS- differentiation in the amygdala, medial frontal cortex and nucleus accumbens. A change from early deactivation to late activation of the extinction circuit as seen in the placebo group seems to be needed to enhance extinction and to reduce fear. Cortisol appears to interfere with this process thereby impairing extinction of recently acquired conditioned fear.

  13. Cortisol modifies extinction learning of recently acquired fear in men

    Science.gov (United States)

    Hermann, Andrea; Stark, Rudolf; Wolf, Oliver Tobias

    2014-01-01

    Exposure therapy builds on the mechanism of fear extinction leading to decreased fear responses. How the stress hormone cortisol affects brain regions involved in fear extinction in humans is unknown. For this reason, we tested 32 men randomly assigned to receive either 30 mg hydrocortisone or placebo 45 min before fear extinction. In fear acquisition, a picture of a geometrical figure was either partially paired (conditioned stimulus; CS+) or not paired (CS−) with an electrical stimulation (unconditioned stimulus; UCS). In fear extinction, each CS was presented again, but no UCS occurred. Cortisol increased conditioned skin conductance responses in early and late extinction. In early extinction, higher activation towards the CS− than to the CS+ was found in the amygdala, hippocampus and posterior parahippocampal gyrus. This pattern might be associated with the establishment of a new memory trace. In late extinction, the placebo compared with the cortisol group displayed enhanced CS+/CS− differentiation in the amygdala, medial frontal cortex and nucleus accumbens. A change from early deactivation to late activation of the extinction circuit as seen in the placebo group seems to be needed to enhance extinction and to reduce fear. Cortisol appears to interfere with this process thereby impairing extinction of recently acquired conditioned fear. PMID:23945999

  14. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    Science.gov (United States)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear.

  15. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction.

    Science.gov (United States)

    Long, Virginia A; Fanselow, Michael S

    2012-11-01

    Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24 h after stress. Recent studies found that extinction from 10 min to 1 h subsequent to fear conditioning "erased" learning, whereas later extinction, occurring from 24 to 72 h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial's procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10 min or 72 h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments.

  16. Preexposure to (un)predictable shock modulates discriminative fear learning between cue and context: an investigation of the interaction between fear and anxiety.

    Science.gov (United States)

    Meulders, Ann; Vervliet, Bram; Fonteyne, Riet; Baeyens, Frank; Hermans, Dirk; Vansteenwegen, Debora

    2012-05-01

    It has been suggested that prior experiences with unpredictable/uncontrollable stressors facilitate subsequent fear learning and the development of anxiety disorders. However, animal research documents that preexposure to unpredictable stressors (USs) impede later fear conditioning with that US. These differential predictions were tested in a human experimental model of clinical anxiety. One (US-only) group was preexposed to unpredictable shocks, a second (Unpaired) group received explicitly unpaired presentations of a neutral shape and the shock, and a third (Paired) group received paired shape-shock presentations. Next, all groups received training with a novel shape, using the same shock (50% reinforcement). Fear responding was assessed through startle modulation and online shock-expectancy ratings. Results showed retarded fear learning in the unpredictable groups compared to the predictable group. We argue that prior experiences of unpredictability may still contribute to the development of clinical anxiety, by impeding adaptive fear learning and perpetuating the perception of unpredictability/uncontrollability.

  17. A "Fear" Studies Perspective and Critique: Analyzing English and Stengel's Progressive Study of Fear and Learning in "Education Theory." Technical Paper No. 37

    Science.gov (United States)

    Fisher, R. Michael

    2011-01-01

    The author critiques the progressive approach of two contemporary educational philosophers (English and Stengel) on the topic of fear and learning. Using a postmodern integral approach, this article examines the tendency of reductionism, individualism, and psychologism as part of a hegemonic liberalism and modernism in discourses on fear and…

  18. Nothing is safe: Intolerance of uncertainty is associated with compromised fear extinction learning.

    Science.gov (United States)

    Morriss, Jayne; Christakou, Anastasia; van Reekum, Carien M

    2016-12-01

    Extinction-resistant fear is considered to be a central feature of pathological anxiety. Here we sought to determine if individual differences in Intolerance of Uncertainty (IU), a potential risk factor for anxiety disorders, underlies compromised fear extinction. We tested this hypothesis by recording electrodermal activity in 38 healthy participants during fear acquisition and extinction. We assessed the temporality of fear extinction, by examining early and late extinction learning. During early extinction, low IU was associated with larger skin conductance responses to learned threat vs. safety cues, whereas high IU was associated with skin conductance responding to both threat and safety cues, but no cue discrimination. During late extinction, low IU showed no difference in skin conductance between learned threat and safety cues, whilst high IU predicted continued fear expression to learned threat, indexed by larger skin conductance to threat vs. safety cues. These findings suggest a critical role of uncertainty-based mechanisms in the maintenance of learned fear. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Altered Pain Perception and Fear-Learning Deficits in Subjects With Posttraumatic Stress Disorder.

    Science.gov (United States)

    Jenewein, Josef; Erni, Jeannine; Moergeli, Hanspeter; Grillon, Christian; Schumacher, Sonja; Mueller-Pfeiffer, Christoph; Hassanpour, Katayun; Seiler, Annina; Wittmann, Lutz; Schnyder, Ulrich; Hasler, Gregor

    2016-12-01

    There is growing evidence that fear-learning abnormalities are involved in the development of posttraumatic stress disorder (PTSD) and chronic pain. More than 50% of PTSD patients suffer from chronic pain. This study aimed to examine the role of fear-learning deficits in the link between pain perception and PTSD. We included 19 subjects with PTSD and 21 age- and sex-matched healthy control subjects in a fear-conditioning experiment. The conditioned stimulus (CS) consisted of visual signs flashed upon a screen in front of each subject. The unconditioned stimulus was either a low or high temperature impulse delivered through a thermal contact thermode on the subjects' hand. A designation of 'CS-' was assigned to CS always followed by nonpainful low-temperature stimuli; a designation of 'CS+' was given to CS that were randomly followed by either a low or a more painful high temperature. Skin conductance was used as a physiological marker of fear. In healthy control subjects, CS+ induced more fear than CS-, and a low-temperature stimulus induced less subjective pain after CS- than after CS+. PTSD subjects failed to demonstrate such adaptive conditioning. Fear ratings after CS presentation were significantly higher in the PTSD group than in the control group. There were significant interaction effects between group and the type of CS on fear and pain ratings. Fear-learning deficits are a potentially promising, specific psychopathological factor in altered pain perception associated with PTSD. Deficits in safety learning may increase fear and, consequently, pain sensations. These findings may contribute to elucidating the pathogenesis behind the highly prevalent comorbidity that exists between PTSD and pain disorders, and to developing new treatments. This study provides new insights into the pathogenesis of chronic pain in patients with PTSD. The findings may help to develop new treatment strategies for this highly prevalent comorbidity in PTSD. Copyright © 2016

  20. Social learning of fear and safety is determined by the demonstrator's racial group.

    Science.gov (United States)

    Golkar, Armita; Castro, Vasco; Olsson, Andreas

    2015-01-01

    Social learning offers an efficient route through which humans and other animals learn about potential dangers in the environment. Such learning inherently relies on the transmission of social information and should imply selectivity in what to learn from whom. Here, we conducted two observational learning experiments to assess how humans learn about danger and safety from members ('demonstrators') of an other social group than their own. We show that both fear and safety learning from a racial in-group demonstrator was more potent than learning from a racial out-group demonstrator.

  1. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    Science.gov (United States)

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  2. Differential influence of social versus isolate housing on vicarious fear learning in adolescent mice.

    Science.gov (United States)

    Panksepp, Jules B; Lahvis, Garet P

    2016-04-01

    Laboratory rodents can adopt the pain or fear of nearby conspecifics. This phenotype conceptually lies within the domain of empathy, a bio-psycho-social process through which individuals come to share each other's emotion. Using a model of cue-conditioned fear, we show here that the expression of vicarious fear varies with respect to whether mice are raised socially or in solitude during adolescence. The impact of the adolescent housing environment was selective: (a) vicarious fear was more influenced than directly acquired fear, (b) "long-term" (24-h postconditioning) vicarious fear memories were stronger than "short-term" (15-min postconditioning) memories in socially reared mice whereas the opposite was true for isolate mice, and (c) females were more fearful than males. Housing differences during adolescence did not alter the general mobility of mice or their vocal response to receiving the unconditioned stimulus. Previous work with this mouse model underscored a genetic influence on vicarious fear learning, and the present study complements these findings by elucidating an interaction between the adolescent social environment and vicarious experience. Collectively, these findings are relevant to developing models of empathy amenable to mechanistic exploitation in the laboratory. (PsycINFO Database Record

  3. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    Science.gov (United States)

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  4. Differing Effects of Systemically Administered Rapamycin on Consolidation and Reconsolidation of Context vs. Cued Fear Memories

    Science.gov (United States)

    Glover, Ebony M.; Ressler, Kerry J.; Davis, Michael

    2010-01-01

    Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) kinase, has attracted interest as a possible prophylactic for post-traumatic stress disorder (PTSD)-associated fear memories. We report here that although rapamycin (40 mg/kg, i.p.) disrupted the consolidation and reconsolidation of fear-potentiated startle paradigm to a…

  5. Does a child's fear of needles decrease through a learning event with needles?

    Science.gov (United States)

    Kajikawa, Natsuki; Maeno, Takami; Maeno, Tetsuhiro

    2014-09-01

    Most children have a fear of needles. Suitable preparation can decrease the pain and fear of needles in hospitals; however, few have examined how such preparation affects healthy children. This study examined whether learning with needles decreases fear of needles and changes motivation to get vaccinations in school-age children and the possible association between fear of needles and motivation toward vaccinations. This study included children participating in the "Let's Be Doctors" event, which was held in 4 child centers in Tsukuba city, Ibaraki, Japan. In this event, children learned about injections and how a vaccine works, and injected a vaccine (water) into skin (sponge) using a real syringe and imitation needle. Data were collected just before and after the event by anonymous self-assessment questionnaires that used a 4-point Likert scale to assess fear of needles, motivation to get vaccinations, recommendation of vaccinations, and fear toward doctors among the children. Answers were divided into two categories for statistical analysis. In total, 194 children participated in the event and 191 children answered the questionnaire (response rate 98.5%). We analyzed 180 subjects, comprising 79 boys (43.9%) and 94 girls (52.2%), mean age of 8.1 ± 1.0 years. The number of children reporting a fear of needles decreased from 69 (38.3%) before the event to 51 (28.3%) after the event, and those unwilling to get vaccinations decreased from 48 (26.7%) to 27 (15.0%). Children who reported fear of needles before the event were more unwilling to get vaccinations than those with no fear of needles (36 [52.2%] vs. 12 [10.8%]), while after the event the number of needle-fearing children unwilling to get vaccinations decreased to 19 (27.5%). Children's fear of needles and unwillingness to get vaccinations were decreased after experiencing a learning event with needles. The fear of needles is associated with a negative motivation to get vaccinations in children.

  6. The Dorsolateral Periaqueductal Gray and Its Role in Mediating Fear Learning to Life Threatening Events

    Science.gov (United States)

    Kincheski, Grasielle C.; Mota-Ortiz, Sandra R.; Pavesi, Eloisa; Canteras, Newton S.; Carobrez, Antônio P.

    2012-01-01

    The dorsolateral column of the periaqueductal gray (dlPAG) integrates aversive emotional experiences and represents an important site responding to life threatening situations, such as hypoxia, cardiac pain and predator threats. Previous studies have shown that the dorsal PAG also supports fear learning; and we have currently explored how the dlPAG influences associative learning. We have first shown that N-methyl-D-aspartate (NMDA) 100 pmol injection in the dlPAG works as a valuable unconditioned stimulus (US) for the acquisition of olfactory fear conditioning (OFC) using amyl acetate odor as conditioned stimulus (CS). Next, we revisited the ascending projections of the dlPAG to the thalamus and hypothalamus to reveal potential paths that could mediate associative learning during OFC. Accordingly, the most important ascending target of the dlPAG is the hypothalamic defensive circuit, and we were able to show that pharmacological inactivation using β-adrenoceptor blockade of the dorsal premammillary nucleus, the main exit way for the hypothalamic defensive circuit to thalamo-cortical circuits involved in fear learning, impaired the acquisition of the OFC promoted by NMDA stimulation of the dlPAG. Moreover, our tracing study revealed multiple parallel paths from the dlPAG to several thalamic targets linked to cortical-hippocampal-amygdalar circuits involved in fear learning. Overall, the results point to a major role of the dlPAG in the mediation of aversive associative learning via ascending projections to the medial hypothalamic defensive circuit, and perhaps, to other thalamic targets, as well. These results provide interesting perspectives to understand how life threatening events impact on fear learning, and should be useful to understand pathological fear memory encoding in anxiety disorders. PMID:23209724

  7. How trait anxiety, interpretation bias and memory affect acquired fear in children learning about new animals.

    Science.gov (United States)

    Field, Zoë C; Field, Andy P

    2013-06-01

    Cognitive models of vulnerability to anxiety propose that information processing biases such as interpretation bias play a part in the etiology and maintenance of anxiety disorders. However, at present little is known about the role of memory in information processing accounts of child anxiety. The current study investigates the relationships between interpretation biases, memory and fear responses when learning about new stimuli. Children (aged 8-11 years) were presented with ambiguous information regarding a novel animal, and their fear, interpretation bias, and memory for the information was measured. The main findings were: (1) trait anxiety and interpretation bias significantly predicted acquired fear; (2) interpretation bias did not significantly mediate the relationship between trait anxiety and acquired fear; (3) interpretation bias appeared to be a more important predictor of acquired fear than trait anxiety per se; and (4) the relationship between interpretation bias and acquired fear was not mediated by the number of negative memories but was mediated by the number of positive and false-positive memories. The findings suggest that information processing models of child anxiety need to explain the role of positive memory in the formation of fear responses.

  8. Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray.

    Science.gov (United States)

    Johansen, Joshua P; Tarpley, Jason W; LeDoux, Joseph E; Blair, Hugh T

    2010-08-01

    A form of aversively motivated learning called fear conditioning occurs when a neutral conditioned stimulus is paired with an aversive unconditioned stimulus (UCS). UCS-evoked depolarization of amygdala neurons may instruct Hebbian plasticity that stores memories of the conditioned stimulus-unconditioned stimulus association, but the origin of UCS inputs to the amygdala is unknown. Theory and evidence suggest that instructive UCS inputs to the amygdala will be inhibited when the UCS is expected, but this has not been found during fear conditioning. We investigated neural pathways that relay information about the UCS to the amygdala by recording neurons in the amygdala and periaqueductal gray (PAG) of rats during fear conditioning. UCS-evoked responses in both amygdala and PAG were inhibited by expectation. Pharmacological inactivation of the PAG attenuated UCS-evoked responses in the amygdala and impaired acquisition of fear conditioning, indicating that PAG may be an important part of the pathway that relays instructive signals to the amygdala.

  9. Does learning performance in horses relate to fearfulness, baseline stress hormone, and social rank?

    DEFF Research Database (Denmark)

    Christensen, Janne Winther; Ahrendt, Line Peerstrup; Lintrup, Randi

    2012-01-01

    The ability of horses to learn and remember new tasks is fundamentally important for their use by humans. Fearfulness may, however, interfere with learning, because stimuli in the environment can overshadow signals from the rider or handler. In addition, prolonged high levels of stress hormones can...... affect neurons within the hippocampus; a brain region central to learning and memory. In a series of experiments, we aimed to investigate the link between performance in two learning tests, the baseline level of stress hormones, measured as faecal cortisol metabolites (FCM), fearfulness, and social rank....... Twenty-five geldings (2 or 3 years old) pastured in one group were included in the study. The learning tests were performed by professional trainers and included a number of predefined stages during which the horses were gradually trained to perform exercises, using either negative (NR) or positive...

  10. Oral contraceptive usage alters the effects of cortisol on implicit fear learning.

    Science.gov (United States)

    Merz, Christian Josef; Tabbert, Katharina; Schweckendiek, Jan; Klucken, Tim; Vaitl, Dieter; Stark, Rudolf; Wolf, Oliver Tobias

    2012-09-01

    An important feature of the human defense system comprises fear learning, which stress hormones can crucially modulate. However, stress hormones might influence men and women differently, in part because of interactions with sex hormones. In women, distinct stages of the menstrual cycle or the intake of oral contraceptives (OC) affect sex hormone levels. In this study, we used a differential fear conditioning paradigm with electrical stimulation as unconditioned stimulus (UCS) following one neutral stimulus (conditioned stimulus, CS+), but not another (CS-).To investigate implicit fear learning, participants were distracted from detecting the contingencies between CS and UCS. To address interaction effects of sex and stress hormones, 32 men, 30 women in the early follicular phase of the menstrual cycle (FO), 30 women in the luteal phase (LU), and 30 OC women received either 30 mg cortisol or a placebo. In the contrast CS+ minus CS-, an interaction between cortisol administration and sex hormone status emerged in the anterior parahippocampal gyrus and the hippocampus. Cortisol reduced fear learning in men, FO, and LU women, but enhanced it in OC women. Additionally, cortisol attenuated differential amygdala activation in the entire group. These results demonstrate that OC usage substantially modifies cortisol effects on emotional learning in women, particularly in memory-related medial temporal lobe regions. Further, a high dose of cortisol reduces amygdala differentiation pointing to a lowered learning ability of the defense system under high cortisol concentrations, irrespective of current sex hormone availability.

  11. Hyperresponsiveness of the Neural Fear Network During Fear Conditioning and Extinction Learning in Male Cocaine Users

    NARCIS (Netherlands)

    Kaag, A.M.; Levar, N.; Woutersen, K.; Homberg, J.; van den Brink, W.; Reneman, L.; van Wingen, G.

    2016-01-01

    OBJECTIVE: The authors investigated whether cocaine use disorder is associated with abnormalities in the neural underpinnings of aversive conditioning and extinction learning, as these processes may play an important role in the development and persistence of drug abuse. METHOD: Forty male regular

  12. Hyperresponsiveness of the Neural Fear Network During Fear Conditioning and Extinction Learning in Male Cocaine Users

    NARCIS (Netherlands)

    Kaag, A.M.; Levar, N.; Woutersen, K.; Homberg, J.R.; Brink, W. van den; Reneman, L.; Wingen, G. van

    2016-01-01

    OBJECTIVE: The authors investigated whether cocaine use disorder is associated with abnormalities in the neural underpinnings of aversive conditioning and extinction learning, as these processes may play an important role in the development and persistence of drug abuse. METHOD: Forty male regular c

  13. Design of a neurally plausible model of fear learning

    Directory of Open Access Journals (Sweden)

    Franklin B. Krasne

    2011-07-01

    Full Text Available A neurally oriented conceptual and computational model of fear conditioning ("Fraidy Rat" or FRAT has been constructed that accounts for many aspects of delay and context conditioning. Conditioning and extinction are the result of neuromodulation-controlled LTP at synapses of thalamic, cortical, and hippocampal afferents on principal cells and inhibitory interneurons of lateral and basal amygdala. The phenomena accounted for by the model (and simulated by the computational version include conditioning, secondary reinforcement, blocking, the immediate shock deficit, extinction, renewal, and a range of empirically valid effects of pre- and post-training ablation or inactivation of hippocampus or amygdala nuclei.

  14. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    Science.gov (United States)

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  15. The Effect of D-Cycloserine on Immediate vs. Delayed Extinction of Learned Fear

    Science.gov (United States)

    Langton, Julia M.; Richardson, Rick

    2010-01-01

    We compared the effect of D-cycloserine (DCS) on immediate (10 min after conditioning) and delayed (24 h after conditioning) extinction of learned fear in rats. DCS facilitated both immediate and delayed extinction when the drug was administered after extinction training. However, DCS did not facilitate immediate extinction when administered prior…

  16. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    Science.gov (United States)

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  17. Predicting Danger: The Nature, Consequences, and Neural Mechanisms of Predictive Fear Learning

    Science.gov (United States)

    McNally, Gavan P.; Westbrook, R. Frederick

    2006-01-01

    The ability to detect and learn about the predictive relations existing between events in the world is essential for adaptive behavior. It allows us to use past events to predict the future and to adjust our behavior accordingly. Pavlovian fear conditioning allows anticipation of sources of danger in the environment. It guides attention away from…

  18. The time course of location-avoidance learning in fear of spiders

    NARCIS (Netherlands)

    Rinck, M.; Koene, M.; Telli, S.; Moerman-van den Brink, W.; Verhoeven, B.W.H.; Becker, E.S.

    2016-01-01

    Two experiments were designed to study the time course of avoidance learning in spider fearfuls (SFs) under controlled experimental conditions. To achieve this, we employed an immersive virtual environment (IVE): While walking freely through a virtual art museum to search for specific paintings, the

  19. Biologically based neural circuit modelling for the study of fear learning and extinction

    Science.gov (United States)

    Nair, Satish S.; Paré, Denis; Vicentic, Aleksandra

    2016-11-01

    The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.

  20. The time course of location-avoidance learning in fear of spiders.

    Science.gov (United States)

    Rinck, Mike; Koene, Marieke; Telli, Sibel; Moerman-van den Brink, Wiltine; Verhoeven, Barbara; Becker, Eni S

    2016-01-01

    Two experiments were designed to study the time course of avoidance learning in spider fearfuls (SFs) under controlled experimental conditions. To achieve this, we employed an immersive virtual environment (IVE): While walking freely through a virtual art museum to search for specific paintings, the participants were exposed to virtual spiders. Unbeknown to the participants, only two of four museum rooms contained spiders, allowing for avoidance learning. Indeed, the more SF the participants were, the faster they learned to avoid the rooms that contained spiders (Experiment. 1), and within the first six trials, high fearfuls already developed a preference for starting their search task in rooms without spiders (Experiment 2). These results illustrate the time course of avoidance learning in SFs, and they speak to the usefulness of IVEs in fundamental anxiety research.

  1. A Molecular Dissociation between Cued and Contextual Appetitive Learning

    Science.gov (United States)

    Kheirbek, Mazen A.; Beeler, Jeff A.; Chi, Wanhao; Ishikawa, Yoshihiro; Zhuang, Xiaoxi

    2010-01-01

    In appetitive Pavlovian learning, animals learn to associate discrete cues or environmental contexts with rewarding outcomes, and these cues and/or contexts can potentiate an ongoing instrumental response for reward. Although anatomical substrates underlying cued and contextual learning have been proposed, it remains unknown whether specific…

  2. A Molecular Dissociation between Cued and Contextual Appetitive Learning

    Science.gov (United States)

    Kheirbek, Mazen A.; Beeler, Jeff A.; Chi, Wanhao; Ishikawa, Yoshihiro; Zhuang, Xiaoxi

    2010-01-01

    In appetitive Pavlovian learning, animals learn to associate discrete cues or environmental contexts with rewarding outcomes, and these cues and/or contexts can potentiate an ongoing instrumental response for reward. Although anatomical substrates underlying cued and contextual learning have been proposed, it remains unknown whether specific…

  3. Modafinil and memory: effects of modafinil on Morris water maze learning and Pavlovian fear conditioning.

    Science.gov (United States)

    Shuman, Tristan; Wood, Suzanne C; Anagnostaras, Stephan G

    2009-04-01

    Modafinil has been shown to promote wakefulness and some studies suggest the drug can improve cognitive function. Because of many similarities, the mechanism of action may be comparable to classical psychostimulants, although the exact mechanisms of modafinil's actions in wakefulness and cognitive enhancement are unknown. The current study aims to further examine the effects of modafinil as a cognitive enhancer on hippocampus-dependent memory in mice. A high dose of modafinil (75 mg/kg ip) given before training improved acquisition on a Morris water maze. When given only before testing, modafinil did not affect water maze performance. We also examined modafinil (0.075 to 75 mg/kg) on Pavlovian fear conditioning. A low dose of pretraining modafinil (0.75 mg/kg) enhanced memory of contextual fear conditioning (tested off-drug 1 week later) whereas a high dose (75 mg/kg) disrupted memory. Pretraining modafinil did not affect cued conditioning at any dose tested, and immediate posttraining modafinil had no effect on either cued or contextual fear. These results suggest that modafinil's effects of memory are more selective than amphetamine or cocaine and specific to hippocampus-dependent memory.

  4. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders.

  5. Data-Driven Learning: Reasonable Fears and Rational Reassurance

    Science.gov (United States)

    Boulton, Alex

    2009-01-01

    Computer corpora have many potential applications in teaching and learning languages, the most direct of which--when the learners explore a corpus themselves--has become known as data-driven learning (DDL). Despite considerable enthusiasm in the research community and interest in higher education, the approach has not made major inroads to…

  6. Brain derived neurotrophic factor mediated learning, fear acquisition and extinction as targets for developing novel treatments for anxiety

    Directory of Open Access Journals (Sweden)

    Karina Soares de Oliveira

    Full Text Available ABSTRACT Anxiety and obsessive-compulsive related disorders are highly prevalent and disabling disorders for which there are still treatment gaps to be explored. Fear is a core symptom of these disorders and its learning is highly dependent on the activity of the neurotrophin brain-derived neurotrophic factor (BDNF. Should BDNF-mediated fear learning be considered a target for the development of novel treatments for anxiety and obsessive-compulsive related disorders? We review the evidence that suggests that BDNF expression is necessary for the acquisition of conditioned fear, as well as for the recall of its extinction. We describe the findings related to fear learning and genetic/epigenetic manipulation of Bdnf expression in animals and BDNF allelic variants in humans. Later, we discuss how manipulation of BDNF levels represents a promising potential treatment target that may increase the benefits of therapies that extinguish previously conditioned fear.

  7. Clarifying the role of the rostral dmPFC/dACC in fear/anxiety: learning, appraisal or expression?

    Directory of Open Access Journals (Sweden)

    Simon Maier

    Full Text Available Recent studies have begun to carve out a specific role for the rostral part of the dorsal medial prefrontal cortex (dmPFC and adjacent dorsal anterior cingulate cortex (dACC in fear/anxiety. Within a novel general framework of dorsal mPFC/ACC areas subserving the appraisal of threat and concomitant expression of fear responses and ventral mPFC/ACC areas subserving fear regulation, the rostral dmPFC/dACC has been proposed to specifically mediate the conscious, negative appraisal of threat situations including, as an extreme variant, catastrophizing. An alternative explanation that has not been conclusively ruled out yet is that the area is involved in fear learning. We tested two different fear expression paradigms in separate fMRI studies (study 1: instructed fear, study 2: testing of Pavlovian conditioned fear with independent groups of healthy adult subjects. In both paradigms the absence of reinforcement precluded conditioning. We demonstrate significant BOLD activation of an identical rostral dmPFC/dACC area. In the Pavlovian paradigm (study 2, the area only activated robustly once prior conditioning had finished. Thus, our data argue against a role of the area in fear learning. We further replicate a repeated observation of a dissociation between peripheral-physiological fear responding and rostral dmPFC/dACC activation, strongly suggesting the area does not directly generate fear responses but rather contributes to appraisal processes. Although we succeeded in preventing extinction of conditioned responding in either paradigm, the data do not allow us to definitively exclude an involvement of the area in fear extinction learning. We discuss the broader implications of this finding for our understanding of mPFC/ACC function in fear and in negative emotion more generally.

  8. Learned fear, emotional reactivity and fear of heights: a factor analytic map from a large F(2) intercross of Roman rat strains.

    Science.gov (United States)

    Aguilar, Raúl; Gil, Luis; Flint, Jonathan; Gray, Jeffrey A; Dawson, Gerard R; Driscoll, Peter; Giménez-Llort, Lydia; Escorihuela, Rosa M; Fernández-Teruel, Alberto; Tobeña, Adolf

    2002-01-01

    Anxiety-related behaviours were evaluated across various tests in a 800 F(2)-intercross of the Roman high- and low-avoidance inbred rats. These tests either evoke unlearned (open field [OF]; plus-maze [PM]; hole-board [HB]; spontaneous activity [A]; and acoustic startle reflex [ASR]) or learned (classical fear conditioning [CFC]; and shuttlebox avoidance conditioning [SAC]), anxious/fearful responses. Using factor analysis (oblique rotation), we obtained a six-fold solution with 14 variables derived from all tests. These six factors represented SAC, CFC, PM anxiety, PM and OF activity, ASR anxiety, plus a mixed whole of anxious and activity variables (from OF and A), respectively. In searching for a smaller number of meaningful factors, we applied a three-factor solution that coherently corresponded with differentiated facets of fearfulness, rather than with the tests. Results showed that (1) measures of SAC and CFC strongly loaded onto Factor 1, labelled as "Learned Fear"; (2) a blend of almost all variables loaded onto Factor 2, called "Emotional Reactivity"; and (3) open arm behaviour in the PM loaded onto Factor 3, called "Fear of Heights." After discussing limitations of this apparently consistent behavioural map of anxiety, we advance some connections between those factors with quantitative trait loci candidates (genetic markers) as detected in the same sample.

  9. Dissociated fear and spatial learning in mice with deficiency of ataxin-2.

    Directory of Open Access Journals (Sweden)

    Duong P Huynh

    Full Text Available Mouse models with physiological and behavioral differences attributable to differential plasticity of hippocampal and amygdalar neuronal networks are rare. We previously generated ataxin-2 (Atxn2 knockout mice and demonstrated that these animals lacked obvious anatomical abnormalities of the CNS, but showed marked obesity and reduced fertility. We now report on behavioral changes as a consequence of Atxn2-deficiency. Atxn2-deficiency was associated with impaired long-term potentiation (LTP in the amygdala, but normal LTP in the hippocampus. Intact hippocampal plasticity was associated behaviorally with normal Morris Water maze testing. Impaired amygdala plasticity was associated with reduced cued and contextual fear conditioning. Conditioned taste aversion, however, was normal. In addition, knockout mice showed decreased innate fear in several tests and motor hyperactivity in open cage testing. Our results suggest that Atxn2-deficiency results in a specific set of behavioral and cellular disturbances that include motor hyperactivity and abnormal fear-related behaviors, but intact hippocampal function. This animal model may be useful for the study of anxiety disorders and should encourage studies of anxiety in patients with spinocerebellar ataxia type 2 (SCA2.

  10. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2015-10-15

    Anxiety disorders are a group of crippling mental diseases affecting millions of Americans with a 30% lifetime prevalence and costs associated with healthcare of $42.3 billion. While anxiety disorders show high levels of co-morbidity with smoking (45.3% vs. 22.5% in healthy individuals), they are also more common among the smoking population (22% vs. 11.1% in the non-smoking population). Moreover, there is clear evidence that smoking modulates symptom severity in patients with anxiety disorders. In order to better understand this relationship, several animal paradigms are used to model several key symptoms of anxiety disorders; these include fear conditioning and measures of anxiety. Studies clearly demonstrate that nicotine mediates acquisition and extinction of fear as well as anxiety through the modulation of specific subtypes of nicotinic acetylcholine receptors (nAChRs) in brain regions involved in emotion processing such as the hippocampus. However, the direction of nicotine's effects on these behaviors is determined by several factors that include the length of administration, hippocampus-dependency of the fear learning task, and source of anxiety (novelty-driven vs. social anxiety). Overall, the studies reviewed here suggest that nicotine alters behaviors related to fear and anxiety and that nicotine contributes to the development, maintenance, and reoccurrence of anxiety disorders.

  11. Interactions of the dorsal hippocampus, medial prefrontal cortex and nucleus accumbens in formation of fear memory: difference in inhibitory avoidance learning and contextual fear conditioning.

    Science.gov (United States)

    Yang, Fang-Chi; Liang, K C

    2014-07-01

    Learning active or reactive responses to fear involves different brain circuitry. This study examined how the nuclus accumbens (NAc), dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) may interact in memory processing for these two kinds of responses. Male Wistar rats with cannulae implanted in these areas were trained on a contextual fear conditioning or inhibitory avoidance task that respectively engaged a reactive or active response to fear in the test. Immediately after training, a memory modulating factor released by stress, norepinephrine (NE), was infused into one region and 4% lidocaine into another to examine if an upstream activation effect could be blocked by the downstream suppression. Retention tested 1 day later showed that in both tasks posttraining infusion of NE at different doses into either the DH or mPFC enhanced retention but the enhancement was blocked by concurrent infusion of lidocaine into the other region, suggesting reliance of the effect on functional integrity of both regions. Further, posttraining intra-NAc lidocaine infusion attenuated memory enhancement of NE infused to the DH or mPFC in the inhibitory avoidance task but did not do so in contextual fear conditioning. These results suggest that NE regulation of memory formation for the reactive and active responses to fear may rely on distinct interactions among the DH, mPFC and NAc. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Tricyclic antidepressants: effects on extinction and fear learning.

    Science.gov (United States)

    Ellison, G; Handel, J; Rogers, R; Weiss, J

    1975-01-01

    Rats trained to run an alley for a food reward were extinguished following injections of different antidepressants. When retested several days later, the animals extinguished following pretreatment with the NE reuptake blocker protriptyline showed faster running speeds than did the other groups. Other rats given electrical shocks following pretreatment with protriptyline avoided the compartment in which they had been shocked less than did animals shocked following pretreatment with other antidepressants. This implies an interferance with some aspect of the learning or consolidation process which is correlated with the degree of NE reuptake blockage. It is hypothesized that NE terminals are deactivated following frustrative nonreward or punishment by the conversion and reuptake of the released NE to an altered extinction molecule.

  13. Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories.

    Directory of Open Access Journals (Sweden)

    Jun Liu

    Full Text Available Heart physiology is a highly useful indicator for measuring not only physical states, but also emotional changes in animals. Yet changes of heart rate variability during fear conditioning have not been systematically studied in mice. Here, we investigated changes in heart rate and heart rate variability in both short-term and long-term contextual and cued fear conditioning. We found that while fear conditioning could increase heart rate, the most significant change was the reduction in heart rate variability which could be further divided into two distinct stages: a highly rhythmic phase (stage-I and a more variable phase (stage-II. We showed that the time duration of the stage-I rhythmic phase were sensitive enough to reflect the transition from short-term to long-term fear memories. Moreover, it could also detect fear extinction effect during the repeated tone recall. These results suggest that heart rate variability is a valuable physiological indicator for sensitively measuring the consolidation and expression of fear memories in mice.

  14. Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories.

    Science.gov (United States)

    Liu, Jun; Wei, Wei; Kuang, Hui; Zhao, Fang; Tsien, Joe Z

    2013-01-01

    Heart physiology is a highly useful indicator for measuring not only physical states, but also emotional changes in animals. Yet changes of heart rate variability during fear conditioning have not been systematically studied in mice. Here, we investigated changes in heart rate and heart rate variability in both short-term and long-term contextual and cued fear conditioning. We found that while fear conditioning could increase heart rate, the most significant change was the reduction in heart rate variability which could be further divided into two distinct stages: a highly rhythmic phase (stage-I) and a more variable phase (stage-II). We showed that the time duration of the stage-I rhythmic phase were sensitive enough to reflect the transition from short-term to long-term fear memories. Moreover, it could also detect fear extinction effect during the repeated tone recall. These results suggest that heart rate variability is a valuable physiological indicator for sensitively measuring the consolidation and expression of fear memories in mice.

  15. Selecting danger signals: dissociable roles of nucleus accumbens shell and core glutamate in predictive fear learning.

    Science.gov (United States)

    Li, Susan S Y; McNally, Gavan P

    2015-06-01

    Conditioned stimuli (CSs) vary in their reliability as predictors of danger. Animals must therefore select among CSs those that are appropriate to enter into an association with the aversive unconditioned stimulus (US). The actions of prediction error instruct this stimulus selection so that when prediction error is large, attention to the CS is maintained and learning occurs but when prediction is small attention to the CS is withdrawn and learning is prevented. Here we studied the role of glutamate acting at rat nucleus accumbens shell (AcbSh) and core (AcbC) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in this selection of danger signals. Using associative blocking and unblocking designs in rats, we show that antagonizing AcbSh AMPA receptors via infusions of 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline-2,3-dione (NBQX; 0.5 μg) prevents the unblocking of fear learning, whereas antagonizing AcbC AMPA receptors via infusions of NBQX (0.5 μg) prevents both the blocking and unblocking of fear learning. These results identify dissociable but complementary roles for AcbSh and AcbC glutamate acting at AMPA receptors in selecting danger signals: AcbSh AMPA receptors upregulate attention and learning to CSs that signal surprising USs, whereas AcbC AMPA receptors encode the predicted outcome of each trial.

  16. Contextual change after fear acquisition affects conditioned responding and the time course of extinction learning – Implications for renewal research

    Directory of Open Access Journals (Sweden)

    Rachel eSjouwerman

    2015-12-01

    Full Text Available Context plays a central role in retrieving (fear memories. Accordingly, context manipulations are inherent to most return of fear (ROF paradigms (in particular renewal, involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g. in ABC and ABA renewal. Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e. renewal. Thus, the possibility of a general effect of a context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied.Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36 was compared with a group without a contextual change from acquisition to extinction (AA; n = 149, while measuring autonomic (skin conductance and fear potentiated startle measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e. contextual switch after extinction. Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects.

  17. Developmental emergence of fear/threat learning: neurobiology, associations and timing.

    Science.gov (United States)

    Tallot, L; Doyère, V; Sullivan, R M

    2016-01-01

    Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups' transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes.

  18. Duration- and environment-dependent effects of repeated voluntary exercise on anxiety and cued fear in mice.

    Science.gov (United States)

    Dubreucq, Sarah; Marsicano, Giovanni; Chaouloff, Francis

    2015-04-01

    Several studies have indicated that animal models of exercise, such as voluntary wheel running, might be endowed with anxiolytic properties. Using the light/dark test of unconditioned anxiety, we have reported that one confounding factor in the estimation of wheel running impacts on anxiety might be the housing condition of the sedentary controls. The present mouse study analyzed whether the aforementioned observation in the light/dark test (i) could be repeated in the elevated plus-maze and social interaction tests of unconditioned anxiety, (ii) extended to conditioned anxiety, as assessed during cued fear recall tests, and (iii) required unlimited daily access to the running wheel. Housing with a locked wheel or with a free wheel that allowed limited or unlimited running activity triggered anxiolysis in the light/dark test, but not in the elevated plus-maze test, compared to standard housing. In the social interaction test, the duration, but not the number, of social contacts was increased in mice provided unlimited (but not limited) access to a wheel, compared to standard housing or housing with a locked wheel. Lastly, freezing responses to a cue during fear recall tests indicated that the reduction in freezing observed in mice provided limited or unlimited access to the wheels was fully accounted for by housing with a wheel. Besides confirming that the housing condition of the sedentary controls might bias the estimation of the effects of wheel running on anxiety, this study further shows that this estimation is dependent on the test used to assess anxiety.

  19. Vicarious learning of children's social-anxiety-related fear beliefs and emotional Stroop bias.

    Science.gov (United States)

    Askew, Chris; Hagel, Anna; Morgan, Julie

    2015-08-01

    Models of social anxiety suggest that negative social experiences contribute to the development of social anxiety, and this is supported by self-report research. However, there is relatively little experimental evidence for the effects of learning experiences on social cognitions. The current study examined the effect of observing a social performance situation with a negative outcome on children's (8 to 11 years old) fear-related beliefs and cognitive processing. Two groups of children were each shown 1 of 2 animated films of a person trying to score in basketball while being observed by others; in 1 film, the outcome was negative, and in the other, it was neutral. Children's fear-related beliefs about performing in front of others were measured before and after the film and children were asked to complete an emotional Stroop task. Results showed that social fear beliefs increased for children who saw the negative social performance film. In addition, these children showed an emotional Stroop bias for social-anxiety-related words compared to children who saw the neutral film. The findings have implications for our understanding of social anxiety disorder and suggest that vicarious learning experiences in childhood may contribute to the development of social anxiety.

  20. Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning.

    Science.gov (United States)

    Yang, Rebecca J; Mozhui, Khyobeni; Karlsson, Rose-Marie; Cameron, Heather A; Williams, Robert W; Holmes, Andrew

    2008-10-01

    A wealth of research identifies the amygdala as a key brain region mediating negative affect, and implicates amygdala dysfunction in the pathophysiology of anxiety disorders. Although there is a strong genetic component to anxiety disorders such as posttraumatic stress disorder (PTSD) there remains debate about whether abnormalities in amygdala function predispose to these disorders. In the present study, groups of C57BL/6 x DBA/2 (B x D) recombinant inbred strains of mice were selected for differences in volume of the basolateral amygdala complex (BLA). Strains with relatively small, medium, or large BLA volumes were compared for Pavlovian fear learning and memory, anxiety-related behaviors, depression-related behavior, and glucocorticoid responses to stress. Strains with relatively small BLA exhibited stronger conditioned fear responses to both auditory tone and contextual stimuli, as compared to groups with larger BLA. The small BLA group also showed significantly greater corticosterone responses to stress than the larger BLA groups. BLA volume did not predict clear differences in measures of anxiety-like behavior or depression-related behavior, other than greater locomotor inhibition to novelty in strains with smaller BLA. Neither striatal, hippocampal nor cerebellar volumes correlated significantly with any behavioral measure. The present data demonstrate a phenotype of enhanced fear conditioning and exaggerated glucocorticoid responses to stress associated with small BLA volume. This profile is reminiscent of the increased fear processing and stress reactivity that is associated with amygdala excitability and reduced amygdala volume in humans carrying loss of function polymorphisms in the serotonin transporter and monoamine oxidase A genes. Our study provides a unique example of how natural variation in amygdala volume associates with specific fear- and stress-related phenotypes in rodents, and further supports the role of amygdala dysfunction in anxiety

  1. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology.

  2. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  3. Thyroid hormones and fear learning but not anxiety are affected in adult apoE transgenic mice exposed postnatally to decabromodiphenyl ether (BDE-209).

    Science.gov (United States)

    Reverte, Ingrid; Pujol, Andreu; Domingo, José L; Colomina, Maria Teresa

    2014-06-22

    Polybrominated diphenyl ethers (PBDEs) are a family of industrial chemicals used as flame retardants. The fully brominated deca-BDE (BDE-209) is the most used and its potential risk for humans is controversial. The ability of PBDEs to target nervous and endocrine systems suggests multiple enduring effects after perinatal exposure. Cognitive and motor behavior alterations have been reported after developmental exposure to PBDEs, including BDE-209, whereas very little work has been carried out on anxiety and emotional learning. We have previously reported long-term effects of postnatal BDE-209 exposure on spatial memory dependent upon apolipoprotein E (apoE) polymorphism and age. ApoE is involved in lipid transport and its different polymorphisms (ε2, ε3, ε4) confer different vulnerabilities to neurodegeneration, cognitive impairment and anxiety. In the present study we assessed the long term effects of early exposure to BDE-209 on anxiety, fear learning and thyroid hormone levels in mice carrying different apoE polymorphisms (ε2, ε3, ε4). BDE-209 (0, 10 and 30 mg/kg) was orally administered on postnatal day 10 (PND 10). At 4 and 12 months of age mice were tested in an open field (OF) and an elevated zero maze (EZM). Fear conditioning and thyroid hormone levels were evaluated in mice at 5-6 months of age. Postnatal exposure to BDE-209 impaired cued fear learning in apoE2 and apoE3 mice. Levels of thyroid hormones were increased in apoE3 female mice exposed to BDE-209. Our findings indicate long lasting effects of BDE-209 on emotional learning and thyroid hormone levels after a single postnatal exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Learned fear to social out-group members are determined by ethnicity and prior exposure

    Directory of Open Access Journals (Sweden)

    Armita eGolkar

    2015-02-01

    Full Text Available Humans, like other animals, have a tendency to preferentially learn and retain some associations more readily than others. In humans, preferential learning was originally demonstrated for certain evolutionary prepared stimuli, such as snakes and angry faces and later extended to human social out-groups based on race (Olsson, Ebert, Banaji, & Phelps, 2005. To address the generality of this social learning bias, we examined if this learning bias extended to two separate classes of social out-groups represented by neutral Black and Middle-Eastern faces in 38 White, (Swedish participants. We found that other-ethnicity alone was not sufficient to induce an out-group learning bias; it was observed for Black, but not Middle-Eastern, out-group faces. Moreover, an exploratory analysis showed that growing up in an ethnically diverse environment was inversely related to the learning bias towards Middle-Eastern, but not Black, out-groups faces, suggesting that learned fears towards Middle-Eastern faces might be more permeable to environmental factors. Future research should address how both the quantity and quality of inter-group contact modulate out-group learning.

  5. The impact of cue learning, trait anxiety and genetic variation in the serotonin 1A receptor on contextual fear.

    Science.gov (United States)

    Baas, Johanna M P; Heitland, Ivo

    2015-12-01

    In everyday life, aversive events are usually associated with certain predictive cues. Normally, the acquisition of these contingencies enables organisms to appropriately respond to threat. Presence of a threat cue clearly signals 'danger', whereas absence of such cues signals a period of 'safety'. Failure to identify threat cues may lead to chronic states of anxious apprehension in the context in which the threat has been imminent, which may be instrumental in the pathogenesis of anxiety disorders. In this study, existing data from 150 healthy volunteers in a cue and context virtual reality fear conditioning paradigm were reanalyzed. The aim was to further characterize the impact of cue acquisition and trait anxiety, and of a single nucleotide polymorphism in the serotonin 1A receptor gene (5-HTR1A, rs6295), on cued fear and contextual anxiety before and after fear contingencies were explicitly introduced. Fear conditioned responding was quantified with fear potentiation of the eyeblink startle reflex and subjective fear ratings. First, we replicated previous findings that the inability to identify danger cues during acquisition leads to heightened anxious apprehension in the threat context. Second, in subjects who did not identify the danger cue initially, contextual fear was associated with trait anxiety after the contingencies were explicitly instructed. Third, genetic variability within 5-HTR1A (rs6295) was associated with contextual fear independent of awareness or trait anxiety. These findings confirm that failure to acquire cue contingencies impacts contextual fear responding, in association with trait anxiety. The observed 5-HTR1A effect is in line with models of anxiety, but needs further replication.

  6. Coping with Fear of Recurrence

    Science.gov (United States)

    ... What Comes Next After Finishing Treatment Coping With Fear of Recurrence Having a Baby After Cancer: Pregnancy ... treatment and preparing for the future. Coping With Fear of Recurrence Learn ways to manage the fear ...

  7. Reversible inactivation of the entorhinal cortex disrupts the establishment and expression of latent inhibition of cued fear conditioning in C57BL/6 mice.

    Science.gov (United States)

    Lewis, Michael C; Gould, Thomas J

    2007-01-01

    For latent inhibition, preexposure to a conditioned stimulus (CS) prior to training with an unconditioned stimulus (US) results in decreased conditioned responses (CRs) to the CS at the time of testing. The mechanism by which decreased CRs occurs, however, is unknown; CS preexposure may interfere with subsequent conditioning, or modulate the expression of CRs. Previous research has suggested that the entorhinal cortex (EC) is necessary for latent inhibition of a variety of tasks. However, no studies have specifically compared the role of the EC in acquisition vs. expression of latent inhibition. The present study used reversible inactivation of the EC to address this issue. The GABA agonist muscimol (0.5 microg/side) was directly infused into the EC of mice prior to CS preexposure, training, or testing. Our results indicate that muscimol inactivation of the EC before CS preexposure disrupts latent inhibition of cued fear conditioning. Importantly, this same dose of muscimol did not disrupt cued fear conditioning, nor did it affect latent inhibition when infused into the subiculum. Furthermore, inactivation of the EC at testing disrupted the expression of latent inhibition of cued fear conditioning; that is, CS preexposed mice that received entorhinal cortical muscimol infusion at testing showed CRs compared to saline-infused CS preexposed mice. These findings suggest that repeated preexposure to the CS during latent inhibition may alter entorhinal cortical activity thereby allowing the EC to exert inhibitory control over the expression of CRs during testing of CS preexposed mice.

  8. HDAC I inhibition in the dorsal and ventral hippocampus differentially modulates predator-odor fear learning and generalization

    Directory of Open Access Journals (Sweden)

    Robin K Yuan

    2015-09-01

    Full Text Available Although predator odors are ethologically relevant stimuli for rodents, the molecular pathways and contribution of some brain regions involved remain elusive. Inhibition of histone deacetylases (HDACs in the dorsal hippocampus has been shown to enhance shock-induced contextual fear learning, but it is unknown if HDACs have differential effects along the dorso-ventral hippocampal axis during predator odor fear learning. We injected MS-275, a class I HDAC inhibitor, bilaterally in the dorsal or ventral hippocampus of mice and found that it had no effects on innate anxiety in either region. We then assessed the effects of MS-275 at different stages of fear learning along the longitudinal hippocampal axis. Animals were injected with MS-275 or vehicle after context pre-exposure (pre-conditioning injections, when a representation of the context is first formed, or after exposure to coyote urine (post-conditioning injections, when the context becomes associated with predator odor. When MS-275 was administered after context pre-exposure, dorsally injected animals showed enhanced fear in the training context but were able to discriminate it from a neutral environment. Conversely, ventrally injected animals did not display enhanced learning in the training context but generalized the fear response to a neutral context. However, when MS-275 was administered after conditioning, there were no differences between MS-275 or vehicle control groups in either the dorsal or ventral hippocampus. Surprisingly, all groups displayed generalization to a neutral context, suggesting that predator odor exposure followed by the restraint necessary for the injections leads to fear generalization. These results may elucidate distinct functions of the dorsal and ventral hippocampus in predator odor-induced fear conditioning as well as some of the molecular mechanisms underlying fear generalization.

  9. PTENα Modulates CaMKII Signaling and Controls Contextual Fear Memory and Spatial Learning

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2017-06-01

    Full Text Available PTEN (phosphatase and tensin homology deleted on chromosome 10 has multiple functions, and recent studies have shown that the PTEN family has isoforms. The roles of these PTEN family members in biologic activities warrant specific evaluation. Here, we show that PTENα maintains CaMKII in a state that is competent to induce long-term potentiation (LTP with resultant regulation of contextual fear memory and spatial learning. PTENα binds to CaMKII with its distinctive N terminus and resets CaMKII to an activatable state by dephosphorylating it at sites T305/306. Loss of PTENα impedes the interaction of CaMKII and NR2B, leading to defects in hippocampal LTP, fear-conditioned memory, and spatial learning. Restoration of PTENα in the hippocampus of PTENα-deficient mice rescues learning deficits through regulation of CaMKII. CaMKII mutations in dementia patients inhibit CaMKII activity and result in disruption of PTENα-CaMKII-NR2B signaling. We propose that CaMKII is a target of PTENα phosphatase and that PTENα is an essential element in the molecular regulation of neural activity.

  10. Role of the hippocampus and amygdala in the extinction of fear-motivated learning.

    Science.gov (United States)

    Vianna, Monica R; Coitinho, Adriana S; Izquierdo, Ivan

    2004-01-01

    Fear-motivated learning is at the root of phobias, panic, generalized anxiety and the posttraumatic stress disorder. This makes the inhibition of fear-motivated behavior a therapeutic desideratum in these diseases. The simplest way to accomplish this is by extinction, a procedure by which a given association between a conditioned stimulus or context (CS) and a fearsome event is replaced by a new association between the CS and the lack of the fearsome stimulus. This is a new learning for the subject and, in rats, it requires gene expression and protein synthesis both in the hippocampus and the basolateral amygdala, alongside with the activation of various metabolic signaling pathways. These requirements are similar to, but not identical with those for consolidation of the original memory. In addition, some systems uninvolved in original consolidation appear to be involved in extinction, namely, the endocannabinoid system. Extinction can be enhanced by prolonging the exposure to the lack of fearsome stimulation; e.g., in rats, by increasing the time of permanence in the compartment where the animals no longer receive a footshock. Further research into the possibilities of enhancing extinction at the expense of the original fearsome learning is desirable.

  11. Revealing context-specific conditioned fear memories with full immersion virtual reality

    Directory of Open Access Journals (Sweden)

    Nicole eHuff

    2011-11-01

    Full Text Available The extinction of conditioned fear is known to be context specific, and often referred to as more robustly contextually bound than the fear memory itself (Bouton, 2004. Yet, recent findings in rodents have challenged the notion that contextual fear retention is initially generalized. The context specificity of a cued-fear memory to the learning context has not been addressed in the human literature largely due to limitations in methodology. Here we adapt a novel technology to test the context specificity of cued fear conditioning using full immersion 3-dimensional virtual reality (VR. During acquisition training, healthy participants navigated through virtual environments containing dynamic snake and spider conditioned stimuli (CSs, one of which was paired with electrical wrist stimulation. During a 24-hour delayed retention test, one group returned to the same context as acquisition training whereas another group experienced the CSs in a novel context. Unconditioned stimulus (US expectancy ratings were assayed on-line during fear acquisition as an index of contingency awareness. Skin conductance responses (SCR time-locked to CS onset were the dependent measure of cued fear, and skin conductance levels during the interstimulus interval were an index of context fear. Findings indicate that early in acquisition training, participants express contingency awareness as well as differential contextual fear, whereas differential cued fear emerged later in acquisition. During the retention test, differential cued fear retention was enhanced in the group who returned to the same context as acquisition training relative to the context shift group. The results extend recent rodent work to illustrate differences in cued and context fear acquisition and the contextual specificity of recent fear memories. Findings support the use of full immersion VR as a novel tool in cognitive neuroscience to bridge rodent models of contextual phenomena underlying human

  12. Spontaneous eye movements and trait empathy predict vicarious learning of fear.

    Science.gov (United States)

    Kleberg, Johan L; Selbing, Ida; Lundqvist, Daniel; Hofvander, Björn; Olsson, Andreas

    2015-12-01

    Learning to predict dangerous outcomes is important to survival. In humans, this kind of learning is often transmitted through the observation of others' emotional responses. We analyzed eye movements during an observational/vicarious fear learning procedure, in which healthy participants (N=33) watched another individual ('learning model') receiving aversive treatment (shocks) paired with a predictive conditioned stimulus (CS+), but not a control stimulus (CS-). Participants' gaze pattern towards the model differentiated as a function of whether the CS was predictive or not of a shock to the model. Consistent with our hypothesis that the face of a conspecific in distress can act as an unconditioned stimulus (US), we found that the total fixation time at a learning model's face increased when the CS+ was shown. Furthermore, we found that the total fixation time at the CS+ during learning predicted participants' conditioned responses (CRs) at a later test in the absence of the model. We also demonstrated that trait empathy was associated with stronger CRs, and that autistic traits were positively related to autonomic reactions to watching the model receiving the aversive treatment. Our results have implications for both healthy and dysfunctional socio-emotional learning.

  13. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory

    Directory of Open Access Journals (Sweden)

    Stephan Koenig

    2017-05-01

    Full Text Available We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L, partial (P, and high (H shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L < P < H and the uncertainty of their prediction (L < P > H. During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention.

  14. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory.

    Science.gov (United States)

    Koenig, Stephan; Uengoer, Metin; Lachnit, Harald

    2017-01-01

    We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L), partial (P), and high (H) shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L H). During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues' potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues' shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention.

  15. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory

    Science.gov (United States)

    Koenig, Stephan; Uengoer, Metin; Lachnit, Harald

    2017-01-01

    We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L), partial (P), and high (H) shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L H). During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention. PMID:28588466

  16. Systemic or Intra-Amygdala Infusion of the Benzodiazepine, Midazolam, Impairs Learning, but Facilitates Re-Learning to Inhibit Fear Responses in Extinction

    Science.gov (United States)

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2010-01-01

    A series of experiments used rats to study the effect of a systemic or intra-amygdala infusion of the benzodiazepine, midazolam, on learning and re-learning to inhibit context conditioned fear (freezing) responses. Rats were subjected to two context-conditioning episodes followed by extinction under drug or vehicle, or to two cycles of context…

  17. Systemic or Intra-Amygdala Infusion of the Benzodiazepine, Midazolam, Impairs Learning, but Facilitates Re-Learning to Inhibit Fear Responses in Extinction

    Science.gov (United States)

    Hart, Genevra; Harris, Justin A.; Westbrook, R. Frederick

    2010-01-01

    A series of experiments used rats to study the effect of a systemic or intra-amygdala infusion of the benzodiazepine, midazolam, on learning and re-learning to inhibit context conditioned fear (freezing) responses. Rats were subjected to two context-conditioning episodes followed by extinction under drug or vehicle, or to two cycles of context…

  18. Distinct Contributions of the Basolateral Amygdala and the Medial Prefrontal Cortex to Learning and Relearning Extinction of Context Conditioned Fear

    Science.gov (United States)

    Laurent, Vincent; Westbrook, R. Frederick

    2008-01-01

    We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…

  19. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  20. Fear of negative evaluation biases social evaluation inference: evidence from a probabilistic learning task.

    Science.gov (United States)

    Button, Katherine S; Kounali, Daphne; Stapinski, Lexine; Rapee, Ronald M; Lewis, Glyn; Munafò, Marcus R

    2015-01-01

    Fear of negative evaluation (FNE) defines social anxiety yet the process of inferring social evaluation, and its potential role in maintaining social anxiety, is poorly understood. We developed an instrumental learning task to model social evaluation learning, predicting that FNE would specifically bias learning about the self but not others. During six test blocks (3 self-referential, 3 other-referential), participants (n = 100) met six personas and selected a word from a positive/negative pair to finish their social evaluation sentences "I think [you are / George is]…". Feedback contingencies corresponded to 3 rules, liked, neutral and disliked, with P[positive word correct] = 0.8, 0.5 and 0.2, respectively. As FNE increased participants selected fewer positive words (β = -0.4, 95% CI -0.7, -0.2, p = 0.001), which was strongest in the self-referential condition (FNE × condition 0.28, 95% CI 0.01, 0.54, p = 0.04), and the neutral and dislike rules (FNE × condition × rule, p = 0.07). At low FNE the proportion of positive words selected for self-neutral and self-disliked greatly exceeded the feedback contingency, indicating poor learning, which improved as FNE increased. FNE is associated with differences in processing social-evaluative information specifically about the self. At low FNE this manifests as insensitivity to learning negative self-referential evaluation. High FNE individuals are equally sensitive to learning positive or negative evaluation, which although objectively more accurate, may have detrimental effects on mental health.

  1. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood.

    Science.gov (United States)

    Novick, Andrew M; Mears, Mackenzie; Forster, Gina L; Lei, Yanlin; Tejani-Butt, Shanaz M; Watt, Michael J

    2016-05-01

    Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies.

  2. Parietal lesion effects on cued recall following pair associate learning.

    Science.gov (United States)

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Impaired contextual fear extinction learning is associated with aberrant regulation of CHD-type chromatin remodeling factors

    Directory of Open Access Journals (Sweden)

    Alexandra eWille

    2015-11-01

    Full Text Available Successful attenuation of fearful memories is a cognitive process requiring initiation of highly coordinated transcription programs. Chromatin-modulating mechanisms such as DNA methylation and histone modifications, including acetylation, are key regulators of these processes. However, knowledge concerning the role of ATP-dependent chromatin remodeling factors (ChRFs being required for successful fear extinction is lacking. Underscoring the potential importance of these factors that alter histone-DNA contacts within nucleosomes are recent genome-wide association studies linking several ChRFs to various human cognitive and psychiatric disorders. To better understand the role of ChRFs in the brain, and since to date little is known about ChRF expression in the brain, we performed a comprehensive survey of expression levels of 24 ATP-dependent remodelers across different brain areas, and we identified several distinct high molecular weight complexes by chromatographic methods. We next aimed to gain novel insight into the potential regulation of ChRFs in different brain regions in association with normal and impaired fear extinction learning. To this end, we established the 129S1/SvImJ (S1 laboratory mouse strain as a model for compromised contextual fear extinction learning that can be rescued by dietary zinc restriction. Using this model along with genetically related but fear extinction-competent 129S6/SvEv (S6 mice as controls, we found that impaired fear extinction in S1 was associated with enhanced ventral hippocampal expression of CHD1 and reduced expression of CHD5 that was normalized following successful rescue of impaired fear extinction. Moreover, a select reduction in CHD3 expression was observed in the ventral hippocampus following successful rescue of fear extinction in S1 mice. Taken together, these data provide novel insight into the regulation of specific ChRFs following an impaired cognitive process and its rescue, and they suggest

  4. Activation of the Infralimbic Cortex in a Fear Context Enhances Extinction Learning

    Science.gov (United States)

    Thompson, Brittany M.; Baratta, Michael V.; Biedenkapp, Joseph C.; Rudy, Jerry W.; Watkins, Linda R.; Maier, Steven F.

    2010-01-01

    Activation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) reduces conditioned fear in a variety of situations, and the IL is thought to play an important role in the extinction of conditioned fear. Here we report a series of experiments using contextual fear conditioning in which the IL is activated with the GABAa antagonist…

  5. Fimbria-fornix and entorhinal cortex differential contribution to contextual and cued fear conditioning consolidation in rats.

    Science.gov (United States)

    Baldi, Elisabetta; Liuzzo, Antonino; Bucherelli, Corrado

    2013-04-10

    The Fimbria-Fornix (FF) and Entorhinal Cortex (EC) are the primary interfaces between the hippocampus and, respectively, subcortical structures and cortical areas. Their mnemonic role has been repeatedly proposed. In order to investigate their role in fear conditioning, FF and EC were subjected to bilateral fully reversible tetrodotoxin (TTX) inactivation during consolidation in adult male Wistar rats that had undergone training for fear conditioning to an acoustic stimulus (CS) and context. TTX was stereotaxically injected into animals of different groups at increasing post-acquisition delays. Memory was assessed as conditioned freezing duration measured during retention testing, performed 72 and 96 h after TTX administration in a counterbalanced manner. The results showed that FF inactivation, performed immediately after conditioning, did not disrupt consolidation of either contextual or auditory fear memory. On the contrary, EC inactivation performed at the same time was followed by both contextual and CS fear response retention impairment. EC inactivation performed 1.5h post-acquisition impaired only contextual fear response retention. EC inactivation performed 24h after acquisition training had no effect on the consolidation process. The present findings show a clearly different role of FF and EC in fear conditioning consolidation in the rat. The results are discussed in relation to their known connections with the hippocampus.

  6. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits.

    Science.gov (United States)

    Burghardt, N S; Bauer, E P

    2013-09-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used for the treatment of a spectrum of anxiety disorders, yet paradoxically they may increase symptoms of anxiety when treatment is first initiated. Despite extensive research over the past 30 years focused on SSRI treatment, the precise mechanisms by which SSRIs exert these opposing acute and chronic effects on anxiety remain unknown. By testing the behavioral effects of SSRI treatment on Pavlovian fear conditioning, a well characterized model of emotional learning, we have the opportunity to identify how SSRIs affect the functioning of specific brain regions, including the amygdala, bed nucleus of the stria terminalis (BNST) and hippocampus. In this review, we first define different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. We examine the results of numerous rodent studies investigating how acute SSRI treatment modulates fear learning and relate these effects to the known functions of serotonin in specific brain regions. With these findings, we propose a model by which acute SSRI administration, by altering neural activity in the extended amygdala and hippocampus, enhances both acquisition and expression of cued fear conditioning, but impairs the expression of contextual fear conditioning. Finally, we review the literature examining the effects of chronic SSRI treatment on fear conditioning in rodents and describe how downregulation of N-methyl-d-aspartate (NMDA) receptors in the amygdala and hippocampus may mediate the impairments in fear learning and memory that are reported. While long-term SSRI treatment effectively reduces symptoms of anxiety, their disruptive effects on fear learning should be kept in mind when combining chronic SSRI treatment and learning-based therapies, such as cognitive behavioral therapy.

  7. Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning

    Directory of Open Access Journals (Sweden)

    Julie eBoulanger Bertolus

    2014-05-01

    Full Text Available Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days post-natal during odor-fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.

  8. Effects of chronic stress on the auditory system and fear learning: an evolutionary approach.

    Science.gov (United States)

    Dagnino-Subiabre, Alexies

    2013-01-01

    Stress is a complex biological reaction common to all living organisms that allows them to adapt to their environments. Chronic stress alters the dendritic architecture and function of the limbic brain areas that affect memory, learning, and emotional processing. This review summarizes our research about chronic stress effects on the auditory system, providing the details of how we developed the main hypotheses that currently guide our research. The aims of our studies are to (1) determine how chronic stress impairs the dendritic morphology of the main nuclei of the rat auditory system, the inferior colliculus (auditory mesencephalon), the medial geniculate nucleus (auditory thalamus), and the primary auditory cortex; (2) correlate the anatomic alterations with the impairments of auditory fear learning; and (3) investigate how the stress-induced alterations in the rat limbic system may spread to nonlimbic areas, affecting specific sensory system, such as the auditory and olfactory systems, and complex cognitive functions, such as auditory attention. Finally, this article gives a new evolutionary approach to understanding the neurobiology of stress and the stress-related disorders.

  9. Absence of verbal recall or memory for symptom acquisition in fear and trauma exposure: a conceptual case for fear conditioning and learned nonuse in assessment and treatment.

    Science.gov (United States)

    Seifert, A Ronald

    2012-01-01

    Absence of memory or verbal recall for symptom acquisition in fear and trauma exposure, as well as absence of successful coping behavior for life events, is associated with a number of diagnoses, including traumatic brain injury, posttraumatic stress disorder, pain, and anxiety. The difficulty with diagnosis and treatment planning based on the absence of recall, memory, and successful coping behavior is threefold: (1) these assessments do not distinguish between disruption of behavior and lack of capacity, (2) the absence of verbal recall and memory complicates cognitive-based treatment, and (3) a confounding issue is the same absent behavior can be observed at different times and contexts. While memory of the specific details of the initial traumatic event(s) may not be available to verbal report, the existence of time- and context-dependent relationships for the initial as well as subsequent experiences is arguable. The absence of memory or lack of verbal recall does not rule out measurable physiological bodily responses for the initial trauma(s), nor does it help to establish the effects of subsequent experiences for symptom expression. Also, the absence of memory must include the prospect of fear-based learning that does not require or involve the cortex. It is posited that the literatures of fear conditioning and learned nonuse provide complementary illustrations of how the time and context of the initial trauma(s) and subsequent experiences affect behavior, which is not dependent on the effected individual being able to provide a memory-based verbal report. The replicated clinical application demonstrates that, without scientific demonstration, neither neuroanatomy nor verbal report can be assumed sufficient to predict overt behavior or physiologic responses. For example, while commonly assumed to be predictively so, autonomic nervous system innervation is insufficient to define the unique stimulus- and context-dependent physiological responses of an

  10. The development of cued versus contextual conditioning in a predictable and an unpredictable human fear conditioning preparation

    NARCIS (Netherlands)

    C. Iberico; D. Vansteenwegen; B. Vervliet; T. Dirikx; V. Marescau; D. Hermans

    2008-01-01

    In this human fear conditioning study, the online development of conditioned US-expectancy to discrete cues and background contexts was measured in two groups. In the paired group (n = 30), the CS was systematically followed by an aversive shock (US). In the unpaired group (n = 30), CS and US were p

  11. Diminuer la Peur D'apprendre: Le Role de la Mediation Culturelle. [Diminishing the Fear of Learning: The Role of Cultural Mediation.

    Science.gov (United States)

    Boimare, Serge

    2001-01-01

    Discusses ways to reduce children's fear and discomfort in the learning situation by accommodating the children's interests through cultural themes that represent emotions and anxieties preventing the organization of thought. (JPB)

  12. Agoraphobia: Fear of Fear.

    Science.gov (United States)

    Musetto, Andrew P.

    1984-01-01

    Agoraphobia is a complex phobia in which individuals react with intense anxiety to certain stress situations. Basically, agoraphobics live in fear of becoming afraid. Describes the psychotherapeutic treatment that helps agoraphobics to become more self-sufficient and to face their fears by understanding themselves better. (CS)

  13. The role of brain interleukin-1 in stress-enhanced fear learning.

    Science.gov (United States)

    Jones, Meghan E; Lebonville, Christina L; Barrus, Daniel; Lysle, Donald T

    2015-03-13

    Posttraumatic stress disorder (PTSD) has been shown to be associated with pro-inflammatory markers, including elevated plasma levels of interleukin-1β (IL-1β). However, the precise role of neuroinflammation and central immune signaling on the development of this debilitating psychological disorder is not known. Here, we used stress-enhanced fear learning (SEFL), an animal model of the disorder, to examine the role of central IL-1β in PTSD. The results show that the severe stressor in SEFL induces a time-dependent increase in IL-1β immunoreactivity and mRNA expression within the dentate gyrus of the dorsal hippocampus (DH). There was no increase in IL-1β in the basolateral amygdala or the perirhinal cortex. Moreover, blocking the action of IL-1β following the severe stressor with IL-1 receptor antagonist (10 μg, intracerebroventricular (i.c.v.), 24 and 48 h after the stressor) prevented the development of SEFL. To provide further support for the role of IL-1β in the development of SEFL, we show that systemic morphine, a treatment which is known to reduce both PTSD and SEFL, also reduces IL-1β expression in the DH induced by the severe stressor. These studies provide the first evidence that IL-1 is involved SEFL and suggest that IL-1 signaling in the brain may have a critical role in the development of PTSD.

  14. Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex.

    Directory of Open Access Journals (Sweden)

    Malgorzata Jasinska

    Full Text Available Associative fear learning, resulting from whisker stimulation paired with application of a mild electric shock to the tail in a classical conditioning paradigm, changes the motor behavior of mice and modifies the cortical functional representation of sensory receptors involved in the conditioning. It also induces the formation of new inhibitory synapses on double-synapse spines of the cognate barrel hollows. We studied density and distribution of polyribosomes, the putative structural markers of enhanced synaptic activation, following conditioning. By analyzing serial sections of the barrel cortex by electron microscopy and stereology, we found that the density of polyribosomes was significantly increased in dendrites of the barrel activated during conditioning. The results revealed fear learning-induced increase in the density of polyribosomes associated with both excitatory and inhibitory synapses located on dendritic spines (in both single- and double-synapse spines and only with the inhibitory synapses located on dendritic shafts. This effect was accompanied by a significant increase in the postsynaptic density area of the excitatory synapses on single-synapse spines and of the inhibitory synapses on double-synapse spines containing polyribosomes. The present results show that associative fear learning not only induces inhibitory synaptogenesis, as demonstrated in the previous studies, but also stimulates local protein synthesis and produces modifications of the synapses that indicate their potentiation.

  15. The Prelimbic Cortex Directs Attention toward Predictive Cues during Fear Learning

    Science.gov (United States)

    Sharpe, Melissa J.; Killcross, Simon

    2015-01-01

    The prelimbic cortex is argued to promote conditioned fear expression, at odds with appetitive research implicating this region in attentional processing. Consistent with an attentional account, we report that the effect of prelimbic lesions on fear expression depends on the degree of competition between contextual and discrete cues. Further, when…

  16. The Prelimbic Cortex Directs Attention toward Predictive Cues during Fear Learning

    Science.gov (United States)

    Sharpe, Melissa J.; Killcross, Simon

    2015-01-01

    The prelimbic cortex is argued to promote conditioned fear expression, at odds with appetitive research implicating this region in attentional processing. Consistent with an attentional account, we report that the effect of prelimbic lesions on fear expression depends on the degree of competition between contextual and discrete cues. Further, when…

  17. The anatomy of fear learning in the cerebellum : A systematic meta-analysis

    NARCIS (Netherlands)

    Lange, Iris; Kasanova, Zuzana; Goossens, Liesbet; Leibold, Nicole; De Zeeuw, Chris I; van Amelsvoort, Therese; Schruers, Koen

    2015-01-01

    Recent neuro-imaging studies have implicated the cerebellum in several higher-order functions. Its role in human fear conditioning has, however, received limited attention. The current meta-analysis examines the loci of cerebellar contributions to fear conditioning in healthy subjects, thus mapping,

  18. Neonatal isolation decreases cued fear conditioning and frontal cortical histone 3 lysine 9 methylation in adult female rats.

    Science.gov (United States)

    Kao, Gour-Shenq; Cheng, Ling-Yi; Chen, Li-Hsien; Tzeng, Wen-Yu; Cherng, Chienfang G; Su, Chien-Chou; Wang, Ching-Yi; Yu, Lung

    2012-12-15

    Early life stress is thought to enhance adult susceptibility to stress and stress-related mood disorders. In this study, fear-potentiated startle was used to model the acquisition of a traumatic event-related memory in female rats experiencing early life stress. Daily 1-hr maternal and sibling separation throughout day 2-9 postpartum (D2-9 PP) caused a decrease in the fear-potentiated startle, but not acoustic startle baseline, in adult female rats. The separation procedure did not affect corticosterone secretion but produced an increase in serum estradiol concentration. Moreover, the separation procedure did not affect histone 3 lysine 9 (H3K9) acetylation but decreased H3K9 mono- and tri-methylation in frontal cortices. Treatment with 5-aza-2'-deoxycytidine (AZA) (5mg/kg at alternative days from D2PP to D9PP or 10mg/kg at D5PP and D9PP), a DNA methylation inhibitor, did not affect the separation-decreased fear-potentiated startle. Treatment with valproic acid (VPA), a histone deacetylase inhibitor, at 3 dosing regimens (300mg/kg at D2-9PP; 100mg/kg at D2-4PP, 200mg/kg at D5-7PP, 300mg/kg at D8-9PP; 100mg/kg at D2-5PP, 200mg/kg at D6-9PP) prior to daily separation reversed such a decrease in fear-potentiated startle. The lowest effective VPA dosing regimen used (100mg/kg at D2-5PP, 200mg/kg at D6-9PP) reversed the separation-decreased H3K9 mono- and tri-methylation in frontal cortices. Eight-day VPA (300mg/kg/day) and AZA (5mg/kg/day) administrations starting at D28PP were ineffective in altering the separation-decreased fear-potentiated startle. We, hereby, suggest that decreased frontal cortical H3K9 mono- and tri-methylation may be involved in early life separation-decreased fear memory of adult rats.

  19. Effects of the SARM ACP-105 on rotorod performance and cued fear conditioning in sham-irradiated and irradiated female mice.

    Science.gov (United States)

    Dayger, Catherine; Villasana, Laura; Pfankuch, Timothy; Davis, Matthew; Raber, Jacob

    2011-03-24

    Female mice are more susceptible to radiation-induced cognitive changes than male mice. Previously, we showed that, in female mice, androgens antagonize age-related cognitive decline in aged wild-type mice and androgens and selective androgen receptor modulators (SARMs) antagonize cognitive changes induced by human apolipoprotein E4, a risk factor for developing age-related cognitive decline. In this study, the potential effects of the SARM ACP-105 were assessed in female mice that were either sham-irradiated or irradiated with ¹³⁷Cesium at a dose of 10Gy. Behavioral testing started 2 weeks following irradiation. Irradiation impaired sensorimotor function in vehicle-treated mice but not in ACP-105-treated mice. Irradiation impaired cued fear conditioning and ACP-105 enhanced fear conditioning in sham-irradiated and irradiated mice. When immunoreactivity for microtubule-associated protein 2 was assessed in the cortex of sham-irradiated mice, there was a brain area × ACP-105 interaction. While ACP-105 reduced MAP-2 immunoreactivity in the sensorimotor cortex, there was a trend towards increased MAP-2 immunoreactivity in the enthorhinal cortex. No effect on MAP-2 immunoreactivity was seen in the irradiated cortex or sham-irradiated or irradiated hippocampus. Thus, there are relatively early radiation-induced behavioral changes in female mice and reduced MAP-2 levels in the sensorimotor cortex following ACP-105 treatment might contribute to enhanced rotorod performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. De novo fear conditioning across diagnostic groups in the affective disorders: evidence for learning impairments.

    Science.gov (United States)

    Otto, Michael W; Moshier, Samantha J; Kinner, Dina G; Simon, Naomi M; Pollack, Mark H; Orr, Scott P

    2014-09-01

    De novo fear conditioning paradigms have served as a model for how clinical anxiety may be acquired and maintained. To further examine variable findings in the acquisition and extinction of fear responses between clinical and nonclinical samples, we assessed de novo fear conditioning outcomes in outpatients with either anxiety disorders or depression and healthy subjects recruited from the community. Overall, we found evidence for attenuated fear conditioning, as measured by skin conductance, among the patient sample, with significantly lower fear acquisition among patients with depression and posttraumatic stress disorder. These acquisition deficits were evident in both the simple (considering the CS+only) and differential (evaluating the CS+in relation to the CS-) paradigms. Examination of extinction outcomes were hampered by the low numbers of patients who achieved adequate conditioning, but the available data indicated slower extinction among the patient, primarily panic disorder, sample. Results are interpreted in the context of the cognitive deficits that are common to the anxiety and mood disorders, with attention to a range of potential factors, including mood comorbidity, higher-and lower-order cognitive processes and deficits, and medication use, that may modulate outcomes in fear conditioning studies, and, potentially, in exposure-based cognitive behavioral therapy. Copyright © 2014. Published by Elsevier Ltd.

  1. Fear conditioning to subliminal fear relevant and non fear relevant stimuli.

    Directory of Open Access Journals (Sweden)

    Ottmar V Lipp

    Full Text Available A growing body of evidence suggests that conscious visual awareness is not a prerequisite for human fear learning. For instance, humans can learn to be fearful of subliminal fear relevant images--images depicting stimuli thought to have been fear relevant in our evolutionary context, such as snakes, spiders, and angry human faces. Such stimuli could have a privileged status in relation to manipulations used to suppress usually salient images from awareness, possibly due to the existence of a designated sub-cortical 'fear module'. Here we assess this proposition, and find it wanting. We use binocular masking to suppress awareness of images of snakes and wallabies (particularly cute, non-threatening marsupials. We find that subliminal presentations of both classes of image can induce differential fear conditioning. These data show that learning, as indexed by fear conditioning, is neither contingent on conscious visual awareness nor on subliminal conditional stimuli being fear relevant.

  2. Multimodal assessment of long-term memory recall and reinstatement in a combined cue and context fear conditioning and extinction paradigm in humans.

    Directory of Open Access Journals (Sweden)

    Jan Haaker

    Full Text Available Learning to predict danger via associative learning processes is critical for adaptive behaviour. After successful extinction, persisting fear memories often emerge as returning fear. Investigation of return of fear phenomena, e.g. reinstatement, have only recently began and to date, many critical questions with respect to reinstatement in human populations remain unresolved. Few studies have separated experimental phases in time even though increasing evidence shows that allowing for passage of time (and consolidation between experimental phases has a major impact on the results. In addition, studies have relied on a single psychophysiological dimension only (SCRs/SCL or FPS which hampers comparability between different studies that showed both differential or generalized return of fear following a reinstatement manipulation. In 93 participants, we used a multimodal approach (fear-potentiated startle, skin conductance responses, fear ratings to asses fear conditioning (day 1, extinction (day 2 as well as delayed memory recall and reinstatement (day 8 in a paradigm that probed contextual and cued fear intra-individually. Our findings show persistence of conditioning and extinction memory over time and demonstrate that reinstated fear responses were qualitatively different between dependent variables (subjective fear ratings, FPS, SCRs as well as between cued and contextual CSs. While only the arousal-related measurement (SCRs showed increasing reactions following reinstatement to the cued CSs, no evidence of reinstatement was observed for the subjective ratings and fear-related measurement (FPS. In contrast, for contextual CSs, reinstatement was evident as differential and generalized reinstatement in fear ratings as well as generally elevated physiological fear (FPS and arousal (SCRs related measurements to all contextual CSs (generalized non-differential reinstatement. Returning fear after reinstatement likely depends on a variety of variables

  3. Anorexia nervosa as a motivated behavior: Relevance of anxiety, stress, fear and learning.

    Science.gov (United States)

    Guarda, Angela S; Schreyer, Colleen C; Boersma, Gretha J; Tamashiro, Kellie L; Moran, Timothy H

    2015-12-01

    The high comorbidity between anorexia nervosa (AN) and anxiety disorders is well recognized. AN is a motivated behavioral disorder in which habit formation is likely to contribute to the persistence of abnormal eating and exercise behaviors. Secondary alterations in brain circuitry underlying the reward value of food and exercise, along with disturbances in neuroendocrine hunger and satiety signaling arising from starvation and excessive exercise, are likely contributors to the maintenance of anorectic behaviors in genetically vulnerable individuals. The potential role of fear conditioning in facilitating onset of AN, or of impaired fear extinction in contributing to the high relapse rates observed following weight restoration, is of interest. Evidence from animal models of anxiety and human laboratory studies indicate that low estrogen impairs fear extinction. Low estradiol levels in AN may therefore play a role in perpetuating fear of food and fat in recently weight restored patients. Translational models including the activity based anorexia (ABA) rodent model of AN, and neuroimaging studies of fear extinction and conditioning, could help clarify the underlying molecular mechanisms and neurocircuitry involved in food avoidance behaviors in AN. Moreover, the adaptation of novel treatment interventions with efficacy in anxiety disorders may contribute to the development of new treatments for this impairing disorder.

  4. Behavioral and neurophysiological evidence that lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the acquisition and extinction of fear learning.

    Science.gov (United States)

    Skelly, M J; Chappell, A M; Ariwodola, O J; Weiner, J L

    2016-01-01

    The lateral/basolateral amygdala (BLA) is crucial to the acquisition and extinction of Pavlovian fear conditioning, and synaptic plasticity in this region is considered to be a neural correlate of learned fear. We recently reported that activation of BLA β3-adrenoreceptors (β3-ARs) selectively enhances lateral paracapsular (LPC) feed-forward GABAergic inhibition onto BLA pyramidal neurons, and that intra-BLA infusion of a β3-AR agonist reduces measures of unconditioned anxiety-like behavior. Here, we utilized a combination of behavioral and electrophysiological approaches to characterize the role of BLA LPCs in the acquisition of fear and extinction learning in adult male Long-Evans rats. We report that intra-BLA microinjection of β3-AR agonists (BRL37344 or SR58611A, 1μg/0.5μL/side) prior to training fear conditioning or extinction blocks the expression of these behaviors 24h later. Furthermore,ex vivo low-frequency stimulation of the external capsule (LFS; 1Hz, 15min), which engages LPC synapses, induces LTP of BLA fEPSPs, while application of a β3-AR agonist (SR58611A, 5μM) induces LTD of fEPSPs when combined with LFS. Interestingly, fEPSP LTP is not observed in recordings from fear conditioned animals, suggesting that fear learning may engage the same mechanisms that induce synaptic plasticity at this input. In support of this, we find that LFS produces LTD of inhibitory postsynaptic currents (iLTD) at LPC GABAergic synapses, and that this effect is also absent following fear conditioning. Taken together, these data provide preliminary evidence that modulation of LPC GABAergic synapses can influence the acquisition and extinction of fear learning and related synaptic plasticity in the BLA.

  5. A novel AX+/BX- paradigm to assess fear learning and safety-signal processing with repeated-measure designs.

    Science.gov (United States)

    Kazama, Andy M; Schauder, Kimberly B; McKinnon, Michael; Bachevalier, Jocelyne; Davis, Michael

    2013-04-15

    One of the core symptoms of anxiety disorders, such as post-traumatic stress disorder, is the failure to overcome feelings of danger despite being in a safe environment. This deficit likely stems from an inability to fully process safety signals, which are cues in the environment that enable healthy individuals to over-ride fear in aversive situations. Studies examining safety signal learning in rodents, humans, and non-human primates currently rely on between-groups designs. Because repeated-measure designs reduce the number of subjects required, and facilitate a broader range of safety signal studies, the current project sought to develop a repeated-measures safety-signal learning paradigm in non-human primates. Twelve healthy rhesus macaques of both sexes received three rounds of auditory fear-potentiated startle training and testing using an AX+/BX- design with all visual cues. Cue AX was paired with an aversive blast of air, whereas the same X cue in compound with another B cue (BX) signaled the absence of an air blast. Hence, cue B served as a safety signal. Once animals consistently discriminated between the aversive (AX+) and safe (BX-) cues, measured by greater startle amplitude in the presence of AX vs. BX, they were tested for conditioned inhibition by eliciting startle in the presence of a novel ambiguous combined cue (AB). Similar to previous AX+/BX- studies, healthy animals rapidly learned to discriminate between the AX+ and BX- cues as well as demonstrate conditioned inhibition in the presence of the combined AB cue (i.e. lower startle amplitude in the presence of AB vs. AX). Additionally, animals performed consistently across three rounds of testing using three new cues each time. The results validate this novel method that will serve as a useful tool for better understanding the mechanisms for the regulation of fear and anxiety. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Hippocampal interleukin-1 mediates stress-enhanced fear learning: A potential role for astrocyte-derived interleukin-1β.

    Science.gov (United States)

    Jones, Meghan E; Lebonville, Christina L; Paniccia, Jacqueline E; Balentine, Megan E; Reissner, Kathryn J; Lysle, Donald T

    2017-09-26

    Post-traumatic stress disorder (PTSD) is associated with immune dysregulation. We have previously shown that severe stress exposure in a preclinical animal model of the disorder, stress-enhanced fear learning (SEFL), is associated with an increase in hippocampal interleukin-1β (IL-1β) and that blocking central IL-1 after the severe stress prevents the development of SEFL. Here, we tested whether blocking hippocampal IL-1 signaling is sufficient to prevent enhanced fear learning and identified the cellular source of stress-induced IL-1β in this region. Experiment 1 tested whether intra-dorsal hippocampal (DH) infusions of interleukin-1 receptor antagonist (IL-1RA, 1.25µg per hemisphere) 24 and 48 hours after stress exposure prevents the development of enhanced fear learning. Experiment 2 used triple fluorescence immunohistochemistry to examine hippocampal alterations in IL-1β, glial fibrillary acidic protein (GFAP), an astrocyte-specific marker, and ionized calcium binding adaptor molecule -1 (Iba-1), a microglial-specific marker, 48 hours after exposure to the severe stressor of the SEFL paradigm. Intra-DH IL-1RA prevented SEFL and stress-induced IL-1β was primarily colocalized with astrocytes in the hippocampus. Further, hippocampal GFAP immunoreactivity was not altered, whereas hippocampal Iba-1 immunoreactivity was significantly attenuated following severe stress. These data suggest that hippocampal IL-1 signaling is critical to the development of SEFL and that astrocytes are a predominant source of stress-induced IL-1β. Copyright © 2017. Published by Elsevier Inc.

  7. Changes on auditory physiology in response to the inactivation of amygdala nuclei in high anxiety rats expressing learned fear.

    Science.gov (United States)

    Nobre, Manoel Jorge

    2013-06-13

    The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, including those emitted by prey and predators. The role of the central nucleus of the IC (CIC) in fear and anxiety has been suggested based on electrophysiological, behavioral and immunohistochemical studies. The reactivity of high-anxiety rats (HA) to diverse challenges is different from low-anxiety ones (LA). In humans and laboratory animals, pathological anxiety is often accompanied by heightened vigilance and alertness, hyperactivity of the amygdala (AM), and increased amplitude of the auditory evoked potentials (AEP) from the IC. This study aims to evaluate the influence of the inactivation of the central (CEA) and basolateral (BLA) nuclei of the amygdala, after local infusions of the full GABAA agonist muscimol (1nmol/0.2μl), on the AEP elicited in the CIC of rats tested under a learned fear state. Our results showed that both BLA and CEA inactivation change the expression of conditioned fear, in a paradigm using the context as the conditioned stimulus (CS). These changes are correlated to the innate anxiety levels of the animals. It is supposed that this shortcoming is in addition to the imbalance between the regulatory role of the top-down and bottom-up processes in the control of anxiety.

  8. 恐惧联结的习得及其脑机制研究%Formation of Associative Learning of Fear and Its Neural Mechanisms

    Institute of Scientific and Technical Information of China (English)

    刘宏艳; 王倩; 胡治国

    2011-01-01

    Associative learning of fear is crucial for human survival and adaptation. In this review, we first introduced the three ways that leads to the development of associative learning of fear, including self-experiencing, social observation and verbal instruction. Secondly, we showed that the acquisition of associative learning of fear had important influence on the cognitive and social behaviors. The extant studies on the neural basis of associative learning of fear, including lesion studies, neuroimaging studies and studies on nucleus neurons in certain areas, demonstrated the crucial role of the amygdala and hippocampus in the associative learning of fear.%恐惧联结学习是保证有机体生存和适应的重要手段,主要表现为以下三种方式:亲身体验、社会观察和言语指导,习得之后会对认知和社会功能产生重要影响.脑损伤、脑功能成像及神经核团水平的研究均表明,恐惧联结的习得主要与杏仁核和海马等脑区有关.

  9. Recognizing Student Fear: The Elephant in the Classroom

    Science.gov (United States)

    Bledsoe, T. Scott; Baskin, Janice J.

    2014-01-01

    Understanding fear, its causes, and its impact on students can be important for educators who seek ways to help students manage their fears. This paper explores common types of student fears such as performance-based anxiety, fear of failure, fear of being laughed at, and cultural components of fear that impact learning. The cognitive, emotional,…

  10. Recognizing Student Fear: The Elephant in the Classroom

    Science.gov (United States)

    Bledsoe, T. Scott; Baskin, Janice J.

    2014-01-01

    Understanding fear, its causes, and its impact on students can be important for educators who seek ways to help students manage their fears. This paper explores common types of student fears such as performance-based anxiety, fear of failure, fear of being laughed at, and cultural components of fear that impact learning. The cognitive, emotional,…

  11. BDNF-dependent consolidation of fear memories in the perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Brigitte eSchulz-Klaus

    2013-12-01

    Full Text Available In the recent years the perirhinal cortex (PRh has been identified as a crucial brain area in fear learning. Since the neurotrophin BDNF (brain-derived neurotrophic factor is an important mediator of synaptic plasticity and also crucially involved in memory consolidation of several learning paradigms, we analyzed now whether fear conditioning influences the expression of BDNF protein in the PRh. Here we observed a specific increase of BDNF protein 120 minutes after fear conditioning training. In order to test whether this increase of BDNF protein level is also required for the consolidation of the fear memory, we locally applied the Trk receptor inhibitor k252a into the PRh during this time window in a second series of experiments. By interfering with BDNF-TrkB-signaling during this critical time window, the formation of a long-term fear memory was completely blocked, indicated by a complete lack of fear potentiated startle one day later. In conclusion the present study further emphasizes the important role of the PRh in cued fear learning and identified BDNF as an important mediator for fear memory consolidation in the PRh.

  12. Double dissociation of amygdala and hippocampal contributions to trace and delay fear conditioning.

    Science.gov (United States)

    Raybuck, Jonathan D; Lattal, K Matthew

    2011-01-19

    A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requires the hippocampus and prefrontal cortex. It is possible that recruitment of cortical structures by trace conditioning alters the role of the amygdala compared to delay fear conditioning, where the CS and US overlap. To investigate this, we inactivated the amygdala of male C57BL/6 mice with GABA (A) agonist muscimol prior to 2-pairing trace or delay fear conditioning. Amygdala inactivation produced deficits in contextual and delay conditioning, but had no effect on trace conditioning. As controls, we demonstrate that dorsal hippocampal inactivation produced deficits in trace and contextual, but not delay fear conditioning. Further, pre- and post-training amygdala inactivation disrupted the contextual but the not cued component of trace conditioning, as did muscimol infusion prior to 1- or 4-pairing trace conditioning. These findings demonstrate that insertion of a temporal gap between the CS and US can generate amygdala-independent fear conditioning. We discuss the implications of this surprising finding for current models of the neural circuitry involved in fear conditioning.

  13. Fear memory formation can affect a different memory: fear conditioning affects the extinction, but not retrieval, of conditioned taste aversion (CTA) memory

    OpenAIRE

    2014-01-01

    The formation of fear memory to a specific stimulus leads to subsequent fearful response to that stimulus. However, it is not known whether the formation of fear memory can affect other memories. We study whether specific fearful experience leading to fear memory affects different memories formation and extinction. We revealed that cued fear conditioning, but not unpaired or naïve training, inhibited the extinction of CTA memory that was formed after fear conditioning training in rats. Fear ...

  14. Cannabidiol regulation of learned fear: implications for treating anxiety-related disorders

    OpenAIRE

    Regimantas Jurkus; Harriet Laura Lavinia Day; Guimaraes, Francisco S.; Lee, Jonathan L. C.; Leandro Jose Bertoglio; Stevenson, Carl W.

    2016-01-01

    Anxiety and trauma-related disorders are psychiatric diseases with a lifetime prevalence of up to 25%. Phobias and post-traumatic stress disorder (PTSD) are characterized by abnormal and persistent memories of fear-related contexts and cues. The effects of psychological treatments such as exposure therapy are often only temporary and medications can be ineffective and have adverse side effects. Growing evidence from human and animal studies indicates that cannabidiol, the main non-psychotomim...

  15. Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats.

    Science.gov (United States)

    Schuette, Sven R M; Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger; Hobson, Scott

    2016-04-13

    The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal

  16. Do Learners Fear More than Fear Itself: The Role of Fear in Law Students Educational Experiences

    Science.gov (United States)

    Perrin, Jeffrey; O'Neil, Jennifer; Grimes, Ashley; Bryson, Laura

    2014-01-01

    While previous research has examined the various relationships between fear and learning in K-12 academic settings, the relationship is surprisingly unexplored amongst law students. Using a descriptive qualitative approach, we examine the role fear plays in law students' learning experiences. Through a series of semi-structured interviews a few…

  17. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Science.gov (United States)

    Sartori, Simone B; Hauschild, Markus; Bunck, Mirjam; Gaburro, Stefano; Landgraf, Rainer; Singewald, Nicolas

    2011-02-28

    The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB), or normal (NAB) anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5)-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i) for identifying biological factors underlying misguided conditioned fear responses and (ii) for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  18. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Simone B Sartori

    Full Text Available The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB, or normal (NAB anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i for identifying biological factors underlying misguided conditioned fear responses and (ii for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  19. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    Science.gov (United States)

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  20. Fear memory formation can affect a different memory: fear conditioning affects the extinction, but not retrieval, of conditioned taste aversion (CTA) memory

    OpenAIRE

    2014-01-01

    The formation of fear memory to a specific stimulus leads to subsequent fearful response to that stimulus. However, it is not apparent whether the formation of fear memory can affect other memories. We study whether specific fearful experience leading to fear memory affects different memories formation and extinction. We revealed that cued fear conditioning, but not unpaired or naïve training, inhibited the extinction of conditioned taste aversion (CTA) memory that was formed after fear condi...

  1. Transformative Learning Challenges in a Context of Trauma and Fear: An Educator's Story

    Science.gov (United States)

    John, Vaughn M.

    2016-01-01

    After more than three decades of development, transformative learning theory is currently a major theory of adult learning. It has also attracted substantial critique, leading to further development, application and differentiation. Recent contributions to this vast scholarship show a quest for a more unified theory. This article examines…

  2. When Two Paradigms Meet: Does Evaluative Learning Extinguish in Differential Fear Conditioning?

    Science.gov (United States)

    Blechert, Jens; Michael, Tanja; Williams, S. Lloyd; Purkis, Helena M.; Wilhelm, Frank H.

    2008-01-01

    Contemporary theories of Pavlovian conditioning propose a distinction between signal learning (SL), in which a conditioned stimulus (CS) becomes a predictor for a biologically significant unconditioned stimulus (US), and evaluative learning (EL), in which the valence of the US is transferred to the CS. This distinction is based largely on the…

  3. Exposure Therapy for Fear of Spiders in an Adult with Learning Disabilities: A Case Report

    Science.gov (United States)

    Cowdrey, Felicity A.; Walz, Linda

    2015-01-01

    The evidence-base for exposure therapy in people with learning disabilities experiencing specific phobias is sparse. This case study describes the assessment, formulation and treatment of spider phobia in a woman with learning disabilities using an exposure-based intervention augmented with mindfulness practice and bereavement work. To evaluate…

  4. Exposure Therapy for Fear of Spiders in an Adult with Learning Disabilities: A Case Report

    Science.gov (United States)

    Cowdrey, Felicity A.; Walz, Linda

    2015-01-01

    The evidence-base for exposure therapy in people with learning disabilities experiencing specific phobias is sparse. This case study describes the assessment, formulation and treatment of spider phobia in a woman with learning disabilities using an exposure-based intervention augmented with mindfulness practice and bereavement work. To evaluate…

  5. Cued Dichotic Listening with Right-Handed, Left-Handed, Bilingual and Learning-Disabled Children.

    Science.gov (United States)

    Obrzut, John E.; And Others

    This study used cued dichotic listening to investigate differences in language lateralization among right-handed (control), left handed, bilingual, and learning disabled children. Subjects (N=60) ranging in age from 7-13 years were administered a consonant-vowel-consonant dichotic paradigm with three experimental conditions (free recall, directed…

  6. Self-directed learning skills in air-traffic control; A cued retrospective reporting study

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; Kirschner, Paul A.; De Bock, Jeano

    2011-01-01

    Van Meeuwen, L. W., Brand-Gruwel, S., Van Merriënboer, J. J. G., Kirschner, P. A., & De Bock, J. J. P. R. (2010, May). Self-directed learning skills in air-traffic control; A cued retrospective reporting study. Presented at the Scandinavian Workshop on Applied Eye-tracking. Lund, Sweden.

  7. Circadian modulation of learning and memory in fear-conditioned mice.

    Science.gov (United States)

    Chaudhury, Dipesh; Colwell, Christopher S

    2002-06-15

    Endogenous processes referred to as circadian oscillators generate many of the daily rhythms in physiology and behavior of a variety of animals including humans. We investigated the possible circadian regulation of acquisition, recall and extinction in two strains of mice (C-57/6J and C-3H). Mice were trained in either the day or night with a tone and context fear conditioning protocol. The mice were then tested over the course of several days for their ability to recall the training. When comparing the performance of animals in the day and night, the mice acquired the conditioning faster in the day than in the night. Furthermore, the recall for context and tone consistently peaked during the day for at least 3 days after training, irrespective of the time of training. Finally, the loss of this training (or extinction) exhibited a rhythm in that mice trained in night exhibited a greater degree of extinction than mice trained in the day. For all of these rhythms in acquisition, recall, and extinction the phase of the rhythm was controlled by the prior light-dark (LD) cycle. When we reversed the phase of the LD cycle, the phase of the rhythm also reversed. Importantly, all three of the rhythms also continued in constant darkness demonstrating the endogenous, and presumably circadian nature, of the rhythms.

  8. Differential Regulation of Brain-Derived Neurotrophic Factor Transcripts during the Consolidation of Fear Learning

    Science.gov (United States)

    Ressler, Kerry J.; Rattiner, Lisa M.; Davis, Michael

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5[prime]-exon and a common 3[prime]-coding exon. This study describes novel evidence for the…

  9. AX+/BX- Discrimination Learning in the Fear-Potentiated Startle Paradigm in Monkeys

    Science.gov (United States)

    Winslow, James T.; Noble, Pamela L.; Davis, Michael

    2008-01-01

    Individuals with anxiety disorders often do not respond to safety signals and hence continue to be afraid and anxious. Consequently, it is important to develop paradigms in animals that can directly study brain systems involved in learning about, and responding to, safety signals. We previously developed a discrimination procedure in rats of the…

  10. Feel the Fear: Learning Graphic Design in Affective Places and Online Spaces

    Science.gov (United States)

    Nottingham, Anitra

    2017-01-01

    This article explores the idea of pedagogic affect in both onsite and online graphic design learning spaces, and speculates on the role that this affect plays in the formation of the design student. I argue that embodied design knowledge is built by interactions with design professionals, activities that mimic the daily work of designers, and…

  11. Stress Enables Reinforcement-Elicited Serotonergic Consolidation of Fear Memory.

    Science.gov (United States)

    Baratta, Michael V; Kodandaramaiah, Suhasa B; Monahan, Patrick E; Yao, Junmei; Weber, Michael D; Lin, Pei-Ann; Gisabella, Barbara; Petrossian, Natalie; Amat, Jose; Kim, Kyungman; Yang, Aimei; Forest, Craig R; Boyden, Edward S; Goosens, Ki A

    2016-05-15

    Prior exposure to stress is a risk factor for developing posttraumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacologic manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2C receptor (5-HT2CR) activity during memory consolidation were necessary for stress enhancement of fear memory, but neither process affected fear memory in unstressed mice. Additionally, prior stress increased amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also showed that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. An organization of visual and auditory fear conditioning in the lateral amygdala.

    Science.gov (United States)

    Bergstrom, Hadley C; Johnson, Luke R

    2014-12-01

    Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA.

  13. Neuronal circuits of fear extinction.

    Science.gov (United States)

    Herry, Cyril; Ferraguti, Francesco; Singewald, Nicolas; Letzkus, Johannes J; Ehrlich, Ingrid; Lüthi, Andreas

    2010-02-01

    Fear extinction is a form of inhibitory learning that allows for the adaptive control of conditioned fear responses. Although fear extinction is an active learning process that eventually leads to the formation of a consolidated extinction memory, it is a fragile behavioural state. Fear responses can recover spontaneously or subsequent to environmental influences, such as context changes or stress. Understanding the neuronal substrates of fear extinction is of tremendous clinical relevance, as extinction is the cornerstone of psychological therapy of several anxiety disorders and because the relapse of maladaptative fear and anxiety is a major clinical problem. Recent research has begun to shed light on the molecular and cellular processes underlying fear extinction. In particular, the acquisition, consolidation and expression of extinction memories are thought to be mediated by highly specific neuronal circuits embedded in a large-scale brain network including the amygdala, prefrontal cortex, hippocampus and brain stem. Moreover, recent findings indicate that the neuronal circuitry of extinction is developmentally regulated. Here, we review emerging concepts of the neuronal circuitry of fear extinction, and highlight novel findings suggesting that the fragile phenomenon of extinction can be converted into a permanent erasure of fear memories. Finally, we discuss how research on genetic animal models of impaired extinction can further our understanding of the molecular and genetic bases of human anxiety disorders.

  14. Genetic gating of human fear learning and extinction: possible implications for gene-environment interaction in anxiety disorder.

    Science.gov (United States)

    Lonsdorf, Tina B; Weike, Almut I; Nikamo, Pernilla; Schalling, Martin; Hamm, Alfons O; Ohman, Arne

    2009-02-01

    Pavlovian fear conditioning is a widely used model of the acquisition and extinction of fear. Neural findings suggest that the amygdala is the core structure for fear acquisition, whereas prefrontal cortical areas are given pivotal roles in fear extinction. Forty-eight volunteers participated in a fear-conditioning experiment, which used fear potentiation of the startle reflex as the primary measure to investigate the effect of two genetic polymorphisms (5-HTTLPR and COMTval158met) on conditioning and extinction of fear. The 5-HTTLPR polymorphism, located in the serotonin transporter gene, is associated with amygdala reactivity and neuroticism, whereas the COMTval158met polymorphism, which is located in the gene coding for catechol-O-methyltransferase (COMT), a dopamine-degrading enzyme, affects prefrontal executive functions. Our results show that only carriers of the 5-HTTLPR s allele exhibited conditioned startle potentiation, whereas carriers of the COMT met/met genotype failed to extinguish conditioned fear. These results may have interesting implications for understanding gene-environment interactions in the development and treatment of anxiety disorders.

  15. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation.

    Science.gov (United States)

    Soya, Shingo; Shoji, Hirotaka; Hasegawa, Emi; Hondo, Mari; Miyakawa, Tsuyoshi; Yanagisawa, Masashi; Mieda, Michihiro; Sakurai, Takeshi

    2013-09-01

    The noradrenergic (NA) projections arising from the locus ceruleus (LC) to the amygdala and bed nucleus of the stria terminalis have been implicated in the formation of emotional memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 (OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized that an OX1R-mediated pathway is involved in the physiological fear learning process via regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of Ox1r(-/-) mice in the classic cued and contextual fear-conditioning test. We found that Ox1r(-/-) mice showed impaired freezing responses in both cued and contextual fear-conditioning paradigms. In contrast, Ox2r(-/-) mice showed normal freezing behavior in the cued fear-conditioning test, while they exhibited shorter freezing time in the contextual fear-conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase showed that double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were significantly fewer in Ox1r(-/-) mice. AAV-mediated expression of OX1R in LC-NA neurons in Ox1r(-/-) mice restored the freezing behavior to the auditory cue to a comparable level to that in wild-type mice in the test session. Decreased freezing time during the contextual fear test was not affected by restoring OX1R expression in LC-NA neurons. These observations support the hypothesis that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role in cue-dependent fear memory formation and/or retrieval.

  16. What types of learning are enhanced by a cued recall test?

    Science.gov (United States)

    Carpenter, Shana K; Pashler, Harold; Vul, Edward

    2006-10-01

    In two experiments, we investigated what types of learning benefit from a cued recall test. After initial exposure to a word pair (A+B), subjects experienced either an intervening cued recall test (A-->?) with feedback, or a restudy presentation (A-->B). The final test could be cued recall in the same (A-->?) or opposite (?-->B) direction, or free recall of just the cues (Recall As) or just the targets (Recall Bs). All final tests revealed a benefit for testing as opposed to restudying. Tests produced a direct benefit for information that was retrieved on the intervening test (B). This benefit also "spilled over" to facilitate recall of information that was present on the test but not retrieved (A). Both theoretical and practical implications are discussed.

  17. Interoceptive fear conditioning as a learning model of panic disorder: an experimental evaluation using 20% CO(2)-enriched air in a non-clinical sample.

    Science.gov (United States)

    Acheson, Dean T; Forsyth, John P; Prenoveau, Jason M; Bouton, Mark E

    2007-10-01

    Despite the role afforded interoceptive fear conditioning in etiologic accounts of panic disorder, there are no good experimental demonstrations of such learning in humans. The aim of the present study was to evaluate the interoceptive conditioning account using 20% carbon dioxide (CO(2))-enriched air as an interoceptive conditioned stimulus (CS) (i.e., physiologically inert 5-s exposures) and unconditioned stimulus (US) (i.e., physiologically prepotent 15-s exposures). Healthy participants (N=42) were randomly assigned to one of three conditions: a CS-only, contingent CS-US pairings, or unpaired/non-contingent CS and US presentations. Electrodermal and self-report (e.g., distress, fear) served as indices of conditioned emotional responding. Results showed greater magnitude electrodermal and evaluative fear conditioning in the paired relative to the CS-only condition. The explicitly unpaired condition showed even greater electrodermal and evaluative responding during acquisition, and marked resistance to extinction. The latter results are consistent with the possibility that the unpaired procedure constituted a partial reinforcement procedure in which CO(2) onset was paired with more extended CO(2) exposure on 50% of the trials. Overall, the findings are consistent with contemporary learning theory accounts of panic.

  18. Preventing long-lasting fear recovery using bilateral alternating sensory stimulation: A translational study.

    Science.gov (United States)

    Wurtz, H; El-Khoury-Malhame, M; Wilhelm, F H; Michael, T; Beetz, E M; Roques, J; Reynaud, E; Courtin, J; Khalfa, S; Herry, C

    2016-05-03

    Posttraumatic stress disorder (PTSD) is a highly debilitating and prevalent psychological disorder. It is characterized by highly distressing intrusive trauma memories that are partly explained by fear conditioning. Despite efficient therapeutic approaches, a subset of PTSD patients displays spontaneous recurrence of traumatic memories after successful treatment. The development of animal behavioral models mimicking the individual variability in treatment outcome for PTSD patients represent therefore an important challenge as it allows for the identification of predicting factors of resilience or susceptibility to relapse. However, to date, only few animal behavioral models of long-lasting fear recovery have been developed and their predictive validity has not been tested directly. The objectives of this study were twofold. First we aimed to develop a simple animal behavioral model of long-lasting fear recovery based on auditory cued fear conditioning and extinction learning, which recapitulates the heterogeneity of fear responses observed in PTSD patients after successful treatment. Second we aimed at testing the predictive validity of our behavioral model and used to this purpose a translational approach based (i) on the demonstration of the efficiency of Eye Movement Desensitization and Reprocessing (EMDR) therapy to reduce conditioned fear responses in PTSD patients and (ii) on the implementation in our behavioral model of an electrical bilateral alternating stimulation of the eyelid which mimics the core feature of EMDR. Our data indicate that electrical bilateral alternating stimulation of the eyelid during extinction learning alleviates long-lasting fear recovery of conditioned fear responses and dramatically reduces inter-individual variability. These results demonstrate the face and predictive validity of our animal behavioral model and provide an interesting tool to understand the neurobiological underpinnings of long-lasting fear recovery.

  19. Post-Weaning, Forebrain-Specific Perturbation of the Oxytocin System Impairs Fear Conditioning

    OpenAIRE

    Pagani, Jerome H.; Lee, Heon-Jin; Young, W. Scott

    2011-01-01

    Oxytocin (Oxt) and vasopressin (Avp) are important for a wide variety of behaviors and the use of transgenic mice lacking the peptides or their receptors, particularly when their loss is spatially and temporally manipulated, offers an opportunity to closely examine their role in a particular behavior. We used a cued fear conditioning paradigm to examine associative learning in three lines of transgenic mice: mice that constitutively lack vasopressin 1a (Avpr1a−/−) or Oxt receptors (Oxtr−/−) a...

  20. Higher-Order Sensory Cortex Drives Basolateral Amygdala Activity during the Recall of Remote, but Not Recently Learned Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Likhtik, Ekaterina; Mazziotti, Raffaele; Concina, Giulia; Renna, Annamaria; Sacco, Tiziana; Gordon, Joshua A; Sacchetti, Benedetto

    2016-02-03

    Negative experiences are quickly learned and long remembered. Key unresolved issues in the field of emotional memory include identifying the loci and dynamics of memory storage and retrieval. The present study examined neural activity in the higher-order auditory cortex Te2 and basolateral amygdala (BLA) and their crosstalk during the recall of recent and remote fear memories. To this end, we obtained local field potentials and multiunit activity recordings in Te2 and BLA of rats that underwent recall at 24 h and 30 d after the association of an acoustic conditioned (CS, tone) and an aversive unconditioned stimulus (US, electric shock). Here we show that, during the recall of remote auditory threat memories in rats, the activity of the Te2 and BLA is highly synchronized in the theta frequency range. This functional connectivity stems from memory consolidation processes because it is present during remote, but not recent, memory retrieval. Moreover, the observed increase in synchrony is cue and region specific. A preponderant Te2-to-BLA directionality characterizes this dialogue, and the percentage of time Te2 theta leads the BLA during remote memory recall correlates with a faster latency to freeze to the auditory conditioned stimulus. The blockade of this information transfer via Te2 inhibition with muscimol prevents any retrieval-evoked neuronal activity in the BLA and animals are unable to retrieve remote memories. We conclude that memories stored in higher-order sensory cortices drive BLA activity when distinguishing between learned threatening and neutral stimuli. How and where in the brain do we store the affective/motivational significance of sensory stimuli acquired through life experiences? Scientists have long investigated how "limbic" structures, such as the amygdala, process affective stimuli. Here we show that retrieval of well-established threat memories requires the functional interplay between higher-order components of the auditory cortex and the

  1. Human fear conditioning and extinction in neuroimaging: a systematic review.

    Directory of Open Access Journals (Sweden)

    Christina Sehlmeyer

    Full Text Available Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance

  2. "I Think It Helps You Better When You're Not Scared": Fear and Learning in the Primary Classroom

    Science.gov (United States)

    Hargreaves, Eleanore

    2015-01-01

    The research reported in this article explored in 2013 the classroom fear of two samples of UK primary school pupils (aged 7-8 and also 10-11 years old). The investigation was approached within a framework of critical theory, in which emancipatory aims were embraced. The authoritarian nature of most classrooms necessitates that teachers control…

  3. The effect of disgust and fear modeling on children's disgust and fear for animals.

    Science.gov (United States)

    Askew, Chris; Cakır, Kübra; Põldsam, Liine; Reynolds, Gemma

    2014-08-01

    Disgust is a protective emotion associated with certain types of animal fears. Given that a primary function of disgust is to protect against harm, increasing children's disgust-related beliefs for animals may affect how threatening they think animals are and their avoidance of them. One way that children's disgust beliefs for animals might change is via vicarious learning: by observing others responding to the animal with disgust. In Experiment 1, children (ages 7-10 years) were presented with images of novel animals together with adult faces expressing disgust. Children's fear beliefs and avoidance preferences increased for these disgust-paired animals compared with unpaired control animals. Experiment 2 used the same procedure and compared disgust vicarious learning with vicarious learning with fear faces. Children's fear beliefs and avoidance preferences for animals again increased as a result of disgust vicarious learning, and animals seen with disgust or fear faces were also rated more disgusting than control animals. The relationship between increased fear beliefs and avoidance preferences for animals was mediated by disgust for the animals. The experiments demonstrate that children can learn to believe that animals are disgusting and threatening after observing an adult responding with disgust toward them. The findings also suggest a bidirectional relationship between fear and disgust with fear-related vicarious learning leading to increased disgust for animals and disgust-related vicarious learning leading to increased fear and avoidance.

  4. [Mechanisms for regulation of fear conditioning and memory].

    Science.gov (United States)

    Kida, Satoshi

    2014-11-01

    Pavlovian fear conditioning is a model of fear learning and memory. The mechanisms regulating fear conditioning and memory have been investigated in humans and rodents. In this paradigm, animals learn and memorize an association between a conditioned stimulus (CS), such as context, and an unconditioned stimulus (US), such as an electrical footshock that induces fear. Fear memory generated though fear conditioning is stabilized via a memory consolidation process. Moreover, recent studies have shown the existence of memory processes that control fear memory following the retrieval of consolidated memory. Indeed, when fear memory is retrieved by re-exposure to the CS, the retrieved memory is re-stabilized via the reconsolidation process. On the other hand, the retrieval of fear memory by prolonged re-exposure to the CS also leads to fear memory extinction, new inhibitory learning against the fear memory, in which animals learn that they do not need to respond to the CS. Importantly, the reinforcement of fear memory after retrieval (i.e., re-experience such as flashbacks or nightmares) has been thought to be associated with the development of emotional disorders such as post-traumatic stress disorder (PTSD). In this review, I summarize recent progress in studies on the mechanism of fear conditioning and memory consolidation, reconsolidation and extinction, and furthermore, introduce our recent establishment of a mouse PTSD model that shows enhancement of fear memory after retrieval.

  5. N-methyl-D-aspartate receptor antagonist MK-801 impairs learning but not memory fixation or expression of classical fear conditioning in goldfish (Carassius auratus).

    Science.gov (United States)

    Xu, X; Davis, R E

    1992-04-01

    The amnestic effects of the noncompetitive antagonist MK-801 on visually mediated, classic fear conditioning in goldfish (Carassius auratus) was examined in 5 experiments. MK-801 was administered 30 min before the training session on Day 1 to look for anterograde amnestic effects, immediately after training to look for retrograde amnestic effects, and before the training or test session, or both, to look for state-dependence effects. The results showed that MK-801 produced anterograde amnesia at doses that did not produce retrograde amnesia or state dependency and did not impair the expression of conditioned or unconditioned branchial suppression responses (BSRs) to the conditioned stimulus. The results indicate that MK-801 disrupts the mechanism of learning of the conditioned stimulus-unconditioned stimulus relation. Evidence is also presented that the learning processes that are disrupted by MK-801 occur during the initial stage of BSR conditioning.

  6. Effects of sleep on memory for conditioned fear and fear extinction

    OpenAIRE

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with th...

  7. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults.

    Science.gov (United States)

    Schiele, Miriam A; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen; Pauli, Paul

    2016-05-01

    Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues.

  8. Neural correlates of fear: insights from neuroimaging

    Directory of Open Access Journals (Sweden)

    Garfinkel SN

    2014-12-01

    Full Text Available Sarah N Garfinkel,1,2 Hugo D Critchley1,2 1Sackler Centre for Consciousness Science, 2Department of Psychiatry, Brighton and Sussex Medical School, University of Sussex, Brighton, UK Abstract: Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions, and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of

  9. Glucocorticoids reduce phobic fear in humans.

    Science.gov (United States)

    Soravia, Leila M; Heinrichs, Markus; Aerni, Amanda; Maroni, Caroline; Schelling, Gustav; Ehlert, Ulrike; Roozendaal, Benno; de Quervain, Dominique J-F

    2006-04-04

    Phobias are characterized by excessive fear, cued by the presence or anticipation of a fearful situation. Whereas it is well established that glucocorticoids are released in fearful situations, it is not known whether these hormones, in turn, modulate perceived fear. As extensive evidence indicates that elevated glucocorticoid levels impair the retrieval of emotionally arousing information, they might also inhibit retrieval of fear memory associated with phobia and, thereby, reduce phobic fear. Here, we investigated whether acutely administrated glucocorticoids reduced phobic fear in two double-blind, placebo-controlled studies in 40 subjects with social phobia and 20 subjects with spider phobia. In the social phobia study, cortisone (25 mg) administered orally 1 h before a socio-evaluative stressor significantly reduced self-reported fear during the anticipation, exposure, and recovery phase of the stressor. Moreover, the stress-induced release of cortisol in placebo-treated subjects correlated negatively with fear ratings, suggesting that endogenously released cortisol in the context of a phobic situation buffers fear symptoms. In the spider phobia study, repeated oral administration of cortisol (10 mg), but not placebo, 1 h before exposure to a spider photograph induced a progressive reduction of stimulus-induced fear. This effect was maintained when subjects were exposed to the stimulus again 2 days after the last cortisol administration, suggesting that cortisol may also have facilitated the extinction of phobic fear. Cortisol treatment did not reduce general, phobia-unrelated anxiety. In conclusion, the present findings in two distinct types of phobias indicate that glucocorticoid administration reduces phobic fear.

  10. A time for learning and a time for sleep: the effect of sleep deprivation on contextual fear conditioning at different times of the day.

    Science.gov (United States)

    Hagewoud, Roelina; Whitcomb, Shamiso N; Heeringa, Amarins N; Havekes, Robbert; Koolhaas, Jaap M; Meerlo, Peter

    2010-10-01

    Sleep deprivation negatively affects memory consolidation, especially in the case of hippocampus-dependent memories. Studies in rodents have shown that 5 hours of sleep deprivation immediately following footshock exposure selectively impairs the formation of a contextual fear memory. In these studies, both acquisition and subsequent sleep deprivation were performed in the animals' main resting phase. However, in everyday life, subjects most often learn during their active phase. Here we examined the effects of sleep deprivation on memory consolidation for contextual fear in rats when the task was performed at different times of the day, particularly, at the beginning of the resting phase or right before the onset of the active phase. Results show that sleep deprivation immediately following training affects consolidation of contextual fear, independent of time of training. However, in the resting phase memory consolidation was impaired by 6 hours of posttraining sleep deprivation, whereas, in the active phase, the impairment was only seen after 12 hours of sleep deprivation. Since rats sleep at least twice as much during the resting phase compared with the active phase, these data suggest that the effect of sleep deprivation depends on the amount of sleep that was lost. Also, control experiments show that effects of sleep deprivation were not related to the amount of stimulation the animals received and were therefore not likely an indirect effect of the sleep-deprivation method. These results support the notion that sleep immediately following acquisition, independent of time of day, promotes memory consolidation and that sleep deprivation may disrupt this process depending on the amount of sleep that is lost.

  11. NOX2 Mediated-Parvalbumin Interneuron Loss Might Contribute to Anxiety-Like and Enhanced Fear Learning Behavior in a Rat Model of Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Liu, Fang-Fang; Yang, Lin-Dong; Sun, Xiao-Ru; Zhang, Hui; Pan, Wei; Wang, Xing-Ming; Yang, Jian-Jun; Ji, Mu-Huo; Yuan, Hong-Mei

    2016-12-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, yet the precise mechanisms underlying PTSD remains largely to be determined. Using an animal model of PTSD induced by a single prolonged stress (SPS), we assessed the role of hippocampal nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and parvalbumin (PV) interneurons in the development of PTSD symptoms. In the present study, behavioral tests were performed by the open field (day 13 after SPS) and fear conditioning tests (days 13 and 14 after SPS). For the interventional study, rats were chronically treated with a NADPH oxidase inhibitor apocynin either by early or delayed administration. The levels of tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, malondialdehyde, superoxide dismutase, NOX2, 4-hydroxynonenal, and PV in the hippocampus were measured at the indicated time points. In the present study, we showed that SPS rats displayed anxiety-like and enhanced fear learning behavior, which was accompanied by the increased expressions of malondialdehyde, IL-6, NOX2, 4-hydroxynonenal, and decreased PV expression. Notably, early but not delayed treatment with apocynin reversed all these abnormalities after SPS. In conclusion, our results provided evidence that NOX2 activation in the hippocampus, at least in part, contributes to oxidative stress and neuroinflammation, which further results in PV interneuron loss and consequent PTSD symptoms in a rat model of PTSD induced by SPS.

  12. The neural dynamics of fear memory

    NARCIS (Netherlands)

    Visser, R.M.

    2016-01-01

    While much of what we learn will be forgotten over time, fear memory appears to be particularly resilient to forgetting. Our understanding of how fearful events are transformed into durable memory, and how this memory subsequently influences the processing of (novel) stimuli, is limited. Studying

  13. The neural dynamics of fear memory

    NARCIS (Netherlands)

    R.M. Visser

    2016-01-01

    While much of what we learn will be forgotten over time, fear memory appears to be particularly resilient to forgetting. Our understanding of how fearful events are transformed into durable memory, and how this memory subsequently influences the processing of (novel) stimuli, is limited. Studying fe

  14. Fears and Phobias

    Science.gov (United States)

    ... A Week of Healthy Breakfasts Shyness Fears and Phobias KidsHealth > For Teens > Fears and Phobias Print A ... help and support to overcome them. previous continue Phobias A phobia is an intense fear reaction to ...

  15. Incubation of fear

    OpenAIRE

    Pickens, Charles L.; Golden, Sam A.; Nair, Sunila G.

    2013-01-01

    While fear and anxiety can grow over time in anxiety disorders, most efforts to model this phenomenon with fear conditioning in rodents causes fear that remains stable or decreases across weeks or months. Here, we describe several methods to induce conditioned fear that grows over the course of 1 month and is sustained for at least 2 months using an extended fear conditioning approach. These methods include a very reliable standard method that causes multiple fear measures to increase over mo...

  16. Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning.

    Science.gov (United States)

    Mahan, Amy L; Mou, Liping; Shah, Nirali; Hu, Jia-Hua; Worley, Paul F; Ressler, Kerry J

    2012-03-28

    The consolidation of conditioned fear involves upregulation of genes necessary for long-term memory formation. An important question remains as to whether this results in part from epigenetic regulation and chromatin modulation. We examined whether Homer1a, which is required for memory formation, is necessary for Pavlovian cued fear conditioning, whether it is downstream of BDNF-TrkB activation, and whether this pathway utilizes histone modifications for activity-dependent transcriptional regulation. We initially found that Homer1a knock-out mice exhibited deficits in cued fear conditioning (5 tone-shock presentations with 70 dB, 6 kHz tones and 0.5 s, 0.6 mA footshocks). We then demonstrated that: (1) Homer1a mRNA increases after fear conditioning in vivo within both amygdala and hippocampus of wild-type mice; (2) it increases after BDNF application to primary hippocampal and amygdala cultures in vitro; and (3) these increases are dependent on transcription and MAPK signaling. Furthermore, using chromatin immunoprecipitation we found that both in vitro and in vivo manipulations result in decreases in Homer1 promoter H3K9 methylation in amygdala cells but increases in Homer1 promoter H3 acetylation in hippocampal cells. However, no changes were observed in H4 acetylation or H3K27 dimethylation. Inhibition of histone deacetylation by sodium butyrate enhanced contextual but not cued fear conditioning and enhanced Homer1 H3 acetylation in the hippocampus. These data provide evidence for dynamic epigenetic regulation of Homer1a following BDNF-induced plasticity and during a BDNF-dependent learning process. Furthermore, upregulation of this gene may be regulated through distinct epigenetic modifications in the hippocampus and amygdala.

  17. Aplikasi teori belajar sosial dalam penatalaksanaan rasa takut dan cemasan anak pada perawatan gigi (Application of social learning theory in the management of children dental fear and anxiety

    Directory of Open Access Journals (Sweden)

    Arlette Suzy Setiawan

    2014-06-01

    Full Text Available Background: Dental anxiety is a prevalent problem faced by dentists till nowadays, especially in treating child patients. Several methods in managing anxiety are available, but there is no single method can be applied extensively. Purpose: This article was aimed to describe the application of social learning theory in preventing or reducing dental anxiety in children. Literature review: Anxiety and fear are psych feelings that is experienced by a person. A child developed these feelings by learning from their own past experienced or by information obtained from their environment. If fear and anxiety can be learned by a child, thus the opposite term which is preventing the feelings is assumed can be also offered to learned. This application actually being applied in the field of dentistry as modeling, but the exploration of how this process is due is often being ignored. Conclusion: Social learning theory provides an easy preventive approach and effective intervention that can be applied to children in 4-9 years old to reduce dental anxiety.Latar belakang: Kecemasan pada perawatan gigi merupakan hal yang paling sering dijumpai dan merupakan masalah yang dihadapi oleh dokter gigi sampai saat ini, terutama pada pasien anak. Berbagai metode penatalaksanaan kecemasan banyak tersedia, namun tidak satu pun metode yang dapat diterapkan secara luas. Tujuan: Makalah ini disusun untuk membahas mengenai aplikasi teori belajar sosial dalam mencegah kecemasan pada anak saat perawatan gigi. Tinjauan pustaka: Rasa cemas dan takut merupakan perasaan psikis yang dialami seorang individu. Perasaan ini pada seorang anak lebih banyak didapat dari proses belajar dalam menyerap informasi berdasarkan pengalaman pribadi ataupun informasi dari lingkungan sekitar. Bila rasa cemas dan takut dapat dipelajari oleh seorang anak, maka diasumsikan bahwa menghindari timbulnya perasaan ini dapat pula diajarkan pada anak. Aplikasi hal tersebut sebenarnya telah diterapkan di bidang

  18. Activation of D1/5 Dopamine Receptors: A Common Mechanism for Enhancing Extinction of Fear and Reward-Seeking Behaviors.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-07-01

    Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.

  19. Examining the nature of fear of flying.

    Science.gov (United States)

    Hawkins-Gilligan, Janice; Dygdon, Judith A; Conger, Anthony J

    2011-10-01

    The nature of fear of flying (FOF) is not well understood. It is commonly assumed to be a fear learned from flight-specific experiences. However, existing literature suggests that FOF is a manifestation of fears of other stimuli (e.g., heights) embedded in the flying situation, but not specific to it. This study compared the level of prediction of FOF attained from flight-specific conditioning experiences (specifically, classical conditioning experiences in direct, observational, and verbal modes) with the level of prediction attained from flight-embedded fears. There were 109 university students who completed the Flight Anxiety Situations Questionnaire (FAS) and the Fear Survey Schedule, Version III (FSS) as well as demographic and flying experience questionnaires built for this study. All FOF measures were highly predicted by at least one flight-embedded fear. Conversely, conditioning experiences predicted only four of five FOF measures and this prediction was not strong. In general, conditioning experiences did not behave as in previous studies of conditioning and fear. The results suggest that FOF is based more on several flight-embedded innate fears than on learned fears. The implications of these results for FOF emergence and prevention are discussed.

  20. Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex.

    Science.gov (United States)

    Toledo-Rodriguez, Maria; Pitiot, Alain; Paus, Tomáš; Sandi, Carmen

    2012-07-01

    Adolescence is characterized by major developmental changes that may render the individual vulnerable to stress and the development of psychopathologies in a sex-specific manner. Earlier we reported lower anxiety-like behavior and higher risk-taking and novelty seeking in rats previously exposed to peri-pubertal stress. Here we studied whether peri-pubertal stress affected the acquisition and extinction of fear memories and/or the associated functional engagement of various brain regions, as assessed with 2-deoxyglucose. We showed that while peri-pubertal stress reduced freezing during the acquisition of fear memories (training) in both sexes, it had a sex-specific effect on extinction of these memories. Moreover hippocampus, basal amygdala and cingulate and motor cortices showed higher metabolic rates during extinction in rats exposed to peri-pubertal stress. Interestingly, activation of the infralimbic cortex was negatively correlated with freezing during extinction only in control males, while only males stressed during puberty showed a significant correlation between behavior during extinction and metabolic activation of hippocampus, amygdala and paraventricular nucleus. No correlations between brain activation and behavior during extinction were observed in females (control or stress). These results indicate that exposure to peri-pubertal stress affects behavior and brain metabolism when the individual is exposed to an additional stressful challenge. Some of these effects are sex-specific.

  1. The expression of c-Fos and colocalisation of c-Fos and glucocorticoid receptors in brain structures of low and high anxiety rats subjected to extinction trials and re-learning of a conditioned fear response.

    Science.gov (United States)

    Lehner, Małgorzata; Wisłowska-Stanek, Aleksandra; Taracha, Ewa; Maciejak, Piotr; Szyndler, Janusz; Skórzewska, Anna; Turzyńska, Danuta; Sobolewska, Alicja; Hamed, Adam; Bidziński, Andrzej; Płaźnik, Adam

    2009-11-01

    We designed an animal model to examine the mechanisms of differences in individual responses to aversive stimuli. We used the rat freezing response in the context fear test as a discriminating variable: low responders (LR) were defined as rats with a duration of freezing response one standard error or more below the mean value, and high responders (HR) were defined as rats with a duration of freezing response one standard error or more above the mean value. We sought to determine the colocalisation of c-Fos and glucocorticoid receptors-immunoreactivity (GR-ir) in HR and LR rats subjected to conditioned fear training, two extinction sessions and re-learning of a conditioned fear. We found that HR animals showed a marked decrease in conditioned fear in the course of two extinction sessions (16 days) in comparison with the control and LR groups. The LR group exhibited higher activity in the cortical M2 and prelimbic areas (c-Fos) and had an increased number of cells co-expressing c-Fos and GR-ir in the M2 and medial orbital cortex after re-learning a contextual fear. HR rats showed increased expression of c-Fos, GR-ir and c-Fos/GR-ir colocalised neurons in the basolateral amygdala and enhanced c-Fos and GR-ir in the dentate gyrus (DG) in comparison with LR animals. Our data indicate that recovery of a context-related behaviour upon re-learning of contextual fear is accompanied in HR animals by a selective increase in c-Fos expression and GRs-ir in the DG area of the hippocampus.

  2. Posterior insular cortex is necessary for conditioned inhibition of fear.

    Science.gov (United States)

    Foilb, Allison R; Flyer-Adams, Johanna G; Maier, Steven F; Christianson, John P

    2016-10-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS- fear discrimination conditioning over 5 days in rats leads the CS- to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscimol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors.

  3. Selective presynaptic terminal remodeling induced by spatial, but not cued, learning: a quantitative confocal study

    Science.gov (United States)

    McGonigal, R.; Tabatadze, N.; Routtenberg, A.

    2011-01-01

    The hippocampal mossy fibers (MFs) are capable of behaviorally-selective, use-dependent structural remodeling. Indeed, we previously observed a new layer of Timm’s staining induced in the stratum oriens (SO) in CA3 after spatial but not cued water maze learning (Rekart et al., Learn. Mem. 2007; 14:416–421). This led to the prediction that there is a learning-specific induction of presynaptic terminal plasticity of MF axons. The present study confirms this prediction demonstrating, at the confocal level of analysis, terminal-specific and behavior-selective presynaptic structural plasticity linked to long-term memory. Male adult Wistar rats were trained for 5d to locate a hidden or visible platform in a water maze and a retention test was performed 7d later. MF terminal subtypes, specifically identified by an antibody to zinc transporter 3 (ZnT3), were counted from confocal z-stacks in the stratum lucidum (SL) and the SO. In hidden platform trained rats there was a significant increase in the number of large MF terminals (LMTs, 2.5–10µm diameter, >2µm2 area) compared to controls both in the proximal SL (p CA3 pyramidal neurons, while SMTs are known to target inhibitory interneurons. The present findings highlight the pivotal role in memory of presynaptic structural plasticity. Because the ‘sprouting’ observed is specific to the LMT, with no detectable change in the number of the SMT, learning may enhance net excitatory input to CA3 pyramidal neurons. Given the sparse coding of the MF-CA3 connection, and the role that granule cells play in pattern separation, the remodeling observed here may be expected to have a major impact on the long-term integration of spatial context into memory. PMID:22180136

  4. Selective presynaptic terminal remodeling induced by spatial, but not cued, learning: a quantitative confocal study.

    Science.gov (United States)

    McGonigal, R; Tabatadze, N; Routtenberg, A

    2012-06-01

    The hippocampal mossy fibers (MFs) are capable of behaviorally selective, use-dependent structural remodeling. Indeed, we previously observed a new layer of Timm's staining induced in the stratum oriens (SO) in CA3 after spatial but not cued water maze learning (Rekart et al., (2007) Learn Mem 14:416-421). This led to the prediction that there is a learning-specific induction of presynaptic terminal plasticity of MF axons. This study confirms this prediction demonstrating, at the confocal level of analysis, terminal-specific, and behavior-selective presynaptic structural plasticity linked to long-term memory. Male adult Wistar rats were trained for 5 days to locate a hidden or visible platform in a water maze and a retention test was performed 7 days later. MF terminal subtypes, specifically identified by an antibody to zinc transporter 3 (ZnT3), were counted from confocal z-stacks in the stratum lucidum (SL) and the SO. In hidden platform trained rats, there was a significant increase in the number of large MF terminals (LMTs, 2.5-10 μm diameter, >2 μm(2) area) compared to controls both in the proximal SL (P CA3 pyramidal neurons, while SMTs are known to target inhibitory interneurons. The present findings highlight the pivotal role in memory of presynaptic structural plasticity. Because the "sprouting" observed is specific to the LMT, with no detectable change in the number of the SMT, learning may enhance net excitatory input to CA3 pyramidal neurons. Given the sparse coding of the MF-CA3 connection, and the role that granule cells play in pattern separation, the remodeling observed here may be expected to have a major impact on the long-term integration of spatial context into memory.

  5. Durable fear memories require PSD-95

    Science.gov (United States)

    Fitzgerald, Paul J.; Pinard, Courtney R.; Camp, Marguerite C.; Feyder, Michael; Sah, Anupam; Bergstrom, Hadley; Graybeal, Carolyn; Liu, Yan; Schlüter, Oliver; Grant, Seth G.N.; Singewald, Nicolas; Xu, Weifeng; Holmes, Andrew

    2014-01-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. While overly persistent fear memories underlie anxiety disorders such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Post-synaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Employing a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95GK), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95GK mice to retrieve remote cued fear memories was associated with hypoactivation of the infralimbic cortex (IL) (not anterior cingulate (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated PSD-95 virus-mediated knockdown in the IL, not ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories. PMID:25510511

  6. Durable fear memories require PSD-95.

    Science.gov (United States)

    Fitzgerald, P J; Pinard, C R; Camp, M C; Feyder, M; Sah, A; Bergstrom, H C; Graybeal, C; Liu, Y; Schlüter, O M; Grant, S G; Singewald, N; Xu, W; Holmes, A

    2015-07-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. Although overly persistent fear memories underlie anxiety disorders, such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Postsynaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Using a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95(GK)), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown (KD) approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95(GK) mice to retrieve remote cued fear memory was associated with hypoactivation of the infralimbic (IL) cortex (but not the anterior cingulate cortex (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated virus-mediated PSD-95 KD in the IL, but not the ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories.

  7. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction.

    Science.gov (United States)

    Vieira, Philip A; Corches, Alex; Lovelace, Jonathan W; Westbrook, Kevin B; Mendoza, Michael; Korzus, Edward

    2015-03-01

    N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior.

  8. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.

    Science.gov (United States)

    Catlow, Briony J; Song, Shijie; Paredes, Daniel A; Kirstein, Cheryl L; Sanchez-Ramos, Juan

    2013-08-01

    Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions.

  9. Conditioned Fear Acquisition and Generalization in Generalized Anxiety Disorder.

    Science.gov (United States)

    Tinoco-González, Daniella; Fullana, Miquel Angel; Torrents-Rodas, David; Bonillo, Albert; Vervliet, Bram; Blasco, María Jesús; Farré, Magí; Torrubia, Rafael

    2015-09-01

    Abnormal fear conditioning processes (including fear acquisition and conditioned fear-generalization) have been implicated in the pathogenesis of anxiety disorders. Previous research has shown that individuals with panic disorder present enhanced conditioned fear-generalization in comparison to healthy controls. Enhanced conditioned fear-generalization could also characterize generalized anxiety disorder (GAD), but research so far is inconclusive. An important confounding factor in previous research is comorbidity. The present study examined conditioned fear-acquisition and fear-generalization in 28 patients with GAD and 30 healthy controls using a recently developed fear acquisition and generalization paradigm assessing fear-potentiated startle and online expectancies of the unconditioned stimulus. Analyses focused on GAD patients without comorbidity but included also patients with comorbid anxiety disorders. Patients and controls did not differ as regards fear acquisition. However, contrary to our hypothesis, both groups did not differ either in most indexes of conditioned fear-generalization. Moreover, dimensional measures of GAD symptoms were not correlated with conditioned fear-generalization indexes. Comorbidity did not have a significant impact on the results. Our data suggest that conditioned fear-generalization is not enhanced in GAD. Results are discussed with special attention to the possible effects of comorbidity on fear learning abnormalities.

  10. Equal pain – Unequal fear response: Enhanced susceptibility of tooth pain to fear conditioning

    Directory of Open Access Journals (Sweden)

    Michael Lukas Meier

    2014-07-01

    Full Text Available Experimental fear conditioning in humans is widely used as a model to investigate the neural basis of fear learning and to unravel the pathogenesis of anxiety disorders. It has been observed that fear conditioning depends on stimulus salience and subject vulnerability to fear. It is further known that the prevalence of dental-related fear and phobia is exceedingly high in the population. Dental phobia is unique as no other body part is associated with a specific phobia. Therefore, we hypothesized that painful dental stimuli exhibit an enhanced susceptibility to fear conditioning when comparing to equal perceived stimuli applied to other body sites. Differential susceptibility to pain-related fear was investigated by analyzing responses to an unconditioned stimulus (UCS applied to the right maxillary canine (UCS-c versus the right tibia (UCS-t. For fear conditioning, UCS-c and USC-t consisted of painful electric stimuli, carefully matched at both application sites for equal intensity and quality perception. UCSs were paired to simple geometrical forms which served as conditioned stimuli (CS+. Unpaired CS+ were presented for eliciting and analyzing conditioned fear responses. Outcome parameter were 1 skin conductance changes and 2 time-dependent brain activity (BOLD responses in fear-related brain regions such as the amygdala, anterior cingulate cortex, insula, thalamus, orbitofrontal cortex and medial prefrontal cortex.A preferential susceptibility of dental pain to fear conditioning was observed, reflected by heightened skin conductance responses and enhanced time-dependent brain activity (BOLD responses in the fear network. For the first time, this study demonstrates fear-related neurobiological mechanisms that point towards a superior conditionability of tooth pain. Beside traumatic dental experiences our results offer novel evidence that might explain the high prevalence of dental-related fears in the population.

  11. Equal pain-Unequal fear response: enhanced susceptibility of tooth pain to fear conditioning.

    Science.gov (United States)

    Meier, Michael L; de Matos, Nuno M P; Brügger, Mike; Ettlin, Dominik A; Lukic, Nenad; Cheetham, Marcus; Jäncke, Lutz; Lutz, Kai

    2014-01-01

    Experimental fear conditioning in humans is widely used as a model to investigate the neural basis of fear learning and to unravel the pathogenesis of anxiety disorders. It has been observed that fear conditioning depends on stimulus salience and subject vulnerability to fear. It is further known that the prevalence of dental-related fear and phobia is exceedingly high in the population. Dental phobia is unique as no other body part is associated with a specific phobia. Therefore, we hypothesized that painful dental stimuli exhibit an enhanced susceptibility to fear conditioning when comparing to equal perceived stimuli applied to other body sites. Differential susceptibility to pain-related fear was investigated by analyzing responses to an unconditioned stimulus (UCS) applied to the right maxillary canine (UCS-c) vs. the right tibia (UCS-t). For fear conditioning, UCS-c and USC-t consisted of painful electric stimuli, carefully matched at both application sites for equal intensity and quality perception. UCSs were paired to simple geometrical forms which served as conditioned stimuli (CS+). Unpaired CS+ were presented for eliciting and analyzing conditioned fear responses. Outcome parameter were (1) skin conductance changes and (2) time-dependent brain activity (BOLD responses) in fear-related brain regions such as the amygdala, anterior cingulate cortex, insula, thalamus, orbitofrontal cortex, and medial prefrontal cortex. A preferential susceptibility of dental pain to fear conditioning was observed, reflected by heightened skin conductance responses and enhanced time-dependent brain activity (BOLD responses) in the fear network. For the first time, this study demonstrates fear-related neurobiological mechanisms that point toward a superior conditionability of tooth pain. Beside traumatic dental experiences our results offer novel evidence that might explain the high prevalence of dental-related fears in the population.

  12. Role of the hippocampus in contextual modulation of fear extinction

    Institute of Scientific and Technical Information of China (English)

    Lingzhi Kong; Xihong Wu; Liang Li

    2008-01-01

    Fear extinction is an important form of emotional learning, and affects neural plasticity. Cue fear extinction is a classical form of inhibitory learning that can be used as an exposure-based treatment for phobia, because the long-term extinction memory produced during cue fear extinction can limit the over-expression of fear. The expression of this inhibitory memory partly depends on the context in which the extinction learning occurs. Studies such as transient inhibition, electrophysiology and brain imaging have proved that the hippocampus - an important structure in the limbic system - facilitates memory retrieval by contextual cues.Mediation of the hippocampus-medial prefrontal lobe circuit may be the neurobiological basis of this process.This article has reviewed the role of the hippocampus in the learning and retrieval of fear extinction.Contextual modulation of fear extinction may rely on a neural network consisting of the hippocampus, the medial prefrontal cortex and the amygdala.

  13. A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning.

    Science.gov (United States)

    Sengupta, Auntora; McNally, Gavan P

    2014-01-01

    Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS) A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT) are well-placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray-which has a key role in fear prediction error-and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding.

  14. A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning

    Directory of Open Access Journals (Sweden)

    Auntora eSengupta

    2014-05-01

    Full Text Available Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT are well placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray – which has a key role in fear prediction error – and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding.

  15. The Narrow Fellow in the Grass: Human Infants Associate Snakes and Fear

    Science.gov (United States)

    DeLoache, Judy S.; LoBue, Vanessa

    2009-01-01

    Why are snakes such a common target of fear? One current view is that snake fear is one of several innate fears that emerge spontaneously. Another is that humans have an evolved predisposition to learn to fear snakes. In the first study reported here, 9- to 10-month-old infants showed no differential spontaneous reaction to films of snakes versus…

  16. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD.

    Directory of Open Access Journals (Sweden)

    Edward G Meloni

    Full Text Available Xenon (Xe is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD. Because glutamate receptors also have been shown to play a role in fear memory reconsolidation--a state in which recalled memories become susceptible to modification--we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory.

  17. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD).

    Science.gov (United States)

    Meloni, Edward G; Gillis, Timothy E; Manoukian, Jasmine; Kaufman, Marc J

    2014-01-01

    Xenon (Xe) is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD). Because glutamate receptors also have been shown to play a role in fear memory reconsolidation--a state in which recalled memories become susceptible to modification--we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing) in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr) on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory.

  18. Deletion of selenoprotein P results in impaired function of parvalbumin interneurons and alterations in fear learning and sensorimotor gating.

    Science.gov (United States)

    Pitts, M W; Raman, A V; Hashimoto, A C; Todorovic, C; Nichols, R A; Berry, M J

    2012-04-19

    One of the primary lines of defense against oxidative stress is the selenoprotein family, a class of proteins that contain selenium in the form of the 21st amino acid, selenocysteine. Within this class of proteins, selenoprotein P (Sepp1) is unique, as it contains multiple selenocysteine residues and is postulated to act in selenium transport. Recent findings have demonstrated that neuronal selenoprotein synthesis is required for the development of parvalbumin (PV)-interneurons, a class of GABAergic neurons involved in the synchronization of neural activity. To investigate the potential influence of Sepp1 on PV-interneurons, we first mapped the distribution of the Sepp1 receptor, ApoER2, and parvalbumin in the mouse brain. Our results indicate that ApoER2 is highly expressed on PV-interneurons in multiple brain regions. Next, to determine whether PV-interneuron populations are affected by Sepp1 deletion, we performed stereology on several brain regions in which we observed ApoER2 expression on PV-interneurons, comparing wild-type and Sepp1(-/-) mice. We observed reduced numbers of PV-interneurons in the inferior colliculus of Sepp1(-/-) mice, which corresponded with a regional increase in oxidative stress. Finally, as impaired PV-interneuron function has been implicated in several neuropsychiatric conditions, we performed multiple behavioral tests on Sepp1(-/-) mice. Our behavioral results indicate that Sepp1(-/-) mice have impairments in contextual fear extinction, latent inhibition, and sensorimotor gating. In sum, these findings demonstrate the important supporting role of Sepp1 on ApoER2-expressing PV-interneurons.

  19. Introducing fear of crime to risk research.

    Science.gov (United States)

    Jackson, Jonathan

    2006-02-01

    This article introduces the fear of crime to risk research, noting a number of areas for future interdisciplinary study. First, the article analyzes both the career of the concept of fear of crime and the politics of fear. Second, it considers research and theory on the psychology of risk, particularly the interplay between emotion and cognition, and what might be called the risk as image perspective. Third, the article speculates how people learn about risk and suggests how to customize a social amplification of risk framework to fear of crime. Finally, the article advances the argument that fear of crime may be an individual response to community social order and a generalized attitude toward the moral trajectory of society. Each of these areas of discussion has implications for future theoretical developments within risk research; each highlights how risk research can contribute to the social scientific understanding of an important issue of the day.

  20. Speak Out Loud: Deconstructing Shame and Fear through Theater in a Community-Based Service-Learning Project

    Science.gov (United States)

    Vázquez, Karina

    2014-01-01

    The combination of theater and community-based service-learning can be a powerful tool to allow university students to meet their educational goals while connecting them with the world. The performance of children's theater in elementary schools with English for Speakers of Other Languages (ESOL) programs, for example, has important pedagogical…

  1. Speak Out Loud: Deconstructing Shame and Fear through Theater in a Community-Based Service-Learning Project

    Science.gov (United States)

    Vázquez, Karina

    2014-01-01

    The combination of theater and community-based service-learning can be a powerful tool to allow university students to meet their educational goals while connecting them with the world. The performance of children's theater in elementary schools with English for Speakers of Other Languages (ESOL) programs, for example, has important pedagogical…

  2. Genetic influences on the acquisition and inhibition of fear.

    Science.gov (United States)

    Wendt, Julia; Neubert, Jörg; Lindner, Katja; Ernst, Florian D; Homuth, Georg; Weike, Almut I; Hamm, Alfons O

    2015-12-01

    As a variant of the Pavlovian fear conditioning paradigm the conditional discrimination design allows for a detailed investigation of fear acquisition and fear inhibition. Measuring fear-potentiated startle responses, we investigated the influence of two genetic polymorphisms (5-HTTLPR and COMT Val(158)Met) on fear acquisition and fear inhibition which are considered to be critical mechanisms for the etiology and maintenance of anxiety disorders. 5-HTTLPR s-allele carriers showed a more stable potentiation of the startle response during fear acquisition. Homozygous COMT Met-allele carriers, which had demonstrated delayed extinction in previous investigations, show deficient fear inhibition in presence of a learned safety signal. Thus, our results provide further evidence that 5-HTTLPR and COMT Val(158)Met genotypes influence the vulnerability for the development of anxiety disorders via different mechanisms.

  3. Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans.

    Science.gov (United States)

    Indovina, Iole; Robbins, Trevor W; Núñez-Elizalde, Anwar O; Dunn, Barnaby D; Bishop, Sonia J

    2011-02-10

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms underlying cued and contextual fear. A critical question is how personality dimensions such as trait anxiety act through these mechanisms to confer vulnerability to anxiety disorders, and whether humans' ability to overcome acquired fears depends on regulatory skills not characterized in animal models. In a neuroimaging study of fear conditioning in humans, we found evidence for two independent dimensions of neurocognitive function associated with trait vulnerability to anxiety. The first entailed increased amygdala responsivity to phasic fear cues. The second involved impoverished ventral prefrontal cortical (vPFC) recruitment to downregulate both cued and contextual fear prior to omission (extinction) of the aversive unconditioned stimulus. These two dimensions may contribute to symptomatology differences across anxiety disorders; the amygdala mechanism affecting the development of phobic fear and the frontal mechanism influencing the maintenance of both specific fears and generalized anxiety.

  4. Fearfulness and sex in F2 Roman rats: males display more fear though both sexes share the same fearfulness traits.

    Science.gov (United States)

    Aguilar, Raúl; Gil, Luis; Gray, Jeffrey A; Driscoll, Peter; Flint, Jonathan; Dawson, Gerard R; Giménez-Llort, Lydia; Escorihuela, Rosa M; Fernández-Teruel, Alberto; Tobeña, Adolf

    2003-04-01

    The pattern of sex differences in a large sample (about 400 for each sex) of F2-generation rats, derived from inbred Roman high- and low-avoidance strains differing in fearfulness and brain functioning, was investigated. We obtained measures from responses to a battery of novel/threatening tests [open field (OF), plus maze (PM), hole board (HB), activity (A), and acoustic startle reflex (ASR)] as well as learned fear paradigms [classical fear conditioning (CFC) and shuttlebox avoidance conditioning (SAC)]. The results showed that almost all behaviors assessed fit with a pattern of unidirectional sex effects characterized by male rats as being more fearful than females: males defecated more than females in the OF, PM, HB, ASR, and CFC; ambulated less in the OF, PM, A, and SAC; showed more self-grooming in PM and HB; explored the open arms of the PM and the holes of the HB less; displayed enhanced ASR; and showed poorer performance in the SAC task. We applied two factor analyses to each sex showing that, in general, they shared a common three-factor structure: a Learned Fear Factor comprising SAC and CFC responding, a Fear of Heights/Open Spaces Factor with the highest loadings for open arm behavior in the PM, and an Emotional Reactivity Factor, mainly grouping defecations, ambulation, and self-grooming. These results indicate that the essential components of fearful behavior are similar for both sexes in an inbred but genetically heterogeneous population.

  5. Stressor controllability modulates fear extinction in humans.

    Science.gov (United States)

    Hartley, Catherine A; Gorun, Alyson; Reddan, Marianne C; Ramirez, Franchesca; Phelps, Elizabeth A

    2014-09-01

    Traumatic events are proposed to play a role in the development of anxiety disorders, however not all individuals exposed to extreme stress experience a pathological increase in fear. Recent studies in animal models suggest that the degree to which one is able to control an aversive experience is a critical factor determining its behavioral consequences. In this study, we examined whether stressor controllability modulates subsequent conditioned fear expression in humans. Participants were randomly assigned to an escapable stressor condition, a yoked inescapable stressor condition, or a control condition involving no stress exposure. One week later, all participants underwent fear conditioning, fear extinction, and a test of extinction retrieval the following day. Participants exposed to inescapable stress showed impaired fear extinction learning and increased fear expression the following day. In contrast, escapable stress improved fear extinction and prevented the spontaneous recovery of fear. Consistent with the bidirectional controllability effects previously reported in animal models, these results suggest that one's degree of control over aversive experiences may be an important factor influencing the development of psychological resilience or vulnerability in humans.

  6. Perceptual discrimination in fear generalization: Mechanistic and clinical implications.

    Science.gov (United States)

    Struyf, Dieter; Zaman, Jonas; Vervliet, Bram; Van Diest, Ilse

    2015-12-01

    For almost a century, Pavlovian conditioning is the imperative experimental paradigm to investigate the development and generalization of fear. However, despite the rich research tradition, the conceptualization of fear generalization has remained somewhat ambiguous. In this selective review, we focus explicitly on some challenges with the current operationalization of fear generalization and their impact on the ability to make inferences on its clinical potential and underlying processes. The main conclusion is that, despite the strong evidence that learning influences perception, current research has largely neglected the role of perceptual discriminability and its plasticity in fear generalization. We propose an alternative operationalization of generalization, where the essence is that Pavlovian conditioning itself influences the breadth of fear generalization via learning-related changes in perceptual discriminability. Hence a conceptualization of fear generalization is incomplete without an in-depth analysis of processes of perceptual discriminability. Furthermore, this highlights perceptual learning and discriminability as important future targets for pre-clinical and clinical research.

  7. Effects of sleep on memory for conditioned fear and fear extinction

    Science.gov (United States)

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. REM may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep’s effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. PMID:25894546

  8. Fear in Education

    Science.gov (United States)

    Jackson, Carolyn

    2010-01-01

    Fear is powerful and pervasive in English schools and central to many education discourses. However, it has received very little "focussed" attention in the education literature, despite the increasing interest afforded to it in other disciplines. Understanding how fear works is extremely important as fear and wellbeing are inextricably…

  9. A climate of fear

    DEFF Research Database (Denmark)

    Garner, Tom Alexander; Grimshaw, Mark Nicholas

    2011-01-01

    This paper proposes a framework that incorporates fear, acoustics, thought processing and digital game sound theory; with the potential to not only improve understanding of our relationship with fear, but also generate a foundation for reliable and significant manipulation of the fear experience....

  10. The Occurrence and Conquering of Students’ Fear in Learning Fosbury Style High Jump%学生在背越式跳高教学中恐惧心理的产生与克服

    Institute of Scientific and Technical Information of China (English)

    李强

    2016-01-01

    With methods of literature,observation and interview,the paper studies students’psychological barriers in Fosbury style high jump teaching such as fear of tripping over by rail;scared to jump;poor physical quality;anxiety and fear of falling in the process of correcting uncoordinated actions.The paper analyzes these fear psychology,finds out correct guiding methods,comes up with corresponding suggestions to provide reference for students’occurrence and conquering of fear psychology in learning Fosbury style high jump.%本文主要通过文献资料法、观察法、访谈法等研究方法对学生在背越式跳高教学中产生一些心理障碍如:害怕横杆绊倒自己、胆怯不敢跳,身体素质差、动作不协调练习过程中受伤而产生的焦虑、怕摔等恐惧心理进行研究,对产生的这些恐惧心理加以分析并找出正确的指导方法、提出相应的建议,为学生在背越式跳高教学中恐惧心理的产生及克服提供参考。

  11. Versatility of Fear-potentiated Startle Paradigms for Assessing Human Conditioned Fear Extinction and Return of Fear

    Directory of Open Access Journals (Sweden)

    Seth Davin Norrholm

    2011-11-01

    Full Text Available Fear conditioning methodologies have often been employed as testable models for assessing learned fear responses in individuals with anxiety disorders such as post-traumatic stress disorder (PTSD and specific phobia. One frequently used paradigm is measurement of the acoustic startle reflex under conditions that mimic anxiogenic and fear-related conditions. For example, fear-potentiated startle is the relative increase in the frequency or magnitude of the acoustic startle reflex in the presence of a previously neutral cue (e.g., colored shape; termed the conditioned stimulus or CS+ that has been repeatedly paired with an aversive unconditioned stimulus (e.g., airblast to the larynx. Our group has recently used fear-potentiated startle paradigms to demonstrate impaired fear extinction in civilian and combat populations with PTSD. In the current study, we examined the use of either visual or auditory CSs in a fear extinction protocol that we have validated and applied to human clinical conditions. This represents an important translational bridge in that numerous animal studies of fear extinction, upon which much of the human work is based, have employed the use of auditory CSs as opposed to visual CSs. Participants in both the visual and auditory groups displayed robust fear-potentiated startle to the CS+, clear discrimination between the reinforced CS+ and non-reinforced CS-, significant extinction to the previously reinforced CS+, and marked spontaneous recovery. We discuss the current results as they relate to future investigations of PTSD-related impairments in fear processing in populations with diverse medical and psychiatric histories.

  12. Inactivation of the Infralimbic but Not the Prelimbic Cortex Impairs Consolidation and Retrieval of Fear Extinction

    Science.gov (United States)

    Laurent, Vincent; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of context fear conditioning and extinction to study the roles of the prelimbic cortex (PL) and infralimbic cortex (IL) in learning and relearning to inhibit fear responses. Inactivation of the PL depressed fear responses across the first or second extinction but did not impair learning or relearning fear…

  13. GABAb Receptor Mediates Opposing Adaptations of GABA Release From Two Types of Prefrontal Interneurons After Observational Fear

    National Research Council Canada - National Science Library

    Lei Liu; Wataru Ito; Alexei Morozov

    2017-01-01

      The observational fear (OF) paradigm in rodents, in which the subject is exposed to a distressed conspecific, elicits contextual fear learning and enhances future passive avoidance learning, which may model certain behavioral...

  14. Long-term expression of human contextual fear and extinction memories involves amygdala, hippocampus and ventromedial prefrontal cortex: a reinstatement study in two independent samples.

    Science.gov (United States)

    Lonsdorf, Tina B; Haaker, Jan; Kalisch, Raffael

    2014-12-01

    Human context conditioning studies have focused on acquisition and extinction. Subsequent long-term changes in fear behaviors not only depend on associative learning processes during those phases but also on memory consolidation processes and the later ability to retrieve and express fear and extinction memories. Clinical theories explain relapse after successful exposure-based treatment with return of fear memories and remission with stable extinction memory expression. We probed contextual fear and extinction memories 1 week (Day8) after conditioning (Day1) and subsequent extinction (Day2) by presenting conditioned contexts before (Test1) and after (Test2) a reinstatement manipulation. We find consistent activation patterns in two independent samples: activation of a subgenual part of the ventromedial prefrontal cortex before reinstatement (Test1) and (albeit with different temporal profiles between samples) of the amygdala after reinstatement (Test2) as well as up-regulation of anterior hippocampus activity after reinstatement (Test2 > Test1). These areas have earlier been implicated in the expression of cued extinction and fear memories. The present results suggest a general role for these structures in defining the balance between fear and extinction memories, independent of the conditioning mode. The results are discussed in the light of hypotheses implicating the anterior hippocampus in the processing of situational ambiguity.

  15. [Phenomenon of dental fear].

    Science.gov (United States)

    Moore, R; Birn, H

    1990-01-01

    Odontophobia is a rather unique phobia with special psychosomatic components that impact on the dental health of odontophobic persons. It also has psychosocial components largely as a result of destruction of the teeth and subsequent embarrassment that can affect a person and cause a vicious cycle of dental fear. The phenomenon is facilitated by misunderstandings and myths generated by both patients and dentists. The most common reasons given in the literature for such strong fears of dental treatment are: 1) bad experiences in childhood for 85% of cases, 2) feeling of powerlessness and lack of control over personal emotional reactions and over the social situation in the dental chair, 3) social learning processes in which the image of the dentist is cast in a negative light by the mass media or by the person's relatives or friends and 4) that the person has other psychologic problems (in 20% of cases), such as serious phobias and/or neuroses. A strategy of researching and thus tackling the problem is presented which focuses on three essential targets that require studying and change: 1) the community at large and their image of the dentist, 2) the patient role and 3) the dentist role. Various model projects are presented along with their diagnostic systems. These are seen to focus in varying degrees on different elements of the target groups that effect the dentist-patient relationship but the need to come out into the community and make the social environment right for these patients is an important factor in all strategies.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Contextual and auditory fear conditioning continue to emerge during the periweaning period in rats.

    Directory of Open Access Journals (Sweden)

    Michael A Burman

    Full Text Available Anxiety disorders often emerge during childhood. Rodent models using classical fear conditioning have shown that different types of fear depend upon different neural structures and may emerge at different stages of development. For example, some work has suggested that contextual fear conditioning generally emerges later in development (postnatal day 23-24 than explicitly cued fear conditioning (postnatal day 15-17 in rats. This has been attributed to an inability of younger subjects to form a representation of the context due to an immature hippocampus. However, evidence that contextual fear can be observed in postnatal day 17 subjects and that cued fear conditioning continues to emerge past this age raises questions about the nature of this deficit. The current studies examine this question using both the context pre-exposure facilitation effect for immediate single-shock contextual fear conditioning and traditional cued fear conditioning using Sprague-Dawley rats. The data suggest that both cued and contextual fear conditioning are continuing to develop between PD 17 and 24, consistent with development occurring the in essential fear conditioning circuit.

  17. Contextual and auditory fear conditioning continue to emerge during the periweaning period in rats.

    Science.gov (United States)

    Burman, Michael A; Erickson, Kristen J; Deal, Alex L; Jacobson, Rose E

    2014-01-01

    Anxiety disorders often emerge during childhood. Rodent models using classical fear conditioning have shown that different types of fear depend upon different neural structures and may emerge at different stages of development. For example, some work has suggested that contextual fear conditioning generally emerges later in development (postnatal day 23-24) than explicitly cued fear conditioning (postnatal day 15-17) in rats. This has been attributed to an inability of younger subjects to form a representation of the context due to an immature hippocampus. However, evidence that contextual fear can be observed in postnatal day 17 subjects and that cued fear conditioning continues to emerge past this age raises questions about the nature of this deficit. The current studies examine this question using both the context pre-exposure facilitation effect for immediate single-shock contextual fear conditioning and traditional cued fear conditioning using Sprague-Dawley rats. The data suggest that both cued and contextual fear conditioning are continuing to develop between PD 17 and 24, consistent with development occurring the in essential fear conditioning circuit.

  18. A Time for Learning and a Time for Sleep : The Effect of Sleep Deprivation on Contextual Fear Conditioning at Different Times of the Day

    NARCIS (Netherlands)

    Hagewoud, Roelina; Whitcomb, Shamiso N.; Heeringa, Amarins N.; Havekes, Robbert; Koolhaas, Jaap M.; Meerlo, Peter

    2010-01-01

    Study Objectives: Sleep deprivation negatively affects memory consolidation, especially in the case of hippocampus-dependent memories. Studies in rodents have shown that 5 hours of sleep deprivation immediately following footshock exposure selectively impairs the formation of a contextual fear

  19. Fear inhibition in high trait anxiety.

    Science.gov (United States)

    Kindt, Merel; Soeter, Marieke

    2014-01-01

    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  20. Effect of pregabalin on fear-based conditioned avoidance learning and spatial learning in a mouse model of scopolamine-induced amnesia.

    Science.gov (United States)

    Sałat, Kinga; Podkowa, Adrian; Malikowska, Natalia; Trajer, Jędrzej

    2017-03-01

    Cognitive deficits are one of the frequent symptoms accompanying epilepsy or its treatment. In this study, the effect on cognition of intraperitoneally administered antiepileptic drug, pregabalin (10 mg/kg), was investigated in scopolamine-induced memory-impaired mice in the passive avoidance task and Morris water maze task. The effect of scopolamine and pregabalin on animals' locomotor activity was also studied. In the retention phase of the passive avoidance task, pregabalin reversed memory deficits induced by scopolamine (p learning in this task. During the probe trial a significant difference (p task, pregabalin reversed learning deficits induced by scopolamine. In the Morris water maze, pregabalin did not influence spatial learning deficits induced by scopolamine. These results are relevant for epileptic patients treated with pregabalin and those who use it for other therapeutic indications (anxiety, pain).

  1. The Phenomenon of Dental Fear

    DEFF Research Database (Denmark)

    Moore, Rod

    Odontophobia is a rather unique phobia with special psychosomatic components that impact on the dental health of odontophobic persons. It also has psychosocial components largely as a result of destruction of the teeth and subsequent embarrassment that can affect a person and cause a vicious cycle...... of dental fear (see fig. 1). The phenomenon is facilitated by misunderstandings and myths generated by both patients and dentists (see table 1 for examples). The most common reasons given in the literature for such strong fears of dental treatment are: 1) bad experiences in childhood for 85% of cases, 2......) feeling of powerlessness and lack of control over personal emotional reactions and over the social situation in the dental chair, 3) social learning processes in which the image of the dentist is cast in a negative light by the mass media or by the person's relatives or friends and 4) that the person has...

  2. D-cycloserine enhances generalization of fear extinction in children.

    Science.gov (United States)

    Byrne, Simon P; Rapee, Ronald M; Richardson, Rick; Malhi, Gin S; Jones, Michael; Hudson, Jennifer L

    2015-06-01

    For exposure therapy to be successful, it is essential that fear extinction learning extends beyond the treatment setting. D-cycloserine (DCS) may facilitate treatment gains by increasing generalization of extinction learning, however, its effects have not been tested in children. We examined whether DCS enhanced generalization of fear extinction learning across different stimuli and contexts among children with specific phobias. The study was a double-blind placebo-controlled randomized controlled trial among dog or spider phobic children aged 6-14. Participants ingested either 50 mg of DCS (n = 18) or placebo (n = 17) before receiving a single prolonged exposure session to their feared stimulus. Return of fear was examined 1 week later to a different stimulus (a different dog or spider), presented in both the original treatment context and an alternate context. Avoidance and fear were measured with Behavior Approach Tests (BATs), where the child was asked to increase proximity to the stimulus while reporting their fear level. There were no differences in BAT performance between groups during the exposure session or when a new stimulus was later presented in the treatment context. However, when the new stimulus was presented in a different context, relative to placebo, the DCS group showed less avoidance (P = .03) and less increase in fear (P = .04) with moderate effect sizes. DCS enabled children to better retain their fear extinction learning. This new learning generalized to different stimuli and contexts. © 2015 Wiley Periodicals, Inc.

  3. Attachment Without Fear.

    Science.gov (United States)

    Bell, David C

    2009-12-01

    John Bowlby hypothesized an attachment system that interacts with caregiving, exploration, and fear systems in the brain, with a particular emphasis on fear. Neurobiological research confirms many of his hypotheses and also raises some new questions. A psychological model based on this neurobiological research is presented here. The model extends conventional attachment theory by describing additional attachment processes independent of fear. In this model, the attachment elements of trust, openness, and dependence interact with the caregiving elements of caring, empathy, and responsibility.

  4. Attachment Without Fear

    OpenAIRE

    Bell, David C.

    2009-01-01

    John Bowlby hypothesized an attachment system that interacts with caregiving, exploration, and fear systems in the brain, with a particular emphasis on fear. Neurobiological research confirms many of his hypotheses and also raises some new questions. A psychological model based on this neurobiological research is presented here. The model extends conventional attachment theory by describing additional attachment processes independent of fear. In this model, the attachment elements of trust, o...

  5. Fear in horses

    OpenAIRE

    Christensen, Janne Winther

    2006-01-01

    Fear is generally considered to be an undesirable emotional state that may reduce welfare, growth and reproductive performance in animals. Fear in horses is additionally problematic, because fear reactions can cause serious injury to both horse and human. Horses are primarily used for sports and leisure for a large number of children and young women. Unfortunately, horse riding ranks as one of the most dangerous sports in terms of the number and seriousness of accidents, and the ability of a ...

  6. High-dose corticosterone after fear conditioning selectively suppresses fear renewal by reducing anxiety-like response.

    Science.gov (United States)

    Wang, Hongbo; Xing, Xiaoli; Liang, Jing; Bai, Yunjing; Lui, Zhengkui; Zheng, Xigeng

    2014-09-01

    Exposure therapy is widely used to treat anxiety disorders, including posttraumatic stress disorder (PTSD). However, preventing the return of fear is still a major challenge after this behavioral treatment. An increasing number of studies suggest that high-dose glucocorticoid treatment immediately after trauma can alleviate the symptoms of PTSD in humans. Unknown is whether high-dose glucocorticoid treatment following fear conditioning suppresses the return of fear. In the present study, a typical fear renewal paradigm (AAB) was used, in which the fear response to an auditory cue can be restored in a novel context (context B) when both training and extinction occur in the same context (context A). We trained rats for auditory fear conditioning and administered corticosterone (CORT; 5 and 25mg/kg, i.p.) or vehicle with different delays (1 and 24h). Forty-eight hours after drug injection, extinction was conducted with no drug in the training context, followed by a test of tone-induced freezing behavior in the same (AAA) or a shifted (AAB) context. Both immediate and delayed administration of high-dose CORT after fear conditioning reduced fear renewal. To examine the anxiolytic effect of CORT, independent rats were trained for cued or contextual fear conditioning, followed by an injection of CORT (5 and 25mg/kg, i.p.) or vehicle at a 1 or 24h delay. One week later, anxiety-like behavior was assessed in the elevated plus maze (EPM) before and after fear expression. We found that high-dose CORT decreased anxiety-like behavior without changing tone- or context-induced freezing. These findings indicate that a single high-dose CORT administration given after fear conditioning may selectively suppress fear renewal by reducing anxiety-like behavior and not by altering the consolidation, retrieval, or extinction of fear memory.

  7. Learning strategy preference of 5XFAD transgenic mice depends on the sequence of place/spatial and cued training in the water maze task.

    Science.gov (United States)

    Cho, Woo-Hyun; Park, Jung-Cheol; Chung, ChiHye; Jeon, Won Kyung; Han, Jung-Soo

    2014-10-15

    Learning strategy preference was assessed in 5XFAD mice, which carry 5 familial Alzheimer's disease (AD) mutations. Mice were sequentially trained in cued and place/spatial versions of the water maze task. After training, a strategy preference test was conducted in which mice were required to choose between the spatial location where the platform had previously been during the place/spatial training, and a visible platform in a new location. 5XFAD and non-transgenic control mice showed equivalent escape performance in both training tasks. However, in the strategy preference test, 5XFAD mice preferred a cued strategy relative to control mice. When the training sequence was presented in the reverse order (i.e., place/spatial training before cued training), 5XFAD mice showed impairments in place/spatial training, but no differences in cued training or in the strategy preference test comparing to control. Analysis of regional Aβ42 deposition in brains of 5XFAD mice showed that the hippocampus, which is involved in the place/spatial learning strategy, had the highest levels of Aβ42 and the dorsal striatum, which is involved in cued learning strategy, showed a small increase in Aβ42 levels. The effect of training protocol order on performance, and regional differences in Aβ42 deposition observed in 5XFAD mice, suggest differential functional recruitment of brain structures related to learning in healthy and AD individuals.

  8. Contextual fear induced by unpredictability in a human fear conditioning preparation is related to the chronic expectation of a threatening US

    NARCIS (Netherlands)

    Vansteenwegen, D.; Iberico, C.; Vervliet, B.; Hermans, D.

    2008-01-01

    The present study was set up to investigate cued and contextual fear in situations of (un)predictability in a human fear conditioning paradigm. Forty-nine participants were presented with two different contexts (switching on and off the central lighting of the experimental room). In the predictable

  9. Contextual fear induced by unpredictability in a human fear conditioning preparation is related to the chronic expectation of a threatening US

    NARCIS (Netherlands)

    Vansteenwegen, D.; Iberico, C.; Vervliet, B.; Hermans, D.

    2008-01-01

    The present study was set up to investigate cued and contextual fear in situations of (un)predictability in a human fear conditioning paradigm. Forty-nine participants were presented with two different contexts (switching on and off the central lighting of the experimental room). In the predictable

  10. Children's specific fears.

    Science.gov (United States)

    Meltzer, H; Vostanis, P; Dogra, N; Doos, L; Ford, T; Goodman, R

    2009-11-01

    Most children experience some degree of fear during their development. Specific fears are considered as an appropriate response provided that they are proportionate to the intensity of the perceived threat. Our aim is to present the prevalence of specific fears among children in the Great Britain, their socio-demographic correlates, in particular their association with ethnicity. Data on the child's experience of specific fears were obtained from parents of a national representative sample of 5- to 16-year-olds using the Development and Well-Being Assessment. Biographic, socio-demographic and socioeconomic characteristics of the child and the family were included in the questionnaire. About one-third of children were assessed by their parents as having at least one of 12 specific fears. The most commonly reported fears were animals (11.6%), blood/injections (10.8%) and the dark (6.3%). Just less than 1% of all children were assessed according to International Classification of Diseases research diagnostic criteria as having a specific phobia. Biographic, socio-demographic and socioeconomic factors were independently associated with a greater likelihood of a child having particular fears. The most marked associations were fears of the dark, loud noises, imagined supernatural beings in younger children and fear of animals among girls and all non-white groups. Although fears are only labelled as phobias when they impair functioning and interfere with life, they can cause personal distress to children and also can interfere with their daily activities. Children's fears differ in nature across different ethnic groups. Culturally mediated beliefs, values and traditions may play a role in their expression.

  11. Contextual fear conditioning is enhanced in mice lacking functional sphingosine kinase 2.

    Science.gov (United States)

    Lei, Mona; Shafique, Adeena; Shang, Kani; Couttas, Timothy A; Zhao, Hua; Don, Anthony S; Karl, Tim

    2017-08-30

    The lipid sphingosine 1-phosphate (S1P) is a potent neuroprotective signalling molecule that signals through its own family of five G-protein coupled receptors. S1P signalling enhances presynaptic glutamate release and is essential for neural development. S1P is synthesized by the enzymes sphingosine kinases 1 and 2 (SPHK1 and SPHK2), of which SPHK2 mRNA and activity is more abundant in the brain. In this study we investigated the consequences of global SphK2 knockout (SphK2(-/-)) on basic motor capabilities, anxiety, learning, and memory in mice, using a range of tests including the elevated plus maze, the cheeseboard, contextual and cued fear conditioning, and fear extinction. Loss of SphK2 resulted in an 85-90% reduction in brain S1P levels, and was associated with a notably higher freezing response in a novel context. SphK2 knockout mice also exhibited increased contextual fear conditioning but the extinction of contextual fear memory was similar to control mice. SphK2(-/-) mice, contrary to their control littermates, did not respond to cue presentation with increased freezing. Anxiety measures in the elevated plus maze were not different between SphK2(-/-) mice and control littermates. Also, knockout mice showed no deficits in neurological reflexes or motor functions, and performed as well as their control littermates in the spatial memory test. Our findings demonstrate that SphK2 is responsible for the vast majority of S1P synthesis in the mouse brain, and plays a role in freezing responses as evaluated in the fear conditioning paradigm. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Brief fear preexposure facilitates subsequent fear conditioning.

    Science.gov (United States)

    Iwasaki, Satoshi; Sakaguchi, Tetsuya; Ikegaya, Yuji

    2015-06-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that occurs following an unexpected exposure to a severe psychological event. A history of a brief trauma is reported to affect a risk for future PTSD development; however, little is known about the mechanisms by which a previous trauma exposure drives the sensitivity to a late-coming trauma. Using a mouse PTSD model, we found that a prior foot shock enhances contextual fear conditioning. This shock-induced facilitation of fear conditioning (i.e., priming effect) persisted for 7 days and was prevented by MK801, an N-methyl-D-aspartate receptor antagonist. Other types of trauma, such as forced swimming or tail pinch, did not induce a priming effect on fear conditioning. Thus, a trauma is unlikely generalized to modify the sensitivity to other traumatic experiences. The behavioral procedure employed in this study may be a useful tool to elucidate the etiology of PTSD.

  13. Urban Youth, Fear of Crime, and Resulting Defensive Actions.

    Science.gov (United States)

    Williams, J. Sherwood; And Others

    1994-01-01

    Used data from 1,775 urban youth collected in 1986 to examine fear of crime and defensive actions taken by youth. Results revealed that only 11% reported having taken no defensive actions as result of fear of crime. Nearly three-fifths took precaution of having escort at night. Learning self-defense techniques was reported by 19%; 10% indicated…

  14. Does Fear Reactivity during Exposure Predict Panic Symptom Reduction?

    Science.gov (United States)

    Meuret, Alicia E.; Seidel, Anke; Rosenfield, Benjamin; Hofmann, Stefan G.; Rosenfield, David

    2012-01-01

    Objective: Fear reactivity during exposure is a commonly used indicator of learning and overall therapy outcome. The objective of this study was to assess the predictive value of fear reactivity during exposure using multimodal indicators and an advanced analytical design. We also investigated the degree to which treatment condition (cognitive…

  15. Cholinergic neuronal lesions in the medial septum and vertical limb of the diagonal bands of Broca induce contextual fear memory generalization and impair acquisition of fear extinction.

    Science.gov (United States)

    Knox, Dayan; Keller, Samantha M

    2016-06-01

    Previous research has shown that the ventral medial prefrontal cortex (vmPFC) and hippocampus (Hipp) are critical for extinction memory. Basal forebrain (BF) cholinergic input to the vmPFC and Hipp is critical for neural function in these substrates, which suggests BF cholinergic neurons may be critical for extinction memory. In order to test this hypothesis, we applied cholinergic lesions to different regions of the BF and observed the effects these lesions had on extinction memory. Complete BF cholinergic lesions induced contextual fear memory generalization, and this generalized fear was resistant to extinction. Animals with complete BF cholinergic lesions could not acquire cued fear extinction. Restricted cholinergic lesions in the medial septum and vertical diagonal bands of Broca (MS/vDBB) mimicked the effects that BF cholinergic lesions had on contextual fear memory generalization and acquisition of fear extinction. Cholinergic lesions in the horizontal diagonal band of Broca and nucleus basalis (hDBB/NBM) induced a small deficit in extinction of generalized contextual fear memory with no accompanying deficits in cued fear extinction. The results of this study reveal that MS/vDBB cholinergic neurons are critical for inhibition and extinction of generalized contextual fear memory, and via this process, may be critical for acquisition of cued fear extinction. Further studies delineating neural circuits and mechanisms through which MS/vDBB cholinergic neurons facilitate these emotional memory processes are needed. © 2015 Wiley Periodicals, Inc.

  16. Fearing religious satire

    DEFF Research Database (Denmark)

    Brink, Dennis Meyhoff

    2015-01-01

    The article examines the history of the fear of religious satire in modern Europe. The article argues that this fear primarily concerns the potential dissolution of 'the social bond of society' or 'the moral and social order'. From the 17th Century until today, censorship measures and blasphemy...

  17. Fearing religious satire

    DEFF Research Database (Denmark)

    Brink, Dennis Meyhoff

    2015-01-01

    The article examines the history of the fear of religious satire in modern Europe. The article argues that this fear primarily concerns the potential dissolution of 'the social bond of society' or 'the moral and social order'. From the 17th Century until today, censorship measures and blasphemy l...

  18. A Real Fear

    Science.gov (United States)

    Ruffins, Paul

    2007-01-01

    For years, mainstream thinking about math anxiety assumed that people fear math because they are bad at it. However, a growing body of research shows a much more complicated relationship between math ability and anxiety. It is true that people who fear math have a tendency to avoid math-related classes, which decreases their math competence.…

  19. Prediction of individual differences in fear response by novelty seeking, and disruption of contextual fear memory reconsolidation by ketamine.

    Science.gov (United States)

    Duclot, Florian; Perez-Taboada, Iara; Wright, Katherine N; Kabbaj, Mohamed

    2016-10-01

    Only a portion of the population exposed to trauma will develop persistent emotional alterations characteristic of posttraumatic stress disorder (PTSD), which illustrates the necessity for identifying vulnerability factors and novel pharmacotherapeutic alternatives. Interestingly, clinical evidence suggests that novelty seeking is a good predictor for vulnerability to the development of excessive and persistent fear. Here, we first tested this hypothesis by analyzing contextual and cued fear responses of rats selected for their high (high responders, HR) or low (low responders, LR) exploration of a novel environment, indicator of novelty seeking. While HR and LR rats exhibited similar sensitivity to the shock and cued fear memory retention, fewer extinction sessions were required in HR than LR animals to reach extinction, indicating faster contextual and cued memory extinction. In a second part, we found an effective disruption of contextual fear reconsolidation by the N-methyl-d-aspartate receptor antagonist ketamine, associated with a down-regulation of early growth response 1 (Egr1) in the hippocampal CA1 area, and up-regulation of brain-derived neurotrophic factor (Bdnf) mRNA levels in the prelimbic and infralimbic cortices. Altogether, these data demonstrate a link between novelty seeking and conditioned fear extinction, and highlight a promising novel role of ketamine in affecting established fear memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Biology of Fear

    Science.gov (United States)

    Adolphs, Ralph

    2013-01-01

    Each of us has felt afraid, and we can all recognize fear in many animal species. Yet there is no consensus in the scientific study of fear. Some argue that “fear” is a psychological construct rather than discoverable through scientific investigation. Others argue that the term “fear” cannot properly be applied to animals because we cannot know whether they feel afraid. Studies in rodents show that there are highly specific brain circuits for fear, whereas findings from human neuroimaging seem to make the opposite claim. Here I review the field and urge three approaches that could reconcile the debates. For one, we need a broadly comparative approach that would identify core components of fear conserved across phylogeny. This also pushes us towards the second point of emphasis: an ecological theory of fear that is essentially functional. Finally, we should aim even to incorporate the conscious experience of being afraid, reinvigorating the study of feelings across species. PMID:23347946

  1. Serotonin, amygdala and fear: assembling the puzzle

    Directory of Open Access Journals (Sweden)

    Marco eBocchio

    2016-04-01

    Full Text Available The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT. The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the BLA during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning.To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent basolateral amygdala (BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the

  2. The Causes of School Fear

    OpenAIRE

    Hrbáčková, Martina

    2008-01-01

    My bachelor thesis addresses fear of school, especially its causes. It also briefly defines scolinophobia and anxiety related to fear. The causes of school fear are divided into three ranges: child´s personality, family and school environment. The causes of school fear should be sought within the individual himself, but also in the family. I concentrate especially on education of children, which can have the effect of arousing fear. The biggest part on the origin of fear has the school enviro...

  3. Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory.

    Science.gov (United States)

    Faria, Rodolfo Souza; Gutierres, Luís Felipe Soares; Sobrinho, Fernando César Faria; Miranda, Iris do Vale; Reis, Júlia Dos; Dias, Elayne Vieira; Sartori, Cesar Renato; Moreira, Dalmo Antonio Ribeiro

    2016-08-15

    Exposure to negative environmental events triggers defensive behavior and leads to the formation of aversive associative memory. Cellular and molecular changes in the central nervous system underlie this memory formation, as well as the associated behavioral changes. In general, memory process is established in distinct phases such as acquisition, consolidation, evocation, persistence, and extinction of the acquired information. After exposure to a particular event, early changes in involved neural circuits support the memory consolidation, which corresponds to the short-term memory. Re-exposure to previously memorized events evokes the original memory, a process that is considered essential for the reactivation and consequent persistence of memory, ensuring that long-term memory is established. Different environmental stimuli may modulate the memory formation process, as well as their distinct phases. Among the different environmental stimuli able of modulating memory formation is the physical exercise which is a potent modulator of neuronal activity. There are many studies showing that physical exercise modulates learning and memory processes, mainly in the consolidation phase of the explicit memory. However, there are few reports in the literature regarding the role of physical exercise in implicit aversive associative memory, especially at the persistence phase. Thus, the present study aimed to investigate the relationship between swimming exercise and the consolidation and persistence of contextual and auditory-cued fear memory. Male Wistar rats were submitted to sessions of swimming exercise five times a week, over six weeks. After that, the rats were submitted to classical aversive conditioning training by a pairing tone/foot shock paradigm. Finally, rats were evaluated for consolidation and persistence of fear memory to both auditory and contextual cues. Our results demonstrate that classical aversive conditioning with tone/foot shock pairing induced

  4. A Time for Learning and a Time for Sleep : The Effect of Sleep Deprivation on Contextual Fear Conditioning at Different Times of the Day

    NARCIS (Netherlands)

    Hagewoud, Roelina; Whitcomb, Shamiso N.; Heeringa, Amarins N.; Havekes, Robbert; Koolhaas, Jaap M.; Meerlo, Peter

    2010-01-01

    Study Objectives: Sleep deprivation negatively affects memory consolidation, especially in the case of hippocampus-dependent memories. Studies in rodents have shown that 5 hours of sleep deprivation immediately following footshock exposure selectively impairs the formation of a contextual fear memor

  5. The origins of height fear: an evaluation of neoconditioning explanations.

    Science.gov (United States)

    Menzies, R G; Parker, L

    2001-02-01

    The present research sought to establish a reliable and valid instrument for assessing the relevance of neoconditioning factors (e.g. latent inhibition, UCS inflation/revaluation, prior fear levels, prior expectancies of harm, fear and pain levels experienced during supposed learning events), in the development of human fear. Fifty-four undergraduate height-fearful students completed the new origins instrument (OQ-II), while 54 matched controls completed a modified version (OQM-II) that examined their prior experiences with heights. In general, few differences between groups were found. Height-fearful and control subjects did not differ on trait anxiety, the frequency of negative encounters with heights, the age at which these events had occurred, prior fear levels, prior expectancies of harm, or reports of UCS inflation/revaluation procedures. However, in a finding directly opposite to that expected from a conditioning account, the mean fear and pain scores reported by subjects who had experienced direct conditioning events were significantly higher in the non-fearful group than in the height-fearful group. These findings are discussed in terms of associative and non-associative models of fear.

  6. Role of gonadal hormones in anxiety and fear memory formation and inhibition in male mice.

    Science.gov (United States)

    McDermott, Carmel M; Liu, Dana; Schrader, Laura A

    2012-03-20

    Recent research investigating Pavlovian fear conditioning and fear extinction has elucidated the neurocircuitry involved in acquisition and inhibition of fear responses. Modulatory factors that may underlie individual differences in fear acquisition and inhibition, however, are not well understood. Testosterone is known to affect anxiety-like behavior and cognitive processing. In this study, we hypothesized that castration would increase anxiety and reduce memory for contextual fear conditioning in an age-dependent manner. In addition, castration would reduce the rate of extinction to context, as high levels of testosterone correlate with reduced PTSD-like symptoms. We compared behaviors in male mice that were castrated at one of two different time points, either before puberty (at 4 weeks) or after puberty (at 10 weeks) to sham-operated control mice. The behaviors investigated included: anxiety, cued and contextual fear conditioning, and extinction of the fear memory. An interaction of hormone status and age and a significant effect of age were measured in the elevated plus maze, a measure of anxiety. Castration caused a significant reduction of contextual fear memory, but no effect on cued fear memory. There was no significant effect of castration on extinction. Interestingly, a significant effect of age of the mouse at the time of testing was observed on extinction. These results suggest that endogenous androgens during puberty are important for anxiety and fear memory formation. In addition, these results define a late post-adolescent developmental time point for changes in anxiety and fear extinction.

  7. Deep learning for anomaly detection in maritime vessels using AIS-cued camera imagery

    Science.gov (United States)

    Zang, Yi; Mukherjee, Abir; Fei, Chuhong; Liu, Ting; Lampropoulos, George

    2017-05-01

    The presented work is an extension of previous work carried out at A.U.G. Signals Ltd. The problem is approached herein for vessel identification/verification using Deep Learning Neural Networks in a persistent surveillance scenario. Using images with vessels in the scene, Deep Learning Neural Networks were set up to detect vessels from still imagery (visible wavelength). Different neural network designs were implemented for vessel detection and compared based on learning performance (speed and demanded training sets) and estimation accuracy. Unique features from these designs were taken to create an optimized solution. This paper presents a comparison of the deep learning approaches implemented and their relative capabilities in vessel verification.

  8. Activation of BDNF Signaling Prevents the Return of Fear in Female Mice

    Science.gov (United States)

    Baker-Andresen, Danay; Flavell, Charlotte R.; Li, Xiang; Bredy, Timothy W.

    2013-01-01

    There are significant sex differences in vulnerability to develop fear-related anxiety disorders. Females exhibit twice the rate of post-traumatic stress disorder (PTSD) as males and sex differences have been observed in fear extinction learning in both humans and rodents, with a failure to inhibit fear emerging as a precipitating factor in the…

  9. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    Science.gov (United States)

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories.

  10. Neonatal lesions of orbital frontal areas 11/13 in monkeys alter goal-directed behavior but spare fear conditioning and safety signal learning.

    Directory of Open Access Journals (Sweden)

    Andy M Kazama

    2014-03-01

    Full Text Available Recent studies in monkeys have demonstrated that damage to the lateral subfields of orbital frontal cortex (OFC areas 11/13 yields profound changes in flexible modulation of goal-directed behaviors and a lack in fear regulation. Yet, little consideration has been placed on its role in emotional and social development throughout life. The current study investigated the effects of neonatal lesions of the OFC on the flexible modulation of goal-directed behaviors and fear responses in monkeys. Infant monkeys received neonatal lesions of OFC areas 11/13 or sham-lesions during the first post-natal week. Modulation of goal-directed behaviors was measured with a devaluation task at 3-4 years and 6-7 years. Modulation of fear reactivity by safety signals was assessed with the AX+/BX- potentiated-startle paradigm at 6-7 years. Similar to adult-onset OFC lesions, selective neonatal lesions of OFC areas 11/13 yielded a failure to modulate behavioral responses guided by changes in reward value, but spared the ability to modulate fear responses in the presence of safety signals. These results suggest that these areas play a critical role in the development of behavioral adaptation during goal-directed behaviors, but not, or less so, in the development of the ability to process emotionally salient stimuli and to modulate emotional reactivity using environmental contexts, which could be supported by other OFC subfields, such as the most ventromedial subfields (i.e. areas 14/25. Given similar impaired decision-making abilities and spared modulation of fear followed both neonatal lesions of either OFC areas 11 and 13 or amygdala (Kazama et al., 2012; Kazama & Bachevalier, 2013, the present results suggest that interactions between these two neural structures play a critical role in the development of behavioral adaptation; an ability essential for the self-regulation of emotion and behavior that assures the maintenance of successful social relationships.

  11. Fears about antiretroviral therapy among users of the internet forum for people living with HIV/AIDS in Russia.

    Science.gov (United States)

    Dudina, Victoria I; Judina, Darja I; King, Elizabeth J

    2017-02-01

    The purpose of this research was to identify different types of fear related to starting and adhering to antiretroviral therapy (ART) among people living with HIV (PLHIV) in Russia. Data were collected from the Russian-language internet forum for PLHIV (hivlife.info). Qualitative data analysis focused on the sections of the forum where users discussed health-related issues in order to identify fears related to HIV treatment. The following types of fear were revealed: fear of the illness, fear to learn negative information about one's health, fear of side effects, fear of therapy to be ineffective, fear that the appropriate medications will become unavailable, fear of lifestyle changes, and fear for the well-being of significant others. Efforts to increase the uptake of and adherence to ART should take into account the fears of PLHIV.

  12. Diffusion of small Cu islands on the Ni(111) surface: A self-learning kinetic Monte Carlo study

    Science.gov (United States)

    Acharya, Shree Ram; Shah, Syed Islamuddin; Rahman, Talat S.

    2017-08-01

    We elucidate the diffusion kinetics of a heteroepitaxial system consisting of two-dimensional small (1-8 atoms) Cu islands on the Ni(111) surface at (100-600) K using the Self-Learning Kinetic Monte Carlo (SLKMC-II) method. Study of the statics of the system shows that compact CuN (3≤N≤8) clusters made up of triangular units on fcc occupancy sites are the energetically most stable structures of those clusters. Interestingly, we find a correlation between the height of the activation energy barrier (Ea) and the location of the transition state (TS). The Ea of processes for Cu islands on the Ni(111) surface are in general smaller than those of their counterpart Ni islands on the same surface. We find this difference to correlate with the relative strength of the lateral interaction of the island atoms in the two systems. While our database consists of hundreds of possible processes, we identify and discuss the energetics of those that are the most dominant, or are rate-limiting, or most contributory to the diffusion of the islands. Since the Ea of single- and multi-atom processes that convert compact island shapes into non-compact ones are larger (with a significantly smaller Ea for their reverse processes) than that for the collective (concerted) motion of the island, the later dominate in the system kinetics - except for the cases of the dimer, pentamer and octamer. Short-jump involving one atom, long jump dimer-shearing, and long-jump corner shearing (via a single-atom) are, respectively, the dominating processes in the diffusion of the dimer, pentamer and octamer. Furthermore single-atom corner-rounding are the rate-limiting processes for the pentamer and octamer islands. Comparison of the energetics of selected processes and lateral interactions obtained from semi-empirical interatomic potentials with those from density functional theory show minor quantitative differences and overall qualitative agreement.

  13. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice.

    Science.gov (United States)

    Satomoto, Maiko; Satoh, Yasushi; Terui, Katsuo; Miyao, Hideki; Takishima, Kunio; Ito, Masataka; Imaki, Junko

    2009-03-01

    Neonatal exposure to anesthetics that block N-methyl-D-aspartate receptors and/or hyperactivate gamma-aminobutyric acid type A receptor has been shown to cause neuronal degeneration in the developing brain, leading to functional deficits later in adulthood. The authors investigated whether exposure of neonatal mice to inhaled sevoflurane causes deficits in social behavior as well as learning disabilities. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane for 6 h. Activated cleaved caspase-3 immunohistochemical staining was used for detection of apoptosis. Cognitive functions were tested by pavlovian conditioned fear test. Social behavior was tested by social recognition and interaction tests. Neonatal exposure to sevoflurane significantly increased the number of apoptotic cells in the brain immediately after anesthesia. It caused persistent learning deficits later in adulthood as evidenced by decreased freezing response in both contextual and cued fear conditioning. The social recognition test demonstrated that mice with neonatal exposure to sevoflurane did not develop social memory. Furthermore, these mice showed decreased interactions with a social target compared with controls in the social interaction test, indicating a social interaction deficit. The authors did not attribute these abnormalities in social behavior to impairments of general interest in novelty or olfactory sensation, because they did not detect significant differences in the test for novel inanimate object interaction or for olfaction. This study shows that exposure of neonatal mice to inhaled sevoflurane could cause not only learning deficits but also abnormal social behaviors resembling autism spectrum disorder.

  14. THE FEAR OF FEAR CONCEPT - EVIDENCE IN FAVOR OF MULTIDIMENSIONALITY

    NARCIS (Netherlands)

    ARRINDELL, WA

    In recent years, questions have been raised regarding the dimensionality of existing measures of fear of fear. This is an important issue that needs to be addressed if the dimensions(s) of any scale purporting to assess fear of fear are to guide theory and research. One of the most widely used

  15. THE FEAR OF FEAR CONCEPT - EVIDENCE IN FAVOR OF MULTIDIMENSIONALITY

    NARCIS (Netherlands)

    ARRINDELL, WA

    1993-01-01

    In recent years, questions have been raised regarding the dimensionality of existing measures of fear of fear. This is an important issue that needs to be addressed if the dimensions(s) of any scale purporting to assess fear of fear are to guide theory and research. One of the most widely used measu

  16. Avoidant symptoms in PTSD predict fear circuit activation during multimodal fear extinction.

    Science.gov (United States)

    Sripada, Rebecca K; Garfinkel, Sarah N; Liberzon, Israel

    2013-01-01

    Convergent evidence suggests that individuals with posttraumatic stress disorder (PTSD) exhibit exaggerated avoidance behaviors as well as abnormalities in Pavlonian fear conditioning. However, the link between the two features of this disorder is not well understood. In order to probe the brain basis of aberrant extinction learning in PTSD, we administered a multimodal classical fear conditioning/extinction paradigm that incorporated affectively relevant information from two sensory channels (visual and tactile) while participants underwent fMRI scanning. The sample consisted of fifteen OEF/OIF veterans with PTSD. In response to conditioned cues and contextual information, greater avoidance symptomatology was associated with greater activation in amygdala, hippocampus, vmPFC, dmPFC, and insula, during both fear acquisition and fear extinction. Heightened responses to previously conditioned stimuli in individuals with more severe PTSD could indicate a deficiency in safety learning, consistent with PTSD symptomatology. The close link between avoidance symptoms and fear circuit activation suggests that this symptom cluster may be a key component of fear extinction deficits in PTSD and/or may be particularly amenable to change through extinction-based therapies.

  17. Adult age differences in learning on a sequentially cued prediction task.

    Science.gov (United States)

    Seaman, Kendra L; Howard, Darlene V; Howard, James H

    2014-09-01

    Much of adaptive behavior relies on the ability to learn and generate predictions about relationships in the environment. Research on aging suggests both that there is an age deficit in the ability to learn sequential relationships and that this deficit in learning could underlie age differences reported in many decision-making tasks. This article introduces the Triplets Prediction Task (TPT) to investigate the learning of sequential relationships that underlies adaptive behavior. In the TPT, participants see 2 successive visual cues and then predict which target will follow. Unknown to participants, there is a predictive relationship between the first cue and the target such that each of 4 cues predicts 1 of 4 targets 85% of the time. Although both age groups demonstrated learning on this task, an age deficit in learning appeared early and performance differences persisted throughout training. There was also evidence of age differences in the learning systems engaged during the task. These results are consistent with previous studies of learning and prediction, and they support the growing literature showing adult age differences in decision making from experience. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Implications of memory modulation for post-traumatic stress and fear disorders.

    Science.gov (United States)

    Parsons, Ryan G; Ressler, Kerry J

    2013-02-01

    Post-traumatic stress disorder, panic disorder and phobia manifest in ways that are consistent with an uncontrollable state of fear. Their development involves heredity, previous sensitizing experiences, association of aversive events with previous neutral stimuli, and inability to inhibit or extinguish fear after it is chronic and disabling. We highlight recent progress in fear learning and memory, differential susceptibility to disorders of fear, and how these findings are being applied to the understanding, treatment and possible prevention of fear disorders. Promising advances are being translated from basic science to the clinic, including approaches to distinguish risk versus resilience before trauma exposure, methods to interfere with fear development during memory consolidation after a trauma, and techniques to inhibit fear reconsolidation and to enhance extinction of chronic fear. It is hoped that this new knowledge will translate to more successful, neuroscientifically informed and rationally designed approaches to disorders of fear regulation.

  19. Neuropeptide S reduces fear and avoidance of con-specifics induced by social fear conditioning and social defeat, respectively.

    Science.gov (United States)

    Zoicas, Iulia; Menon, Rohit; Neumann, Inga D

    2016-09-01

    Neuropeptide S (NPS) has anxiolytic effects and facilitates extinction of cued fear in rodents. Here, we investigated whether NPS reverses social fear and social avoidance induced by social fear conditioning (SFC) and acute social defeat (SD), respectively, in male CD1 mice. Our results revealed that intracerebroventricular NPS (icv; 10 and 50 nmol/2 μl) reversed fear of unknown con-specifics induced by SFC and dose-dependently reduced avoidance of known aggressive con-specifics induced by SD. While 50 nmol of NPS completely reversed social avoidance and reinstated social preference, 10 nmol of NPS reduced social avoidance, but did not completely reinstate social preference in socially-defeated mice. Further, a lower dose (1 nmol/2 μl) of NPS facilitated the within-session extinction of cued fear, while a higher dose (10 nmol/2 μl) reduced the expression of cued fear. We could also confirm the anxiolytic effects of NPS (1, 10 and 50 nmol/2 μl) on the elevated plus-maze (EPM), which were not accompanied by alterations in locomotor activity either on the EPM or in the home cage. Finally, we could show that icv infusion of the NPS receptor 1 antagonist D-Cys((t)Bu)(5)-NPS (10 nmol/2 μl) did not alter SFC-induced social fear, general anxiety and locomotor activity. Taken together, our study extends the potent anxiolytic profile of NPS to a social context by demonstrating the reduction of social fear and social avoidance, thus providing the framework for studies investigating the involvement of the NPS system in the regulation of different types of social behaviour.

  20. Mice selectively bred for High and Low fear behavior show differences in the number of pMAPK (p44/42 ERK) expressing neurons in lateral amygdala following Pavlovian fear conditioning.

    Science.gov (United States)

    Coyner, Jennifer; McGuire, Jennifer L; Parker, Clarissa C; Ursano, Robert J; Palmer, Abraham A; Johnson, Luke R

    2014-07-01

    Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.

  1. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning

    DEFF Research Database (Denmark)

    Wilensky, Ann E; Schafe, Glenn E; Kristensen, Morten Pilgaard

    2006-01-01

    In the standard model of pavlovian fear learning, sensory input from neutral and aversive stimuli converge in the lateral nucleus of the amygdala (LA), in which alterations in synaptic transmission encode the association. During fear expression, the LA is thought to engage the central nucleus...... of the amygdala (CE), which serves as the principal output nucleus for the expression of conditioned fear responses. In the present study, we reexamined the roles of LA and CE. Specifically, we asked whether CE, like LA, might also be involved in fear learning and memory consolidation. Using functional...... inactivation methods, we first show that CE is involved not only in the expression but also the acquisition of fear conditioning. Next, we show that inhibition of protein synthesis in CE after training impairs fear memory consolidation. These findings indicate that CE is not only involved in fear expression...

  2. Cannabinoid facilitation of fear extinction memory recall in humans

    Science.gov (United States)

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  3. Nuclear fear revisited

    Science.gov (United States)

    Crease, Robert P.

    2010-10-01

    In 1988 the science historian Spencer Weart published a groundbreaking book called Nuclear Fear: A History of Images, which examined visions of radiation damage and nuclear disaster in newspapers, television, film, literature, advertisements and popular culture.

  4. Fears and Phobias

    Science.gov (United States)

    ... to school if the weather forecast predicts a storm. She might feel terrible distress and fear when ... with a particular thing or situation. A tiny brain structure called the amygdala (pronounced: uh-MIG-duh- ...

  5. Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: cautions and caveats.

    Science.gov (United States)

    Maren, Stephen

    2008-10-01

    Pavlovian fear conditioning has become an important model for investigating the neural substrates of learning and memory in rats, mice and humans. The hippocampus and amygdala are widely believed to be essential for fear conditioning to contexts and discrete cues, respectively. Indeed, this parsing of function within the fear circuit has been used to leverage fear conditioning as a behavioral assay of hippocampal and amygdala function, particularly in transgenic mouse models. Recent work, however, blurs the anatomical segregation of cue and context conditioning and challenges the necessity for the hippocampus and amygdala in fear learning. Moreover, nonassociative factors may influence the performance of fear responses under a variety of conditions. Caution must therefore be exercised when using fear conditioning as a behavioral assay for hippocampal- and amygdala-dependent learning.

  6. What do midwives fear?

    Science.gov (United States)

    Dahlen, Hannah Grace; Caplice, Shea

    2014-12-01

    There is evidence that a significant number of women are fearful about birth but less is known about the fears of maternity health providers and how their fear may impact on the women they care for. The aim of this study was to determine the top fears midwives in Australia and New Zealand hold when it comes to caring for childbearing women. From 2009 to 2011, 17 workshops were held in Australia and New Zealand supporting over 700 midwives develop skills to keep birth normal. During the workshop midwives were asked to write their top fear on a piece of paper and return it to the presenters. Similar concepts were grouped together to form 8 major categories. In total 739 fears were reported and these were death of a baby (n=177), missing something that causes harm (n=176), obstetric emergencies (n=114), maternal death (n=83), being watched (n=68), being the cause of a negative birth experience (n=52), dealing with the unknown (n=36) and losing passion and confidence around normal birth (n=32). Student midwives were more concerned about knowing what to do, while homebirth midwives were mostly concerned with being blamed if something went wrong. There was consistency between the 17 groups of midwives regarding top fears held. Supporting midwives with workshops such as dealing with grief and loss and managing fear could help reduce their anxiety. Obstetric emergency skills workshops may help midwives feel more confident, especially those dealing with shoulder dystocia and PPH as they were most commonly recorded. Copyright © 2014 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  7. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice.

    Science.gov (United States)

    Poole, Rachel L; Braak, David; Gould, Thomas J

    2016-02-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, which suggests that the developing hippocampus may be sensitive to the effects of caffeine.

  8. Fear conditioning is disrupted by damage to the postsubiculum.

    Science.gov (United States)

    Robinson, Siobhan; Bucci, David J

    2012-06-01

    The hippocampus plays a central role in spatial and contextual learning and memory, however relatively little is known about the specific contributions of parahippocampal structures that interface with the hippocampus. The postsubiculum (PoSub) is reciprocally connected with a number of hippocampal, parahippocampal and subcortical structures that are involved in spatial learning and memory. In addition, behavioral data suggest that PoSub is needed for optimal performance during tests of spatial memory. Together, these data suggest that PoSub plays a prominent role in spatial navigation. Currently it is unknown whether the PoSub is needed for other forms of learning and memory that also require the formation of associations among multiple environmental stimuli. To address this gap in the literature we investigated the role of PoSub in Pavlovian fear conditioning. In Experiment 1 male rats received either lesions of PoSub or Sham surgery prior to training in a classical fear conditioning procedure. On the training day a tone was paired with foot shock three times. Conditioned fear to the training context was evaluated 24 hr later by placing rats back into theconditioning chamber without presenting any tones or shocks. Auditory fear was assessed on the third day by presenting the auditory stimulus in a novel environment (no shock). PoSub-lesioned rats exhibited impaired acquisition of the conditioned fear response as well as impaired expression of contextual and auditory fear conditioning. In Experiment 2, PoSub lesions were made 1 day after training to specifically assess the role of PoSub in fear memory. No deficits in the expression of contextual fear were observed, but freezing to the tone was significantly reduced in PoSub-lesioned rats compared to shams. Together, these results indicate that PoSub is necessary for normal acquisition of conditioned fear, and that PoSub contributes to the expression of auditory but not contextual fear memory. Copyright © 2011

  9. Cued Reacquisition Trials during Extinction Weaken Contextual Renewal in Human Predictive Learning

    Science.gov (United States)

    Effting, Marieke; Vervliet, Bram; Beckers, Tom; Kindt, Merel

    2013-01-01

    Extinction is generally more context specific than acquisition, as illustrated by the renewal effect. While most strategies to counteract renewal focus on decreasing the context specificity of extinction, the present work aimed at increasing the context specificity of acquisition learning. Two experiments examined whether presenting cued…

  10. Cued reacquisition trials during extinction weaken contextual renewal in human predictive learning

    NARCIS (Netherlands)

    Effting, M.; Vervliet, B.; Beckers, T.; Kindt, M.

    2013-01-01

    Extinction is generally more context specific than acquisition, as illustrated by the renewal effect. While most strategies to counteract renewal focus on decreasing the context specificity of extinction, the present work aimed at increasing the context specificity of acquisition learning. Two exper

  11. Cued Reacquisition Trials during Extinction Weaken Contextual Renewal in Human Predictive Learning

    Science.gov (United States)

    Effting, Marieke; Vervliet, Bram; Beckers, Tom; Kindt, Merel

    2013-01-01

    Extinction is generally more context specific than acquisition, as illustrated by the renewal effect. While most strategies to counteract renewal focus on decreasing the context specificity of extinction, the present work aimed at increasing the context specificity of acquisition learning. Two experiments examined whether presenting cued…

  12. Emetophobia: A fear of vomiting.

    Science.gov (United States)

    Faye, Abhijeet D; Gawande, Sushil; Tadke, Rahul; Kirpekar, Vivek C; Bhave, Sudhir H

    2013-10-01

    Emetophobia is an intense, irrational fear of vomiting including fear of feeling nausea, seeing or hearing another person vomit, or seeing vomitus itself. It may occur at any age and we need to understand its symptomatology. We report a case of emetophobic child whose fear of vomiting started after an attack of acute appendicitis. In the initial stage, fear was limited to vomiting, later it became generalized to a fear of seeing the vomitus, worries that parents may suffer vomiting, fear of vomiting in public places followed by avoiding social activities. Patient improved on short course of anti-anxiety drugs and Graded Exposure Therapy.

  13. Controlled cortical impact before or after fear conditioning does not affect fear extinction in mice.

    Science.gov (United States)

    Sierra-Mercado, Demetrio; McAllister, Lauren M; Lee, Christopher C H; Milad, Mohammed R; Eskandar, Emad N; Whalen, Michael J

    2015-05-01

    Post-traumatic stress disorder (PTSD) is characterized in part by impaired extinction of conditioned fear. Traumatic brain injury (TBI) is thought to be a risk factor for development of PTSD. We tested the hypothesis that controlled cortical impact (CCI) would impair extinction of fear learned by Pavlovian conditioning, in mice. To mimic the scenarios in which TBI occurs prior to or after exposure to an aversive event, severe CCI was delivered to the left parietal cortex at one of two time points: (1) Prior to fear conditioning, or (2) after conditioning. Delay auditory conditioning was achieved by pairing a tone with a foot shock in "context A". Extinction training involved the presentation of tones in a different context (context B) in the absence of foot shock. Test for extinction memory was achieved by presentation of additional tones alone in context B over the following two days. In pre- or post-injury paradigms, CCI did not influence fear learning and extinction. Furthermore, CCI did not affect locomotor activity or elevated plus maze testing. Our results demonstrate that, within the time frame studied, CCI does not impair the acquisition and expression of conditioned fear or extinction memory.

  14. Differential Involvement of the Medial Prefrontal Cortex across Variants of Contextual Fear Conditioning

    Science.gov (United States)

    Heroux, Nicholas A.; Robinson-Drummer, Patrese A.; Sanders, Hollie R.; Rosen, Jeffrey B.; Stanton, Mark E.

    2017-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association…

  15. Panic Disorder: When Fear Overwhelms

    Science.gov (United States)

    ... have: Sudden and repeated panic attacks of overwhelming anxiety and fear A feeling of being out of control, or ... to react differently to the physical sensations of anxiety and fear that occur during panic attacks. For more information ...

  16. Fear of the Formal

    DEFF Research Database (Denmark)

    du Gay, Paul; Lopdrup-Hjorth, Thomas

    2016-01-01

    term this ‘fear of the formal’, outlining key elements of its genealogy and exploring its contemporary manifestation in relation to recent and ongoing reforms of organisational life in a range of contexts. At the same time, we seek to indicate the continuing constitutive significance of formality...

  17. Pursued by fear

    NARCIS (Netherlands)

    Lonneke van Noije; Jurjen Iedema

    2017-01-01

    Original title: Achtervolgd door angst. This publication focuses on fear of victimisation as one of the most urgent aspects of subjective unsafety. Dutch research on subjective unsafety often uses a standard question drawn from the series of national Safety Monitors published by Statistics Netherla

  18. Citizens in fear?

    NARCIS (Netherlands)

    Janneke Oppelaar; Karin Wittebrood

    2006-01-01

    Original title: Angstige burgers How afraid are citizens of crime, and has that fear increased or decreased in recent years? Which factors make people feel unsafe and how susceptible are they to influence? This publication looks extensively at these questions. As well as an overview of the scientif

  19. Dorky Poll Scientific Fears

    CERN Multimedia

    2008-01-01

    The questions posed in yesterday's posts about hopes for 2008 were half of what we were asked by the Powers That Be. The other half: What scientific development do you fear you'll be blogging or reading about in 2008?

  20. Comparison of inbred mouse substrains reveals segregation of maladaptive fear phenotypes

    Directory of Open Access Journals (Sweden)

    Stephanie J Temme

    2014-08-01

    Full Text Available Maladaptive fear, such as fear that is persistent or easily generalized to a nonthreatening stimuli, is associated with anxiety-related disorders in humans. In the laboratory, maladaptive fear can be modeled in rodents using Pavlovian fear conditioning. Recently, an inbred mouse strain known as 129S1/SvImJ, or 129S1 have been reported as exhibiting impairments in fear extinction and enhanced fear generalization. With a long-term goal of identifying segregating genetic markers of maladaptive fear, we used Pavlovian fear conditioning to characterize a closely related substrain designated as 129S6/SvEvTac, or 129S6. Here we report that, like 129S1 animals, 129S6 mice exhibit appropriate levels of fear upon conditioning, but are unable to extinguish fear memories once they are consolidated. Importantly, the maladaptive fear phenotype in this inbred stain can be segregated by sub-strain when probed using conditioning protocols designed to assess generalized fear. We find that unlike the 129S1 substrain, mice from the 129S6 sub-strain do not generalize conditioned fear to previously novel contexts and can learn to discriminate between two similar contexts when trained using a discrimination protocol. These results suggest that at least two forms of maladaptive fear (deficits in fear extinction and fear generalization can be can be functionally segregated, further suggesting that the underlying neurobiology is heritable. Given the observation that two closely related sub-strains can exhibit different constellations of maladaptive fear suggests that these findings could be exploited to facilitate the identification of candidate genes for anxiety-related disorders.

  1. Comparison of inbred mouse substrains reveals segregation of maladaptive fear phenotypes.

    Science.gov (United States)

    Temme, Stephanie J; Bell, Ryan Z; Pahumi, Reciton; Murphy, Geoffrey G

    2014-01-01

    Maladaptive fear, such as fear that is persistent or easily generalized to a nonthreatening stimuli, is associated with anxiety-related disorders in humans. In the laboratory, maladaptive fear can be modeled in rodents using Pavlovian fear conditioning. Recently, an inbred mouse strain known as 129S1/SvImJ, or 129S1 has been reported as exhibiting impairments in fear extinction and enhanced fear generalization. With a long-term goal of identifying segregating genetic markers of maladaptive fear, we used Pavlovian fear conditioning to characterize a closely related substrain designated as 129S6/SvEvTac, or 129S6. Here we report that, like 129S1 animals, 129S6 mice exhibit appropriate levels of fear upon conditioning, but are unable to extinguish fear memories once they are consolidated. Importantly, the maladaptive fear phenotype in this inbred stain can be segregated by sub-strain when probed using conditioning protocols designed to assess generalized fear. We find that unlike the 129S1 substrain, mice from the 129S6 sub-strain do not generalize conditioned fear to previously novel contexts and can learn to discriminate between two similar contexts when trained using a discrimination protocol. These results suggest that at least two forms of maladaptive fear (deficits in fear extinction and fear generalization) can be can be functionally segregated, further suggesting that the underlying neurobiology is heritable. Given the observation that two closely related sub-strains can exhibit different constellations of maladaptive fear suggests that these findings could be exploited to facilitate the identification of candidate genes for anxiety-related disorders.

  2. The roles of the nucleus accumbens core, dorsomedial striatum, and dorsolateral striatum in learning: performance and extinction of Pavlovian fear-conditioned responses and instrumental avoidance responses.

    Science.gov (United States)

    Wendler, Etieli; Gaspar, Jessica C C; Ferreira, Tatiana L; Barbiero, Janaína K; Andreatini, Roberto; Vital, Maria A B F; Blaha, Charles D; Winn, Philip; Da Cunha, Claudio

    2014-03-01

    This study examined the effects of bilateral excitotoxic lesions of the nucleus accumbens core (NAc-co), dorsomedial striatum (DMS) or dorsolateral striatum (DLS) of rats on the learning and extinction of Pavlovian and instrumental components of conditioned avoidance responses (CARs). None of the lesions caused sensorimotor deficits that could affect locomotion. Lesions of the NAc-co, but not DMS or DLS, decreased unconditioned and conditioned freezing. The NAc-co and DLS lesioned rats learned the 2-way active avoidance task more slowly. These results suggest: (i) CARs depend on both Pavlovian and instrumental learning; (ii) learning the Pavlovian component of CARs depends on the NAc-co; learning the instrumental component of CARs depends on the DLS, NAc and DMS; (iii) although the NAc-co is also needed for learning the instrumental component, it is not clear whether it plays a role in learning the instrumental component per se or if it simply allows learning of the Pavlovian component which is a pre-condition for learning the instrumental component; (iv) we did not find evidence that the DMS and DLS play the same roles in habit and goal-directed aspects of the instrumental component of CARs as observed in appetitive motivated instrumental responding.

  3. Fear of Reinjury in Athletes.

    Science.gov (United States)

    Hsu, Chao-Jung; Meierbachtol, Adam; George, Steven Z; Chmielewski, Terese L

    A sports injury has both physical and psychological consequences for the athlete. A common postinjury psychological response is elevated fear of reinjury. To provide an overview of the implications of fear of reinjury on the rehabilitation of athletes, including clinical methods to measure fear of reinjury; the impact of fear of reinjury on rehabilitation outcomes, including physical impairments, function, and return to sports rate; and potential interventions to address fear of reinjury during rehabilitation. PubMed was searched for articles published in the past 16 years (1990-2016) relating to fear of reinjury in athletes. The reference lists of the retrieved articles were searched for additionally relevant articles. Clinical review. Level 3. Fear of reinjury after a sports injury can negatively affect the recovery of physical impairments, reduce self-report function, and prevent a successful return to sport. Athletes with high fear of reinjury might benefit from a psychologically informed practice approach to improve rehabilitation outcomes. The application of psychologically informed practice would be to measure fear of reinjury in the injured athletes and provide interventions to reduce fear of reinjury to optimize rehabilitation outcomes. Fear of reinjury after a sports injury can lead to poor rehabilitation outcomes. Incorporating principles of psychologically informed practice into sports injury rehabilitation could improve rehabilitation outcomes for athletes with high fear of reinjury.

  4. METUS REVEALED. HOBBES ON FEAR

    Directory of Open Access Journals (Sweden)

    RAFFAELLA SANTI

    2011-11-01

    Full Text Available Fear is a universal emotion, experienced by everybody. When it becomes collective and social, it can enter into the processes of political imagination, being used for political purposes. This article is a brief examination of the meanings and functions of fear(s in Hobbes’s thought. Some of his views may be ‘historically’ related to his own time, the Seventeenth Century, and others may be linked and confined to his own theory. However, his reflections on the importance of the perturbatio animi of fear for human psychology, and its impact on human interactions and collective behaviour, are still interesting for us today. The various meanings of fear highlighted by Hobbes (especially in his political works: Elements of Law, De cive, and Leviathan are here synthetically reconstructed, with particular emphasis on fear as passion, expectation and will, and on fear in his various social aspects: mutual fear and fear of death, which give rise to the political community; fear of punishment and fear for the laws, which help to maintain the State and finally, fear of invisible power and timor Dei, from which religion originates, and the religious power that Hobbes wanted to be held by the State.

  5. Change--how to remove the fear, resentment, and resistance.

    Science.gov (United States)

    Weitz, A J

    1995-11-01

    This article introduces active learning, which is an innovative education methodology for the workplace classroom. It is used to help people remove their fear, resentment, and resistance to the change process itself. Active learning makes education more effective compared with the predominantly used traditional lecture-type teaching methodology.

  6. The etiology of specific fears and phobias in children : a critique of the non-associative account

    NARCIS (Netherlands)

    Muris, P; Merckelbach, H; de Jong, Peter; Ollendick, TH

    2002-01-01

    The non-associative account of phobic etiology assumes that a number of specific fears (e.g., fear of heights, water, spiders, strangers, and separation) have an evolutionary background and may occur in the absence of learning experiences (e.g., conditioning). By this view, these specific fears pert

  7. Blocking of orexin receptors in the paraventricular nucleus of the thalamus has no effect on conditioned fear

    Directory of Open Access Journals (Sweden)

    Xinwen eDong

    2015-06-01

    Full Text Available The paraventricular nucleus of the thalamus (PVT projects to the central nucleus of the amygdala and recent experimental evidence indicates a role for the PVT in conditioned fear. Furthermore, the PVT contains a high density of orexin receptors and fibers and acute injections of orexin antagonist into the PVT produce anxiolytic effects. The present study was done to determine if administration of a dual orexin receptor antagonist (DORA in the region of the PVT interfered with the expression of conditioned fear in rats exposed to cued and contextual conditioning paradigms. Infusion of 0.5 µl of the DORA N-biphenyl-2-yl-1-{[(1-methyl-1H-benzimidazol-2yl sulfanyl] acetyl}-L-prolinamide at a concentration of 0.1, 1.0, and 10 nmol had no effect on the freezing produced by exposing rats to an auditory cue or the context associated with foot shock. In contrast, the 1.0 and 10 nmol doses were anxiolytic in the social interaction test. The results of the present study do not support a role for orexin receptors in the PVT in the expression of learned fear. The finding that the 1.0 and 10 nmol doses of DORA in the PVT region were anxiolytic in the social interaction test is consistent with other studies indicating a role for orexins in the PVT in anxiety-like behaviors.

  8. Social transmission of Pavlovian fear: fear-conditioning by-proxy in related female rats.

    Science.gov (United States)

    Jones, Carolyn E; Riha, Penny D; Gore, Andrea C; Monfils, Marie-H

    2014-05-01

    Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a foot-shock) leads to associative learning such that the tone alone will elicit a conditioned response (e.g., freezing). Individuals can also acquire fear from a social context, such as through observing the fear expression of a conspecific. In the current study, we examined the influence of kinship/familiarity on social transmission of fear in female rats. Rats were housed in triads with either sisters or non-related females. One rat from each cage was fear conditioned to a tone CS+ shock US. On day two, the conditioned rat was returned to the chamber accompanied by one of her cage mates. Both rats were allowed to behave freely, while the tone was played in the absence of the foot-shock. The previously untrained rat is referred to as the fear-conditioned by-proxy (FCbP) animal, as she would freeze based on observations of her cage-mate's response rather than due to direct personal experience with the foot-shock. The third rat served as a cage-mate control. The third day, long-term memory tests to the CS were performed. Consistent with our previous application of this paradigm in male rats (Bruchey et al. in Behav Brain Res 214(1):80-84, 2010), our results revealed that social interactions between the fear conditioned and FCbP rats on day two contribute to freezing displayed by the FCbP rats on day three. In this experiment, prosocial behavior occurring at the termination of the cue on day two was significantly greater between sisters than their non-sister counterparts, and this behavior resulted in increased freezing on day three. Our results suggest that familiarity and/or kinship influences the social transmission of fear in female rats.

  9. Linking fearfulness and coping styles in fish.

    Directory of Open Access Journals (Sweden)

    Catarina I M Martins

    Full Text Available Consistent individual differences in cognitive appraisal and emotional reactivity, including fearfulness, are important personality traits in humans, non-human mammals, and birds. Comparative studies on teleost fishes support the existence of coping styles and behavioral syndromes also in poikilothermic animals. The functionalist approach to emotions hold that emotions have evolved to ensure appropriate behavioral responses to dangerous or rewarding stimuli. Little information is however available on how evolutionary widespread these putative links between personality and the expression of emotional or affective states such as fear are. Here we disclose that individual variation in coping style predicts fear responses in Nile tilapia Oreochromis niloticus, using the principle of avoidance learning. Fish previously screened for coping style were given the possibility to escape a signalled aversive stimulus. Fearful individuals showed a range of typically reactive traits such as slow recovery of feed intake in a novel environment, neophobia, and high post-stress cortisol levels. Hence, emotional reactivity and appraisal would appear to be an essential component of animal personality in species distributed throughout the vertebrate subphylum.

  10. Data integration modeling applied to drill hole planning through semi-supervised learning: A case study from the Dalli Cu-Au porphyry deposit in the central Iran

    Science.gov (United States)

    Fatehi, Moslem; Asadi, Hooshang H.

    2017-04-01

    In this study, the application of a transductive support vector machine (TSVM), an innovative semi-supervised learning algorithm, has been proposed for mapping the potential drill targets at a detailed exploration stage. The semi-supervised learning method is a hybrid of supervised and unsupervised learning approach that simultaneously uses both training and non-training data to design a classifier. By using the TSVM algorithm, exploration layers at the Dalli porphyry Cu-Au deposit in the central Iran were integrated to locate the boundary of the Cu-Au mineralization for further drilling. By applying this algorithm on the non-training (unlabeled) and limited training (labeled) Dalli exploration data, the study area was classified in two domains of Cu-Au ore and waste. Then, the results were validated by the earlier block models created, using the available borehole and trench data. In addition to TSVM, the support vector machine (SVM) algorithm was also implemented on the study area for comparison. Thirty percent of the labeled exploration data was used to evaluate the performance of these two algorithms. The results revealed 87 percent correct recognition accuracy for the TSVM algorithm and 82 percent for the SVM algorithm. The deepest inclined borehole, recently drilled in the western part of the Dalli deposit, indicated that the boundary of Cu-Au mineralization, as identified by the TSVM algorithm, was only 15 m off from the actual boundary intersected by this borehole. According to the results of the TSVM algorithm, six new boreholes were suggested for further drilling at the Dalli deposit. This study showed that the TSVM algorithm could be a useful tool for enhancing the mineralization zones and consequently, ensuring a more accurate drill hole planning.

  11. Differential roles of the dorsal and ventral hippocampus in predator odor contextual fear conditioning.

    Science.gov (United States)

    Wang, Melissa E; Fraize, Nicolas P; Yin, Linda; Yuan, Robin K; Petsagourakis, Despina; Wann, Ellen G; Muzzio, Isabel A

    2013-06-01

    The study of fear memory is important for understanding various anxiety disorders in which patients experience persistent recollections of traumatic events. These memories often involve associations of contextual cues with aversive events; consequently, Pavlovian classical conditioning is commonly used to study contextual fear learning. The use of predator odor as a fearful stimulus in contextual fear conditioning has become increasingly important as an animal model of anxiety disorders. Innate fear responses to predator odors are well characterized and reliable; however, attempts to use these odors as unconditioned stimuli in fear conditioning paradigms have proven inconsistent. Here we characterize a contextual fear conditioning paradigm using coyote urine as the unconditioned stimulus. We found that contextual conditioning induced by exposure to coyote urine produces long-term freezing, a stereotypic response to fear observed in mice. This paradigm is context-specific and parallels shock-induced contextual conditioning in that it is responsive to extinction training and manipulations of predator odor intensity. Region-specific lesions of the dorsal and ventral hippocampus indicate that both areas are independently required for the long-term expression of learned fear. These results in conjunction with c-fos immunostaining data suggest that while both the dorsal and ventral hippocampus are required for forming a contextual representation, the ventral region also modulates defensive behaviors associated with predators. This study provides information about the individual contributions of the dorsal and ventral hippocampus to ethologically relevant fear learning.

  12. Auditory Cortex is Important in the Extinction of Two Different Tone-Based Conditioned Fear Memories in Rats

    OpenAIRE

    Eun Young Song; Boatman, Jeffrey A; Jung, Min W.; Kim, Jeansok J.

    2010-01-01

    Extensive fear extinction research is guided by the view that there are structures in the brain that develop inhibitory control over the expression of conditioned fear memories. While the medial prefrontal cortex has recently captured attention as the locus of plasticity essential for extinction of conditioned fear, the auditory cortex is another plausible cortical area involved in extinction learning since it is considered a sufficient conditioned stimulus (CS) pathway in tone fear conditio...

  13. Fear of holes.

    Science.gov (United States)

    Cole, Geoff G; Wilkins, Arnold J

    2013-10-01

    Phobias are usually described as irrational and persistent fears of certain objects or situations, and causes of such fears are difficult to identify. We describe an unusual but common phobia (trypophobia), hitherto unreported in the scientific literature, in which sufferers are averse to images of holes. We performed a spectral analysis on a variety of images that induce trypophobia and found that the stimuli had a spectral composition typically associated with uncomfortable visual images, namely, high-contrast energy at midrange spatial frequencies. Critically, we found that a range of potentially dangerous animals also possess this spectral characteristic. We argue that although sufferers are not conscious of the association, the phobia arises in part because the inducing stimuli share basic visual characteristics with dangerous organisms, characteristics that are low level and easily computed, and therefore facilitate a rapid nonconscious response.

  14. Is Fear Really Persuasive

    OpenAIRE

    2005-01-01

    Persuasive communication has been used for ages, from the great Ancient Greece to modern days, in order to modify people's ways of thinking and acting. It has a tremendous role to play when it comes to advertising, even more so if considering social advertising campaigns. One of the determinants that were scrutinized before through research in the field of persuasive communication is the appeal to fear, which is frequently used in public health campaigns, such as antismoking advertising. In s...

  15. Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning

    Directory of Open Access Journals (Sweden)

    Marco eCostanzi

    2014-08-01

    Full Text Available Fear allows organisms to cope with dangerous situations and remembering these situations has an adaptive role preserving individuals from injury and death. However, recalling traumatic memories can induce re-experiencing the trauma, thus resulting in a maladaptive fear. A failure to properly regulate fear responses has been associated with anxiety disorders, like Posttraumatic Stress Disorder (PTSD. Thus, re-establishing the capability to regulate fear has an important role for its adaptive and clinical relevance. Strategies aimed at erasing fear memories have been proposed, although there are limits about their efficiency in treating anxiety disorders. To re-establish fear regulation, here we propose a new approach, based on the re-evaluation of the aversive value of traumatic experience. Mice were submitted to a contextual-fear-conditioning paradigm in which a neutral context was paired with an intense electric footshock. Three weeks after acquisition, conditioned mice were treated with a less intense footshock (pain threshold. The effectiveness of this procedure in reducing fear expression was assessed in terms of behavioral outcomes related to PTSD (e.g. hyper-reactivity to a neutral tone, anxiety levels in a plus maze task, social avoidance, and learning deficits in a spatial water maze and of amygdala activity by evaluating c-fos expression. Furthermore, a possible role of lateral orbitofrontal cortex (lOFC in mediating the behavioral effects induced by the re-evaluation procedure was investigated. We observed that this treatment (i significantly mitigates the abnormal behavioral outcomes induced by trauma, (ii persistently attenuates fear expression without erasing contextual memory, (iii prevents fear reinstatement, (iv reduces amygdala activity and (v requires an intact lOFC to be effective.The results suggest that an effective strategy to treat pathological anxiety should address cognitive re-evaluation of traumatic experiences

  16. Cognitive vulnerability and dental fear

    Directory of Open Access Journals (Sweden)

    Spencer A John

    2008-01-01

    Full Text Available Abstract Background The Cognitive Vulnerability Model proposes that perceptions of certain characteristics of a situation are critical determinants of fear. Although the model is applicable to all animal, natural environment and situational fears, it has not yet been applied specifically to dental fear. This study therefore aimed to examine the association between dental fear and perceptions of dental visits as uncontrollable, unpredictable and dangerous. Methods The study used a clustered, stratified national sample of Australians aged 15 years and over. All participants were asked in a telephone interview survey to indicate their level of dental fear. Participants who received an oral examination were subsequently provided with a self-complete questionnaire in which they rated their perceptions of uncontrollability, unpredictability and dangerousness associated with dental visiting. Results 3937 participants were recruited. Each of the three vulnerability-related perceptions was strongly associated with the prevalence of high dental fear. In a logistic regression analysis, uncontrollability and dangerousness perceptions were significantly associated with high dental fear after controlling for age and sex. However, unpredictability perceptions did not have a statistically significant independent association with dental fear after controlling for all other variables. Conclusion Results are mostly consistent with the Cognitive Vulnerability Model of the etiology of fear, with perceptions of uncontrollability, unpredictability and dangerousness each showing a strong bivariate relationship with high dental fear prevalence. However, more extensive measures of vulnerability perceptions would be valuable in future investigations.

  17. Odors eliciting fear: a conditioning approach to Idiopathic Environmental Intolerances.

    Science.gov (United States)

    Leer, Arne; Smeets, Monique A M; Bulsing, Patricia J; van den Hout, Marcel A

    2011-06-01

    Patients suffering from Idiopathic Environmental Intolerances (IEI) report health symptoms, referable to multiple organ systems, which are triggered by harmless odors and therefore medically unexplainable. In line with previous research that predominantly points towards psychological explanations, the present study tests the hypothesis that IEI symptoms result from learning via classical conditioning of odors to fear. A differential conditioning paradigm was employed. Hedonically different odors were compared on ease of fear acquisition. Conditioned stimuli (CSs) were Dimethyl Sulfide (unpleasant) and peach (pleasant). The unconditioned stimulus (US) was an electrical shock. During acquisition one odor (CS+) was followed by shock, while the other odor (CS-) was not. Next, fear extinction was tested by presenting both CS+ and CS- without US. Electrodermal response, odor evaluation, and sniffing behavior were monitored. Results showed successful fear conditioning irrespective of hedonic character as evidenced by electrodermal response. Acquired fear did not extinguish. There was no evidence of evaluative conditioning taking place, as CS evaluation did not change during fear acquisition. Early avoidance of the CS+, as deduced from odor inhalation measures, was demonstrated, but did not sustain during the entire acquisition phase. This study suggests that a fear conditioning account of IEI is only partially satisfactory.

  18. Stress differentially affects fear conditioning in men and women.

    Science.gov (United States)

    Merz, Christian Josef; Wolf, Oliver Tobias; Schweckendiek, Jan; Klucken, Tim; Vaitl, Dieter; Stark, Rudolf

    2013-11-01

    Stress and fear conditioning processes are both important vulnerability factors in the development of psychiatric disorders. In behavioral studies considerable sex differences in fear learning have been observed after increases of the stress hormone cortisol. But neuroimaging experiments, which give insights into the neurobiological correlates of stress × sex interactions in fear conditioning, are lacking so far. In the current functional magnetic resonance imaging (fMRI) study, we tested whether a psychosocial stressor (Trier Social Stress Test) compared to a control condition influenced subsequent fear conditioning in 48 men and 48 women taking oral contraceptives (OCs). One of two pictures of a geometrical figure was always paired (conditioned stimulus, CS+) or never paired (CS-) with an electrical stimulation (unconditioned stimulus). BOLD responses as well as skin conductance responses were assessed. Sex-independently, stress enhanced the CS+/CS- differentiation in the hippocampus in early acquisition but attenuated conditioned responses in the medial frontal cortex in late acquisition. In early acquisition, stress reduced the CS+/CS- differentiation in the nucleus accumbens in men, but enhanced it in OC women. In late acquisition, the same pattern (reduction in men, enhancement in OC women) was found in the amygdala as well as in the anterior cingulate. Thus, psychosocial stress impaired the neuronal correlates of fear learning and expression in men, but facilitated them in OC women. A sex-specific modulation of fear conditioning after stress might contribute to the divergent prevalence of men and women in developing psychiatric disorders.

  19. The Role of the Medial Prefrontal Cortex in the Generalization of Conditioned Fear.

    Science.gov (United States)

    Spalding, Kelsey N

    2017-08-31

    Fear generalization, the generalization of fear to innocuous stimuli, is a characteristic component of pathological anxiety. Neural models of fear generalization suggest the involvement of the medial prefrontal cortex (mPFC). However, conflicting empirical findings complicate our understanding of the role of the mPFC in pathological anxiety. To address important unanswered questions in this area, a detailed review and synthesis of results from human and nonhuman animal investigations of conditioned fear generalization was conducted. Empirical articles were identified through March 2017 and selected if they used fear conditioning, measured fear generalization, and included a measure of activity in the mPFC or manipulation of mPFC functioning. In human cued fear conditioning, the ventral mPFC plays an important role in the inhibition of fear generalization, whereas dorsal mPFC is important for the activation of generalized fear. This pattern remains to be further investigated in nonhuman animal models. Nonhuman animal research suggests an interaction between the neural correlates of contextual fear generalization and timing, such that the mPFC appears to increase fear generalization at remote time points and reduce generalization at recent time points following acquisition. The literature suggests a key role for the mPFC in fear generalization, but empirical details vary depending on specific regions within the mPFC, the animal model used, and the timing of the generalization test. Further research is needed to elucidate the role of the mPFC in fear generalization, which could in turn facilitate more effective pharmacological interventions for pathological anxiety. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. [GABA-Receptors in Modulation of Fear Memory Extinction].

    Science.gov (United States)

    Dubrovina, N I

    2016-01-01

    GABA is the major inhibitory neurotransmitter in the central nervous system determining the efficacy of neuronal interaction. GABA-receptors play a key role in different aspects of fear memory--acquisition and consolidation, retention, reconsolidation and extinction. Extinction is an important behavioural phenomenon which allows organism to adapt its behavior to a changing environment. Extinction of fear memory is a form of new inhibitory learning which interferes with expression of the initial acquired fear conditioning. Resistance to extinction is symptom of depression and posttraumatic stress disorder. The aim of the present review was to summarize own and literary data about GABAergic modulation of fear extinction and pharmacological correction of extinction impairment at influences on GABA(A)- and GABA(B)- receptors.

  1. Categories, concepts, and conditioning: how humans generalize fear.

    Science.gov (United States)

    Dunsmoor, Joseph E; Murphy, Gregory L

    2015-02-01

    During the past century, Pavlovian conditioning has served as the predominant experimental paradigm and theoretical framework to understand how humans learn to fear and avoid real or perceived dangers. Animal models for translational research offer insight into basic behavioral and neurophysiological factors mediating the acquisition, expression, inhibition, and generalization of fear. However, it is important to consider the limits of traditional animal models when applied to humans. Here, we focus on the question of how humans generalize fear. We propose that to understand fear generalization in humans requires taking into account research on higher-level cognition such as category-based induction, inferential reasoning, and representation of conceptual knowledge. Doing so will open the door for productive avenues of new research.

  2. Inhibition of Spontaneous Recovery of Fear by mGluR5 after Prolonged Extinction Training

    OpenAIRE

    Sheng-Chun Mao; Chih-Hua Chang; Chia-Chen Wu; M. Juliana Orejarena; Manzoni, Olivier J.; Po-Wu Gean

    2013-01-01

    Fear behavior is vital for survival and involves learning contingent associations of non-threatening cues with aversive stimuli. In contrast, excessive levels of fear can be maladaptive and lead to anxiety disorders. Generally, extensive sessions of extinction training correlates with reduced spontaneous recovery. The molecular mechanisms underlying the long-term inhibition of fear recovery following repeated extinction training are not fully understood. Here we show that in rats, prolonged e...

  3. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala.

    Science.gov (United States)

    Skelly, M J; Ariwodola, O J; Weiner, J L

    2017-02-01

    Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1-and β3-AR agonists (1 μM A61603 and 10 μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1 μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline

  4. Inhibition of Spontaneous Recovery of Fear by mGluR5 after Prolonged Extinction Training

    OpenAIRE

    Sheng-Chun Mao; Chih-Hua Chang; Chia-Chen Wu; M Juliana Orejarena; Manzoni, Olivier J.; Po-Wu Gean

    2013-01-01

    Fear behavior is vital for survival and involves learning contingent associations of non-threatening cues with aversive stimuli. In contrast, excessive levels of fear can be maladaptive and lead to anxiety disorders. Generally, extensive sessions of extinction training correlates with reduced spontaneous recovery. The molecular mechanisms underlying the long-term inhibition of fear recovery following repeated extinction training are not fully understood. Here we show that in rats, prolonged e...

  5. Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq.

    Science.gov (United States)

    Malan-Müller, Stefanie; Fairbairn, Lorren; Daniels, Willie M U; Dashti, Mahjoubeh Jalali Sefid; Oakeley, Edward J; Altorfer, Marc; Kidd, Martin; Seedat, Soraya; Gamieldien, Junaid; Hemmings, Sîan Megan Joanna

    2016-02-01

    D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.

  6. Plastic Synaptic Networks of the Amygdala for the Acquisition, Expression, and Extinction of Conditioned Fear

    Science.gov (United States)

    Pape, Hans-Christian; Pare, Denis

    2009-01-01

    The last ten years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate to the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled to the fact that the underlying circuitry is evolutionarily well conserved makes it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances, came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses. PMID:20393190

  7. The cost of fear

    Science.gov (United States)

    Martin, Thomas E.

    2011-01-01

    What should parents do when they detect indications of more predators nearby that might eat their babies? This scenario is commonly faced by parents in the wild, and the consequences are important. The number of offspring that organisms produce has a major influence on fitness and, when averaged across a population, affects whether this population will increase or decrease. Offspring production thus has critical implications for evolution via fitness, and ecology and conservation via demography. On page 1398 of this issue, Zanette et al. (1) show that the fear of predation can, by itself, strongly affect the number of offspring produced over an annual cycle by song sparrows (see the figure).

  8. Pattern Analyses Reveal Separate Experience-Based Fear Memories in the Human Right Amygdala.

    Science.gov (United States)

    Braem, Senne; De Houwer, Jan; Demanet, Jelle; Yuen, Kenneth S L; Kalisch, Raffael; Brass, Marcel

    2017-08-23

    Learning fear via the experience of contingencies between a conditioned stimulus (CS) and an aversive unconditioned stimulus (US) is often assumed to be fundamentally different from learning fear via instructions. An open question is whether fear-related brain areas respond differently to experienced CS-US contingencies than to merely instructed CS-US contingencies. Here, we contrasted two experimental conditions where subjects were instructed to expect the same CS-US contingencies while only one condition was characterized by prior experience with the CS-US contingency. Using multivoxel pattern analysis of fMRI data, we found CS-related neural activation patterns in the right amygdala (but not in other fear-related regions) that dissociated between whether a CS-US contingency had been instructed and experienced versus merely instructed. A second experiment further corroborated this finding by showing a category-independent neural response to instructed and experienced, but not merely instructed, CS presentations in the human right amygdala. Together, these findings are in line with previous studies showing that verbal fear instructions have a strong impact on both brain and behavior. However, even in the face of fear instructions, the human right amygdala still shows a separable neural pattern response to experience-based fear contingencies.SIGNIFICANCE STATEMENT In our study, we addressed a fundamental problem of the science of human fear learning and memory, namely whether fear learning via experience in humans relies on a neural pathway that can be separated from fear learning via verbal information. Using two new procedures and recent advances in the analysis of brain imaging data, we localized purely experience-based fear processing and memory in the right amygdala, thereby making a direct link between human and animal research. Copyright © 2017 the authors 0270-6474/17/378116-15$15.00/0.

  9. Appetitive-aversive interactions in Pavlovian fear conditioning.

    Science.gov (United States)

    Nasser, Helen M; McNally, Gavan P

    2012-06-01

    The existence of value coding and salience coding neurons in the mammalian brain, including in habenula and ventral tegmental area, has sparked considerable interest in the interactions that occur between Pavlovian appetitive and aversive conditioning. Here we studied these appetitive-aversive interactions at the behavioral level by assessing the learning that occurs when a Pavlovian appetitive conditioned stimulus (conditional stimulus, CS) serves as a CS for shock in Pavlovian fear conditioning. A Pavlovian appetitive CS was retarded in the rate at which it could be transformed into a fear CS (counterconditioning), but the presence of the appetitive CS augmented fear learning to a concurrently presented neutral CS (superconditioning). Retardation of fear learning was not alleviated by manipulations designed to restore the associability of the appetitive CS before fear conditioning but was alleviated by manipulations designed to increase the aversive quality of the shock unconditioned stimulus (US). These findings are consistent with opponent interactions between the appetitive and aversive motivational systems and provide a behavioral approach for assessing the neural correlates of these appetitive-aversive interactions.

  10. Common Fears and Their Relationship to Dental Fear and Utilization of the Dentist

    OpenAIRE

    Fiset, Louis; Milgram, Peter; Weinstein, Philip; Melnick, Sandra

    1989-01-01

    Common fears were studied by household telephone interviews and mail survey in Seattle, Washington, to determine their relationship to dental fear and to utilization of the dentist. Dental fear was either the first or second most common fear, with a prevalence estimated between 183 and 226 persons per 1000 population. Dental fear was associated with fears of heights, flying, and enclosures. Respondents with multiple common fears other than fear of dentistry were more likely to delay or cancel...

  11. Growing up to be fearful? Social evaluative fears during adolescence

    NARCIS (Netherlands)

    Sumter, Sindy Resita

    2010-01-01

    This thesis studies the normal developmental pattern of social evaluative fears from childhood to adolescence. We have investigated age differences in self-reported social fears and physical responses during a public speaking task. In addition, youth's perceptions of speaking in public were studied

  12. Growing up to be fearful? Social evaluative fears during adolescence

    NARCIS (Netherlands)

    Sumter, Sindy Resita

    2010-01-01

    This thesis studies the normal developmental pattern of social evaluative fears from childhood to adolescence. We have investigated age differences in self-reported social fears and physical responses during a public speaking task. In addition, youth's perceptions of speaking in public were studied

  13. Optogenetic Activation of Presynaptic Inputs in Lateral Amygdala Forms Associative Fear Memory

    Science.gov (United States)

    Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee

    2014-01-01

    In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…

  14. Effects of Stress and Sex on Acquisition and Consolidation of Human Fear Conditioning

    Science.gov (United States)

    Kuhn, Cynthia M.; LaBar, Kevin S.; Zorawski, Michael; Blanding, Nineequa Q.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min…

  15. The Role of the Medial Prefrontal Cortex in Trace Fear Extinction

    Science.gov (United States)

    Kwapis, Janine L.; Jarome, Timothy J.; Helmstetter, Fred J.

    2015-01-01

    The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that…

  16. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  17. Optogenetic Activation of Presynaptic Inputs in Lateral Amygdala Forms Associative Fear Memory

    Science.gov (United States)

    Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee

    2014-01-01

    In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…

  18. Anxiety, Fears, and Phobias (For Parents)

    Science.gov (United States)

    ... Teaching Kids to Be Smart About Social Media Anxiety, Fears, and Phobias KidsHealth > For Parents > Anxiety, Fears, ... unsettling experiences and challenging situations of life. Many Anxieties and Fears Are Normal Anxiety is defined as " ...

  19. Anxiety, Fears, and Phobias (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Anxiety, Fears, and Phobias KidsHealth > For Parents > Anxiety, Fears, ... unsettling experiences and challenging situations of life. Many Anxieties and Fears Are Normal Anxiety is defined as " ...

  20. Heritability of fear: Ukrainian experience

    Directory of Open Access Journals (Sweden)

    O.V. Filiptsova

    2014-10-01

    Conclusions: The conducted research demonstrated genetic component presence for nine types of fear – psychic disorder development, complications in personal life, making responsible decisions, senility, closed spaces, sexual dysfunction, suicide commission, speaking in public, and aggressive behavior possibility to relatives. It helps to consider these fear perspectives for further molecular-genetic analysis in Ukraine.

  1. Fear responses to media entertainment

    NARCIS (Netherlands)

    Valkenburg, P.M.; Buijzen, M.A.

    2008-01-01

    Most experts on childhood fears agree that some fears are necessary for the healthy cognitive and emotional development of children (e.g., Fraiberg, 1959; Sarafino, 1986). But they also agree that being confronted with shocking events that go beyond a child’s processing ability can have a negative

  2. Fear conditioning and extinction across development: evidence from human studies and animal models.

    Science.gov (United States)

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C; Pine, Daniel S; Fox, Nathan A

    2014-07-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations.

  3. Fear conditioning and extinction across development: Evidence from human studies and animal models☆

    Science.gov (United States)

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C.; Pine, Daniel S.; Fox, Nathan A.

    2015-01-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations. PMID:24746848

  4. [Fear of falling].

    Science.gov (United States)

    Alcalde Tirado, Pablo

    2010-01-01

    Fear of falling (FF) can be considered as a protective response to a real threat, preventing the elderly from performing activities with high risk of falling, but can also lead to a restriction of the activities that will result in a long-term adverse effect on social, physical or cognitive functions. There is a prevalence of FF in 30% in the elderly who have no history of falls, and double that in those with a history of falling. Its prevalence is increased in women and with advanced age. Several scales have been developed to measure the psychological effects of FF, among which are noted are, the Fall Efficacy Scale (FES), the Activities-specific Balance and Confidence Scale (ABC), and the survey of activities and fear of falling in the elderly (SAFE). It has negative consequences in the functionality, the subjective feeling of well-being, and in the consequent loss of independence. The functional and physical deterioration, or the quality of life is clearly related to the FF, although it has not been established if these factors are cause or effect. Multiple interventions have been recommended, bringing about changes that reinforce their confidence to carry out activities. Interventions and research should promote a realistic and appropriate approach to the risk of falls and teach the elderly to perform activities safely. The reduction in FF is an important goal in itself to improve the subjective feeling of well-being, and the benefits could be increased if this reduction was also accompanied by an increase in safe behaviour, social participation, and activities of the daily life.

  5. Pupils' Fear in the Classroom: Portraits from Palestine and England

    Science.gov (United States)

    Hargreaves, Eleanore; Affouneh, Saida

    2017-01-01

    This article explores the concept of fear related to the authoritarian classroom and how children express its influence on their learning. Its investigations draw on the comments of four classes of primary-age pupils, two from a school near London, England, and two from boys' and girls' schools in the West Bank, Palestine. It is written by one…

  6. Fear Generalization in Humans: Systematic Review and Implications for Anxiety Disorder Research.

    Science.gov (United States)

    Dymond, Simon; Dunsmoor, Joseph E; Vervliet, Bram; Roche, Bryan; Hermans, Dirk

    2015-09-01

    Fear generalization, in which conditioned fear responses generalize or spread to related stimuli, is a defining feature of anxiety disorders. The behavioral consequences of maladaptive fear generalization are that aversive experiences with one stimulus or event may lead one to regard other cues or situations as potential threats that should be avoided, despite variations in physical form. Theoretical and empirical interest in the generalization of conditioned learning dates to the earliest research on classical conditioning in nonhumans. Recently, there has been renewed focus on fear generalization in humans due in part to its explanatory power in characterizing disorders of fear and anxiety. Here, we review existing behavioral and neuroimaging empirical research on the perceptual and non-perceptual (conceptual and symbolic) generalization of fear and avoidance in healthy humans and patients with anxiety disorders. The clinical implications of this research for understanding the etiology and treatment of anxiety is considered and directions for future research described.

  7. Delayed effects of cortisol enhance fear memory of trace conditioning.

    Science.gov (United States)

    Cornelisse, Sandra; van Ast, Vanessa A; Joëls, Marian; Kindt, Merel

    2014-02-01

    Corticosteroids induce rapid non-genomic effects followed by slower genomic effects that are thought to modulate cognitive function in opposite and complementary ways. It is presently unknown how these time-dependent effects of cortisol affect fear memory of delay and trace conditioning. This distinction is of special interest because the neural substrates underlying these types of conditioning may be differently affected by time-dependent cortisol effects. Delay conditioning is predominantly amygdala-dependent, while trace conditioning additionally requires the hippocampus. Here, we manipulated the timing of cortisol action during acquisition of delay and trace fear conditioning, by randomly assigning 63 men to one of three possible groups: (1) receiving 10mg hydrocortisone 240 min (slow cort) or (2) 60 min (rapid cort) before delay and trace acquisition, or (3) placebo at both times, in a double-blind design. The next day, we tested memory for trace and delay conditioning. Fear potentiated startle responses, skin conductance responses and unconditioned stimulus expectancy scores were measured throughout the experiment. The fear potentiated startle data show that cortisol intake 240 min before actual fear acquisition (slow cort) uniquely strengthened subsequent trace conditioned memory. No effects of cortisol delivery 60 min prior to fear acquisition were found on any measure of fear memory. Our findings emphasize that slow, presumably genomic, but not more rapid effects of corticosteroids enhance hippocampal-dependent fear memories. On a broader level, our findings underline that basic experimental research and clinically relevant pharmacological treatments employing corticosteroids should acknowledge the timing of corticosteroid administration relative to the learning phase, or therapeutic intervention.

  8. Inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear.

    Science.gov (United States)

    Jiang, Lizhu; Mao, Rongrong; Tong, Jianbin; Li, Jinnan; Chai, Anping; Zhou, Qixin; Yang, Yuexiong; Wang, Liping; Li, Lingjiang; Xu, Lin

    2016-10-01

    Promoting extinction of fear memory is the main treatment of fear disorders, especially post-traumatic stress disorder (PTSD). However, fear extinction is often incomplete in these patients. Our previous study had shown that Rac1 activity in hippocampus plays a crucial role in the learning of contextual fear memory in rats. Here, we further investigated whether Rac1 activity also modulated the extinction of contextual fear memory. We found that massed extinction obviously upregulated hippocampal Rac1 activity and induced long-term extinction of contextual fear in rats. Intrahippocampal injection of the Rac1 inhibitor NSC23766 prevents extinction of contextual fear in massed extinction training rats. In contrast, long-spaced extinction downregulated Rac1 activity and caused less extinction. And Rac1 activator CN04-A promotes extinction of contextual fear in long-spaced extinction rats. Our study demonstrates that inhibition of Rac1 activity in the hippocampus impaired extinction of contextual fear, suggesting that modulating Rac1 activity of the hippocampus may be promising therapy of fear disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Updated meta-analysis of classical fear conditioning in the anxiety disorders.

    Science.gov (United States)

    Duits, Puck; Cath, Danielle C; Lissek, Shmuel; Hox, Joop J; Hamm, Alfons O; Engelhard, Iris M; van den Hout, Marcel A; Baas, Joke M P

    2015-04-01

    The aim of the current study was twofold: (1) to systematically examine differences in fear conditioning between anxiety patients and healthy controls using meta-analytic methods, and (2) to examine the extent to which study characteristics may account for the variability in findings across studies. Forty-four studies (published between 1920 and 2013) with data on 963 anxiety disordered patients and 1,222 control subjects were obtained through PubMed and PsycINFO, as well as from a previous meta-analysis on fear conditioning (Lissek et al.). Results demonstrated robustly increased fear responses to conditioned safety cues (CS-) in anxiety patients compared to controls during acquisition. This effect may represent an impaired ability to inhibit fear in the presence of safety cues (CS-) and/or may signify an increased tendency in anxiety disordered patients to generalize fear responses to safe stimuli resembling the conditioned danger cue (CS+). In contrast, during extinction, patients show stronger fear responses to the CS+ and a trend toward increased discrimination learning (differentiation between the CS+ and CS-) compared to controls, indicating delayed and/or reduced extinction of fear in anxiety patients. Finally, none of the included study characteristics, such as the type of fear measure (subjective vs. psychophysiological index of fear), could account significantly for the variance in effect sizes across studies. Further research is needed to investigate the predictive value of fear extinction on treatment outcome, as extinction processes are thought to underlie the beneficial effects of exposure treatment in anxiety disorders.

  10. Early adversity disrupts the adult use of aversive prediction errors to reduce fear in uncertainty

    Directory of Open Access Journals (Sweden)

    Kristina M Wright

    2015-08-01

    Full Text Available Early life adversity increases anxiety in adult rodents and primates, and increases the risk for developing post-traumatic disorder (PTSD in humans. We hypothesized that early adversity impairs the use of learning signals – negative, aversive prediction errors – to reduce fear in uncertainty. To test this hypothesis, we gave adolescent rats a battery of adverse experiences then assessed adult performance in probabilistic Pavlovian fear conditioning and fear extinction. Rats were confronted with three cues associated with different probabilities of foot shock: one cue never predicted shock, another cue predicted shock with uncertainty, and a final cue always predicted shock. Control rats initially acquired fear to all cues, but rapidly reduced fear to the non-predictive and uncertain cues. Early adversity rats were slower to reduce fear to the non-predictive cue and never fully reduced fear to the uncertain cue. In extinction, all cues were presented in the absence of shock. Fear to the uncertain cue in discrimination, but not early adversity itself, predicted the reduction of fear in extinction. These results demonstrate early adversity impairs the use of negative, aversive prediction errors to reduce fear, especially in situations of uncertainty.

  11. Students' Vıews On Culture Of Fear In Educatıon System

    Directory of Open Access Journals (Sweden)

    Fatih YILMAZ

    2015-11-01

    Full Text Available The main purpose of this study is to determine students’ perceptions about concept of fear culture and to see what kind of fear culture do they have. This study which is conducted by qualitative research approach was carried out with 74 students studying in primary school in Diyarbakır, in 2014-2015 academic year. In order to determine study group, convenience sampling was used in this research. According to results of this study, perceptions of fear culture which students have, were grouped under three categories. The categories are “mental (inner fears”, “external fears” and “educational fears”. Results on most of mental fears showed that children were worried by uncertain source of feelings. But two of them ( fear of death and fear of God were appeared with learning in social life. External fears of students were found t include the acquired experience and the fears which were occure with indirect acquired information. The fear are frequently encountered in the school environment, were collected under the title "educational" fears and students said they were afraid of teachers, supervisors, bullying, expulsion from school and disciplinary punishment.

  12. Nicotine enhances contextual fear memory reconsolidation in rats.

    Science.gov (United States)

    Tian, Shaowen; Huang, Fulian; Li, Peng; Li, Zhenbang; Zhou, Shouhong; Deng, Haifeng; Yang, Yufeng

    2011-01-10

    There is increasing evidence that nicotine is involved in learning and memory. However, there remains no study that has explored the relationship between nicotine and memory reconsolidation. At present study, we tested the effects of nicotine on the reconsolidation of contextual fear memory in rats. Behavior procedure involved four training phases: habituation (Day 0), fear conditioning (Day 1), reactivation (Day 2) and test (Day 3). Rats were injected saline or nicotine (0.25, 0.5 and 1.0mg/kg) immediately after reactivation. Percent of time spent freezing was used to measure conditioned fear response. Results showed that compared with saline rats, rats with nicotine at 1.0mg/kg presented a significant increase of freezing response on Day 3. Nicotine at 1.0mg/kg was ineffective when injected 6h after reactivation. Further results showed that the enhancement of freezing response induced by nicotine at 1.0mg/kg was dependent on fear memory reconsolidation, and was not attributed to an enhancement of the nonspecific freezing response 24h after nicotine administration. The results suggest that nicotine administration immediately after reactivation enhances contextual fear memory reconsolidation. Our present finding extends previous research on the nicotinic effects on learning and memory.

  13. Acute immobilization stress following contextual fear conditioning reduces fear memory: timing is essential.

    Science.gov (United States)

    Uwaya, Akemi; Lee, Hyunjin; Park, Jonghyuk; Lee, Hosung; Muto, Junko; Nakajima, Sanae; Ohta, Shigeo; Mikami, Toshio

    2016-02-24

    Histone acetylation is regulated in response to stress and plays an important role in learning and memory. Chronic stress is known to deteriorate cognition, whereas acute stress facilitates memory formation. However, whether acute stress facilitates memory formation when it is applied after fear stimulation is not yet known. Therefore, this study aimed to investigate the effect of acute stress applied after fear training on memory formation, mRNA expression of brain-derived neurotrophic factor (BDNF), epigenetic regulation of BDNF expression, and corticosterone level in mice in vivo. Mice were subjected to acute immobilization stress for 30 min at 60 or 90 min after contextual fear conditioning training, and acetylation of histone 3 at lysine 14 (H3K14) and level of corticosterone were measured using western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. A freezing behavior test was performed 24 h after training, and mRNA expression of BDNF was measured using real-time polymerase chain reactions. Different groups of mice were used for each test. Freezing behavior significantly decreased with the down-regulation of BDNF mRNA expression caused by acute immobilization stress at 60 min after fear conditioning training owing to the reduction of H3K14 acetylation. However, BDNF mRNA expression and H3K14 acetylation were not reduced in animals subjected to immobilization stress at 90 min after the training. Further, the corticosterone level was significantly high in mice subjected to immobilization stress at 60 min after the training. Acute immobilization stress for 30 min at 60 min after fear conditioning training impaired memory formation and reduced BDNF mRNA expression and H3K14 acetylation in the hippocampus of mice owing to the high level of corticosterone.

  14. Blocking of orexin receptors in the paraventricular nucleus of the thalamus has no effect on the expression of conditioned fear in rats.

    Science.gov (United States)

    Dong, Xinwen; Li, Yonghui; Kirouac, Gilbert J

    2015-01-01

    The paraventricular nucleus of the thalamus (PVT) projects to the central nucleus of the amygdala and recent experimental evidence indicates a role for the PVT in conditioned fear. Furthermore, the PVT contains a high density of orexin receptors and fibers and acute injections of orexin antagonist into the PVT produce anxiolytic effects. The present study was done to determine if administration of a dual orexin receptor antagonist (DORA) in the region of the PVT interferes with the expression of conditioned fear in rats exposed to cued and contextual conditioning paradigms. Infusion of 0.5 μl of the DORA N-biphenyl-2-yl-1-[(1-methyl-1H-benzimidazol-2yl) sulfanyl] acetyl-L-prolinamide at a concentration of 0.1, 1.0, and 10 nmol had no effect on the freezing produced by exposing rats to an auditory cue or the context associated with foot shock. In contrast, the 1.0 and 10 nmol doses were anxiolytic in the social interaction test. The results of the present study do not support a role for orexin receptors in the PVT in the expression of learned fear. The finding that the 1.0 and 10 nmol doses of DORA in the PVT region were anxiolytic in the social interaction test is consistent with other studies indicating a role for orexins in the PVT in anxiety-like behaviors.

  15. Improvement in γ-hydroxybutyrate-induced contextual fear memory deficit by systemic administration of NCS-382

    Science.gov (United States)

    Ishiwari, Keita

    2016-01-01

    Low, nonsedative doses of γ-hydroxybutyric acid (GHB) produce short-term anterograde amnesia in humans and memory impairments in experimental animals. We have previously shown that acute systemic treatment of GHB in adolescent female rats impairs the acquisition, but not the expression, of contextual fear memory while sparing both the acquisition and the expression of auditory cued fear memory. In the brain, GHB binds to specific GHB-binding sites as well as to γ-aminobutyric acid type B (GABAB) receptors. Although many of the behavioral effects of GHB at high doses have been attributed to its effects on the GABAB receptor, it is unclear which receptor mediates its relatively low-dose memory-impairing effects. The present study examined the ability of the putative GHB receptor antagonist NCS-382 to block the disrupting effects of GHB on fear memory in adolescent rat. Groups of rats received either a single dose of NCS-382 (3–10 mg/kg, intraperitoneally) or vehicle, followed by an injection of either GHB (100 mg/kg, intraperitoneally) or saline. All rats were trained in the fear paradigm, and tested for contextual fear memory and auditory cued fear memory. NCS-382 dose-dependently reversed deficits in the acquisition of contextual fear memory induced by GHB in adolescent rats, with 5 mg/kg of NCS-382 maximally increasing freezing to the context compared with the group administered GHB alone. When animals were tested for cued fear memory, treatment groups did not differ in freezing responses to the tone. These results suggest that low-dose amnesic effects of GHB are mediated by GHB receptors. PMID:27105320

  16. Neural Correlates of Fear in the Periaqueductal Gray.

    Science.gov (United States)

    Watson, Thomas C; Cerminara, Nadia L; Lumb, Bridget M; Apps, Richard

    2016-12-14

    The dorsal and ventral periaqueductal gray (dPAG and vPAG, respectively) are embedded in distinct survival networks that coordinate, respectively, innate and conditioned fear-evoked freezing. However, the information encoded by the PAG during these survival behaviors is poorly understood. Recordings in the dPAG and vPAG in rats revealed differences in neuronal activity associated with the two behaviors. During innate fear, neuronal responses were significantly greater in the dPAG compared with the vPAG. After associative fear conditioning and during early extinction (EE), when freezing was maximal, a field potential was evoked in the PAG by the auditory fear conditioned stimulus (CS). With repeated presentations of the unreinforced CS, animals displayed progressively less freezing accompanied by a reduction in event-related field potential amplitude. During EE, the majority of dPAG and vPAG units increased their firing frequency, but spike-triggered averaging showed that only ventral activity during the presentation of the CS was significantly coupled to EMG-related freezing behavior. This PAG-EMG coupling was only present for the onset of freezing activity during the CS in EE. During late extinction, a subpopulation of units in the dPAG and vPAG continued to show CS-evoked responses; that is, they were extinction resistant. Overall, these findings support roles for the dPAG in innate and conditioned fear and for the vPAG in initiating but not maintaining the drive to muscles to generate conditioned freezing. The existence of extinction-susceptible and extinction-resistant cells also suggests that the PAG plays a role in encoding fear memories. The periaqueductal gray (PAG) orchestrates survival behaviors, with the dorsal (dPAG) and ventral (vPAG) PAG concerned respectively with innate and learnt fear responses. We recorded neural activity from dPAG and vPAG in rats during the expression of innate fear and extinction of learned freezing. Cells in dPAG responded

  17. Neural Correlates of Fear in the Periaqueductal Gray

    Science.gov (United States)

    Cerminara, Nadia L.; Lumb, Bridget M.; Apps, Richard

    2016-01-01

    The dorsal and ventral periaqueductal gray (dPAG and vPAG, respectively) are embedded in distinct survival networks that coordinate, respectively, innate and conditioned fear-evoked freezing. However, the information encoded by the PAG during these survival behaviors is poorly understood. Recordings in the dPAG and vPAG in rats revealed differences in neuronal activity associated with the two behaviors. During innate fear, neuronal responses were significantly greater in the dPAG compared with the vPAG. After associative fear conditioning and during early extinction (EE), when freezing was maximal, a field potential was evoked in the PAG by the auditory fear conditioned stimulus (CS). With repeated presentations of the unreinforced CS, animals displayed progressively less freezing accompanied by a reduction in event-related field potential amplitude. During EE, the majority of dPAG and vPAG units increased their firing frequency, but spike-triggered averaging showed that only ventral activity during the presentation of the CS was significantly coupled to EMG-related freezing behavior. This PAG–EMG coupling was only present for the onset of freezing activity during the CS in EE. During late extinction, a subpopulation of units in the dPAG and vPAG continued to show CS-evoked responses; that is, they were extinction resistant. Overall, these findings support roles for the dPAG in innate and conditioned fear and for the vPAG in initiating but not maintaining the drive to muscles to generate conditioned freezing. The existence of extinction-susceptible and extinction-resistant cells also suggests that the PAG plays a role in encoding fear memories. SIGNIFICANCE STATEMENT The periaqueductal gray (PAG) orchestrates survival behaviors, with the dorsal (dPAG) and ventral (vPAG) PAG concerned respectively with innate and learnt fear responses. We recorded neural activity from dPAG and vPAG in rats during the expression of innate fear and extinction of learned freezing

  18. Fear and Loathing in the Air: Combat Fear and Stress in the Air Force

    Science.gov (United States)

    2005-06-01

    such as phobic fear of flying and acquired fear of flying to describe fear and anxiety related to aviation in a non-combat environment, but, for...describe three terms that relate specifically to anxiety and flying: manifestations of apprehension (MOA), fear of flying (FOF), and phobic fear of...fear and stress. Background In addition to its more obvious physical destruction, combat has also produced casualties of the mind. Fear, anxiety

  19. The role of sleep and sleep deprivation in consolidating fear memories.

    Science.gov (United States)

    Menz, M M; Rihm, J S; Salari, N; Born, J; Kalisch, R; Pape, H C; Marshall, L; Büchel, C

    2013-07-15

    Sleep, in particular REM sleep, has been shown to improve the consolidation of emotional memories. Here, we investigated the role of sleep and sleep deprivation on the consolidation of fear memories and underlying neuronal mechanisms. We employed a Pavlovian fear conditioning paradigm either followed by a night of polysomnographically monitored sleep, or wakefulness in forty healthy participants. Recall of learned fear was better after sleep, as indicated by stronger explicitly perceived anxiety and autonomous nervous responses. These effects were positively correlated with the preceding time spent in REM sleep and paralleled by activation of the basolateral amygdala. These findings suggest REM sleep-associated consolidation of fear memory in the human amygdala. In view of the critical participation of fear learning mechanisms in the etiology of anxiety and post-traumatic stress disorder, deprivation of REM sleep after exposure to distressing events is an interesting target for further investigation.

  20. METUS REVEALED. HOBBES ON FEAR

    OpenAIRE

    RAFFAELLA SANTI

    2011-01-01

    Fear is a universal emotion, experienced by everybody. When it becomes collective and social, it can enter into the processes of political imagination, being used for political purposes. This article is a brief examination of the meanings and functions of fear(s) in Hobbes’s thought. Some of his views may be ‘historically’ related to his own time, the Seventeenth Century, and others may be linked and confined to his own theory. However, his reflections on the importance of the perturbatio ani...

  1. Executive functions deficits impair extinction of generalization of fear of movement-related pain.

    Science.gov (United States)

    Niederstrasser, N G; Meulders, A; Meulders, M; Struyf, D; Vlaeyen, J W

    2017-05-01

    Generalization of fear of movement-related pain across novel but similar movements can lead to fear responses to movements that are actually not associated with pain. The peak-shift effect describes a phenomenon whereby particular novel movements elicit even greater fear responses than the original pain-provoking movement (CS+), because they represent a more extreme version of the CS+. There is great variance in the propensity to generalize as well as the speed of extinction learning when these novel movements are not followed by pain. It can be argued that this variance may be associated with executive function capacity, as individuals may be unable to intentionally inhibit fear responses. This study examined whether executive function capacity contributes to generalization and extinction of generalization as well as peak-shift of conditioned fear of movement-related pain and expectancy. Healthy participants performed a proprioceptive fear conditioning task. Executive function tests assessing updating, switching, and inhibition were used to predict changes in (extinction of) fear of movement-related pain and pain expectancy generalization. Low inhibitory capacity was associated with slower extinction of generalized fear of movement-related pain and pain expectancy. Evidence was found in favor of an area-shift, rather than a peak-shift effect, which implies that the peak conditioned fear response extended to, but did not shift to a novel stimulus. Participants with low inhibitory capacity may have difficulties withholding fear responses, leading to a slower decrease of generalized fear over time. The findings may be relevant to inform treatments. Low inhibitory capacity is not associated with slower generalization, but extinction of fear generalization. Fear elicited by a novel safe movement, situated outside the CS+/- continuum on the CS+ side, can be as strong as to the original stimulus predicting the pain-onset. © 2017 European Pain Federation - EFIC®.

  2. Genes, Fears, Phobias, and Phobic Disorders.

    Science.gov (United States)

    Carey, Gregory

    1990-01-01

    Surveyed literature on genetics and fears and phobias to determine what might be heritable. Found, for ordinary fears among the general population, heredity appears to contribute mainly to a trait of general fearfulness and may be a major reason for the strong intercorrelation among different fears. Found evidence of little environmental…

  3. Unusual Fears in Children with Autism

    Science.gov (United States)

    Mayes, Susan Dickerson; Calhoun, Susan L.; Aggarwal, Richa; Baker, Courtney; Mathapati, Santosh; Molitoris, Sarah; Mayes, Rebecca D.

    2013-01-01

    Unusual fears have long been recognized as common in autism, but little research exists. In our sample of 1033 children with autism, unusual fears were reported by parents of 421 (41%) of the children, representing 92 different fears. Many additional children had common childhood fears (e.g., dogs, bugs, and the dark). More than half of children…

  4. Scared chaste? Fear-based educational curricula.

    Science.gov (United States)

    Kantor, L M

    1993-01-01

    The Far Right has exerted influence on sexuality education programs in public schools to use curriculum that is fear based and promotes only an abstinence technique for expression of premarital adolescent sexuality. Other abstinence programs do exist such as the Grady Memorial Hospital's Postponing Sexual Involvement that do not rely on scare tactics. A listing of programs and addresses are provided for those programs that have a goal of abstinence but do not rely on fear to teach. The account of a North Carolina school board which effectively prevented fear-based education from replacing responsible education is presented. The thrust of this article is to provide a detailed critical examination of fear-based curriculum in the following published documents: Sex Respect by Coleen Mast, Facing Reality by James Coughlin, Me and My World and My Future by LeAnna Benn, Sexuality and Commitment and Family by Steve Potter, Family Accountability in Communicating Teen Sexuality by Rose Fuller, Learning About Myself and Others by Anne Nesbit, An Alternative National Curriculum on Responsibility by Terrance Olson and Christopher Wallace, Families and Decision Making and Human Development by Terrance Olson et al., Responsible Sexual Values Program by April Thoms, The Art of Loving Well by Ronald Goldman et al., and Free Teens by Richard Panzer. The common features of the fear-based curriculum reviewed are as follows: 1) scare tactics, 2) contraceptive method information omissions, 3) exclusively negative consequences of sexual behavior images, 4) misinformation on medical issues, 5) sexual orientation omissions or distortions, 6) distortions of people with disabilities, 7) insensitivity to race or class, 8) religious bias, and 9) omissions in diversity of family structures. This review is part of a Ford Foundation grant to establish a Community Advocacy Project which documents community battles on sexuality education nationally, creating a Community Action Kit to teach citizens

  5. Fear, Fiction, and the Adolescent.

    Science.gov (United States)

    Grixti, Joe

    1982-01-01

    The popularity of horror fiction among adolescents is discussed in terms of the use of grammar for social interaction, personal development, and emotional therapy during a developmental stage characterized by fear and emotional upheaval. (MSE)

  6. A Cu-amyloid β complex activating Fenton chemistry in Alzheimer's disease: Learning with multiple first-principles simulations

    Science.gov (United States)

    La Penna, Giovanni; Hureau, Christelle; Faller, Peter

    2014-10-01

    Amyloid β peptides form complexes with copper, both in vitro and in vivo, relatively soluble in water as oligomers and active as catalysts for oxidation of organic substrates by hydrogen peroxide, a species always present in cells and in their aerobic environment. All these species are present in the synapse, thus making a connection between the amyloid cascade hypothesis and the oxidative damages by reactive oxygen species in neurons, when pathological dishomeostasis of amyloid peptides and metal ions occur. In order to understand the structural features of these toxic complexes, we built several models of Cu-Aβ peptides in monomeric and dimeric forms and we found, performing multiple first-principles molecular dynamics simulations, that Cu-induced dimers are more active than monomers in converting hydrogen peroxide into aggressive hydroxyl radicals.

  7. [Pain and fear in animals].

    Science.gov (United States)

    Loeffler, K

    1993-02-01

    Pain and fear are feelings of reluctance, which result in a behaviour of avoidance. They are protective mechanisms and are only partly approachable to the quantification with natural scientific methods. It will pointed to the central role of the diencephalon, limbic system and the cerebral cortex concerning the processing and valuation of mental state. The recognition of clinical symptoms and precise behavioural observations are an essential aid to assess the state of pain and fear in animals.

  8. Fear and aggression in dogs

    Directory of Open Access Journals (Sweden)

    Uzunova Krasimira

    2011-11-01

    Full Text Available In this review, the concepts of fear, phobia and aggression in dogs were precisely defined, as well as their underlying causes. The behavioural activities specific for these conditions were indicated. The accompanying symptoms were consistently explained. The causes that the development of pathological fear leads to aggression in dogs as well as the ex various therapy options depending on the clinical signs were presented.

  9. Subjective fear, interference by threat, and fear associations independently predict fear-related behavior in children

    NARCIS (Netherlands)

    Klein, A.M.; Kleinherenbrink, A.V.; Simons, C.; de Gier, E.; Klein, S.; Allart, E.; Bögels, S.M.; Becker, E.S.; Rinck, M.

    2012-01-01

    Background and objectives: Several information-processing models highlight the independent roles of controlled and automatic processes in explaining fearful behavior. Therefore, we investigated whether direct measures of controlled processes and indirect measures of automatic processes predict uniqu

  10. Fear Generalization and Anxiety: Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Dunsmoor, Joseph E; Paz, Rony

    2015-09-01

    Fear can be an adaptive emotion that helps defend against potential danger. Classical conditioning models elegantly describe how animals learn which stimuli in the environment signal danger, but understanding how this learning is generalized to other stimuli that resemble aspects of a learned threat remains a challenge. Critically, the overgeneralization of fear to harmless stimuli or situations is a burden to daily life and characteristic of posttraumatic stress disorder and other anxiety disorders. Here, we review emerging evidence on behavioral and neural mechanisms of generalization of emotional learning with the goal of encouraging further research on generalization in anxiety disorders. We begin by placing research on fear generalization in a rich historical context of stimulus generalization dating back to Pavlov, which lays the foundation for theoretical and experimental approaches used today. We then transition to contemporary behavioral and neurobiological research on generalization of emotional learning in humans and nonhuman animals and discuss the factors that promote generalization on the one hand from discrimination on the other hand.

  11. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    Science.gov (United States)

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  12. Neuronal Correlates of Fear Conditioning in the Bed Nucleus of the Stria Terminalis

    Science.gov (United States)

    Haufler, Darrell; Nagy, Frank Z.; Pare, Denis

    2013-01-01

    Lesion and inactivation studies indicate that the central amygdala (CeA) participates in the expression of cued and contextual fear, whereas the bed nucleus of the stria terminalis (BNST) is only involved in the latter. The basis for this functional dissociation is unclear because CeA and BNST form similar connections with the amygdala and…

  13. Effects of Cortisol on Reconsolidation of Reactivated Fear Memories.

    Science.gov (United States)

    Drexler, Shira Meir; Merz, Christian J; Hamacher-Dang, Tanja C; Tegenthoff, Martin; Wolf, Oliver T

    2015-12-01

    The return of conditioned fear after successful extinction (eg, following exposure therapy) is a significant problem in the treatment of anxiety disorders and posttraumatic stress disorder (PTSD). Targeting the reconsolidation of fear memories may allow a more lasting effect as it intervenes with the original memory trace. Indeed, several pharmacological agents and behavioral interventions have been shown to alter (enhance, impair, or otherwise update) the reconsolidation of reactivated memories of different types. Cortisol is a stress hormone and a potent modulator of learning and memory, yet its effects on fear memory reconsolidation are unclear. To investigate whether cortisol intervenes with the reconsolidation of fear memories in healthy males and how specific this effect might be, we built a 3-day reconsolidation design with skin conductance response (SCR) as a measure of conditioned fear: Fear acquisition on day 1; reactivation/no-reactivation of one conditioned stimulus and pharmacological intervention on day 2; extinction learning followed by reinstatement and reinstatement test on day 3. The groups differed only in the experimental manipulation on day 2: Reactivation+Cortisol Group, Reactivation+Placebo Group, or No-reactivation+Cortisol Group. Our results revealed an enhancing effect of cortisol on reconsolidation of the reactivated memory. The effect was highly specific, strengthening only the memory of the reactivated conditioned stimulus and not the non-reactivated one. Our findings are in line with previous findings showing an enhancing effect of behavioral stress on the reconsolidation of other types of memories. These results have implications for the understanding and treatment of anxiety disorders and PTSD.

  14. The effect of morphine on fear extinction in rats.

    Science.gov (United States)

    Morris, M D; Gebhart, G F

    1978-05-31

    Rats were trained on an appetitive discretetrial discriminated-punishment task in which they learned to suppress responding when an intense flashing light predicting punishment was present and to respond rapidly on trials when the flashing light was absent. Once animals were performing discriminatively, 0.75, 3.0, or 6.0 mg/kg of morphine (base) was administered and a fear extinction session consisting of 60 nonshocked presentations of the flashing light was given. Two saline control groups, one that received fear extinction and one that did not, were also included in the experiment. On the day following fear extinction, all rats were tested in the undrugged state on the discriminated punishment problem, but without shock. The rats receiving 3.0 and 6.0 mg/kg of morphine before the fear extinction session were suppressed by the flashing light more than the saline extinction group or the 0.75 mg/kg morphine treatment group. Moreover, the two higher dose morphine groups were suppressed as readily as the saline group that received no fear extinction. These results are attributed to the antiemotionality effects of morphine.

  15. Teens that fear screams: A comparison of fear conditioning, extinction, and reinstatement in adolescents and adults.

    Science.gov (United States)

    Den, Miriam Liora; Graham, Bronwyn M; Newall, Carol; Richardson, Rick

    2015-11-01

    This study investigated differences between adolescents and adults on fear conditioning, extinction, and reinstatement (i.e., the recovery of conditioned fear following re-exposure to the unconditioned stimulus [US] post-extinction). Participants underwent differential conditioning (i.e., the Screaming Lady) where one neutral face (CS+) was followed by the same face expressing fear and a loud scream (US) while another neutral face (CS-) remained neutral. Extinction involved non-reinforced presentations of both CSs, after which participants were reinstated (2xUSs) or not. On two self-report measures, both ages showed conditioning, good extinction learning and retention, and reinstatement-induced relapse. However, only adolescents showed conditioning, extinction, and reinstatement on the eye tracking measure; relapse on this measure could not be assessed in adults given they did not show initial conditioning. Lastly, higher levels of depression predicted stronger conditioning and weaker extinction in adolescents only. These findings are discussed in terms of their implications for adolescent anxiety disorders.

  16. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  17. Dishabituation processes in height fear and dental fear: an indirect test of the non-associative model of fear acquisition.

    Science.gov (United States)

    Poulton, R; Waldie, K E; Craske, M G; Menzies, R G; McGee, R

    2000-09-01

    The fear dishabituation hypothesis described in the non-associative model of fear acquisition was tested in a longitudinal birth cohort study. Results were consistent with height fear and phobia dishabituation. That is, 're-emergence' of a fear of heights occurred between age 11 and 18 years among individuals who reported higher levels of non-specific stress at age 15. Interestingly, there was no evidence for dental fear dishabituation--a finding consistent with the non-associative model of fear acquisition. Strengths and weaknesses of the study were considered and the results discussed in relation to laboratory-based findings on (dis)habituation.

  18. Functional imaging of stimulus convergence in amygdalar neurons during Pavlovian fear conditioning.

    Directory of Open Access Journals (Sweden)

    Sabiha K Barot

    Full Text Available BACKGROUND: Associative conditioning is a ubiquitous form of learning throughout the animal kingdom and fear conditioning is one of the most widely researched models for studying its neurobiological basis. Fear conditioning is also considered a model system for understanding phobias and anxiety disorders. A fundamental issue in fear conditioning regards the existence and location of neurons in the brain that receive convergent information about the conditioned stimulus (CS and unconditioned stimulus (US during the acquisition of conditioned fear memory. Convergent activation of neurons is generally viewed as a key event for fear learning, yet there has been almost no direct evidence of this critical event in the mammalian brain. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used Arc cellular compartmental analysis of temporal gene transcription by fluorescence in situ hybridization (catFISH to identify neurons activated during single trial contextual fear conditioning in rats. To conform to temporal requirements of catFISH analysis we used a novel delayed contextual fear conditioning protocol which yields significant single- trial fear conditioning with temporal parameters amenable to catFISH analysis. Analysis yielded clear evidence that a population of BLA neurons receives convergent CS and US information at the time of the learning, that this only occurs when the CS-US arrangement is supportive of the learning, and that this process requires N-methyl-D-aspartate receptor activation. In contrast, CS-US convergence was not observed in dorsal hippocampus. CONCLUSIONS/SIGNIFICANCE: Based on the pattern of Arc activation seen in conditioning and control groups, we propose that a key requirement for CS-US convergence onto BLA neurons is the potentiation of US responding by prior exposure to a novel CS. Our results also support the view that contextual fear memories are encoded in the amygdala and that the role of dorsal hippocampus is to process and

  19. Amygdala kindling disrupts trace and delay fear conditioning with parallel changes in Fos protein expression throughout the limbic brain.

    Science.gov (United States)

    Botterill, J J; Fournier, N M; Guskjolen, A J; Lussier, A L; Marks, W N; Kalynchuk, L E

    2014-04-18

    Amygdala kindling is well known to increase unconditioned fear and anxiety. However, relatively little is known about whether this form of kindling causes functional changes within the neural circuitry that mediates fear learning and the retrieval of fear memories. To address this issue, we examined the effect of short- (i.e., 30 stimulations) and long-term (i.e., 99 stimulations) amygdala kindling in rats on trace and delay fear conditioning, which are aversive learning tasks that rely predominantly on the hippocampus and amygdala, respectively. After memory retrieval, we analyzed the pattern of neural activity with Fos, the protein product of the immediate early gene c-fos. We found that kindling had no effect on acquisition of the trace fear conditioning task but it did selectively impair retrieval of this fear memory. In contrast, kindling disrupted both acquisition and retrieval of fear memory in the delay fear conditioning task. We also found that kindling-induced impairments in memory retrieval were accompanied by decreased Fos expression in several subregions of the hippocampus, parahippocampus, and amygdala. Interestingly, decreased freezing in the trace conditioning task was significantly correlated with dampened Fos expression in hippocampal and parahippocampal regions whereas decreased freezing in the delay conditioning task was significantly correlated with dampened Fos expression in hippocampal, parahippocampal, and amygdaloid circuits. Overall, these results suggest that amygdala kindling promotes functional changes in brain regions involved in specific types of fear learning and memory. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice.

    Directory of Open Access Journals (Sweden)

    Mark P DeAndrade

    Full Text Available Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS, a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.

  1. A window of vulnerability: impaired fear extinction in adolescence.

    Science.gov (United States)

    Baker, Kathryn D; Den, Miriam L; Graham, Bronwyn M; Richardson, Rick

    2014-09-01

    There have been significant advances made towards understanding the processes mediating extinction of learned fear. However, despite being of clear theoretical and clinical significance, very few studies have examined fear extinction in adolescence, which is often described as a developmental window of vulnerability to psychological disorders. This paper reviews the relatively small body of research examining fear extinction in adolescence. A prominent finding of this work is that adolescents, both humans and rodents, exhibit a marked impairment in extinction relative to both younger (e.g., juvenile) and older (e.g., adult) groups. We then review some potential mechanisms that could produce the striking extinction deficit observed in adolescence. For example, one neurobiological candidate mechanism for impaired extinction in adolescence involves changes in the functional connectivity within the fear extinction circuit, particularly between prefrontal cortical regions and the amygdala. In addition, we review research on emotion regulation and attention processes that suggests that developmental changes in attention bias to threatening cues may be a cognitive mechanism that mediates age-related differences in extinction learning. We also examine how a differential reaction to chronic stress in adolescence impacts upon extinction retention during adolescence as well as in later life. Finally, we consider the findings of several studies illustrating promising approaches that overcome the typically-observed extinction impairments in adolescent rodents and that could be translated to human adolescents. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Differential Effects of Controllable Stress Exposure on Subsequent Extinction Learning in Adult Rats.

    Science.gov (United States)

    Hadad-Ophir, Osnat; Brande-Eilat, Noa; Richter-Levin, Gal

    2015-01-01

    Deficits in fear extinction are thought to be related to various anxiety disorders. While failure to extinguish conditioned fear may result in pathological anxiety levels, the ability to quickly and efficiently attenuate learned fear through extinction processes can be extremely beneficial for the individual. One of the factors that may affect the efficiency of the extinction process is prior experience of stressful situations. In the current study, we examined whether exposure to controllable stress, which is suggested to induce stress resilience, can affect subsequent fear extinction. Here, following prolonged two-way shuttle (TWS) avoidance training and a validation of acquired stress controllability, adult rats underwent either cued or contextual fear-conditioning (FC), followed by an extinction session. We further evaluated long lasting alterations of GABAergic targets in the medial pre-frontal cortex (mPFC), as these were implicated in FC and extinction and stress controllability. In cued, but not in contextual fear extinction, within-session extinction was enhanced following controllable stress compared to a control group. Interestingly, impaired extinction recall was detected in both extinction types following the stress procedure. Additionally, stress controllability-dependent alterations in GABAergic markers expression in infralimbic (IL), but not prelimbic (PL) cortex, were detected. These alterations are proposed to be related to the within-session effect, but not the recall impairment. The results emphasize the contribution of prior experience on coping with subsequent stressful experiences. Moreover, the results emphasize that exposure to controllable stress does not generally facilitate future stress coping as previously claimed, but its effects are dependent on specific features of the events taking place.

  3. Spatial attention effects of disgusted and fearful faces.

    Directory of Open Access Journals (Sweden)

    Dandan Zhang

    Full Text Available Effective processing of threat-related stimuli is of significant evolutionary advantage. Given the intricate relationship between attention and the neural processing of threat-related emotions, this study manipulated attention allocation and emotional categories of threat-related stimuli as independent factors and investigated the time course of spatial-attention-modulated processing of disgusting and fearful stimuli. The participants were instructed to direct their attention either to the two vertical or to the two horizontal locations, where two faces and two houses would be presented. The task was to respond regarding the physical identity of the two stimuli at cued locations. Event-related potentials (ERP evidences were found to support a two-stage model of attention-modulated processing of threat-related emotions. In the early processing stage, disgusted faces evoked larger P1 component at right occipital region despite the attention allocation while larger N170 component was elicited by fearful faces at right occipito-temporal region only when participants attended to houses. In the late processing stage, the amplitudes of the parietal P3 component enhanced for both disgusted and fearful facial expressions only when the attention was focused on faces. According to the results, we propose that the temporal dynamics of the emotion-by-attention interaction consist of two stages. The early stage is characterized by quick and specialized neural encoding of disgusting and fearful stimuli irrespective of voluntary attention allocation, indicating an automatic detection and perception of threat-related emotions. The late stage is represented by attention-gated separation between threat-related stimuli and neutral stimuli; the similar ERP pattern evoked by disgusted and fearful faces suggests a more generalized processing of threat-related emotions via top-down attentional modulation, based on which the defensive behavior in response to threat

  4. Spatial attention effects of disgusted and fearful faces.

    Science.gov (United States)

    Zhang, Dandan; Liu, Yunzhe; Zhou, Chenglin; Chen, Yuming; Luo, Yuejia

    2014-01-01

    Effective processing of threat-related stimuli is of significant evolutionary advantage. Given the intricate relationship between attention and the neural processing of threat-related emotions, this study manipulated attention allocation and emotional categories of threat-related stimuli as independent factors and investigated the time course of spatial-attention-modulated processing of disgusting and fearful stimuli. The participants were instructed to direct their attention either to the two vertical or to the two horizontal locations, where two faces and two houses would be presented. The task was to respond regarding the physical identity of the two stimuli at cued locations. Event-related potentials (ERP) evidences were found to support a two-stage model of attention-modulated processing of threat-related emotions. In the early processing stage, disgusted faces evoked larger P1 component at right occipital region despite the attention allocation while larger N170 component was elicited by fearful faces at right occipito-temporal region only when participants attended to houses. In the late processing stage, the amplitudes of the parietal P3 component enhanced for both disgusted and fearful facial expressions only when the attention was focused on faces. According to the results, we propose that the temporal dynamics of the emotion-by-attention interaction consist of two stages. The early stage is characterized by quick and specialized neural encoding of disgusting and fearful stimuli irrespective of voluntary attention allocation, indicating an automatic detection and perception of threat-related emotions. The late stage is represented by attention-gated separation between threat-related stimuli and neutral stimuli; the similar ERP pattern evoked by disgusted and fearful faces suggests a more generalized processing of threat-related emotions via top-down attentional modulation, based on which the defensive behavior in response to threat events is largely

  5. Rapid visuomotor processing of phobic images in spider- and snake-fearful participants.

    Science.gov (United States)

    Haberkamp, Anke; Schmidt, Filipp; Schmidt, Thomas

    2013-10-01

    This study investigates enhanced visuomotor processing of phobic compared to fear-relevant and neutral stimuli. We used a response priming design to measure rapid, automatic motor activation by natural images (spiders, snakes, mushrooms, and flowers) in spider-fearful, snake-fearful, and control participants. We found strong priming effects in all tasks and conditions; however, results showed marked differences between groups. Most importantly, in the group of spider-fearful individuals, spider pictures had a strong and specific influence on even the fastest motor responses: Phobic primes entailed the largest priming effects, and phobic targets accelerated responses, both effects indicating speeded response activation by phobic images. In snake-fearful participants, this processing enhancement for phobic material was less pronounced and extended to both snake and spider images. We conclude that spider phobia leads to enhanced processing capacity for phobic images. We argue that this is enabled by long-term perceptual learning processes.

  6. Pathological fear of cot death.

    Science.gov (United States)

    Weightman, H; Dalal, B M; Brockington, I F

    1998-01-01

    Cot death (sudden infant death syndrome) is one of the most common causes of death in the first year of life. Four cases with a pathological fear of cot death are presented. All the patients were depressed and in 2 cases the fear of cot death had an obsessional quality. In all cases there were complications during pregnancy (miscarriage, threatened abortion, recurrent vomiting in last trimester). In 1 case, the patient knew 3 mothers who had suffered cot deaths; in another, the infant was gravely ill in the neonatal period. Pathological fear of cot death can be recognised by the presence of two central features - overvigilance and excessive nocturnal checking of the baby's breathing. Therapeutic interventions are discussed.

  7. Does persisting fear sustain catatonia?

    Science.gov (United States)

    Fink, M; Shorter, E

    2017-11-01

    To examine the psychological substrate of catatonia. Reviewing the historical descriptions and explanations of catatonic behaviours by clinicians from its delineation in the 19th century to the present. Patients with catatonia are often haunted by fears and terrors; this has not been widely appreciated, and certainly was lost from view in the days when catatonia was considered a subtype of schizophrenia. The report contributes to resolving a major question in catatonia: is the mind in stupor inactive, as the blank state that we picture in anesthetized patients, or is the mind active, so preoccupied as to exclude all other influences. Persistent fear occupies the mind of catatonic patients. The signs of catatonia are adaptations to persistent fear, akin to tonic immobilization. The relief afforded by sedation supports this interpretation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Could stress contribute to pain-related fear in chronic pain?

    Directory of Open Access Journals (Sweden)

    Sigrid eElsenbruch

    2015-12-01

    Full Text Available Learning to predict pain based on internal or external cues constitutes a fundamental and highly adaptive process aimed at self-protection. Pain-related fear is an essential component of this response, which is formed by associative and instrumental learning processes. In chronic pain, pain-related fear may become maladaptive, drive avoidance behaviors and contribute to symptom chronicity. Pavlovian fear conditioning has proven fruitful to elucidate associative learning and extinction involving aversive stimuli, including pain, but studies in chronic pain remain scarce. Stress demonstrably exerts differential effects on emotional learning and memory processes, but this has not been transferred to pain-related fear. Within this perspective, we propose that stress could contribute to impaired pain-related associative learning and extinction processes and call for interdisciplinary research. Specifically, we suggest to test the hypotheses that (1 extinction-related phenomena inducing a re-activation of maladaptive pain-related fear (e.g., reinstatement, renewal likely occur in everyday life of chronic pain patients and may alter pain processing, impair perceptual discrimination and favour overgeneralization; (2 acute stress prior to or during acquisition of pain-related fear may facilitate the formation and/or consolidation of pain-related fear memories, (3 stress during or after extinction may impair extinction efficacy resulting in greater reinstatement or context-dependent renewal of pain-related fear; and (4 these effects could be amplified by chronic stress due to early adversity and/or psychiatric comorbidity such as depression or anxiety in patients with chronic pain.

  9. D-Cycloserine Does Not Facilitate Fear Extinction by Reducing Conditioned Stimulus Processing or Promoting Conditioned Inhibition to Contextual Cues

    Science.gov (United States)

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2012-01-01

    The NMDA receptor partial agonist d-cycloserine (DCS) enhances the extinction of learned fear in rats and exposure therapy in humans with anxiety disorders. Despite these benefits, little is known about the mechanisms by which DCS promotes the loss of fear. The present study examined whether DCS augments extinction retention (1) through reductions…

  10. Contextual-Specificity of Short-Delay Extinction in Humans: Renewal of Fear-Potentiated Startle in a Virtual Environment

    Science.gov (United States)

    Alvarez, Ruben P.; Johnson, Linda; Grillon, Christian

    2007-01-01

    A recent fear-potentiated startle study in rodents suggested that extinction was not context dependent when extinction was conducted after a short delay following acquisition, suggesting that extinction can lead to erasure of fear learning in some circumstances. The main objective of this study was to attempt to replicate these findings in humans…

  11. The Role of the Medial Prefrontal Cortex-Amygdala Circuit in Stress Effects on the Extinction of Fear

    Directory of Open Access Journals (Sweden)

    Irit Akirav

    2007-01-01

    Full Text Available Stress exposure, depending on its intensity and duration, affects cognition and learning in an adaptive or maladaptive manner. Studies addressing the effects of stress on cognitive processes have mainly focused on conditioned fear, since it is suggested that fear-motivated learning lies at the root of affective and anxiety disorders. Inhibition of fear-motivated response can be accomplished by experimental extinction of the fearful response to the fear-inducing stimulus. Converging evidence indicates that extinction of fear memory requires plasticity in both the medial prefrontal cortex and the amygdala. These brain areas are also deeply involved in mediating the effects of exposure to stress on memory. Moreover, extensive evidence indicates that gamma-aminobutyric acid (GABA transmission plays a primary role in the modulation of behavioral sequelae resulting from a stressful experience, and may also partially mediate inhibitory learning during extinction. In this review, we present evidence that exposure to a stressful experience may impair fear extinction and the possible involvement of the GABA system. Impairment of fear extinction learning is particularly important as it may predispose some individuals to the development of posttraumatic stress disorder. We further discuss a possible dysfunction in the medial prefrontal cortex-amygdala circuit following a stressful experience that may explain the impaired extinction caused by exposure to a stressor.

  12. Role of the Ventral Medial Prefrontal Cortex in Mediating Behavioral Control-Induced Reduction of Later Conditioned Fear

    Science.gov (United States)

    Baratta, Michael V.; Lucero, Thomas R.; Amat, Jose; Watkins, Linda R.; Maier, Steven F.

    2008-01-01

    A prior experience of behavioral control over a stressor interferes with subsequent Pavlovian fear conditioning, and this effect is dependent on the activation of the ventral medial prefrontal cortex (mPFCv) at the time of the initial experience with control. It is unknown whether mPFCv activity is necessary during fear learning and/or testing for…

  13. The neuronal PAS domain protein 4 (Npas4 is required for new and reactivated fear memories.

    Directory of Open Access Journals (Sweden)

    Jonathan E Ploski

    Full Text Available The Neuronal PAS domain protein 4 (Npas4 is a neuronal activity-dependent immediate early gene that has recently been identified as a transcription factor which regulates the transcription of genes that control inhibitory synapse development and synaptic plasticity. The role Npas4 in learning and memory, however, is currently unknown. Here, we systematically examine the role of Npas4 in auditory Pavlovian fear conditioning, an amygdala-dependent form of emotional learning. In our first series of experiments, we show that Npas4 mRNA and protein are regulated in the rat lateral nucleus of the amygdala (LA in a learning-dependent manner. Further, knockdown of Npas4 protein in the LA via adeno-associated viral (AAV mediated gene delivery of RNAi was observed to impair fear memory formation, while innate fear and the expression of fear memory were not affected. In our second series of experiments, we show that Npas4 protein is regulated in the LA by retrieval of an auditory fear memory and that knockdown of Npas4 in the LA impairs retention of a reactivated, but not a non-reactivated, fear memory. Collectively, our findings provide the first comprehensive look at the functional role of Npas4 in learning and memory.

  14. Fear of heights in infants?

    Science.gov (United States)

    Adolph, Karen E; Kretch, Kari S; LoBue, Vanessa

    2014-02-01

    Based largely on the famous "visual cliff" paradigm, conventional wisdom is that crawling infants avoid crossing the brink of a dangerous drop-off because they are afraid of heights. However, recent research suggests that the conventional wisdom is wrong. Avoidance and fear are conflated, and there is no compelling evidence to support fear of heights in human infants. Infants avoid crawling or walking over an impossibly high drop-off because they perceive affordances for locomotion-the relations between their own bodies and skills and the relevant properties of the environment that make an action such as descent possible or impossible.

  15. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  16. The Fear of Art and the Art of Fear

    Science.gov (United States)

    Baer, Stephanie A.

    2012-01-01

    Prospective teachers often walk into my course, Arts in the Elementary Classroom, carrying a guarded consciousness that constrains unencumbered artistic exploration. My responsibility as their instructor is to question mantras that reflect insecurity in process and make pedagogical use of their fears. Through studying the nature of these fears…

  17. Fear Not: Neurobiological Mechanisms of Fear and Anxiety

    NARCIS (Netherlands)

    Klumpers, F.

    2012-01-01

    Fear is a common, core emotion. Moreover, anxiety disorders are among the most common form of psychiatric disease. In this thesis neuroimaging, genetic, pharmacological, brain stimulation and behavioral techniques were used in healthy subjects and specific patient populations to shed more light on t

  18. The use of cognitive enhancers in animal models of fear extinction.

    Science.gov (United States)

    Kaplan, Gary B; Moore, Katherine A

    2011-08-01

    In anxiety disorders, such as posttraumatic stress disorders and phobias, classical conditioning pairs natural (unconditioned) fear-eliciting stimuli with contextual or discrete cues resulting in enduring fear responses to multiple stimuli. Extinction is an active learning process that results in a reduction of conditioned fear responses after conditioned stimuli are no longer paired with unconditioned stimuli. Fear extinction often produces incomplete effects and this highlights the relative permanence of bonds between conditioned stimuli and conditioned fear responses. The animal research literature is rich in its demonstration of cognitive enhancing agents that alter fear extinction. This review specifically examines the fear extinguishing effects of cognitive enhancers that act on gamma-aminobutyric acid (GABA), glutamatergic, cholinergic, adrenergic, dopaminergic, and cannabinoid signaling pathways. It also examines the effects of compounds that alter epigenetic and neurotrophic mechanisms in fear extinction. Of these cognitive enhancers, glutamatergic N-methyl d-aspartate (NMDA) receptor agonists, such as D-cycloserine, have enhanced fear extinction in a context-, dose- and time-dependent manner. Agents that function as glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor agonists, alpha2-adrenergic receptor antagonists (such as yohimbine), neurotrophic factors (brain derived neurotrophic factor or BDNF) and histone deacetylase inhibitors (valproate and sodium butyrate) also improve fear extinction in animals. However, some have anxiogenic effects and their contextual and temporal effects need to be more reliably demonstrated. Various cognitive enhancers produce changes in cortico-amygdala synaptic plasticity through multiple mechanisms and these neural changes enhance fear extinction. We need to better define the changes in neural plasticity produced by these agents in order to develop more effective compounds. In the clinical

  19. Fear and Leadership in Union Organizing Campaigns

    Directory of Open Access Journals (Sweden)

    Caroline Murphy

    2016-01-01

    Full Text Available This article adopts a mobilization framework to examine the crucial actions of workplace activists in overcoming fear of employer reprisal during union organizing campaigns in hostile environments. The article explores fear as part of the organizing process in two ways; first, we examine how fear can act as a stimulus for workplace activists to take action in an attempt to overcome the source of that fear. Second, we examine fear as an inhibiting factor in organizing, whereby the presence of fear hinders individuals from taking action. Using qualitative data from interviews conducted with workplace activists across a variety of campaigns in Ireland, this article examines the process through which workplace activists conquer their own sense of fear and undertake the task of mobilizing colleagues toward collective action in pursuit of union representation amid fear of employer reprisal.

  20. The influence of acute stress on the regulation of conditioned fear

    Directory of Open Access Journals (Sweden)

    Candace M. Raio

    2015-01-01

    Full Text Available Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation, and briefly discuss other techniques (avoidance and reconsolidation where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology.

  1. The role of the medial prefrontal cortex in the conditioning and extinction of fear

    Directory of Open Access Journals (Sweden)

    Thomas Francis Giustino

    2015-11-01

    Full Text Available Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD. As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL and infralimbic (IL subdivisions of the medial prefrontal cortex (mPFC regulate the expression and suppression of fear in rodents, respectively. Here we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.

  2. Predicting fear of heights, snakes, and public speaking from multimodal classical conditioning events.

    Science.gov (United States)

    Wu, Ning Ying; Conger, Anthony J; Dygdon, Judith A

    2006-04-01

    Two hundred fifty one men and women participated in a study of the prediction of fear of heights, snakes, and public speaking by providing retrospective accounts of multimodal classical conditioning events involving those stimuli. The fears selected for study represent those believed by some to be innate (i.e., heights), prepared (i.e., snakes), and purely experientially learned (i.e., public speaking). This study evaluated the extent to which classical conditioning experiences in direct, observational, and verbal modes contributed to the prediction of the current level of fear severity. Subjects were asked to describe their current level of fear and to estimate their experience with fear response-augmenting events (first- and higher-order aversive pairings) and fear response-moderating events (first- and higher-order appetitive pairings, and pre- and post-conditioning neutral presentations) in direct, observational, and verbal modes. For each stimulus, fear was predictable from direct response-augmenting events and prediction was enhanced by the inclusion of response-moderating events. Furthermore, for each fear, maximum prediction was attained by the addition of variables tapping experiences in the observational and/or verbal modes. Conclusions are offered regarding the importance of including response-augmenting and response-moderating events in all three modes in both research and clinical applications of classical conditioning.

  3. Fear at the Great Wall

    Institute of Scientific and Technical Information of China (English)

    CHARLOTTE SPIRES

    2011-01-01

    “I’m not going on anything that takes me more than two feet off the ground," Grace was saying.This was classic Grace:She has a morbid fear of-well,everything actually,but in this particular case it was her phobia of heights,heights and cable cars combined specifically.

  4. Fear at the Great Wall

    Institute of Scientific and Technical Information of China (English)

    CHARLOTTE; SPIRES

    2011-01-01

    "i’m not going on anything that takes me more than two feet off the ground," Grace was saying.This was classic Grace: She has a morbid fear of—well, everything actually,but in this particular case it was her phobia of heights, heights and cable cars combined specifically.

  5. Heritability of fear: Ukrainian experience

    African Journals Online (AJOL)

    O.V. Filiptsova

    2014-08-04

    Aug 4, 2014 ... Evaluation and decomposition of total phenotypic variance were performed according to the ... of fear – psychic disorder development, complications in personal life, making responsible ... notypic variation (VP) that is due to variation in genetic val- ... Ukraine is a population with a unique history and cultural.

  6. 33 CFR 165.530 - Safety Zone: Cape Fear and Northeast Cape Fear Rivers, NC.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: Cape Fear and Northeast Cape Fear Rivers, NC. 165.530 Section 165.530 Navigation and Navigable Waters COAST GUARD... § 165.530 Safety Zone: Cape Fear and Northeast Cape Fear Rivers, NC. (a) Location. The following area is...

  7. Fear of acquired immunodeficiency syndrome and fear of other illness in suicide

    DEFF Research Database (Denmark)

    Aro, A R; Jallinoja, P T; Henriksson, M M;

    1994-01-01

    other suicides. Suicidal fear of AIDS calls for evaluation of sexual and other risk behaviour, but fear of AIDS was largely generated by the extensive media coverage. Fear of other somatic illness was more diverse in origin and related to illness experiences. Suicidal fear of illness calls...

  8. 76 FR 25665 - No Fear Act

    Science.gov (United States)

    2011-05-05

    ... COMMISSION No Fear Act AGENCY: American Battle Monuments Commission. ACTION: Notice. SUMMARY: The American... FEAR Act), as implemented by the Office of Personnel Management (OPM) regulations at 5 CFR part 724... Retaliation Act of 2002,'' which is now known as the No FEAR Act. See Public Law 107-174, codified at 5 U.S.C...

  9. Neurobiology of Fear and Specific Phobias

    Science.gov (United States)

    Garcia, René

    Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized…

  10. COVARIATION BIAS AND THE RETURN OF FEAR

    NARCIS (Netherlands)

    de Jong, Peter; VANDENHOUT, MA; MERCKELBACH, H

    1995-01-01

    Several studies have indicated that phobic fear is accompanied by a covariation bias, i.e. that phobic Ss tend to overassociate fear relevant stimuli and aversive outcomes. Such a covariation bias seems to be a fairly direct and powerful way to confirm danger expectations and enhance fear. Therefore

  11. Women's Fear of Crime: A Rural Perspective

    Science.gov (United States)

    Little, Jo; Panelli, Ruth; Kraack, Anna

    2005-01-01

    This paper examines women's experience of fear of crime in rural areas. It argues that much existing research on issues of gender, fear and safety have focused on urban areas and that as a result we know relatively little about women's experience of fear in a rural context. As well as arguing that we need to redress the balance and respond to the…

  12. Gun Attitudes and Fear of Crime.

    Science.gov (United States)

    Heath, Linda; Weeks, Kyle; Murphy, Marie Mackay

    1997-01-01

    Using three studies, examined the relationship between attitudes toward guns and fear of crime. Findings indicate a connection between fear of crime and attitudes toward guns: people higher in fear of crime favored gun control. Results also established a relationship between stereotypical beliefs about gun victims and support for gun control. (RJM)

  13. Effects of stress and sex on acquisition and consolidation of human fear conditioning

    OpenAIRE

    Zorawski, Michael; Blanding, Nineequa Q.; Kuhn, Cynthia M.; LaBar, Kevin S.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min psychosocial stress period (arithmetic test combined with a public speech). Salivary cortisol was sampled at various time points before and after ac...

  14. Common fears and their relationship to dental fear and utilization of the dentist.

    Science.gov (United States)

    Fiset, L; Milgrom, P; Weinstein, P; Melnick, S

    1989-01-01

    Common fears were studied by household telephone interviews and mail survey in Seattle, Washington, to determine their relationship to dental fear and to utilization of the dentist. Dental fear was either the first or second most common fear, with a prevalence estimated between 183 and 226 persons per 1000 population. Dental fear was associated with fears of heights, flying, and enclosures. Respondents with multiple common fears other than fear of dentistry were more likely to delay or cancel dental appointments, report a longer period since their last visit to the dentist, and report poorer oral health and less satisfaction with oral appearance. Over 22 percent of the dentally fearful group reported two or more accompanying common fears.

  15. Maternal buffering of fear-potentiated startle in children and adolescents with trauma exposure.

    Science.gov (United States)

    van Rooij, Sanne J H; Cross, Dorthie; Stevens, Jennifer S; Vance, L Alexander; Kim, Ye Ji; Bradley, Bekh; Tottenham, Nim; Jovanovic, Tanja

    2017-02-01

    Parental availability influences fear expression and learning across species, but the effect of maternal buffering on fear learning in humans is unknown. Here we investigated the effect of maternal availability during fear conditioning in a group of children (ages 8-10) and adolescents (ages 11-13) from a low-income population with a range of trauma exposure. Acoustic startle response data were collected to measure fear-potentiated startle (FPS) in 104 participants. A total of 62 participants were tested with the mother available and 42 when the mother was not in the testing room. We observed that maternal availability during fear conditioning interacted with age to affect FPS discrimination between CS+ and CS-. In line with previous findings suggesting an absence of maternal buffering in adolescents, fear discrimination was affected by maternal availability only in children. Second, we observed that the effect of maternal buffering on FPS discrimination in children was not influenced by maternally reported warmth. In conclusion, we demonstrated that maternal availability improved discrimination in children, regardless of the quality of the relationship. Adolescents discriminated irrespective of maternal status, suggesting that childhood may be a sensitive period for environmental influences on key processes such as learning of danger and safety signals.

  16. [Pathological nighttime fears in children: Clinical specificities and effective therapeutics].

    Science.gov (United States)

    Ducasse, D; Denis, H

    2015-09-01

    Pathological nighttime fears in children have been little studied. However, this disorder is commonly encountered in medical consultations and is discomforting and dysfunctional for both the child and the family. Most nighttime fears are part and parcel of normal development, and emanate from increasingly sophisticated cognitive development in the growing child. Thus, most children report a variety of coping strategies generally helpful in reducing their anxiety, which resolves spontaneously in the growing child. Nevertheless, in about 10% of children, nighttime fears are related to one or more anxiety disorders according to Diagnostic and Statistical Manual of Mental Disorders criteria. Then, it is estimated that severe nighttime fears and sleep problems occur in 20-30% of children. This problem is not transient and has to be treated. This study aims to review clinical features of nighttime fears and possible treatments for these patients and their families. This systematic review follows the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement guidelines. Two databases (Medline and Web of Science) were searched combining the search terms: nighttime fears AND children. English and French languages were imposed. There were no publication date or publication status limitations. Pathological nighttime fears are responsible for emotional (crying, panic, tantrums at bedtime, loss of confidence, self-disparaging negative statements, and feeling of social embarrassment) and behavioral (wandering alone in the house at night, calls for parental or sibling comfort, bed sharing with parents or siblings, light source at night, refusal to go to the toilet alone at night) disturbances. This leads to a poor quality of sleep interfering with school learning, and also affects social development and family functioning. A full assessment has to be made to eliminate organic causes, have a baseline functioning, and search for comorbid anxiety diseases

  17. The Fear of Cockroaches Questionnaire (FCQ)

    OpenAIRE

    Scandola, Michele; Bastinelli, Alessia; Spoto, Andrea; Vidotto, Giulio

    2010-01-01

    The aim of this study was to validate the Fear of Cockroaches Questionnaire (FCQ) in general Italian population. The FCQ is an 18-item self-report questionnaire assessing fear of cockroaches. It was translated in Italian and modified as a cockroach adaption of the Fear of Spiders Questionnaire. Data obtained from 329 (mean age 24.21 ± 4.08 years) undergraduates revealed that the FCQ allowed discrimination between high fear and low fear subjects. Exploratory Factor Analysis revealed a mono-fac...

  18. Screening for social fears and social anxiety disorder in psychiatric outpatients.

    Science.gov (United States)

    Dalrymple, Kristy L; Zimmerman, Mark

    2008-01-01

    The ability of a diagnostic interview to identify all individuals with a particular psychiatric disorder depends, in part, on the performance of the interview's initial screening questions. The Structured Clinical Interview for the Diagnostic and Statistical Manual, Fourth Edition (SCID) is the most widely used research diagnostic interview, yet little research has examined the performance of the SCID screening questions. Because social anxiety disorder (SAD) is one of the most frequent psychiatric disorders, we examined the performance of the SCID screening question in the SAD module to detect social fears and SAD. The incremental validity of a more comprehensive list of social fears was examined by determining how many patients were diagnosed with SAD in those who were originally missed by the SCID screening question. Five percent of those originally missed by the SCID screening question subsequently received a lifetime diagnosis of SAD, and there was a significant increase in the prevalence of social fears after patients were cued by the social fears list. The most commonly reported fears missed by the SCID screening question included speaking in a group, with sexually attractive others, and with authority figures. Results suggest that perhaps these fears could be added to the SCID screening question to capture individuals missed by the SCID screening question and to provide more comprehensive information for treatment purposes.

  19. Low-Cost Avoidance Behaviors Are Resistant To Fear Extinction In Humans

    Directory of Open Access Journals (Sweden)

    Bram eVervliet

    2015-12-01

    Full Text Available Elevated levels of fear and avoidance are core symptoms across the anxiety disorders. It has long been known that fear serves to motivate avoidance. Consequently, fear extinction has been the primary focus in pre-clinical anxiety research for decades, under the implicit assumption that removing the motivator of avoidance (fear would automatically mitigate the avoidance behaviors as well. Although this assumption has intuitive appeal, it has received little scientific scrutiny. The scarce evidence from animal studies is mixed, while the assumption remains untested in humans. The current study applied an avoidance conditioning protocol in humans to investigate the effects of fear extinction on the persistence of low-cost avoidance. Online danger-safety ratings and skin conductance responses documented the dynamics of conditioned fear across avoidance and extinction phases. Anxiety- and avoidance-related questionnaires explored individual differences in rates of avoidance. Participants first learned to click a button during a predictive danger signal, in order to cancel an upcoming aversive electrical shock (avoidance conditioning. Next, fear extinction was induced by presenting the signal in the absence of shocks while button-clicks were prevented (by removing the button in Experiment 1, or by instructing not to click the button in Experiment 2. Most importantly, post-extinction availaibility of the button caused a significant return of avoidant button-clicks. In addition, trait-anxiety levels correlated positively with rates of avoidance during a predictive safety signal, and with the rate of pre- to post-extinction decrease during this signal. Fear measures gradually decreased during avoidance conditioning, as participants learned that button-clicks effectively canceled the shock. Preventing button-clicks elicited a sharp increase in fear, which subsequently extinguished. Fear remained low during avoidance testing, but danger-safety ratings

  20. Low-Cost Avoidance Behaviors are Resistant to Fear Extinction in Humans.

    Science.gov (United States)

    Vervliet, Bram; Indekeu, Ellen

    2015-01-01

    Elevated levels of fear and avoidance are core symptoms across the anxiety disorders. It has long been known that fear serves to motivate avoidance. Consequently, fear extinction has been the primary focus in pre-clinical anxiety research for decades, under the implicit assumption that removing the motivator of avoidance (fear) would automatically mitigate the avoidance behaviors as well. Although this assumption has intuitive appeal, it has received little scientific scrutiny. The scarce evidence from animal studies is mixed, while the assumption remains untested in humans. The current study applied an avoidance conditioning protocol in humans to investigate the effects of fear extinction on the persistence of low-cost avoidance. Online danger-safety ratings and skin conductance responses documented the dynamics of conditioned fear across avoidance and extinction phases. Anxiety- and avoidance-related questionnaires explored individual differences in rates of avoidance. Participants first learned to click a button during a predictive danger signal, in order to cancel an upcoming aversive electrical shock (avoidance conditioning). Next, fear extinction was induced by presenting the signal in the absence of shocks while button-clicks were prevented (by removing the button in Experiment 1, or by instructing not to click the button in Experiment 2). Most importantly, post-extinction availability of the button caused a significant return of avoidant button-clicks. In addition, trait-anxiety levels correlated positively with rates of avoidance during a predictive safety signal, and with the rate of pre- to post-extinction decrease during this signal. Fear measures gradually decreased during avoidance conditioning, as participants learned that button-clicks effectively canceled the shock. Preventing button-clicks elicited a sharp increase in fear, which subsequently extinguished. Fear remained low during avoidance testing, but danger-safety ratings increased again when

  1. Effects of post-session administration of methylene blue on fear extinction and contextual memory in adults with claustrophobia.

    Science.gov (United States)

    Telch, Michael J; Bruchey, Aleksandra K; Rosenfield, David; Cobb, Adam R; Smits, Jasper; Pahl, Sandra; Gonzalez-Lima, F

    2014-10-01

    Preclinical studies have shown that low-dose methylene blue increases mitochondrial cytochrome oxidase activity in the brain and improves memory retention after learning tasks, including fear extinction. The authors report on the first controlled experiment to examine the memory-enhancing effects of posttraining methylene blue administration on retention of fear extinction and contextual memory following fear extinction training. Adult participants displaying marked claustrophobic fear were randomly assigned to double-blind administration of 260 mg of methylene blue (N=23) or administration of placebo (N=19) immediately following six 5-minute extinction trials in an enclosed chamber. Retesting occurred 1 month later to assess fear renewal as indexed by peak fear during exposure to a nontraining chamber, with the prediction that the effects of methylene blue would vary as a function of fear reduction achieved during extinction training. Incidental contextual memory was assessed 1 and 30 days after training to assess the cognitive-enhancing effects of methylene blue independent of its effects on fear attenuation. Consistent with predictions, participants displaying low end fear posttraining showed significantly less fear at the 1-month follow-up if they received methylene blue posttraining compared with placebo. In contrast, participants displaying moderate to high levels of posttraining fear tended to fare worse at the follow-up if they received methylene blue posttraining. Methylene blue's enhancement of contextual memory was unrelated to initial or posttraining claustrophobic fear. Methylene blue enhances memory and the retention of fear extinction when administered after a successful exposure session but may have a deleterious effect on extinction when administered after an unsuccessful exposure session.

  2. Identification of plasticity-associated genes regulated by Pavlovian fear conditioning in the lateral amygdala.

    Science.gov (United States)

    Ploski, Jonathan E; Park, Kevin W; Ping, Junli; Monsey, Melissa S; Schafe, Glenn E

    2010-02-01

    Most recent studies aimed at defining the cellular and molecular mechanisms of Pavlovian fear conditioning have focused on protein kinase signaling pathways and the transcription factor cAMP-response element binding protein (CREB) that promote fear memory consolidation in the lateral nucleus of the amygdala (LA). Despite this progress, there still remains a paucity of information regarding the genes downstream of CREB that are required for long-term fear memory formation in the LA. We have adopted a strategy of using microarray technology to initially identify genes induced within the dentate gyrus following in vivo long-term potentiation (LTP) followed by analysis of whether these same genes are also regulated by fear conditioning within the LA. In the present study, we first identified 34 plasticity-associated genes that are induced within 30 min following LTP induction utilizing a combination of DNA microarray, qRT-PCR, and in situ hybridization. To determine whether these genes are also induced in the LA following Pavlovian fear conditioning, we next exposed rats to an auditory fear conditioning protocol or to control conditions that do not support fear learning followed by qRT-PCR on mRNA from microdissected LA samples. Finally, we asked whether identified genes induced by fear learning in the LA are downstream of the extracellular-regulated kinase/mitogen-activated protein kinase signaling cascade. Collectively, our findings reveal a comprehensive list of genes that represent the first wave of transcription following both LTP induction and fear conditioning that largely belong to a class of genes referred to as 'neuronal activity dependent genes' that are likely calcium, extracellular-regulated kinase/mitogen-activated protein kinase, and CREB-dependent.

  3. Dental Fear among Medical and Dental Undergraduates

    Directory of Open Access Journals (Sweden)

    H. Hakim

    2014-01-01

    Full Text Available Objective. To assess the prevalence and level of dental fear among health related undergraduates and to identify factors causing such fear using Kleinknecht’s Dental Fear Survey (DFS questionnaire. Methods. Kleinknecht’s DFS questionnaire was used to assess dental fear and anxiety among the entire enrollment of the medical and dental undergraduates’ of the University of Malaya. Results. Overall response rate was 82.2%. Dental students reported higher prevalence of dental fear (96.0% versus 90.4%. However, most of the fear encountered among dental students was in the low fear category as compared to their medical counterpart (69.2 versus 51.2%. Significantly more medical students cancelled dental appointment due to fear compared to dental students (P=0.004. “Heart beats faster” and “muscle being tensed” were the top two physiological responses experienced by the respondents. “Drill” and “anesthetic needle” were the most fear provoking objects among respondents of both faculties. Conclusion. Dental fear and anxiety are a common problem encountered among medical and dental undergraduates who represent future health care professionals. Also, high level of dental fear and anxiety leads to the avoidance of the dental services.

  4. Validation of Fear of Partner Scale.

    Science.gov (United States)

    O'Leary, K Daniel; Foran, Heather; Cohen, Shiri

    2013-10-01

    Therapists have a responsibility to ascertain if psychological aggression, physical aggression, sexual aggression exist, and if there is fear of the partner. A fear of partner measure was evaluated in 100 couples who sought relationship feedback. Fear of partner's psychological, physical, and sexual aggression was related to actual reports of such behavior. For both men and women, fear of speaking in front of partner and fear of being in therapy with partner were related to reports of psychological aggression perpetrated by the partner, dominance, and isolation by the partner, and one's own marital dissatisfaction. Among respondents who were aggressed against, more men than women reported fear of participating in therapy with their partner. The measure herein can be used to determine the extent of fear of aggression by partners and to assist in the decision-making about the appropriateness of marital therapy and divorce mediation.

  5. Co-learning facilitates memory in mice: a new avenue in social neuroscience.

    Science.gov (United States)

    Lipina, Tatiana V; Roder, John C

    2013-01-01

    Social context affects brain function but our understanding of its neurobiology is at an early stage. The mere presence of one individual can alter the cognitive capacities of another and social learning has been demonstrated in many species, including the mouse. We asked several questions: 1. How can active engagement of two familiar mice in the same learning activity (co-learning) alter their memory? 2. Under which environmental conditions (aversive vs non-aversive) can we expect the memory to be enhanced, impaired, or not affected? 3. Can a genetic factor modify the co-learning effect on memory? More specifically, can co-learning correct memory deficits in autistic-like BTBR inbred mice with deficient sociability? We demonstrated that pairs of familiar inbred mice of the same or different genotypes (C57BL/6J and BTBR) that were habituated to new objects and their spatial location, had enhanced episodic memory in the spatial object recognition test, whereas individually-trained animals failed to solve this task. Notably, the co-learning effect was genotype-dependent. BTBR mice paired with BTBR cage-mates in the habituation session modestly ameliorated their performance in the object recognition test but co-learning with a familiar C57BL/6J mouse completely normalized episodic memory deficit. Next, we explored the co-learning effect on fear memory in these inbred strains. Interestingly, mice of both genotypes displayed significantly enhanced contextual fear memory once they had been conditioned together with BTBR animals. The same influence of BTBR presence was observed on cued fear memory in C57BL/6J mice, whereas a modest co-learning effect was found on cued fear conditioning in the BTBR strain. Taken together, we demonstrated for the first time the co-learning effect on cognitive capacities in mice, which can be modified by genetic background and environmental conditions. The possible implications of this methodological approach in social neuroscience are

  6. Putting the Fear Back Again (and Within Individuals): Revisiting the Role of Fear in Persuasion.

    Science.gov (United States)

    Shen, Lijiang

    2017-11-01

    The overwhelming majority of fear appeal research came from the between-individuals approach and yielded consistent evidence for a linear fear-persuasion relationship. A recent review suggested that the within-individuals approach might be more appropriate. Studies that measured fear at multiple time points have consistently revealed a curvilinear association between fear and persuasion predicted by the drive model. A Web-based experiment (N = 454) using tobacco warning labels was conducted to replicate the inverted-U shape curvilinear relationship between fear and persuasion, and to revisit the role of fear in fear appeal theories. Results showed that the inverted-U fear curve positively predicted persuasion and reduced maladaptive responses, and that the linear trajectory of fear positively predicted maladaptive responses and failure of persuasion.

  7. Histone Modifications around Individual BDNF Gene Promoters in Prefrontal Cortex Are Associated with Extinction of Conditioned Fear

    Science.gov (United States)

    Bredy, Timothy W.; Wu, Hao; Crego, Cortney; Zellhoefer, Jessica; Sun, Yi E.; Barad, Mark

    2007-01-01

    Extinction of conditioned fear is an important model both of inhibitory learning and of behavior therapy for human anxiety disorders. Like other forms of learning, extinction learning is long-lasting and depends on regulated gene expression. Epigenetic mechanisms make an important contribution to persistent changes in gene expression; therefore,…

  8. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation within the Amygdala.

    Science.gov (United States)

    Aubry, Antonio V; Serrano, Peter A; Burghardt, Nesha S

    2016-01-01

    Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR) and norepinephrine release within the amygdala leads to the mobilization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

  9. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation Within the Amygdala

    Directory of Open Access Journals (Sweden)

    Antonio Aubry

    2016-10-01

    Full Text Available Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR and norepinephrine release within the amygdala leads to the mobilization of AMPA receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

  10. Fear patterns: a new approach to designing road safety advertisements.

    Science.gov (United States)

    Algie, Jennifer; Rossiter, John R

    2010-01-01

    This research studies fear patterns within fear appeal anti-speeding television commercials. A pattern of fear is the sequence of fear arousal and fear reduction, if any, that is felt by the viewing audience when exposed to a fear appeal advertisement. Many road safety advertisers use fear appeals, such as "shock" advertising, that result in fear arousal, leaving the viewer feeling extremely tense. The moment-to-moment reactions of young drivers to 12 road safety commercials are gauged using a dynamic, temporal measure of fear. The fear patterns generated from each ad are analyzed and a new perspective on creating fear appeal road safety advertisements, with an emphasis on fear-relief, fear-partial relief, and fear-only patterns, is discussed.

  11. Dual functions of perirhinal cortex in fear conditioning.

    Science.gov (United States)

    Kent, Brianne A; Brown, Thomas H

    2012-10-01

    The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning.

  12. The Shadow of Physical Harm? Examining the Unique and Gendered Relationship Between Fear of Murder Versus Fear of Sexual Assault on Fear of Violent Crime.

    Science.gov (United States)

    Riggs, Samantha; Cook, Carrie L

    2015-09-01

    The shadow hypothesis regarding the impact of fear of sexual assault on fear of violent crime suggests that female fear of crime is characterized by concern about sexual assault as a contemporaneous victimization event during a violent crime event. Recent research has found that other types of crime, namely physical assault, may also be feared as a contemporaneous offense. We know of no research that has examined the unique impact of fear of murder versus fear of sexual assault on fear of violent crime. There is also a lack of research that explores how these two types of fear uniquely affect men and women. In addition to gender, we examine factors that have been suggested in previous research to correlate with fear of crime: race, victimization, vicarious victimization, and perceived risk. Through survey methodology, this research examines the unique relationship between both fear of murder and fear of sexual assault and fear of three types of violent crime for men and women. Results suggest differences in how fear of murder and fear of sexual assault are related to fear of other types of violence for men and women. Specifically, fear of murder is important in estimating male fear of robbery and aggravated assault. However, fear of sexual assault is almost as important as fear of murder for men in estimating fear of home invasion. Similarly, for women, fear of sexual assault and fear of murder both are significant factors associated with fear of violent crime, and differences between the levels of significance are marginal. This study is a first to examine whether murder may also be feared as a contemporaneous offense. The results are informative in identifying what drives fear of crime, particularly violent crime, for both men and women. Avenues for future research are discussed.

  13. Impact of Life History on Fear Memory and Extinction

    Directory of Open Access Journals (Sweden)

    Jasmin Remmes

    2016-10-01

    Full Text Available Behavioral profiles are strongly shaped by an individual’s whole life experience. The accumulation of negative experiences over lifetime is thought to promote anxiety-like behavior in adulthood (‘allostatic load hypothesis’. In contrast, the ‘mismatch hypothesis’ of psychiatric disease suggests that high levels of anxiety-like behavior are the result of a discrepancy between early and late environment. The aim of the present study was to investigate how different life histories shape the expression of anxiety-like behavior and modulate fear memory. In addition, we aimed to clarify which of the two hypotheses can better explain the modulation of anxiety and fear. For this purpose, male mice grew up under either adverse or beneficial conditions during early phase of life. In adulthood they were further subdivided in groups that either matched or mismatched the condition experienced before, resulting in four different life histories. The main results were: (i Early life benefit followed by late life adversity caused decreased levels of anxiety-like behavior. (ii Accumulation of adversity throughout life history led to impaired fear extinction learning. Late life adversity as compared to late life benefit mainly affected extinction training, while early life adversity as compared to early life benefit interfered with extinction recall. Concerning anxiety-like behavior, the results do neither support the allostatic load nor the mismatch hypothesis, but rather indicate an anxiolytic effect of a mismatched early beneficial and later adverse life history. In contrast, fear memory was strongly affected by the accumulation of adverse experiences over the lifetime, therefore supporting allostatic load hypothesis. In summary, this study highlights that anxiety-like behavior and fear memory are differently affected by specific combinations of adverse or beneficial events experienced throughout life.

  14. Retention of perceptual generalization of fear extinction.

    Science.gov (United States)

    Pappens, Meike; Schroijen, Mathias; Van den Bergh, Omer; Van Diest, Ilse

    2015-12-01

    Fear reduction obtained during a fear extinction procedure can generalize from the extinction stimulus to other perceptually similar stimuli. Perceptual generalization of fear extinction typically follows a perceptual gradient, with increasing levels of fear reduction the more a stimulus resembles the extinction stimulus. The current study aimed to investigate whether perceptual generalization of fear extinction can be observed also after a retention interval of 24h. Fear was acquired to three geometrical figures of different sizes (CS(+), CS1(+) and CS2(+)) by consistently pairing them with a short-lasting suffocation experience (US). Three other geometrical figures that were never followed by the US served as control stimuli (CS(-), CS1(-), CS2(-)). Next, only the CS(+) was extinguished by presenting it in the absence of the US. One day later, fear responses to all stimuli were assessed without any US-presentation. Outcome measures included startle blink EMG, skin conductance, US expectancy, respiratory rate and tidal volume. On day 2 spontaneous recovery of fear was observed in US expectancy and tidal volume, but not in the other outcomes. Evidence for the retention of fear extinction generalization was present in US expectancy and skin conductance, but a perceptual gradient in the retention of generalized fear extinction could not be observed.

  15. Understanding Student Attitudes about Distance Education: The Importance of Excitement and Fear

    Directory of Open Access Journals (Sweden)

    Esther Smidt

    2016-03-01

    Full Text Available This quantitative study investigated student attitudes toward distance education at a midsized, mid-Atlantic state university in the United States. The research question was: Do feelings of excitement and fear moderate and/or mediate the relationship between online learning experiences and student opinions about the current state of online education, namely that institutions were pushing too much instruction online? Data was collected from students via an online survey. Findings suggested: (a students with online experience who were fearful of this learning mode were the most likely to report that their institutions were pushing too much online learning, (b regardless of online learning experience, students who were excited about this learning mode were less likely to think that their institutions were pushing too much online learning.

  16. Exploring epigenetic regulation of fear memory and biomarkers associated with Post-traumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Stephanie A. Maddox

    2013-07-01

    Full Text Available This review examines recent work on epigenetic mechanisms underlying animal models of fear learning as well as its translational implications in disorders of fear regulation, such as Posttraumatic Stress Disorder (PTSD. Specifically, we will examine work outlining roles of differential histone acetylation and DNA methylation associated with consolidation, reconsolidation and extinction in Pavlovian fear paradigms. We then focus on the numerous studies examining the epigenetic modifications of the Brain-derived neurotrophin factor (BDNF pathway and the extension of these findings from animal models to recent work in human clinical populations. We will also review recently published data on FKBP5 regulation of glucocorticoid receptor function, and how this is modulated in animal models of PTSD and in human clinical populations via epigenetic mechanisms. As glucocorticoid regulation of memory consolidation is well established in fear models, we examine how these recent data contribute to our broader understanding of fear memory formation. The combined recent progress in epigenetic modulation of memory with the advances in fear neurobiology suggest that this area may be critical to progress in our understanding of fear-related disorders with implications for new approaches to treatment and prevention.

  17. Enhanced theta synchronization correlates with the successful retrieval of trace fear memory.

    Science.gov (United States)

    Han, Yujin; An, Bobae; Choi, Sukwoo

    2016-11-25

    Mechanisms underlying delay fear conditioning in which conditioned stimuli (CS) are paired and co-terminated with unconditioned stimuli (US), have been extensively characterized, thus expanding knowledge concerning learning and memory. However, trace fear conditioning in which CS and US are separated by trace interval periods, has received much less attention though it involves cognitive processes including timing and working memories. Various brain regions including the hippocampus are known to play an important role in memory acquisition and/or retrieval of trace fear conditioning. However, neural correlates, which are specific for the discrete steps in trace fear conditioning, have not been characterized thoroughly. Here, we investigated the network activities between the dorsal and ventral hippocampi at different stages of memory processing after trace fear conditioning. When fear memory was retrieved successfully, theta synchronization between the two regions was enhanced relative to preconditioning levels. The enhancement in theta synchronization was observed only during the trace interval period but not during CS presentation or after the trace interval period. Thus, the enhanced theta synchronization between the dorsal and ventral hippocampi may underlie a cognitive process associated with the trace interval period when fear memory is retrieved successfully. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Behavioral and Neural Analysis of GABA in the Acquisition, Consolidation, Reconsolidation, and Extinction of Fear Memory

    Science.gov (United States)

    Makkar, Steve R; Zhang, Shirley Q; Cranney, Jacquelyn

    2010-01-01

    The current review systematically documents the role of γ-amino-butyric acid (GABA) in different aspects of fear memory—acquisition and consolidation, reconsolidation, and extinction, and attempts to resolve apparent contradictions in the data in order to identify the function of GABAA receptors in fear memory. First, numerous studies have shown that pre- and post-training administration of drugs that facilitate GABAergic transmission disrupt the initial formation of fear memories, indicating a role for GABAA receptors, possibly within the amygdala and hippocampus, in the acquisition and consolidation of fear memories. Similarly, recent evidence indicates that these drugs are also detrimental to the restorage of fear memories after their reactivation. This suggests a role for GABAA receptors in the reconsolidation of fear memories, although the precise neural circuits are yet to be identified. Finally, research regarding the role of GABA in extinction has shown that GABAergic transmission is also disruptive to the formation of newly acquired extinction memories. We argue that contradictions to these patterns are the result of variations in (a) the location of drug infusion, (b) the dosage of the drug and/or (c) the time point of drug administration. The question of whether these GABA-induced memory deficits reflect deficits in retrieval is discussed. Overall, the evidence implies that the processes mediating memory stability consequent to initial fear learning, memory reactivation, and extinction training are dependent on a common mechanism of reduced GABAergic neurotransmission. PMID:20410874

  19. A novel form of memory for auditory fear conditioning at a low-intensity unconditioned stimulus.

    Directory of Open Access Journals (Sweden)

    Ayumi Kishioka

    Full Text Available Fear is one of the most potent emotional experiences and is an adaptive component of response to potentially threatening stimuli. On the other hand, too much or inappropriate fear accounts for many common psychiatric problems. Cumulative evidence suggests that the amygdala plays a central role in the acquisition, storage and expression of fear memory. Here, we developed an inducible striatal neuron ablation system in transgenic mice. The ablation of striatal neurons in the adult brain hardly affected the auditory fear learning under the standard condition in agreement with previous studies. When conditioned with a low-intensity unconditioned stimulus, however, the formation of long-term fear memory but not short-tem memory was impaired in striatal neuron-ablated mice. Consistently, the ablation of striatal neurons 24 h after conditioning with the low-intensity unconditioned stimulus, when the long-term fear memory was formed, diminished the retention of the long-term memory. Our results reveal a novel form of the auditory fear memory depending on striatal neurons at the low-intensity unconditioned stimulus.

  20. The hypocretin/orexin system mediates the extinction of fear memories.

    Science.gov (United States)

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-11-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias.

  1. Development of fear acquisition and extinction in children: effects of age and anxiety.

    Science.gov (United States)

    Jovanovic, Tanja; Nylocks, Karin Maria; Gamwell, Kaitlyn L; Smith, Ami; Davis, Telsie A; Norrholm, Seth Davin; Bradley, Bekh

    2014-09-01

    Development of anxiety disorders is associated with neurobiological changes in areas that are a critical part of the fear neurocircuitry. Fear conditioning paradigms can offer insight into the mechanisms underlying the neurobiological ontogeny of anxiety. A small number of studies have focused on the effects of age and anxiety separately in school age children. The present study aimed to investigate these effects in 8-13 year old children with higher and lower trait anxiety. We examined differential fear conditioning and extinction using skin conductance responses and fear-potentiated startle in 60 children recruited from a low-income urban population. The results indicated that children under 10 years of age show poor discrimination of conditioned stimuli, and that anxiety increases fear responses during fear acquisition. After controlling for age and trauma exposure, fear-potentiated startle to the safety cue predicted child anxiety levels suggesting that impaired safety signal learning may be a risk factor for anxiety disorders in adulthood. Identifying risk phenotypes in children may provide opportunities for early intervention and prevention of illness.

  2. Fear of falling from a daily life perspective; narratives from later life.

    Science.gov (United States)

    Mahler, Marianne; Sarvimäki, Anneli

    2012-03-01

    Fear of falling is a well-known condition in later life. The aim of this study was to illuminate the experiences and the meaning of fear of falling in a daily-life context. The method used was a qualitative study inspired by interpretive phenomenology. In narrative interviews, five community-dwelling women over 80 years of age told about their fear of falling from a daily-life perspective. The overall thematic analysis resulted in three main themes: the meaning of managing daily life necessities; keeping in contact with the outside; living with fear. The findings showed that to live with fear of falling was to discipline daily life, and to learn to live with the challenge of a vulnerable bodily condition and of losing control at different levels: from falling, from incontinence, from dirt and from the stigma of being in a humiliating situation. The women created a perception of independence while they were dependent on help and community care and on news from the outside. At an existential level, they coped with their fear by strengthening their will. The conclusion was that the older women studied accepted the condition of fear of falling. They shared the ability to cope in various ways with the limitations of their bodily capacity and their imbalance. © 2011 The Authors. Scandinavian Journal of Caring Sciences © 2011 Nordic College of Caring Science.

  3. Social transmission of fear in rats: the role of 22-kHz ultrasonic distress vocalization.

    Directory of Open Access Journals (Sweden)

    Eun Joo Kim

    Full Text Available BACKGROUND: Social alarm calls alert animals to potential danger and thereby promote group survival. Adult laboratory rats in distress emit 22-kHz ultrasonic vocalization (USV calls, but the question of whether these USV calls directly elicit defensive behavior in conspecifics is unresolved. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated, in pair-housed male rats, whether and how the conditioned fear-induced 22-kHz USVs emitted by the 'sender' animal affect the behavior of its partner, the 'receiver' animal, when both are placed together in a novel chamber. The sender rats' conditioned fear responses evoked significant freezing (an overt evidence of fear in receiver rats that had previously experienced an aversive event but not in naïve receiver rats. Permanent lesions and reversible inactivations of the medial geniculate nucleus (MGN of the thalamus effectively blocked the receivers' freeezing response to the senders' conditioned fear responses, and this occurred in absence of lesions/inactivations impeding the receiver animals' ability to freeze and emit 22-kHz USVs to the aversive event per se. CONCLUSIONS/SIGNIFICANCE: These results--that prior experience of fear and intact auditory system are required for receiver rats to respond to their conspecifics' conditioned fear responses--indicate that the 22-kHz USV is the main factor for social transmission of fear and that learning plays a crucial role in the development of social signaling of danger by USVs.

  4. Pharmacogenetic reactivation of the original engram evokes an extinguished fear memory.

    Science.gov (United States)

    Yoshii, Takahiro; Hosokawa, Hiroshi; Matsuo, Naoki

    2017-02-01

    Fear memory extinction has several characteristic behavioral features, such as spontaneous recovery, renewal, and reinstatement, suggesting that extinction training does not erase the original association between the conditioned stimulus (CS) and the unconditioned stimulus (US). However, it is unclear whether reactivation of the original physical record of memory (i.e., memory trace) is sufficient to produce conditioned fear response after extinction. Here, we performed pharmacogenetic neuronal activation using transgenic mice expressing hM3Dq DREADD (designer receptor exclusively activated by designer drug) under the control of the activity-dependent c-fos gene promoter. Neuronal ensembles activated during fear-conditioned learning were tagged with hM3Dq and subsequently reactivated after extinction training. The mice exhibited significant freezing, even when the fear memory was no longer triggered by external CS, indicating that the artificial reactivation of a specific neuronal ensemble was sufficient to evoke the extinguished fear response. This freezing was not observed in non-fear-conditioned mice expressing hM3dq in the same brain areas. These results directly demonstrated that at least part of the original fear memory trace remains after extinction, and such residual plasticity might reflect the persistent memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Memory suppression trades prolonged fear and sleep-dependent fear plasticity for the avoidance of current fear

    Science.gov (United States)

    Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu

    2013-07-01

    Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology.

  6. A risk variant for alcoholism in the NMDA receptor affects amygdala activity during fear conditioning in humans.

    Science.gov (United States)

    Cacciaglia, Raffaele; Nees, Frauke; Pohlack, Sebastian T; Ruttorf, Michaela; Winkelmann, Tobias; Witt, Stephanie H; Nieratschker, Vanessa; Rietschel, Marcella; Flor, Herta

    2013-09-01

    People at high risk for alcoholism show deficits in aversive learning, as indicated by impaired electrodermal responses during fear conditioning, a basic form of associative learning that depends on the amygdala. A positive family history of alcohol dependence has also been related to decreased amygdala responses during emotional processing. In the present study we report reduced amygdala activity during the acquisition of conditioned fear in healthy carriers of a risk variant for alcoholism (rs2072450) in the NR2A subunit-containing N-methyl-d-aspartate (NMDA)-receptor. These results indicate that rs2072450 might confer risk for alcohol dependence through deficient fear acquisition indexed by a diminished amygdala response during aversive learning, and provide a neural basis for a weak behavioral inhibition previously documented in individuals at high risk for alcohol dependence. Carriers of the risk variant additionally exhibit dampened insula activation, a finding that further strengthens our data, given the importance of this brain region in fear conditioning.

  7. The genetic covariation between fear conditioning and self-report fears.

    Science.gov (United States)

    Hettema, John M; Annas, Peter; Neale, Michael C; Fredrikson, Mats; Kendler, Kenneth S

    2008-03-15

    Fear conditioning is a traditional model for the acquisition of phobias, whereas behavioral therapies use processes underlying extinction to treat phobic and other anxiety disorders. Furthermore, fear conditioning has been proposed as an endophenotype for genetic studies of anxiety disorders. Although prior studies have demonstrated that fear conditioning and self-report fears are heritable, no studies have determined whether they share a common genetic basis. We obtained fear conditioning data from 173 twin pairs from the Swedish Twin Registry who also provided self-report ratings of 16 common fears. With multivariate structural equation modeling, we analyzed factor-derived scores for the subjective fear ratings together with the electrophysiologic skin conductance responses during habituation, acquisition, and extinction to determine the extent of their genetic covariation. Phenotypic correlations between experimental and self-report fear measures were modest and, counter-intuitively, negative (i.e., subjects who reported themselves as more fearful had smaller electrophysiologic responses). Best-fit models estimated a significant (negative) genetic correlation between them, although genetic factors underlying fear conditioning accounted for only 9% of individual differences in self-report fears. Experimentally derived fear conditioning measures share only a small portion of the genetic factors underlying individual differences in subjective fears, cautioning against relying too heavily on the former as an endophenotype for genetic studies of phobic disorders.

  8. Specific and social fears in children and adolescents: separating normative fears from problem indicators and phobias.

    Science.gov (United States)

    Laporte, Paola P; Pan, Pedro M; Hoffmann, Mauricio S; Wakschlag, Lauren S; Rohde, Luis A; Miguel, Euripedes C; Pine, Daniel S; Manfro, Gisele G; Salum, Giovanni A

    2017-01-01

    To distinguish normative fears from problematic fears and phobias. We investigated 2,512 children and adolescents from a large community school-based study, the High Risk Study for Psychiatric Disorders. Parent reports of 18 fears and psychiatric diagnosis were investigated. We used two analytical approaches: confirmatory factor analysis (CFA)/item response theory (IRT) and nonparametric receiver operating characteristic (ROC) curve. According to IRT and ROC analyses, social fears are more likely to indicate problems and phobias than specific fears. Most specific fears were normative when mild; all specific fears indicate problems when pervasive. In addition, the situational fear of toilets and people who look unusual were highly indicative of specific phobia. Among social fears, those not restricted to performance and fear of writing in front of others indicate problems when mild. All social fears indicate problems and are highly indicative of social phobia when pervasive. These preliminary findings provide guidance for clinicians and researchers to determine the boundaries that separate normative fears from problem indicators in children and adolescents, and indicate a differential severity threshold for specific and social fears.

  9. Women's fear of crime: the role of fear for the well-being of significant others.

    Science.gov (United States)

    Mesch, G S

    2000-01-01

    A number of explanations have been suggested in the literature for the finding that women consistently report higher levels of fear of crime than males. The "shadow" hypothesis argues that fear of crime among females reflects fear of sexual assault. The "intimate" hypothesis argues that women's fear of crime is the result of exposure to intimate violence. Females' fear of crime is expected to be explained by their fear of partners' violence. The main argument of this article is that women's fear of crime might be the result of traditional family gender roles. When asked, women might express fear not only for their own well-being but for that of their children. A survey of a representative sample of women in the third largest city of Israel was used to test this assumption. Women's fear of crime was found to be affected by fear of sexual assault and fear of violent partners. In addition, consistent with the argument of this study, women's fear of violent and sexual victimization of their children had a significant effect on their perception of fear. Future directions for research are suggested.

  10. Living in fear of your child's pain: the Parent Fear of Pain Questionnaire.

    Science.gov (United States)

    Simons, Laura E; Smith, Allison; Kaczynski, Karen; Basch, Molly

    2015-04-01

    Fear and avoidance have been consistently associated with poor pain-related outcomes in children. In the context of the pediatric pain experience, parent distress and behaviors can be highly influential. This study validated the Parent Fear of Pain Questionnaire (PFOPQ) to assess a parent's fears and avoidance behaviors associated with their child's pain. Using the PFOPQ in conjunction with measures of parent and child pain-related variables, we tested the interpersonal fear-avoidance model (IFAM). The sample comprised 321 parents and their child with chronic or new-onset pain who presented to a multidisciplinary outpatient pain clinic. An exploratory factor analysis yielded a 4-factor structure for the PFOPQ consisting of Fear of Pain, Fear of Movement, Fear of School, and Avoidance. As hypothesized, Fear of Pain was most closely related to parent pain catastrophizing and child fear of pain, whereas Avoidance was most closely related to parent protective behaviors and child avoidance of activities. In testing the IFAM, parent behavior contributed directly and indirectly to child avoidance, whereas parent fear and catastrophizing contributed indirectly to child avoidance through parent behavior and child fear and catastrophizing, in turn, influencing child functional disability levels. This study provides the first measure of parent pain-related fears and avoidance behaviors and evaluates the theorized IFAM. These results underscore the important influence of parents on child pain-related outcomes and put forth a psychometrically sound measure to assess parent fear and avoidance in the context of their child's pain.

  11. Precondition of right frontal region with anodal tDCS can restore the fear memory impairment induced by ACPA in male mice

    Science.gov (United States)

    Manteghi, Fariborz; Nasehi, Mohammad; Zarrindast, Mohammad-Reza

    2017-01-01

    Fear memory and learning cause behavioural patterns such as fight or flight responses, which increase survival probability, but unfit processing of fear memory and learning can lead to maladaptive behaviours and maladies such as phobias, Post-Traumatic Stress Disorder (PTSD) and anxiety disorders. The growing prevalence of these maladies shows the need to quest novel methods for their treatment. We used anodal transcranial direct current stimulation (tDCS) on the right frontal region as a precondition neuromodulator and arachidonylcyclopropylamide (ACPA), a selective CB1 cannabinoid receptor agonist, as a fear memory impairing agent to assess their effects on contextual and auditory fear conditioning (reliable model for fear studies). Right frontal anodal tDCS (0.2 mA for. 20 minutes) 24 hours before the train did not alter contextual and auditory learning and memory in short-term (24 hrs after the training phase). Moreover, intraperitoneal pre-train injection of ACPA (0.1 mg/kg) alone, decreased both contextual and auditory learning and memory in short- but not long-term. Right frontal anodal tDCS improved short-term contextual fear memory in subthreshold doses of ACPA. On the other hand, right frontal anodal tDCS in long-term improved (lower doses of ACPA) and restored (higher doses of ACPA) both fear memories. These findings showed that, aforementioned approach could cause durable learning and memory improvements. Also this combined modality could be useful for fear extinction training and maladies which inflict amnesia. PMID:28337114

  12. DHEA-S selectively impairs contextual-fear conditioning: support for the antiglucocorticoid hypothesis.

    Science.gov (United States)

    Fleshner, M; Pugh, C R; Tremblay, D; Rudy, J W

    1997-06-01

    The authors had reported that glucocorticoids play a selective role in fear conditioning. The adrenal steroid dehydroepiandrosterone (DHEA) has been reported to act as a functional antiglucocorticoid. If DHEA has antiglucocorticoid properties, then its effects on fear conditioning might resemble those produced by adrenalectomy. The authors now report that chronic exposure to high levels of dehydroepiandrosterone sulfate (DHEA-S; converted in vivo to DHEA) produced the same pattern of results as adrenalectomy. Specifically, treatment with DHEA-S impaired contextual fear conditioning 24 hr after conditioning but not immediately after conditioning, and like adrenalectomy, DHEA-S had no effect on auditory-cue fear conditioning. Preexposure to the context before drug treatment eliminated the amnestic effects of DHEA-S, suggesting that, like adrenalectomy, DHEA-S exerted its effect by interfering with the construction of a contextual memory representation. Thus, DHEA appears to act as a functional antiglucocorticoid in the processes that mediate learning and memory.

  13. Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones.

    Science.gov (United States)

    Maeng, Lisa Y; Milad, Mohammed R

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Women are more vulnerable to stress- and fear-based disorders, such as anxiety and post-traumatic stress disorder. Despite the growing literature on this topic, the neural basis of these sex differences remains unclear, and the findings appear inconsistent. The neurobiological mechanisms of fear and stress in learning and memory processes have been extensively studied, and the crosstalk between these systems is beginning to explain the disproportionate incidence and differences in symptomatology and remission within these psychopathologies. In this review, we discuss the intersect between stress and fear mechanisms and their modulation by gonadal hormones and discuss the relevance of this information to sex differences in anxiety and fear-based disorders. Understanding these converging influences is imperative to the development of more effective, individualized treatments that take sex and hormones into account.

  14. Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala.

    Science.gov (United States)

    Fanselow, M S; Kim, J J

    1994-02-01

    Rats, with chronic cannula placed bilaterally in the amygdala, received infusions of the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV) before contextual Pavlovian fear conditioning. Administration of APV to the basolateral nucleus prevented acquisition of fear. Central nucleus infusions had no effect. It is concluded that an NMDA-mediated process near the basolateral region of the amygdala (e.g., lateral or basolateral nucleus) is essential for the learning of fear.

  15. Retrieving fear memories, as time goes by…

    Science.gov (United States)

    Do Monte, Fabricio H.; Quirk, Gregory J.; Li, Bo; Penzo, Mario A.

    2016-01-01

    Fear conditioning researches have led to a comprehensive picture of the neuronal circuit underlying the formation of fear memories. In contrast, knowledge about the retrieval of fear memories is much more limited. This disparity may stem from the fact that fear memories are not rigid, but reorganize over time. To bring clarity and raise awareness on the time-dependent dynamics of retrieval circuits, we review current evidence on the neuronal circuitry participating in fear memory retrieval at both early and late time points after conditioning. We focus on the temporal recruitment of the paraventricular nucleus of the thalamus, and its BDNFergic efferents to the central nucleus of the amygdala, for the retrieval and maintenance of fear memories. Finally, we speculate as to why retrieval circuits change across time, and the functional benefits of recruiting structures such as the paraventricular nucleus into the retrieval circuit. PMID:27217148

  16. Rapid amygdala responses during trace fear conditioning without awareness.

    Directory of Open Access Journals (Sweden)

    Nicholas L Balderston

    Full Text Available The role of consciousness in learning has been debated for nearly 50 years. Recent studies suggest that conscious awareness is needed to bridge the gap when learning about two events that are separated in time, as is true for trace fear conditioning. This has been repeatedly shown and seems to apply to other forms of classical conditioning as well. In contrast to these findings, we show that individuals can learn to associate a face with the later occurrence of a shock, even if they are unable to perceive the face. We used a novel application of magnetoencephalography (MEG to non-invasively record neural activity from the amygdala, which is known to be important for fear learning. We demonstrate rapid (∼ 170-200 ms amygdala responses during the stimulus free period between the face and the shock. These results suggest that unperceived faces can serve as signals for impending threat, and that rapid, automatic activation of the amygdala contributes to this process. In addition, we describe a methodology that can be applied in the future to study neural activity with MEG in other subcortical structures.

  17. Rapid amygdala responses during trace fear conditioning without awareness.

    Science.gov (United States)

    Balderston, Nicholas L; Schultz, Douglas H; Baillet, Sylvain; Helmstetter, Fred J

    2014-01-01

    The role of consciousness in learning has been debated for nearly 50 years. Recent studies suggest that conscious awareness is needed to bridge the gap when learning about two events that are separated in time, as is true for trace fear conditioning. This has been repeatedly shown and seems to apply to other forms of classical conditioning as well. In contrast to these findings, we show that individuals can learn to associate a face with the later occurrence of a shock, even if they are unable to perceive the face. We used a novel application of magnetoencephalography (MEG) to non-invasively record neural activity from the amygdala, which is known to be important for fear learning. We demonstrate rapid (∼ 170-200 ms) amygdala responses during the stimulus free period between the face and the shock. These results suggest that unperceived faces can serve as signals for impending threat, and that rapid, automatic activation of the amygdala contributes to this process. In addition, we describe a methodology that can be applied in the future to study neural activity with MEG in other subcortical structures.

  18. Rapid eye movement sleep deprivation does not affect fear memory reconsolidation in rats.

    Science.gov (United States)

    Tian, Shaowen; Huang, Fulian; Li, Peng; Ouyang, Xinping; Li, Zengbang; Deng, Haifeng; Yang, Yufeng

    2009-09-29

    There is increasing evidence that sleep may be involved in memory consolidation. However, there remain comparatively few studies that have explored the relationship between sleep and memory reconsolidation. At present study, we tested the effects of rapid eye movement sleep deprivation (RSD) on the reconsolidation of cued (experiment 1) and contextual (experiment 2) fear memory in rats. Behaviour procedure involved four training phases: habituation, fear conditioning, reactivation and test. Rats were subjected to 6h RSD starting either immediately after reactivation or 6h later. The control rats were returned to their home cages immediately after reactivation and left undisturbed. Contrary to those hypotheses speculating a potential role of sleep in reconsolidation, we found that post-reactivation RSD whether from 0 to 6h or 6 to 12h had no effect on the reconsolidation of both cued and contextual fear memory. However, our present results did not exclude the potential roles of non-rapid eye movement sleep in the reconsolidation of fear memory or sleep in the reconsolidation of other memory paradigms.

  19. FEAR BOUDARIES: RESISTENCE TO TOURISM PROJECTS AT ILHA DO MEDO (ISLE OF FEAR – MARANHÃO STATE, BRAZIL

    Directory of Open Access Journals (Sweden)

    Emilene Leite de Sousa

    2012-03-01

    Full Text Available The article analyses a project for communitarian tourism at Ilha do Medo, Maranhão State and the local‟s reaction to tourists. It also analyses dialogues between natives people and tourism planners in the place. Local´s reaction to the attempt of turning the island into a new attraction at San Luis indicates their concern in preserving their way of life. To do so they use fear as a strategy to keep “invaders” at a distance. The analysis made possible to reflect on relationships between tourists and native people, understand the social network woven among tourism planners, natives and ethnographers in the field, as well as learning the flux at the boundaries of fear.

  20. Fear activation and distraction during the emotional processing of claustrophobic fear

    NARCIS (Netherlands)

    Telch, M.J.; Valentiner, D.P.; Ilai, D.; Young, P.R.; Powers, M.B.; Smits, J.A.J.

    2012-01-01

    We tested several hypotheses derived from the emotional processing theory of fear reduction by manipulating claustrophobic participants' focus of attention during in vivo exposure. Sixty participants displaying marked claustrophobic fear were randomized to one of four exposure conditions. Each