WorldWideScience

Sample records for cuda system possibilities

  1. A TBB-CUDA Implementation for Background Removal in a Video-Based Fire Detection System

    Directory of Open Access Journals (Sweden)

    Fan Wang

    2014-01-01

    Full Text Available This paper presents a parallel TBB-CUDA implementation for the acceleration of single-Gaussian distribution model, which is effective for background removal in the video-based fire detection system. In this framework, TBB mainly deals with initializing work of the estimated Gaussian model running on CPU, and CUDA performs background removal and adaption of the model running on GPU. This implementation can exploit the combined computation power of TBB-CUDA, which can be applied to the real-time environment. Over 220 video sequences are utilized in the experiments. The experimental results illustrate that TBB+CUDA can achieve a higher speedup than both TBB and CUDA. The proposed framework can effectively overcome the disadvantages of limited memory bandwidth and few execution units of CPU, and it reduces data transfer latency and memory latency between CPU and GPU.

  2. IMPROVING THE PERFORMANCE OF THE LINEAR SYSTEMS SOLVERS USING CUDA

    Directory of Open Access Journals (Sweden)

    BOGDAN OANCEA

    2012-05-01

    Full Text Available Parallel computing can offer an enormous advantage regarding the performance for very large applications in almost any field: scientific computing, computer vision, databases, data mining, and economics. GPUs are high performance many-core processors that can obtain very high FLOP rates. Since the first idea of using GPU for general purpose computing, things have evolved and now there are several approaches to GPU programming: CUDA from NVIDIA and Stream from AMD. CUDA is now a popular programming model for general purpose computations on GPU for C/C++ programmers. A great number of applications were ported to CUDA programming model and they obtain speedups of orders of magnitude comparing to optimized CPU implementations. In this paper we present an implementation of a library for solving linear systems using the CCUDA framework. We present the results of performance tests and show that using GPU one can obtain speedups of about of approximately 80 times comparing with a CPU implementation.

  3. Exploration of automatic optimization for CUDA programming

    KAUST Repository

    Al-Mouhamed, Mayez; Khan, Ayaz ul Hassan

    2012-01-01

    Graphic processing Units (GPUs) are gaining ground in high-performance computing. CUDA (an extension to C) is most widely used parallel programming framework for general purpose GPU computations. However, the task of writing optimized CUDA program is complex even for experts. We present a method for restructuring loops into an optimized CUDA kernels based on a 3-step algorithm which are loop tiling, coalesced memory access, and resource optimization. We also establish the relationships between the influencing parameters and propose a method for finding possible tiling solutions with coalesced memory access that best meets the identified constraints. We also present a simplified algorithm for restructuring loops and rewrite them as an efficient CUDA Kernel. The execution model of synthesized kernel consists of uniformly distributing the kernel threads to keep all cores busy while transferring a tailored data locality which is accessed using coalesced pattern to amortize the long latency of the secondary memory. In the evaluation, we implement some simple applications using the proposed restructuring strategy and evaluate the performance in terms of execution time and GPU throughput. © 2012 IEEE.

  4. Exploration of automatic optimization for CUDA programming

    KAUST Repository

    Al-Mouhamed, Mayez

    2012-12-01

    Graphic processing Units (GPUs) are gaining ground in high-performance computing. CUDA (an extension to C) is most widely used parallel programming framework for general purpose GPU computations. However, the task of writing optimized CUDA program is complex even for experts. We present a method for restructuring loops into an optimized CUDA kernels based on a 3-step algorithm which are loop tiling, coalesced memory access, and resource optimization. We also establish the relationships between the influencing parameters and propose a method for finding possible tiling solutions with coalesced memory access that best meets the identified constraints. We also present a simplified algorithm for restructuring loops and rewrite them as an efficient CUDA Kernel. The execution model of synthesized kernel consists of uniformly distributing the kernel threads to keep all cores busy while transferring a tailored data locality which is accessed using coalesced pattern to amortize the long latency of the secondary memory. In the evaluation, we implement some simple applications using the proposed restructuring strategy and evaluate the performance in terms of execution time and GPU throughput. © 2012 IEEE.

  5. Exploration of automatic optimisation for CUDA programming

    KAUST Repository

    Al-Mouhamed, Mayez; Khan, Ayaz ul Hassan

    2014-01-01

    © 2014 Taylor & Francis. Writing optimised compute unified device architecture (CUDA) program for graphic processing units (GPUs) is complex even for experts. We present a design methodology for a restructuring tool that converts C-loops into optimised CUDA kernels based on a three-step algorithm which are loop tiling, coalesced memory access and resource optimisation. A method for finding possible loop tiling solutions with coalesced memory access is developed and a simplified algorithm for restructuring C-loops into an efficient CUDA kernel is presented. In the evaluation, we implement matrix multiply (MM), matrix transpose (M-transpose), matrix scaling (M-scaling) and matrix vector multiply (MV) using the proposed algorithm. We present the analysis of the execution time and GPU throughput for the above applications, which favourably compare to other proposals. Evaluation is carried out while scaling the problem size and running under a variety of kernel configurations. The obtained speedup is about 28-35% for M-transpose compared to NVIDIA Software Development Kit, 33% speedup for MV compared to general purpose computation on graphics processing unit compiler, and more than 80% speedup for MM and M-scaling compared to CUDA-lite.

  6. Exploration of automatic optimisation for CUDA programming

    KAUST Repository

    Al-Mouhamed, Mayez

    2014-09-16

    © 2014 Taylor & Francis. Writing optimised compute unified device architecture (CUDA) program for graphic processing units (GPUs) is complex even for experts. We present a design methodology for a restructuring tool that converts C-loops into optimised CUDA kernels based on a three-step algorithm which are loop tiling, coalesced memory access and resource optimisation. A method for finding possible loop tiling solutions with coalesced memory access is developed and a simplified algorithm for restructuring C-loops into an efficient CUDA kernel is presented. In the evaluation, we implement matrix multiply (MM), matrix transpose (M-transpose), matrix scaling (M-scaling) and matrix vector multiply (MV) using the proposed algorithm. We present the analysis of the execution time and GPU throughput for the above applications, which favourably compare to other proposals. Evaluation is carried out while scaling the problem size and running under a variety of kernel configurations. The obtained speedup is about 28-35% for M-transpose compared to NVIDIA Software Development Kit, 33% speedup for MV compared to general purpose computation on graphics processing unit compiler, and more than 80% speedup for MM and M-scaling compared to CUDA-lite.

  7. Optimization Specifications for CUDA Code Restructuring Tool

    KAUST Repository

    Khan, Ayaz

    2017-03-13

    In this work we have developed a restructuring software tool (RT-CUDA) following the proposed optimization specifications to bridge the gap between high-level languages and the machine dependent CUDA environment. RT-CUDA takes a C program and convert it into an optimized CUDA kernel with user directives in a configuration file for guiding the compiler. RTCUDA also allows transparent invocation of the most optimized external math libraries like cuSparse and cuBLAS enabling efficient design of linear algebra solvers. We expect RT-CUDA to be needed by many KSA industries dealing with science and engineering simulation on massively parallel computers like NVIDIA GPUs.

  8. Swan: A tool for porting CUDA programs to OpenCL

    Science.gov (United States)

    Harvey, M. J.; De Fabritiis, G.

    2011-04-01

    The use of modern, high-performance graphical processing units (GPUs) for acceleration of scientific computation has been widely reported. The majority of this work has used the CUDA programming model supported exclusively by GPUs manufactured by NVIDIA. An industry standardisation effort has recently produced the OpenCL specification for GPU programming. This offers the benefits of hardware-independence and reduced dependence on proprietary tool-chains. Here we describe a source-to-source translation tool, "Swan" for facilitating the conversion of an existing CUDA code to use the OpenCL model, as a means to aid programmers experienced with CUDA in evaluating OpenCL and alternative hardware. While the performance of equivalent OpenCL and CUDA code on fixed hardware should be comparable, we find that a real-world CUDA application ported to OpenCL exhibits an overall 50% increase in runtime, a reduction in performance attributable to the immaturity of contemporary compilers. The ported application is shown to have platform independence, running on both NVIDIA and AMD GPUs without modification. We conclude that OpenCL is a viable platform for developing portable GPU applications but that the more mature CUDA tools continue to provide best performance. Program summaryProgram title: Swan Catalogue identifier: AEIH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public License version 2 No. of lines in distributed program, including test data, etc.: 17 736 No. of bytes in distributed program, including test data, etc.: 131 177 Distribution format: tar.gz Programming language: C Computer: PC Operating system: Linux RAM: 256 Mbytes Classification: 6.5 External routines: NVIDIA CUDA, OpenCL Nature of problem: Graphical Processing Units (GPUs) from NVIDIA are preferentially programed with the proprietary CUDA programming toolkit. An

  9. Frequency Domain Image Filtering Using CUDA

    Directory of Open Access Journals (Sweden)

    Muhammad Awais Rajput

    2014-10-01

    Full Text Available In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA?s CUDA (Compute Unified Device Architecture. In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA?s parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butterworth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output image quality on both the processing architectures

  10. Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing.

    Science.gov (United States)

    Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng

    2014-10-01

    Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA's CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream . Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels.

  11. CUDA-based real time surgery simulation.

    Science.gov (United States)

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  12. Parallelized Seeded Region Growing Using CUDA

    Directory of Open Access Journals (Sweden)

    Seongjin Park

    2014-01-01

    Full Text Available This paper presents a novel method for parallelizing the seeded region growing (SRG algorithm using Compute Unified Device Architecture (CUDA technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests.

  13. Frequency domain image filtering using cuda

    International Nuclear Information System (INIS)

    Rajput, M.A.; Khan, U.A.

    2014-01-01

    In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA's CUDA (Compute Unified Device Architecture). In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform) which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA's parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butter worth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output) image quality on both the processing architectures. (author)

  14. A high performance GPU implementation of Surface Energy Balance System (SEBS) based on CUDA-C

    NARCIS (Netherlands)

    Abouali, Mohammad; Timmermans, J.; Castillo, Jose E.; Su, Zhongbo

    2013-01-01

    This paper introduces a new implementation of the Surface Energy Balance System (SEBS) algorithm harnessing the many cores available on Graphics Processing Units (GPUs). This new implementation uses Compute Unified Device Architecture C (CUDA-C) programming model and is designed to be executed on a

  15. cudaBayesreg: Parallel Implementation of a Bayesian Multilevel Model for fMRI Data Analysis

    Directory of Open Access Journals (Sweden)

    Adelino R. Ferreira da Silva

    2011-10-01

    Full Text Available Graphic processing units (GPUs are rapidly gaining maturity as powerful general parallel computing devices. A key feature in the development of modern GPUs has been the advancement of the programming model and programming tools. Compute Unified Device Architecture (CUDA is a software platform for massively parallel high-performance computing on Nvidia many-core GPUs. In functional magnetic resonance imaging (fMRI, the volume of the data to be processed, and the type of statistical analysis to perform call for high-performance computing strategies. In this work, we present the main features of the R-CUDA package cudaBayesreg which implements in CUDA the core of a Bayesian multilevel model for the analysis of brain fMRI data. The statistical model implements a Gibbs sampler for multilevel/hierarchical linear models with a normal prior. The main contribution for the increased performance comes from the use of separate threads for fitting the linear regression model at each voxel in parallel. The R-CUDA implementation of the Bayesian model proposed here has been able to reduce significantly the run-time processing of Markov chain Monte Carlo (MCMC simulations used in Bayesian fMRI data analyses. Presently, cudaBayesreg is only configured for Linux systems with Nvidia CUDA support.

  16. Cuda Library for T2ournamint

    Science.gov (United States)

    2016-09-13

    NVIDIA Corporation . [3] NVIDIA , “CUDA C Programming Guide,” 2007-2015 NVIDIA Corporation . [4] NVIDIA ...cuFFT User Guide,” 2015, NVIDIA Corporation , Retrieved from http://docs.nvidia.com/cuda/cufft/index.html#axzz49bBKJGXy. [5] NVIDIA , “Whitepaper, NVIDIA TESLA P100,” 2016, NVIDIA Corporation . ...performance and realize acceptable processing speeds we leverage the use of an accelerator, the NVIDIA Tesla K40

  17. Simple sorting algorithm test based on CUDA

    OpenAIRE

    Meng, Hongyu; Guo, Fangjin

    2015-01-01

    With the development of computing technology, CUDA has become a very important tool. In computer programming, sorting algorithm is widely used. There are many simple sorting algorithms such as enumeration sort, bubble sort and merge sort. In this paper, we test some simple sorting algorithm based on CUDA and draw some useful conclusions.

  18. CUDArray: CUDA-based NumPy

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This technical report introduces CUDArray – a CUDA-accelerated subset of the NumPy library. The goal of CUDArray is to combine the ease of development from NumPy with the computational power of Nvidia GPUs in a lightweight and extensible framework. Since the motivation behind CUDArray is to facil......This technical report introduces CUDArray – a CUDA-accelerated subset of the NumPy library. The goal of CUDArray is to combine the ease of development from NumPy with the computational power of Nvidia GPUs in a lightweight and extensible framework. Since the motivation behind CUDArray...

  19. 4kUHD H264 Wireless Live Video Streaming Using CUDA

    Directory of Open Access Journals (Sweden)

    A. O. Adeyemi-Ejeye

    2014-01-01

    Full Text Available Ultrahigh definition video streaming has been explored in recent years. Most recently the possibility of 4kUHD video streaming over wireless 802.11n was presented, using preencoded video. Live encoding for streaming using x264 has proven to be very slow. The use of parallel encoding has been explored to speed up the process using CUDA. However there hasnot been a parallel implementation for video streaming. We therefore present for the first time a novel implementation of 4kUHD live encoding for streaming over a wireless network at low bitrate indoors, using CUDA for parallel H264 encoding. Our experimental results are used to verify our claim.

  20. Development of High-speed Visualization System of Hypocenter Data Using CUDA-based GPU computing

    Science.gov (United States)

    Kumagai, T.; Okubo, K.; Uchida, N.; Matsuzawa, T.; Kawada, N.; Takeuchi, N.

    2014-12-01

    After the Great East Japan Earthquake on March 11, 2011, intelligent visualization of seismic information is becoming important to understand the earthquake phenomena. On the other hand, to date, the quantity of seismic data becomes enormous as a progress of high accuracy observation network; we need to treat many parameters (e.g., positional information, origin time, magnitude, etc.) to efficiently display the seismic information. Therefore, high-speed processing of data and image information is necessary to handle enormous amounts of seismic data. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for data processing and calculation in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. GPU computing gives us the high-performance computing environment at a lower cost than before. Moreover, use of GPU has an advantage of visualization of processed data, because GPU is originally architecture for graphics processing. In the GPU computing, the processed data is always stored in the video memory. Therefore, we can directly write drawing information to the VRAM on the video card by combining CUDA and the graphics API. In this study, we employ CUDA and OpenGL and/or DirectX to realize full-GPU implementation. This method makes it possible to write drawing information to the VRAM on the video card without PCIe bus data transfer: It enables the high-speed processing of seismic data. The present study examines the GPU computing-based high-speed visualization and the feasibility for high-speed visualization system of hypocenter data.

  1. High Performance Processing and Analysis of Geospatial Data Using CUDA on GPU

    Directory of Open Access Journals (Sweden)

    STOJANOVIC, N.

    2014-11-01

    Full Text Available In this paper, the high-performance processing of massive geospatial data on many-core GPU (Graphic Processing Unit is presented. We use CUDA (Compute Unified Device Architecture programming framework to implement parallel processing of common Geographic Information Systems (GIS algorithms, such as viewshed analysis and map-matching. Experimental evaluation indicates the improvement in performance with respect to CPU-based solutions and shows feasibility of using GPU and CUDA for parallel implementation of GIS algorithms over large-scale geospatial datasets.

  2. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    Science.gov (United States)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  3. Heuristics for the Variable Sized Bin Packing Problem Using a Hybrid P-System and CUDA Architecture

    OpenAIRE

    AlEnezi, Qadha'a; AboElFotoh, Hosam; AlBdaiwi, Bader; AlMulla, Mohammad Ali

    2016-01-01

    The Variable Sized Bin Packing Problem has a wide range of application areas including packing, scheduling, and manufacturing. Given a list of items and variable sized bin types, the objective is to minimize the total size of the used bins. This problem is known to be NP-hard. In this article, we present two new heuristics for solving the problem using a new variation of P systems with active membranes, which we call a hybrid P system, implemented in CUDA. Our hybrid P-system model allows usi...

  4. Exploring Parallel Algorithms for Volumetric Mass-Spring-Damper Models in CUDA

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Mosegaard, Jesper; Sørensen, Thomas Sangild

    2008-01-01

    ) from Nvidia. This paper investigates multiple implementations of volumetric Mass-Spring-Damper systems in CUDA. The obtained performance is compared to previous implementations utilizing the GPU through the OpenGL graphics API. We find that both performance and optimization strategies differ widely...

  5. Study of the acceleration of nuclide burnup calculation using GPU with CUDA

    International Nuclear Information System (INIS)

    Okui, S.; Ohoka, Y.; Tatsumi, M.

    2009-01-01

    The computation costs of neutronics calculation code become higher as physics models and methods are complicated. The degree of them in neutronics calculation tends to be limited due to available computing power. In order to open a door to the new world, use of GPU for general purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing mechanism enabled with multi-processors which realize mush higher performance than CPUs. NVIDIA recently released the CUDA language for general purpose computation which is a C-like programming language. It is relatively easy to learn compared to the conventional ones used for GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the 4.-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup calculation and the 4.-order Runge-Kutta method were suitable to the first step of introduction CUDA into numerical calculation because these consist of simple operations of matrices and vectors of single precision where actual codes were written in the C++ language. Our experimental results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of 100 compared to that with CPU. (authors)

  6. BarraCUDA - a fast short read sequence aligner using graphics processing units

    Directory of Open Access Journals (Sweden)

    Klus Petr

    2012-01-01

    Full Text Available Abstract Background With the maturation of next-generation DNA sequencing (NGS technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU, extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net

  7. BarraCUDA - a fast short read sequence aligner using graphics processing units

    LENUS (Irish Health Repository)

    Klus, Petr

    2012-01-13

    Abstract Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http:\\/\\/seqbarracuda.sf.net

  8. cudaMap: a GPU accelerated program for gene expression connectivity mapping.

    Science.gov (United States)

    McArt, Darragh G; Bankhead, Peter; Dunne, Philip D; Salto-Tellez, Manuel; Hamilton, Peter; Zhang, Shu-Dong

    2013-10-11

    Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.

  9. Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, D.G., E-mail: dgbeasley@itn.pt; Marques, A.C.; Alves, L.C.; Silva, R.C. da

    2013-07-01

    A new 3D Proton Induced X-Ray Emission Tomography (PIXE-T) and Scanning Transmission Ion Microscopy Tomography (STIM-T) simulation software has been developed in Java and uses NVIDIA™ Common Unified Device Architecture (CUDA) to calculate the X-ray attenuation for large detector areas. A challenge with PIXE-T is to get sufficient counts while retaining a small beam spot size. Therefore a high geometric efficiency is required. However, as the detector solid angle increases the calculations required for accurate reconstruction of the data increase substantially. To overcome this limitation, the CUDA parallel computing platform was used which enables general purpose programming of NVIDIA graphics processing units (GPUs) to perform computations traditionally handled by the central processing unit (CPU). For simulation performance evaluation, the results of a CPU- and a CUDA-based simulation of a phantom are presented. Furthermore, a comparison with the simulation code in the PIXE-Tomography reconstruction software DISRA (A. Sakellariou, D.N. Jamieson, G.J.F. Legge, 2001) is also shown. Compared to a CPU implementation, the CUDA based simulation is approximately 30× faster.

  10. Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA

    International Nuclear Information System (INIS)

    Beasley, D.G.; Marques, A.C.; Alves, L.C.; Silva, R.C. da

    2013-01-01

    A new 3D Proton Induced X-Ray Emission Tomography (PIXE-T) and Scanning Transmission Ion Microscopy Tomography (STIM-T) simulation software has been developed in Java and uses NVIDIA™ Common Unified Device Architecture (CUDA) to calculate the X-ray attenuation for large detector areas. A challenge with PIXE-T is to get sufficient counts while retaining a small beam spot size. Therefore a high geometric efficiency is required. However, as the detector solid angle increases the calculations required for accurate reconstruction of the data increase substantially. To overcome this limitation, the CUDA parallel computing platform was used which enables general purpose programming of NVIDIA graphics processing units (GPUs) to perform computations traditionally handled by the central processing unit (CPU). For simulation performance evaluation, the results of a CPU- and a CUDA-based simulation of a phantom are presented. Furthermore, a comparison with the simulation code in the PIXE-Tomography reconstruction software DISRA (A. Sakellariou, D.N. Jamieson, G.J.F. Legge, 2001) is also shown. Compared to a CPU implementation, the CUDA based simulation is approximately 30× faster

  11. Benchmarking BarraCUDA on Epigenetic DNA and nVidia Pascal GPUs

    OpenAIRE

    Langdon, W

    2016-01-01

    Typically BarraCUDA uses CUDA graphics cards to map DNA reads to the human genome. Previously its software source code was genetically improved for short paired end next generation sequences. On longer, 150 base paired end noisy Cambridge Epigenetix's data, a Pascal GTX 1080 processes about 10000 strings per second, comparable with twin nVidia Tesla K40.

  12. CUDA/GPU Technology : Parallel Programming For High Performance Scientific Computing

    OpenAIRE

    YUHENDRA; KUZE, Hiroaki; JOSAPHAT, Tetuko Sri Sumantyo

    2009-01-01

    [ABSTRACT]Graphics processing units (GP Us) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. In the high performance computation capabilities, graphic processing units (GPU) lead to much more powerful performance than conventional CPUs by means of parallel processing. In 2007, the birth of Compute Unified Device Architecture (CUDA) and CUDA-enabled GPUs by NVIDIA Corporation brought a revolution in the general purpose GPU a...

  13. Application of the opportunities of tool system 'CUDA' for graphic processors programming in scientific and technical calculation tasks

    International Nuclear Information System (INIS)

    Dudnik, V.A.; Kudryavtsev, V.I.; Sereda, T.M.; Us, S.A.; Shestakov, M.V.

    2009-01-01

    The opportunities of technology CUDA (Compute Unified Device Architecture - the unified hardware-software decision for parallel calculations on GPU)of the company NVIDIA were described. The basic differences of the programming language 'C' for GPU from 'usual' language 'C' were selected. The examples of CUDA usage for acceleration of development of applications and realization of algorithms of scientific and technical calculations were given which are carried out by the means of graphic processors (GPGPU) of accelerators GeForce of the eighth generation. The recommendations on optimization of the programs using GPU were resulted.

  14. CUDA vs. OpenCL: uma comparação teórica e tecnológica

    Directory of Open Access Journals (Sweden)

    Lauro Cássio Martins de Paula

    2014-08-01

    Full Text Available Apresenta-se neste trabalho uma comparação entre duas arquiteturas para computação paralela: Compute Unified Device Architecture (CUDA e Open Computing Language (OpenCL. Alguns trabalhos na literatura apresentaram uma comparação de desempenho computacional entre as duas arquiteturas. Entretanto, ainda não existe algum artigo recente e completo que destaca claramente qual arquitetura pode ser considerada a mais eficiente. O objetivo deste trabalho é realizar uma comparação apenas em nível de hardware, software, tendências tecnológicas e facilidades de utilização, evidenciando aquela que pode apresentar o melhor desempenho de uma maneira geral. Para tal, descreve-se os principais trabalhos que já fizeram uso de pelo menos uma das arquiteturas. Observou-se que, por ser um sistema heterogêneo, a escolha do OpenCL pode parecer mais óbvia. No entanto, foi possível concluir que CUDA, apesar de poder ser utilizada apenas nas placas gráficas da NVIDIA®, tem sido uma referência e mais utilizada ultimamente.Palavras-chave: CUDA. OpenCL. GPU.Cuda vs. Opencl: a theoretical and technological comparisonAbstractThis paper presents a comparison between two architectures for parallel computing: Compute Unified Device Architecture (CUDA and Open Computing Language (OpenCL. Some works in the literature have presented a computational performance comparison of the two architectures. However, there is not some complete and recent paper that highlights clearly which architecture can be considered the most efficient. The goal is to make a comparison only in level of hardware, software, technological trends and ease of use, highlighting one that may present the best cost-effective in general. To this end, we describe the main works that have used at least one of the architectures. It was observed that the choice of OpenCL may seem more obvious for being a heterogeneous system. Nevertheless, it was concluded that CUDA, although it can be used only in

  15. Advanced mathematical on-line analysis in nuclear experiments. Usage of parallel computing CUDA routines in standard root analysis

    Science.gov (United States)

    Grzeszczuk, A.; Kowalski, S.

    2015-04-01

    Compute Unified Device Architecture (CUDA) is a parallel computing platform developed by Nvidia for increase speed of graphics by usage of parallel mode for processes calculation. The success of this solution has opened technology General-Purpose Graphic Processor Units (GPGPUs) for applications not coupled with graphics. The GPGPUs system can be applying as effective tool for reducing huge number of data for pulse shape analysis measures, by on-line recalculation or by very quick system of compression. The simplified structure of CUDA system and model of programming based on example Nvidia GForce GTX580 card are presented by our poster contribution in stand-alone version and as ROOT application.

  16. Optimization Specifications for CUDA Code Restructuring Tool

    KAUST Repository

    Khan, Ayaz

    2017-01-01

    and convert it into an optimized CUDA kernel with user directives in a configuration file for guiding the compiler. RTCUDA also allows transparent invocation of the most optimized external math libraries like cuSparse and cuBLAS enabling efficient design

  17. Stochastic first passage time accelerated with CUDA

    Science.gov (United States)

    Pierro, Vincenzo; Troiano, Luigi; Mejuto, Elena; Filatrella, Giovanni

    2018-05-01

    The numerical integration of stochastic trajectories to estimate the time to pass a threshold is an interesting physical quantity, for instance in Josephson junctions and atomic force microscopy, where the full trajectory is not accessible. We propose an algorithm suitable for efficient implementation on graphical processing unit in CUDA environment. The proposed approach for well balanced loads achieves almost perfect scaling with the number of available threads and processors, and allows an acceleration of about 400× with a GPU GTX980 respect to standard multicore CPU. This method allows with off the shell GPU to challenge problems that are otherwise prohibitive, as thermal activation in slowly tilted potentials. In particular, we demonstrate that it is possible to simulate the switching currents distributions of Josephson junctions in the timescale of actual experiments.

  18. Workflow of the Grover algorithm simulation incorporating CUDA and GPGPU

    Science.gov (United States)

    Lu, Xiangwen; Yuan, Jiabin; Zhang, Weiwei

    2013-09-01

    The Grover quantum search algorithm, one of only a few representative quantum algorithms, can speed up many classical algorithms that use search heuristics. No true quantum computer has yet been developed. For the present, simulation is one effective means of verifying the search algorithm. In this work, we focus on the simulation workflow using a compute unified device architecture (CUDA). Two simulation workflow schemes are proposed. These schemes combine the characteristics of the Grover algorithm and the parallelism of general-purpose computing on graphics processing units (GPGPU). We also analyzed the optimization of memory space and memory access from this perspective. We implemented four programs on CUDA to evaluate the performance of schemes and optimization. Through experimentation, we analyzed the organization of threads suited to Grover algorithm simulations, compared the storage costs of the four programs, and validated the effectiveness of optimization. Experimental results also showed that the distinguished program on CUDA outperformed the serial program of libquantum on a CPU with a speedup of up to 23 times (12 times on average), depending on the scale of the simulation.

  19. Advanced mathematical on-line analysis in nuclear experiments. Usage of parallel computing CUDA routines in standard root analysis

    Directory of Open Access Journals (Sweden)

    Grzeszczuk A.

    2015-01-01

    Full Text Available Compute Unified Device Architecture (CUDA is a parallel computing platform developed by Nvidia for increase speed of graphics by usage of parallel mode for processes calculation. The success of this solution has opened technology General-Purpose Graphic Processor Units (GPGPUs for applications not coupled with graphics. The GPGPUs system can be applying as effective tool for reducing huge number of data for pulse shape analysis measures, by on-line recalculation or by very quick system of compression. The simplified structure of CUDA system and model of programming based on example Nvidia GForce GTX580 card are presented by our poster contribution in stand-alone version and as ROOT application.

  20. Projector and backprojector for iterative CT reconstruction with blobs using CUDA

    Energy Technology Data Exchange (ETDEWEB)

    Bippus, Rolf-Dieter; Koehler, Thomas; Bergner, Frank; Brendel, Bernhard; Proksa, Roland [Philips Research Laboratories, Hamburg (Germany); Hansis, Eberhard [Philips Healthcare, Nuclear Medicine, San Jose, CA (United States)

    2011-07-01

    Using blobs allows modeling the CT system's geometry more correctly within an iterative reconstruction framework. However their application comes with an increased computational demand. This led us to use blobs for image representation and a dedicated GPU hardware implementation to counteract their computational demand. Making extensive use of the texture interpolation capabilities of CUDA and implementing an asymmetric projector/backprojector pair we achieve reasonable processing times and good system modeling at the same time. (orig.)

  1. 3D Tomographic Image Reconstruction using CUDA C

    International Nuclear Information System (INIS)

    Dominguez, J. S.; Assis, J. T.; Oliveira, L. F. de

    2011-01-01

    This paper presents the study and implementation of a software for three dimensional reconstruction of images obtained with a tomographic system using the capabilities of Graphic Processing Units(GPU). The reconstruction by filtered back-projection method was developed using the CUDA C, for maximum utilization of the processing capabilities of GPUs to solve computational problems with large computational cost and highly parallelizable. It was discussed the potential of GPUs and shown its advantages to solving this kind of problems. The results in terms of runtime will be compared with non-parallelized implementations and must show a great reduction of processing time. (Author)

  2. IMPLEMENTATION OF OBJECT TRACKING ALGORITHMS ON THE BASIS OF CUDA TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    B. A. Zalesky

    2014-01-01

    Full Text Available A fast version of correlation algorithm to track objects on video-sequences made by a nonstabilized camcorder is presented. The algorithm is based on comparison of local correlations of the object image and regions of video-frames. The algorithm is implemented in programming technology CUDA. Application of CUDA allowed to attain real time execution of the algorithm. To improve its precision and stability, a robust version of the Kalman filter has been incorporated into the flowchart. Tests showed applicability of the algorithm to practical object tracking.

  3. Applying of the NVIDIA CUDA to the video processing in the task of the roundwood volume estimation

    Directory of Open Access Journals (Sweden)

    Kruglov Artem

    2016-01-01

    Full Text Available The paper is devoted to the parallel computing. The algorithm for roundwood volume estimation had insufficient performance so it was decided to port its bottleneck part on the GPU. The analysis of various GPGPU techniques was observed and the NVIDIA CUDA technology was chosen for implementation. The results of the research have shown the high potential of the GPU implementation in the improvement performance of the computation. The speedup of the algorithm for the roundwood volume estimation is more than 300% after porting on GPU with implementation of the CUDA technology. This helps to apply the machine vision algorithm in real-time system.

  4. Multi–GPU Implementation of Machine Learning Algorithm using CUDA and OpenCL

    Directory of Open Access Journals (Sweden)

    Jan Masek

    2016-06-01

    Full Text Available Using modern Graphic Processing Units (GPUs becomes very useful for computing complex and time consuming processes. GPUs provide high–performance computation capabilities with a good price. This paper deals with a multi–GPU OpenCL and CUDA implementations of k–Nearest Neighbor (k–NN algorithm. This work compares performances of OpenCLand CUDA implementations where each of them is suitable for different number of used attributes. The proposed CUDA algorithm achieves acceleration up to 880x in comparison witha single thread CPU version. The common k-NN was modified to be faster when the lower number of k neighbors is set. The performance of algorithm was verified with two GPUs dual-core NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with 4.1 GHz frequency. The results of speed up were measured for one GPU, two GPUs, three and four GPUs. We performed several tests with data sets containing up to 4 million elements with various number of attributes.

  5. CUDT: A CUDA Based Decision Tree Algorithm

    Directory of Open Access Journals (Sweden)

    Win-Tsung Lo

    2014-01-01

    Full Text Available Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture, which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.

  6. DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking

    Directory of Open Access Journals (Sweden)

    Jiří Barnat

    2009-12-01

    Full Text Available In this paper we present a tool that performs CUDA accelerated LTL Model Checking. The tool exploits parallel algorithm MAP adjusted to the NVIDIA CUDA architecture in order to efficiently detect the presence of accepting cycles in a directed graph. Accepting cycle detection is the core algorithmic procedure in automata-based LTL Model Checking. We demonstrate that the tool outperforms non-accelerated version of the algorithm and we discuss where the limits of the tool are and what we intend to do in the future to avoid them.

  7. Performance comparison of OpenCL and CUDA by benchmarking an optimized perspective backprojection

    Energy Technology Data Exchange (ETDEWEB)

    Swall, Stefan; Ritschl, Ludwig; Knaup, Michael; Kachelriess, Marc [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. of Medical Physics (IMP)

    2011-07-01

    The increase in performance of Graphical Processing Units (GPUs) and the onward development of dedicated software tools within the last decade allows to transfer performance-demanding computations from the Central Processing Unit (CPU) to the GPU and to speed up certain tasks by utilizing the massiv parallel architecture of these devices. The Computate Unified Device Architecture (CUDA) developed by NVIDIA provides an easy hence effective way to develop application that target NVIDIA GPUs. It has become one of the cardinal software tools for this purpose. Recently the Open Computing Language (OpenCL) became available that is neither vendor-specific nor limited to GPUs only. As the benefits of CUDA-based image reconstruction are well known we aim at providing a comparison between the performance that can be achieved with CUDA in comparison to OpenCL by benchmarking the time required to perform a simple but computationally demanding task: the perspective backprojection. (orig.)

  8. MALBEC: a new CUDA-C ray-tracer in general relativity

    Science.gov (United States)

    Quiroga, G. D.

    2018-06-01

    A new CUDA-C code for tracing orbits around non-charged black holes is presented. This code, named MALBEC, take advantage of the graphic processing units and the CUDA platform for tracking null and timelike test particles in Schwarzschild and Kerr. Also, a new general set of equations that describe the closed circular orbits of any timelike test particle in the equatorial plane is derived. These equations are extremely important in order to compare the analytical behavior of the orbits with the numerical results and verify the correct implementation of the Runge-Kutta algorithm in MALBEC. Finally, other numerical tests are performed, demonstrating that MALBEC is able to reproduce some well-known results in these metrics in a faster and more efficient way than a conventional CPU implementation.

  9. Graphic filter library implemented in CUDA language

    OpenAIRE

    Peroutková, Hedvika

    2009-01-01

    This thesis deals with the problem of reducing computation time of raster image processing by parallel computing on graphics processing unit. Raster image processing thereby refers to the application of graphic filters, which can be applied in sequence with different settings. This thesis evaluates the suitability of using parallelization on graphic card for raster image adjustments based on multicriterial choice. Filters are implemented for graphics processing unit in CUDA language. Opacity ...

  10. A Monte Carlo neutron transport code for eigenvalue calculations on a dual-GPU system and CUDA environment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.; Ding, A.; Ji, W.; Xu, X. G. [Nuclear Engineering and Engineering Physics, Rensselaer Polytechnic Inst., Troy, NY 12180 (United States); Carothers, C. D. [Dept. of Computer Science, Rensselaer Polytechnic Inst. RPI (United States); Brown, F. B. [Los Alamos National Laboratory (LANL) (United States)

    2012-07-01

    Monte Carlo (MC) method is able to accurately calculate eigenvalues in reactor analysis. Its lengthy computation time can be reduced by general-purpose computing on Graphics Processing Units (GPU), one of the latest parallel computing techniques under development. The method of porting a regular transport code to GPU is usually very straightforward due to the 'embarrassingly parallel' nature of MC code. However, the situation becomes different for eigenvalue calculation in that it will be performed on a generation-by-generation basis and the thread coordination should be explicitly taken care of. This paper presents our effort to develop such a GPU-based MC code in Compute Unified Device Architecture (CUDA) environment. The code is able to perform eigenvalue calculation under simple geometries on a multi-GPU system. The specifics of algorithm design, including thread organization and memory management were described in detail. The original CPU version of the code was tested on an Intel Xeon X5660 2.8 GHz CPU, and the adapted GPU version was tested on NVIDIA Tesla M2090 GPUs. Double-precision floating point format was used throughout the calculation. The result showed that a speedup of 7.0 and 33.3 were obtained for a bare spherical core and a binary slab system respectively. The speedup factor was further increased by a factor of {approx}2 on a dual GPU system. The upper limit of device-level parallelism was analyzed, and a possible method to enhance the thread-level parallelism was proposed. (authors)

  11. A Monte Carlo neutron transport code for eigenvalue calculations on a dual-GPU system and CUDA environment

    International Nuclear Information System (INIS)

    Liu, T.; Ding, A.; Ji, W.; Xu, X. G.; Carothers, C. D.; Brown, F. B.

    2012-01-01

    Monte Carlo (MC) method is able to accurately calculate eigenvalues in reactor analysis. Its lengthy computation time can be reduced by general-purpose computing on Graphics Processing Units (GPU), one of the latest parallel computing techniques under development. The method of porting a regular transport code to GPU is usually very straightforward due to the 'embarrassingly parallel' nature of MC code. However, the situation becomes different for eigenvalue calculation in that it will be performed on a generation-by-generation basis and the thread coordination should be explicitly taken care of. This paper presents our effort to develop such a GPU-based MC code in Compute Unified Device Architecture (CUDA) environment. The code is able to perform eigenvalue calculation under simple geometries on a multi-GPU system. The specifics of algorithm design, including thread organization and memory management were described in detail. The original CPU version of the code was tested on an Intel Xeon X5660 2.8 GHz CPU, and the adapted GPU version was tested on NVIDIA Tesla M2090 GPUs. Double-precision floating point format was used throughout the calculation. The result showed that a speedup of 7.0 and 33.3 were obtained for a bare spherical core and a binary slab system respectively. The speedup factor was further increased by a factor of ∼2 on a dual GPU system. The upper limit of device-level parallelism was analyzed, and a possible method to enhance the thread-level parallelism was proposed. (authors)

  12. Online measurement for geometrical parameters of wheel set based on structure light and CUDA parallel processing

    Science.gov (United States)

    Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie

    2018-01-01

    The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.

  13. CUDA based Level Set Method for 3D Reconstruction of Fishes from Large Acoustic Data

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Anton, François

    2009-01-01

    Acoustic images present views of underwater dynamics, even in high depths. With multi-beam echo sounders (SONARs), it is possible to capture series of 2D high resolution acoustic images. 3D reconstruction of the water column and subsequent estimation of fish abundance and fish species identificat...... of suppressing threshold and show its convergence as the evolution proceeds. We also present a GPU based streaming computation of the method using NVIDIA's CUDA framework to handle large volume data-sets. Our implementation is optimised for memory usage to handle large volumes....

  14. [Research on fast implementation method of image Gaussian RBF interpolation based on CUDA].

    Science.gov (United States)

    Chen, Hao; Yu, Haizhong

    2014-04-01

    Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.

  15. Accelerating Smith-Waterman Algorithm for Biological Database Search on CUDA-Compatible GPUs

    Science.gov (United States)

    Munekawa, Yuma; Ino, Fumihiko; Hagihara, Kenichi

    This paper presents a fast method capable of accelerating the Smith-Waterman algorithm for biological database search on a cluster of graphics processing units (GPUs). Our method is implemented using compute unified device architecture (CUDA), which is available on the nVIDIA GPU. As compared with previous methods, our method has four major contributions. (1) The method efficiently uses on-chip shared memory to reduce the data amount being transferred between off-chip video memory and processing elements in the GPU. (2) It also reduces the number of data fetches by applying a data reuse technique to query and database sequences. (3) A pipelined method is also implemented to overlap GPU execution with database access. (4) Finally, a master/worker paradigm is employed to accelerate hundreds of database searches on a cluster system. In experiments, the peak performance on a GeForce GTX 280 card reaches 8.32 giga cell updates per second (GCUPS). We also find that our method reduces the amount of data fetches to 1/140, achieving approximately three times higher performance than a previous CUDA-based method. Our 32-node cluster version is approximately 28 times faster than a single GPU version. Furthermore, the effective performance reaches 75.6 giga instructions per second (GIPS) using 32 GeForce 8800 GTX cards.

  16. CPU and GPU (Cuda Template Matching Comparison

    Directory of Open Access Journals (Sweden)

    Evaldas Borcovas

    2014-05-01

    Full Text Available Image processing, computer vision or other complicated opticalinformation processing algorithms require large resources. It isoften desired to execute algorithms in real time. It is hard tofulfill such requirements with single CPU processor. NVidiaproposed CUDA technology enables programmer to use theGPU resources in the computer. Current research was madewith Intel Pentium Dual-Core T4500 2.3 GHz processor with4 GB RAM DDR3 (CPU I, NVidia GeForce GT320M CUDAcompliable graphics card (GPU I and Intel Core I5-2500K3.3 GHz processor with 4 GB RAM DDR3 (CPU II, NVidiaGeForce GTX 560 CUDA compatible graphic card (GPU II.Additional libraries as OpenCV 2.1 and OpenCV 2.4.0 CUDAcompliable were used for the testing. Main test were made withstandard function MatchTemplate from the OpenCV libraries.The algorithm uses a main image and a template. An influenceof these factors was tested. Main image and template have beenresized and the algorithm computing time and performancein Gtpix/s have been measured. According to the informationobtained from the research GPU computing using the hardwarementioned earlier is till 24 times faster when it is processing abig amount of information. When the images are small the performanceof CPU and GPU are not significantly different. Thechoice of the template size makes influence on calculating withCPU. Difference in the computing time between the GPUs canbe explained by the number of cores which they have.

  17. GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA

    Science.gov (United States)

    Ren, Qinlong

    ,000 US dollars. The release of NVIDIA's CUDA architecture which includes both hardware and programming environment in 2007 makes GPU computing attractive. Due to its highly parallel nature, lattice Boltzmann method is successfully ported into GPU with a performance benefit during the recent years. In the current work, LBM CUDA code is developed for different fluid flow and heat transfer problems. In this dissertation, lattice Boltzmann method and immersed boundary method are used to study natural convection in an enclosure with an array of conduting obstacles, double-diffusive convection in a vertical cavity with Soret and Dufour effects, PCM melting process in a latent heat thermal energy storage system with internal fins, mixed convection in a lid-driven cavity with a sinusoidal cylinder, and AC electrothermal pumping in microfluidic systems on a CUDA computational platform. It is demonstrated that LBM is an efficient method to simulate complex heat transfer problems using GPU on CUDA.

  18. Survey of using GPU CUDA programming model in medical image analysis

    Directory of Open Access Journals (Sweden)

    T. Kalaiselvi

    2017-01-01

    Full Text Available With the technology development of medical industry, processing data is expanding rapidly and computation time also increases due to many factors like 3D, 4D treatment planning, the increasing sophistication of MRI pulse sequences and the growing complexity of algorithms. Graphics processing unit (GPU addresses these problems and gives the solutions for using their features such as, high computation throughput, high memory bandwidth, support for floating-point arithmetic and low cost. Compute unified device architecture (CUDA is a popular GPU programming model introduced by NVIDIA for parallel computing. This review paper briefly discusses the need of GPU CUDA computing in the medical image analysis. The GPU performances of existing algorithms are analyzed and the computational gain is discussed. A few open issues, hardware configurations and optimization principles of existing methods are discussed. This survey concludes the few optimization techniques with the medical imaging algorithms on GPU. Finally, limitation and future scope of GPU programming are discussed.

  19. CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres

    Science.gov (United States)

    Egel, Amos; Pattelli, Lorenzo; Mazzamuto, Giacomo; Wiersma, Diederik S.; Lemmer, Uli

    2017-09-01

    CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing units using the CUDA computing platform. The combination of these techniques allows to efficiently address large electrodynamic problems (>104 scatterers) on inexpensive consumer hardware. In this paper, we validate near- and far-field distributions against the well-established multi-sphere T-matrix (MSTM) code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system comprising 105 particles.

  20. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.

    Science.gov (United States)

    Vishnevsky, Oleg V; Bocharnikov, Andrey V; Kolchanov, Nikolay A

    2018-02-01

    The development of chromatin immunoprecipitation sequencing (ChIP-seq) technology has revolutionized the genetic analysis of the basic mechanisms underlying transcription regulation and led to accumulation of information about a huge amount of DNA sequences. There are a lot of web services which are currently available for de novo motif discovery in datasets containing information about DNA/protein binding. An enormous motif diversity makes their finding challenging. In order to avoid the difficulties, researchers use different stochastic approaches. Unfortunately, the efficiency of the motif discovery programs dramatically declines with the query set size increase. This leads to the fact that only a fraction of top "peak" ChIP-Seq segments can be analyzed or the area of analysis should be narrowed. Thus, the motif discovery in massive datasets remains a challenging issue. Argo_Compute Unified Device Architecture (CUDA) web service is designed to process the massive DNA data. It is a program for the detection of degenerate oligonucleotide motifs of fixed length written in 15-letter IUPAC code. Argo_CUDA is a full-exhaustive approach based on the high-performance GPU technologies. Compared with the existing motif discovery web services, Argo_CUDA shows good prediction quality on simulated sets. The analysis of ChIP-Seq sequences revealed the motifs which correspond to known transcription factor binding sites.

  1. Influence of intrinsic and extrinsic forces on 3D stress distribution using CUDA programming

    Science.gov (United States)

    Räss, Ludovic; Omlin, Samuel; Podladchikov, Yuri

    2013-04-01

    In order to have a better understanding of the influence of buoyancy (intrinsic) and boundary (extrinsic) forces in a nonlinear rheology due to a power law fluid, some basics needs to be explored through 3D numerical calculation. As first approach, the already studied Stokes setup of a rising sphere will be used to calibrate the 3D model. Far field horizontal tectonic stress is applied to the sphere, which generates a vertical acceleration, buoyancy driven. This simple and known setup allows some benchmarking performed through systematic runs. The relative importance of intrinsic and extrinsic forces producing the wide variety of rates and styles of deformation, including absence of deformation and generating 3D stress patterns, will be determined. Relation between vertical motion and power law exponent will also be explored. The goal of these investigations will be to run models having topography and density structure from geophysical imaging as input, and 3D stress field as output. The stress distribution in Swiss Alps and Plateau and its implication for risk analysis is one of the perspective for this research. In fact, proximity of the stress to the failure is fundamental for risk assessment. Sensitivity of this to the accurate topography representation can then be evaluated. The developed 3D numerical codes, tuned for mid-sized cluster, need to be optimized, especially while running good resolution in full 3D. Therefor, two largely used computing platforms, MATLAB and FORTRAN 90 are explored. Starting with an easy adaptable and as short as possible MATLAB code, which is then upgraded in order to reach higher performance in simulation times and resolution. A significant speedup using the rising NVIDIA CUDA technology and resources is also possible. Programming in C-CUDA, creating some synchronization feature, and comparing the results with previous runs, helps us to investigate the new speedup possibilities allowed through GPU parallel computing. These codes

  2. QDP-JIT/PTX: A QDP++ Implementation for CUDA-Enabled GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Frank T. [JLAB; Edwards, Robert G. [JLAB

    2014-11-01

    These proceedings describe briefly the QDP-JIT/PTX framework for lattice field theory calcula- tions on the CUDA architecture. The framework generates compute kernels in the PTX assembler language which can be compiled to efficient GPU machine code by the NVIDIA JIT compiler. A comprehensive memory management was added to the framework so that applications, e.g. Chroma, can run unaltered on GPU clusters and supercomputers.

  3. Application of the Characteristic Basis Function Method Using CUDA

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Pérez

    2014-01-01

    Full Text Available The characteristic basis function method (CBFM is a popular technique for efficiently solving the method of moments (MoM matrix equations. In this work, we address the adaptation of this method to a relatively new computing infrastructure provided by NVIDIA, the Compute Unified Device Architecture (CUDA, and take into account some of the limitations which appear when the geometry under analysis becomes too big to fit into the Graphics Processing Unit’s (GPU’s memory.

  4. Research of the fast data processing method for the Infrared fourier transform imaging spectrometer based on CUDA architecture

    Science.gov (United States)

    Yu, Chunchao; Du, Debiao; Xia, Fei; Huang, Xiaobo; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    The windowing static spectrometer has the advantage of high spectral resolution and high flux. Then combined the spectrometer reconstruction processing algorithms with the new computer technology CUDA, for the large spectral data and the suitable of being processed in parallel lines. Researched the parallel algorithms and programming including the cube data access, restructuring , filtering, mirroring and FFT. The results show that, compared with the traditional spectral reconstruction algorithms, CUDA-based spectral reconstruction has been greatly speeds up the spectral reconstruction.

  5. Hypergraph partitioning implementation for parallelizing matrix-vector multiplication using CUDA GPU-based parallel computing

    Science.gov (United States)

    Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.

    2017-07-01

    Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).

  6. On the design of a demo for exhibiting rCUDA

    OpenAIRE

    Reaño González, Carlos; Pérez López, Ferrán; Silla Jiménez, Federico

    2015-01-01

    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. CUDA is a technology developed by NVIDIA which provides a parallel computing platform and programming mo...

  7. Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform

    NARCIS (Netherlands)

    Xu, S.; Xue, W.; Lin, H.X.

    2011-01-01

    In this article, we discuss the performance modeling and optimization of Sparse Matrix-Vector Multiplication (SpMV) on NVIDIA GPUs using CUDA. SpMV has a very low computation-data ratio and its performance is mainly bound by the memory bandwidth. We propose optimization of SpMV based on ELLPACK from

  8. Image Quality Improvement on OpenGL-Based Animations by Using CUDA Architecture

    Directory of Open Access Journals (Sweden)

    Taner UÇKAN

    2016-04-01

    Full Text Available 2D or 3D rendering technology is used for graphically modelling many physical phenomena occurring in real life by means of the computers. On the other hand, the ever-increasing intensity of the graphics applications require that the image quality of the so-called modellings is enhanced and they are performed more quickly. In this direction, a new software and hardware-based architecture called CUDA has been introduced by Nvidia at the end of 2006. Thanks to this architecture, larger number of graphics processors has started contributing towards the parallel solutions of the general-purpose problems. In this study, this new parallel computing architecture is taken into consideration and an animation application consisting of humanoid robots with different behavioral characteristics is developed using the OpenGL library in C++. This animation is initially implemented on a single serial CPU and then parallelized using the CUDA architecture. Eventually, the serial and the parallel versions of the same animation are compared against each other on the basis of the number of image frames per second. The results reveal that the parallel application is by far the best yielding high quality images.

  9. CudaFilters: A SignalPlant library for GPU-accelerated FFT and FIR filtering

    Czech Academy of Sciences Publication Activity Database

    Nejedlý, Petr; Plešinger, Filip; Halámek, Josef; Jurák, Pavel

    2018-01-01

    Roč. 48, č. 1 (2018), s. 3-9 ISSN 0038-0644 R&D Projects: GA ČR GA17-13830S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : CUDA * FFT filter * FIR filter * GPU acceleration * SignalPlant Impact factor: 1.609, year: 2016

  10. Synergia CUDA: GPU-accelerated accelerator modeling package

    International Nuclear Information System (INIS)

    Lu, Q; Amundson, J

    2014-01-01

    Synergia is a parallel, 3-dimensional space-charge particle-in-cell accelerator modeling code. We present our work porting the purely MPI-based version of the code to a hybrid of CPU and GPU computing kernels. The hybrid code uses the CUDA platform in the same framework as the pure MPI solution. We have implemented a lock-free collaborative charge-deposition algorithm for the GPU, as well as other optimizations, including local communication avoidance for GPUs, a customized FFT, and fine-tuned memory access patterns. On a small GPU cluster (up to 4 Tesla C1070 GPUs), our benchmarks exhibit both superior peak performance and better scaling than a CPU cluster with 16 nodes and 128 cores. We also compare the code performance on different GPU architectures, including C1070 Tesla and K20 Kepler.

  11. GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda

    Science.gov (United States)

    2014-01-01

    Background Non-coding sequences such as microRNAs have important roles in disease processes. Computational microRNA target identification (CMTI) is becoming increasingly important since traditional experimental methods for target identification pose many difficulties. These methods are time-consuming, costly, and often need guidance from computational methods to narrow down candidate genes anyway. However, most CMTI methods are computationally demanding, since they need to handle not only several million query microRNA and reference RNA pairs, but also several million nucleotide comparisons within each given pair. Thus, the need to perform microRNA identification at such large scale has increased the demand for parallel computing. Methods Although most CMTI programs (e.g., the miRanda algorithm) are based on a modified Smith-Waterman (SW) algorithm, the existing parallel SW implementations (e.g., CUDASW++ 2.0/3.0, SWIPE) are unable to meet this demand in CMTI tasks. We present CUDA-miRanda, a fast microRNA target identification algorithm that takes advantage of massively parallel computing on Graphics Processing Units (GPU) using NVIDIA's Compute Unified Device Architecture (CUDA). CUDA-miRanda specifically focuses on the local alignment of short (i.e., ≤ 32 nucleotides) sequences against longer reference sequences (e.g., 20K nucleotides). Moreover, the proposed algorithm is able to report multiple alignments (up to 191 top scores) and the corresponding traceback sequences for any given (query sequence, reference sequence) pair. Results Speeds over 5.36 Giga Cell Updates Per Second (GCUPs) are achieved on a server with 4 NVIDIA Tesla M2090 GPUs. Compared to the original miRanda algorithm, which is evaluated on an Intel Xeon E5620@2.4 GHz CPU, the experimental results show up to 166 times performance gains in terms of execution time. In addition, we have verified that the exact same targets were predicted in both CUDA-miRanda and the original mi

  12. CUDA Accelerated Multi-domain Volumetric Image Segmentation and Using a Higher Order Level Set Method

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Anton, François; Zhang, Qin

    2009-01-01

    -manding in terms of computation and memory space, we employ a CUDA based fast GPU segmentation and provide accuracy measures compared with an equivalent CPU implementation. Our resulting surfaces are C2-smooth resulting from tri-cubic spline interpolation algorithm. We also provide error bounds...

  13. Optimasi Rendering Game 2D Asteroids Menggunakan Pemrograman CUDA

    Directory of Open Access Journals (Sweden)

    Fathony Teguh Irawan

    2017-12-01

    There are many sources for having fun, one of them is through video game. Public interest on video game is proven by the large number of video game user. Therefore, the performance of video game is considered to expand the market. One of many ways to improve performance is using GPU processing. The way to prove that GPU processing is faster than CPU processing on parallel process is by comparing the result of GPU processing and CPU processing. This paper describes the differences in performance of video game that is implemented using GPU approach and CPU approach. Keywords: games, video game, game development, CPU, GPU, CUDA, optimization, analysis

  14. Study on GPU Computing for SCOPE2 with CUDA

    International Nuclear Information System (INIS)

    Kodama, Yasuhiro; Tatsumi, Masahiro; Ohoka, Yasunori

    2011-01-01

    For improving safety and cost effectiveness of nuclear power plants, a core calculation code SCOPE2 has been developed, which adopts detailed calculation models such as the multi-group nodal SP3 transport calculation method in three-dimensional pin-by-pin geometry to achieve high predictability. However, it is difficult to apply the code to loading pattern optimizations since it requires much longer computation time than that of codes based on the nodal diffusion method which is widely used in core design calculations. In this study, we studied possibility of acceleration of SCOPE2 with GPU computing capability which has been recognized as one of the most promising direction of high performance computing. In the previous study with an experimental programming framework, it required much effort to convert the algorithms to ones which fit to GPU computation. It was found, however, that this conversion was tremendously difficult because of the complexity of algorithms and restrictions in implementation. In this study, to overcome this complexity, we utilized the CUDA programming environment provided by NVIDIA which is a versatile and flexible language as an extension to the C/C++ languages. It was confirmed that we could enjoy high performance without degradation of maintainability through test implementation of GPU kernels for neutron diffusion/simplified P3 equation solvers. (author)

  15. Accelerating solidification process simulation for large-sized system of liquid metal atoms using GPU with CUDA

    Energy Technology Data Exchange (ETDEWEB)

    Jie, Liang [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); Li, KenLi, E-mail: lkl@hnu.edu.cn [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); National Supercomputing Center in Changsha, 410082 (China); Shi, Lin [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); Liu, RangSu [School of Physics and Micro Electronic, Hunan University, Changshang, 410082 (China); Mei, Jing [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China)

    2014-01-15

    Molecular dynamics simulation is a powerful tool to simulate and analyze complex physical processes and phenomena at atomic characteristic for predicting the natural time-evolution of a system of atoms. Precise simulation of physical processes has strong requirements both in the simulation size and computing timescale. Therefore, finding available computing resources is crucial to accelerate computation. However, a tremendous computational resource (GPGPU) are recently being utilized for general purpose computing due to its high performance of floating-point arithmetic operation, wide memory bandwidth and enhanced programmability. As for the most time-consuming component in MD simulation calculation during the case of studying liquid metal solidification processes, this paper presents a fine-grained spatial decomposition method to accelerate the computation of update of neighbor lists and interaction force calculation by take advantage of modern graphics processors units (GPU), enlarging the scale of the simulation system to a simulation system involving 10 000 000 atoms. In addition, a number of evaluations and tests, ranging from executions on different precision enabled-CUDA versions, over various types of GPU (NVIDIA 480GTX, 580GTX and M2050) to CPU clusters with different number of CPU cores are discussed. The experimental results demonstrate that GPU-based calculations are typically 9∼11 times faster than the corresponding sequential execution and approximately 1.5∼2 times faster than 16 CPU cores clusters implementations. On the basis of the simulated results, the comparisons between the theoretical results and the experimental ones are executed, and the good agreement between the two and more complete and larger cluster structures in the actual macroscopic materials are observed. Moreover, different nucleation and evolution mechanism of nano-clusters and nano-crystals formed in the processes of metal solidification is observed with large

  16. CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions

    Directory of Open Access Journals (Sweden)

    Schmidt Bertil

    2010-04-01

    Full Text Available Abstract Background Due to its high sensitivity, the Smith-Waterman algorithm is widely used for biological database searches. Unfortunately, the quadratic time complexity of this algorithm makes it highly time-consuming. The exponential growth of biological databases further deteriorates the situation. To accelerate this algorithm, many efforts have been made to develop techniques in high performance architectures, especially the recently emerging many-core architectures and their associated programming models. Findings This paper describes the latest release of the CUDASW++ software, CUDASW++ 2.0, which makes new contributions to Smith-Waterman protein database searches using compute unified device architecture (CUDA. A parallel Smith-Waterman algorithm is proposed to further optimize the performance of CUDASW++ 1.0 based on the single instruction, multiple thread (SIMT abstraction. For the first time, we have investigated a partitioned vectorized Smith-Waterman algorithm using CUDA based on the virtualized single instruction, multiple data (SIMD abstraction. The optimized SIMT and the partitioned vectorized algorithms were benchmarked, and remarkably, have similar performance characteristics. CUDASW++ 2.0 achieves performance improvement over CUDASW++ 1.0 as much as 1.74 (1.72 times using the optimized SIMT algorithm and up to 1.77 (1.66 times using the partitioned vectorized algorithm, with a performance of up to 17 (30 billion cells update per second (GCUPS on a single-GPU GeForce GTX 280 (dual-GPU GeForce GTX 295 graphics card. Conclusions CUDASW++ 2.0 is publicly available open-source software, written in CUDA and C++ programming languages. It obtains significant performance improvement over CUDASW++ 1.0 using either the optimized SIMT algorithm or the partitioned vectorized algorithm for Smith-Waterman protein database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.

  17. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA

    NARCIS (Netherlands)

    Belleman, R.G.; Bédorf, J.; Portegies Zwart, S.F.

    2008-01-01

    We present the results of gravitational direct N-body simulations using the graphics processing unit (GPU) on a commercial NVIDIA GeForce 8800GTX designed for gaming computers. The force evaluation of the N-body problem is implemented in "Compute Unified Device Architecture" (CUDA) using the GPU to

  18. CUDA-Accelerated Geodesic Ray-Tracing for Fiber Tracking

    Directory of Open Access Journals (Sweden)

    Evert van Aart

    2011-01-01

    Full Text Available Diffusion Tensor Imaging (DTI allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an approach to accelerating such a fiber-tracking algorithm using a Graphics Processing Unit (GPU. This algorithm, which is based on the calculation of geodesics, has shown promising results for both synthetic and real data, but is limited in its applicability by its high computational requirements. We present a solution which uses the parallelism offered by modern GPUs, in combination with the CUDA platform by NVIDIA, to significantly reduce the execution time of the fiber-tracking algorithm. Compared to a multithreaded CPU implementation of the same algorithm, our GPU mapping achieves a speedup factor of up to 40 times.

  19. Porting and optimizing MAGFLOW on CUDA

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available The MAGFLOW lava simulation model is a cellular automaton developed by the Sezione di Catania of the Istituto Nazionale di Geofisica e Vulcanologia (INGV and it represents the peak of the evolution of cell-based models for lava-flow simulation. The accuracy and adherence to reality achieved by the physics-based cell evolution of MAGFLOW comes at the cost of significant computational times for long-running simulations. The present study describes the efforts and results obtained by porting the original serial code to the parallel computational platforms offered by modern video cards, and in particular to the NVIDIA Compute Unified Device Architecture (CUDA. A number of optimization strategies that have been used to achieve optimal performance on a graphic processing units (GPU are also discussed. The actual benefits of running on the GPU rather than the central processing unit depends on the extent and duration of the simulated event; for large, long-running simulations, the GPU can be 70-to-80-times faster, while for short-lived eruptions with a small extents the speed improvements obtained are 40-to-50 times.

  20. Fourier analysis of Solar atmospheric numerical simulations accelerated with GPUs (CUDA).

    Science.gov (United States)

    Marur, A.

    2015-12-01

    Solar dynamics from the convection zone creates a variety of waves that may propagate through the solar atmosphere. These waves are important in facilitating the energy transfer between the sun's surface and the corona as well as propagating energy throughout the solar system. How and where these waves are dissipated remains an open question. Advanced 3D numerical simulations have furthered our understanding of the processes involved. Fourier transforms to understand the nature of the waves by finding the frequency and wavelength of these waves through the simulated atmosphere, as well as the nature of their propagation and where they get dissipated. In order to analyze the different waves produced by the aforementioned simulations and models, Fast Fourier Transform algorithms will be applied. Since the processing of the multitude of different layers of the simulations (of the order of several 100^3 grid points) would be time intensive and inefficient on a CPU, CUDA, a computing architecture that harnesses the power of the GPU, will be used to accelerate the calculations.

  1. Parallel computing for data science with examples in R, C++ and CUDA

    CERN Document Server

    Matloff, Norman

    2015-01-01

    Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic ""n observations, p variables"" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming.With the main focus on computation, the book shows how to compute on three types of platfor

  2. GPU accelerated fuzzy connected image segmentation by using CUDA.

    Science.gov (United States)

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  3. CUDA accelerated simulation of needle insertions in deformable tissue

    International Nuclear Information System (INIS)

    Patriciu, Alexandru

    2012-01-01

    This paper presents a stiff needle-deformable tissue interaction model. The model uses a mesh-less discretization of continuum; avoiding thus the expensive remeshing required by the finite element models. The proposed model can accommodate both linear and nonlinear material characteristics. The needle-deformable tissue interaction is modeled through fundamental boundaries. The forces applied by the needle on the tissue are divided in tangent forces and constraint forces. The constraint forces are adaptively computed such that the material is properly constrained by the needle. The implementation is accelerated using NVidia CUDA. We present detailed analysis of the execution timing in both serial and parallel case. The proposed needle insertion model was integrated in a custom software that loads DICOM images, generate the deformable model, and can simulate different insertion strategies.

  4. Accelerating the reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning using CUDA.

    Science.gov (United States)

    Jiansen Li; Jianqi Sun; Ying Song; Yanran Xu; Jun Zhao

    2014-01-01

    An effective way to improve the data acquisition speed of magnetic resonance imaging (MRI) is using under-sampled k-space data, and dictionary learning method can be used to maintain the reconstruction quality. Three-dimensional dictionary trains the atoms in dictionary in the form of blocks, which can utilize the spatial correlation among slices. Dual-dictionary learning method includes a low-resolution dictionary and a high-resolution dictionary, for sparse coding and image updating respectively. However, the amount of data is huge for three-dimensional reconstruction, especially when the number of slices is large. Thus, the procedure is time-consuming. In this paper, we first utilize the NVIDIA Corporation's compute unified device architecture (CUDA) programming model to design the parallel algorithms on graphics processing unit (GPU) to accelerate the reconstruction procedure. The main optimizations operate in the dictionary learning algorithm and the image updating part, such as the orthogonal matching pursuit (OMP) algorithm and the k-singular value decomposition (K-SVD) algorithm. Then we develop another version of CUDA code with algorithmic optimization. Experimental results show that more than 324 times of speedup is achieved compared with the CPU-only codes when the number of MRI slices is 24.

  5. Elastic Alignment of Microscopic Images Using Parallel Processing on CUDA-Supported Graphics Processor Units

    Czech Academy of Sciences Publication Activity Database

    Michálek, Jan; Čapek, M.; Janáček, Jiří; Kubínová, Lucie

    2010-01-01

    Roč. 16, Suppl.2 (2010), s. 730-731 ISSN 1431-9276. [Microscopy and Microanalysis 2010. Portland, 01.08.2010-05.08.2010] R&D Projects: GA ČR(CZ) GA102/08/0691; GA ČR(CZ) GA304/09/0733; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : elastic alignment * CUDA * confocal microscopy Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.179, year: 2010

  6. Using CUDA Technology for Defining the Stiffness Matrix in the Subspace of Eigenvectors

    Directory of Open Access Journals (Sweden)

    Yu. V. Berchun

    2015-01-01

    Full Text Available The aim is to improve the performance of solving a problem of deformable solid mechanics through the use of GPGPU. The paper describes technologies for computing systems using both a central and a graphics processor and provides motivation for using CUDA technology as the efficient one.The paper also analyses methods to solve the problem of defining natural frequencies and design waveforms, i.e. an iteration method in the subspace. The method includes several stages. The paper considers the most resource-hungry stage, which defines the stiffness matrix in the subspace of eigenforms and gives the mathematical interpretation of this stage.The GPU choice as a computing device is justified. The paper presents an algorithm for calculating the stiffness matrix in the subspace of eigenforms taking into consideration the features of input data. The global stiffness matrix is very sparse, and its size can reach tens of millions. Therefore, it is represented as a set of the stiffness matrices of the single elements of a model. The paper analyses methods of data representation in the software and selects the best practices for GPU computing.It describes the software implementation using CUDA technology to calculate the stiffness matrix in the subspace of eigenforms. Due to the input data nature, it is impossible to use the universal libraries of matrix computations (cuSPARSE and cuBLAS for loading the GPU. For efficient use of GPU resources in the software implementation, the stiffness matrices of elements are built in the block matrices of a special form. The advantages of using shared memory in GPU calculations are described.The transfer to the GPU computations allowed a twentyfold increase in performance (as compared to the multithreaded CPU-implementation on the model of middle dimensions (degrees of freedom about 2 million. Such an acceleration of one stage speeds up defining the natural frequencies and waveforms by the iteration method in a subspace

  7. CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units

    Directory of Open Access Journals (Sweden)

    Maskell Douglas L

    2009-05-01

    Full Text Available Abstract Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Findings Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. Conclusion CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.

  8. Distortion correction algorithm for UAV remote sensing image based on CUDA

    International Nuclear Information System (INIS)

    Wenhao, Zhang; Yingcheng, Li; Delong, Li; Changsheng, Teng; Jin, Liu

    2014-01-01

    In China, natural disasters are characterized by wide distribution, severe destruction and high impact range, and they cause significant property damage and casualties every year. Following a disaster, timely and accurate acquisition of geospatial information can provide an important basis for disaster assessment, emergency relief, and reconstruction. In recent years, Unmanned Aerial Vehicle (UAV) remote sensing systems have played an important role in major natural disasters, with UAVs becoming an important technique of obtaining disaster information. UAV is equipped with a non-metric digital camera with lens distortion, resulting in larger geometric deformation for acquired images, and affecting the accuracy of subsequent processing. The slow speed of the traditional CPU-based distortion correction algorithm cannot meet the requirements of disaster emergencies. Therefore, we propose a Compute Unified Device Architecture (CUDA)-based image distortion correction algorithm for UAV remote sensing, which takes advantage of the powerful parallel processing capability of the GPU, greatly improving the efficiency of distortion correction. Our experiments show that, compared with traditional CPU algorithms and regardless of image loading and saving times, the maximum acceleration ratio using our proposed algorithm reaches 58 times that using the traditional algorithm. Thus, data processing time can be reduced by one to two hours, thereby considerably improving disaster emergency response capability

  9. 3D Sensor-Based Obstacle Detection Comparing Octrees and Point clouds Using CUDA

    Directory of Open Access Journals (Sweden)

    K.B. Kaldestad

    2012-10-01

    Full Text Available This paper presents adaptable methods for achieving fast collision detection using the GPU and Nvidia CUDA together with Octrees. Earlier related work have focused on serial methods, while this paper presents a parallel solution which shows that there is a great increase in time if the number of operations is large. Two different models of the environment and the industrial robot are presented, the first is Octrees at different resolutions, the second is a point cloud representation. The relative merits of the two different world model representations are shown. In particular, the experimental results show the potential of adapting the resolution of the robot and environment models to the task at hand.

  10. Using of new possibilities of Fermi architecture by development og GPGPU programs

    International Nuclear Information System (INIS)

    Dudnik, V.A.; Kudryavtsev, V.I.; Us, S.A.; Shestakov, M.V.

    2013-01-01

    Description of additional functions of hardware and software, which are presented in the structure of new architecture of FERMI graphic processors made by company NVIDIA, was given. Recommendations of their use within the realization of algorithms of scientific and technical calculations by means of the graphic processors were given. Application of the new possibilities of FERMI architecture and CUDA technologies (Compute Unified Device Architecture - unified hardware-software decision for parallel calculations on GPU) of NVIDIA Company was described. It was done for time reduction of applications' development which is using possibilities of GPGPU for acceleration of data processing

  11. The development of GPU-based parallel PRNG for Monte Carlo applications in CUDA Fortran

    Directory of Open Access Journals (Sweden)

    Hamed Kargaran

    2016-04-01

    Full Text Available The implementation of Monte Carlo simulation on the CUDA Fortran requires a fast random number generation with good statistical properties on GPU. In this study, a GPU-based parallel pseudo random number generator (GPPRNG have been proposed to use in high performance computing systems. According to the type of GPU memory usage, GPU scheme is divided into two work modes including GLOBAL_MODE and SHARED_MODE. To generate parallel random numbers based on the independent sequence method, the combination of middle-square method and chaotic map along with the Xorshift PRNG have been employed. Implementation of our developed PPRNG on a single GPU showed a speedup of 150x and 470x (with respect to the speed of PRNG on a single CPU core for GLOBAL_MODE and SHARED_MODE, respectively. To evaluate the accuracy of our developed GPPRNG, its performance was compared to that of some other commercially available PPRNGs such as MATLAB, FORTRAN and Miller-Park algorithm through employing the specific standard tests. The results of this comparison showed that the developed GPPRNG in this study can be used as a fast and accurate tool for computational science applications.

  12. The development of GPU-based parallel PRNG for Monte Carlo applications in CUDA Fortran

    Energy Technology Data Exchange (ETDEWEB)

    Kargaran, Hamed, E-mail: h-kargaran@sbu.ac.ir; Minuchehr, Abdolhamid; Zolfaghari, Ahmad [Department of nuclear engineering, Shahid Behesti University, Tehran, 1983969411 (Iran, Islamic Republic of)

    2016-04-15

    The implementation of Monte Carlo simulation on the CUDA Fortran requires a fast random number generation with good statistical properties on GPU. In this study, a GPU-based parallel pseudo random number generator (GPPRNG) have been proposed to use in high performance computing systems. According to the type of GPU memory usage, GPU scheme is divided into two work modes including GLOBAL-MODE and SHARED-MODE. To generate parallel random numbers based on the independent sequence method, the combination of middle-square method and chaotic map along with the Xorshift PRNG have been employed. Implementation of our developed PPRNG on a single GPU showed a speedup of 150x and 470x (with respect to the speed of PRNG on a single CPU core) for GLOBAL-MODE and SHARED-MODE, respectively. To evaluate the accuracy of our developed GPPRNG, its performance was compared to that of some other commercially available PPRNGs such as MATLAB, FORTRAN and Miller-Park algorithm through employing the specific standard tests. The results of this comparison showed that the developed GPPRNG in this study can be used as a fast and accurate tool for computational science applications.

  13. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    José Colmenares

    2014-01-01

    Full Text Available The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

  14. Python for Development of OpenMP and CUDA Kernels for Multidimensional Data

    International Nuclear Information System (INIS)

    Bell, Zane W.; Davidson, Gregory G.; D'Azevedo, Ed F.; Evans, Thomas M.; Joubert, Wayne; Munro, John K. Jr.; Patlolla, Dilip Reddy; Vacaliuc, Bogdan

    2011-01-01

    Design of data structures for high performance computing (HPC) is one of the principal challenges facing researchers looking to utilize heterogeneous computing machinery. Heterogeneous systems derive cost, power, and speed efficiency by being composed of the appropriate hardware for the task. Yet, each type of processor requires a specific organization of the application state in order to achieve peak performance. Discovering this and refactoring the code can be a challenging and time-consuming task for the researcher, as the data structures and the computational model must be co-designed. We present a methodology that uses Python as the environment for which to explore tradeoffs in both the data structure design as well as the code executing on the computation accelerator. Our method enables multi-dimensional arrays to be used effectively in any target environment. We have chosen to focus on OpenMP and CUDA environments, thus exploring the development of optimized kernels for the two most common classes of computing hardware available today: multi-core CPU and GPU. Python s large palette of file and network access routines, its associative indexing syntax and support for common HPC environments makes it relevant for diverse hardware ranging from laptops through computing clusters to the highest performance supercomputers. Our work enables researchers to accelerate the development of their codes on the computing hardware of their choice.

  15. GPU acceleration for digitally reconstructed radiographs using bindless texture objects and CUDA/OpenGL interoperability.

    Science.gov (United States)

    Abdellah, Marwan; Eldeib, Ayman; Owis, Mohamed I

    2015-01-01

    This paper features an advanced implementation of the X-ray rendering algorithm that harnesses the giant computing power of the current commodity graphics processors to accelerate the generation of high resolution digitally reconstructed radiographs (DRRs). The presented pipeline exploits the latest features of NVIDIA Graphics Processing Unit (GPU) architectures, mainly bindless texture objects and dynamic parallelism. The rendering throughput is substantially improved by exploiting the interoperability mechanisms between CUDA and OpenGL. The benchmarks of our optimized rendering pipeline reflect its capability of generating DRRs with resolutions of 2048(2) and 4096(2) at interactive and semi interactive frame-rates using an NVIDIA GeForce 970 GTX device.

  16. Rapid data processing for ultrafast X-ray computed tomography using scalable and modular CUDA based pipelines

    Science.gov (United States)

    Frust, Tobias; Wagner, Michael; Stephan, Jan; Juckeland, Guido; Bieberle, André

    2017-10-01

    Ultrafast X-ray tomography is an advanced imaging technique for the study of dynamic processes basing on the principles of electron beam scanning. A typical application case for this technique is e.g. the study of multiphase flows, that is, flows of mixtures of substances such as gas-liquidflows in pipelines or chemical reactors. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) a number of such tomography scanners are operated. Currently, there are two main points limiting their application in some fields. First, after each CT scan sequence the data of the radiation detector must be downloaded from the scanner to a data processing machine. Second, the current data processing is comparably time-consuming compared to the CT scan sequence interval. To enable online observations or use this technique to control actuators in real-time, a modular and scalable data processing tool has been developed, consisting of user-definable stages working independently together in a so called data processing pipeline, that keeps up with the CT scanner's maximal frame rate of up to 8 kHz. The newly developed data processing stages are freely programmable and combinable. In order to achieve the highest processing performance all relevant data processing steps, which are required for a standard slice image reconstruction, were individually implemented in separate stages using Graphics Processing Units (GPUs) and NVIDIA's CUDA programming language. Data processing performance tests on different high-end GPUs (Tesla K20c, GeForce GTX 1080, Tesla P100) showed excellent performance. Program Files doi:http://dx.doi.org/10.17632/65sx747rvm.1 Licensing provisions: LGPLv3 Programming language: C++/CUDA Supplementary material: Test data set, used for the performance analysis. Nature of problem: Ultrafast computed tomography is performed with a scan rate of up to 8 kHz. To obtain cross-sectional images from projection data computer-based image reconstruction algorithms must be applied. The

  17. A Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels

    KAUST Repository

    Rosen, Paul

    2013-01-01

    We present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant differences between the execution of the many blocks and warps. As interesting warps are identified, we allow further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  18. A Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels

    KAUST Repository

    Rosen, Paul

    2013-06-01

    We present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant differences between the execution of the many blocks and warps. As interesting warps are identified, we allow further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  19. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    Energy Technology Data Exchange (ETDEWEB)

    Priimak, Dmitri

    2014-12-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

  20. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    International Nuclear Information System (INIS)

    Priimak, Dmitri

    2014-01-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques

  1. A comparative study of history-based versus vectorized Monte Carlo methods in the GPU/CUDA environment for a simple neutron eigenvalue problem

    International Nuclear Information System (INIS)

    Liu, T.; Du, X.; Ji, W.; Xu, G.; Brown, F.B.

    2013-01-01

    For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed. (authors)

  2. A comparative study of history-based versus vectorized Monte Carlo methods in the GPU/CUDA environment for a simple neutron eigenvalue problem

    Science.gov (United States)

    Liu, Tianyu; Du, Xining; Ji, Wei; Xu, X. George; Brown, Forrest B.

    2014-06-01

    For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed.

  3. Efficient particle-in-cell simulation of auroral plasma phenomena using a CUDA enabled graphics processing unit

    Science.gov (United States)

    Sewell, Stephen

    This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.

  4. Monte Carlo methods for neutron transport on graphics processing units using Cuda - 015

    International Nuclear Information System (INIS)

    Nelson, A.G.; Ivanov, K.N.

    2010-01-01

    This work examined the feasibility of utilizing Graphics Processing Units (GPUs) to accelerate Monte Carlo neutron transport simulations. First, a clean-sheet MC code was written in C++ for an x86 CPU and later ported to run on GPUs using NVIDIA's CUDA programming language. After further optimization, the GPU ran 21 times faster than the CPU code when using single-precision floating point math. This can be further increased with no additional effort if accuracy is sacrificed for speed: using a compiler flag, the speedup was increased to 22x. Further, if double-precision floating point math is desired for neutron tracking through the geometry, a speedup of 11x was obtained. The GPUs have proven to be useful in this study, but the current generation does have limitations: the maximum memory currently available on a single GPU is only 4 GB; the GPU RAM does not provide error-checking and correction; and the optimization required for large speedups can lead to confusing code. (authors)

  5. Fast phase processing in off-axis holography by CUDA including parallel phase unwrapping.

    Science.gov (United States)

    Backoach, Ohad; Kariv, Saar; Girshovitz, Pinhas; Shaked, Natan T

    2016-02-22

    We present parallel processing implementation for rapid extraction of the quantitative phase maps from off-axis holograms on the Graphics Processing Unit (GPU) of the computer using computer unified device architecture (CUDA) programming. To obtain efficient implementation, we parallelized both the wrapped phase map extraction algorithm and the two-dimensional phase unwrapping algorithm. In contrast to previous implementations, we utilized unweighted least squares phase unwrapping algorithm that better suits parallelism. We compared the proposed algorithm run times on the CPU and the GPU of the computer for various sizes of off-axis holograms. Using the GPU implementation, we extracted the unwrapped phase maps from the recorded off-axis holograms at 35 frames per second (fps) for 4 mega pixel holograms, and at 129 fps for 1 mega pixel holograms, which presents the fastest processing framerates obtained so far, to the best of our knowledge. We then used common-path off-axis interferometric imaging to quantitatively capture the phase maps of a micro-organism with rapid flagellum movements.

  6. Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.

    Science.gov (United States)

    Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania

    2015-01-01

    This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.

  7. ACL2 Meets the GPU: Formalizing a CUDA-based Parallelizable All-Pairs Shortest Path Algorithm in ACL2

    Directory of Open Access Journals (Sweden)

    David S. Hardin

    2013-04-01

    Full Text Available As Graphics Processing Units (GPUs have gained in capability and GPU development environments have matured, developers are increasingly turning to the GPU to off-load the main host CPU of numerically-intensive, parallelizable computations. Modern GPUs feature hundreds of cores, and offer programming niceties such as double-precision floating point, and even limited recursion. This shift from CPU to GPU, however, raises the question: how do we know that these new GPU-based algorithms are correct? In order to explore this new verification frontier, we formalized a parallelizable all-pairs shortest path (APSP algorithm for weighted graphs, originally coded in NVIDIA's CUDA language, in ACL2. The ACL2 specification is written using a single-threaded object (stobj and tail recursion, as the stobj/tail recursion combination yields the most straightforward translation from imperative programming languages, as well as efficient, scalable executable specifications within ACL2 itself. The ACL2 version of the APSP algorithm can process millions of vertices and edges with little to no garbage generation, and executes at one-sixth the speed of a host-based version of APSP coded in C – a very respectable result for a theorem prover. In addition to formalizing the APSP algorithm (which uses Dijkstra's shortest path algorithm at its core, we have also provided capability that the original APSP code lacked, namely shortest path recovery. Path recovery is accomplished using a secondary ACL2 stobj implementing a LIFO stack, which is proven correct. To conclude the experiment, we ported the ACL2 version of the APSP kernels back to C, resulting in a less than 5% slowdown, and also performed a partial back-port to CUDA, which, surprisingly, yielded a slight performance increase.

  8. Решение задач вычислительной гидродинамики с применением технологии nvidia cuda \\articlehead{технология nvidia cuda в задачах гидродинамики

    OpenAIRE

    Демидов, Денис; Егоров, Андрей; Нуриев, Артем

    2010-01-01

    На примере модельной задачи о развитии неустойчивости Кельвина-Гельмгольца рассмотрены преимущества технологии NVIDIA CUDA при решении задач гидродинамики численными методами. Рассмотрены как сеточные методы, так и бессеточный. Приводится краткое описание технологии CUDA.Advantages of NVIDIA CUDA technology are presented on the example of classical problem of evolution of Calvin-Helmholz instability. Finite-difference as well as meshless methods are considered. Short observation of CUDA techn...

  9. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU.

    Science.gov (United States)

    Jiang, Hanyu; Ganesan, Narayan

    2016-02-27

    HMMER software suite is widely used for analysis of homologous protein and nucleotide sequences with high sensitivity. The latest version of hmmsearch in HMMER 3.x, utilizes heuristic-pipeline which consists of MSV/SSV (Multiple/Single ungapped Segment Viterbi) stage, P7Viterbi stage and the Forward scoring stage to accelerate homology detection. Since the latest version is highly optimized for performance on modern multi-core CPUs with SSE capabilities, only a few acceleration attempts report speedup. However, the most compute intensive tasks within the pipeline (viz., MSV/SSV and P7Viterbi stages) still stand to benefit from the computational capabilities of massively parallel processors. A Multi-Tiered Parallel Framework (CUDAMPF) implemented on CUDA-enabled GPUs presented here, offers a finer-grained parallelism for MSV/SSV and Viterbi algorithms. We couple SIMT (Single Instruction Multiple Threads) mechanism with SIMD (Single Instructions Multiple Data) video instructions with warp-synchronism to achieve high-throughput processing and eliminate thread idling. We also propose a hardware-aware optimal allocation scheme of scarce resources like on-chip memory and caches in order to boost performance and scalability of CUDAMPF. In addition, runtime compilation via NVRTC available with CUDA 7.0 is incorporated into the presented framework that not only helps unroll innermost loop to yield upto 2 to 3-fold speedup than static compilation but also enables dynamic loading and switching of kernels depending on the query model size, in order to achieve optimal performance. CUDAMPF is designed as a hardware-aware parallel framework for accelerating computational hotspots within the hmmsearch pipeline as well as other sequence alignment applications. It achieves significant speedup by exploiting hierarchical parallelism on single GPU and takes full advantage of limited resources based on their own performance features. In addition to exceeding performance of other

  10. Efficient CUDA Polynomial Preconditioned Conjugate Gradient Solver for Finite Element Computation of Elasticity Problems

    Directory of Open Access Journals (Sweden)

    Jianfei Zhang

    2013-01-01

    Full Text Available Graphics processing unit (GPU has obtained great success in scientific computations for its tremendous computational horsepower and very high memory bandwidth. This paper discusses the efficient way to implement polynomial preconditioned conjugate gradient solver for the finite element computation of elasticity on NVIDIA GPUs using compute unified device architecture (CUDA. Sliced block ELLPACK (SBELL format is introduced to store sparse matrix arising from finite element discretization of elasticity with fewer padding zeros than traditional ELLPACK-based formats. Polynomial preconditioning methods have been investigated both in convergence and running time. From the overall performance, the least-squares (L-S polynomial method is chosen as a preconditioner in PCG solver to finite element equations derived from elasticity for its best results on different example meshes. In the PCG solver, mixed precision algorithm is used not only to reduce the overall computational, storage requirements and bandwidth but to make full use of the capacity of the GPU devices. With SBELL format and mixed precision algorithm, the GPU-based L-S preconditioned CG can get a speedup of about 7–9 to CPU-implementation.

  11. Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2015-01-01

    Full Text Available The Smith-Waterman (SW algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.

  12. Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System.

    Science.gov (United States)

    Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun

    2015-01-01

    The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.

  13. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    Science.gov (United States)

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  14. General-purpose parallel algorithm based on CUDA for source pencils' deployment of large γ irradiator

    International Nuclear Information System (INIS)

    Yang Lei; Gong Xueyu; Wang Ling

    2013-01-01

    Combined with standard mathematical model for evaluating quality of deploying results, a new high-performance parallel algorithm for source pencils' deployment was obtained by using parallel plant growth simulation algorithm which was completely parallelized with CUDA execute model, and the corresponding code can run on GPU. Based on such work, several instances in various scales were used to test the new version of algorithm. The results show that, based on the advantage of old versions. the performance of new one is improved more than 500 times comparing with the CPU version, and also 30 times with the CPU plus GPU hybrid version. The computation time of new version is less than ten minutes for the irradiator of which the activity is less than 111 PBq. For a single GTX275 GPU, the maximum computing power of new version is no more than 167 PBq as well as the computation time is no more than 25 minutes, and for multiple GPUs, the power can be improved more. Overall, the new version of algorithm running on GPU can satisfy the requirement of source pencils' deployment of any domestic irradiator, and it is of high competitiveness. (authors)

  15. Performance analysis of a parallel Monte Carlo code for simulating solar radiative transfer in cloudy atmospheres using CUDA-enabled NVIDIA GPU

    Science.gov (United States)

    Russkova, Tatiana V.

    2017-11-01

    One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.

  16. A heterogeneous computing accelerated SCE-UA global optimization method using OpenMP, OpenCL, CUDA, and OpenACC.

    Science.gov (United States)

    Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Liang, Ke; Hong, Yang

    2017-10-01

    The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has been successfully applied in various kinds of scientific and engineering optimization applications, such as hydrological model parameter calibration, for many years. The algorithm possesses good global optimality, convergence stability and robustness. However, benchmark and real-world applications reveal the poor computational efficiency of the SCE-UA. This research aims at the parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results indicate the parallel SCE-UA significantly improves computational efficiency compared to the original serial version. The OpenCL implementation obtains the best overall acceleration results however, with the most complex source code. The parallel SCE-UA has bright prospects to be applied in real-world applications.

  17. Adaptation of quantum chemistry software for the electronic structure calculations on GPU for solid-state systems

    International Nuclear Information System (INIS)

    Gusakov, V.E.; Bel'ko, V.I.; Dorozhkin, N.N.

    2015-01-01

    We report on adaptation of quantum chemistry software - Quantum Espresso and LASTO - for the electronic structure calculations for the complex solid-state systems on the GeForce series GPUs using the nVIDIA CUDA technology. Specifically, protective covering based on transition metal nitrides are considered. (authors)

  18. Highly optimized simulations on single- and multi-GPU systems of the 3D Ising spin glass model

    Science.gov (United States)

    Lulli, M.; Bernaschi, M.; Parisi, G.

    2015-11-01

    We present a highly optimized implementation of a Monte Carlo (MC) simulator for the three-dimensional Ising spin-glass model with bimodal disorder, i.e., the 3D Edwards-Anderson model running on CUDA enabled GPUs. Multi-GPU systems exchange data by means of the Message Passing Interface (MPI). The chosen MC dynamics is the classic Metropolis one, which is purely dissipative, since the aim was the study of the critical off-equilibrium relaxation of the system. We focused on the following issues: (i) the implementation of efficient memory access patterns for nearest neighbours in a cubic stencil and for lagged-Fibonacci-like pseudo-Random Numbers Generators (PRNGs); (ii) a novel implementation of the asynchronous multispin-coding Metropolis MC step allowing to store one spin per bit and (iii) a multi-GPU version based on a combination of MPI and CUDA streams. Cubic stencils and PRNGs are two subjects of very general interest because of their widespread use in many simulation codes.

  19. Nanomedical device and systems design challenges, possibilities, visions

    CERN Document Server

    2014-01-01

    Nanomedical Device and Systems Design: Challenges, Possibilities, Visions serves as a preliminary guide toward the inspiration of specific investigative pathways that may lead to meaningful discourse and significant advances in nanomedicine/nanotechnology. This volume considers the potential of future innovations that will involve nanomedical devices and systems. It endeavors to explore remarkable possibilities spanning medical diagnostics, therapeutics, and other advancements that may be enabled within this discipline. In particular, this book investigates just how nanomedical diagnostic and

  20. Wave Partial Differential Equation

    OpenAIRE

    Szöllös, Alexandr

    2009-01-01

    Práce se zabývá diferenciálními rovnicemi, jejich využitím při analýze     vedení, experimenty s vedením a možnou akcelerací výpočtu v GPU  s využitím prostředí nVidia CUDA. This work deals with diffrential equations, with the possibility     of using them for analysis of the line and the possibility     of accelerating the computations in GPU using nVidia CUDA. C

  1. Parallel Computer System for 3D Visualization Stereo on GPU

    Science.gov (United States)

    Al-Oraiqat, Anas M.; Zori, Sergii A.

    2018-03-01

    This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.

  2. Forward and adjoint spectral-element simulations of seismic wave propagation using hardware accelerators

    Science.gov (United States)

    Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri

    2015-04-01

    Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  3. Development of GPU Based Parallel Computing Module for Solving Pressure Equation in the CUPID Component Thermo-Fluid Analysis Code

    International Nuclear Information System (INIS)

    Lee, Jin Pyo; Joo, Han Gyu

    2010-01-01

    In the thermo-fluid analysis code named CUPID, the linear system of pressure equations must be solved in each iteration step. The time for repeatedly solving the linear system can be quite significant because large sparse matrices of Rank more than 50,000 are involved and the diagonal dominance of the system is hardly hold. Therefore parallelization of the linear system solver is essential to reduce the computing time. Meanwhile, Graphics Processing Units (GPU) have been developed as highly parallel, multi-core processors for the global demand of high quality 3D graphics. If a suitable interface is provided, parallelization using GPU can be available to engineering computing. NVIDIA provides a Software Development Kit(SDK) named CUDA(Compute Unified Device Architecture) to code developers so that they can manage GPUs for parallelization using the C language. In this research, we implement parallel routines for the linear system solver using CUDA, and examine the performance of the parallelization. In the next section, we will describe the method of CUDA parallelization for the CUPID code, and then the performance of the CUDA parallelization will be discussed

  4. Possibility of spoof attack against robustness of multibiometric authentication systems

    Science.gov (United States)

    Hariri, Mahdi; Shokouhi, Shahriar Baradaran

    2011-07-01

    Multibiometric systems have been recently developed in order to overcome some weaknesses of single biometric authentication systems, but security of these systems against spoofing has not received enough attention. In this paper, we propose a novel practical method for simulation of possibilities of spoof attacks against a biometric authentication system. Using this method, we model matching scores from standard to completely spoofed genuine samples. Sum, product, and Bayes fusion rules are applied for score level combination. The security of multimodal authentication systems are examined and compared with the single systems against various spoof possibilities. However, vulnerability of fused systems is considerably increased against spoofing, but their robustness is generally higher than single matcher systems. In this paper we show that robustness of a combined system is not always higher than a single system against spoof attack. We propose empirical methods for upgrading the security of multibiometric systems, which contain how to organize and select biometric traits and matchers against various possibilities of spoof attack. These methods provide considerable robustness and present an appropriate reason for using combined systems against spoof attacks.

  5. Possible scenarios for a safety upgrade of the ventilation system

    CERN Document Server

    Inigo-Golfin, J

    2009-01-01

    This paper/presentation describes the existing LHC ventilation (HVAC) system, the design principle followed for the LEP Project and the modifications implemented for the LHC Project. A discussion on possible referential standards to compare the existing system with is presented and possible axes for its improvement, based on these referentials, are discussed. Finally, some recommendations are given based on the system's present capabilities and the estimated investment necessary to achieve compliance to the referentials chosen.

  6. ELECTRONIC PAYMENT SYSTEMS AND THEIR POSSIBLE WAY OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    K. V. Karvai

    2013-01-01

    Full Text Available With development of a century of technologies, the economy has had access also for development in Internet industry sphere too. Thanks to this development have appeared: e-money, electronic payment systems, Internet-banking. In the given work the general scheme of works of electronic payment systems, their conditions and function, examples of possible ways of development are presented. In the conclusion the recommendations how it is possible to optimize the market for development of electronic commerce are given and resulted

  7. Integrated Management System - Scope, Possibilities And Methodology

    Science.gov (United States)

    Čekanová, Katarína

    2015-06-01

    Organizations are becoming more aware of the importance of integrated management systems (IMS). Interest in this subject indicates that IMS are seen as "management systems of the future". Based on this, the aim of this articles characterizes the possibility of building IMS through the identification of common elements and specific requirements in accordance with the ISO 9001, ISO 14001 and OHSAS 18001 professional references. Part of the article is the methodology of building IMS in the organization.

  8. System complexity and (im)possible sound changes

    NARCIS (Netherlands)

    Seinhorst, K.T.

    2016-01-01

    In the acquisition of phonological patterns, learners tend to considerably reduce the complexity of their input. This learning bias may also constrain the set of possible sound changes, which might be expected to contain only those changes that do not increase the complexity of the system. However,

  9. The Methods of Implementation of the Three-dimensional Pseudorandom Number Generator DOZEN for Heterogeneous CPU/GPU /FPGA High-performance Systems

    Directory of Open Access Journals (Sweden)

    Nikolay Petrovich Vasilyev

    2015-03-01

    Full Text Available The paper describes the scope of information security protocols based on PRN G in industrial systems. A method for implementing three-dimensional pseudorandom number generator D O Z E N in hybrid systems is provided. The description and results of studies parallel CUDA-version of the algorithm for use in hybrid data centers and high-performance FPGA-version for use in hardware solutions in controlled facilities of SCADA-systems are given.

  10. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  11. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  12. An optimization of a GPU-based parallel wind field module

    International Nuclear Information System (INIS)

    Pinheiro, André L.S.; Shirru, Roberto

    2017-01-01

    Atmospheric radionuclide dispersion systems (ARDS) are important tools to predict the impact of radioactive releases from Nuclear Power Plants and guide people evacuation from affected areas. Four modules comprise ARDS: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The slowest is the Wind Field Module that was previously parallelized using the CUDA C language. The statement purpose of this work is to show the speedup gain with the optimization of the already parallel code of the GPU-based Wind Field module, based in WEST model (Extrapolated from Stability and Terrain). Due to the parallelization done in the wind field module, it was observed that some CUDA processors became idle, thus contributing to a reduction in speedup. It was proposed in this work a way of allocating these idle CUDA processors in order to increase the speedup. An acceleration of about 4 times can be seen in the comparative case study between the regular CUDA code and the optimized CUDA code. These results are quite motivating and point out that even after a parallelization of code, a parallel code optimization should be taken into account. (author)

  13. An optimization of a GPU-based parallel wind field module

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, André L.S.; Shirru, Roberto [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Pereira, Cláudio M.N.A., E-mail: apinheiro99@gmail.com, E-mail: schirru@lmp.ufrj.br, E-mail: cmnap@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Atmospheric radionuclide dispersion systems (ARDS) are important tools to predict the impact of radioactive releases from Nuclear Power Plants and guide people evacuation from affected areas. Four modules comprise ARDS: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The slowest is the Wind Field Module that was previously parallelized using the CUDA C language. The statement purpose of this work is to show the speedup gain with the optimization of the already parallel code of the GPU-based Wind Field module, based in WEST model (Extrapolated from Stability and Terrain). Due to the parallelization done in the wind field module, it was observed that some CUDA processors became idle, thus contributing to a reduction in speedup. It was proposed in this work a way of allocating these idle CUDA processors in order to increase the speedup. An acceleration of about 4 times can be seen in the comparative case study between the regular CUDA code and the optimized CUDA code. These results are quite motivating and point out that even after a parallelization of code, a parallel code optimization should be taken into account. (author)

  14. Feedback authoring possibilities in web-based learning systems

    NARCIS (Netherlands)

    Vasilyeva, E.; De Bra, P.M.E.; Pechenizkiy, M.; Bonk, C.J.; et al., xx

    2008-01-01

    This paper surveys and analyses the feedback authoring possibilities in online assessment modules of the most popular Learning Management Systems (LMS) including Moodle, Sakai, and Blackboard. We consider the problem of authoring and support of tailored and personalized feedback and demonstrate how

  15. Developing business advantages from the technological possibilities of enterprise information systems

    Directory of Open Access Journals (Sweden)

    Luay Anaya

    2014-01-01

    Full Text Available Organizations are increasingly implementing Enterprise Information Systems (EIS, and Enterprise Resource Planning (ERP systems in particular. Despite the notable studies on the advantages of an EIS, many organizations are not satisfied with the benefits or advantages gained. At the same time, it is assumed that such systems with increasing innovations and technological enhancements would generate abundant business advantages, if organizations exploited these opportunities. The investigation in this work drew on the sociomateriality perspective, using imbrication notion, and focused on a telecomm case study to examine how organizations can exploit the technological possibilities of an EIS to create business benefits. The study findings suggest that business benefits can be achieved when the EIS as a technical system is interwoven with the organizational work in which both dynamically change in practice (not from the technical features of the system, when the system provides interesting and beneficial technological possibilities that attract organizations, and when the firm has the organizational capabilities to translate these possibilities into real business benefits.

  16. Is it possible to improve regulation system of PWR

    International Nuclear Information System (INIS)

    Bonnemay, A.; Martinez, J.M.

    1983-03-01

    This paper deals with two problems: first of all, it presents the critical analysis of usually implemented general regulation systems, on PWR plants, and derives from it same possibilities to improve the transient behavior of reactor, the second part is a proposition from an automatic control system for spatial distribution of flux

  17. Possibilities and limitations for sustainable bioenergy production systems

    NARCIS (Netherlands)

    Smeets, E.M.W.

    2008-01-01

    The focus of this thesis is on the possibilities and limitations of sustainable bioenergy production systems. First, the potential contribution of bioenergy to the energy supply in different world regions in the year 2050 from different biomass sources (dedicated woody energy crops, residues and

  18. Design of Experiment Using Simulation of a Discrete Dynamical System

    Directory of Open Access Journals (Sweden)

    Mašek Jan

    2016-12-01

    Full Text Available The topic of the presented paper is a promising approach to achieve optimal Design of Experiment (DoE, i.e. spreading of points within a design domain, using a simulation of a discrete dynamical system of interacting particles within an n-dimensional design space. The system of mutually repelling particles represents a physical analogy of the Audze-Eglājs (AE optimization criterion and its periodical modification (PAE, respectively. The paper compares the performance of two approaches to implementation: a single-thread process using the JAVA language environment and a massively parallel solution employing the nVidia CUDA platform.

  19. Integrated Management System – Scope, Possibilities And Methodology

    Directory of Open Access Journals (Sweden)

    Čekanová Katarína

    2015-06-01

    Full Text Available Organizations are becoming more aware of the importance of integrated management systems (IMS. Interest in this subject indicates that IMS are seen as “management systems of the future”. Based on this, the aim of this articles characterizes the possibility of building IMS through the identification of common elements and specific requirements in accordance with the ISO 9001, ISO 14001 and OHSAS 18001 professional references. Part of the article is the methodology of building IMS in the organization.

  20. Waste reduction possibilities for manufacturing systems in the industry 4.0

    Science.gov (United States)

    Tamás, P.; Illés, B.; Dobos, P.

    2016-11-01

    The industry 4.0 creates some new possibilities for the manufacturing companies’ waste reduction for example by appearance of the cyber physical systems and the big data concept and spreading the „Internet of things (IoT)”. This paper presents in details the fourth industrial revolutions’ more important achievements and tools. In addition there will be also numerous new research directions in connection with the waste reduction possibilities of the manufacturing systems outlined.

  1. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52)

    Science.gov (United States)

    Alvanos, Michail; Christoudias, Theodoros

    2017-10-01

    This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  2. Comparative Analysis of Possible Designs for Flexible Distribution System Operation

    DEFF Research Database (Denmark)

    Lin, Jeremy; Knezovic, Katarina

    2016-01-01

    for achieving the most efficient utilization of these resources while meeting the forecasted load. In this paper, we present possible system design frameworks proposed for flexible distribution system operation. Critical evaluations and comparison of these models are made based on a number of key attributes...

  3. Possibilities and Limitations of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Behrendt, Benjamin

    The strong political market drive towards energy savings in the building sector calls for efficient solutions. Using so called low temperature heating and high temperature cooling systems such as for instance thermally activated building systems (TABS) has a significant impact on the required...... will be mostly needed to operate the building within acceptable boundaries. It will also allow the user to see if dehumidification will be needed for undisturbed operation of TABS. With the combination of both tools it is possible to provide a holistic evaluation of a building proposal at a very early design...

  4. Possible applications of alkali-activated systems in construction

    OpenAIRE

    Boháčová, J.; Staněk, S.; Vavro, M. (Martin)

    2013-01-01

    This paper deals with the possibilities of using alkali-activated systems in construction. This article summarizes the advantages and disadvantages of geopolymer in comparison to Portland cement, summarizes research and practical applications of alkali-activated materials in our country and abroad, and provides an overview of directions where these alternative inorganic binders can be in the future very well applied.

  5. Drug-elicited systemic allergic (contact) dermatitis - update and possible pathomechanisms

    DEFF Research Database (Denmark)

    Maibach, H.I.; Thyssen, Jacob Pontoppidan

    2008-01-01

    . A heterogeneous clinical picture, in combination with limited insight to its pathomechanisms, makes such systemic reactions an area in need of further study. This article summarizes knowledge about systemic dermatitis elicited by drugs, with a special emphasis on possible pathomechanisms. A list of putative...... be misleading because skin contact is not a prerequisite, we suggest that the term 'systemic allergic dermatitis' should be used in the future Udgivelsesdato: 2008...

  6. Crime Victims Support System and Restorative Justice: Possible Implementation in Malaysia

    Directory of Open Access Journals (Sweden)

    Azlinda Azman, PhD

    2013-06-01

    Full Text Available Victims’ position is increasingly acknowledged in the criminal justice system across the world. Because of that, criminal justice systems in various countries slowly transform from focusing too much on the relationship between offenders and the legal system and to between the offenders and their victims. Several programs are highlighted such as victim-offender mediation, family group conferences, reparative orders and referral orders in this article. Findings from several studies support the effectiveness of the programs on both the victims and the offenders in terms of several measurements such as satisfaction and recidivism. Looking at this revolution, Malaysian academicians and professionals are beginning to recognize restorative justice as a possible revolution to its criminal justice system, but Malaysian criminal justice system first needs to strengthen or build components that support victims of crime, as this is one of the main principles of restorative justice. Currently, Malaysia still focuses on offenders and their relationship with legal system, but not much with their own victims (physical, emotional, and psychological consequences of the crime. Several possible issues before formal implementation of restorative justice are discussed. The issues (culture, training, and attitude of Malaysian people, including the victims, offenders, and those who work with them can influence the efficiency of restorative justice programs if not identified systematically. These issues can also be the possible research areas to be ventured in the future as these researches can help in implementation.

  7. GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC Earth system model (version 2.52

    Directory of Open Access Journals (Sweden)

    M. Alvanos

    2017-10-01

    Full Text Available This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate–chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC, used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 ×  and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 ×  speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.

  8. Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms.

    Science.gov (United States)

    Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori; Yamamoto, Kenji; Kurita, Taiichiro

    2012-09-10

    We developed a real-time capture and reconstruction system for three-dimensional (3D) live scenes. In previous research, we used integral photography (IP) to capture 3D images and then generated holograms from the IP images to implement a real-time reconstruction system. In this paper, we use a 4K (3,840 × 2,160) camera to capture IP images and 8K (7,680 × 4,320) liquid crystal display (LCD) panels for the reconstruction of holograms. We investigate two methods for enlarging the 4K images that were captured by integral photography to 8K images. One of the methods increases the number of pixels of each elemental image. The other increases the number of elemental images. In addition, we developed a personal computer (PC) cluster system with graphics processing units (GPUs) for the enlargement of IP images and the generation of holograms from the IP images using fast Fourier transform (FFT). We used the Compute Unified Device Architecture (CUDA) as the development environment for the GPUs. The Fast Fourier transform is performed using the CUFFT (CUDA FFT) library. As a result, we developed an integrated system for performing all processing from the capture to the reconstruction of 3D images by using these components and successfully used this system to reconstruct a 3D live scene at 12 frames per second.

  9. Comparison of Cerebral Glucose Metabolism between Possible and Probable Multiple System Atrophy

    Directory of Open Access Journals (Sweden)

    Kyum-Yil Kwon

    2009-05-01

    Full Text Available Background: To investigate the relationship between presenting clinical manifestations and imaging features of multisystem neuronal dysfunction in MSA patients, using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET. Methods: We studied 50 consecutive MSA patients with characteristic brain MRI findings of MSA, including 34 patients with early MSA-parkinsonian (MSA-P and 16 with early MSA-cerebellar (MSA-C. The cerebral glucose metabolism of all MSA patients was evaluated in comparison with 25 age-matched controls. 18F-FDG PET results were assessed by the Statistic Parametric Mapping (SPM analysis and the regions of interest (ROI method. Results: The mean time from disease onset to 18F-FDG PET was 25.9±13.0 months in 34 MSA-P patients and 20.1±11.1 months in 16 MSA-C patients. Glucose metabolism of the putamen showed a greater decrease in possible MSA-P than in probable MSA-P (p=0.031. Although the Unified Multiple System Atrophy Rating Scale (UMSARS score did not differ between possible MSA-P and probable MSA-P, the subscores of rigidity (p=0.04 and bradykinesia (p= 0.008 were significantly higher in possible MSA-P than in probable MSA-P. Possible MSA-C showed a greater decrease in glucose metabolism of the cerebellum than probable MSA-C (p=0.016. Conclusions: Our results may suggest that the early neuropathological pattern of possible MSA with a predilection for the striatonigral or olivopontocerebellar system differs from that of probable MSA, which has prominent involvement of the autonomic nervous system in addition to the striatonigral or olivopontocerebellar system.

  10. Paralelização e comparação de métodos iterativos na solução de sistemas lineares grandes e esparsos

    Directory of Open Access Journals (Sweden)

    Lauro Cássio Martins de Paula

    2013-11-01

    Full Text Available Apresenta-se neste trabalho uma comparação de desempenho computacional entre métodos iterativos utilizados para solução de sistemas lineares. O objetivo é mostrar que a utilização de processamento paralelo fornecido por uma Graphics Processing Unit (GPU pode ser viável, por viabilizar a solução rápida de sistemas de equações lineares, para que sistemas grandes e esparsos possam ser solucionados em um espaço curto de tempo. Para a validação do trabalho, utilizou-se uma GPU, por meio da arquitetura Compute Unified Device Architecture (CUDA, e comparou-se o desempenho computacional dos métodos iterativos de Jacobi, Gauss-Seidel, BiCGStab e BiCGStab(2 paralelizado na solução de sistemas lineares de tamanhos variados. Foi possível observar uma aceleração significativa nos testes com o método paralelizado, que se acentua consideravelmente na medida em que os sistemas aumentam. Os resultados mostraram que a aplicação de processamento paralelo em um método robusto e eficiente, tal como o BiCGStab(2, se torna muitas vezes indispensável, para que simulações sejam realizadas com qualidade e em tempo não proibitivo.Palavras-chave: CUDA. GPU. BiCGStab(2.Parallelization and comparison of interative methods in solving large and sparse linear systemsAbstractThis paper presents a computational performance comparison between some iterative methods used for linear systems solution. The goal is to show that the use of parallel processing provided by a Graphics Processing Unit (GPU may be more feasible, for making possible the fast solution of linear equations systems in order that complex and sparse problems can be solved in a short time. To validate the paper a GPU through the NVIDIA's Compute Unified Device Architecture (CUDA was employed and the computational performance was compared with Jacobi, Gauss-Seidel, BiCGStab iterative methods and BiCGStab(2 parallelized in the solution of linear systems of varying sizes. There was a

  11. Evaluation of Recommender Systems for Technology-Enhanced Learning: Challenges and Possible Solutions

    NARCIS (Netherlands)

    Sandy, Heleau; Drachsler, Hendrik; Gillet, Dennis

    2009-01-01

    Heleou, S., Drachsler, H., & Gillet, D. (2009). Evaluation of Recommender Systems for Technology-Enhanced Learning: Challenges and Possible Solutions. 1st workshop on Context-aware Recommender Systems for Learning at the Alpine Rendez-Vous. November, 30-December, 3, 2009, Garmisch-Patenkirchen,

  12. On the possibility of Earth-type habitable planets in the 55 Cancri system.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Franck, S; Bounama, C

    2003-01-01

    We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions.

  13. From the broadest possible to the EU adapted quota system

    International Nuclear Information System (INIS)

    Rypdal, Kristin

    2004-01-01

    The Norwegian Government's proposal for a trading system for emission quotas from 2005 to 2007 will only comprise about 10 per cent of the Norwegian emissions. This proposal is far from agreeing with the recommendations of the members of the quota committee, who in 2000 recommended a system for trade with emission quotas as an important means of conforming to the Kyoto protocol in Norway in the period 2008 to 2012. The committee concluded that considerations of cost effectiveness, goal-oriented management and equal treatment dictate a broadest possible system. Such a system will guarantee that the emission is cut where the costs are least, and it will make it easier for Norway to meet the requirements of the Kyoto protocol

  14. Accelerating Solution Proposal of AES Using a Graphic Processor

    Directory of Open Access Journals (Sweden)

    STRATULAT, M.

    2011-11-01

    Full Text Available The main goal of this work is to analyze the possibility of using a graphic processing unit in non graphical calculations. Graphic Processing Units are being used nowadays not only for game engines and movie encoding/decoding, but also for a vast area of applications, like Cryptography. We used the graphic processing unit as a cryptographic coprocessor in order accelerate AES algorithm. Our implementation of AES is on a GPU using CUDA architecture. The performances obtained show that the CUDA implementation can offer speedups of 11.95Gbps. The tests are conducted in two directions: running the tests on small data sizes that are located in memory and large data that are stored in files on hard drives.

  15. Thermo Active Building Systems(TABS) - Performance in practice and possibilities for optimization

    DEFF Research Database (Denmark)

    Kolarik, Jakub

    The project “Thermo Active Building Systems (TABS) – Performance in practice and possibilities for optimization” was carried out at DTU Byg in the period form 1.9.2012 until 31.12.2014. The aim of the project was to conduct field measurements in modern office buildings equipped with TABS systems...

  16. Algorithm of search and track of static and moving large-scale objects

    Directory of Open Access Journals (Sweden)

    Kalyaev Anatoly

    2017-01-01

    Full Text Available We suggest an algorithm for processing of a sequence, which contains images of search and track of static and moving large-scale objects. The possible software implementation of the algorithm, based on multithread CUDA processing, is suggested. Experimental analysis of the suggested algorithm implementation is performed.

  17. Introducing 'bones' : a parallelizing source-to-source compiler based on algorithmic skeletons.

    NARCIS (Netherlands)

    Nugteren, C.; Corporaal, H.

    2012-01-01

    Recent advances in multi-core and many-core processors requires programmers to exploit an increasing amount of parallelism from their applications. Data parallel languages such as CUDA and OpenCL make it possible to take advantage of such processors, but still require a large amount of effort from

  18. The Possibility to Use Genetic Algorithms and Fuzzy Systems in the Development of Tutorial Systems

    Directory of Open Access Journals (Sweden)

    Anca Ioana ANDREESCU

    2006-01-01

    Full Text Available In this paper we are presenting state of the art information methods and techniques that can be applied in the development of efficient tutorial systems and also the possibility to use genetic algorithms and fuzzy systems in the construction of such systems. All this topics have been studied during the development of the research project INFOSOC entitled "Tutorial System based on Eduknowledge for Work Security and Health in SMEs According to the European Union Directives" accomplished by a teaching stuff from the Academy of Economic Studies, Bucharest, in collaboration with the National Institute for Research and Development in Work Security, the National Institute for Small and Middle Enterprises and SC Q’NET International srl.

  19. Possibility of narrow resonances of the omega anti omega-system

    International Nuclear Information System (INIS)

    Duerr, H.P.

    1975-01-01

    The possibility of resonances of the Ω anti Ω-system is discussed on the basis of the medium and long range meson exchange forces. The total and partial widths of these resonances are estimated by using well known formulas of nuclear physics. It is demonstrated that analogously the phi- and rho-mesons may be interpreted as p-states of the K anti K- and π π-system, respectively. There appears, however, only a slim chance to interpret the new narrow resonances psi (3100) and psi (3700) as 7 d 1 - and 7 g 1 -Ω anti Ω configurations

  20. To an optimal electricity supply system. Possible bottlenecks in the development to an optimal electricity supply system in northwest Europe

    International Nuclear Information System (INIS)

    Van Werven, M.J.N.; De Joode, J.; Scheepers, M.J.J.

    2006-02-01

    It is uncertain how the electricity system in Europe, and in particular northwest Europe and the Netherlands, will develop in the next fifteen years. The main objective of this report is to identify possible bottlenecks that may hamper the northwest European electricity system to develop into an optimal system in the long term (until 2020). Subsequently, based on the identified bottlenecks, the report attempts to indicate relevant market response and policy options. To be able to identify possible bottlenecks in the development to an optimal electricity system, an analytical framework has been set up with the aim to identify possible (future) problems in a structured way. The segments generation, network, demand, balancing, and policy and regulation are analysed, as well as the interactions between these segments. Each identified bottleneck is assessed on the criteria reliability, sustainability and affordability. Three bottlenecks are analysed in more detail: (1) The increasing penetration of distributed generation (DG) and its interaction with the electricity network. Dutch policy could be aimed at: (a) Gaining more insight in the costs and benefits that result from the increasing penetration of DG; (b) Creating possibilities for DSOs to experiment with innovative (network management) concepts; (c) Introducing locational signals; and (d) Further analyse the possibility of ownership unbundling; (2) The problem of intermittency and its implications for balancing the electricity system. Dutch policy could be aimed at: (a) Creating the environment in which the market is able to respond in an efficient way; (b) Monitoring market responses; (c) Market coupling; and (d) Discussing the timing of the gate closure; and (3) Interconnection and congestion issues in combination with generation. Dutch policy could be aimed at: (a) Using the existing interconnection capacity as efficient as possible; (b) Identifying the causes behind price differences; and (c) Harmonise market

  1. Expert systems - basic principles and possible applications in nuclear energy

    International Nuclear Information System (INIS)

    Cain, D.G.; Schmidt, F.

    1987-01-01

    One of the primary goals of the application of mathematical methods and computational techniques in reactor physics is the effective and accurate solution of the neutron diffusion equation under various conditions. To reach this goal still requires much skill, experience, knowledge and imagination as can be seen from various contributions at this and other conferences. Experts are necessary. Will expert systems replace them. We shall discuss this question by describing the basic principles of problem solving by expert systems as compared to problem solving by mathematical and computational methods. From this we shall identify areas of possible applications of the new techniques in nuclear energy and develop some thoughts on present limitations. As a result we conclude that expert systems will not be able to replace experts as long as the experts use the systems to improve their own expertise

  2. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    Science.gov (United States)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  3. CUDA-Sankoff

    DEFF Research Database (Denmark)

    Sundfeld, Daniel; Havgaard, Jakob H.; Gorodkin, Jan

    2017-01-01

    the Sankoff 4-dimensional dynamic programming (4D DP) matrix and we propose a two-level wavefront approach to exploit the parallelism. The results were obtained with two different NVidia GPUS, comparing sets of real RNA sequences with lengths from 46 to 281 nucleotides. We show that our GPU approach is up...

  4. CUDA-Sankoff

    DEFF Research Database (Denmark)

    Sundfeld, Daniel; Havgaard, Jakob H.; Gorodkin, Jan

    2017-01-01

    In this paper, we propose and evaluate CUDASankoff, a solution to the RNA structural alignment problem based on the Sankoff algorithm in Graphics Processing Units (GPUS). To our knowledge, this is the first time the Sankoff algorithm is implemented in GPU. In our solution, we show how to lineariz...... to 24 times faster than a 16-core CPU solution in the 281 nucleotide Sankoff execution....

  5. System justification, the denial of global warming, and the possibility of "system-sanctioned change".

    Science.gov (United States)

    Feygina, Irina; Jost, John T; Goldsmith, Rachel E

    2010-03-01

    Despite extensive evidence of climate change and environmental destruction, polls continue to reveal widespread denial and resistance to helping the environment. It is posited here that these responses are linked to the motivational tendency to defend and justify the societal status quo in the face of the threat posed by environmental problems. The present research finds that system justification tendencies are associated with greater denial of environmental realities and less commitment to pro-environmental action. Moreover, the effects of political conservatism, national identification, and gender on denial of environmental problems are explained by variability in system justification tendencies. However, this research finds that it is possible to eliminate the negative effect of system justification on environmentalism by encouraging people to regard pro-environmental change as patriotic and consistent with protecting the status quo (i.e., as a case of "system-sanctioned change"). Theoretical and practical implications of these findings are discussed.

  6. Prevention for possible microbiologically influenced corrosion (MIC) in RHLWE flush water system

    International Nuclear Information System (INIS)

    Hsu, T.C.; Jenkins, C.F.

    1995-01-01

    This report is in response to the request to provide a recommendation for the prevention of possible microbiologically influenced corrosion (MIC) for the RHLWE (Replacement High-Level Waste Evaporator) flush water (FW) system. The recent occurrences of MIC at DWPF prompted HLWE to evaluate the possibility of MIC occurring in this 304L stainless steel RHLWE flush water system. Concern was heightened by the fact that the well water used and the other conditions at H-Tank Farm are similar to those at DWPF. However, only one known leak has occurred in the existing 304L evaporator flush water systems in either tank farm (in 1H system), and no MIC Corrosion has been confirmed in the tank farm area. The design of the RHLWE flush water system (completed long before the occurrence of MIC at DWPF) was modeled after the existing evaporator flush water systems and did not specifically include MIC prevention considerations. Therefore, MIC prevention was not specifically considered during the design phase of this flush water system. The system is presently being installed. After an extensive evaluation, a task team concluded that the best biocide to prevent the occurrence of MIC would be NaOH at fairly low concentration. Sodium hydroxide (NaOH) is optimal in this application, because of its effectiveness, low cost, and familiarity to the Operations personnel (see Appendix A). However, it is the opinion of the task group that application should be withheld until MIC corrosion is demonstrated in the system

  7. The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL

    Science.gov (United States)

    Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.

    2017-03-01

    It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.

  8. Development of a GPU-accelerated MIKE 21 Solver for Water Wave Dynamics

    DEFF Research Database (Denmark)

    Aackermann, Peter Edward; Pedersen, Peter Juhler Dinesen; Engsig-Karup, Allan Peter

    2013-01-01

    With encouragement by the company DHI are the aim of this B.Sc. thesis1 to investigate, whether if it is possible to accelerate the simulation speed of DHIs commercial product MIKE 21 HD, by formulating a parallel solution scheme and implementing it to be executed on a CUDA-enabled GPU (massive...

  9. USE OF SMARTPHONE’S POSSIBILITIES IN CONSTRUCTION OF LOGISTICS SYSTEM OF VENDING MACHINES

    OpenAIRE

    STANIS£AW BRZEZIÑSKI; PIOTR STEFAÑCZYK

    2013-01-01

    Article presents a case study of logistics system implementation based on smartphone’s possibilities. Authors indicate new opportunities, those modern mobile technologies and equipment offer in construction of cheap and integrated logistics systems. Case study shows usage of a smartphone in the system of a vending enterprise’s logistics as an example of integrated and cheap logistics systems and settlements build on revolution of the mobile communication (which is crating by smartphones and t...

  10. Conditions and possibilities for inclusion the hydro-power plants from the 'Shara' hydroelectric system into the power system of the Republic of Macedonia

    International Nuclear Information System (INIS)

    Rumenova, Evica; Naumoski, Kliment

    2001-01-01

    At the and of 1998, a study on conditions and possibilities of the 'Shara' hydroelectric system construction was prepared. The study considers an interesting idea for building up three reversible power plants. From electricity point of view the study emphasizes several significant issues that require comprehensive analyses in order to define the conditions and possibilities for their development. This paper attempts to give an overview of one of this issues: Conditions and possibilities for inclusion the hydro-power plants from the 'Shara' - system into the power supply system of Republic of Macedonia. (Original)

  11. Full Chain Benchmarking for Open Architecture Airborne ISR Systems: A Case Study for GMTI Radar Applications

    Science.gov (United States)

    2015-09-15

    languages targeting graphics processors [1]. Examples include the CUDA APIs for development on NVIDIA devices, and the more portable OpenCL APIs which...offered by NVIDIA for programming their GPU products. OpenVPX is a switched fabric standard developed specifically for high-performance

  12. Toxic Epidermal Necrolysis-Like Lesions and Systemic Lupus Erythematosus Possibly Triggered by Sulfasalazine

    DEFF Research Database (Denmark)

    Krabbe, Simon; Gül, Cigdem; Andersen, Bjarne

    2016-01-01

    elevated ferritin, and muscle wasting. A diagnosis of systemic lupus erythematosus was made, and mycophenolate mofetil and systemic glucocorticoids brought this severe disease under control. Toxic epidermal necrolysis-like lesions and hemophagocytic syndrome have been reported as manifestations of systemic...... lupus erythematosus. This patient possibly had spondyloarthritis or an undifferentiated connective tissue disease at presentation, and we suggest, based on the timing of events, that sulfasalazine may have acted as a trigger of the severe disease manifestations....

  13. Possibilities and limitations for sustainable bioenergy production systems

    International Nuclear Information System (INIS)

    Smeets, Edward Martinus Wilhelmus Utrecht University

    2008-05-01

    The main objective of this thesis is to investigate the possibilities and limitations of sustainable bioenergy production. To this end, the following research questions have been formulated: (1). What is the potential of different world regions to produce biomass for energy generation in the year 2050, taking account of biological and climatological limitations, the use of biomass to produce food, materials and traditional bioenergy, as well as the need to maintain existing forests and thus protect biodiversity?; (2) What are the main bottlenecks to formulating and implementing sustainability criteria for bioenergy production?; (3) To what extent does complying with sustainability criteria have impacts on the costs and potential of bioenergy production?; (4) To what extent do fertilizer- and manure-induced nitrous oxide (N2O) emissions due to energy crop production have an impact on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels?; (5) In terms of economic and environmental performance, how does Europe's production, storage and transport of miscanthus and switchgrass in 2004 compare to that in 2030? Throughout this thesis, specific attention is paid to knowledge gaps and their potential impact on results, the aim being to identify priorities for future research and development. Another key element of our research is that we evaluate the possibilities and limitations of strategies that are designed to improve the performance of bioenergy production systems and that may be incorporated in bioenergy certification schemes and bioenergy promoting policies

  14. Possibilities of systems approach in oil and gas prospecting in the Perm Urals

    Energy Technology Data Exchange (ETDEWEB)

    Viksman, S.I.; Kalabin, S.N.; Makalovskiy, V.V.

    1985-01-01

    An examination is made of the possibility of systems approach in prospecting and exploration for oil and gas; the advantages of this approach in purposeful selection of priority directions of prospecting and exploration are given.

  15. Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system

    Energy Technology Data Exchange (ETDEWEB)

    Jašek, Roman; Dvořák, Jiří; Janková, Martina; Sedláček, Michal [Tomas Bata University in Zlin Nad Stranemi 4511, 760 05 Zlin, Czech republic jasek@fai.utb.cz, dvorakj@aconte.cz, martina.jankova@email.cz, michal.sedlacek@email.cz (Czech Republic)

    2016-06-08

    This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen here as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements’ own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.

  16. Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system

    International Nuclear Information System (INIS)

    Jašek, Roman; Dvořák, Jiří; Janková, Martina; Sedláček, Michal

    2016-01-01

    This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen here as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements’ own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.

  17. Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system

    Science.gov (United States)

    Jašek, Roman; Dvořák, Jiří; Janková, Martina; Sedláček, Michal

    2016-06-01

    This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen here as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements' own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.

  18. Nuclear energy and professional engineers. Possibility of utilization of professional engineer system

    International Nuclear Information System (INIS)

    Tanaka, Shunichi; Nariai, Hideki; Madarame, Haruki; Hattori, Takuya; Kitamura, Masaharu; Fujie, Takao

    2008-01-01

    Nuclear and radiation professional engineer system started in 2004 and more than 250 persons have passed the second-step professional engineer examination, while more than 1,000 persons for the first-step examination. This special issue on possibility of utilization of professional engineer system consists of six relevant articles from experts of nuclear organizations and academia. They expect the role of professional engineer in the area of nuclear energy to enhance technology advancement and awareness of professional ethics from their respective standpoints. (T. Tanaka)

  19. Possibilities and expectations for improved man-machine interface in power system control

    Energy Technology Data Exchange (ETDEWEB)

    Asal, H; Burrow, R K; Lindstrom, K; Mocenigo, M; Schellstede, G; Schaffer, G; Serrani, A

    1992-05-01

    The paper describes the hardware, equipment and functions provided to operators for supervising and controlling HVAC power systems. It analyzes the main elements of the man-machine interface (MMI) with particular attention to the recent possibilities afforded by computer technology and full graphic screens. Alarm management and remote control operation are briefly described.

  20. A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions

    Directory of Open Access Journals (Sweden)

    Ali E. Kubba

    2014-06-01

    Full Text Available This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented.

  1. Grammar-Based Multi-Frontal Solver for One Dimensional Isogeometric Analysis with Multiple Right-Hand-Sides

    KAUST Repository

    Kuźnik, Krzysztof; Paszyński, Maciej; Calo, Victor M.

    2013-01-01

    on NVIDIA CUDA GPU, delivering logarithmic execution time for linear, quadratic, cubic and higher order B-splines. Thus, the CUDA implementation delivers the optimal performance predicted by our graph grammar analysis. We utilize the solver for multiple

  2. Assembly of finite element methods on graphics processors

    KAUST Repository

    Cecka, Cris; Lew, Adrian J.; Darve, E.

    2010-01-01

    in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing

  3. GPU: the biggest key processor for AI and parallel processing

    Science.gov (United States)

    Baji, Toru

    2017-07-01

    Two types of processors exist in the market. One is the conventional CPU and the other is Graphic Processor Unit (GPU). Typical CPU is composed of 1 to 8 cores while GPU has thousands of cores. CPU is good for sequential processing, while GPU is good to accelerate software with heavy parallel executions. GPU was initially dedicated for 3D graphics. However from 2006, when GPU started to apply general-purpose cores, it was noticed that this architecture can be used as a general purpose massive-parallel processor. NVIDIA developed a software framework Compute Unified Device Architecture (CUDA) that make it possible to easily program the GPU for these application. With CUDA, GPU started to be used in workstations and supercomputers widely. Recently two key technologies are highlighted in the industry. The Artificial Intelligence (AI) and Autonomous Driving Cars. AI requires a massive parallel operation to train many-layers of neural networks. With CPU alone, it was impossible to finish the training in a practical time. The latest multi-GPU system with P100 makes it possible to finish the training in a few hours. For the autonomous driving cars, TOPS class of performance is required to implement perception, localization, path planning processing and again SoC with integrated GPU will play a key role there. In this paper, the evolution of the GPU which is one of the biggest commercial devices requiring state-of-the-art fabrication technology will be introduced. Also overview of the GPU demanding key application like the ones described above will be introduced.

  4. Ratoath Manor Nursing Home, Ratoath, Meath.

    LENUS (Irish Health Repository)

    Klus, Petr

    2012-01-13

    Abstract Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http:\\/\\/seqbarracuda.sf.net

  5. A Large Scale, High Resolution Agent-Based Insurgency Model

    Science.gov (United States)

    2013-09-30

    CUDA) is NVIDIA Corporation’s software development model for General Purpose Programming on Graphics Processing Units (GPGPU) ( NVIDIA Corporation ...Conference. Argonne National Laboratory, Argonne, IL, October, 2005. NVIDIA Corporation . NVIDIA CUDA Programming Guide 2.0 [Online]. NVIDIA Corporation

  6. GPU-Based Cloud Service for Smith-Waterman Algorithm Using Frequency Distance Filtration Scheme

    Directory of Open Access Journals (Sweden)

    Sheng-Ta Lee

    2013-01-01

    Full Text Available As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs. This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set and human protein database (database set, are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.

  7. GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.

    Science.gov (United States)

    Lee, Sheng-Ta; Lin, Chun-Yuan; Hung, Che Lun

    2013-01-01

    As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.

  8. Possibility of the development of a Serbian protection system against chemical accidents

    Directory of Open Access Journals (Sweden)

    Dejan R. Inđić

    2012-10-01

    Full Text Available The paper presents a draft of a system model for responding in case of chemical accidents in accordance with the current legislation regarding the environment protection, the structure and elements of the existing response system in case of chemical accidents, other works dealing with the issue as well as the prospects planned by those responsible for the environmental protection. The paper discuss the possibilities of different institutions and agencies of the Republic of Serbia to engage in specialized methods of cooperation and protection against chemical hazards in accordance with Article X of the Convention on the Prohibition of Chemical Weapons.

  9. Сравнение эффективности технологий OpenMP, nVidia CUDA И StarPU на примере задачи умножения матриц

    OpenAIRE

    Ханкин, К. М.; Khankin, K. M.

    2013-01-01

    Приведено описание технологий OpenMP, nVidia CUDA и StarPU, варианты решения задачи умножения двух матриц с задействованием каждой из технологий и результаты сравнения реализаций по требовательности к ресурсам. In the article the description of OpenMP, nVidia CUDA and StarPU technologies, probable solutions of two matrix multiplication problem applying these technologies and the result of solution comparison by the criterion of resource consumption are considered. Ханкин Константи...

  10. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades

    Science.gov (United States)

    Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang

    2017-12-01

    This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.

  11. Fundamental Mechanisms of NeuroInformation Processing: Inverse Problems and Spike Processing

    Science.gov (United States)

    2016-08-04

    Neurokernel software using the Python programming language and the PyCUDA in- terface to NVIDIAs CUDA GPU programming environment to avail ourselves of the...Neuroscience, UCSD. Marius Buibas, Scientist, Brain Corporation , San Diego, California. Gaute T. Einevoll, Department of Mathematical Sciences

  12. Possibility of persistent voltage observation in a system of asymmetric superconducting rings

    International Nuclear Information System (INIS)

    Burlakov, A.A.; Gurtovoi, V.L.; Ilin, A.I.; Nikulov, A.V.; Tulin, V.A.

    2012-01-01

    The possibility of observing persistent voltage in superconducting rings of different arm widths is experimentally investigated. It was previously found that switching of the arms between superconducting and normal states by an AC current induces DC voltage oscillation in the magnetic field with a period corresponding to the flux quantum inside the ring. We used systems with a large number of asymmetric rings connected in series to investigate the possibility of observing this quantum phenomenon near the superconducting transition, where thermal fluctuations lead to switching of ring segments without an external influence and the persistent current is much smaller than in the superconducting state. -- Highlights: ► A possibility to observe the persistent voltage is investigated experimentally. ► The persistent voltage is a DC voltage observed at thermodynamic equilibrium. ► It oscillates in magnetic field like the persistent current in superconducting ring. ► The period of the oscillations corresponds to the flux quantum inside the ring. ► The quantum oscillations of the DC voltage were observed on asymmetric rings.

  13. Design status of the NLC beam-delivery system and possible future studies

    International Nuclear Information System (INIS)

    Zimmermann, F.; Bowden, G.; Burke, D.

    1996-10-01

    The authors outline some highlights in the present design of the beam-delivery and removal system for the Next Linear Collider (NLC), and present a long list of possible or desirable future studies. On several of the listed items work has already been started since the Snowmass workshop. Other studies could be conducted, for example, in the framework of a conceptual design report (CDR)

  14. Bayesian Methods and Confidence Intervals for Automatic Target Recognition of SAR Canonical Shapes

    Science.gov (United States)

    2014-03-27

    and DirectX [22]. The CUDA platform was developed by the NVIDIA Corporation to allow programmers access to the computational capabilities of the...were used for the intense repetitive computations. Developing CUDA software requires writing code for specialized compilers provided by NVIDIA and

  15. Analysis of the possibility of SysML and BPMN application in formal data acquisition system description

    Science.gov (United States)

    Ćwikła, G.; Gwiazda, A.; Banaś, W.; Monica, Z.; Foit, K.

    2017-08-01

    The article presents the study of possible application of selected methods of complex description, that can be used as a support of the Manufacturing Information Acquisition System (MIAS) methodology, describing how to design a data acquisition system, allowing for collecting and processing real-time data on the functioning of a production system, necessary for management of a company. MIAS can allow conversion into Cyber-Physical Production System. MIAS is gathering and pre-processing data on the state of production system, including e.g. realisation of production orders, state of machines, materials and human resources. Systematised approach and model-based development is proposed for improving the quality of the design of MIAS methodology-based complex systems supporting data acquisition in various types of companies. Graphical specification can be the baseline for any model-based development in specified areas. The possibility of application of SysML and BPMN, both being UML-based languages, representing different approaches to modelling of requirements, architecture and implementation of the data acquisition system, as a tools supporting description of required features of MIAS, were considered.

  16. Enabling High Performance Large Scale Dense Problems through KBLAS

    KAUST Repository

    Abdelfattah, Ahmad; Keyes, David E.; Ltaief, Hatem

    2014-01-01

    KBLAS (KAUST BLAS) is a small library that provides highly optimized BLAS routines on systems accelerated with GPUs. KBLAS is entirely written in CUDA C, and targets NVIDIA GPUs with compute capability 2.0 (Fermi) or higher. The current focus

  17. Beta-endorphin and the immune system--possible role in autoimmune diseases

    DEFF Research Database (Denmark)

    Mørch, H; Pedersen, B K

    1995-01-01

    The immune system and the neuroendocrine system are closely interconnected having such means of bidirectional communication and regulation. In this review, a hypothesis is put forward regarding the possible role of beta-endorphins in the pathogenesis of autoimmune diseases: It is suggested...... that the increased cytokine production in immunoinflammatory disorders induces production of beta-endorphins from the pituitary and the lymphocytes; the enhanced level of beta-endorphin causes inhibition of human T helper cell function, which potentially down-regulate the antibody production. Also the beta......-endorphin-induced enhancement of the natural killer cell activity may suppress the B cell function. In addition, beta-endorphin also exerts a direct inhibitory effect on the antibody production. Thus, in autoimmune disorders the enhanced cytokine level may via stimulation of the production of beta-endorphins exert a negative...

  18. ANALYSIS OF THE POSSIBILITY OF INTEGRATING A MINING RIGHT-ANGLE PLANETARY GEARBOX WITH TECHNICAL DIAGNOSTICS SYSTEMS

    Directory of Open Access Journals (Sweden)

    Andrzej WIECZOREK

    2016-12-01

    Full Text Available A key factor enabling the achievement of the required capacity by longwall mining systems is to obtain a satisfactory service life for individual components of such systems. Such components include right-angle planetary gearboxes for armoured face conveyors. An increase in the service life of such equipment can be achieved by ensuring adequacy in terms of design, materials and organization. As a part of organizational changes, the use of individual diagnostics systems may have the greatest impact on the service life of mining gearboxes; however, their widespread implementation is limited by economic and operational barriers. This paper presents an analysis of the possibility of integrating mining gearboxes with electronic systems of technical diagnostics, as well as expanding the scope of the technical condition monitoring by the machines operating together with these gearboxes. As a result of the calculation and design work performed, it has been demonstrated that it is possible to integrate technical diagnostics systems with advanced data transmission capabilities inside gearboxes.

  19. Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2018-03-01

    The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.

  20. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs.

    Science.gov (United States)

    Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang

    2015-01-01

    Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  1. Audio gunshot detection and localization systems: History, basic design, and future possibilities

    Science.gov (United States)

    Graves, Jordan R.

    For decades, law enforcement organizations have increasingly utilized audio detection and localization systems to identify potential gunshot incidents and to respond accordingly. These systems have grown from simple microphone configurations used to estimate location into complex arrays that seem to pinpoint gunfire to within mere feet of its actual occurrence. Such technology comes from a long and dynamic history of developing equipment dating back to the First World War. Additionally, though basic designs require little in terms of programming or engineering experience, the mere presence of this tool invokes a firestorm of debate amongst economists, law enforcement groups, and the general public, which leads to questions about future possibilities for its use. The following pages will retell the history of these systems from theoretical conception to current capabilities. This work will also dissect these systems to reveal fundamental elements of their inner workings, in order to build a basic demonstrative system. Finally, this work will discuss some legal and moral points of dissension, and will explore these systems’ roles in society now and in the future, in additional applications as well.

  2. NMF-mGPU: non-negative matrix factorization on multi-GPU systems.

    Science.gov (United States)

    Mejía-Roa, Edgardo; Tabas-Madrid, Daniel; Setoain, Javier; García, Carlos; Tirado, Francisco; Pascual-Montano, Alberto

    2015-02-13

    In the last few years, the Non-negative Matrix Factorization ( NMF ) technique has gained a great interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional datasets. However, the computing time required to process large data matrices may become impractical, even for a parallel application running on a multiprocessors cluster. In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes advantage of the high computing performance delivered by Graphics-Processing Units ( GPUs ). Driven by the ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory, which is not considered by other NMF implementations on GPU. NMF-mGPU is based on CUDA ( Compute Unified Device Architecture ), the NVIDIA's framework for GPU computing. On devices with low memory available, large input matrices are blockwise transferred from the system's main memory to the GPU's memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI ( Message Passing Interface ). In a four-GPU system, this implementation is about 120 times faster than a single conventional processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup). Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding performance when compared to traditional processors. In addition, their relatively low price represents a highly cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the

  3. Private investments in hospitals : a comparison of three healthcare systems and possible implications for real estate strategies

    NARCIS (Netherlands)

    van der Zwart, J.; van der Voordt, Theo; de Jonge, H.

    2010-01-01

    Objectives: This article explores lessons to be learned from three different healthcare systems and the possible implications for the management of healthcare real estate, in particular in connection to the Dutch system. It discusses similarities and differences among the different systems, in

  4. Possible signatures of nuclear-molecular formation in O+C systems

    International Nuclear Information System (INIS)

    Tighe, R.J.; Kolata, J.J.; Belbot, M.; Aguilera, E.F.

    1993-01-01

    The interplay between the elastic, quasielastic, and fusion reaction channels at energies from just above to well below the Coulomb barrier is investigated for O+C systems. Elastic-scattering and quasielastic-scattering angular distributions were measured using the kinematic coincidence technique. Fusion yields were obtained by direct detection of the evaporation residues using a time-of-flight energy spectrometer, at energies from just above to well below the Coulomb barrier. The fusion yields differ significantly from previous work, but the present measurements give barrier parameters consistent with systematics. Comparisons with two-center shell model and coupled-channels predictions show possible indications of nuclear-molecular formation in the elastic, inelastic, and single-neutron transfer channels

  5. Shortcomings of existing systems for registration and legal protection of software products and possible ways to overcome them

    Science.gov (United States)

    Liapidevskiy, A. V.; Petrov, A. S.; Zhmud, V. A.; Sherubneva, I. G.

    2018-05-01

    The paper reveals the shortcomings of the existing system of registration and legal protection of software products. The system has too many disadvantages and shortcomings. Explanatory examples are given. Possible ways of overcoming these shortcomings are discussed. The paper also gives possible prospects for the use of new digital technologies. Also in the paper, the information is provided about the modern software components for protecting intellectual property rights of State corporations

  6. The possibility of the dose limitation system application non-ionizing radiation protection

    International Nuclear Information System (INIS)

    Ranisavljevic, M., Markovic, S.

    1997-01-01

    Modern conception of the ionizing radiation protection is based on Dose Limitation System. In the base of every human decision lies compromise. Balance between positive and negative factors, benefit and detriment, profit and expense includes the decision about possibilities for realization any defined radiation practice. The optimal option for the given value of the varying parameter gives the maximum benefit and the minimum detriment. In radiation protection field, detriment is related with human health or expenses, and varying parameter is level of radiation protection (for example dimensions of the installed shielding). The problem lies in fact that for the given value of the varying shielding parameter the maximum benefit and the minimum detriment are not achievable simultaneously because the greater benefit includes the greater expense. The problems which have to be solved because of introducing Dose Limitation System, in regard to create Modified Dose Limitation System, are presented. (author)

  7. Eating energy-Identifying possibilities for reduced energy use in the future food supply system

    International Nuclear Information System (INIS)

    Wallgren, Christine; Hoejer, Mattias

    2009-01-01

    This paper explores the possibilities for reducing future energy use for eating to a sustainable level. A backcasting approach is used to generate an image of the future where energy use for eating is 60% lower in 2050 than in 2000. The currently known potential to reduce energy use in the food supply system for producing, transporting, storing, cooking and eating food is explored and described in terms of a number of distinct changes that are numbered consecutively and presented in both a quantitative and qualitative way. Sweden is used as the case and all data regarding energy use apply for Swedish conditions. An exercise like this illustrates the possible outcome of taking sustainability seriously. If sustainability is to be achieved, some images of the future are needed so that potential targets can be identified. This paper does not present forecasts, but illustrates the kind of changes needed in order to achieve sustainable energy use in the food system.

  8. Toxic Epidermal Necrolysis-Like Lesions and Systemic Lupus Erythematosus Possibly Triggered by Sulfasalazine

    Directory of Open Access Journals (Sweden)

    Simon Krabbe

    2016-01-01

    Full Text Available This case report describes a patient with arthritis of the large joints, bilateral sacroiliitis, and positive anti-SSA and anti-dsDNA antibody, who received sulfasalazine and shortly thereafter became critically ill. He developed toxic epidermal necrolysis, hemolytic anemia, lymphopenia, markedly elevated ferritin, and muscle wasting. A diagnosis of systemic lupus erythematosus was made, and mycophenolate mofetil and systemic glucocorticoids brought this severe disease under control. Toxic epidermal necrolysis-like lesions and hemophagocytic syndrome have been reported as manifestations of systemic lupus erythematosus. This patient possibly had spondyloarthritis or an undifferentiated connective tissue disease at presentation, and we suggest, based on the timing of events, that sulfasalazine may have acted as a trigger of the severe disease manifestations.

  9. A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering

    Science.gov (United States)

    Johnson, Christopher W.; Holloway, C. Michael

    2011-01-01

    The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.

  10. Star-planet systems as possible progenitors of cataclysmic binaries

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.

    1984-01-01

    The evolution of a star-planet system is studied, in the phase in which the star becomes a red giant, thus enabling the planet to accrete mass either from its envelope or from its wind. It is found that for planets which are embedded in the envelope, there exists a certain critical initial mass, under which the planets are totally evaporated while spiralling-in. Planets with an initial mass above this critical value are all transformed into low-mass stellar companions to the giant's core. The final masses of these secondaries are almost independent of their initial mass and their initial separation, as long as the latter is greater than a certain critical value. The final masses are essentially determined by the giant's envelope mass. The star-planet separation is found to increase for planets that accrete from the stellar wind, when tidal effects are neglected. Possible consequences of these results on the problem of formation of low-mass cataclysmic binaries are discussed. (author)

  11. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs

    Directory of Open Access Journals (Sweden)

    Chun-Yuan Lin

    2015-01-01

    Full Text Available Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n2, where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC. The intrinsic time complexity of MCC problem is O(k2n2 with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  12. The operational performance of the ATLAS trigger and data acquisition system and its possible evolution

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The first part of this presentation will give an overview of the operational performance of the DAQ system during 2011 and the first months of data taking in 2012. It will describe how the flexibility inherent in the design of the system has be exploited to meet the changing needs of ATLAS data taking and in some cases push performance beyond the original design performance specification. The experience accumulated in the ATLAS DAQ/HLT system operation during these years stimulated also interest to explore possible evolutions, despite the success of the current design. One attractive direction is to merge three systems - the se...

  13. DECISION SUPPORT SYSTEMS IN MILITARY ACTIONS: NECESSITY, POSSIBILITIES AND CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Elena ŞUŞNEA

    2012-01-01

    Full Text Available Nowadays, modern organizations cannot resort to the decision-making process without relying on information and communication technology if they want to be successful. Thus, besides information as an important input of this process, the tools and techniques used by decision-makers are equally important in the support and validation of their decisions. All this is also valid for the military organizations and their specific tasks and activities. A fortiori military commanders face some of the most diff cult and high-stake decision issues meaningful not only at the level of the military, but also for the humankind. Under these circumstances and as a result of an increase in the diversity and complexity of conflict situations, in the information and technology means employed by opponents in warfare and in the amount of information needed to be processed in real time, decision support systems become a necessity. Starting from the aforementioned inevitable requirement, the aim of this article is to emphasize the possibilities and constraints in developing an intelligent decision support system that assists commanders in making scientific decisions on time, under the right circumstances, for the right costs.

  14. Ultraviolet Communication for Medical Applications

    Science.gov (United States)

    2015-06-01

    In the previous Phase I effort, Directed Energy Inc.’s (DEI) parent company Imaging Systems Technology (IST) demonstrated feasibility of several key...accurately model high path loss. Custom photon scatter code was rewritten for parallel execution on a graphics processing unit (GPU). The NVidia CUDA

  15. Biometric systems - possibilities and dangers

    OpenAIRE

    Petržilka, Jakub

    2013-01-01

    This bachelor thesis is focused on biometric methods, particularly on fingerprint recognition. First part of thesis places biometric into other methods of people's identification. Identification by token and by knowledge. It also describes the beginning and evolution of biometric. The theoretical part also closely clarify working with data and different view on the biometric systems. The following part of the thesis defines the basic principles of using biometric systems, counting FAR and FRR...

  16. Utilizing General Purpose Graphics Processing Units to Improve Performance of Computer Modelling and Visualization

    Science.gov (United States)

    Monk, J.; Zhu, Y.; Koons, P. O.; Segee, B. E.

    2009-12-01

    With the introduction of the G8X series of cards by nVidia an architecture called CUDA was released, virtually all subsequent video cards have had CUDA support. With this new architecture nVidia provided extensions for C/C++ that create an Application Programming Interface (API) allowing code to be executed on the GPU. Since then the concept of GPGPU (general purpose graphics processing unit) has been growing, this is the concept that the GPU is very good a algebra and running things in parallel so we should take use of that power for other applications. This is highly appealing in the area of geodynamic modeling, as multiple parallel solutions of the same differential equations at different points in space leads to a large speedup in simulation speed. Another benefit of CUDA is a programmatic method of transferring large amounts of data between the computer's main memory and the dedicated GPU memory located on the video card. In addition to being able to compute and render on the video card, the CUDA framework allows for a large speedup in the situation, such as with a tiled display wall, where the rendered pixels are to be displayed in a different location than where they are rendered. A CUDA extension for VirtualGL was developed allowing for faster read back at high resolutions. This paper examines several aspects of rendering OpenGL graphics on large displays using VirtualGL and VNC. It demonstrates how performance can be significantly improved in rendering on a tiled monitor wall. We present a CUDA enhanced version of VirtualGL as well as the advantages to having multiple VNC servers. It will discuss restrictions caused by read back and blitting rates and how they are affected by different sizes of virtual displays being rendered.

  17. Improving Software Performance in the Compute Unified Device Architecture

    Directory of Open Access Journals (Sweden)

    Alexandru PIRJAN

    2010-01-01

    Full Text Available This paper analyzes several aspects regarding the improvement of software performance for applications written in the Compute Unified Device Architecture CUDA. We address an issue of great importance when programming a CUDA application: the Graphics Processing Unit’s (GPU’s memory management through ranspose ernels. We also benchmark and evaluate the performance for progressively optimizing a transposing matrix application in CUDA. One particular interest was to research how well the optimization techniques, applied to software application written in CUDA, scale to the latest generation of general-purpose graphic processors units (GPGPU, like the Fermi architecture implemented in the GTX480 and the previous architecture implemented in GTX280. Lately, there has been a lot of interest in the literature for this type of optimization analysis, but none of the works so far (to our best knowledge tried to validate if the optimizations can apply to a GPU from the latest Fermi architecture and how well does the Fermi architecture scale to these software performance improving techniques.

  18. GPGPU COMPUTING

    Directory of Open Access Journals (Sweden)

    BOGDAN OANCEA

    2012-05-01

    Full Text Available Since the first idea of using GPU to general purpose computing, things have evolved over the years and now there are several approaches to GPU programming. GPU computing practically began with the introduction of CUDA (Compute Unified Device Architecture by NVIDIA and Stream by AMD. These are APIs designed by the GPU vendors to be used together with the hardware that they provide. A new emerging standard, OpenCL (Open Computing Language tries to unify different GPU general computing API implementations and provides a framework for writing programs executed across heterogeneous platforms consisting of both CPUs and GPUs. OpenCL provides parallel computing using task-based and data-based parallelism. In this paper we will focus on the CUDA parallel computing architecture and programming model introduced by NVIDIA. We will present the benefits of the CUDA programming model. We will also compare the two main approaches, CUDA and AMD APP (STREAM and the new framwork, OpenCL that tries to unify the GPGPU computing models.

  19. The influence of the radiation pressure force on possible critical surfaces in binary systems

    International Nuclear Information System (INIS)

    Vanbeveren, D.

    1978-01-01

    Using a spherically symmetric approximation for the radiation pressure force to compute a possible critical surface for binary systems, previous authors found that the surface opens up at the far side of the companion. It is shown that this effect may be unreal, and could be a consequence of the simple approximation for the radiation pressure force, Due to the influence of the radiation force, mass will be lost over the whole surface of the star. In that way much mass could leave the system in massive binary systems. On the basis of evolutionary models, including mass loss by stellar wind, the results were applied on the X-ray binaries 3U 1700 - 37 and HD 77581. (Auth.)

  20. Scaling up machine learning: parallel and distributed approaches

    National Research Council Canada - National Science Library

    Bekkerman, Ron; Bilenko, Mikhail; Langford, John

    2012-01-01

    ... presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters; concurrent programming frameworks that include CUDA, MPI, MapReduce, and DryadLINQ; and various learning settings: supervised, unsupervised, semi-supervised, and online learning. Extensive coverage of parallelizat...

  1. Analysis of operational possibilities and conditions of remote handling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Hourfar, D.

    1989-01-01

    Accepting the development of the occupational radiation exposure in nuclear facilities, it will be showing possibilities of cost effective reduction of the dose rate through the application of robots and manipulators for the maintenance of nuclear power plants, fuel reprocessing plants, decommissioning and dismantling of the mentioned plants. Based on the experiences about industrial robot applications by manufacturing and manipulator applications by the handling of radioactive materials as well as analysis of the handling procedures and estimation of the dose intensity, it will be defining task-orientated requirements for the conceptual design of the remote handling systems. Furthermore the manifold applications of stationary and mobil arranged handling systems in temporary or permanent operation are described. (orig.) [de

  2. Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus.

    Science.gov (United States)

    Kim, Hyun Chul; Lee, Chi Hoon; Hur, Sung Pyu; Kim, Byeong Hoon; Park, Jun Young; Lee, Young Don

    2015-03-01

    This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-β, LH-β and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-β, LH-β and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-β, LH-β and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

  3. Optimisation of stellarator systems: Possible ways

    International Nuclear Information System (INIS)

    Cooper, W.A.; Isaev, M.; Leneva, A.E.; Mikhailov, M.; Shafranov, V.D.; Subbotin, A.A.

    2001-01-01

    The results of our search for advanced helical (stellarator) systems with a small number of field periods over the last five years are presented. The comparison of stellarator systems with toroidal (helical or axial) and poloidal directions of the contours with B = constant on the magnetic surface as well as systems with Helias and Heliac-like orientation of the magnetic surfaces cross-sections with respect to the principal normal to the magnetic axis is undertaken. Particular attention is paid to some attractive features of the systems with constant B-lines in the poloidal direction. (author)

  4. Optimisation of stellarator systems: Possible ways

    International Nuclear Information System (INIS)

    Cooper, W.A.; Isaev, M.Yu.; Leneva, A.E.; Mikhailov, M.I.; Sharfranov, V.D.; Subbotin, A.A.

    1999-01-01

    The results of our search for advanced helical (stellarator) systems with a small number of field periods over the last five years are presented. The comparison of stellarator systems with toroidal (helical or axial) and poloidal directions of the contours with B = constant on the magnetic surface as well as systems with Helias and Heliac-like orientation of the magnetic surfaces cross-sections with respect to the principal normal to the magnetic axis is undertaken. Particular attention is paid to some attractive features of the systems with constant B-lines in the poloidal direction. (author)

  5. Application Possibility of Smartphone as Payload for Photogrammetric Uav System

    Science.gov (United States)

    Yun, M. H.; Kim, J.; Seo, D.; Lee, J.; Choi, C.

    2012-07-01

    Smartphone can not only be operated under 3G network environment anytime and anyplace but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study is aimed to assess the possibility of smartphone as a payload for photogrammetric UAV system. Prior to such assessment, a smartphone-based photogrammetric UAV system application was developed, through which real-time image, location and attitude data was obtained using smartphone under both static and dynamic conditions. Subsequently the accuracy assessment on the location and attitude data obtained and sent by this system was conducted. The smartphone images were converted into ortho-images through image triangulation. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration. In case IO parameters were taken into account in the static experiment, the results from triangulation for any smartphone type were within 1.5 pixel (RMSE), which was improved at least by 35% compared to when IO parameters were not taken into account. On the contrary, the improvement effect of considering IO parameters on accuracy in triangulation for smartphone images in dynamic experiment was not significant compared to the static experiment. It was due to the significant impact of vibration and sudden attitude change of UAV on the actuator for automatic focus control within the camera built in smartphone under the dynamic condition. This cause appears to have a negative impact on the image-based DEM generation. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  6. From Localized Scleroderma to Systemic Sclerosis: Coexistence or Possible Evolution.

    Science.gov (United States)

    Dilia, Giuggioli; Michele, Colaci; Emanuele, Cocchiara; Amelia, Spinella; Federica, Lumetti; Clodoveo, Ferri

    2018-01-01

    Systemic sclerosis (SSc) and localized scleroderma (LoS) are two different diseases that may share some features. We evaluated the relationship between SSc and LoS in our case series of SSc patients. We analysed the clinical records of 330 SSc patients, in order to find the eventual occurrence of both the two diseases. Eight (2.4%) female patients presented both the two diagnoses in their clinical histories. Six developed LoS prior to SSc; in 4/6 cases, the presence of autoantibodies was observed before SSc diagnosis. Overall, the median time interval between LoS and SSc diagnosis was 18 (range 0-156) months. LoS and SSc are two distinct clinical entities that may coexist. Moreover, as anecdotally reported in pediatric populations, we suggested the possible development of SSc in adult patients with LoS, particularly in presence of Raynaud's phenomenon or antinuclear antibodies before the SSc onset.

  7. Possible Analog for Early Solar System Disk Found

    Science.gov (United States)

    1998-10-01

    SOCORRO, NM -- The smallest protoplanetary disk ever seen rotating around a young star has been detected by an international team of astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope. If confirmed, this result could provide an "ideal laboratory" for studying potential planet-forming disks of a size similar to the one that formed our Solar System. The researchers used the VLA to image the core of an object known as NGC 2071, some 1300 light years from Earth. The team of astronomers was able to measure the rotation of a disk seen around a young star by tracking water masers - clusters of super-heated molecules that amplify radio emission -- within it. This is the first direct evidence of such motion in a protoplanetary disk. "This result is exciting because only through understanding protoplanetary disks can scientists answer the question of how easy - or hard - it is to create planets," said Jose M. Torrelles of the Institute for Astrophysics of Andalucia in Granada, Spain, leader of the research team. "Other protoplanetary disks have been found, but the system in NGC 2071 is the first that may be comparable to the disk that created our own Solar System. Its size is similar to the orbit of the planet Neptune around our Sun." "Because there is very little matter in one of these protoplanetary disks -- typically less than one hundredth the mass of our Sun -- they are extremely difficult to detect and study" said Paul Ho of the Harvard-Smithsonian Center for Astrophysics and another team member. "We needed the highest possible resolution of the VLA to do this work." The VLA is an array of twenty-seven radio dishes, each 25 meters in diameter, located outside of Socorro. The individual antennas can be moved along tracks to change the array's alignment. The work on NGC 2071 was done when the array was stretched out to over 36 kilometers, thus providing the extremely high resolution necessary to image the system. This disk

  8. Development of sensory system s related with postural - locomotor function in toddler ́s age, possibilities of assessmen

    OpenAIRE

    Blažková, Markéta

    2014-01-01

    Bachelor's thesis "Development of sensory systems related with postural-locomotor function in toddler's age, possibilities of assessment" summarizes function of visual, vestibular and somatosensory system and maturation of these systems in toddler's age. Next part describes the development of postural- locomotor function related to maturation of sensory systems. The last part of the work deals with the issue of assessment in toddler's age. Three toddlers are described in the practical part of...

  9. The Snow Data System at NASA JPL

    Science.gov (United States)

    Laidlaw, R.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Bormann, K.; Brodzik, M. J.; Burgess, A. B.; Rittger, K.; Goodale, C. E.; Joyce, M.; McGibbney, L. J.; Zimdars, P.

    2014-12-01

    NASA JPL's Snow Data System has a data-processing pipeline powered by Apache OODT, an open source software tool. The pipeline has been running for several years and has successfully generated a significant amount of cryosphere data, including MODIS-based products such as MODSCAG, MODDRFS and MODICE, with historical and near-real time windows and covering regions such as the Artic, Western US, Alaska, Central Europe, Asia, South America, Australia and New Zealand. The team continues to improve the pipeline, using monitoring tools such as Ganglia to give an overview of operations, and improving fault-tolerance with automated recovery scripts. Several alternative adaptations of the Snow Covered Area and Grain size (SCAG) algorithm are being investigated. These include using VIIRS and Landsat TM/ETM+ satellite data as inputs. Parallel computing techniques are being considered for core SCAG processing, such as using the PyCUDA Python API to utilize multi-core GPU architectures. An experimental version of MODSCAG is also being developed for the Google Earth Engine platform, a cloud-based service.

  10. T lymphocytes and iron overload: novel correlations of possible significance to the biology of the immunological system

    Directory of Open Access Journals (Sweden)

    Maria de Sousa

    1992-01-01

    Full Text Available This paper is written in the context of our changing preception of the immunological system as a system with possible biological roles exceding the prevailung view of a system concerned principally with the defense against external pathogens. The view discussed here relates the immunological system inextricably to the metabolism of iron, the circulation of the blood and the resolution of the evolutionary paradox created by oxygen and iron. Indirect evidence for this inextricable relationship between the two systems can be derived from the discrepancy between the theoretical quasi-impossibility of the existence of an iron deficiency state in the adult and the reality of the WHO numbers of people in the world with iron deficiency anemia. With mounting evidence that TNF, IL-1, and T lymphocyte cytokines affect hemopoieisis and iron metabolism it is possible that the reported discrepancy is a reflection of that inextricable interdependence between the two systems in the face of infection. Further direct evidence for a relationship between T cell subset numbers and iron metabolism is presented from the results of a study of T cell populations in patients with hereditary hemochromatosis. The recent finding of a correlation between low CD8+ lymphocite numbers, liver demage associated with HCVpositivity and severity of iron overload in B-thalassemia major patients (umpublished data of RW Grandy; P. Giardina, M. Hilgartner concludes this review.

  11. Ramjet Application Possibilities for Increasing Fire Range of the Multiple Launch Rocket Systems Ammunition

    Directory of Open Access Journals (Sweden)

    V. N. Zubov

    2015-01-01

    Full Text Available The article considers a possibility to increase a flying range of the perspective rockets equipped with the control unit with aerodynamic controllers for the multiple launch rocket systems “Smerch”.To increase a flying range and reduce a starting mass of the rocket, the paper studies a possibility to replace the single-mode rocket engine used in the solid-fuel rocket motor for the direct-flow propulsion jet engine (DFPJE with not head sector air intakes. The DFPJE is implemented according to the classical scheme with a fuel charged in the combustion chamber. A separated solid propellant starting accelerator provides the rocket acceleration to reach a speed necessary for the DFPJE to run.When designing the DFPJE a proper choice of not head air intake parameters is one of the most difficult points. For this purpose a COSMOS Flow Simulation software package and analytical dependences were used to define the following: a boundary layer thickness where an air intake is set, maximum permissible and appropriate angles of attack and deviation angles of controllers at the section where the DFPJE works, and some other parameters as well.Calculation of DFPJE characteristics consisted in determining parameters of an air-gas path of the propulsion system, geometrical sizes of the pipeline flow area, sizes of a fuel charge, and dependence of the propulsion system impulse on the flight height and speed. Calculations were performed both in thermodynamic statement of problem and in using software package of COSMOS Flow Simulation.As a result of calculations and design engineering activities the air intake profile is created and mass-dimensional characteristics of DFPJE are defined. Besides, calculations of the starting solid fuel accelerator were carried out. Further design allowed us to create the rocket shape, estimate its mass-dimensional characteristics, and perform ballistic calculations, which proved that achieving a range of 120 km for the rocket is

  12. Docker Containers for Deep Learning Experiments

    OpenAIRE

    Gerke, Paul K.

    2017-01-01

    Deep learning is a powerful tool to solve problems in the area of image analysis. The dominant compute platform for deep learning is Nvidia’s proprietary CUDA, which can only be used together with Nvidia graphics cards. The nivida-docker project allows exposing Nvidia graphics cards to docker containers and thus makes it possible to run deep learning experiments in docker containers.In our department, we use deep learning to solve problems in the area of medical image analysis and use docker ...

  13. Possibility of EV with solar cells on the new traffic system; Shinkotsu system ni okeru solar car no kanosei

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Kojima, S [Meiji University, Tokyo (Japan)

    1997-11-25

    A possibility of a new traffic system was studied for a solar car which is light in weight, small in size and low in speed (cruising speed: 20 km/h) and does not need so much power because of the use for short distance. In the new traffic system, people travel short distance in city by solar car, and use trains for travel between cities. By installing solar cells on roofs, etc. of houses and buildings such as garages around stations, power needed for solar car and incidentally required can be supplied. Assuming the short distance transportation, the car is for one person with a height of luggage space of 70cm, mean length of 165cm, and floor height of 50cm above the ground. In case that the power generation by solar cells (256.5W) is at maximum with no shading during travel on conditions of load weight of 10kg, personnel weight of 70kg, and total weight of 250kg, it was found that solar cells can supply 89% of the required output under test road travel at speed of 20 km/h. A viability of the solar car proposed here is great. A possibility at the time of mode road travel is also studied. 10 refs., 3 figs., 1 tab.

  14. Quasi-real-time end-to-end simulations of ELT-scale adaptive optics systems on GPUs

    Science.gov (United States)

    Gratadour, Damien

    2011-09-01

    Our team has started the development of a code dedicated to GPUs for the simulation of AO systems at the E-ELT scale. It uses the CUDA toolkit and an original binding to Yorick (an open source interpreted language) to provide the user with a comprehensive interface. In this paper we present the first performance analysis of our simulation code, showing its ability to provide Shack-Hartmann (SH) images and measurements at the kHz scale for VLT-sized AO system and in quasi-real-time (up to 70 Hz) for ELT-sized systems on a single top-end GPU. The simulation code includes multiple layers atmospheric turbulence generation, ray tracing through these layers, image formation at the focal plane of every sub-apertures of a SH sensor using either natural or laser guide stars and centroiding on these images using various algorithms. Turbulence is generated on-the-fly giving the ability to simulate hours of observations without the need of loading extremely large phase screens in the global memory. Because of its performance this code additionally provides the unique ability to test real-time controllers for future AO systems under nominal conditions.

  15. Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services

    Science.gov (United States)

    Liang, Xinlian; Kukko, Antero; Kaartinen, Harri; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Wang, Yunsheng

    2014-01-01

    A professional-quality, personal laser scanning (PLS) system for collecting tree attributes was demonstrated in this paper. The applied system, which is wearable by human operators, consists of a multi-constellation navigation system and an ultra-high-speed phase-shift laser scanner mounted on a rigid baseplate and consisting of a single sensor block. A multipass-corridor-mapping method was developed to process PLS data and a 2,000 m2 forest plot was utilized in the test. The tree stem detection accuracy was 82.6%; the root mean square error (RMSE) of the estimates of tree diameter at breast height (DBH) was 5.06 cm; the RMSE of the estimates of tree location was 0.38 m. The relative RMSE of the DBH estimates was 14.63%. The results showed, for the first time, the potential of the PLS system in mapping large forest plots. Further research on mapping accuracy in various forest conditions, data correction methods and multi-sensoral positioning techniques is needed. The utilization of this system in different applications, such as harvester operations, should also be explored. In addition to collecting tree-level and plot-level data for forest inventory, other possible applications of PLS for forest ecosystem services include mapping of canopy gaps, measuring leaf area index of large areas, documenting and visualizing forest routes feasible for recreation, hiking and berry and mushroom picking. PMID:24434879

  16. A system out of breath: how hypoxia possibly contributes to the pathogenesis of systemic sclerosis.

    Science.gov (United States)

    van Hal, T W; van Bon, L; Radstake, T R D J

    2011-01-01

    Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular alterations and immunological disturbances and fibrosis, the order of which remains to be fully determined. Clinically, patients show clear signs of hypoxia in skin and internal organs. The low oxygen tension is potentially caused by a yet to be indentified circuitry involving the three features that typify SSc. In addition, once present, the hypoxia creates a vicious circle of ongoing pathology. In this paper, we provide an overview of the evidence that points towards the mechanisms causing hypoxia in SSc. In addition, data that suggest how hypoxia itself may orchestrate worsening of symptoms is presented. Altogether, it is clear that hypoxia is an important hallmark in SSc patients. By providing an overview of the mechanisms at play and the possible therapeutic avenues that have emerged, we hope to stimulate researchers to provide novel clues into the conundrum in SSc patients.

  17. The Large Customer Reactive Power Control Possibilities

    Directory of Open Access Journals (Sweden)

    Robert Małkowski

    2014-03-01

    Full Text Available In this paper the authors wish to draw attention to the rationale for, and the possibility of, the use of local reactive power sources by the Transmission Node Master Controller (TNMC. Large Customers (LC are one of the possible reactive power sources. The paper presents the issues related to the need for coordination between the control systems installed in the LC network, and coordination between control systems of the LC as well as master control systems in the network.

  18. Is it possible at all to compare nuclear power plants and wind power systems?

    International Nuclear Information System (INIS)

    Eliasz, J.; Biwan, A.

    2005-01-01

    At first glance, it appears impossible to compare power generation technologies that are as different in their conception as nuclear power plants and wind power systems. On the other hand, if one uses a holistic approach it may be possible. The contribution lists the preconditions that are required, e.g. parameters like the life cycle of a technology, the various stages of modelling energy and mass exchange of subsystems, and the interactions between the various branches of a power generation technology. (orig.)

  19. POSSIBILITIES OF APPLICATION OF THE HACCP SYSTEM RULES IN THE PROCESS OF IMPROVING THE QUALITY OF EDUCATION IN AGRICULTURAL SECONDARY SCHOOLS

    Directory of Open Access Journals (Sweden)

    Maria Kaczmarek

    2014-09-01

    Full Text Available The paper presents theoretical issues concerning the possibilities of application of the HACCP system rules in the process of improving the quality of education in secondary schools. The carried out analysis show that it is possible to apply the HACCP system rules in secondary schools. Implementation of the HACCP system rules in schools can be beneficial in four areas: economically-financial, organisational, educational and social. Moreover, the education security would increase, the intellectual loss and failure of students would be diminished and on the educational market an increase of competitiveness and trust to school and its graduates would be observed.

  20. RAJA Performance Suite

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-01

    The RAJA Performance Suite is designed to evaluate performance of the RAJA performance portability library on a wide variety of important high performance computing (HPC) algorithmic lulmels. These kernels assess compiler optimizations and various parallel programming model backends accessible through RAJA, such as OpenMP, CUDA, etc. The Initial version of the suite contains 25 computational kernels, each of which appears in 6 variants: Baseline SequcntiaJ, RAJA SequentiaJ, Baseline OpenMP, RAJA OpenMP, Baseline CUDA, RAJA CUDA. All variants of each kernel perform essentially the same mathematical operations and the loop body code for each kernel is identical across all variants. There are a few kernels, such as those that contain reduction operations, that require CUDA-specific coding for their CUDA variants. ActuaJ computer instructions executed and how they run in parallel differs depending on the parallel programming model backend used and which optimizations are perfonned by the compiler used to build the Perfonnance Suite executable. The Suite will be used primarily by RAJA developers to perform regular assessments of RAJA performance across a range of hardware platforms and compilers as RAJA features are being developed. It will also be used by LLNL hardware and software vendor panners for new defining requirements for future computing platform procurements and acceptance testing. In particular, the RAJA Performance Suite will be used for compiler acceptance testing of the upcoming CORAUSierra machine {initial LLNL delivery expected in late-2017/early 2018) and the CORAL-2 procurement. The Suite will aJso be used to generate concise source code reproducers of compiler and runtime issues we uncover so that we may provide them to relevant vendors to be fixed.

  1. The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Clifford [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); Ji, Weixiao [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); Blaisten-Barojas, Estela, E-mail: blaisten@gmu.edu [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States)

    2014-02-01

    We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform atomistic and molecular simulations are essential. Our system implements a versatile molecular engine, including inter-molecule interactions and orientational variables for performing the Metropolis Monte Carlo (MMC) algorithm, which is one type of Markov chain Monte Carlo. By combining memory objects with floating-point code fragments we have implemented an MMC parallel engine that entirely avoids the communication time of molecular data at runtime. Our runtime acceleration system is a forerunner of a new class of CPU–GPU algorithms exploiting memory concepts combined with threading for avoiding bus bandwidth and communication. The testbed molecular system used here is a condensed phase system of oligopyrrole chains. A benchmark shows a size scaling speedup of 60 for systems with 210,000 pyrrole monomers. Our implementation can easily be combined with MPI to connect in parallel several CPU–GPU duets. -- Highlights: •We parallelize the Metropolis Monte Carlo (MMC) algorithm on one CPU—GPU duet. •The Adaptive Tempering Monte Carlo employs MMC and profits from this CPU—GPU implementation. •Our benchmark shows a size scaling-up speedup of 62 for systems with 225,000 particles. •The testbed involves a polymeric system of oligopyrroles in the condensed phase. •The CPU—GPU parallelization includes dipole—dipole and Mie—Jones classic potentials.

  2. The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units

    International Nuclear Information System (INIS)

    Hall, Clifford; Ji, Weixiao; Blaisten-Barojas, Estela

    2014-01-01

    We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform atomistic and molecular simulations are essential. Our system implements a versatile molecular engine, including inter-molecule interactions and orientational variables for performing the Metropolis Monte Carlo (MMC) algorithm, which is one type of Markov chain Monte Carlo. By combining memory objects with floating-point code fragments we have implemented an MMC parallel engine that entirely avoids the communication time of molecular data at runtime. Our runtime acceleration system is a forerunner of a new class of CPU–GPU algorithms exploiting memory concepts combined with threading for avoiding bus bandwidth and communication. The testbed molecular system used here is a condensed phase system of oligopyrrole chains. A benchmark shows a size scaling speedup of 60 for systems with 210,000 pyrrole monomers. Our implementation can easily be combined with MPI to connect in parallel several CPU–GPU duets. -- Highlights: •We parallelize the Metropolis Monte Carlo (MMC) algorithm on one CPU—GPU duet. •The Adaptive Tempering Monte Carlo employs MMC and profits from this CPU—GPU implementation. •Our benchmark shows a size scaling-up speedup of 62 for systems with 225,000 particles. •The testbed involves a polymeric system of oligopyrroles in the condensed phase. •The CPU—GPU parallelization includes dipole—dipole and Mie—Jones classic potentials.

  3. MOBILE LEARING - possibilities and perspectives

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel

    2009-01-01

    This paper proposes that SMS (Short Message Service) or text-messaging on mobile devices can serve as an extension or possible create another way of learning traditional scholastic content normally associated with the school system. The potential of the SMS is still very much untapped and largely...... unexplored as a pedagogical tool within teaching and learning domains. This paper is inspired by locative arts and ongoing experiments regarding not only SMS based pervasive systems, but also the more complex usage of mobile devices in investigating urban living conditions and experiences both existentially...... and as an exploring mechanism of the cityscape. This paper aims at discussing the potentials and outlining the possibilities for mobile learning in the traditional school setting. The complexity of these issues derives not only from the traditions of the school system, but also from diverging perspectives...

  4. Future orientation in the self-system: possible selves, self-regulation, and behavior.

    Science.gov (United States)

    Hoyle, Rick H; Sherrill, Michelle R

    2006-12-01

    Possible selves are representations of the self in the future. Early theoretical accounts of the construct suggested that possible selves directly influence motivation and behavior. We propose an alternative view of possible selves as a component in self-regulatory processes through which motivation and behavior are influenced. We demonstrate the advantages of this conceptualization in two studies that test predictions generated from theoretical models of self-regulation in which the possible selves construct could be embedded. In one study, we show how viewing possible selves as a source of behavioral standards in a control-process model of self-regulation yields support for a set of predictions about the influence of possible selves on current behavior. In the other study, we examine possible selves in the context of an interpersonal model of self-regulation, showing strong evidence of concern for relational value in freely generated hoped-for and feared selves. These findings suggest that the role of possible selves in motivation and behavior can be profitably studied in models that fully specify the process of self-regulation and that those models can be enriched by a consideration of future-oriented self-representations. We offer additional recommendations for strengthening research on possible selves and self-regulation.

  5. A System Out of Breath: How Hypoxia Possibly Contributes to the Pathogenesis of Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    T. W. van Hal

    2011-01-01

    Full Text Available Systemic sclerosis (SSc is an autoimmune disease characterized by vascular alterations and immunological disturbances and fibrosis, the order of which remains to be fully determined. Clinically, patients show clear signs of hypoxia in skin and internal organs. The low oxygen tension is potentially caused by a yet to be indentified circuitry involving the three features that typify SSc. In addition, once present, the hypoxia creates a vicious circle of ongoing pathology. In this paper, we provide an overview of the evidence that points towards the mechanisms causing hypoxia in SSc. In addition, data that suggest how hypoxia itself may orchestrate worsening of symptoms is presented. Altogether, it is clear that hypoxia is an important hallmark in SSc patients. By providing an overview of the mechanisms at play and the possible therapeutic avenues that have emerged, we hope to stimulate researchers to provide novel clues into the conundrum in SSc patients.

  6. Quantum Mechanics and locality in the K0 K-bar0 system experimental verification possibilities

    International Nuclear Information System (INIS)

    Muller, A.

    1994-11-01

    It is shown that elementary Quantum Mechanics, applied to the K 0 K-bar 0 system, predicts peculiar long range EPR correlations. Possible experimental verifications are discussed, and a concrete experiment with anti-protons annihilations at rest is proposed. A pedestrian approach to local models shows that K 0 K-bar 0 experimentation could provide arguments to the local realism versus quantum theory controversy. (author). 17 refs., 23 figs

  7. Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Xinlian Liang

    2014-01-01

    Full Text Available A professional-quality, personal laser scanning (PLS system for collecting tree attributes was demonstrated in this paper. The applied system, which is wearable by human operators, consists of a multi-constellation navigation system and an ultra-high-speed phase-shift laser scanner mounted on a rigid baseplate and consisting of a single sensor block. A multipass-corridor-mapping method was developed to process PLS data and a 2,000 m2 forest plot was utilized in the test. The tree stem detection accuracy was 82.6%; the root mean square error (RMSE of the estimates of tree diameter at breast height (DBH was 5.06 cm; the RMSE of the estimates of tree location was 0.38 m. The relative RMSE of the DBH estimates was 14.63%. The results showed, for the first time, the potential of the PLS system in mapping large forest plots. Further research on mapping accuracy in various forest conditions, data correction methods and multi-sensoral positioning techniques is needed. The utilization of this system in different applications, such as harvester operations, should also be explored. In addition to collecting tree-level and plot-level data for forest inventory, other possible applications of PLS for forest ecosystem services include mapping of canopy gaps, measuring leaf area index of large areas, documenting and visualizing forest routes feasible for recreation, hiking and berry and mushroom picking.

  8. The Impact of Possible Migration Scenarios after ‘Brexit’ on the State Pension System

    Directory of Open Access Journals (Sweden)

    Angus Armstrong

    2016-10-01

    Full Text Available The purpose of this paper is to explore the impacts of changes in migration flows—in particular, those resulting from possible migration policy changes after a UK exit (‘Brexit’ from the European Union (EU—on the finances of the UK state pension system. We find that the aggregate effects of considered shocks to immigration associated with Brexit on the funding of UK state pensions are dwarfed by associated uncertainties, and by coincident cost increases due to population aging and (domestic pension’s policy.

  9. Visual Media Reasoning - Terrain-based Geolocation

    Science.gov (United States)

    2015-06-01

    the drawings, specifications, or other data does not license the holder or any other person or corporation ; or convey any rights or permission to...3.4 Alternative Metric Investigation This section describes a graphics processor unit (GPU) based implementation in the NVIDIA CUDA programming...utilizing 2 concurrent CPU cores, each controlling a single Nvidia C2075 Tesla Fermi CUDA card. Figure 22 shows a comparison of the CPU and the GPU powered

  10. Nursing entrepreneurship: motivators, strategies and possibilities for professional advancement and health system change.

    Science.gov (United States)

    Wall, Sarah

    2013-06-01

    In Canada, as well as internationally, efficiency-focused organizational restructuring in healthcare has resulted in stressful job change for nurses, although nurses continue to work in a system that values technology-based, physician-provided services. Employed nurses have had to participate in organizational activities that undermine their professional values and goals. Nursing entrepreneurship presents an opportunity to explore nursing's professional potential in nursing practice that is uniquely independent. In this study, a focused ethnographic approach was used to explore the experiences of self-employed nurses, who see themselves as leaders in advancing the profession of nursing and its contribution to healthcare. Key themes in the findings include the responses of self-employed nurses to health system change, expanded roles for nurses, the consequences of this non-traditional approach to nursing work and the possibilities for change that arise from nursing entrepreneurship. This research has implications for healthcare policy, professional advocacy and nursing education. Copyright © 2013 Longwoods Publishing.

  11. Reliability assessment using the concept of possibility

    International Nuclear Information System (INIS)

    Ping, R.; Zhao, G.

    1994-01-01

    The role of the possibility theory in the quantitative approach to the reliability of large scale systems, in particular man-machine systems, is discussed. According to the original idea due to professor L.A. Zadeh, an error rate may be associated with a possibility distribution and a probability distribution. They describe the potentiallity and the actuality for error. This is especially important for the analysis of big accidents

  12. Possibility of hydrogen supply by shared residential fuel cell systems for fuel cell vehicles

    Directory of Open Access Journals (Sweden)

    Ono Yusuke

    2017-01-01

    Full Text Available Residential polymer electrolyte fuel cells cogeneration systems (residential PEFC systems produce hydrogen from city gas by internal gas-reformer, and generate electricity, the hot water at the same time. From the viewpoint of the operation, it is known that residential PEFC systems do not continuously work but stop for long time, because the systems generate enough hot water for short operation time. In other words, currently residential PEFC systems are dominated by the amount of hot water demand. This study focuses on the idle time of residential PEFC systems. Since their gas-reformers are free, the systems have potential to produce hydrogen during the partial load operations. The authors expect that residential PEFC systems can take a role to supply hydrogen for fuel cell vehicles (FCVs before hydrogen fueling stations are distributed enough. From this perspective, the objective of this study is to evaluate the hydrogen production potential of residential PEFC systems. A residential PEFC system was modeled by the mixed integer linear programming to optimize the operation including hydrogen supply for FCV. The objective function represents annual system cost to be minimized with the constraints of energy balance. It should be noted that the partial load characteristics of the gas-reformer and the fuel cell stack are taken into account to derive the optimal operation. The model was employed to estimate the possible amount of hydrogen supply by a residential PEFC system. The results indicated that the system could satisfy at least hydrogen demand for transportation of 8000 km which is as far as the average annual mileage of a passenger car in Japan. Furthermore, hydrogen production by sharing a residential PEFC system with two households is more effective to reduce primary energy consumption with hydrogen supply for FCV than the case of introducing PEFC in each household.

  13. Challenges, problems and possible solutions in wind generator systems from the aspect of forecast, planning and delivery of wind energy

    International Nuclear Information System (INIS)

    Giovski, Nikola

    2014-01-01

    The fundamental difficulties of integrating wind energy into the power system arise from its large temporal variability and limited predictability. That's why the integration of wind power presents major challenge for today's operating and planning practices of the power system operators. Accurate predictions of the possible wind power output, in time intervals relevant for creating schedules for production and exchange capacity, allows to system operators and dispatching personnel more efficient power system management. Despite the challenges and problems that arise due to integration of wind power into power systems, which need to be solved or reduced, wind power has its advantages that should be utilized. The effective integration of wind power plants into the transmission grid should allow them to represent the backbone of future energy systems. Modern wind generators represent production units that have the ability to participate in the management of energy systems e.g. in the regulation of frequency, voltage and other network operating requirements. This paper provides a brief overview of global experiences with the challenges, problems and possible solutions that appear in wind generator systems from the aspect of forecasting, planning and delivery of wind energy. (author)

  14. Multimodality imaging and state-of-art GPU technology in discriminating benign from malignant breast lesions on real time decision support system

    International Nuclear Information System (INIS)

    Kostopoulos, S; Glotsos, D; Kalatzis, I; Asvestas, P; Cavouras, D; Sidiropoulos, K; Dimitropoulos, N

    2014-01-01

    The aim of this study was to design a pattern recognition system for assisting the diagnosis of breast lesions, using image information from Ultrasound (US) and Digital Mammography (DM) imaging modalities. State-of-art computer technology was employed based on commercial Graphics Processing Unit (GPU) cards and parallel programming. An experienced radiologist outlined breast lesions on both US and DM images from 59 patients employing a custom designed computer software application. Textural features were extracted from each lesion and were used to design the pattern recognition system. Several classifiers were tested for highest performance in discriminating benign from malignant lesions. Classifiers were also combined into ensemble schemes for further improvement of the system's classification accuracy. Following the pattern recognition system optimization, the final system was designed employing the Probabilistic Neural Network classifier (PNN) on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. The use of such state-of-art technology renders the system capable of redesigning itself on site once additional verified US and DM data are collected. Mixture of US and DM features optimized performance with over 90% accuracy in correctly classifying the lesions

  15. Possible applications of new systems. Pt. 1

    International Nuclear Information System (INIS)

    Dietrich, G.

    1975-01-01

    An energy balance has been drawn up for the Federal Republic of Germany considering the present consumption structure. A regional energy data bank, the organization, content and programme concept on which is reported, is to in future continuously analyse the energy consumption. The economic growth, the sectional energy consumptions and the probable development of the primary energy demand are predicted up to the year 2000. The possible developments in the energy economy of the Federal Republic of Germany are analysed by means of a simulation model. In the second part of this part study, investigations into the spply of electricity are carried out for comparative reasons. (GG/LH) [de

  16. Selection of optimal multispectral imaging system parameters for small joint arthritis detection

    Science.gov (United States)

    Dolenec, Rok; Laistler, Elmar; Stergar, Jost; Milanic, Matija

    2018-02-01

    Early detection and treatment of arthritis is essential for a successful outcome of the treatment, but it has proven to be very challenging with existing diagnostic methods. Novel methods based on the optical imaging of the affected joints are becoming an attractive alternative. A non-contact multispectral imaging (MSI) system for imaging of small joints of human hands and feet is being developed. In this work, a numerical simulation of the MSI system is presented. The purpose of the simulation is to determine the optimal design parameters. Inflamed and unaffected human joint models were constructed with a realistic geometry and tissue distributions, based on a MRI scan of a human finger with a spatial resolution of 0.2 mm. The light transport simulation is based on a weighted-photon 3D Monte Carlo method utilizing CUDA GPU acceleration. An uniform illumination of the finger within the 400-1100 nm spectral range was simulated and the photons exiting the joint were recorded using different acceptance angles. From the obtained reflectance and transmittance images the spectral and spatial features most indicative of inflammation were identified. Optimal acceptance angle and spectral bands were determined. This study demonstrates that proper selection of MSI system parameters critically affects ability of a MSI system to discriminate the unaffected and inflamed joints. The presented system design optimization approach could be applied to other pathologies.

  17. POSSIBILITY OF IMPROVING EXISTING STANDARDS AND METHODOLOGIES FOR AUDITING INFORMATION SYSTEMS TO PROVIDE E-GOVERNMENT SERVICES

    Directory of Open Access Journals (Sweden)

    Евгений Геннадьевич Панкратов

    2014-03-01

    Full Text Available This article analyzes the existing methods of e-government systems audit, their shortcomings are examined.  The approaches to improve existing techniques and adapt them to the specific characteristics of e-government systems are suggested. The paper describes the methodology, providing possibilities of integrated assessment of information systems. This methodology uses systems maturity models and can be used in the construction of e-government rankings, as well as in the audit of their implementation process. Maturity models are based on COBIT, COSO methodologies and models of e-government, developed by the relevant committee of the UN. The methodology was tested during the audit of information systems involved in the payment of temporary disability benefits. The audit was carried out during analysis of the outcome of the pilot project for the abolition of the principle of crediting payments for disability benefits.DOI: http://dx.doi.org/10.12731/2218-7405-2014-2-5

  18. Collective excitations and superconductivity in reduced dimensional systems - Possible mechanism for high Tc

    International Nuclear Information System (INIS)

    Santoyo, B.M.

    1989-01-01

    The author studies in full detail a possible mechanism of superconductivity in slender electronic systems of finite cross section. This mechanism is based on the pairing interaction mediated by the multiple modes of acoustic plasmons in these structures. First, he shows that multiple non-Landau-damped acoustic plasmon modes exist for electrons in a quasi-one dimensional wire at finite temperatures. These plasmons are of two basic types. The first one is made up by the collective longitudinal oscillations of the electrons essentially of a given transverse energy level oscillating against the electrons in the neighboring transverse energy level. The modes are called Slender Acoustic Plasmons or SAP's. The other mode is the quasi-one dimensional acoustic plasmon mode in which all the electrons oscillate together in phase among themselves but out of phase against the positive ion background. He shows numerically and argues physically that even for a temperature comparable to the mode separation Δω the SAP's and the quasi-one dimensional plasmon persist. Then, based on a clear physical picture, he develops in terms of the dielectric function a theory of superconductivity capable of treating the simultaneous participation of multiple bosonic modes that mediate the pairing interaction. The effect of mode damping is then incorporated in a simple manner that is free of the encumbrance of the strong-coupling, Green's function formalism usually required for the retardation effect. Explicit formulae including such damping are derived for the critical temperature T c and the energy gap Δ 0 . With those modes and armed with such a formalism, he proceeds to investigate a possible superconducting mechanism for high T c in quasi-one dimensional single-wire and multi-wire systems

  19. The Structure and Properties of Silica Glass Nanostructures using Novel Computational Systems

    Science.gov (United States)

    Doblack, Benjamin N.

    The structure and properties of silica glass nanostructures are examined using computational methods in this work. Standard synthesis methods of silica and its associated material properties are first discussed in brief. A review of prior experiments on this amorphous material is also presented. Background and methodology for the simulation of mechanical tests on amorphous bulk silica and nanostructures are later presented. A new computational system for the accurate and fast simulation of silica glass is also presented, using an appropriate interatomic potential for this material within the open-source molecular dynamics computer program LAMMPS. This alternative computational method uses modern graphics processors, Nvidia CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model select materials, this enhancement allows the addition of accelerated molecular dynamics simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal of this project is to investigate the structure and size dependent mechanical properties of silica glass nanohelical structures under tensile MD conditions using the innovative computational system. Specifically, silica nanoribbons and nanosprings are evaluated which revealed unique size dependent elastic moduli when compared to the bulk material. For the nanoribbons, the tensile behavior differed widely between the models simulated, with distinct characteristic extended elastic regions. In the case of the nanosprings simulated, more clear trends are observed. In particular, larger nanospring wire cross-sectional radii (r) lead to larger Young's moduli, while larger helical diameters (2R) resulted in smaller Young's moduli. Structural transformations and theoretical models are also analyzed to identify

  20. Private investment in hospitals: a comparison of three healthcare systems and possible implications for real estate strategies.

    Science.gov (United States)

    van der Zwart, Johan; van der Voordt, Theo; Jonge, Hans de

    2010-01-01

    This article explores lessons to be learned from three different healthcare systems and the possible implications for the management of healthcare real estate, in particular in connection to the Dutch system. It discusses similarities and differences among the different systems, in search of possible consequences on cost, financing, and design innovation. To keep healthcare affordable in the future, the Dutch government is currently in the process of changing legislation to move from a centrally directed system to a so-called regulated market system. The deregulation of real estate investment that accompanies the new healthcare delivery system offers healthcare organizations new opportunities, but also more responsibility and greater risk in return on investment. Consequently, healthcare organizations must find new methods of financing. Private investment is one of the options. Three healthcare systems were analyzed on the basis of a literature review and document analysis, then schematized to show similarities and dissimilarities with regard to private investment in hospitals. Observations are based on a selection of recently published articles on private-sector financing and its implications for healthcare real estate decision making in the Netherlands, the United Kingdom, and Germany. The strengths and weaknesses of three healthcare systems with differing proportions of private and public investment in hospitals were explored. Research revealed a gap between intended effects and actual effects with regard to quality and cost. Costly private finance does not necessarily lead to "value for money." Transferring real estate decisions to private investors decreases the influence of the healthcare organization on future costs and quality. The three healthcare systems show substantial differences between public and private responsibilities. Less governmental involvement affords both opportunities and risks for hospitals. Private investment may lead to innovation

  1. The possible role of indoor radon reduction systems in back-drafting residential combustion appliances

    International Nuclear Information System (INIS)

    Henschel, D.B.

    1997-01-01

    A computational sensitivity analysis was conducted to identify the conditions under which residential active soil depressurization (ASD) systems for indoor radon reduction might most likely exacerbate or create back-drafting of natural-draft combustion appliances. Parameters varied included: house size; normalized leakage area; exhaust rate of exhaust appliances other than the ASD system; and the amount of house air exhausted by the ASD system. Even with a reasonably conservative set of assumptions, it is predicted that ASD systems should not exacerbate or create back- drafting in most of the U.S. housing stock. Only at normalized leakage areas lower than 3 to 4 cm 2 commercial at 4 Pa) per m 2 of floor area should ASD contribute to back-drafting, even in small houses at high ASD exhaust rates (compared to a mean of over 10 cm 2 /m 2 determined from data on over 12,000 U.S. houses). But on the other hand, even with a more forgiving set of assumptions, it is predicted that ASD systems could contribute to back-drafting in some fraction of the housing stock -houses tighter than about 1 to 2 cm 2 /m 2 - even in large houses at minimal ASD exhaust rates. It is not possible to use parameters such as house size or ASD system flow rate to estimate reliably the risk that an ASD system might contribute to back-drafting in a given house. Spillage/back-draft testing would be needed for essentially all installations. (au) 18 refs

  2. Signalling possible drug-drug interactions in a spontaneous reporting system : delay of withdrawal bleeding during concomitant use of oral contraceptives and itraconazole

    NARCIS (Netherlands)

    Van Puijenbroek, E P; Egberts, A C; Meyboom, R H; Leufkens, H G

    AIMS: In spontaneous adverse drug reaction reporting systems, there is a growing need for methods facilitating the automated detection of signals concerning possible adverse drug reactions. In addition, special attention is needed for the detection of adverse drug reactions resulting from possible

  3. Real-Time Generic Face Tracking in the Wild with CUDA

    NARCIS (Netherlands)

    Cheng, Shiyang; Asthana, Akshay; Asthana, Ashish; Zafeiriou, Stefanos; Shen, Jie; Pantic, Maja

    We present a robust real-time face tracking system based on the Constrained Local Models framework by adopting the novel regression-based Discriminative Response Map Fitting (DRMF) method. By exploiting the algorithm's potential parallelism, we present a hybrid CPU-GPU implementation capable of

  4. Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not?

    Science.gov (United States)

    Kim, Jihan; Rodgers, Jocelyn M; Athènes, Manuel; Smit, Berend

    2011-10-11

    In the waste recycling Monte Carlo (WRMC) algorithm, (1) multiple trial states may be simultaneously generated and utilized during Monte Carlo moves to improve the statistical accuracy of the simulations, suggesting that such an algorithm may be well posed for implementation in parallel on graphics processing units (GPUs). In this paper, we implement two waste recycling Monte Carlo algorithms in CUDA (Compute Unified Device Architecture) using uniformly distributed random trial states and trial states based on displacement random-walk steps, and we test the methods on a methane-zeolite MFI framework system to evaluate their utility. We discuss the specific implementation details of the waste recycling GPU algorithm and compare the methods to other parallel algorithms optimized for the framework system. We analyze the relationship between the statistical accuracy of our simulations and the CUDA block size to determine the efficient allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors. Finally, we apply our optimized GPU algorithms to the important problem of determining free energy landscapes, in this case for molecular motion through the zeolite LTA.

  5. Food safety management systems performance in African food processing companies: a review of deficiencies and possible improvement strategies

    NARCIS (Netherlands)

    Kussaga, J.B.; Jacxsens, L.; Tiisekwa, B.P.M.; Luning, P.A.

    2014-01-01

    This study seeks to provide insight into current deficiencies in food safety management systems (FSMS) in African food-processing companies and to identify possible strategies for improvement so as to contribute to African countries’ efforts to provide safe food to both local and international

  6. A GPU-Based Genetic Algorithm for the P-Median Problem

    OpenAIRE

    AlBdaiwi, Bader F.; AboElFotoh, Hosam M. F.

    2016-01-01

    The p-median problem is a well-known NP-hard problem. Many heuristics have been proposed in the literature for this problem. In this paper, we exploit a GPGPU parallel computing platform to present a new genetic algorithm implemented in Cuda and based on a Pseudo Boolean formulation of the p-median problem. We have tested the effectiveness of our algorithm using a Tesla K40 (2880 Cuda cores) on 290 different benchmark instances obtained from OR-Library, discrete location problems benchmark li...

  7. GPU-Accelerated Real-Time Surveillance De-Weathering

    OpenAIRE

    Pettersson, Niklas

    2013-01-01

    A fully automatic de-weathering system to increase the visibility/stability in surveillance applications during bad weather has been developed. Rain, snow and haze during daylight are handled in real-time performance with acceleration from CUDA implemented algorithms. Video from fixed cameras is processed on a PC with no need of special hardware except an NVidia GPU. The system does not use any background model and does not require any precalibration. Increase in contrast is obtained in all h...

  8. Systemic lupus erythematosus: A possible cause of non-alcoholic ...

    African Journals Online (AJOL)

    The clinical triad of mild confusion, ataxia and ophthalmoplegia also raised the possibility of Wernicke's encephalopathy (WE). The diagnosis of WE was further supported by the magnetic resonance imaging features. Owing to overlapping causal factors, this case illustrates the complexity of diagnosing and managing ...

  9. Tourist Affiliate Program while Using Online Booking System with Possibility of Entering B2B Code

    Directory of Open Access Journals (Sweden)

    Slivar Iva

    2008-01-01

    Full Text Available Affiliate marketing programs are one of the most powerful tools for online marketing since the merchant presenting a product or a service decides on the commissioning model and the commission is granted only if the desired results have been reached. Affiliate marketing is based offline as much as tourism itself and it relies on the commission that tourist companies pay to their partners (affiliates who bring new guests. This paper will present the basics of how online affiliate programs work, benefits they bring and steps for their further implementation. It will explain in detail how to establish an affiliate program for dynamic web pages which use online booking system platforms that offer a possibility of entering a B2B code. Special attention will be paid to SEO (Search Engine Optimisation. It will also present results of a research on Croatian hotels web pages and the implementation of the online booking system and affiliate programs. Having in mind the insufficient deployment of online potentials, the aim of the paper is to stress the need for setting up an effective method of monitoring changes and updates in the online world as well as implementing new promotional possibilities, all aimed at increasing sales. The goal of the paper is to explore advantages and disadvantages of the affiliate program as a new sales channel and promote the possibility to implement it in one of the biggest Croatian hotel companies, Maistra d.d. Rovinj. Along with methods of data acquiring and different techniques of creative thinking, the following scientific research methods were also used: statistic, historic, descriptive, comparison, interview, analysis and synthesis, induction and deduction.

  10. Analysis of specific features of digital instrumentation and control systems and possibilities of accounting for them within PSA

    International Nuclear Information System (INIS)

    Hustak, S.

    2002-10-01

    The report is structured as follows: Basic information on the peculiarities of digital technology for the I and C system at an NPP (Digital signal; Digital communication; Communication protocols; Examples of practical tools for creation of I and C digital systems); Peculiarities of the digital I and C technology from the reliability viewpoint (Software as a new component of implementation of a system function; Problems with the assessment or demonstration of reliability of software components of an I and C system); Possibilities of accounting for the specific features of digital I and C technology within PSA (Relevant PSA components; Using PSA as a supporting tool in designing new NPPs; Categorization of NPP I and C system tasks with respect to the defence-in-depth principle). (P.A.)

  11. Programming massively parallel processors a hands-on approach

    CERN Document Server

    Kirk, David B

    2010-01-01

    Programming Massively Parallel Processors discusses basic concepts about parallel programming and GPU architecture. ""Massively parallel"" refers to the use of a large number of processors to perform a set of computations in a coordinated parallel way. The book details various techniques for constructing parallel programs. It also discusses the development process, performance level, floating-point format, parallel patterns, and dynamic parallelism. The book serves as a teaching guide where parallel programming is the main topic of the course. It builds on the basics of C programming for CUDA, a parallel programming environment that is supported on NVI- DIA GPUs. Composed of 12 chapters, the book begins with basic information about the GPU as a parallel computer source. It also explains the main concepts of CUDA, data parallelism, and the importance of memory access efficiency using CUDA. The target audience of the book is graduate and undergraduate students from all science and engineering disciplines who ...

  12. Optimizing memory-bound SYMV kernel on GPU hardware accelerators

    KAUST Repository

    Abdelfattah, Ahmad

    2013-01-01

    Hardware accelerators are becoming ubiquitous high performance scientific computing. They are capable of delivering an unprecedented level of concurrent execution contexts. High-level programming language extensions (e.g., CUDA), profiling tools (e.g., PAPI-CUDA, CUDA Profiler) are paramount to improve productivity, while effectively exploiting the underlying hardware. We present an optimized numerical kernel for computing the symmetric matrix-vector product on nVidia Fermi GPUs. Due to its inherent memory-bound nature, this kernel is very critical in the tridiagonalization of a symmetric dense matrix, which is a preprocessing step to calculate the eigenpairs. Using a novel design to address the irregular memory accesses by hiding latency and increasing bandwidth, our preliminary asymptotic results show 3.5x and 2.5x fold speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30% fold improvement over the Matrix Algebra on GPU and Multicore Architectures (MAGMA) library in single and double precision arithmetics, respectively. © 2013 Springer-Verlag.

  13. Optimization Solutions for Improving the Performance of the Parallel Reduction Algorithm Using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2012-01-01

    Full Text Available In this paper, we research, analyze and develop optimization solutions for the parallel reduction function using graphics processing units (GPUs that implement the Compute Unified Device Architecture (CUDA, a modern and novel approach for improving the software performance of data processing applications and algorithms. Many of these applications and algorithms make use of the reduction function in their computational steps. After having designed the function and its algorithmic steps in CUDA, we have progressively developed and implemented optimization solutions for the reduction function. In order to confirm, test and evaluate the solutions' efficiency, we have developed a custom tailored benchmark suite. We have analyzed the obtained experimental results regarding: the comparison of the execution time and bandwidth when using graphic processing units covering the main CUDA architectures (Tesla GT200, Fermi GF100, Kepler GK104 and a central processing unit; the data type influence; the binary operator's influence.

  14. Operational performance of the ATLAS trigger and data acquisition system and its possible evolution

    CERN Document Server

    Negri, A; The ATLAS collaboration

    2012-01-01

    The experience accumulated in the ATLAS DAQ/HLT system operation during these years stimulated interest to explore possible evolutions, despite the success of the current design. One attractive direction is to merge three systems - the second trigger level (L2), the Event Builder (EB), and the Event Filter (EF) - within a single homogeneous one in which each HLT node executes all the steps required by the trigger and data acquisition process. Each L1 event is assigned to an available HLT node which executes the L2 algorithms using a subset of the event data and, upon positive selection, builds the event, which is further processed by the EF algorithms. Appealing aspects of this design are: a simplification of the software architecture and of its configuration, a better exploitation of the computing resources, the caching of fragments already collected for L2 processing, the automated load balancing between L2 and EF selection steps, the sharing of code and services on HLT nodes. Furthermore, the full treatmen...

  15. Analyses of Markov decision process structure regarding the possible strategic use of interacting memory systems

    Directory of Open Access Journals (Sweden)

    Eric A Zilli

    2008-12-01

    Full Text Available Behavioral tasks are often used to study the different memory systems present in humans and animals. Such tasks are usually designed to isolate and measure some aspect of a single memory system. However, it is not necessarily clear that any given task actually does isolate a system or that the strategy used by a subject in the experiment is the one desired by the experimenter. We have previously shown that when tasks are written mathematically as a form of partially-observable Markov decision processes, the structure of the tasks provide information regarding the possible utility of certain memory systems. These previous analyses dealt with the disambiguation problem: given a specific ambiguous observation of the environment, is there information provided by a given memory strategy that can disambiguate that observation to allow a correct decisionµ Here we extend this approach to cases where multiple memory systems can be strategically combined in different ways. Specifically, we analyze the disambiguation arising from three ways by which episodic-like memory retrieval might be cued (by another episodic-like memory, by a semantic association, or by working memory for some earlier observation. We also consider the disambiguation arising from holding earlier working memories, episodic-like memories or semantic associations in working memory. From these analyses we can begin to develop a quantitative hierarchy among memory systems in which stimulus-response memories and semantic associations provide no disambiguation while the episodic memory system provides the most flexible

  16. Hormones in the immune system and their possible role. A critical review.

    Science.gov (United States)

    Csaba, György

    2014-09-01

    Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.

  17. Gfargo: Fargo for Gpu

    Science.gov (United States)

    Masset, Frédéric

    2015-09-01

    GFARGO is a GPU version of FARGO. It is written in C and C for CUDA and runs only on NVIDIA’s graphics cards. Though it corresponds to the standard, isothermal version of FARGO, not all functionnalities of the CPU version have been translated to CUDA. The code is available in single and double precision versions, the latter compatible with FERMI architectures. GFARGO can run on a graphics card connected to the display, allowing the user to see in real time how the fields evolve.

  18. Description of the tasks of control room operators in German nuclear power plants and support possibilities by advanced computer systems

    International Nuclear Information System (INIS)

    Buettner, W.E.

    1984-01-01

    In course of the development of nuclear power plants the instrumentation and control systems and the information in the control room have been increasing substantially. With this background it is described which operator tasks might be supported by advanced computer aid systems with main emphasis to safety related information and diagnose facilities. Nevertheless, some of this systems under development may be helpful for normal operation modes too. As far as possible recommendations for the realization and test of such systems are made. (orig.) [de

  19. PADME – new code for modeling of planet georesources formation on heterogeneous computing systems

    Directory of Open Access Journals (Sweden)

    Protasov Viktor

    2018-01-01

    Full Text Available Many planets were detected in last few years, but there is no clear understanding of how they are formed. The fairly clear understanding of Solar system formation was founded with time, but there are some doubts yet because we don’t know what was at the beginning of the process, and what was acquired afterward. Moreover, formed ideas often couldn’t explain some features of other systems. Searching for Earth-like terrestrial planets is another very important problem. Even if any of found exoplanets will be similar to Earth, we couldn’t say that it is a “second Earth” exactly because its internal, geological, composition could be different – Venus is a vivid example. A new method for modelling of the planet formation process in a 3D2V formulation based on two-phase approach is presented in the paper. Fluids-in-cells method by Belotserkovskii-Davydov, modified with using the Godunov’s scheme, is used to model the gas component. The dust component is described by N-body system solved with the Particle-Mesh method. The method was accelerated by using of Nvidia CUDA technology. Gas-dust disk modelling results with the formation of sealing of gas and dust that could be interpreted as potential exoplanet are given.

  20. Robust and Adaptive OMR System Including Fuzzy Modeling, Fusion of Musical Rules, and Possible Error Detection

    Directory of Open Access Journals (Sweden)

    Bloch Isabelle

    2007-01-01

    Full Text Available This paper describes a system for optical music recognition (OMR in case of monophonic typeset scores. After clarifying the difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation. Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on a large data base show that the proposed method constitutes an interesting contribution to OMR.

  1. Optimizing Raytracing Algorithm Using CUDA

    Directory of Open Access Journals (Sweden)

    Sayed Ahmadreza Razian

    2017-11-01

    The results show that one can generate at least 11 frames per second in HD (720p resolution by GPU processor and GT 840M graphic card, using trace method. If better graphic card employ, this algorithm and program can be used to generate real-time animation.

  2. Performance studies of GooFit on GPUs vs RooFit on CPUs while estimating the statistical significance of a new physical signal

    Science.gov (United States)

    Di Florio, Adriano

    2017-10-01

    In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the J/ψϕ invariant mass in the three-body decay B + → J/ψϕK +. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerable resulting speed-up, evident when comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may or may not apply because its regularity conditions are not satisfied.

  3. Statistical significance estimation of a signal within the GooFit framework on GPUs

    Directory of Open Access Journals (Sweden)

    Cristella Leonardo

    2017-01-01

    Full Text Available In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the J/ψϕ invariant mass in the three-body decay B+ → J/ψϕK+. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerable resulting speed-up, evident when comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may or may not apply because its regularity conditions are not satisfied.

  4. Perspectives on clinical possibility: elements of analysis.

    Science.gov (United States)

    Chiffi, Daniele; Zanotti, Renzo

    2016-08-01

    Possibility is one of the most common modalities in reasoning and argumentation. Various kinds of modal concepts have been identified in philosophical and logical discussion of the metaphysics of modality. We focus here on the concept of clinical possibility. A critical analysis of what is intended as clinical possibility has not yet received sufficient examination, although the concept is extensively used in clinical reasoning. We present arguments to emphasize some desirable features associated with the concept of clinical possibility. We argue that almost all clinical possibilities are potentialities, that is, possibilities that may be actualized by effective, appropriate and feasible interventions. However, in some limited cases, even mere possibilities - which may or may not be actualized, since we do not have the required knowledge - may be involved in clinical reasoning, and we present some examples in this paper. We then introduce some basic views on the nature of possibility showing their validity and limitations when applied to the concept of clinical possibility. Lastly, we conjecture that clinical possibility is a normative modality that can be formalized in a multimodal system with epistemic and deontic logical operators. © 2015 John Wiley & Sons, Ltd.

  5. Efficient pseudo-random number generation for monte-carlo simulations using graphic processors

    Science.gov (United States)

    Mohanty, Siddhant; Mohanty, A. K.; Carminati, F.

    2012-06-01

    A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.

  6. Efficient pseudo-random number generation for Monte-Carlo simulations using graphic processors

    International Nuclear Information System (INIS)

    Mohanty, Siddhant; Mohanty, A K; Carminati, F

    2012-01-01

    A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.

  7. Using of opportunities of graphic processors for acceleration of scientific and technical calculations

    International Nuclear Information System (INIS)

    Dudnik, V.A.; Kudryavtsev, V.I.; Sereda, T.M.; Us, S.A.; Shestakov, M.V.

    2009-01-01

    The new opportunities of modern graphic processors (GPU) for acceleration of the scientific and technical calculations with the help of paralleling of a calculating task between the central processor and GPU are described. The description of using the technology NVIDIA CUDA for connection of parallel computing opportunities of GPU within the programme of the some intensive mathematical tasks is resulted. The examples of comparison of parameters of productivity in the process of these tasks' calculation without application of GPU and with use of opportunities NVIDIA CUDA for graphic processor GeForce 8800 are resulted

  8. Possible configurations for an air independent propulsion (AIP) system for submarines based on fuel cells

    International Nuclear Information System (INIS)

    Bordallo, C.R.; Moreno, E.; Brey, J.J.; Garcia, C.; Sarmiento, B.; Castro, A.

    2004-01-01

    'Full text:' Conventional submarines employ an electric propulsion system, based on energy storage in batteries which are recharged using diesel motors connected to generator alternators. This limits their autonomy underwater given that it will be depend on the amount of energy that can be stored in the batteries; currently, a normal value is to have energy to navigate for three days at low speed. As of from the WWII, several shipyards began to carry out research on propulsion systems for submarines that would be capable of operating under anaerobic conditions, independent of the air (AIP Systems). Since then, several proposals have been considered, but there is one option that several navies are currently putting their trust in: fuel cells. The objective of this Project is to stress the different configurations that can be considered to this end, as regards the transportation of hydrogen and oxygen. From the hydrogen point of view, the possibilities of transporting it in metal hydrides or its on-board production through the reforming of different fuels (gas-oil, ethanol, methanol), are analyzed. This study also compares auxiliary systems (including CO2 removers), and proposes solutions, some of which are under development, indicating which are currently being considered to a greater extent. (author)

  9. Possible configurations for an air independent propulsion (AIP) system for submarines based on fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, C.R.; Moreno, E.; Brey, J.J.; Garcia, C.; Sarmiento, B.; Castro, A. [Hynergreen Technologies, S.A., Seville (Spain)

    2004-07-01

    'Full text:' Conventional submarines employ an electric propulsion system, based on energy storage in batteries which are recharged using diesel motors connected to generator alternators. This limits their autonomy underwater given that it will be depend on the amount of energy that can be stored in the batteries; currently, a normal value is to have energy to navigate for three days at low speed. As of from the WWII, several shipyards began to carry out research on propulsion systems for submarines that would be capable of operating under anaerobic conditions, independent of the air (AIP Systems). Since then, several proposals have been considered, but there is one option that several navies are currently putting their trust in: fuel cells. The objective of this Project is to stress the different configurations that can be considered to this end, as regards the transportation of hydrogen and oxygen. From the hydrogen point of view, the possibilities of transporting it in metal hydrides or its on-board production through the reforming of different fuels (gas-oil, ethanol, methanol), are analyzed. This study also compares auxiliary systems (including CO2 removers), and proposes solutions, some of which are under development, indicating which are currently being considered to a greater extent. (author)

  10. Possible routes to improve adaptive management of firms

    NARCIS (Netherlands)

    Stuiver, M.; Westerink, J.

    2016-01-01

    This study explores possible routes to improve the adaptive management of firms and proposes to view firms as social-ecological systems. We conceptualise three possible ways in which firms can frame their relation with the natural environment. The first is impact related: strategies for assessing

  11. A possible human counterpart of the principle of increasing entropy

    International Nuclear Information System (INIS)

    Liang, Y.; An, K.N.; Yang, G.; Huang, J.P.

    2014-01-01

    It is well-known that the principle of increasing entropy holds for isolated natural systems that contain non-adaptive molecules. Here we present, for the first time, an experimental evidence for a possible human counterpart of the principle in an isolated social system that involves adaptive humans. Our work shows that the human counterpart is valid even though interactions among humans in social systems are distinctly different from those among molecules in natural systems. Thus, it becomes possible to understand social systems from this natural principle, at least to some extent.

  12. Design of a decision support system, trained on GPU, for assisting melanoma diagnosis in dermatoscopy images

    Science.gov (United States)

    Glotsos, Dimitris; Kostopoulos, Spiros; Lalissidou, Stella; Sidiropoulos, Konstantinos; Asvestas, Pantelis; Konstandinou, Christos; Xenogiannopoulos, George; Konstantina Nikolatou, Eirini; Perakis, Konstantinos; Bouras, Thanassis; Cavouras, Dionisis

    2015-09-01

    The purpose of this study was to design a decision support system for assisting the diagnosis of melanoma in dermatoscopy images. Clinical material comprised images of 44 dysplastic (clark's nevi) and 44 malignant melanoma lesions, obtained from the dermatology database Dermnet. Initially, images were processed for hair removal and background correction using the Dull Razor algorithm. Processed images were segmented to isolate moles from surrounding background, using a combination of level sets and an automated thresholding approach. Morphological (area, size, shape) and textural features (first and second order) were calculated from each one of the segmented moles. Extracted features were fed to a pattern recognition system assembled with the Probabilistic Neural Network Classifier, which was trained to distinguish between benign and malignant cases, using the exhaustive search and the leave one out method. The system was designed on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. Results showed that the designed system discriminated benign from malignant moles with 88.6% accuracy employing morphological and textural features. The proposed system could be used for analysing moles depicted on smart phone images after appropriate training with smartphone images cases. This could assist towards early detection of melanoma cases, if suspicious moles were to be captured on smartphone by patients and be transferred to the physician together with an assessment of the mole's nature.

  13. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction.

    Science.gov (United States)

    Zheng, Shawn Q; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B; Cheng, Yifan; Sedat, John W; Agard, David A

    2011-07-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096(2) × 512 voxels from an input tilt series containing 122 projection images of 4096(2) pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024(2) × 256 voxels from 122 1024(2) pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Análisis de la implementación software de un conformador de señales ultrasónicas para tiempo real

    Directory of Open Access Journals (Sweden)

    D. Romero-Laorden

    2016-10-01

    Full Text Available Resumen: Este trabajo analiza la implementación software en un sistema de imagen ultrasónica del Total Focusing Method para la compensación dinámica en tiempo real de los tiempos de vuelo para emisión y recepción de todos los puntos de la imagen. Para ello, haciendo uso de técnicas GPGPU, se analizan dos diferentes alternativas de implementación, mostrando como una planificación adecuada de acceso a los datos permite mejorar los tiempos de ejecución del algoritmo. Abstract: This paper studies the software implementation in an ultrasonic imaging system of Total Focusing Method. In order to accomplish real-time requirements parallel programming techniques have been used. Then, using GPGPU techniques, two different implementation alternatives are analysed, showing how proper planning of access to data improves the performance of the algorithm. Palabras clave: Imagen Ultrasónica, Procesamiento de Señal, Computación Paralela, GPU, CUDA, Keywords: Ultrasonic imaging GPU Signal Processing Parallel computing CUDA

  15. Deep Classifiers-Based License Plate Detection, Localization and Recognition on GPU-Powered Mobile Platform

    Directory of Open Access Journals (Sweden)

    Syed Tahir Hussain Rizvi

    2017-10-01

    Full Text Available The realization of a deep neural architecture on a mobile platform is challenging, but can open up a number of possibilities for visual analysis applications. A neural network can be realized on a mobile platform by exploiting the computational power of the embedded GPU and simplifying the flow of a neural architecture trained on the desktop workstation or a GPU server. This paper presents an embedded platform-based Italian license plate detection and recognition system using deep neural classifiers. In this work, trained parameters of a highly precise automatic license plate recognition (ALPR system are imported and used to replicate the same neural classifiers on a Nvidia Shield K1 tablet. A CUDA-based framework is used to realize these neural networks. The flow of the trained architecture is simplified to perform the license plate recognition in real-time. Results show that the tasks of plate and character detection and localization can be performed in real-time on a mobile platform by simplifying the flow of the trained architecture. However, the accuracy of the simplified architecture would be decreased accordingly.

  16. Photodynamic therapy in neurosurgery: a proof of concept of treatment planning system

    Science.gov (United States)

    Dupont, C.; Reyns, N.; Mordon, S.; Vermandel, M.

    2017-02-01

    Glioblastoma (GBM) is the most common primary brain tumor. PhotoDynamic Therapy (PDT) appears as an interesting research field to improve GBM treatment. Nevertheless, PDT cannot fit into the current therapeutic modalities according to several reasons: the lack of reliable and reproducible therapy schemes (devices, light delivery system), the lack of consensus on a photosensitizer and the absence of randomized and controlled multicenter clinical trial. The main objective of this study is to bring a common support for PDT planning. Here, we describe a proof of concept of Treatment Planning System (TPS) dedicated to interstitial PDT for GBM treatment. The TPS was developed with the integrated development environment C++ Builder XE8 and the environment ArtiMED, developed in our laboratory. This software enables stereotactic registration of DICOM images, light sources insertion and an accelerated CUDA GPU dosimetry modeling. Although, Monte-Carlo is more robust to describe light diffusion in biological tissue, analytical model accelerated by GPU remains relevant for dose preview or fast reverse planning processes. Finally, this preliminary work proposes a new tool to plan interstitial or intraoperative PDT treatment and might be included in the design of future clinical trials in order to deliver PDT straightforwardly and homogenously in investigator centers.

  17. Real-Time Laser Ultrasound Tomography for Profilometry of Solids

    Science.gov (United States)

    Zarubin, V. P.; Bychkov, A. S.; Karabutov, A. A.; Simonova, V. A.; Kudinov, I. A.; Cherepetskaya, E. B.

    2018-01-01

    We studied the possibility of applying laser ultrasound tomography for profilometry of solids. The proposed approach provides high spatial resolution and efficiency, as well as profilometry of contaminated objects or objects submerged in liquids. The algorithms for the construction of tomograms and recognition of the profiles of studied objects using the parallel programming technology NDIVIA CUDA are proposed. A prototype of the real-time laser ultrasound profilometer was used to obtain the profiles of solid surfaces of revolution. The proposed method allows the real-time determination of the surface position for cylindrical objects with an approximation accuracy of up to 16 μm.

  18. Quantum Mechanics and locality in the K{sup 0} K-bar{sup 0} system experimental verification possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Muller, A.

    1994-11-01

    It is shown that elementary Quantum Mechanics, applied to the K{sup 0} K-bar{sup 0} system, predicts peculiar long range EPR correlations. Possible experimental verifications are discussed, and a concrete experiment with anti-protons annihilations at rest is proposed. A pedestrian approach to local models shows that K{sup 0} K-bar{sup 0} experimentation could provide arguments to the local realism versus quantum theory controversy. (author). 17 refs., 23 figs.

  19. A first-principles study of the possible magnetism of Rh in the Cu/Rh/Cu(001) system

    CERN Document Server

    Jang, Y R; Chang, C S; Cho, L H; Lee, J I

    1999-01-01

    Possible 4d magnetism of a Rh monolayer in a Cu/Rh/Cu(001) system is investigated using the full-potential linearized augmented-plane-wave (FLAPW) energy band method based on the local-spin-density approximation (LSDA). We have calculated the total energy of the Cu/Rh/Cu(001) system and have found that the Rh monolayer is ferromagnetic (FM) with a tiny magnetic moment. However, the total energy difference between the ferromagnetic and the paramagnetic states is found to be very small, and thus which state can be realized at room temperature is uncertain. The calculated charge densities and layer-projected density of states (LDOS) are presented and discussed in relation to the magnetic properties.

  20. GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods.

    Directory of Open Access Journals (Sweden)

    Alejandro C Crespo

    Full Text Available Smoothed Particle Hydrodynamics (SPH is a numerical method commonly used in Computational Fluid Dynamics (CFD to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs or Graphics Processor Units (GPUs, a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability.

  1. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation.

  2. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    International Nuclear Information System (INIS)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho

    2008-01-01

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation

  3. Projector and Backprojector for Iterative CT Reconstruction with Blobs using CUDA

    NARCIS (Netherlands)

    Bippus, R.D.; Koehler, T.; Bergner, F.; Brendel, B.; Hansis, E.; Proksa, R.

    2011-01-01

    Aiming at modeling the system’s geometry correctly accounting for the major effects influencing image quality within an iterative reconstruction framework we want to achieve this within reasonable processing times. This principle objective led us to using blobs for imagerepresentation and a

  4. Possible lattice formation of new materials within a piezoelectric ...

    Indian Academy of Sciences (India)

    plasma systems but still make possible self organized collective phenomena. .... It may be mentioned here that the present theory provides a quantitative possibility for ... imental verification of the results of our theoretical studies, we propose to ...

  5. Large Scale Document Inversion using a Multi-threaded Computing System.

    Science.gov (United States)

    Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won

    2017-06-01

    Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations.

  6. Possibility of use of plat test systems for estimation of degree risk at radiation influence

    International Nuclear Information System (INIS)

    Gogebashvili, M.E.; Ivanishvili, N.I.

    2010-01-01

    Full text : Now one of the major problems of radiobiology is studying of degree risks at influence of small doses of an ionizing radiation. It is known, that not tumoral forms of the remote pathology are not stochastic, threshold, reactions of an organism to beam influence, frequency and weight depend on a dose, while carcinogenic and genetic effects (stochastic reactions) - frequency raises with dose increase. Last years the general hypothesis for definition of the raised risk in the irradiated populations, based on the theoretical analysis of extensive researches of various biological objects and epidemiological data, assumes existence of difficult parities between a dose of an irradiation and frequency of investigated effect. In this aspect the special importance is got by biological models with which help reception of quantitative parameters of influence of modifying factors for creation of more exact systems of monitoring of the remote radiobiological effects is possible. One of such systems is reciprocal grows reaction of stamen threads of plant tradescantia. At the heart of action of the given biomodel that growth tradescantia threads occurs from one initial cell is, and level of its radiating damage is shown in number of the subsequent cellular generation during the postradiating period. For an estimation of adequacy of the given model we had been chose two kinds tradescantia - Tradescantia virginiana L. and Tradescantia rosea Vent. It is notes, that at identical quantity of chromosomes their volume interface nucleus composable at Tradescantia virginiana L. 63.7 μ 3 , and at T.rosea Vent. - 38.5 μ 3 . Thus at interpretation of data it was possible to estimate them with the target theory. In work two basic criteria of an estimation of radiating damage - quantity of viable pollen threads and quantity of viable cells in each of threads have been used. The received results have shown strict correlation of reciprocal postradiating effects between used variants

  7. Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method

    Science.gov (United States)

    Januszewski, M.; Kostur, M.

    2014-09-01

    We present Sailfish, an open source fluid simulation package implementing the lattice Boltzmann method (LBM) on modern Graphics Processing Units (GPUs) using CUDA/OpenCL. We take a novel approach to GPU code implementation and use run-time code generation techniques and a high level programming language (Python) to achieve state of the art performance, while allowing easy experimentation with different LBM models and tuning for various types of hardware. We discuss the general design principles of the code, scaling to multiple GPUs in a distributed environment, as well as the GPU implementation and optimization of many different LBM models, both single component (BGK, MRT, ELBM) and multicomponent (Shan-Chen, free energy). The paper also presents results of performance benchmarks spanning the last three NVIDIA GPU generations (Tesla, Fermi, Kepler), which we hope will be useful for researchers working with this type of hardware and similar codes. Catalogue identifier: AETA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License, version 3 No. of lines in distributed program, including test data, etc.: 225864 No. of bytes in distributed program, including test data, etc.: 46861049 Distribution format: tar.gz Programming language: Python, CUDA C, OpenCL. Computer: Any with an OpenCL or CUDA-compliant GPU. Operating system: No limits (tested on Linux and Mac OS X). RAM: Hundreds of megabytes to tens of gigabytes for typical cases. Classification: 12, 6.5. External routines: PyCUDA/PyOpenCL, Numpy, Mako, ZeroMQ (for multi-GPU simulations), scipy, sympy Nature of problem: GPU-accelerated simulation of single- and multi-component fluid flows. Solution method: A wide range of relaxation models (LBGK, MRT, regularized LB, ELBM, Shan-Chen, free energy, free surface) and boundary conditions within the lattice

  8. Distraction or cognitive overload? Using modulations of the autonomic nervous system to discriminate the possible negative effects of advanced assistance system.

    Science.gov (United States)

    Ruscio, D; Bos, A J; Ciceri, M R

    2017-06-01

    The interaction with Advanced Driver Assistance Systems has several positive implications for road safety, but also some potential downsides such as mental workload and automation complacency. Malleable attentional resources allocation theory describes two possible processes that can generate workload in interaction with advanced assisting devices. The purpose of the present study is to determine if specific analysis of the different modalities of autonomic control of nervous system can be used to discriminate different potential workload processes generated during assisted-driving tasks and automation complacency situations. Thirty-five drivers were tested in a virtual scenario while using head-up advanced warning assistance system. Repeated MANOVA were used to examine changes in autonomic activity across a combination of different user interactions generated by the advanced assistance system: (1) expected take-over request without anticipatory warning; (2) expected take-over request with two-second anticipatory warning; (3) unexpected take-over request with misleading warning; (4) unexpected take-over request without warning. Results shows that analysis of autonomic modulations can discriminate two different resources allocation processes, related to different behavioral performances. The user's interaction that required divided attention under expected situations produced performance enhancement and reciprocally-coupled parasympathetic inhibition with sympathetic activity. At the same time, supervising interactions that generated automation complacency were described specifically by uncoupled sympathetic activation. Safety implications for automated assistance systems developments are considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. CUDA GPU based full-Stokes finite difference modelling of glaciers

    Science.gov (United States)

    Brædstrup, C. F.; Egholm, D. L.

    2012-04-01

    Many have stressed the limitations of using the shallow shelf and shallow ice approximations when modelling ice streams or surging glaciers. Using a full-stokes approach requires either large amounts of computer power or time and is therefore seldom an option for most glaciologists. Recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists. Our full-stokes ice sheet model implements a Red-Black Gauss-Seidel iterative linear solver to solve the full stokes equations. This technique has proven very effective when applied to the stokes equation in geodynamics problems, and should therefore also preform well in glaciological flow probems. The Gauss-Seidel iterator is known to be robust but several other linear solvers have a much faster convergence. To aid convergence, the solver uses a multigrid approach where values are interpolated and extrapolated between different grid resolutions to minimize the short wavelength errors efficiently. This reduces the iteration count by several orders of magnitude. The run-time is further reduced by using the GPGPU technology where each card has up to 448 cores. Researchers utilizing the GPGPU technique in other areas have reported between 2 - 11 times speedup compared to multicore CPU implementations on similar problems. The goal of these initial investigations into the possible usage of GPGPU technology in glacial modelling is to apply the enhanced resolution of a full-stokes solver to ice streams and surging glaciers. This is a area of growing interest because ice streams are the main drainage conjugates for large ice sheets. It is therefore crucial to understand this streaming behavior and it's impact up-ice.

  10. C.E.B.A.S., a closed equilibrated biological aquatic system as a possible precursor for a long-term life support system?

    Science.gov (United States)

    Blüm, V.

    C.E.B.A.S.-AQUARACK is a long-term multi-generation experimental device for aquatic organisms which is disposed for utlizitation in a space station. It results from the basic idea of a space aquarium for maintaining aquatic animals for longer periods integrated in a AQUARACK which consists of a modular animal holding tank, a semi-biological/physical water recycling system and an electronical control unit. The basic idea to replace a part of the water recycling system by a continuous culture of unicellular algae primarily leads to a second system for experiments with algae, a botanical AQUARACK consisting of an algal reactor, a water recycling and the electronical control unit. The combination of the zoological part, and the botanical part with a common control system in the AQUARACK, however, results in a ``Closed Equilibrated Biological Aquatic System'' (C.E.B.A.S.) representing an closed artificial ecosystem. Although this is disposed primarily as an experimental device for basic zoological, botanical and interdisciplinary research it opens the theoretical possibility to adapt it for combined production of animal and plant biomass on ground or in space. The paper explains the basic conception of the hardware construction of the zoological part of the system, the corresponding scientific frame program including the choice of the experimental animals and gives some selected examples of the hardware-related resrearch. It furtheron discusses the practical and economical relevance of the system in the development of a controlled aquatical life support system in general.

  11. The estimation possibility of cleaning from radionuclides for the coast parts of drainage system by the soil fractionating method

    International Nuclear Information System (INIS)

    Karlin, Y.V.; Chuikov, V.Y.; Belianina, N.G.; Barinov, A.S.

    1996-01-01

    In this paper is considered the possibility of the cleaning from the radionuclides for the coast parts of the drainage system at the Moscow SIA open-quotes Radonclose quotes by the soil fractionating treatment. It is showed that this method cannot to be used for the cleaning of the soils near water flowing (a river, a spring or a open drainage system) because the most part of the soil size-fractions is the fine fractions and the main contaminant radionuclide ( 137 Cs) is distributed among the different soil components homogeneously

  12. Possibility of Preparing Thematic Maps Through Developing of the Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Stjepan Husnjak

    2013-04-01

    Full Text Available It is a well known fact that nowadays planning of sustainable development and land use requires a lot of reliable and good quality information, which serves as the basis for timely and adequate decision-making. One of the most important forms of information is presented in various maps. Until recently, preparing of such data was, no doubt, a rather complex and time-consuming task. However, at present, thanks to, first of all, the GIS technology it is possible to develop corresponding geographic information systems with databases which then allow comparatively simple and quick preparing of necessary thematic maps. The paper first presents the method of developing the Geographic and Land Information System (GLIS of the Karlovac County which, although developed for the purpose of agricultural development, may also be used in the development of forestry, environment protection, physical planning, water management and for soil conservation and regulation. Several examples illustrate the possibilities of preparing of specialised maps based on this GLIS. The basic data for developing of the geographic and land information system were the data of the Basic Soil Maps and topographic maps of the Republic of Croatia at the scale of 1:50 000 or 1:25 000, and the data from other studies made for the purpose of agricultural development in the area. These data, together with the results of processing and analysing of this data, by digitalisation, generalisation and interpolation, were incorporated into an integrated database of the geographic and land information system by using Microstation, AutoCad, ArcInfo, ArcWiew and Access software and the corresponding hardware. GLIS database consists of two parts. The first part includes the data referring to polygons - pedological contours, and the other part the data on pedological profiles. The base is organised in a way that enable the preparation of different thematic maps, but it can be also used in digital form

  13. Parallel Implementation of Numerical Solution of Few-Body Problem Using Feynman's Continual Integrals

    Science.gov (United States)

    Naumenko, Mikhail; Samarin, Viacheslav

    2018-02-01

    Modern parallel computing algorithm has been applied to the solution of the few-body problem. The approach is based on Feynman's continual integrals method implemented in C++ programming language using NVIDIA CUDA technology. A wide range of 3-body and 4-body bound systems has been considered including nuclei described as consisting of protons and neutrons (e.g., 3,4He) and nuclei described as consisting of clusters and nucleons (e.g., 6He). The correctness of the results was checked by the comparison with the exactly solvable 4-body oscillatory system and experimental data.

  14. GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF

    Science.gov (United States)

    Mielikainen, J.; Huang, B.; Huang, A.

    2011-12-01

    The Weather Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather prediction system. Microphysics plays an important role in weather and climate prediction. Several bulk water microphysics schemes are available within the WRF, with different numbers of simulated hydrometeor classes and methods for estimating their size fall speeds, distributions and densities. Stony-Brook University scheme (SBU-YLIN) is a 5-class scheme with riming intensity predicted to account for mixed-phase processes. In the past few years, co-processing on Graphics Processing Units (GPUs) has been a disruptive technology in High Performance Computing (HPC). GPUs use the ever increasing transistor count for adding more processor cores. Therefore, GPUs are well suited for massively data parallel processing with high floating point arithmetic intensity. Thus, it is imperative to update legacy scientific applications to take advantage of this unprecedented increase in computing power. CUDA is an extension to the C programming language offering programming GPU's directly. It is designed so that its constructs allow for natural expression of data-level parallelism. A CUDA program is organized into two parts: a serial program running on the CPU and a CUDA kernel running on the GPU. The CUDA code consists of three computational phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and transmission of results from the GPU into the memory of CPU. CUDA takes a bottom-up point of view of parallelism is which thread is an atomic unit of parallelism. Individual threads are part of groups called warps, within which every thread executes exactly the same sequence of instructions. To test SBU-YLIN, we used a CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001. A WRF domain is a geographic region of interest discretized into a 2-dimensional grid parallel to the ground. Each grid point has

  15. The FairRoot framework

    International Nuclear Information System (INIS)

    Al-Turany, M; Bertini, D; Karabowicz, R; Kresan, D; Malzacher, P; Uhlig, F; Stockmanns, T

    2012-01-01

    The FairRoot framework is an object oriented simulation, reconstruction and data analysis framework based on ROOT. It includes core services for detector simulation and offline analysis. The framework delivers base classes which enable the users to easily construct their experimental setup in a fast and convenient way. By using the Virtual Monte Carlo concept it is possible to perform the simulations using either Geant3 or Geant4 without changing the user code or the geometry description. Using and extending the task mechanism of ROOT it is possible to implement complex analysis tasks in a convenient way. Moreover, using the FairCuda interface of the framework it is possible to run some of these tasks also on GPU. Data IO, as well as parameter handling and data base connections are also handled by the framework. Since some of the experiments will not have an experimental setup with a conventional trigger system, the framework can handle also free flowing input streams of detector data. For this mode of operation the framework provides classes to create the needed time sorted input streams of detector data out of the event based simulation data. There are also tools to do radiation studies and to visualize the simulated data. A CMake-CDash based building and monitoring system is also part of the FairRoot services which helps to build and test the framework on many different platforms in an automatic way, including also Continuous Integration.

  16. Possible use of electric cars as balancing instrument

    Energy Technology Data Exchange (ETDEWEB)

    Tirez, Andreas; Luickx, Patrick; Woitrin, Dominique

    2010-09-15

    A massive introduction of electric cars is foreseeable in the mid to long term. Implementing a 'vehicle-to-grid' setting makes it possible to use these cars to deliver ancillary services to the electricity system. In this paper, the possibility of delivering active reserves in the Belgian control area is analyzed. We assume one million electric cars that can be connected to the Belgian grid. Based on our simulation, electric cars could be used for delivering all primary, all secondary and part of the tertiary reserves. Using electric cars as a balancing instrument would facilitate absorbing intermittent energy into the electricity system.

  17. Parallel computing in cluster of GPU applied to a problem of nuclear engineering

    International Nuclear Information System (INIS)

    Moraes, Sergio Ricardo S.; Heimlich, Adino; Resende, Pedro

    2013-01-01

    Cluster computing has been widely used as a low cost alternative for parallel processing in scientific applications. With the use of Message-Passing Interface (MPI) protocol development became even more accessible and widespread in the scientific community. A more recent trend is the use of Graphic Processing Unit (GPU), which is a powerful co-processor able to perform hundreds of instructions in parallel, reaching a capacity of hundreds of times the processing of a CPU. However, a standard PC does not allow, in general, more than two GPUs. Hence, it is proposed in this work development and evaluation of a hybrid low cost parallel approach to the solution to a nuclear engineering typical problem. The idea is to use clusters parallelism technology (MPI) together with GPU programming techniques (CUDA - Compute Unified Device Architecture) to simulate neutron transport through a slab using Monte Carlo method. By using a cluster comprised by four quad-core computers with 2 GPU each, it has been developed programs using MPI and CUDA technologies. Experiments, applying different configurations, from 1 to 8 GPUs has been performed and results were compared with the sequential (non-parallel) version. A speed up of about 2.000 times has been observed when comparing the 8-GPU with the sequential version. Results here presented are discussed and analyzed with the objective of outlining gains and possible limitations of the proposed approach. (author)

  18. A Real-Time Early Cognitive Vision System based on a Hybrid coarse and fine grained Parallel Architecture

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With

    . The current top model GPUs from NVIDIA possess up to 240 homogeneous cores. In the past, GPUs have beenhard to program, forcing the programmer to map the algorithm to the graphics processing pipeline and think in terms of vertex and fragment shaders, imposing a limiting factor in the implementation of non......-graphics applications. This, however, has changed with the introduction of the Compute Unified Device Architecture (CUDA) framework from NVIDIA. The EV and ECV stages have different parallel properties. The regular, pixel-based processing of EV fit the GPU architecture very well, and parts of ECV, on the other hand...

  19. ECDIS Possibilities for BWE Adoption

    Directory of Open Access Journals (Sweden)

    Srdjan ŽuŁkin

    2017-09-01

    Full Text Available The Electronic Chart Display and Information System (ECDIS development and implementation have been linked primarily to the safety of navigation. Further development allows the implementation from other aspects of navigation. This primarily pertains to the Harmful Aquatic Organisms and Pathogens (HAOP from Ballast Water Exchange (BWE and the use of ECDIS system for improving environmental protection. The paper contains an overview of important legal aspects of sea environment protection related to the Ballast Water Management (BWM Convention on global as well as on local scale. Apart from enhancing the safety of navigation, integration of the proposed tool for sea environment protection in the ECDIS with onboard ballast water system can significantly contribute to sea and sea environment protection from harmful substances. In this paper, the architecture of such system is suggested. This approach also ensures a reduction of possible consequences on ecological incidents and human errors.

  20. Opticks : GPU Optical Photon Simulation for Particle Physics using NVIDIA® OptiX™

    Science.gov (United States)

    C, Blyth Simon

    2017-10-01

    Opticks is an open source project that integrates the NVIDIA OptiX GPU ray tracing engine with Geant4 toolkit based simulations. Massive parallelism brings drastic performance improvements with optical photon simulation speedup expected to exceed 1000 times Geant4 when using workstation GPUs. Optical photon simulation time becomes effectively zero compared to the rest of the simulation. Optical photons from scintillation and Cherenkov processes are allocated, generated and propagated entirely on the GPU, minimizing transfer overheads and allowing CPU memory usage to be restricted to optical photons that hit photomultiplier tubes or other photon detectors. Collecting hits into standard Geant4 hit collections then allows the rest of the simulation chain to proceed unmodified. Optical physics processes of scattering, absorption, scintillator reemission and boundary processes are implemented in CUDA OptiX programs based on the Geant4 implementations. Wavelength dependent material and surface properties as well as inverse cumulative distribution functions for reemission are interleaved into GPU textures providing fast interpolated property lookup or wavelength generation. Geometry is provided to OptiX in the form of CUDA programs that return bounding boxes for each primitive and ray geometry intersection positions. Some critical parts of the geometry such as photomultiplier tubes have been implemented analytically with the remainder being tessellated. OptiX handles the creation and application of a choice of acceleration structures such as boundary volume hierarchies and the transparent use of multiple GPUs. OptiX supports interoperation with OpenGL and CUDA Thrust that has enabled unprecedented visualisations of photon propagations to be developed using OpenGL geometry shaders to provide interactive time scrubbing and CUDA Thrust photon indexing to enable interactive history selection.

  1. A Block-Asynchronous Relaxation Method for Graphics Processing Units

    OpenAIRE

    Anzt, H.; Dongarra, J.; Heuveline, Vincent; Tomov, S.

    2011-01-01

    In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (GPUs). For this purpose, we developed a set of asynchronous iteration algorithms in CUDA and compared them with a parallel implementation of synchronous relaxation methods on CPU-based systems. For a set of test matrices taken from the University of Florida Matrix Collection we monitor the convergence behavior, the average iteration time and the total time-to-solution time. Analyzing the r...

  2. Brain Computer Interface for Micro-controller Driven Robot Based on Emotiv Sensors

    OpenAIRE

    Parth Gargava; Krishna Asawa

    2017-01-01

    A Brain Computer Interface (BCI) is developed to navigate a micro-controller based robot using Emotiv sensors. The BCI system has a pipeline of 5 stages- signal acquisition, pre-processing, feature extraction, classification and CUDA inter- facing. It shall aid in serving a prototype for physical movement of neurological patients who are unable to control or operate on their muscular movements. All stages of the pipeline are designed to process bodily actions like eye blinks to command naviga...

  3. Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts

    Science.gov (United States)

    Denis, Gil; Claverie, Alain; Pasco, Xavier; Darnis, Jean-Pierre; de Maupeou, Benoît; Lafaye, Murielle; Morel, Eric

    2017-08-01

    This paper reviews the trends in Earth observation (EO) and the possible impacts on markets of the new initiatives, launched either by existing providers of EO data or by new players, privately funded. After a presentation of the existing models, the paper discusses the new approaches, addressing both commercial and institutional markets. New concepts for the very high resolution markets, in Europe and in the US, are the main focus of this analysis. Two complementary perspectives are summarised: on the one hand, the type of system and its operational performance and, on the other, the related business models, concepts of operation and ownership schemes.

  4. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shawn Q.; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B.; Cheng, Yifan; Sedat, John W. [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States); Agard, David A., E-mail: agard@msg.ucsf.edu [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States)

    2011-07-15

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096{sup 2}x512 voxels from an input tilt series containing 122 projection images of 4096{sup 2} pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024{sup 2}x256 voxels from 122 1024{sup 2} pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. -- Highlights: {yields} A distributed multi-GPU system has been developed for electron microscopic tomography (EMT). {yields} This system allows for rapid constrained, iterative reconstruction of very large volumes. {yields} This system can be easily expanded to generate superior computing power for large-scale iterative EMT realignment.

  5. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction

    International Nuclear Information System (INIS)

    Zheng, Shawn Q.; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B.; Cheng, Yifan; Sedat, John W.; Agard, David A.

    2011-01-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096 2 x512 voxels from an input tilt series containing 122 projection images of 4096 2 pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024 2 x256 voxels from 122 1024 2 pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. -- Highlights: → A distributed multi-GPU system has been developed for electron microscopic tomography (EMT). → This system allows for rapid constrained, iterative reconstruction of very large volumes. → This system can be easily expanded to generate superior computing power for large-scale iterative EMT realignment.

  6. Moving from objects to possibilities

    DEFF Research Database (Denmark)

    Donovan, Jared; Gunn, Wendy

    2012-01-01

    and controls that determine indoor climate. A central issue in relating perceptions and experiences of indoor climate to wider structures and systems is finding ways of supporting company, university partners and users to imagine possibilities instead of certainties in terms of innovation potential. Whereas....... This involves opening up pathways within wider structures and systems for improvisation, at the same time finding ways of negotiating openness and closure with materials. How then do design materials support partial understandings of indoor climate between researchers, users and company partners in situated......, researchers and industry partners working in the field of indoor climate emphasize identifiable, measurable, parameters of comfort and focus their efforts on engineering products and systems based upon behavioural models, as researchers interested in the notion of participatory innovation, we engage...

  7. Exploiting graphics processing units for computational biology and bioinformatics.

    Science.gov (United States)

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  8. Implementación en GPU del Estadístico t para análisis de expresión genética en microarreglos

    Directory of Open Access Journals (Sweden)

    Isaac Villa-Medina

    2012-10-01

    Full Text Available Introducción: Los microarreglos de ADN son utilizados para analizar simultáneamente el nivel de expresión de genes bajo múltiples condiciones; sin embargo, la masiva cantidad de datos generados hacen que su análisis sea un candidato ideal para su procesamiento en paralelo. La utilización de Unidades de Procesamiento Gráfico de Propósito General (GPG­PU es una alternativa eficiente y de bajo costo, comparada contra aplicaciones que utilizan CPUs. Objetivo: Implementación de algoritmos basados en la Arquitectura de Dispositivos de Cómputo Unificado (CUDA para determinar la significancia estadística en la evalua­ción de los niveles de expresión de genes en microarreglos. Método: Análisis paramétrico t-pareado desarrollado en CUDA. Resultados: La evaluación utilizando la implementación en CUDA es 5 a 30 veces más rápida que la implementación en CPU, dependiendo del nú­mero de genes a ser evaluados. Conclusiones: Los resultados son comparados contra las implementaciones tradicionales en CPU; se proponen mejoras.

  9. A Parallel Supercomputer Implementation of a Biological Inspired Neural Network and its use for Pattern Recognition

    International Nuclear Information System (INIS)

    De Ladurantaye, Vincent; Lavoie, Jean; Bergeron, Jocelyn; Parenteau, Maxime; Lu Huizhong; Pichevar, Ramin; Rouat, Jean

    2012-01-01

    A parallel implementation of a large spiking neural network is proposed and evaluated. The neural network implements the binding by synchrony process using the Oscillatory Dynamic Link Matcher (ODLM). Scalability, speed and performance are compared for 2 implementations: Message Passing Interface (MPI) and Compute Unified Device Architecture (CUDA) running on clusters of multicore supercomputers and NVIDIA graphical processing units respectively. A global spiking list that represents at each instant the state of the neural network is described. This list indexes each neuron that fires during the current simulation time so that the influence of their spikes are simultaneously processed on all computing units. Our implementation shows a good scalability for very large networks. A complex and large spiking neural network has been implemented in parallel with success, thus paving the road towards real-life applications based on networks of spiking neurons. MPI offers a better scalability than CUDA, while the CUDA implementation on a GeForce GTX 285 gives the best cost to performance ratio. When running the neural network on the GTX 285, the processing speed is comparable to the MPI implementation on RQCHP's Mammouth parallel with 64 notes (128 cores).

  10. Radionuclides 26Al, 53Mn and 60Fe as a test of the possible nucleosynthesis immediately before solar system formation

    International Nuclear Information System (INIS)

    Chechev, V.P.

    2000-01-01

    Parameters of a possible burst of nucleosynthesis just prior to the solar system formation were calculated on the basis of data on occurrence of 26 Al, 53 Mn and 60 Fe radionuclides in the early solar system. The whole number of the observance data was shown to result in the following restrictions of the parameters of the mentioned burst: its contribution into the general galactic synthesis of the elements did not exceed 0.5 % while time interval from the burst up to hardening of meteorites did not exceed 10 mln. years [ru

  11. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    Science.gov (United States)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU

  12. Improved neural network modeling of inverse lens distortion

    CSIR Research Space (South Africa)

    De Villiers, JP

    2011-04-01

    Full Text Available . This allows points which are too far o the optical axis to fall on the CCD, to not be mapped erroneously onto the image. 5. RESULTS All timings in Tables 1, 2 and 3 were performed on the same computer. It had an Intel i7-960 CPU, and an NVidia GTX480 GPUs... in pixels for each ANN was averaged and is presented along with the RMS error of the best ANN, the timing is openMP (www.openMP.org) is API for multi-platform shared-memory parallel programming in C/C++ and Fortran. yCUDA (www.nvidia.com/object/cuda home...

  13. Finite Temperature Lattice QCD with GPUs

    International Nuclear Information System (INIS)

    Cardoso, N.; Cardoso, M.; Bicudo, P.

    2011-01-01

    Graphics Processing Units (GPUs) are being used in many areas of physics, since the performance versus cost is very attractive. The GPUs can be addressed by CUDA which is a NVIDIA's parallel computing architecture. It enables dramatic increases in computing performance by harnessing the power of the GPU. We present a performance comparison between the GPU and CPU with single precision and double precision in generating lattice SU(2) configurations. Analyses with single and multiple GPUs, using CUDA and OPENMP, are also presented. We also present SU(2) results for the renormalized Polyakov loop, colour averaged free energy and the string tension as a function of the temperature. (authors)

  14. Graphics processing unit based computation for NDE applications

    Science.gov (United States)

    Nahas, C. A.; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2012-05-01

    Advances in parallel processing in recent years are helping to improve the cost of numerical simulation. Breakthroughs in Graphical Processing Unit (GPU) based computation now offer the prospect of further drastic improvements. The introduction of 'compute unified device architecture' (CUDA) by NVIDIA (the global technology company based in Santa Clara, California, USA) has made programming GPUs for general purpose computing accessible to the average programmer. Here we use CUDA to develop parallel finite difference schemes as applicable to two problems of interest to NDE community, namely heat diffusion and elastic wave propagation. The implementations are for two-dimensions. Performance improvement of the GPU implementation against serial CPU implementation is then discussed.

  15. A GPU code for analytic continuation through a sampling method

    Directory of Open Access Journals (Sweden)

    Johan Nordström

    2016-01-01

    Full Text Available We here present a code for performing analytic continuation of fermionic Green’s functions and self-energies as well as bosonic susceptibilities on a graphics processing unit (GPU. The code is based on the sampling method introduced by Mishchenko et al. (2000, and is written for the widely used CUDA platform from NVidia. Detailed scaling tests are presented, for two different GPUs, in order to highlight the advantages of this code with respect to standard CPU computations. Finally, as an example of possible applications, we provide the analytic continuation of model Gaussian functions, as well as more realistic test cases from many-body physics.

  16. Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)

    Science.gov (United States)

    Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.

    2016-05-01

    This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.

  17. NEW POSSIBILITIES OF RAILWAY TRAFFIC CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Lionginas LIUDVINAVIČIUS

    2016-06-01

    Full Text Available This article analyses the train traffic control systems in 1435 mm and 1520 mm gauge railways. The article analyses the aspects of train traffic control and locomotive energy saving by using the coordinates of track profile change that have been received from GPS. In the article, achievements of Lithuanian railways (LG in the area of train traffic control optimisation are presented.

  18. A possible connection between thermal comfort and health

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, John L.

    2004-05-20

    It is a well-established fact that cardiovascular health requires periodic exercise during which the human body often experiences significant physical discomfort. It is not obvious to the exerciser that the short-term pain and discomfort has a long-term positive health impact. Many cultures have well-established practices that involve exposing the body to periodic thermal discomfort. Scandinavian saunas and American Indian sweat lodges are two examples. Both are believed to promote health and well-being. Vacations often intentionally include significant thermal discomfort as part of the experience (e.g., sunbathing, and downhill skiing). So people often intentionally make themselves thermally uncomfortable yet the entire foundation of providing the thermal environment in our buildings is done to minimize the percentage of people thermally dissatisfied. We must provide an environment that does not negatively impact short-term health and we need to consider productivity but are our current thermal comfort standards too narrowly defined and do these standards actually contribute to longer-term negative health impacts? This paper examines the possibility that the human body thermoregulatory system has a corollary relationship to the cardiovascular system. It explores the possibility that we have an inherent need to exercise our thermoregulatory system. Potential, physiological, sociological and energy ramifications of these possibilities are discussed.

  19. Experiences with High-Level Programming Directives for Porting Applications to GPUs

    International Nuclear Information System (INIS)

    Ding, Wei; Chapman, Barbara; Sankaran, Ramanan; Graham, Richard L.

    2012-01-01

    HPC systems now exploit GPUs within their compute nodes to accelerate program performance. As a result, high-end application development has become extremely complex at the node level. In addition to restructuring the node code to exploit the cores and specialized devices, the programmer may need to choose a programming model such as OpenMP or CPU threads in conjunction with an accelerator programming model to share and manage the difference node resources. This comes at a time when programmer productivity and the ability to produce portable code has been recognized as a major concern. In order to offset the high development cost of creating CUDA or OpenCL kernels, directives have been proposed for programming accelerator devices, but their implications are not well known. In this paper, we evaluate the state of the art accelerator directives to program several applications kernels, explore transformations to achieve good performance, and examine the expressiveness and performance penalty of using high-level directives versus CUDA. We also compare our results to OpenMP implementations to understand the benefits of running the kernels in the accelerator versus CPU cores.

  20. An Optimized Multicolor Point-Implicit Solver for Unstructured Grid Applications on Graphics Processing Units

    Science.gov (United States)

    Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana

    2016-01-01

    In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.

  1. POSSPOW: Possible Power of Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Giebel, Gregor; Göçmen, Tuhfe; Sørensen, Poul Ejnar

    2013-01-01

    Introduction In recent years, the very large offshore wind farms were designed as wind power plants, including possibilities to contribute to the stability of the grid by offering grid services (also called ancillary services). One of those services is reserve power, which is achieved by down......-regulating the wind farm from its maximum possible power. The power can be ramped up quite quickly, but the influence of wakes makes it difficult to assess the exact amount of down-regulation available to sell. Currently, Transmission System Operators (TSOs) have no real way to determine exactly the possible power...... will be verified on some of the large offshore wind farms owned by Vattenfall, and possibly in a DONG Energy wind farm too. Dedicated experiments to the wind flow in large offshore wind farms are planned. Main body of abstract Modern wind turbines have a SCADA signal called possible power. In normal operation...

  2. Large Scale Document Inversion using a Multi-threaded Computing System

    Science.gov (United States)

    Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won

    2018-01-01

    Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. CCS Concepts •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations.

  3. Harmful Effects of Formaldehyde and Possible Protective Effect of ...

    African Journals Online (AJOL)

    2017-05-22

    May 22, 2017 ... the ocular and respiratory system, but it also affects the nervous and genital system. ... possible protective effect of Nigella sativa on the trachea of rats. Niger ..... Vitamin A deficiency in the tracheal epithelium of rats has been ...

  4. Partnerships in Health Systems: Social Organization as limits and possibilities in the Family Health Strategy Management.

    Science.gov (United States)

    Silva, Vanessa Costa E; Barbosa, Pedro Ribeiro; Hortale, Virgínia Alonso

    2016-05-01

    This is a case study in the municipality of Rio de Janeiro about management in the Family Health Strategy based on the Social Organizations model. The aims were to characterize and analyze aspects of the governance system adopted by the Rio de Janeiro Municipal Health Department and identify limits and possibilities of this model as a management option in Brazil's Unified Health System. A qualitative study was performed based on a literature review, document analysisand interviews with key informants. This management model facilitated the expansion of access to primary healthcare through the Family Health Strategy in Rio - where the population covered increased from 7.2% of the population in 2008 to 45.5% in 2015. The results showthat some practices in the contractual logic need to be improved, including negotiation and accountability with autonomywith the service suppliers. Evaluation and control has focus on processes, not results, and there has not been an increase in transparency and social control. The system of performance incentives has been reported as inducing improvements in the work process of the health teams. It is concluded that the regulatory capacity of the municipal management would need to be improved. On the other hand, there is an important and significant process of learning in progress.

  5. Bayer image parallel decoding based on GPU

    Science.gov (United States)

    Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua

    2012-11-01

    In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.

  6. Determinants of customer satisfaction with the health care system, with the possibility to choose a personal physician and with a family doctor in a transition country.

    Science.gov (United States)

    Kersnik, J

    2001-08-01

    Many Eastern and Central European counties are reforming their health care systems. The aim of this study was to determine customer satisfaction with a reformed health care system, with the possibility of free choice of a family physician and patient satisfaction with the family physician in Slovenia and their major determinants. We used a postal survey of the patients who attended their family physician's offices during the study period. We obtained an 84% response rate. Some 72.9% of the respondents were satisfied with the current organisation of health care services, 95.5% of the respondents were satisfied with the possibility of choosing their own family physician and 58% of participants were very satisfied with the level of care received from their personal family practitioners. It was shown that higher patient satisfaction with the family physician was the most powerful predictor of patients' satisfaction with the health care system. The results show that health care reform in Slovenia has a positive impact on the consumers' perceptions of health care quality, measured in terms of consumer satisfaction with the health care system, the possibility to choose a family physician and the overall satisfaction with the family physician.

  7. Are we alone: The possibility of extraterrestrial civilizations

    Science.gov (United States)

    Rood, R. T.; Trefil, J. S.

    The book explores the possibility of extraterrestrial (ET) intelligence. The formation of stars and planetary systems, the evolution of planetary atmospheres and the evolution of life are reviewed. The possibilities of interstellar communication, ET colonization of other star systems, in addition to earth's colonization of near-earth space are discussed. The state of the earth's depleting energy sources and current technology are used to show why some scientists believe that earth will be colonizing in space within the next century. Current methods of searching for ET intelligence are reviewed, and preliminary designs for various space habitats, including the torus, and discussed, taking into consideration problems that would be encountered. The importance of space colonies for the existence and expansion of the human race is emphasized.

  8. Thermal desalination in GCC and possible development

    KAUST Repository

    Darwish, Mohamed Ali

    2013-01-01

    The Water Desalination and Reuse Center in King Abdulla University of Science and Technology, in Saudi Arabia, held a workshop on thermal desalination on the 11th and 12th of March, 2013. This paper was presented as part of a lecture at the workshop. It presents the status and possible developments of the two main thermal desalination systems processing large quantities of seawater in the Gulf Cooperation Council, multi-stage flash, and thermal vapor compression systems. Developments of these systems were presented to show how these systems are competing with the more energy-efficient seawater reverse osmosis desalting. © 2013 © 2013 Balaban Desalination Publications. All rights reserved.

  9. Thermal desalination in GCC and possible development

    KAUST Repository

    Darwish, Mohamed Ali

    2013-06-28

    The Water Desalination and Reuse Center in King Abdulla University of Science and Technology, in Saudi Arabia, held a workshop on thermal desalination on the 11th and 12th of March, 2013. This paper was presented as part of a lecture at the workshop. It presents the status and possible developments of the two main thermal desalination systems processing large quantities of seawater in the Gulf Cooperation Council, multi-stage flash, and thermal vapor compression systems. Developments of these systems were presented to show how these systems are competing with the more energy-efficient seawater reverse osmosis desalting. © 2013 © 2013 Balaban Desalination Publications. All rights reserved.

  10. Parallel Programming Application to Matrix Algebra in the Spectral Method for Control Systems Analysis, Synthesis and Identification

    Directory of Open Access Journals (Sweden)

    V. Yu. Kleshnin

    2016-01-01

    Full Text Available The article describes the matrix algebra libraries based on the modern technologies of parallel programming for the Spectrum software, which can use a spectral method (in the spectral form of mathematical description to analyse, synthesise and identify deterministic and stochastic dynamical systems. The developed matrix algebra libraries use the following technologies for the GPUs: OmniThreadLibrary, OpenMP, Intel Threading Building Blocks, Intel Cilk Plus for CPUs nVidia CUDA, OpenCL, and Microsoft Accelerated Massive Parallelism.The developed libraries support matrices with real elements (single and double precision. The matrix dimensions are limited by 32-bit or 64-bit memory model and computer configuration. These libraries are general-purpose and can be used not only for the Spectrum software. They can also find application in the other projects where there is a need to perform operations with large matrices.The article provides a comparative analysis of the libraries developed for various matrix operations (addition, subtraction, scalar multiplication, multiplication, powers of matrices, tensor multiplication, transpose, inverse matrix, finding a solution of the system of linear equations through the numerical experiments using different CPU and GPU. The article contains sample programs and performance test results for matrix multiplication, which requires most of all computational resources in regard to the other operations.

  11. A Virtual Reality System for PTCD Simulation Using Direct Visuo-Haptic Rendering of Partially Segmented Image Data.

    Science.gov (United States)

    Fortmeier, Dirk; Mastmeyer, Andre; Schröder, Julian; Handels, Heinz

    2016-01-01

    This study presents a new visuo-haptic virtual reality (VR) training and planning system for percutaneous transhepatic cholangio-drainage (PTCD) based on partially segmented virtual patient models. We only use partially segmented image data instead of a full segmentation and circumvent the necessity of surface or volume mesh models. Haptic interaction with the virtual patient during virtual palpation, ultrasound probing and needle insertion is provided. Furthermore, the VR simulator includes X-ray and ultrasound simulation for image-guided training. The visualization techniques are GPU-accelerated by implementation in Cuda and include real-time volume deformations computed on the grid of the image data. Computation on the image grid enables straightforward integration of the deformed image data into the visualization components. To provide shorter rendering times, the performance of the volume deformation algorithm is improved by a multigrid approach. To evaluate the VR training system, a user evaluation has been performed and deformation algorithms are analyzed in terms of convergence speed with respect to a fully converged solution. The user evaluation shows positive results with increased user confidence after a training session. It is shown that using partially segmented patient data and direct volume rendering is suitable for the simulation of needle insertion procedures such as PTCD.

  12. Parallel Implementation of Numerical Solution of Few-Body Problem Using Feynman’s Continual Integrals

    Directory of Open Access Journals (Sweden)

    Naumenko Mikhail

    2018-01-01

    Full Text Available Modern parallel computing algorithm has been applied to the solution of the few-body problem. The approach is based on Feynman’s continual integrals method implemented in C++ programming language using NVIDIA CUDA technology. A wide range of 3-body and 4-body bound systems has been considered including nuclei described as consisting of protons and neutrons (e.g., 3,4He and nuclei described as consisting of clusters and nucleons (e.g., 6He. The correctness of the results was checked by the comparison with the exactly solvable 4-body oscillatory system and experimental data.

  13. Higher-order Brunnian structures and possible physical realizations

    DEFF Research Database (Denmark)

    A. Baas, Nils; V. Fedorov, D.; S. Jensen, A.

    2014-01-01

    We consider few-body bound state systems and provide precise definitions of Borromean and Brunnian systems. The initial concepts are more than a hundred years old and originated in mathematical knot-theory as purely geometric considerations. About thirty years ago they were generalized and applied...... to the binding of systems in nature. It now appears that recent generalization to higher order Brunnian structures may potentially be realized as laboratory made or naturally occurring systems. With the binding energy as measure, we discuss possibilities of physical realization in nuclei, cold atoms...

  14. Excessive dietary calcium in the disruption of structural and functional status of adult male reproductive system in rat with possible mechanism.

    Science.gov (United States)

    K Chandra, Amar; Sengupta, Pallav; Goswami, Haimanti; Sarkar, Mahitosh

    2012-05-01

    Calcium is essential for functioning of different systems including male reproduction. However, it has also been reported as chemo-castrative agent. The study has been undertaken to elucidate the effect of excessive dietary calcium on male reproductive system in animals with possible action. Adult male healthy rats fed CaCl(2) at different doses (0.5, 1.0 and 1.5 g%) in diet for 13 and 26 days to investigate reproductive parameters as well as the markers of oxidative stress. Significant alteration was found (P male reproduction.

  15. Building certification in Switzerland - implementation possibilities; Gebaeudeausweis in der Schweiz: moegliche Vollzugsmodelle

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, S.; Kaufmann, P. [Interface Politikstudien, Lucerne (Switzerland); Lienhard, A. [University of Berne, Kompetenzzentrum fuer Public Management, Berne (Switzerland)

    2006-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) presents the results of a study made on possible methods that could be used for the implementation of a certification system that would provide information on the energy consumption of Swiss buildings. The report examines such systems in use in Austria, Germany and Denmark. Three possible strategies on the implementation of a labelling system for Switzerland are examined. These include a legislation-based system, a private, voluntary, system and the combination of these two approaches. The strategies are examined from the political and legislation points of view. Also, market-penetration and effectiveness of the strategies are examined and discussed. The report is completed with a review of the possibilities offered by the three strategies and experience gained in the other countries. Finally, success-factors to be taken into account are discussed and recommendations on further action to be taken are made.

  16. Trigeneration Possibilities of Implementation at CERN

    CERN Document Server

    Kühnl-Kinel, J

    1999-01-01

    Optimum distribution of energy supply systems can result in large savings in industrial facilities and production devices. Identifying the configuration of existing equipment and its loading, in order to minimize total energy consumption and at the same time satisfy given load demands, has very high payback potential. This paper presents the principle of trigeneration, the technology that can offer a highly efficient way of converting primary fuel (gas, oil) into useful energy as electricity, heat and chilled water simultaneously. It explains different factors that must be considered for such systems to be economically feasible. Some examples of industrial trigeneration systems are analysed and discussed to illustrate the application. Also the possibility of implementation of trigeneration at CERN is discussed, taking into account the existing cogeneration system, power supply structure, secondary energy demands, as well as future developments in our energy policy.

  17. Experimental Determination of the Possible Deuterium - Deuterium Fusion Reaction Originated in a Single Cavitation Bubble Luminescence System Using CDCL3 and D2 O

    International Nuclear Information System (INIS)

    Barbaglia, Mario; Florido, Pablo; Mayer, Roberto; Bonetto, Fabian

    2003-01-01

    We focus this work on the measurement of the possible Deuterium - Deuterium reaction in a SCBL (Single Cavitation Bubble Luminescence) system.We measure the possible reaction at the bubble generation time and at the bubble collapse time. We use a Nd:YAG laser and CDCl 3 and D 2 O as a medium to generate the bubble. Since CDCl 3 accommodation coefficient is best than that of D 2 O, it is expected a greater collapse force than using D 2 O.To benefit the bubble collapse violence, we diminish the temperature of the liquids.To avoid false neutron detection, we developed a measuring system with high background reject using the characteristic experiment times.No neutrons attributable to Deuterium - Deuterium fusion reaction were measured

  18. Expanding the Possibilities of AIS Data with Heuristics

    Directory of Open Access Journals (Sweden)

    Bjørnar Brende Smestad

    2017-06-01

    Full Text Available Automatic Identification System (AIS is primarily used as a tracking system for ships, but with the launch of satellites to collect these data, new and previously untested possibilities are emerging. This paper presents the development of heuristics for establishing the specific ship type using information retrieved from AIS data alone. These heuristics expand the possibilities of AIS data, as the specific ship type is vital for several transportation research cases, such as emission analyses of ship traffic and studies on slow steaming. The presented method for developing heuristics can be used for a wider range of vessels. These heuristics may form the basis of large-scale studies on ship traffic using AIS data when it is not feasible or desirable to use commercial ship data registers.

  19. Phytoremediation: realistic estimation of modern efficiency and future possibility

    International Nuclear Information System (INIS)

    Kravets, A.; Pavlenko, Y.; Kusmenko, L.; Ermak, M.

    1996-01-01

    Kinetic peculiarities of the radionuclides migration in the system 'soil-plant' of the Chernobyl region have been investigated by means of numerical modelling. Quantitative estimation of half-time of natural cleaning of soil has been realised. Potential possibility and efficiency of the modem phytoremediation technology has been estimated. Outlines of the general demands and future possibility of biotechnology of the phytoremediation creation have been formulated. (author)

  20. Phytoremediation: realistic estimation of modern efficiency and future possibility

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, A; Pavlenko, Y [Institute of Cell Biology and Genetic Engineering NAS, Kiev (Ukraine); Kusmenko, L; Ermak, M [Institute of Plant Physiology and Genetic NAS, Vasilkovsky, Kiev (Ukraine)

    1996-11-01

    Kinetic peculiarities of the radionuclides migration in the system 'soil-plant' of the Chernobyl region have been investigated by means of numerical modelling. Quantitative estimation of half-time of natural cleaning of soil has been realised. Potential possibility and efficiency of the modem phytoremediation technologyhas been estimated. Outlines of the general demands and future possibility of biotechnology of the phytoremediation creation have been formulated. (author)

  1. Possible use of fuzzy logic in database

    Directory of Open Access Journals (Sweden)

    Vaclav Bezdek

    2011-04-01

    Full Text Available The article deals with fuzzy logic and its possible use in database systems. At first fuzzy thinking style is shown on a simple example. Next the advantages of the fuzzy approach to database searching are considered on the database of used cars in the Czech Republic.

  2. SU (2) lattice gauge theory simulations on Fermi GPUs

    International Nuclear Information System (INIS)

    Cardoso, Nuno; Bicudo, Pedro

    2011-01-01

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200x the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2x slower) than single precision computations.

  3. Nuclear Reactor RA Safety Report, Vol. 13, Causes of possible accidents

    International Nuclear Information System (INIS)

    1986-11-01

    This volume includes the analysis of possible accidents on the RA research reaktor. Any unwanted action causing decrease of integrity of any of the reactor safety barriers is considered to be a reactor accident. Safety barriers are: fuel element cladding, reactor vessel, biogical shield, and reactor building. Reactor accidents can be classified in four categories: (1) accidents caused by reactivity changes; (2) accidents caused by mis function of the cooling system; (3) accidents caused by errors in fuel management and auxiliary systems; (4) accidents caused by natural or other external disasters. The analysis of possible causes of reactor accidents includes the analysis of possible impacts on the reactor itself and the environment [sr

  4. Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

    Science.gov (United States)

    Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray

    2017-07-11

    Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

  5. Сравнение эффективности технологий OpenMP, nVidia cuda и StarPU на примере задачи умножения матриц

    OpenAIRE

    Ханкин, Константин

    2013-01-01

    Приведено описание технологий OpenMP, nVidia CUDA и StarPU, варианты решения задачи умножения двух матриц с задействованием каждой из технологий и результаты сравнения реализаций по требовательности к ресурсам.

  6. Possibly massive symbiotic system V 1329 Cygni

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, T; Mammano, A; Margoni, R [Padua Univ. (Italy). Osservatorio Astrofisico

    1981-04-01

    A new radial velocity curve of V 1329 Cyg has been obtained from emission lines originating around an evolved star. The latter might be faced by an M-type mate, whose mass is larger than 23 +- 6 solar masses. The system seems at vertical stroke Z vertical stroke > 250 pc from the galactic plane. The lambda6830 unidentified band, found in V 1329 Cyg and among BQ ( ) stars, symbiotic stars and a few planetary nebulae, could be used as a diagnostic tool to identify very evolved stars. The close similarity of the optical spectrum of V 1329 Cyg to that of the optical counterpart of GX 1 + 4 is remarkable.

  7. Current and future possibilities of V2V and I2V technologies: an analysis directed toward Augmented Reality systems

    Science.gov (United States)

    Betancur, J. A.; Osorio-Gómez, Gilberto; Arnedo, Aida; Yarce Botero, Andrés.

    2014-06-01

    Nowadays, it is very important to explore the qualitative characteristics of autonomous mobility systems in automobiles, especially disruptive technology like Vehicle to Vehicle (V2V) and Infrastructure to Vehicle (I2V), in order to comprehend how the next generation of automobiles will be developed. In this sense, this research covers a general review about active safety in automobiles where V2V and I2V systems have been implemented; identifying the more realistic possibilities related to V2V and I2V technology and analyzing the current applications, some systems in development process and some future conceptual proposals. Mainly, it is notorious the potential development of mixing V2V and I2V systems pointing to increase the driver's attention; therefore, a configuration between these two technologies and some augmented reality system for automobiles (Head-Up Display and Head-Down Display) is proposed. There is a huge potential of implementation for this kind of configuration once the normative and the roadmap for its development can be widely established.

  8. Efficient Synchronization Primitives for GPUs

    OpenAIRE

    Stuart, Jeff A.; Owens, John D.

    2011-01-01

    In this paper, we revisit the design of synchronization primitives---specifically barriers, mutexes, and semaphores---and how they apply to the GPU. Previous implementations are insufficient due to the discrepancies in hardware and programming model of the GPU and CPU. We create new implementations in CUDA and analyze the performance of spinning on the GPU, as well as a method of sleeping on the GPU, by running a set of memory-system benchmarks on two of the most common GPUs in use, the Tesla...

  9. GPU's for event reconstruction in the FairRoot framework

    International Nuclear Information System (INIS)

    Al-Turany, M; Uhlig, F; Karabowicz, R

    2010-01-01

    FairRoot is the simulation and analysis framework used by CBM and PANDA experiments at FAIR/GSI. The use of graphics processor units (GPUs) for event reconstruction in FairRoot will be presented. The fact that CUDA (Nvidia's Compute Unified Device Architecture) development tools work alongside the conventional C/C++ compiler, makes it possible to mix GPU code with general-purpose code for the host CPU, based on this some of the reconstruction tasks can be send to the graphic cards. Moreover, tasks that run on the GPU's can also run in emulation mode on the host CPU, which has the advantage that the same code is used on both CPU and GPU.

  10. Smart Sensing System for Early Detection of Bone Loss: Current Status and Future Possibilities

    Directory of Open Access Journals (Sweden)

    Nasrin Afsarimanesh

    2018-02-01

    Full Text Available Bone loss and osteoporosis is a serious health problem worldwide. The impact of osteoporosis is far greater than many other serious health problems, such as breast and prostate cancers. Statistically, one in three women and one in five men over 50 years of age will experience osteoporotic fractures in their life. In this paper, the design and development of a portable IoT-based sensing system for early detection of bone loss have been presented. The CTx-I biomarker was measured in serum samples as a marker of bone resorption. A planar interdigital sensor was used to evaluate the changes in impedance by any variation in the level of CTx-I. Artificial antibodies were used to introduce selectivity to the sensor for CTx-I molecule. Artificial antibodies for CTx-I molecules were created using molecular imprinted polymer (MIP technique in order to increase the stability of the system and reduce the production cost and complexity of the assay procedure. Real serum samples collected from sheep blood were tested and the result validation was done by using an ELISA kit. The PoC device was able to detect CTx-I concentration as low as 0.09 ng/mL. It exhibited an excellent linear behavior in the range of 0.1–2.5 ng/mL, which covers the normal reference ranges required for bone loss detection. Future possibilities to develop a smart toilet for simultaneous measurement of different bone turnover biomarkers was also discussed.

  11. Systemic Functional Linguistics (SFL as Sociolinguistic and Sociological Conception: Possibilities and Limits of Theoretical Framework

    Directory of Open Access Journals (Sweden)

    Mariia Rubtcova

    2016-05-01

    Full Text Available The paper aims at examining possibilities and limits of Systemic functional linguistics theoretical framework. Ideologically SFL concept was associated with the ideas of social justice and equality, the building of the society of equal opportunities through the educational system. The most interesting ideas arose when the SFL representatives thought about the development of English as a native language and were connected with the overcoming of class distinctions. The current version - genre-based approach – has serious limits. The desire of a genre-based approach to the systematization of genres carries a risk of cultural contradictions and conflict of cultures. However, the basic theoretical SFL principles are still in the stage of formation, as SFL researchers seek to avoid some rigidity of the classical institutional (genre approach, which is in contradiction with the principles of diversity. The founder M. Halliday offered ideas for the organization of a flexible approach based on International English that may become World Englishes, developing in order to adapt to the meanings of other cultures.  Therefore, an SFL approach still needs some alterations to spread outside the Western world and conform to the new culture for it. Besides, we can think about proposals of Halliday’s supporters to develop the own version of English for non-Western countries, considering its culture and mentality.

  12. Possible applications of alkali-activated systems in construction

    Czech Academy of Sciences Publication Activity Database

    Boháčová, J.; Staněk, S.; Vavro, Martin

    2013-01-01

    Roč. 12, č. 2 (2013), s. 8-17 ISSN 1804-4824 Institutional support: RVO:68145535 Keywords : alkali-activated system * geopolymer * binder Subject RIV: JN - Civil Engineering http://www.degruyter.com/view/j/tvsb.2012.12.issue-2/v10160-012-0012-8/v10160-012-0012-8.xml?format=INT

  13. Possible applications of alkali-aktivated systems in construction

    Czech Academy of Sciences Publication Activity Database

    Boháčová, J.; Staněk, S.; Vavro, Martin

    2012-01-01

    Roč. 12, č. 2 (2012), s. 8-17 ISSN 1804-4824 Institutional support: RVO:68145535 Keywords : alkali-activated system * geopolymer * binder Subject RIV: JN - Civil Engineering http://www.degruyter.com/view/j/tvsb.2012.12.issue-2/v10160-012-0012-8/v10160-012-0012-8. xml ?format=INT

  14. Evaluation of speedup of Monte Carlo calculations of two simple reactor physics problems coded for the GPU/CUDA environment

    International Nuclear Information System (INIS)

    Ding, Aiping; Liu, Tianyu; Liang, Chao; Ji, Wei; Shephard, Mark S.; Xu, X George; Brown, Forrest B.

    2011-01-01

    Monte Carlo simulation is ideally suited for solving Boltzmann neutron transport equation in inhomogeneous media. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop system. The interest in adopting GPUs for Monte Carlo acceleration is rapidly mounting, fueled partially by the parallelism afforded by the latest GPU technologies and the challenge to perform full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem and an eigenvalue/criticality problem were developed for CPU and GPU environments, respectively, to evaluate issues associated with computational speedup afforded by the use of GPUs. The results suggest that a speedup factor of 30 in Monte Carlo radiation transport of neutrons is within reach using the state-of-the-art GPU technologies. However, for the eigenvalue/criticality problem, the speedup was 8.5. In comparison, for a task of voxelizing unstructured mesh geometry that is more parallel in nature, the speedup of 45 was obtained. It was observed that, to date, most attempts to adopt GPUs for Monte Carlo acceleration were based on naïve implementations and have not yielded the level of anticipated gains. Successful implementation of Monte Carlo schemes for GPUs will likely require the development of an entirely new code. Given the prediction that future-generation GPU products will likely bring exponentially improved computing power and performances, innovative hardware and software solutions may make it possible to achieve full-core Monte Carlo calculation within one hour using a desktop computer system in a few years. (author)

  15. Researching of the possibility of using absorption heat exchangers for creating the low return temperature heat supply systems based on CHP generation

    Science.gov (United States)

    Yavorovsky, Y. V.; Malenkov, A. S.; Zhigulina, Y. V.; Romanov, D. O.; Kurzanov, S. Y.

    2017-11-01

    This paper deals with the variant of modernization of the heat point within urban heat supply network in order to create the system of heat and cold supply on its basis, providing the suppliers with heat in cold months and with heat and cold in warm months. However, in cold months in the course of heating system operation, the reverse delivery water temperature is maintained below 40 °C. The analysis of heat and power indicators of the heat and cold supply system under different operating conditions throughout the year was conducted. The possibility to use the existing heat networks for the cold supply needs was estimated. The advantages of the system over the traditional heat supply systems that use Combined Heat and Power (CHP) plant as a heat source as exemplified by heat supply system from CHP with ST-80 turbine were demonstrated.

  16. Hydroacoustics and infrasound: Possibilities for international cooperation

    International Nuclear Information System (INIS)

    North, R.G.

    1999-01-01

    The data provided by the International Monitoring system and the Products generated by the International data Center will be a unique source not only for CTBT verification but also for other activities. Although the utility of hydro acoustic and infrasonic data for such purposes is less obvious than that of seismic and radionuclide data, there are several possible applications for hazard and disaster warning purposes, and many potential long-term benefits for research and development. Such wider benefits from the monitoring system will best be realized through open international cooperation

  17. The possibility of aromorphosis in further development of closed human life support systems using genetically modified organisms

    Science.gov (United States)

    Gitelson, Josef

    Creation of closed systems that would be able to support human life outside the biosphere for extended periods of time (CES) was started after humans went into outer space. The last fifty years have seen the construction of experimental variants of the CES in Russia, USA, and Japan. The "MELISSA" project of the European Space Agency is being prepared to be launched. Much success has been achieved in closing material loops in the CES. An obstacle to constructing a fully closed ecosystem is significant imbalance in material exchange between the producing components and the decomposing ones in the CES. The spectrum of metabolites released by humans does not fully correspond to the requirements of the main producer of the CES -plants. However, this imbalance can be corrected by rather simple physicochemical processes that can be used in the CES without unclosing the system. The major disagreement that prevents further improvement of human life support systems (LSS) is that the spectrum of products of photosynthesis in the CES does not correspond to human food requirements qual-itatively, quantitatively, or in terms of diversity. In the normal, physiologically sound, human diet, this discrepancy is resolved by adding animal products. However, there are technical, technological, and hygienic obstacles to including animals in the closed human life support systems, and if higher animals are considered, there are also ethical arguments. If between the photoautotrophic link, plants, and the heterotrophic link, the human, there were one more heterotrophic link, farm animals, the energy requirements of the system would be increased by nearly an order of magnitude, decreasing its efficiency and making it heavier and bulkier. Is there another way to close loops in human life support systems? In biology, such "findings" of evolution, which open up new perspectives and offer ample opportunities for possible adapta-tions, are termed aromorphoses (Schmalhausen, 1948). In further

  18. Future Oil Spills and Possibilities for Intervention: A Model for the Coupled Human-Environmental Resource Extraction System

    Science.gov (United States)

    Shughrue, C. M.; Werner, B.; Nugnug, P. T.

    2010-12-01

    The catastrophic Deepwater Horizon oil spill highlights the risks for widespread environmental damage resulting from petroleum resource extraction. Possibilities for amelioration of these risks depend critically on understanding the dynamics and nonlinear interactions between various components of the coupled human-environmental resource extraction system. We use a complexity analysis to identify the levels of description and time scales at which these interactions are strongest, and then use the analysis as the basis for an agent-based numerical model with which decadal trends can be analyzed. Oil industry economic and technological activity and associated oil spills are components of a complex system that is coupled to natural environment, legislation, regulation, media, and resistance systems over annual to decadal time scales. In the model, oil spills are produced stochastically with a range of magnitudes depending on a reliability-engineering-based assessment of failure for the technology employed, human factors including compliance with operating procedures, and risks associated with the drilling environment. Oil industry agents determine drilling location and technological investment using a cost-benefit analysis relating projected revenue from added production to technology cost and government regulation. Media outlet agents reporting on the oil industry and environmental damage from oil spills assess the impacts of aggressively covering a story on circulation increases, advertiser concerns and potential loss of information sources. Environmental advocacy group agents increase public awareness of environmental damage (through media and public contact), solicit memberships and donations, and apply direct pressure on legislators for policy change. Heterogeneous general public agents adjust their desire for change in the level of regulation, contact their representatives or participate in resistance via protest by considering media sources, personal

  19. Possible environmental effects on the evolution of the Alps-Molasse basin system

    International Nuclear Information System (INIS)

    Schlunegger, F.; Rieke-Zapp, D.; Ramseyer, K.

    2007-01-01

    We propose three partly unrelated stages in the geodynamic evolution of the Alps and the sedimentary response of the Molasse Basin. The first stage comprises the time interval between ca. 35 and 20 Ma and is characterized by a high ratio between rates of crustal accretion and surface erosion. The response of the Molasse Basin was a change from the stage of basin underfill (UMM) to overfill (USM). Because the response time of erosional processes to crustal accretion and surface uplift lasts several millions of years, the orogen first experienced a net growth until the end of the Oligocene. As a result, the Molasse basin subsided at high rates causing the topographic axis to shift to the proximal basin border and alluvial fans to establish at the thrust front. During the Aquitanian, however, ongoing erosion and downcutting in the hinterland caused sediment discharge to the basin to increase and the ratio between the rates of crustal accretion and surface erosion to decrease. The result was a progradation of the dispersal systems, and a shift of the topographic axis towards the distal basin border. The second stage started at ca. 20 Ma at a time when palaeoclimate became more continental, and when the crystalline core became exposed in the orogen. The effect was a decrease in the erosional efficiency of the Swiss Alps and hence a reduction of sediment discharge to the Molasse Basin. We propose that this decrease in sediment flux caused the Burdigalian transgression of the OMM. We also speculate that this reduction of surface erosion initiated the modification of Alpine deformation from vertically- to mainly horizontally directed extrusion (deformation of the Southern Alps, and the Jura Mountains some Ma later). The third stage in the geodynamic development was initiated at the Miocene/Pliocene boundary. At that time, palaeoclimate possibly became wetter, which, in turn, caused surface erosion to increase relative to crustal accretion. This change caused the Alps to

  20. Immune system modulation in the central nervous system: A possible role for endocannabinoids

    International Nuclear Information System (INIS)

    Abd-Allah, Adel R.A.

    2007-01-01

    The immune system is designed to protect the body from infection and tumor formation. To perform this function, cells of the immune system can be dangerous for the survival and function of the neuronal network in the brain under the influence of infection or immune imbalance. An attack of immune cells inside the brain includes the potential for severe neuronal damage or cell death and therefore impairment of the CNS function. To avoid such undesirable action of the immune system, the CNS performs a cascade of cellular and molecular mechanisms enabling strict control of immune reactions i mmune privilege . Under inflammatory and patholological conditions, uncontrolled immune system results in the activation of neuronal damage that is frequently associated with neurological diseases. On the other hand, processes of neuroprotection and neurorepair after neuronal damage depend on a steady and tightly controlled immunesurvelliance. Many immunoprotectants play a role to imbalance the immune reactions in the CNS and other organs which presents an important therapeutic target. It has been reported recently that endocannabinoids are secreted in abundance in the CNS following neuronal insult, probably for its protection. There are at least two types of cannabinoid receptors, CB1 and CB2. Both are coupled to G proteins. CB1 receptors exist primarily on central and peripheral neurons. CB2 receptors are present mainly on immune cells. Endogenous agonists for cannabinoid receptors (endocannabinoids), have been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol (2AG), and 2-archidonyl glyceryl ether. Following their release, endocannabinoids are removed from the extracellular space and then degraded by intracellular enzymic hydrolysis. Therapeutic uses of cannabinoid receptor agonists/antagonists include the management of many disease conditions. They are also involved in immune system suppression and in cell to cell communication

  1. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran

  2. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chuanfu, E-mail: xuchuanfu@nudt.edu.cn [College of Computer Science, National University of Defense Technology, Changsha 410073 (China); Deng, Xiaogang; Zhang, Lilun [College of Computer Science, National University of Defense Technology, Changsha 410073 (China); Fang, Jianbin [Parallel and Distributed Systems Group, Delft University of Technology, Delft 2628CD (Netherlands); Wang, Guangxue; Jiang, Yi [State Key Laboratory of Aerodynamics, P.O. Box 211, Mianyang 621000 (China); Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua [College of Computer Science, National University of Defense Technology, Changsha 410073 (China)

    2014-12-01

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations

  3. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    International Nuclear Information System (INIS)

    Xu, Chuanfu; Deng, Xiaogang; Zhang, Lilun; Fang, Jianbin; Wang, Guangxue; Jiang, Yi; Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua

    2014-01-01

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations

  4. PARALLEL ALGORITHM FOR THREE-DIMENSIONAL STOKES FLOW SIMULATION USING BOUNDARY ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    D. G. Pribytok

    2016-01-01

    Full Text Available Parallel computing technique for modeling three-dimensional viscous flow (Stokes flow using direct boundary element method is presented. The problem is solved in three phases: sampling and construction of system of linear algebraic equations (SLAE, its decision and finding the velocity of liquid at predetermined points. For construction of the system and finding the velocity, the parallel algorithms using graphics CUDA cards programming technology have been developed and implemented. To solve the system of linear algebraic equations the implemented software libraries are used. A comparison of time consumption for three main algorithms on the example of calculation of viscous fluid motion in three-dimensional cavity is performed.

  5. Possible mass distributions in the nebulae of other solar systems

    International Nuclear Information System (INIS)

    Brown, W.K.

    1987-01-01

    The supernova shell fragmentation model of solar system formation - previously shown to be successful in describing the mass distribution of our solar system - is used to calculate the mass distributions of other solar nebulae. (Auth.)

  6. Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system.

    Science.gov (United States)

    Zhao, G X; Dong, P P; Peng, R; Li, J; Zhang, D Y; Wang, J Y; Shen, X Z; Dong, L; Sun, J Y

    2016-01-01

    Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.

  7. Analysis and optimization of gyrokinetic toroidal simulations on homogenous and heterogenous platforms

    International Nuclear Information System (INIS)

    Ibrahim, Khaled Z.; Madduri, Kamesh; Williams, Samuel; Wang, Bei; Oliker, Leonid

    2013-01-01

    The Gyrokinetic Toroidal Code (GTC) uses the particle-in-cell method to efficiently simulate plasma microturbulence. This paper presents novel analysis and optimization techniques to enhance the performance of GTC on large-scale machines. We introduce cell access analysis to better manage locality vs. synchronization tradeoffs on CPU and GPU-based architectures. Finally, our optimized hybrid parallel implementation of GTC uses MPI, OpenMP, and NVIDIA CUDA, achieves up to a 2× speedup over the reference Fortran version on multiple parallel systems, and scales efficiently to tens of thousands of cores.

  8. Quick plasma equilibrium reconstruction based on GPU

    International Nuclear Information System (INIS)

    Xiao Bingjia; Huang, Y.; Luo, Z.P.; Yuan, Q.P.; Lao, L.

    2014-01-01

    A parallel code named P-EFIT which could complete an equilibrium reconstruction iteration in 250 μs is described. It is built with the CUDA TM architecture by using Graphical Processing Unit (GPU). It is described for the optimization of middle-scale matrix multiplication on GPU and an algorithm which could solve block tri-diagonal linear system efficiently in parallel. Benchmark test is conducted. Static test proves the accuracy of the P-EFIT and simulation-test proves the feasibility of using P-EFIT for real-time reconstruction on 65x65 computation grids. (author)

  9. MCBooster: a library for fast Monte Carlo generation of phase-space decays on massively parallel platforms.

    Science.gov (United States)

    Alves Júnior, A. A.; Sokoloff, M. D.

    2017-10-01

    MCBooster is a header-only, C++11-compliant library that provides routines to generate and perform calculations on large samples of phase space Monte Carlo events. To achieve superior performance, MCBooster is capable to perform most of its calculations in parallel using CUDA- and OpenMP-enabled devices. MCBooster is built on top of the Thrust library and runs on Linux systems. This contribution summarizes the main features of MCBooster. A basic description of the user interface and some examples of applications are provided, along with measurements of performance in a variety of environments

  10. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  11. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  12. Modelling metal-humic substances-surface systems: reasons for success, failure and possible routes for peace of mind

    International Nuclear Information System (INIS)

    Reiller, P.E.

    2012-01-01

    Iron oxides and oxy-hydroxides are commonly of considerable importance in the sorption of ions onto rocks, soils and sediments. They can be the controlling sorptive phases even if they are present in relatively small quantities. In common with other oxides and clay minerals, the sorption pH-edge of metals is directly linked to their hydrolysis: the higher the residual charge on the metal ion, the lower the pH-edge. Modelling of this process has been successfully carried out using different microscopic or macroscopic definitions of the interface (e.g. surface complexation or ion exchange models that may or may not include mineralogical descriptions). The influence of organic material on the sorption of many metals is of significant. This organic material includes simple organic molecules and more complex exo-polymeric substances (e.g. humic substances) produced by the decay of natural organic matter. Sorption of this organic material to mineral surfaces has been the subject of a large body of work. The various types of organic substances do not share the same affinities for mineral surfaces in general, and for iron oxides and oxy-hydroxides in particular. In those cases in which successful models of the component binary systems (i.e. metal-surface, metal-organic, organic-surface) have been developed, the formation of mixed surface complexes, the evolution of the surface itself, the addition order in laboratory systems, and the evolution of natural organic matter fractions during sorption, have often precluded a satisfactory description of metal-surface-organic ternary systems over a sufficiently wide range of parameter values (i.e. pH, ionic strength, concentration of humic substances). This manuscript describes the reasons for some successes and failures in the modelling of the ternary systems. Promising recent advances and possible methods of providing more complete descriptions of these intricate systems are also discussed. (author)

  13. Cpu/gpu Computing for AN Implicit Multi-Block Compressible Navier-Stokes Solver on Heterogeneous Platform

    Science.gov (United States)

    Deng, Liang; Bai, Hanli; Wang, Fang; Xu, Qingxin

    2016-06-01

    CPU/GPU computing allows scientists to tremendously accelerate their numerical codes. In this paper, we port and optimize a double precision alternating direction implicit (ADI) solver for three-dimensional compressible Navier-Stokes equations from our in-house Computational Fluid Dynamics (CFD) software on heterogeneous platform. First, we implement a full GPU version of the ADI solver to remove a lot of redundant data transfers between CPU and GPU, and then design two fine-grain schemes, namely “one-thread-one-point” and “one-thread-one-line”, to maximize the performance. Second, we present a dual-level parallelization scheme using the CPU/GPU collaborative model to exploit the computational resources of both multi-core CPUs and many-core GPUs within the heterogeneous platform. Finally, considering the fact that memory on a single node becomes inadequate when the simulation size grows, we present a tri-level hybrid programming pattern MPI-OpenMP-CUDA that merges fine-grain parallelism using OpenMP and CUDA threads with coarse-grain parallelism using MPI for inter-node communication. We also propose a strategy to overlap the computation with communication using the advanced features of CUDA and MPI programming. We obtain speedups of 6.0 for the ADI solver on one Tesla M2050 GPU in contrast to two Xeon X5670 CPUs. Scalability tests show that our implementation can offer significant performance improvement on heterogeneous platform.

  14. GPU accelerated population annealing algorithm

    Science.gov (United States)

    Barash, Lev Yu.; Weigel, Martin; Borovský, Michal; Janke, Wolfhard; Shchur, Lev N.

    2017-11-01

    Population annealing is a promising recent approach for Monte Carlo simulations in statistical physics, in particular for the simulation of systems with complex free-energy landscapes. It is a hybrid method, combining importance sampling through Markov chains with elements of sequential Monte Carlo in the form of population control. While it appears to provide algorithmic capabilities for the simulation of such systems that are roughly comparable to those of more established approaches such as parallel tempering, it is intrinsically much more suitable for massively parallel computing. Here, we tap into this structural advantage and present a highly optimized implementation of the population annealing algorithm on GPUs that promises speed-ups of several orders of magnitude as compared to a serial implementation on CPUs. While the sample code is for simulations of the 2D ferromagnetic Ising model, it should be easily adapted for simulations of other spin models, including disordered systems. Our code includes implementations of some advanced algorithmic features that have only recently been suggested, namely the automatic adaptation of temperature steps and a multi-histogram analysis of the data at different temperatures. Program Files doi:http://dx.doi.org/10.17632/sgzt4b7b3m.1 Licensing provisions: Creative Commons Attribution license (CC BY 4.0) Programming language: C, CUDA External routines/libraries: NVIDIA CUDA Toolkit 6.5 or newer Nature of problem: The program calculates the internal energy, specific heat, several magnetization moments, entropy and free energy of the 2D Ising model on square lattices of edge length L with periodic boundary conditions as a function of inverse temperature β. Solution method: The code uses population annealing, a hybrid method combining Markov chain updates with population control. The code is implemented for NVIDIA GPUs using the CUDA language and employs advanced techniques such as multi-spin coding, adaptive temperature

  15. [Possibility of the spectral analysis of heterogeneous biological systems. The determination of the mycelium concentration of Actinomyces aureofaciens, a producer of tetracycline, cultured on a medium with corn meal].

    Science.gov (United States)

    Korolev, Iu N; Slugina, M D; Makarevich, V G; Telegin, N L

    1979-03-01

    A possibility of using spectroscopy of attenuated total reflection in the IR region for analysis of the heterogenic system consisting of the microorganisms and plant cells is discussed. The method of spectroscopy is proposed for estimating the mycelium concentration of Act. aureofaciens producing tetracycline in the presence of corn meal in the medium. The experimental data confirming this possibility are presented. The peculiar properties of the spectral analysis under these particular conditions are discussed. It is supposed that the method may be used for analysis of heterogenous systems including other microorganisms.

  16. Algoritmo incremental de agrupamiento con traslape para el procesamiento de grandes colecciones de datos (Overlapping clustering incremental algorithm for large data collections processing

    Directory of Open Access Journals (Sweden)

    Lázaro Janier González-Soler

    2015-12-01

    Full Text Available Spanish abstract Existen diversos problemas en el Reconocimiento de Patrones y en la Minería de Datos que, por su naturaleza, consideran que los objetos pueden pertenecer a más de una clase o grupo. DClustR es un algoritmo dinámico de agrupamiento con traslape que ha mostrado, en tareas de agrupamiento de documentos, el mejor balance entre calidad de los grupos y eficiencia entre los algoritmos dinámicos de agrupamiento con traslape reportados en la literatura. A pesar de obtener buenos resultados, DClustR puede ser poco útil en aplicaciones que trabajen con grandes colecciones de documentos, debido a que tiene una complejidad computacional y a la cantidad de memoria que utiliza para el procesamiento de las colecciones. En este trabajo se presenta una versión paralela basada en GPU del algoritmo DClustR, llamada CUDA-DClus, para mejorar la eficiencia de DClustR en aplicaciones que lidien con largas colecciones de documentos. Los experimentos fueron realizados sobre varias colecciones estándares de documentos y en ellos se muestra el buen rendimiento de CUDA-DClus en términos de eficiencia y consumo de memoria. English abstract There are several problems in Pattern Recognition and Data Mining that, by its inherent nature, consider that the objects can belong to more than a class or cluster. DClustR is a dynamic overlapping clustering algorithm that has shown, in document clustering tasks, the best trade-off between cluster’s quality and efficiency among existing dynamic overlapping clustering algorithms. However, DClustR could be less useful when working in applications that deal with large data collections, due to its computational complexity and memory demanded for processing them. In this paper, a GPU-based parallel algorithm of DClustR, named CUDA-DClus is suggested to enhance DClustR efficiency in applications dealing with large data collections. The experimental phase conducted over various standard data collections showed that

  17. The Possibilities of Slovakian Pyrethrum Production

    Directory of Open Access Journals (Sweden)

    Štefan Tóth

    2012-01-01

    Full Text Available This paper discusses possibilities for pyrethrum Chrysanthemum cinerariaefolium(Trevir. Vis. production in southern regions of Slovakia, with an emphasis on target marketing,management constraints and further research. Pyrethrum is not a traditionalcrop in Slovakia but prospects have opened up for its cultivation. The high yields andquality of some suitable pyrethrum ecotypes provide the grounds for effective field productionunder favorable conditions. Pyrethrum yielding 1.275 t of dried flowers per hectareand having at least 1.5% pyrethrum content can be a profitable and highly lucrativecrop with an economic result ranging from 413 to 1071 € per ha. A SWOT analysisrevealed that pyrethrum production in Slovakia could take a course of an offensivestrategy. However, intensive production of this commodity needs further development.Prospects for this non-traditional crop in Slovakia are also promising in terms of developmentof farming systems in which plant protection products of botanical origin wouldbe welcome. Improved processing and stabilization of extract would further increasethe possibilities.

  18. Risks associated with preeclampsia: possible mechanisms

    Directory of Open Access Journals (Sweden)

    Bentolhoda Sahebnasagh

    2017-01-01

    Full Text Available Findings have shown that low serum 25-hydroxy vitamin D level is a possible risk factor for incidence of preeclampsia during pregnancy. Vitamin D has important effects on multiple biological pathways, including angiogenesis. Some studies have shown that vitamin D deficiency is highly prevalent among women suffering from preeclampsia, influencing immune modulation and vascular function. Evidence has shown that an imbalance of pro-antigenic and anti-angiogenic proteins can be considered as a possible etiological factor in the development of preeclampsia. Besides, there is a series of studies linking the renin–angiotensin aldosterone system (RAAS with preeclampsia. In this article, we review the current studies evaluating the association between maternal vitamin D status and vascular health, metabolism, placental immune function and the risk of preeclampsia. We provided evidence of the different factor involved in the metabolism of vitamin D and vitamin D receptor (VDR expression, gene regulations, immune function, and chronic disease when vitamin D is used optimally.

  19. A possible definition of a {\\it Realistic} Physics Theory

    OpenAIRE

    Gisin, Nicolas

    2014-01-01

    A definition of a {\\it Realistic} Physics Theory is proposed based on the idea that, at all time, the set of physical properties possessed (at that time) by a system should unequivocally determine the probabilities of outcomes of all possible measurements.

  20. Angiotensin-converting enzyme insertion/deletion gene polymorphism in Egyptian children with systemic lupus erythematosus: a possible relation to proliferative nephritis.

    Science.gov (United States)

    Hammad, A; Yahia, S; Laimon, W; Hamed, S M; Shouma, A; Shalaby, N M; Abdel-Hady, D; Ghanem, R; El-Farahaty, R M; El-Bassiony, S R; Hammad, E M

    2017-06-01

    Introduction Angiotensin-converting enzyme (ACE) is crucial in the pathogenesis of systemic lupus erythematosus through angiotensin II which regulates vascular tone and endothelial functions. Objectives To study the frequency of ACE insertion/deletion (I/D) gene polymorphism in Egyptian children with systemic lupus erythematosus and its possible relation to the renal pathology in cases with lupus nephritis. Subjects and methods The frequency of ACE gene insertion/deletion polymorphism genotypes was determined in 78 Egyptian children with systemic lupus erythematosus and compared to a matched group of 140 healthy controls using polymerase chain reaction. Results The DD genotype of the ACE gene was higher in systemic lupus erythematosus patients when compared to controls ( Plupus erythematosus patients in comparison to controls ( P lupus nephritis group, the DD genotype was significantly higher in those with proliferative lupus nephritis when compared to those with non-proliferative lupus nephritis ( P = 0.02; OR = 1.45; 95% CI = 1.4-1.6). Also, patients with proliferative lupus nephritis showed a higher frequency of the D allele ( P lupus erythematosus and occurrence of proliferative nephritis in Egyptian children.

  1. Subwavelength optical lithography via classical light: A possible implementation

    Science.gov (United States)

    You, Jieyu; Liao, Zeyang; Hemmer, P. R.; Zubairy, M. Suhail

    2018-04-01

    The resolution of an interferometric optical lithography system is about the half wavelength of the illumination light. We proposed a method based on Doppleron resonance to achieve a resolution beyond half wavelength [Phys. Rev. Lett. 96, 163603 (2006), 10.1103/PhysRevLett.96.163603]. Here, we analyze a possible experimental demonstration of this method in the negatively charged silicon-vacancy (SiV-) system by considering realistic experimental parameters. Our results show that quarter wavelength resolution and beyond can be achieved in this system even in room temperature without using perturbation theory.

  2. The possibility of using "Job Card" for career education

    OpenAIRE

    横山, 裕; ヨコヤマ, ユタカ; Yutaka, YOKOYAMA

    2009-01-01

    This paper described the advantage of using a "job card" for career education. "The job card system" is a new system that began this year. The original purpose of "the job card system" is to support a person looking for a job. When a job seeker writes a "job card", the job seeker can understand his own work experience and employment possibilities while getting the advice of the career counselor. If a teacher utilized a "job card" for career education in this way, the student can understand hi...

  3. Battery-powered transport systems. Possible methods of automatically charging drive batteries

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    In modern driverless transport systems, not only easy maintenance of the drive battery is important but also automatic charging during times of standstill. Some systems are presented; one system is pointed out in particular in which 100 batteries can be charged at the same time.

  4. Fast and maliciously secure two-party computation using the GPU

    DEFF Research Database (Denmark)

    Frederiksen, Tore Kasper; Nielsen, Jesper Buus

    2013-01-01

    We describe, and implement, a maliciously secure protocol for two-party computation in a parallel computational model. Our protocol is based on Yao’s garbled circuit and an efficient OT extension. The implementation is done using CUDA and yields fast results for maliciously secure two-party compu......-party computation in a financially feasible and practical setting by using a consumer grade CPU and GPU. Our protocol further uses some novel constructions in order to combine garbled circuits and an OT extension in a parallel and maliciously secure setting.......We describe, and implement, a maliciously secure protocol for two-party computation in a parallel computational model. Our protocol is based on Yao’s garbled circuit and an efficient OT extension. The implementation is done using CUDA and yields fast results for maliciously secure two...

  5. A rapid parallelization of cone-beam projection and back-projection operator based on texture fetching interpolation

    Science.gov (United States)

    Xie, Lizhe; Hu, Yining; Chen, Yang; Shi, Luyao

    2015-03-01

    Projection and back-projection are the most computational consuming parts in Computed Tomography (CT) reconstruction. Parallelization strategies using GPU computing techniques have been introduced. We in this paper present a new parallelization scheme for both projection and back-projection. The proposed method is based on CUDA technology carried out by NVIDIA Corporation. Instead of build complex model, we aimed on optimizing the existing algorithm and make it suitable for CUDA implementation so as to gain fast computation speed. Besides making use of texture fetching operation which helps gain faster interpolation speed, we fixed sampling numbers in the computation of projection, to ensure the synchronization of blocks and threads, thus prevents the latency caused by inconsistent computation complexity. Experiment results have proven the computational efficiency and imaging quality of the proposed method.

  6. Renewable resources - future possibilities

    International Nuclear Information System (INIS)

    Thomas, Martin H.

    1998-01-01

    The paper describes the Australian Cooperative Research Centre for Renewable Energy and Related Greenhouse Gas Abatement Technologies (ACRE), its technologies, commercial relationships and markets. The relevance of ACRE to developing country communities which lack reliable, adequate power supplies, is discussed. The opportunities for mutual collaboration between Australia and the developing countries in the application of renewable energy have never been stronger. Renewable energy promises real advantages to those who deploy it wisely, as well as significant job creation. Education at all level together with operational training, public awareness of what is possible and increased system reliability, are also vital ingredients for acceptance of these new technologies. They underpin successful commercialisation. The author concludes with the hope for a united international cooperative approach to the development of the renewable energy industry. (author)

  7. Satellite communications: possibilities and problems

    International Nuclear Information System (INIS)

    Hine, M.

    1986-01-01

    Communication links via satellites are becoming available in Europe, both as part of the development of the telephone system and as special services aimed at data traffic. They offer the possibility of speeds between 50 kb/s and 2 Mb/s, without the problems and long term commitments of long distance land lines. Such links are provided by the PTT's as circuits which can be booked for variable periods, and have error rates which can be very low and well controlled. Problems in networking can arise from the satellite delay, particularly if errors occur in the local connections, and from the leased circuit and tariff philosophies of the PTT's. (Auth.)

  8. Linear modeling of possible mechanisms for parkinson tremor generation

    NARCIS (Netherlands)

    Lohnberg, P.

    1978-01-01

    The power of Parkinson tremor is expressed in terms of possibly changed frequency response functions between relevant variables in the neuromuscular system. The derivation starts out from a linear loopless equivalent model of mechanisms for general tremor generation. Hypothetical changes in this

  9. Peregrine Software Toolchains | High-Performance Computing | NREL

    Science.gov (United States)

    Group (PGI) C/C++ and Fortran (partially supported) The PGI Accelerator compilers include NVIDIA GPU support via the directive-based OpenACC 2.5 programming model, as well as full support for NVIDIA CUDA C

  10. Role of systemic markers in periodontal diseases: a possible ...

    African Journals Online (AJOL)

    Background: Periodontitis is a local inflammatory process mediating destruction of periodontium triggered by bacterial insult leading to systemic inflammatory mayhem in the host. Epidemiologically, it has been modestly associated with cardiovascular diseases (CVD) with elevated acute‑phase reactant C‑reactive protein ...

  11. About the Possibility of Creation of a Deterministic Unified Mechanics

    International Nuclear Information System (INIS)

    Khomyakov, G.K.

    2005-01-01

    The possibility of creation of a unified deterministic scheme of classical and quantum mechanics, allowing to preserve their achievements is discussed. It is shown that the canonical system of ordinary differential equation of Hamilton classical mechanics can be added with the vector system of ordinary differential equation for the variables of equations. The interpretational problems of quantum mechanics are considered

  12. Possible selves in patients with right- versus left-onset Parkinson's disease.

    Science.gov (United States)

    Harris, Erica; McNamara, Patrick; Durso, Raymon

    2017-03-01

    Possible selves can be used to self-regulate and guide behavior towards what is desired to be achieved or avoided in life. Previous work suggests laterality effects exist within the brain regarding approach and avoidance systems to achieve self-regulation. A modified version of the possible selves task was administered to 45 patients with PD (22 right-onset and 23 left-onset) and 25 community dwelling control subjects (CS). Only 11.1% of patients exhibited balance among their hoped-for and feared possible selves versus 28% of CS. More right-onset patients used a promotion strategy whereas more left-onset patients used a prevention strategy. Patients with left-onset PD thought more about their feared selves, exhibiting reduced goal-directed behavior. Findings among the left-onset group indicate relative dependence of self-regulation on right-sided avoidance brain systems. This may point to an inability to move away from negative outcomes and to work towards rewarding outcomes, which could affect psychological health.

  13. The possiblity of the impossible family?

    DEFF Research Database (Denmark)

    Nissen, Maria Appel

    of social problems in the context of the Danish Welfarestate, the analysis shows that it is possible that social systems reproduce and eventually produce new social problems, and that this take place along the production of riskcommunications concerning the child at risk and the childs's need for love....... This upredictability of the institutions can be related to the paradox of Obligatory Love and the problem of observing love as a feeling. It can also be related to - that is explained in relation to - the specific functional describtion of the institution....

  14. Titan I propulsion system modeling and possible performance improvements

    Science.gov (United States)

    Giusti, Oreste

    This thesis features the Titan I propulsion systems and offers data-supported suggestions for improvements to increase performance. The original propulsion systems were modeled both graphically in CAD and via equations. Due to the limited availability of published information, it was necessary to create a more detailed, secondary set of models. Various engineering equations---pertinent to rocket engine design---were implemented in order to generate the desired extra detail. This study describes how these new models were then imported into the ESI CFD Suite. Various parameters are applied to these imported models as inputs that include, for example, bi-propellant combinations, pressure, temperatures, and mass flow rates. The results were then processed with ESI VIEW, which is visualization software. The output files were analyzed for forces in the nozzle, and various results were generated, including sea level thrust and ISP. Experimental data are provided to compare the original engine configuration models to the derivative suggested improvement models.

  15. A brief history and the possible future of urban energy systems

    International Nuclear Information System (INIS)

    Rutter, Paul; Keirstead, James

    2012-01-01

    Modern cities depend on energy systems to deliver a range of services such as heating, cooling, lighting, mobility, communications, and so on. This article examines how these urban energy systems came to be, tracing the major transitions from the earliest settlements through to today's fossil-fuelled cities. The underlying theme is “increasing efficiency under constraints” with each transition marked by increasing energy efficiency in service provision, increasing per capita energy use, increasing complexity in the energy system's structure, with innovations driven by a strategic view of the overall system, and accompanied by wider changes in technology and society. In developed countries, the future of urban energy systems is likely to continue many of these trends, with increased efficiency being driven by the constraints of climate change and rising fuel prices. Both supply and demand side technologies are discussed as potential solutions to these issues, with different impacts on the urban environment and its citizens. However in developing countries, rising urban populations and access to basic energy services will drive the next transition. - Highlights: ► Urban energy system transitions in history are reviewed. ► Common features include increased per capita energy use, growing system complexity, and technological innovation. ► Future transitions will be shaped by the constraints of climate change, rising fuel prices, and urbanisation. ► Long-term sustainability depends on ability to innovate rapidly; opportunities exist on supply and demand sides.

  16. Crime Victims Support System and Restorative Justice: Possible Implementation in Malaysia

    OpenAIRE

    Azlinda Azman, PhD; Mohd Taufik bin Mohammad

    2013-01-01

    Victims’ position is increasingly acknowledged in the criminal justice system across the world. Because of that, criminal justice systems in various countries slowly transform from focusing too much on the relationship between offenders and the legal system and to between the offenders and their victims. Several programs are highlighted such as victim-offender mediation, family group conferences, reparative orders and referral orders in this article. Findings from several studies support the ...

  17. Achievement report on the survey concerning possibility of expansion of ITS technology application to various mobility systems; Kakushu mobility system eno ITS gijutsu tekiyo kakudai kanosei ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project aims to evaluate the results so far achieved in 'The research and development of ITS (intelligent transportation system) by use of clean energy vehicles' and 'Research and development of ITS technology assisted mobility systems' and the development systems under which the efforts are exerted and to evaluate the possibility of their practical application and the spread of the effects brought about. Ex post facto evaluation is conducted of two types of test systems. The first type includes a rent-a-car for business use in the urban area, a rent-a-car for sightseeing, and a system which is an ITS provided electric car as a domestic second car in the residential district. The second type includes a shuttle bus park-and-ride system and a natural gas fueled physical distribution truck. The result is that the ITS provided electric car system is evaluated high by evaluation committee members. The score lowers in the order of the system for business use in the urban area, the system for sightseeing, and the second car system in the residential district. An electric car reduces its environmental impact when it uses a power generation system that utilizes renewable energy. It has become clear that high convenience will be achieved when a dispatching system is improved for a combination of a 'subminiature electric vehicle and ITS technology' as a method to satisfy the demand for commutation means in case the clientele is one or two people. (NEDO)

  18. Possible climates on terrestrial exoplanets.

    Science.gov (United States)

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect.

  19. An automatic way of finding robust elimination trees for a multi-frontal sparse solver for radical 2D hierarchical meshes

    KAUST Repository

    AbouEisha, Hassan M.; Gurgul, Piotr; Paszyńska, Anna; Paszyński, Maciej R.; Kuźnik, Krzysztof M.; Moshkov, Mikhail

    2014-01-01

    computational cost as well as heuristic parallel multi-frontal direct solver algorithm resulting in a logarithmic computational cost. The resulting parallel algorithm is implemented on NVIDIA CUDA GPU architecture based on our graph-grammar approach. © 2014

  20. Parameter discovery in stochastic biological models using simulated annealing and statistical model checking.

    Science.gov (United States)

    Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J

    2014-01-01

    Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.

  1. AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.

    2017-05-01

    We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.

  2. Pharmaceutical information systems and possible implementations of informed consent - developing an heuristic

    DEFF Research Database (Denmark)

    Ploug, Thomas; Holm, Søren

    2012-01-01

    Background Denmark has implemented a comprehensive, nationwide pharmaceutical information system, and this system has been evaluated by the Danish Council of Ethics. The system can be seen as an exemplar of a comprehensive health information system for clinical use. Analysis The paper analyses 1......) how informed consent can be implemented in the system and how different implementations create different impacts on autonomy and control of information, and 2) arguments directed towards justifying not seeking informed consent in this context. Results and Conclusion Based on the analysis a heuristic...... is provided which enables a ranking and estimation of the impact on autonomy and control of information of different options for consent to entry of data into the system and use of data from the system. The danger of routinisation of consent is identified. The Danish pharmaceutical information system raises...

  3. A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation

    Directory of Open Access Journals (Sweden)

    Alexander Efremov

    2014-01-01

    Full Text Available A parallel implementation of a method of the semi-Lagrangian type for the advection equation on a hybrid architecture computation system is discussed. The difference scheme with variable stencil is constructed on the base of an integral equality between the neighboring time levels. The proposed approach allows one to avoid the Courant-Friedrichs-Lewy restriction on the relation between time step and mesh size. The theoretical results are confirmed by numerical experiments. Performance of a sequential algorithm and several parallel implementations with the OpenMP and CUDA technologies in the C language has been studied.

  4. Optimalizace platformy pro distribuované výpočty Hadoop

    OpenAIRE

    Čecho, Jaroslav

    2012-01-01

    Tato diplomová práce se zabývá možnostmi optimalizace frameworku Hadoop za pomocí platformy CUDA. Apache Hadoop je frameworku umožnující analýzu obrovských objemů dat. Obsahuje distribuovaný souborový systém a implementaci programovacího paradigmatu mapreduce s jehož pomocí se poté píší uživatelské aplikace. Platforma CUDA firmy NVIDIA umožnuje využít výkon grafické karty počítače i k jiným účelům než je generování grafického výstupu na zobrazovací zařízení počítače. Má prace obsahuje seznam ...

  5. Implementation techniques and acceleration of DBPF reconstruction algorithm based on GPGPU for helical cone beam CT

    International Nuclear Information System (INIS)

    Shen Le; Xing Yuxiang

    2010-01-01

    The derivative back-projection filtered algorithm for a helical cone-beam CT is a newly developed exact reconstruction method. Due to its large computational complexity, the reconstruction is rather slow for practical use. General purpose graphic processing unit (GPGPU) is an SIMD paralleled hardware architecture with powerful float-point operation capacity. In this paper,we propose a new method for PI-line choice and sampling grid, and a paralleled PI-line reconstruction algorithm implemented on NVIDIA's Compute Unified Device Architecture (CUDA). Numerical simulation studies are carried out to validate our method. Compared with conventional CPU implementation, the CUDA accelerated method provides images of the same quality with a speedup factor of 318. Optimization strategies for the GPU acceleration are presented. Finally, influence of the parameters of the PI-line samples on the reconstruction speed and image quality is discussed. (authors)

  6. GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison

    Science.gov (United States)

    Ma, Chao; Wang, Lirong; Xie, Xiang-Qun

    2012-01-01

    Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447

  7. New functions of the este system - new possibilities for emergency response

    International Nuclear Information System (INIS)

    Carny, P.

    2005-01-01

    The ESTE system (Emergency Source Term Evaluation) is support instrument for off-site emergency response and its main objective is to assist to the crisis staff: - to mitigate radiological consequences of significant releases; - to manage the protective measures; - to manage emergency monitoring. At national level the ESTE system are implemented at the Emergency Response Centre of the Czech Republic (SUJB) and Austrian versions are implemented at the Crisis Centre of the Austrian Republic (BMLFUW). ESTE system can now be utilized not only in close (40 km) vicinity of the point of the release (NPP), but radiological impacts are now calculated across the whole country or over the country border. Puff Trajectory Model (PTM) with the background of geographical information system (GIS) is included in este. Numerical weather prediction data (wind fields) predicted for the whole or the part of the country are online connected with este and utilized for the puffs movement simulation and impacts calculations. It means that not only meteorological data from the point of release (measured or predicted), but 'meteorological data wind field' predicted for larger region across the country are used by the este system. (author)

  8. On a possibility of using a superconducting cavity in the RF system of the storage ring LESR-N100

    CERN Document Server

    Androsov, V P; Telegin, Yu P

    2002-01-01

    In the Kharkov Institute of Physics and Technology the design project of the 200 MeV electron storage ring LESR-N100 is under development. The essential feature of this facility is the large beam energy spread (of about 1%). To ensure a reasonable beam lifetime the RF-system should provide the accelerating voltage of about 0.5 MV, while the total energy losses do not exceed approx 700 eV/turn. The power dissipated in two 700 MHz normal-conducting (NC) cavities much exceeds the power transmitted to the beam. We considered a possibility to use in LESR-N100 a high-Q superconducting RF-cavity (SRF-cavity) in which the dissipated power is the same order of magnitude as the beam-transmitted power. The studies show that the system with SRF-cavity cannot operate in the standard mode when the cavity is matched to the power transmission line at some nominal beam current. The optimal operation mode with high overcoupling is proposed that requires the RF-power one order of magnitude less than in the case of Nc-cavities.

  9. Computing possibilities in the mid 1990s

    International Nuclear Information System (INIS)

    Nash, T.

    1988-09-01

    This paper describes the kind of computing resources it may be possible to make available for experiments in high energy physics in the mid and late 1990s. We outline some of the work going on today, particularly at Fermilab's Advanced Computer Program, that projects to the future. We attempt to define areas in which coordinated R and D efforts should prove fruitful to provide for on and off-line computing in the SSC era. Because of extraordinary components anticipated from industry, we can be optimistic even to the level of predicting million VAX equivalent on-line multiprocessor/data acquisition systems for SSC detectors. Managing this scale of computing will require a new approach to large hardware and software systems. 15 refs., 6 figs

  10. GPU-based normalized cuts for road extraction using satellite imagery

    Indian Academy of Sciences (India)

    on the framework NVIDIA CUDA. Apart from the ... quality and to generate the elongated road network for further ... the framework of normalized cuts introduced by. Shi and Malik ..... Youn J and Bethel J S 2004 Adaptive snakes for urban.

  11. What kinds of traffic forecasts are possible?

    DEFF Research Database (Denmark)

    Næss, Petter; Strand, Arvid

    2012-01-01

    Based on metatheoretical considerations, this paper discusses which kinds of traffic forecasts are possible and which kinds are impossible to make with any reasonable degree of accuracy. It will be argued on ontological and epistemological grounds that it is inherently impossible to make exact......-called strategic, tactical and operational levels of traffic forecasting into three distinct methodological approaches reflecting the different degrees of openness/closure of the systems at hand: Scenario analyses at the strategic level; theoryinformed, mainly qualitative analyses supplemented with simple...

  12. Possible new basis for fast reactor subassembly instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A G

    1977-03-01

    This is a digest of a paper presented to the Risley Engineering Society. The theme is a speculation that the core instrumentation problem for a liquid metal fast breeder reactor might be transformed by developments in the realm of infrared television and in pattern recognition by computer. There is a possible need to measure coolant flow and cooled exit temperature for each subassembly, with familiar fail-to-safety characteristics. Present methods use electrical devices, for example thermocouples, but this gives rise to cabling problems. It might be possible, however, to instal at the top of each subassembly a mechanical device that gives a direct indication of temperature and flow visible to an infrared television camera. Signal transmission by cable would then be replaced by direct observation. A possible arrangement for such a system is described and is shown in schematic form. It includes pattern recognition by computer. It may also be possible to infer coolant temperature directly from the characteristics of the infrared radiation emitted by a thin stainless steel sheet in contact with the sodium, and an arrangement for this is shown. The type of pattern produced for on-line interpretation by computer is also shown. It is thought that this new approach to the problem of subassembly instrumentation is sufficiently attractive to justify a close study of the problems involved.

  13. Possibilities to improve the adaptation quality of calculated material substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G.

    1981-04-01

    In calculating the composition of material substitutes by a system of simultaneous equations it is possible, by using a so called quality index, to find out of the set of solutions which generally exists that solution which possesses the best adaptation quality. Further improvement is often possible by describing coherent scattering and photoelectric interaction by an own material parameter for each effect. The exact formulation of these quantities as energy indepedent functions is, however, impossible. Using a set of attenuation coefficients at suitably chosen energies as coefficients for the system of equations the best substitutes are found. The solutions for the investigated example are identical with the original relative to its chemical composition. Such solutions may be of use in connection with neutrons, protons, heavy ions and negative pions. The components taken into consideration must, of course, permit such solutions. These facts are discussed in detail by two examples.

  14. Possible risk factors for increased suicide following bariatric surgery.

    Science.gov (United States)

    Mitchell, James E; Crosby, Ross; de Zwaan, Martina; Engel, Scott; Roerig, James; Steffen, Kristine; Gordon, Kathryn H; Karr, Trisha; Lavender, Jason; Wonderlich, Steve

    2013-04-01

    There is a growing research literature suggesting that there may be elevated risk of suicide following bariatric surgery. Most of the data reported thus far has been cross-sectional and observational, and very little is known about the possible specific causal variables involved. The purpose of this report is to review this literature and to review possible risk factors for increased suicidal risk following bariatric surgery, to delineate future research directions. First a variety of medical, biological, and genetic factors, including the persistence or recurrence of medical comorbidities after bariatric surgery, the disinhibition and impulsivity secondary to changes in the absorption of alcohol, hypoglycemia, as well as pharmacokinetic changes that may affect the absorption of various medications including antidepressant medications are reviewed. Also reviewed are possible mediating factors involving changes in various peptidergic systems such as GLP-1 and Ghrelin. A number of psychosocial issues that might be involved are discussed, including lack of improvement in quality of life after surgery, continued or recurrent physical mobility restrictions, persistence or recurrence of sexual dysfunction and relationship problems, low self-esteem, and a history of child maltreatment. Inadequate weight loss or weight regain are also discussed. A number of possible contributing factors have been identified. Possible theoretical models involved and directions for research are suggested. Copyright © 2012 The Obesity Society.

  15. Mammography at reduced doses: present performance and future possibilities

    International Nuclear Information System (INIS)

    Muntz, E.P.; Wilkinson, E.; George, F.W.

    1980-01-01

    Reduced dose mammography is assessed with the aid of very recent work. It is concluded that there are technical and clinical reasons for believing that the reduced dose systems and their interpreters should perform more effectively than their predecessors. Review of known technologic achievements suggests a possible 6 to 7 reduction factor from present screen-film mammography dose levels without sacficifing image quality. Reasonable estimates of representative doses presently achieved by both xeroradiography and screen-film systems are given. The screen-film value is about 3 times higher than some previous

  16. The ripple electromagnetic calculation: accuracy demand and possible responses

    International Nuclear Information System (INIS)

    Cocilovo, V.; Ramogida, G.; Formisano, A.; Martone, R.; Portone, A.; Roccella, M.; Roccella, R.

    2006-01-01

    Due to a number of causes (the finite number of toroidal field coils or the presence of concentrate blocks of magnetic materials, as the neutral beam shielding) the actual magnetic configuration in a Tokamak differs from the desired one. For example, a ripple is added to the ideal axisymmetric toroidal field, impacting the equilibrium and stability of the plasma column; as a further example the magnetic field out of plasma affects the operation of a number of critical components, included the diagnostic system and the neutral beam. Therefore the actual magnetic field has to be suitably calculated and his shape controlled within the required limits. Due to the complexity of its design, the problem is quite critical for the ITER project. In this paper the problem is discussed both from mathematical and numerical point of view. In particular, a complete formulation is proposed, taking into account both the presence of the non linear magnetic materials and the fully 3D geometry. Then the quality level requirements are discussed, included the accuracy of calculations and the spatial resolution. As a consequence, the numerical tools able to fulfil the quality needs while requiring reasonable computer burden are considered. In particular possible tools based on numerical FEM scheme are considered; in addition, in spite of the presence of non linear materials, the practical possibility to use Biot-Savart based approaches, as cross check tools, is also discussed. The paper also analyses the possible geometrical simplifications of the geometry able to make possible the actual calculation while guarantying the required accuracy. Finally the characteristics required for a correction system able to effectively counteract the magnetic field degradation are presented. Of course a number of examples will be also reported and commented. (author)

  17. Possible applications of new energy systems. Pt. 5

    International Nuclear Information System (INIS)

    Dietrich, G.

    1975-01-01

    The partial study deals with long-distance heat for room heating systems, hot-water supply, and process heat up to 200 0 C. Demand, structure, and costs are analyzed, and some predictions are made on future developments. Transport, distribution and storage are discussed with regard to technology, cost efficiency, safety engineering, and logistics. Except for conventional fossile-fuelled power stations, most of the energy for long-distance heating in the FRG will be supplied by nuclear power stations. The heat decoupling principles and the costs of long-distance heating are specific for a power station. Model calculations for long-distance heating are carried out by the example of Munich and Duesseldorf and their surroundings. The partial study concludes by proposing some measures for the further development of process heat supply with the ultimate aim of oil substitution. (GG/AK) [de

  18. Possibility of use of plant test systems for estimation of degree risk at radiation influence

    International Nuclear Information System (INIS)

    Gogebashvili, M.E; Ivanishvili, N.I.

    2011-01-01

    Full tex:Now one of the major problems of radiobiology is studying of degree risks at influence of small doses of an ionizing radiation. It is known, that not tumoral forms of the remote pathology are not stochastic, threshold, reactions of an organism to beam influence, frequency and weight depend on a dose, while carcinogenic and genetic effects (stochastic reactions) - frequency raises with dose increase. Last years the general hypothesis for definition of the raised risk in the irradiated populations, based on the theoretical analysis of extensive researches of various biological objects and epidemiological data, assumes existence of difficult parities between a dose of an irradiation and frequency of investigated effect. In this aspect the special importance is got by biological models with which help reception of quantitative parameters of influence of modifying factors for creation of more exact systems of monitoring of the remote radiobiological effects is possible.One of such systems is reciprocal grows reaction of stamen threads of plant tradescantia. At the heart of action of the given biomodel that growth tradescantia threads occurs from one initial cell is, and level of its radiating damage is shown in number of the subsequent cellular generation during the postradiating period. For an estimation of adequacy of the given model we had been chose two kinds tradescantia - Tradescantia virginiana L. and Tradescantia rosea Vent.In work two basic criteria of an estimation of radiating damage - quantity of viable pollen threads and quantity of viable cells in each of threads have been used. The received results have shown strict correlation of reciprocal postradiating effects between used variants.It is known, that at studying of influence of damaging factors of environment, including radiating, on live organisms the concept r iskcharacterizes degree of danger of influence expressed in quantity indicators. Thus, in most general case this includes probability

  19. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.

  20. Dictatorship, liberalism and the Pareto rule: Possible and impossible

    Directory of Open Access Journals (Sweden)

    Boričić Branislav

    2009-01-01

    Full Text Available The current economic crisis has shaken belief in the capacity of neoliberal 'free market' policies. Numerous supports of state intervention have arisen, and the interest for social choice theory has revived. In this paper we consider three standard properties for aggregating individual into social preferences: dictatorship, liberalism and the Pareto rule, and their formal negations. The context of the pure first-order classical logic makes it possible to show how some combinations of the above mentioned conditions, under the hypothesis of unrestricted domain, form simple and reasonable examples of possible or impossible social choice systems. Due to their simplicity, these examples, including the famous 'liberal paradox', could have a particular didactic value.

  1. Possible impacts of sea-level rise on the Diep river/Rietvlei system, Cape-Town

    CSIR Research Space (South Africa)

    Hughes, P

    1993-10-01

    Full Text Available Many of the Cape Province's estuaries and tidal inlets have sandy connections to the sea and are often intensively developed for industrial or residential purposes. The possible impacts of sea-level rise are of considerable interest...

  2. Exotic baryon resonances. Modern status. Possibilities to search and investigate

    International Nuclear Information System (INIS)

    Bagdasaryan, L.S.; Galumyan, P.I.; Grigoryan, A.A.; Kazaryan, S.P.; Khachatryan, G.N.; Oganesyan, A.G.; Vartapetyan, H.H.

    1985-01-01

    A possibility to investigate the exotic baryon resonances with qqqqq quark composition, in the systems pπ + π + , Λπ - π - , Σ - π - , etc. possessing exotic quantum numbers of isospin is considered. The most favourable reactions and kinematical regions where an effective search for the exotic baryons is possible are grounded. The contribution of the background subprocesses to the investigated systems is analyzed in various reactions and momenta configurations of the particles. The analysis shows that the search for the I=5/2 resonances in the system pπ + π + (Δ ++ π + ) is more reasonable in the π + p-interaction process, this system carrying the main portion of momentum in the lab. system. The exotic hyperons with S=-1 srangeness and I=2 isospin are to be searched in the fast-flying systems Λπ - π - (Σ* - (1385)π - ) and Σ - π - produced in the reactions on the K - beams. The cross sections of the production of the E 55 -baryon (J p =5/2 + , I=5/2) in the π + p → E 55 +++ π- and π + p → E 55 +++ x processes are theoretically estimated. The estimations show that in the experiments with the OMEGA spectometer at CERN one can get a substantial increase in the statistics as compared to that available, thus providing a detailed analysis of the pπ + π + system on the high confidence level. The question of investigation of the exotic baryon Regge trajectories in the processes of the inclusive production of ordinary (nonexotic) Δ ++ (1232), Σ* + (1385)- and Σ + -resonances in the π - -beam fragmentation region is also considered

  3. A possible approach to estimating the operational efficiency of multiprocessor systems

    International Nuclear Information System (INIS)

    Kuznetsov, N.Y.; Gorlach, S.P.; Sumskaya, A.A.

    1984-01-01

    This article presents a mathematical model that constructs the upper and lower estimates evaluating the efficiency of solution of a large class of problems using a multiprocessor system with a specific architecture. Efficiency depends on a system's architecture (e.g., the number of processors, memory volume, the number of communication links, commutation speed) and the types of problems it is intended to solve. The behavior of the model is considered in a stationary mode. The model is used to evaluate the efficiency of a particular algorithm implemented in a multiprocessor system. It is concluded that the model is flexible and enables the investigation of a broad class of problems in computational mathematics, including linear algebra and boundary-value problems of mathematical physics

  4. From linear possibility distributions to a non-infinitesimal probabilistic semantics of conditional knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Benferhat, S.; Dubois, D.; Prade, H. [Universite Paul Sabatier, Toulouse (France)

    1996-12-31

    The authors have proposed in their previous works to view a set of default information of the form, {open_quotes}generally, from {alpha}{sub i} deduce {beta}{sub i}{close_quotes}, as the family of possibility distributions satisfying constraints expressing that the situations where {alpha}{sub 1} {beta}{sub i} is true are more possible than the situations where {alpha}{sub i} {beta}{sub i} is true. This provides a representation theorem for default reasoning obeying the System P of postulates proposed by Lehmann et al., and for which it also exists a semantics in terms of infinitesimal probabilities. This paper offers a detailed analysis of the structure of this family of possibility distributions by making use of two different orderings between them: the specificity ordering and the refinement ordering. It is shown that from a representation point of view, it is sufficient to consider the subset of linear possibility distributions which corresponds to all the possible completions of the default knowledge in agreement with the constraints. Surprisingly, it is also shown that a standard probabilistic semantics can be equivalently given to System P, without referring to infinitesimals, by using a special family of probability measures, here called acceptance functions, and that has been also recently considered by Snow in that perspective.

  5. Challenges to the multilateral trading system and possible responses

    OpenAIRE

    Panagariya, Arvind

    2013-01-01

    This paper develops three major themes. First, the atmosphere of gloom around the multilateral trading system due to dim prospects of a successful conclusion of the Doha Round notwithstanding, global trade regime remains open and the institution in charge of it, the World Trade Organization, is in sound health. If anything, the Doha Round has been a victim of its own success: considerable de facto liberalization in agriculture has been achieved since the launch of the round. Second, to secure...

  6. Advanced Technologies in Safe and Efficient Operating Rooms

    Science.gov (United States)

    2009-02-01

    NVIDIA 8800 GTX GPU using CUDA(Compute Unified Device Architecture). Several studies in the recent past have reported computing forward and back...weaknesses, opportunities, and threats analysis (known in business intelligence parlance as a SWOT analysis) to classify their observations. Strengths Our Web

  7. Paralelización del Algoritmo Criptográfico GOST Empleando el Paradigma de Memoria Compartida

    Directory of Open Access Journals (Sweden)

    Marlis Fulgueira-Camilo

    2015-06-01

    Full Text Available El artículo refiere el proceso de paralelización del algoritmo criptográfico GOST. La investigación realizada persigue como objetivo, reducir el tiempo de ejecución del algoritmo. El estudio no se encuentra enfocado al análisis de fortaleza del algoritmo criptográfico, donde se hace énfasis es en el método empleado para disminuir el tiempo de ejecución de los procesos cifre y descifre. Para ello se realiza un diseño paralelo basado en la metodología de Ian Foster, el cual es aplicado a dos implementaciones usando técnicas como: OpenMP y CUDA. Las comparaciones realizadas teniendo en cuenta, tanto al algoritmo secuencial como las implementaciones paralelas, demuestran una significativa reducción de tiempo, sin importar la técnica empleada. El mejor resultado se logra empleando CUDA.

  8. 'Vote system' and 'SMS premium rate', their characteristics and application possibilities for scientific research of public opinion

    Directory of Open Access Journals (Sweden)

    Šuvaković Uroš

    2007-01-01

    Full Text Available Both techniques are based on the use of telephone as an instrument of interpersonal communication and any of mass media, mostly electronic (television, radio. They have not appeared with purpose of researching public opinion, but firstly for commercial purposes. A discussion in studio the show as a whole represents a 'verbal provocation' regarding the audience from which examinees emanate, where the role of a journalist is to create atmosphere, influence the course, etc. Regardless their specifics over-combination of events and mostly non-scientific motives, they are closer to a written questionnaire than interview regarding their characteristics. A fault is that it is impossible to make a questionnaire with more than one question, 2-3 at the most, and to avoid total confusion. It is clear that the questions giving at least basic data on examinee (gender, age, education etc will be omitted, and that is the reason why we do not know whom we have questioned. Stratification of obtained results by 'Vote System' technique is possible if only fixed telephony have been used, while it is impossible with OESMS Premium Rate' technique. The fact that examinee pays for answering the question eliminates or at least considerably reduces participation of poorer layers of citizens. On the other hand, organizers motivated firstly by earnings do not limit number of calls from the same telephone number although technical possibilities exist, which interested parties misuse (e.g. political parties in order to directly influence in favor of wanted option through systematic and organized calling of numbers. OESMS Premium Rate' technique also has the problem that the use of mobile telephones drops with increase of age of citizens in Serbia, and regarding that short messages (SMS in our country is possible to send only through mobile telephony and considering that Serbia is in the second place in the world regarding age of inhabitants, this reduces representation of

  9. High performance GPU processing for inversion using uniform grid searches

    Science.gov (United States)

    Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios

    2017-04-01

    Many geophysical problems are described by systems of redundant, highly non-linear systems of ordinary equations with constant terms deriving from measurements and hence representing stochastic variables. Solution (inversion) of such problems is based on numerical, optimization methods, based on Monte Carlo sampling or on exhaustive searches in cases of two or even three "free" unknown variables. Recently the TOPological INVersion (TOPINV) algorithm, a grid search-based technique in the Rn space, has been proposed. TOPINV is not based on the minimization of a certain cost function and involves only forward computations, hence avoiding computational errors. The basic concept is to transform observation equations into inequalities on the basis of an optimization parameter k and of their standard errors, and through repeated "scans" of n-dimensional search grids for decreasing values of k to identify the optimal clusters of gridpoints which satisfy observation inequalities and by definition contain the "true" solution. Stochastic optimal solutions and their variance-covariance matrices are then computed as first and second statistical moments. Such exhaustive uniform searches produce an excessive computational load and are extremely time consuming for common computers based on a CPU. An alternative is to use a computing platform based on a GPU, which nowadays is affordable to the research community, which provides a much higher computing performance. Using the CUDA programming language to implement TOPINV allows the investigation of the attained speedup in execution time on such a high performance platform. Based on synthetic data we compared the execution time required for two typical geophysical problems, modeling magma sources and seismic faults, described with up to 18 unknown variables, on both CPU/FORTRAN and GPU/CUDA platforms. The same problems for several different sizes of search grids (up to 1012 gridpoints) and numbers of unknown variables were solved on

  10. FOREIGN EXPERIENCE OF PENSION SYSTEM REFORMING AND POSSIBILITY OF ADAPTATION IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Anastasiia Svyrydovska

    2016-11-01

    Full Text Available The purpose of the paper is to analyze foreign experience of reforming pension systems. Reforming pension systems around the world is due to the need to balance the cost of social support for people who are growing, with the financial capabilities of the country. Ukraine, like other European countries is facing the crisis of public pensions. One reason – the rapid aging of the population. The experience of some countries shows that the increase in the rates of deductions has a negative impact on employment, leads to a significant increase in public debt, and therefore is unacceptable. Some economists believe that a full transition to retirement savings scheme – a solution. However, this would create an additional burden on public financial systems and current generation of taxpayers. Therefore, it is necessary to determine the main directions of the crisis of pensions. With the economic downturn global scale of the efficiency of the pension system of Ukraine, its compliance with the standards of the welfare state is becoming more acute. That is why there is an urgent need for adaptation based on international experience to review previously proposed ways to reform the pension system of Ukraine. Methodology is actual works of scientists and researchers. Results are exploring the features of the international experience of reforming pension systems and proposition of directions of reform of the pension system of Ukraine on the basis of demographic, social, financial, political and cultural characteristics of its development. Value. Background research finding is due to government regulation mechanisms of social insurance in Ukraine. The most developed social protection system with the EU. Consideration of these specific programs of effective systems of social insurance is an important basis for the analysis of international experience. Decisive impact on the social security system in the EU provides current demographic trends (falling birth

  11. Exact diagonalization of quantum lattice models on coprocessors

    Science.gov (United States)

    Siro, T.; Harju, A.

    2016-10-01

    We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by measuring the execution time of a single step in the Lanczos algorithm. We study two quantum lattice models with different particle numbers, and conclude that for small systems, the multi-core CPU is the fastest platform, while for large systems, the graphics processor is the clear winner, reaching speedups of up to 7.6 compared to the CPU. The Xeon Phi outperforms the CPU with sufficiently large particle number, reaching a speedup of 2.5.

  12. RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles

    Directory of Open Access Journals (Sweden)

    Nicholas P. Bailey, Trond S. Ingebrigtsen, Jesper Schmidt Hansen, Arno A. Veldhorst, Lasse Bøhling, Claire A. Lemarchand, Andreas E. Olsen, Andreas K. Bacher, Lorenzo Costigliola, Ulf R. Pedersen, Heine Larsen, Jeppe C. Dyre, Thomas B. Schrøder

    2017-12-01

    Full Text Available RUMD is a general purpose, high-performance molecular dynamics (MD simulation package running on graphical processing units (GPU's. RUMD addresses the challenge of utilizing the many-core nature of modern GPU hardware when simulating small to medium system sizes (roughly from a few thousand up to hundred thousand particles. It has a performance that is comparable to other GPU-MD codes at large system sizes and substantially better at smaller sizes.RUMD is open-source and consists of a library written in C++ and the CUDA extension to C, an easy-to-use Python interface, and a set of tools for set-up and post-simulation data analysis. The paper describes RUMD's main features, optimizations and performance benchmarks.

  13. A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier-Stokes equations

    Science.gov (United States)

    Ha, Sanghyun; Park, Junshin; You, Donghyun

    2018-01-01

    Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. The Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution methods used in the semi-implicit fractional-step method take advantage of multiple tridiagonal matrices whose inversion is known as the major bottleneck for acceleration on a typical multi-core machine. A novel implementation of the semi-implicit fractional-step method designed for GPU acceleration of the incompressible Navier-Stokes equations is presented. Aspects of the programing model of Compute Unified Device Architecture (CUDA), which are critical to the bandwidth-bound nature of the present method are discussed in detail. A data layout for efficient use of CUDA libraries is proposed for acceleration of tridiagonal matrix inversion and fast Fourier transform. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while the Navier-Stokes equations are computed on a GPU. Performance of the present method using CUDA is assessed by comparing the speed of solving three tridiagonal matrices using ADI with the speed of solving one heptadiagonal matrix using a conjugate gradient method. An overall speedup of 20 times is achieved using a Tesla K40 GPU in comparison with a single-core Xeon E5-2660 v3 CPU in simulations of turbulent boundary-layer flow over a flat plate conducted on over 134 million grids. Enhanced performance of 48 times speedup is reached for the same problem using a Tesla P100 GPU.

  14. On the possibility of extending the tests of quantum mechanical correlations

    International Nuclear Information System (INIS)

    Bergia, S.

    1984-01-01

    Experimental tests of quantum mechanical correlations in connection with Bell's inequality have generally considered decays in sub-systems characterized by two-valued observables. The author analyses the possibility of extending these tests to a much wider class of cases. (Auth.)

  15. Possibilities for the efficient utilisation of spent geothermal waters.

    Science.gov (United States)

    Tomaszewska, Barbara; Szczepański, Andrzej

    2014-10-01

    Waters located at greater depths usually exhibit high mineral content, which necessitates the use of closed systems, i.e. re-injecting them into the formation after recovering the heat. This significantly reduces investment efficiency owing to the need to drill absorption wells and to perform anti-corrosion and anti-clogging procedures. In this paper, possibilities for the efficient utilisation of cooled geothermal waters are considered, particularly with respect to open or mixed geothermal water installations. Where cooled water desalination technologies are used, this allows the water to be demineralised and used to meet local needs (as drinking water and for leisure purposes). The retentate left as a by-product of the process contains valuable ingredients that can be used for balneological and/or leisure purposes. Thus, the technology for desalinating spent geothermal waters with high mineral content allows improved water management on a local scale and makes it possible to minimise the environmental threat resulting from the need to dump these waters into waterways or surface water bodies and/or inject them into the formation. The paper is concerned with Polish geothermal system and provides information about the parameters of Polish geothermal waters.

  16. Information security of industrial control systems: possible attack vectors and protection methods

    Directory of Open Access Journals (Sweden)

    Ignatiy A. Grachkov

    2018-03-01

    obtaining unauthorized access to industrial control systems using the Shodan search engine is described and recommendations how to ensure information security of the industrial control system are given.

  17. High-performance method of morphological medical image processing

    Directory of Open Access Journals (Sweden)

    Ryabykh M. S.

    2016-07-01

    Full Text Available the article shows the implementation of grayscale morphology vHGW algorithm for selection borders in the medical image. Image processing is executed using OpenMP and NVIDIA CUDA technology for images with different resolution and different size of the structuring element.

  18. Food safety management systems performance in African food processing companies: a review of deficiencies and possible improvement strategies.

    Science.gov (United States)

    Kussaga, Jamal B; Jacxsens, Liesbeth; Tiisekwa, Bendantunguka Pm; Luning, Pieternel A

    2014-08-01

    This study seeks to provide insight into current deficiencies in food safety management systems (FSMS) in African food-processing companies and to identify possible strategies for improvement so as to contribute to African countries' efforts to provide safe food to both local and international markets. This study found that most African food products had high microbiological and chemical contamination levels exceeding the set (legal) limits. Relative to industrialized countries, the study identified various deficiencies at government, sector/branch, retail and company levels which affect performance of FSMS in Africa. For instance, very few companies (except exporting and large companies) have implemented HACCP and ISO 22000:2005. Various measures were proposed to be taken at government (e.g. construction of risk-based legislative frameworks, strengthening of food safety authorities, recommend use of ISO 22000:2005, and consumers' food safety training), branch/sector (e.g. sector-specific guidelines and third-party certification), retail (develop stringent certification standards and impose product specifications) and company levels (improving hygiene, strict raw material control, production process efficacy, and enhancing monitoring systems, assurance activities and supportive administrative structures). By working on those four levels, FSMS of African food-processing companies could be better designed and tailored towards their production processes and specific needs to ensure food safety. © 2014 Society of Chemical Industry.

  19. Possible applications for municipal solid waste fly ash.

    Science.gov (United States)

    Ferreira, C; Ribeiro, A; Ottosen, L

    2003-01-31

    The present study focuses on existing practices related to the reuse of Municipal Solid Waste (MSW) fly ash and identifies new potential uses. Nine possible applications were identified and grouped into four main categories: construction materials (cement, concrete, ceramics, glass and glass-ceramics); geotechnical applications (road pavement, embankments); "agriculture" (soil amendment); and, miscellaneous (sorbent, sludge conditioning). Each application is analysed in detail, including final-product technical characteristics, with a special emphasis on environmental impacts. A comparative analysis of the different options is performed, stressing the advantages but also the weaknesses of each option. This information is systemized in order to provide a framework for the selection of best technology and final products. The results presented here show new possibilities for this waste reuse in a short-term, in a wide range of fields, resulting in great advantages in waste minimization as well as resources conservation.

  20. Measuring systolic arterial blood pressure. Possible errors from extension tubes or disposable transducer domes.

    Science.gov (United States)

    Rothe, C F; Kim, K C

    1980-11-01

    The purpose of this study was to evaluate the magnitude of possible error in the measurement of systolic blood pressure if disposable, built-in diaphragm, transducer domes or long extension tubes between the patient and pressure transducer are used. Sinusoidal or arterial pressure patterns were generated with specially designed equipment. With a long extension tube or trapped air bubbles, the resonant frequency of the catheter system was reduced so that the arterial pulse was amplified as it acted on the transducer and, thus, gave an erroneously high systolic pressure measurement. The authors found this error to be as much as 20 mm Hg. Trapped air bubbles, not stopcocks or connections, per se, lead to poor fidelity. The utility of a continuous catheter flush system (Sorenson, Intraflow) to estimate the resonant frequency and degree of damping of a catheter-transducer system is described, as are possibly erroneous conclusions. Given a rough estimate of the resonant frequency of a catheter-transducer system and the magnitude of overshoot in response to a pulse, the authors present a table to predict the magnitude of probable error. These studies confirm the variability and unreliability of static calibration that may occur using some safety diaphragm domes and show that the system frequency response is decreased if air bubbles are trapped between the diaphragms. The authors conclude that regular procedures should be established to evaluate the accuracy of the pressure measuring systems in use, the transducer should be placed as close to the patient as possible, the air bubbles should be assiduously eliminated from the system.

  1. Possible modulatory effects of male cues and social system on ...

    African Journals Online (AJOL)

    ... circulating levels of luteinizing hormone (LH) and the response of the pituitary to an exogenous gonadotropin-releasing hormone (GnRH) challenge in two mole-rat species with induced ovulation but contrasting mating and social systems. Females were either kept in isolation, allowed only olfactory and auditory contact or ...

  2. Possibilities and constraints for grazing in high output dairy systems

    NARCIS (Netherlands)

    Hennessy, D.; Delaby, L.; Pol, van den A.; Shalloo, L.

    2015-01-01

    In temperate and oceanic regions, grazed grass is the lowest cost feed available for milk production. In other regions, grazed grass is less important but can contribute to the diet of livestock. Within high output systems the interaction between the animal and sward is challenging for a host of

  3. Reimagining What's Possible: How NREL's Energy Analysis and Decision Support Capabilities are Guiding Energy Systems Transformation at Home and Around the World; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This engaging brochure shows examples of how NREL enables energy system transformation through robust capabilities in energy analysis and decision support. By reimagining what's possible for renewable energy, NREL contributes to the Department of Energy mission to create energy systems that are cleaner, more reliable, and more secure.

  4. Superconductivity in LaCu 6 and possible applications

    Science.gov (United States)

    Herrmannsdörfer, Thomas; Pobell, Frank; Sebek, Josef; Svoboda, Pavel

    2003-05-01

    We have measured the ac susceptibility and resistivity of highly pure samples of the intermetallic compound LaCu6 down to ultralow temperatures. We have prepared the samples by arc melting of stoichiometric amounts of 99.99% La and 99.9999% Cu in a water-cooled copper crucible under Ar protective atmosphere and analysed them by X-ray diffraction and SQUID magnetometry. At T⩽Tc=0.16 K we observe a superconducting transition. Due to the manifold physical properties of isostructural ReCu6 compounds (e.g. RE = Ce: heavy fermion system, RE=Pr: hyperfine enhanced nuclear spin system, RE = Nd: electronic antiferromagnet), numerous studies of interplay phenomena may become possible in the quasibinary compounds RE1-xLaxCu6, respectively.

  5. [Is it possible to rejuvenate the aging global civilization?

    Science.gov (United States)

    Makrushin, A V; Aladin, N V; Vasiliev, A S

    2017-01-01

    Society is not only social system but also biological system. Growing complexity of biological systems will inevitably lead to the loss of their potential immortality and to the appeared attribute of aging. The aging of the present-day civilization is evidenced by the problems having accumulated. The answer to the question concerning the possibility to prevent collapse depends on the answer to the more general question - whether supra-organismal system that due to the growth of the structure complexity has acquired the property to age without losing achieved complexity can return to ancestral potential immortality. A positive response is given to this question. Supra-organismal systems having been freed from the necessity to age exist. Those are communities of social insects. Some of them were mortal initially but in the course of evolution have lost attribute of aging. Therefore, complex supra-organismal systems, including present-day civilization, can return to ancestral potential immortality not losing the achieved structural complexity. The main obstacle to rejuvenating civilization is not the nature of things but the human mentality.

  6. Human Possibilities: The Interaction of Biology and Culture

    Directory of Open Access Journals (Sweden)

    Riane Eisler

    2015-06-01

    Full Text Available This article briefly describes the two main strands of a new unified theory about human nature and human possibilities: cultural transformation theory and bio-culturalism. Bio-culturalism combines findings from neuroscience about how our brains develop in interaction with our environments with findings from the study of relational dynamics, a new method of social analysis focusing on what kinds of relations—from intimate to international—a particular culture or subculture supports. Bio-culturalism recognizes that our species has a vast spectrum of genetic capacities, ranging from consciousness, caring, empathy, cooperation, and creativity to insensitivity, cruelty, exploitation, and destructiveness, and proposes that which of these capacities are expressed or inhibited largely hinges on the nature of our cultural environments. Cultural transformation theory looks at the whole span of human cultural evolution from the perspective of the tension between the contrasting configurations of the partnership system and the domination system as two underlying possibilities for structuring beliefs, institutions, and relationships. The article describes the core components of partnership- and domination-oriented societies, provides examples of each, and proposes that our future hinges on accelerating the cultural transformation from domination to partnership in our time of nuclear and biological weapons and the ever more efficient despoliation of nature, when high technology guided by an ethos of domination and conquest could take us to an evolutionary dead end.

  7. Accelerated Hierarchical Collision Detection for Simulation using CUDA

    DEFF Research Database (Denmark)

    Jørgensen, Jimmy Alison; Fugl, Andreas Rune; Petersen, Henrik Gordon

    2011-01-01

    . The hierarchical nature of the bounding volume structure complicates an efficient implementation on massively parallel architectures such as modern graphics cards and we therefore propose a hybrid method where only box and triangle overlap tests and transformations are offloaded to the graphics card. When...

  8. Performance tuning for CUDA-accelerated neighborhood denoising filters

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ziyi; Mueller, Klaus [Stony Brook Univ., NY (United States). Center for Visual Computing, Computer Science; Xu, Wei

    2011-07-01

    Neighborhood denoising filters are powerful techniques in image processing and can effectively enhance the image quality in CT reconstructions. In this study, by taking the bilateral filter and the non-local mean filter as two examples, we discuss their implementations and perform fine-tuning on the targeted GPU architecture. Experimental results show that the straightforward GPU-based neighborhood filters can be further accelerated by pre-fetching. The optimized GPU-accelerated denoising filters are ready for plug-in into reconstruction framework to enable fast denoising without compromising image quality. (orig.)

  9. CUDA-accelerated geodesic ray-tracing for fiber-tracking

    NARCIS (Netherlands)

    van Aart, Evert; Sepasian, N.; Jalba, A.C.; Vilanova, A.

    2011-01-01

    Diffusion Tensor Imaging (DTI) allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an approach to accelerating such a fiber-tracking

  10. Accelerating wavelet lifting on graphics hardware using CUDA

    NARCIS (Netherlands)

    Laan, van der W.J.; Roerdink, J.B.T.M.; Jalba, A.C.

    2011-01-01

    The Discrete Wavelet Transform (DWT) has a wide range of applications from signal processing to video and image compression. We show that this transform, by means of the lifting scheme, can be performed in a memory and computation-efficient way on modern, programmable GPUs, which can be regarded as

  11. Accelerating Wavelet Lifting on Graphics Hardware Using CUDA

    NARCIS (Netherlands)

    Laan, Wladimir J. van der; Jalba, Andrei C.; Roerdink, Jos B.T.M.

    The Discrete Wavelet Transform (DWT) has a wide range of applications from signal processing to video and image compression. We show that this transform, by means of the lifting scheme, can be performed in a memory and computation-efficient way on modern, programmable GPUs, which can be regarded as

  12. Performance evaluation of throughput computing workloads using multi-core processors and graphics processors

    Science.gov (United States)

    Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.

    2017-11-01

    Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.

  13. Parallel implementation of DNA sequences matching algorithms using PWM on GPU architecture.

    Science.gov (United States)

    Sharma, Rahul; Gupta, Nitin; Narang, Vipin; Mittal, Ankush

    2011-01-01

    Positional Weight Matrices (PWMs) are widely used in representation and detection of Transcription Factor Of Binding Sites (TFBSs) on DNA. We implement online PWM search algorithm over parallel architecture. A large PWM data can be processed on Graphic Processing Unit (GPU) systems in parallel which can help in matching sequences at a faster rate. Our method employs extensive usage of highly multithreaded architecture and shared memory of multi-cored GPU. An efficient use of shared memory is required to optimise parallel reduction in CUDA. Our optimised method has a speedup of 230-280x over linear implementation on GPU named GeForce GTX 280.

  14. Spectral method and its high performance implementation

    KAUST Repository

    Wu, Zedong

    2014-01-01

    We have presented a new method that can be dispersion free and unconditionally stable. Thus the computational cost and memory requirement will be reduced a lot. Based on this feature, we have implemented this algorithm on GPU based CUDA for the anisotropic Reverse time migration. There is almost no communication between CPU and GPU. For the prestack wavefield extrapolation, it can combine all the shots together to migration. However, it requires to solve a bigger dimensional problem and more meory which can\\'t fit into one GPU cards. In this situation, we implement it based on domain decomposition method and MPI for distributed memory system.

  15. Possibility Fuzzy Soft Set

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2011-01-01

    Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.

  16. Designing and Implementing Teacher Performance Management Systems: Pitfalls and Possibilities

    Science.gov (United States)

    Wiener, Ross; Jacobs, Ariel

    2011-01-01

    As new performance-management-related policies go from idea to implementation, policy makers and education leaders will be called upon to flesh-out what are still broad principles in many areas. This represents a significant inflection point for the teaching profession and the management of public school systems. Early decisions will determine…

  17. A possible new basis for fast reactor subassembly instrumentation

    International Nuclear Information System (INIS)

    Edwards, A.G.

    1977-01-01

    This is a digest of a paper presented to the Risley Engineering Society. The theme is a speculation that the core instrumentation problem for a liquid metal fast breeder reactor might be transformed by developments in the realm of infrared television and in pattern recognition by computer. There is a possible need to measure coolant flow and cooled exit temperature for each subassembly, with familiar fail-to-safety characteristics. Present methods use electrical devices, for example thermocouples, but this gives rise to cabling problems. It might be possible, however, to instal at the top of each subassembly a mechanical device that gives a direct indication of temperature and flow visible to an infrared television camera. Signal transmission by cable would then be replaced by direct observation. A possible arrangement for such a system is described and is shown in schematic form. It includes pattern recognition by computer. It may also be possible to infer coolant temperature directly from the characteristics of the infrared radiation emitted by a thin stainless steel sheet in contact with the sodium, and an arrangement for this is shown. The type of pattern produced for on-line interpretation by computer is also shown. It is thought that this new approach to the problem of subassembly instrumentation is sufficiently attractive to justify a close study of the problems involved. (U.K.)

  18. Microbes in deep geological systems and their possible influence on radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    West, J M; McKinley, I G; Chapman, N A [Institute of Geological Sciences, Harwell (UK). Environmental Protection Unit

    1982-09-01

    Although the fact is often overlooked, proposed nuclear waste repositories in geological formations would exist in an environment quite capable of sustaining microbial life which could considerably affect containment of radionuclides. In this paper a brief review of biological tolerance of extreme environments is presented with particular reference to studies of the microbiology of deep geological formations. The possible influence of such organisms on the integrity of a waste repository and subsequent transport of radionuclides to the surface is discussed.

  19. Needs and Possibility of Involving Nuclear Power Plant in the Macedonian Power System

    International Nuclear Information System (INIS)

    Bosevski, T.; Causevski, A.

    1998-01-01

    The Macedonian Power System (MPS) used to be a part of the former Yugoslav Power System, and it was connected to the European system by 400 kV transmission lines. At the present time, the MPS works isolated from the UCPTE, only connected to the Yugoslav and Greek power systems. The connections with the Bulgarian and Albanian power systems are on a lower voltage level. The reliability and stability of the MPS needs to be improved. Macedonia is located in the central area of the Balkan, where the transmission systems from other Balkan countries are crossing. in the near future, the Macedonian Power System needs to be linked to the European system. To prepare for the energy demand at the beginning of the 21-st century, when the local coal reserves get exhausted, Macedonia needs to start with activities for substitution of the existing coal-fired thermal power plants with nuclear plants. This paper discusses the activities for global development solutions in the area of power generation. (author)

  20. Real-Time Simulation of Ship-Structure and Ship-Ship Interaction

    DEFF Research Database (Denmark)

    Lindberg, Ole; Glimberg, Stefan Lemvig; Bingham, Harry B.

    2013-01-01

    , because it is simple, easy to implement and computationally efficient. Multiple many-core graphical processing units (GPUs) are used for parallel execution and the model is implemented using a combination of C/C++, CUDA and MPI. Two ship hydrodynamic cases are presented: Kriso Container Carrier at steady...

  1. Solving Kinetic Equations on GPU’s

    Science.gov (United States)

    2011-01-01

    7 Acknowledgments 23 8 Appendix: CUDA pseudo-codes 27 ∗Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milano...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milano, Italy 8

  2. Auto-tuning Dense Vector and Matrix-vector Operations for Fermi GPUs

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    2012-01-01

    applications. As examples, we develop single-precision CUDA kernels for the Euclidian norm (SNRM2) and the matrix-vector multiplication (SGEMV). The target hardware is the most recent Nvidia Tesla 20-series (Fermi architecture). We show that auto-tuning can be successfully applied to achieve high performance...

  3. Smoke simulation for fire engineering using a multigrid method on graphics hardware

    DEFF Research Database (Denmark)

    Glimberg, Stefan; Erleben, Kenny; Bennetsen, Jens

    2009-01-01

    interactive physical simulation for engineering purposes, has the benefit of reducing production turn-around time. We have measured speed-up improvements by a factor of up to 350, compared to existing CPU-based solvers. The present CUDA-based solver promises huge potential in economical benefits, as well...

  4. Possible biophysical mechanism of the effect of the solar activity on the human central nervous system

    Science.gov (United States)

    Mikhailova, G. A.; Mikhailov, Y. M.

    Numerous studies, beginning with Tchizhevsky's works, demonstrated the undeniable effect of the solar activity on the human body. A possible geophysical mechanism of the effect of the solar activity on the human body was proposed by Vladimirsky. In this mechanism solar disturbances (powerful chromospheres flares) cause "magnetosphere and plasmasphere disturbances on the Earth (sudden magnetic storms), which are accompanied by a change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. In its turn, this brings about shifts in the phisiological indices of the human body". In this model, the human body is regarded as a self-oscillating system affected by external geophysical factors. We also adhere to the main principles of this model but refine the part of this model that describes the change in the spectrum of the electromagnetic field on the Earth's surface in the extremely low frequency band. Unlike Vladimirsky model, we regard the human is not as a self-oscillating system but as one of two coupled oscillating system with discrete resonance frequencies in the human-habitat ensemble. Solar processes and their induced changes in one of the two coupled oscillating systems, specifically, the habitat play the role of an external force. Such an approach is based on the fact that the brain rhythms have the following definite frequencies: the alpha rhythm, 8-13 Hz; the beta rhythm, 14-30 Hz; the gamma rhythm, above 30 Hz; the delta rhythm, 1.5-3 Hz; and the theta rhythm, 4-7 Hz. On the other hand, the natural electromagnetic field on the Earth's surface in the extremely low frequency band also has a quite distinct resonance distribution. There are so-called Schuman resonances of the cavity formed by the Earth's surface and the lower boundary of the ionosphere (the D and E layers) at f1=10.6; f2=18.3; f3=25.9; f4=33.5; f5=41.1 Hz. These resonance frequencies are variable and most sensitive to variations of the

  5. Design principles and clinical possibilities with a new generation of radiation therapy equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ruden, B P [Department of Hospital physics Karolinska institute, (Sudan)

    1997-12-31

    The main steps in the development of isocentric megavoltage external beam radiation therapy machines are briefly reviewed identifying three principal types or generations of equipment to date. The new fourth generation of equipment presented here is characterized by considerably increased flexibility in dose delivery through the use of scanned elementary electron and photon beams of very high quality. Furthermore, the wide energy range and the possibility of using high resolution multi leaf collimation with all beam modalities makes it possible to simplify irradiation techniques and increase the accuracy in dose delivery. The main design features are described including a dual magnet scanning system, a photon beam purging magnet, a helium atmosphere in the treatment head, a beam`s eye view video read-out system of the collimator setting and a radiotherapeutic computed tomography facility. Some of the clinical applications of this new type of radiation therapy machine are finally reviewed, such as the ease of performance, became flattening, beam filtering and compensation, and the simplification of many treatment techniques using the wide spectrum of high quality electron and photon beams. Finally, the interesting possibility of doing conformation and more general isocentric treatments with non-uniform beams using the multi leaf collimator and the scanning systems are demonstrated. 9 figs., 1 tab.

  6. Involvement of Renin-Angiotensin System in Retinopathy of Prematurity - A Possible Target for Therapeutic Intervention.

    Directory of Open Access Journals (Sweden)

    Madhu Nath

    Full Text Available Examining the Retinal Renin Angiotensin System (RRAS in the ROP neonates and analyzing the possibility of modulating the RRAS to prevent the progression in Oxygen Induced Retinopathy (OIR model.Vitreous of ROP patients (n = 44, median age 5.5 months was quantified for RRAS components, VEGF, HIF-1α and compared with age matched control. The involvement of RRAS in ROP was tested in the rat model of OIR and compared with normoxia. Expressions of RAS components, VEGF and HIF-1α in retina were analyzed using qPCR and retinal structure and function was also analyzed. Effect of Angiotensin Converting Enzyme Inhibitor (ACEI and Angiotensin Receptor Blocker (ARB was evaluated and compared with Bevacizumab which served as a positive control. Drug penetration into retina was confirmed by liquid chromatography coupled ESI-tandem mass spectroscopy (LC-MS/MS.Multifold increase in the expression of RAS components in human vitreous and rat retina showed their involvement in ROP. ERG & fundus studies in OIR revealed the altered function of retina and were successfully prevented by ARB (telmisartan, ACEI (lisinopril and bevacizumab. Retinal analysis revealed the presence of ACEI and ARB in their therapeutic levels.This study for the first time demonstrates the upregulated level of RAS components in human ROP vitreous and further that the pharmacological intervention in RRAS can functionally and structurally preserve retina against the progression of ROP in the OIR model.

  7. Possibilities of rotating drums in ultra-high-speed cinematography

    International Nuclear Information System (INIS)

    Andre, Michel

    A theoretical study shows that it is possible to produce a drum rotating at a peripheral speed of 500m/s. A prototype has actually reached this speed and confirmed the feasibility of the system. It is driven by an electric motor and is made of titanium covered with boron fibres. The main performances to be expected of cameras (whole-image, slit or spectrographic) using such a drum is described [fr

  8. Grammar-Based Multi-Frontal Solver for One Dimensional Isogeometric Analysis with Multiple Right-Hand-Sides

    KAUST Repository

    Kuźnik, Krzysztof

    2013-06-01

    This paper introduces a grammar-based model for developing a multi-thread multi-frontal parallel direct solver for one- dimensional isogeometric finite element method. The model includes the integration of B-splines for construction of the element local matrices and the multi-frontal solver algorithm. The integration and the solver algorithm are partitioned into basic indivisible tasks, namely the grammar productions, that can be executed squentially. The partial order of execution of the basic tasks is analyzed to provide the scheduling for the execution of the concurrent integration and multi-frontal solver algo- rithm. This graph grammar analysis allows for optimal concurrent execution of all tasks. The model has been implemented and tested on NVIDIA CUDA GPU, delivering logarithmic execution time for linear, quadratic, cubic and higher order B-splines. Thus, the CUDA implementation delivers the optimal performance predicted by our graph grammar analysis. We utilize the solver for multiple right hand sides related to the solution of non-stationary or inverse problems.

  9. A Study on GPU Computing of Bi-conjugate Gradient Method for Finite Element Analysis of the Incompressible Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Yoon, Jong Seon; Choi, Hyoung Gwon; Jeon, Byoung Jin; Jung, Hye Dong

    2016-01-01

    A parallel algorithm of bi-conjugate gradient method was developed based on CUDA for parallel computation of the incompressible Navier-Stokes equations. The governing equations were discretized using splitting P2P1 finite element method. Asymmetric stenotic flow problem was solved to validate the proposed algorithm, and then the parallel performance of the GPU was examined by measuring the elapsed times. Further, the GPU performance for sparse matrix-vector multiplication was also investigated with a matrix of fluid-structure interaction problem. A kernel was generated to simultaneously compute the inner product of each row of sparse matrix and a vector. In addition, the kernel was optimized to improve the performance by using both parallel reduction and memory coalescing. In the kernel construction, the effect of warp on the parallel performance of the present CUDA was also examined. The present GPU computation was more than 7 times faster than the single CPU by double precision.

  10. A Study on GPU Computing of Bi-conjugate Gradient Method for Finite Element Analysis of the Incompressible Navier-Stokes Equations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Seon; Choi, Hyoung Gwon [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of); Jeon, Byoung Jin [Yonsei Univ., Seoul (Korea, Republic of); Jung, Hye Dong [Korea Electronics Technology Institute, Seongnam (Korea, Republic of)

    2016-09-15

    A parallel algorithm of bi-conjugate gradient method was developed based on CUDA for parallel computation of the incompressible Navier-Stokes equations. The governing equations were discretized using splitting P2P1 finite element method. Asymmetric stenotic flow problem was solved to validate the proposed algorithm, and then the parallel performance of the GPU was examined by measuring the elapsed times. Further, the GPU performance for sparse matrix-vector multiplication was also investigated with a matrix of fluid-structure interaction problem. A kernel was generated to simultaneously compute the inner product of each row of sparse matrix and a vector. In addition, the kernel was optimized to improve the performance by using both parallel reduction and memory coalescing. In the kernel construction, the effect of warp on the parallel performance of the present CUDA was also examined. The present GPU computation was more than 7 times faster than the single CPU by double precision.

  11. A possible coincidence of cytomegalovirus retinitis and intraocular lymphoma in a patient with systemic non-Hodgkin’s lymphoma

    Directory of Open Access Journals (Sweden)

    Svozílková Petra

    2013-01-01

    Full Text Available Abstract Purpose To present a possible coincidence of cytomegalovirus retinitis and intraocular lymphoma in a patient with systemic non-Hodgkin’s lymphoma. Case presentation A 47-year-old woman presented with decreased visual acuity associated with white retinal lesions in both eyes. A history of pneumonia of unknown aetiology closely preceded the deterioration of vision. Five years previously the patient was diagnosed with follicular non-Hodgkin’s lymphoma. She was treated with a chemotherapy regimen comprised of cyclophosphamide, adriamycin, vincristin, and prednisone with later addition of the anti-CD20 antibody rituximab. She experienced a relapse 19 months later with involvement of the retroperitoneal lymph nodes, and commenced treatment with rituximab and 90Y-ibritumomab tiuxetan. A second relapse occurred 22 months after radioimmunotherapy and was treated with a combination of fludarabine, cyclophosphamide, and mitoxantrone followed by rituximab. The patient experienced no further relapses until the current presentation (April, 2010. Pars plana vitrectomy with vitreous fluid analysis was performed in the right eye. PCR testing confirmed the presence of cytomegalovirus in the vitreous. Atypical lymphoid elements, highly suspicious of malignancy were also found on cytologic examination. Intravenous foscarnet was administered continually for three weeks, followed by oral valganciclovir given in a dose of 900 mg twice per day. In addition, the rituximab therapy continued at three monthly intervals. Nevertheless, cessation of foscarnet therapy was followed by a recurrence of retinitis on three separate occasions during a 3-month period instigating its reinduction to the treatment regime after each recurrence. Conclusions Cytomegalovirus retinitis is an opportunistic infection found in AIDS patients as well as in bone marrow and solid organ transplant recipients being treated with systemic immunosuppressive drugs. This case presents a less

  12. Benchmark of 6D SLAM (6D Simultaneous Localisation and Mapping Algorithms with Robotic Mobile Mapping Systems

    Directory of Open Access Journals (Sweden)

    Bedkowski Janusz

    2017-09-01

    Full Text Available This work concerns the study of 6DSLAM algorithms with an application of robotic mobile mapping systems. The architecture of the 6DSLAM algorithm is designed for evaluation of different data registration strategies. The algorithm is composed of the iterative registration component, thus ICP (Iterative Closest Point, ICP (point to projection, ICP with semantic discrimination of points, LS3D (Least Square Surface Matching, NDT (Normal Distribution Transform can be chosen. Loop closing is based on LUM and LS3D. The main research goal was to investigate the semantic discrimination of measured points that improve the accuracy of final map especially in demanding scenarios such as multi-level maps (e.g., climbing stairs. The parallel programming based nearest neighborhood search implementation such as point to point, point to projection, semantic discrimination of points is used. The 6DSLAM framework is based on modified 3DTK and PCL open source libraries and parallel programming techniques using NVIDIA CUDA. The paper shows experiments that are demonstrating advantages of proposed approach in relation to practical applications. The major added value of presented research is the qualitative and quantitative evaluation based on realistic scenarios including ground truth data obtained by geodetic survey. The research novelty looking from mobile robotics is the evaluation of LS3D algorithm well known in geodesy.

  13. Seven Possible Cave Skylights on Mars

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 Seven very dark holes on the north slope of a Martian volcano have been proposed as possible cave skylights, based on day-night temperature patterns suggesting they are openings to subsurface spaces. These six excerpts of images taken in visible-wavelength light by the Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter show the seven openings. Solar illumination comes from the left in each frame. The volcano is Arsia Mons, at 9 degrees south latitude, 239 degrees east longitude. The features have been given informal names to aid comparative discussion (see figure 1). They range in diameter from about 100 meters (328 feet) to about 225 meters (738 feet). The candidate cave skylights are (A) 'Dena,' (B) 'Chloe,' (C) 'Wendy,' (D) 'Annie,' (E) 'Abby' (left) and 'Nikki,' and (F) 'Jeanne.' Arrows signify north and the direction of illumination. Mars Odyssey is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The orbiter's Thermal Emission Imaging System was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing, Santa Barbara, Calif., and is operated by Arizona State University.

  14. Needs for Constructing and Possibilities of Nuclear Power Plants Interconnection to the Croatian Electricity Grid

    International Nuclear Information System (INIS)

    Zeljko, M.; Bajs, D.

    1998-01-01

    Due to development of electric power system and considering an increase of electrical energy consumption, needs for larger units in new power plants are obvious. Connection of large nuclear power plants to the grid, depending on their power and location, usually requires significant investments in transmission network development and construction. Considering the capacity of the 400 kV transmission network in Croatia, this problem is evident. This paper deals with the possibilities of nuclear power plants construction, as one possible option in electric power system development, and their interconnection to the electricity grid. (author)

  15. Possible central nervous system oxygen toxicity seizures among US recreational air or enriched air nitrox open circuit diving fatalities 2004-2013.

    Science.gov (United States)

    Buzzacott, P; Denoble, P J

    2017-01-01

    The first diver certification programme for recreational 'enriched air nitrox' (EAN) diving was released in 1985. Concerns were expressed that many EAN divers might suffer central nervous system (CNS) oxygen toxicity seizures and drown. US fatalities on open-circuit scuba occurring between 2004-2013, where the breathing gas was either air or EAN, were identified. Causes of death and preceding circumstances were examined by a medical examiner experienced in diving autopsies. Case notes were searched for witnessed seizures at elevated partial pressures of oxygen. The dataset comprised 344 air divers (86%) and 55 divers breathing EAN (14%). EAN divers' fatal dives were deeper than air divers' (28 msw vs 18 msw, p < 0.0001). Despite this, of the 249 cases where a cause of death was established, only three EAN divers were considered to have possibly died following CNS oxygen toxicity seizures at depth (ppO2 132, 142 and 193 kPa). The analysis of recreational diving fatalities in the US over 10 years found just one death likely from CNS oxygen toxicity among EAN divers. A further two possible, although unlikely, cases were also found. Fears of commonplace CNS oxygen toxicity seizures while EAN diving have not apparently been realized.

  16. The Possibility of Functioning at Maximum Power for Solar Photovoltaic - Electric Battery Systems

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2013-01-01

    Full Text Available The paper presents the functioning of a solar photovoltaic module(PVM that debits direct to on electric battery (EB. By a good adaptingof PVM to EB, so that the no load voltage of the two components (PVMand EB are well suited, during a day the energy value can be reachednear to the maximum possible value, when the PVM functions in themaximum power point (MPP. The proposed solution is much moreeconomic than the classical: PVM + DC – DC + EB because the directcurrent - direct current power converter, is not necessary (DC - DC.

  17. On possible life on Jupiter's satellite Io

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    Some of the satellites of Jupiter may well be suitable both for mastering, and for finding possible traces of life there. Among them such satellite like Io - nearest Galilean satellite of Jupiter, and one of the most volcanically active bodies in the solar system. Warming of the mantle is caused by a powerful tidal force from the side of Jupiter. This leads to the heating of some parts of the mantle to a temperature above 1800 K, with an average surface temperature of about 140 K. But under its surface can be safe and even comfortable shelters, where life could once have come from the outside (even in a very primitive form), and could survive to this day. Moreover, according to some model's assumptions, Io could sometime be formed in another part of the Solar system, where the water could exist. Note that on neighboring Galilean satellites now exist significant amounts of water .

  18. Artificial Intelligence and Expert Systems Research and Their Possible Impact on Information Science.

    Science.gov (United States)

    Borko, Harold

    1985-01-01

    Defines artificial intelligence (AI) and expert systems; describes library applications utilizing AI to automate creation of document representations, request formulations, and design and modify search strategies for information retrieval systems; discusses expert system development for information services; and reviews impact of these…

  19. Possibilities of achieving fusion reaction with a 4{pi} focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Barsanti, G; Barsella, B; Camerini, M; Federighi, U; Musumeci, L; Talini, N [CAMEN., Leghorn (Italy)

    1958-07-01

    The 4{pi} focusing by means of an electromagnetic field is analysed. The following points considered: (a) The general solutions of system for equations of motion of a mass m with charge +e valid for arbitrary initial conditions. This is necessary for the consideration of imperfectly focused primary trajectories, of the effect of collisions in the vicinity of the origin and of ions produced in the neutral gas which diffuses into the reaction chamber. (b) Investigation of the primary ion injection system, of the density of the ions in the chamber and of the energy balance as a matter of principle. (c) The experimental apparatus needed for 4{pi} focusing of deuterons and a sketch of a fusion reactor.

  20. The biologist and the economist: is dialogue possible?

    Science.gov (United States)

    Keyfitz, N

    1992-06-01

    There is a need for demography to be brought into policy-making discussions. In the time of Malthus, both economists and ecologists spoke the same language and each group was receptive to and supportive of the ideas of the other. The present organization of academic life precludes interdisciplinary communication. Malthus saw the limit as food supply; today, technology seems to be the defining criteria, although access to world supplies is also unevenly distributed. Minerals were once thought to present limits, but again technology was able to generate replacements as the Green Revolution provided an option for expanding food supply. During the 1950s and 1960s, limits were perceived by Arthur Lewis, Coale, and Hoover to be in shortages of capital. Now capital is seen as a result of development and not a cause. The strongest argument for limiting population growth appears to be the stability of planetary support systems (species diversity, ozone layer, global climate, and others). Knowledge of these support systems is limited and it would be wise not to press the world's carrying capacity under such conditions. Ignorance of planetary support systems may mean that the circle may be tightening closer than we know, or that a sudden disaster is possible. It is a complex task to circumscribe boundaries to various essentials for human life. Regardless of whether there is a solution to various essentials for human life. Regardless of whether there is a solution to the known or unknown environmental problems, it is possible, easy, and reliable to reduce the population by having fewer births than deaths. Economists argue that the vagaries and uncertainties of environmental damage prevent taking environmental constraints into account, when uncertainties have always been with us. A real debate on the issues instead of disciplines talking past each other would occur if all facts and conclusions were accepted by all parties. The conclusion should be that population increases must