Cubic meter volume optical coherence tomography
WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.
2017-01-01
Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628
Pseudoscalar mesons in a finite cubic volume with twisted boundary conditions
Colangelo, Gilberto; Vaghi, Alessio
2016-07-01
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We first apply chiral perturbation theory in the p-regime and calculate the corrections for masses, decay constants, pseudoscalar coupling constants and form factors at next-to-leading order. We show that the Feynman-Hellmann theorem and the relevant Ward-Takahashi identity are satisfied. We then derive asymptotic formulae à la Lüscher for twisted boundary conditions. We show that chiral Ward identities for masses and decay constants are satisfied by the asymptotic formulae in finite volume as a consequence of infinite-volume Ward identities. Applying asymptotic formulae in combination with chiral perturbation theory we estimate corrections beyond next-to-leading order for twisted boundary conditions.
Pseudoscalar mesons in a finite cubic volume with twisted boundary conditions
Colangelo, Gilberto
2016-01-01
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We first apply chiral perturbation theory in the p-regime and calculate the corrections for masses, decay constants, pseudoscalar coupling constants and form factors at next-to-leading order. We show that the Feynman-Hellmann theorem and the relevant Ward-Takahashi identity are satisfied. We then derive asymptotic formulae a la Luscher for twisted boundary conditions. We show that chiral Ward identities for masses and decay constants are satisfied by the asymptotic formulae in finite volume as a consequence of infinite-volume Ward identities. Applying asymptotic formulae in combination with chiral perturbation theory we estimate corrections beyond next-to-leading order for twisted boundary conditions.
Charles E. Keegan; Todd A. Morgan; Keith A. Blatner; Jean M. Daniels
2010-01-01
This article describes trends in board foot Scribner volume per cubic foot of timber for logs processed by sawmills in the western United States. Board foot to cubic foot (BF/CF) ratios for the period from 2000 through 2006 ranged from 3.70 in Montana to 5.71 in the Four Corners Region (Arizona, Colorado, New Mexico, and Utah). Sawmills in the Four Corners Region,...
Advancing Astrophysics with the Square Kilometre Array
Fender, Rob; Govoni, Federica; Green, Jimi; Hoare, Melvin; Jarvis, Matt; Johnston-Hollitt, Melanie; Keane, Evan; Koopmans, Leon; Kramer, Michael; Maartens, Roy; Macquart, Jean-Pierre; Mellema, Garrelt; Oosterloo, Tom; Prandoni, Isabella; Pritchard, Jonathan; Santos, Mario; Seymour, Nick; Stappers, Ben; Staveley-Smith, Lister; Tian, Wen Wu; Umana, Grazia; Wagg, Jeff; Bourke, Tyler L; AASKA14
2015-01-01
In 2014 it was 10 years since the publication of the comprehensive ‘Science with the Square Kilometre Array’ book and 15 years since the first such volume appeared in 1999. In that time numerous and unexpected advances have been made in the fields of astronomy and physics relevant to the capabilities of the Square Kilometre Array (SKA). The SKA itself progressed from an idea to a developing reality with a baselined Phase 1 design (SKA1) and construction planned from 2017. To facilitate the publication of a new, updated science book, which will be relevant to the current astrophysical context, the meeting "Advancing Astrophysics with the Square Kilometre Array" was held in Giardina Naxos, Sicily. Articles were solicited from the community for that meeting to document the scientific advances enabled by the first phase of the SKA and those pertaining to future SKA deployments, with expected gains of 5 times the Phase 1 sensitivity below 350 MHz, about 10 times the Phase 1 sensitivity above 350 MHz and with f...
The Square Kilometre Array: An Engineering Perspective
Hall, Peter J
2005-01-01
This volume is an up-to-date and comprehensive overview of the engineering of the Square Kilometre Array (SKA), a revolutionary instrument which will be the world’s largest radio telescope. Expected to be completed by 2020, the SKA will be a pre-eminent tool in probing the Early Universe and in enhancing greatly the discovery potential of radio astronomy in many other fields. This book, containing 36 refereed papers written by leaders in SKA engineering, has been compiled by the International SKA Project Office and is the only contemporary compendium available. It features papers dealing with pivotal technologies such as antennas, RF systems and data transport. As well, overviews of important SKA demonstrator instruments and key system design issues are included. Practising professionals, and students interested in next-generation telescopes, will find this book an invaluable reference.
Globalisation of science in kilometres
Waltman, Ludo; van Eck, Nees Jan
2011-01-01
The ongoing globalisation of science has undisputedly a major impact on how and where scientific research is being conducted nowadays. Yet, the big picture remains blurred. It is largely unknown where this process is heading, and at which rate. Which countries are leading or lagging? Many of its key features are difficult if not impossible to capture in measurements and comparative statistics. Our empirical study measures the extent and growth rate of globalisation in terms of the physical distance between co-authoring researchers. Our computations, drawing on 21 million research publications across all countries and fields of science, reveals that contemporary science has globalised at a fairly steady rate during recent decades. The average collaboration distance per publication has increased from 334 kilometres in 1980 to 1553 in 2009. Despite significant differences in globalisation rates across countries and fields of science, we observe a pervasive process in motion, moving towards a truly interconnected...
Power and Submarine Cable Systems for the KM3NeT kilometre cube Neutrino Telescope
Sedita, M; Hallewell, G
2009-01-01
The KM3NeT EU-funded consortium, pursuing a cubic kilometre scale neutrino telescope in the Mediterranean Sea, is developing technical solutions for the construction of this challenging project, to be realized several kilometres below the sea level. In this framework a proposed DC/DC power system has been designed, maximizing reliability and minimizing difficulties and expensive underwater activities. The power conversion, delivery, transmission and distribution network will be described with particular attention to: the main electro-optical cable, on shore and deep sea power conversion, the subsea distribution network and connection systems, together with installation and maintenance issues.
Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus
Yan, Zhaoli; Chen, Bin; Tian, Hao; Cheng, Xiaobin; Yang, Jun
2015-12-01
A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10-4 during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.
Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus
Energy Technology Data Exchange (ETDEWEB)
Yan, Zhaoli, E-mail: zl-yan@mail.ioa.ac.cn; Tian, Hao; Cheng, Xiaobin; Yang, Jun [Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Bin [School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2015-12-15
A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10{sup −4} during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.
HI Science with the Square Kilometre Array
Staveley-Smith, Lister
2015-01-01
The Square Kilometre Array (SKA) will be a formidable instrument for the detailed study of neutral hydrogen (HI) in external galaxies and in our own Galaxy and Local Group. The sensitivity of the SKA, its wide receiver bands, and the relative freedom from radio frequency interference at the SKA sites will allow the imaging of substantial number of high-redshift galaxies in HI for the first time. It will also allow imaging of galaxies throughout the Local Volume at resolutions of <100 pc and detailed investigations of galaxy disks and the transition between disks, halos and the intergalactic medium (IGM) in the Milky Way and external galaxies. Together with deep optical and millimetre/sub-mm imaging, this will have a profound effect on our understanding of the formation, growth and subsequent evolution of galaxies in different environments. This paper provides an introductory text to a series of nine science papers describing the impact of the SKA in the field of HI and galaxy evolution. We propose a nested...
The Spanish Square Kilometre Array White Book
2015-01-01
The Square Kilometre Array (SKA) is called to revolutionise essentially all areas of Astrophysics. With a collecting area of about a square kilometre, the SKA will be a transformational instrument, and its scientific potential will go beyond the interests of astronomers. Its technological challenges and huge cost requires a multinational effort, and Europe has recognised this by putting the SKA on the roadmap of the European Strategy Forum for Research Infrastructures (ESFRI). The Spanish SKA...
KM3NeT - a multi-kilometre-cubed neutrino telescope for the Mediterranean
Energy Technology Data Exchange (ETDEWEB)
James, Clancy [ECAP, FAU Erlangen-Nuernberg (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration
2015-07-01
KM3NeT will be a multi-cubic-kilometre telescope for the study of neutrinos in the TeV to PeV range. Consisting of arrays of photomultiplier tubes on slender vertical structures anchored to the sea floor, it will detect the Cherenkov light induced by the passage of relativistic particles through the water surrounding the detector. To be located at three sites in the Mediterranean Sea, its Northern latitude, and the sheer size of the detection volume, will make KM3NeT well-positioned to study the expected neutrino flux from galactic objects such as supernova remnants, while it will also be sensitive to higher-energy fluxes, such as that discovered by IceCube. This contribution gives an overview of the KM3NeT detector. The current status of KM3NeT Phase 1 construction, the physics potential of Phase 1.5, and the envisioned final (Phase 2) detector are described. The projected ability of KM3NeT to determine the energies and arrival directions of cosmic neutrinos is presented, in particular the detector resolution to through-going muons and cascade-like interactions inside the instrumented volume. Finally, the projected sensitivities of the different stages of KM3NeT to both diffuse and point-like cosmic neutrino fluxes are given. Specific details of KM3NeT methods and technology, including the ORCA project to resolve the neutrino mass hierarchy and θ{sub 23}, will be presented in other contributions.
The Spanish Square Kilometre Array White Book
Pulido, J A Acosta; Alberdi, A; Alcolea, J; Alfaro, E J; Alonso-Herrero, A; Anglada, G; Arnalte-Mur, P; Ascasibar, Y; Ascaso, B; Azulay, R; Bachiller, R; Baez-Rubio, A; Battaner, E; Blasco, J; Brook, C B; Bujarrabal, V; Busquet, G; Caballero-Garcia, M D; Carrasco-Gonzalez, C; Casares, J; Castro-Tirado, A J; Colina, L; Colomer, F; de Gregorio-Monsalvo, I; del Olmo, A; Desmurs, J-F; Diego, J M; Dominguez-Tenreiro, R; Estalella, R; Fernandez-Soto, A; Florido, E; Font, J; Font, J A; Fuente, A; Garcia-Burillo, S; Garcia-Benito, R; Garcia-Lorenzo, B; de Paz, A Gil; Girart, J M; Goicoechea, J R; Gomez, J F; Gonzalez-Garcia, M; Gonzalez-Martin, O; Gonzalez-Serrano, J I; Gorgas, J; Gorosabel, J; Guijarro, A; Guirado, J C; Hernandez-Garcia, L; Hernandez-Monteagudo, C; Herranz, D; Herrero-Illana, R; Hu, Y-D; Huelamo, N; Huertas-Company, M; Iglesias-Paramo, J; Jeong, S; Jimenez-Serra, I; Knapen, J H; Lineros, R A; Lisenfeld, U; Marcaide, J M; Marquez, I; Marti, J; Marti, J M; Martinez-Gonzalez, E; Martin-Pintado, J; Marti-Vidal, I; Masegosa, J; Mayen-Gijon, J M; Mezcua, M; Mimica, S/ Migliari P; Moldon, J; Morata, O; Negueruela, I; Oates, S R; Osorio, M; Palau, A; Paredes, J M; Perea, J; Perez-Gonzalez, P G; Perez-Montero, E; Perez-Torres, M A; Perucho, M; Planelles, S; Pons, J A; Prieto, A; Quilis, V; Ramirez-Moreta, P; Almeida, C Ramos; Rea, N; Ribo, M; Rioja, M J; Espinosa, J M Rodriguez; Ros, E; Rubiño-Martin, J A; Ruiz-Granados, B; Sabater, J; Sanchez, M A P; Usero, A; Verdes-Montenegro, L; Vidal-Garcia, A; Vielva, P; Vilchez, J; Zhang, B-B
2015-01-01
The Square Kilometre Array (SKA) is called to revolutionise essentially all areas of Astrophysics. With a collecting area of about a square kilometre, the SKA will be a transformational instrument, and its scientific potential will go beyond the interests of astronomers. Its technological challenges and huge cost requires a multinational effort, and Europe has recognised this by putting the SKA on the roadmap of the European Strategy Forum for Research Infrastructures (ESFRI). The Spanish SKA White Book is the result of the coordinated effort of 119 astronomers from 40 different research centers. The book shows the enormous scientific interest of the Spanish astronomical community in the SKA and warrants an optimum scientific exploitation of the SKA by Spanish researchers, if Spain enters the SKA project.
Cubic colloids : Synthesis, functionalization and applications
Castillo, S.I.R.
2015-01-01
This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when
Cubic colloids : Synthesis, functionalization and applications
Castillo, S.I.R.
2015-01-01
This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when
Excess molar volumes of 1,3 propanediol + (C1-C5 alkan-1-ols: Application of cubic EOS
Directory of Open Access Journals (Sweden)
Almasi Mohammad
2012-01-01
Full Text Available Densities of the binary mixtures consist of methanol, ethanol, 1- propanol, 1-butanol and 1-pentanol with 1,3 Propanediol were measured at temperatures (293.15, 298.15, 303.15 and 313.15 K and atmospheric pressure. Measurements have been made over the full range of compositions and for the pure compounds by using a vibrating tube densimeter. Excess molar volumes have been obtained from these experimental results and were fitted to a Redlich-Kister type expansion. The results were interpreted in terms of molecular interactions and structural factors of the alcohols. It was observed that an increase of the alcohol carbon chain length led to lower interactions on mixing. The Peng-Robinson-Stryjek-Vera (PRSV equation of state has been used to correlate the binary excess molar volumes.
Source of broadband Jovian Kilometric radiation
Energy Technology Data Exchange (ETDEWEB)
Jones, D.; Leblanc, Y.
1987-02-01
Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients.
Transient Astrophysics with the Square Kilometre Array
Fender, Rob; Macquart, Jean-Pierre; Donnarumma, Immacolata; Murphy, Tara; Deller, Adam; Paragi, Zsolt; Chatterjee, Shami
2015-01-01
This chapter provides an overview of the possibilities for transient and variable-source astrophysics with the Square Kilometre Array. While subsequent chapters focus on the astrophysics of individual events, we focus on the broader picture, and how to maximise the science coming from the telescope. The SKA as currently designed will be a fantastic and ground-breaking facility for radio transient studies, but the scientifc yield will be dramatically increased by the addition of (i) near-real-time commensal searches of data streams for events, and (ii) on occasion, rapid robotic response to Target-of-Opprtunity style triggers.
Thousands of kilometres to visit CERN
2003-01-01
Students from the Columbus high school in the state of Mississippi with their physics teacher Ken Wester (left at rear) and Michel Della Negra, CMS spokesman (in front).An American school at CERN ? Unusual, to say the least... Yet 15 students from the class of Ken Wester, physics teacher in the Columbus High School, Mississippi, didn't hesitate to travel thousands of kilometres to come to CERN. Ken Wester participated last year in CERN's High School Teacher programme. Enthralled by his visit, he has organised the trip for his final year students to visit CERN. The 18-year-olds arrived on the 10th March and spent two days at the laboratory, visiting the CMS construction site and the AD antimatter factory, before leaving on a tour of Switzerland and Germany.
Cosmology with the Square Kilometre Array
Rawlings, Steve
2011-01-01
We review how the Square Kilometre Array (SKA) will address fundamental questions in cosmology, focussing on its use for neutral Hydrogen (HI) surveys. A key enabler of its unique capabilities will be large (but smart) receptors in the form of aperture arrays. We outline the likely contributions of Phase-1 of the SKA (SKA1), Phase-2 SKA (SKA2) and pathfinding activities (SKA0). We emphasise the important role of cross-correlation between SKA HI results and those at other wavebands such as: surveys for objects in the EoR with VISTA and the SKA itself; and huge optical and near-infrared redshift surveys, such as those with HETDEX and Euclid. We note that the SKA will contribute in other ways to cosmology, e.g. through gravitational lensing and $H_{0}$ studies.
Square Kilometre Array Science Data Processing
Nikolic, Bojan; SDP Consortium, SKA
2014-04-01
The Square Kilometre Array (SKA) is planned to be, by a large factor, the largest and most sensitive radio telescope ever constructed. The first phase of the telescope (SKA1), now in the design phase, will in itself represent a major leap in capabilities compared to current facilities. These advances are to a large extent being made possible by advances in available computer processing power so that that larger numbers of smaller, simpler and cheaper receptors can be used. As a result of greater reliance and demands on computing, ICT is becoming an ever more integral part of the telescope. The Science Data Processor is the part of the SKA system responsible for imaging, calibration, pulsar timing, confirmation of pulsar candidates, derivation of some further derived data products, archiving and providing the data to the users. It will accept visibilities at data rates at several TB/s and require processing power for imaging in range 100 petaFLOPS -- ~1 ExaFLOPS, putting SKA1 into the regime of exascale radio astronomy. In my talk I will present the overall SKA system requirements and how they drive these high data throughput and processing requirements. Some of the key challenges for the design of SDP are: - Identifying sufficient parallelism to utilise very large numbers of separate compute cores that will be required to provide exascale computing throughput - Managing efficiently the high internal data flow rates - A conceptual architecture and software engineering approach that will allow adaptation of the algorithms as we learn about the telescope and the atmosphere during the commissioning and operational phases - System management that will deal gracefully with (inevitably frequent) failures of individual units of the processing system In my talk I will present possible initial architectures for the SDP system that attempt to address these and other challenges.
Saturn kilometric radiation periodicity after equinox
Fischer, G.; Gurnett, D. A.; Kurth, W. S.; Ye, S.-Y.; Groene, J. B.
2015-07-01
The rotation period of Saturn's magnetosphere was found to vary with time, and changing periodicities were identified in magnetic fields, radio emissions, and charged particles. Here we analyze the varying period of Saturn kilometric radiation (SKR) from 2009 to early 2013, i.e. mainly after Saturn equinox of August 2009. A periodicity analysis is first applied to the complete SKR signal, and second to SKR intensities separated by spacecraft latitude and wave polarization, attributed to SKR from the northern and southern hemisphere. Our analyses are done with the tracking filter approach of Gurnett et al. (Gurnett et al. [2009a]. Geophys. Res. Lett. 36, L16102) and by simply tracing the phases of normalized SKR intensity maxima (north and south) with time. It is shown that SKR periods from the northern and southern hemisphere converged during 2009, crossed shortly after equinox, and coalesced in spring 2010. We will show that SKR from both hemispheres not only exhibited similar periods, but also similar phases from March 2010 until February 2011 and from August 2011 until June 2012. The in-between time interval (March to July 2011) shows a slowdown of the southern SKR rotation rate and a slight increase in rotation speed for the northern SKR before rotation rates and phases become equal again in August 2011. We also identify SKR signals where the modulation phase deviation exceeds one rotation each time Cassini completes one orbit, i.e. this is consistent with the characteristic of a rotating signal. However, the main SKR modulation signals from 2009 to 2012 can be viewed as being clock-like with no correction needed for the derived periods. A comparison of SKR periodicities after equinox to the planetary period oscillations of the magnetic field shows major differences, and we compare SKR phases to magnetic field phases to explain the deviations.
Energy Technology Data Exchange (ETDEWEB)
Burgess, Ward A.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Baled, Hseen O.; Enick, Robert M.; Wu, Yue; Bamgbade, Babatunde A.; McHugh, Mark A.
2013-12-01
This research focuses on providing the petroleum reservoir engineering community with robust models of hydrocarbon density and viscosity at the extreme temperature and pressure conditions (up to 533 K and 276 MPa, respectively) characteristic of ultra-deep reservoirs, such as those associated with the deepwater wells in the Gulf of Mexico. Our strategy is to base the volume-translated (VT) Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) cubic equations of state (EoSs) and perturbed-chain, statistical associating fluid theory (PC-SAFT) on an extensive data base of high temperature (278–533 K), high pressure (6.9–276 MPa) density rather than fitting the models to low pressure saturated liquid density data. This high-temperature, high-pressure (HTHP) data base consists of literature data for hydrocarbons ranging from methane to C{sub 40}. The three new models developed in this work, HTHP VT-PR EoS, HTHP VT-SRK EoS, and hybrid PC-SAFT, yield mean absolute percent deviation values (MAPD) for HTHP hydrocarbon density of ~2.0%, ~1.5%, and <1.0%, respectively. An effort was also made to provide accurate hydrocarbon viscosity models based on literature data. Viscosity values are estimated with the frictional theory (f-theory) and free volume (FV) theory of viscosity. The best results were obtained when the PC-SAFT equation was used to obtain both the attractive and repulsive pressure inputs to f-theory, and the density input to FV theory. Both viscosity models provide accurate results at pressures to 100 MPa but experimental and model results can deviate by more than 25% at pressures above 200 MPa.
Pathway to the Square Kilometre Array - The German White Paper -
Aharonian, F; Allen, B; Banerjee, R; Beck, R; Becker, W; Bomans, D J; Breitschwerdt, D; Brüggen, M; Brunthaler, A; Catinella, B; Champion, D; Ciardi, B; Crocker, R; de Avillez, M A; Dettmar, R J; Engels, D; Enßlin, T; Enke, H; Fieseler, T; Gizon, L; Hackmann, E; Hartmann, B; Henkel, C; Hoeft, M; Iapichino, L; Innes, D; James, C; Jasche, J; Jones, D; Kagramanova, V; Kauffmann, G; Keane, E; Kerp, J; Klöckner, H -R; Kokkotas, K; Kramer, M; Krause, M; Krupp, N; Kunz, J; Lämmerzahl, C; Lee, K J; List, M; Liu, K; Lobanov, A; Mann, G; Merloni, A; Middelberg, E; Niemeyer, J; Noutsos, A; Perlick, V; Reich, W; Richter, P; Roy, A; Saintonge, A; Schäfer, G; Schaffner-Bielich, J; Schinnerer, E; Schleicher, D; Schneider, P; Schwarz, D J; Sedrakian, A; Sesana, A; Smolčić, V; Solanki, S; Tuffs, R; Vetter, M; Weber, E; Weller, J; Wex, N; Wucknitz, O; Zwaan, M
2013-01-01
The Square Kilometre Array (SKA) is the most ambitious radio telescope ever planned. With a collecting area of about a square kilometre, the SKA will be far superior in sensitivity and observing speed to all current radio facilities. The scientific capability promised by the SKA and its technological challenges provide an ideal base for interdisciplinary research, technology transfer, and collaboration between universities, research centres and industry. The SKA in the radio regime and the European Extreme Large Telescope (E-ELT) in the optical band are on the roadmap of the European Strategy Forum for Research Infrastructures (ESFRI) and have been recognised as the essential facilities for European research in astronomy. This "White Paper" outlines the German science and R&D interests in the SKA project and will provide the basis for future funding applications to secure German involvement in the Square Kilometre Array.
A Close Encounter with a Saturn Kilometric Radiation Source Region
Kurth, W. S.; Gurnett, D. A.; Menietti, J. D.; Mutel, R. L.; Kivelson, M. G.; Bunce, E. J.; Cowley, S. W. H.; Talboys, D. L.; Dougherty, M. K.; Arridge, C.; Coates, A.; Grimald, S.; Lamy, L.; Zarka, P.; Cecconi, B.; Schippers, P.; André, N.; Louarn, P.; Mitchell, D.; Leisner, J.; Morooka, M.
Earth-orbiting satellites have routinely traversed the source regions of auroral kilometric radiation. This radio emission is generated via the cyclotron maser instability very close to the electron cyclotron frequency. While Cassini's orbit has crossed auroral field lines, the radial distance at auroral latitudes is typically too high for the analogous Saturn kilometric radiation source. However, on Oct. 17, 2008, the Radio and Plasma Wave Science instrument detected the kilometric radiation at and just below the electron cyclotron frequency. At this time the spacecraft was at a distance of 5 Saturn radii, at 0.9 hours local time, and on L-shells in the range of 25 to above 30. Here the magnetic field suggests the corresponding current was directed upward, away from the planet. Low energy electron observations by the Cassini Plasma Spectrometer instrument suggest that growth of the SKR is likely due to an unstable shell-like distribution.
Generation of auroral kilometric radiation in inhomogeneous magnetospheric plasma
Burinskaya, T. M.; Shevelev, M. M.
2017-01-01
The generation of auroral kilometric radiation in a narrow 3D plasma cavity, in which a weakly relativistic electron flow is propagated along the magnetic field against a low-density cold background plasma, is studied. The time dynamics of the propagation and intensification of waves are analyzed using geometric optics equations. The waves have different wave vector components and start from the cavity center at an altitude of about the Earth's radius at plasma parameters typical for the auroral zone at this altitude. It is shown that the global inhomogeneity of the Earth's magnetic field is of key importance in shaping the auroral kilometric radiation spectra.
Ytterbium: Transition at High Pressure from Face-Centered Cubic to Body-Centered Cubic Structure.
Hall, H T; Barnett, J D; Merrill, L
1963-01-11
Pressure of 40,000 atmospheres at 25 degrees C induces a phase transformation in ytterbium metal; the face-centered cubic structure changes to body-centered cubic. The radius of the atom changes from 1.82 to 1.75 A. At the same time the atom's volume decreases by 11 percent and the volume, observed macroscopically, decreases 3.2 percent.
Cubic Subalgebras and Cubic Closed Ideals of B-algebras
Directory of Open Access Journals (Sweden)
Tapan Senapati
2015-06-01
Full Text Available In this paper, the concept of cubic set to subalgebras, ideals and closed ideals of B-algebras are introduced. Relations among cubic subalgebras with cubic ideals and cubic closed ideals of B-algebras investigated. The homomorphic image and inverse image of cubic subalgebras, ideals are studied and some related properties are investigated. Also, the product of cubic B-algebras are investigated.
Auroral Kilometric Radiation and Type III Solar Radio Bursts
Romantsova, T. V.; Mogilevsky, M. M.; Skalsky, A. A.; Hanasz, J.
2009-04-01
Simultaneous wave observations onboard the ISEE-1 and ISEE-3 spacecraft show that onsets of the Auroral Kilometric Radiation frequently coincide with an arrival of type III solar burst (Calvert, 1981). It was supposed that solar burst stimulates maser instability in auroral region and AKR consequently . We present statistical and case studies of events when both type III solar radio bursts and Auroral Kilometric Radiation are recorded simultaneously. AKR was observed onboard the INTERBALL-2 spacecraft orbiting around the Earth by the POLRAD experiment. Wave measurements carried out onboard the Wind, INTEBALL-TAIL and Geotail spacecraft are used to identify unambiguously the type III solar radio bursts. The origin of close relation between onsets of both solar radiation and AKR is discussed and interpreted. Acknowledgements. This work is supported by grant RFBR 06-02-72560.
Square Kilometre Array key science: a progressive retrospective
Carilli, Christopher L
2014-01-01
I summarize the science drivers presented at the workshop for Phase I of the Square Kilometre Array: 'Advancing Astrophysics with the Square Kilometre Array'. I build from the historical perspective of the original Key Science programs: 'Science with a Square Kilometre Array', and consider progress in astrophysics since 2004. I then present my 'score card' of the primary science drivers proposed by the Science Working Groups, and further developed in the white papers and presentations at the meeting, assuming a conservative high frequency of 3GHz. The science case for the SKA phase I is compelling, with the right mix of killer applications (eg. pulsars and gravity, 21cm cosmology), foundational radio astronomy (eg. cosmic magnetism, baryon cycle, high energy phenomena), and high risk-high return 'game-changing' programs (eg. fast radio bursts, BAO intensity mapping, SETI). A strong case was made at the conference for band 5 (4 to 15GHz), in particular in the area of planet formation and exobiology. Such a cap...
Analysis of Saturn kilometric radiation near a source center
Menietti, J. D.; Mutel, R. L.; Schippers, P.; Ye, S.-Y.; Gurnett, D. A.; Lamy, L.
2011-12-01
The Cassini spacecraft flew very near a source region of Saturn kilometric radiation (SKR) on day 73 of 2008, the second known encounter with a source region at high latitude. The radio and plasma wave instrument, Radio and Plasma Wave Science, observed intense kilometric emission in the extraordinary X mode, ordinary O mode, and Z mode. The electron low-energy spectrometer obtained a phase space distribution of sufficient energy and pitch angle resolution to allow growth rate calculations. There is evidence of a shell-like electron plasma distribution that is unstable to the growth of SKR via the cyclotron maser instability. The growth rates calculated are adequate to explain the observed X and Z mode emission, but nonlinear effects are required to explain the large O mode gain (as is true for terrestrial observations). Narrowband emission, also present at the time, could also explain both the Z mode and the O mode. We present the results for comparison with a previously reported source region encounter and with similar observations at Earth auroral kilometric source regions.
The renaissance of radio astronomy: towards the Square Kilometre Array
Ferrari, C.
2016-09-01
In this paper, I will give a brief overview of the largest radio telescope in the world, the Square Kilometre Array (SKA). The history of this instrument, its development as a huge international project, as well as its main scientific goals, will be summarised. I will then focus on a particular science case by presenting how the first phase of the SKA (SKA1), whose observations are expected to start in the early 2020's, will change our radio view of the largest gravitationally bound structures of the Universe: galaxy clusters.
Bueno, Pablo; Cano, Pablo A.
2016-11-01
We drastically simplify the problem of linearizing a general higher-order theory of gravity. We reduce it to the evaluation of its Lagrangian on a particular Riemann tensor depending on two parameters, and the computation of two derivatives with respect to one of those parameters. We use our method to construct a D -dimensional cubic theory of gravity which satisfies the following properties: (1) it shares the spectrum of Einstein gravity, i.e., it only propagates a transverse and massless graviton on a maximally symmetric background; (2) it is defined in the same way in general dimensions; (3) it is neither trivial nor topological in four dimensions. Up to cubic order in curvature, the only previously known theories satisfying the first two requirements are the Lovelock ones. We show that, up to cubic order, there exists only one additional theory satisfying requirements (1) and (2). Interestingly, this theory is, along with Einstein gravity, the only one which also satisfies (3).
Cost estimate for the Kilometric Optical Interferometer (KOI)
Bakker, Eric J.; Parameswariah, Chethan; Rajagopal, Jayadev
2008-07-01
We present a parametric cost estimate for the Kilometric Optical Interferometer (KOI) in a classical array configuration: 24 telescopes, 4-meter primary mirror, up to 1 km baseline. The parametric cost estimate is based on available cost information from the Magdalena Ridge Observatory (MRO) Interferometer at New Mexico Tech. A Kilometric Optical Interferometer based on a classical array concept has an estimated construction cost between 1B and 3B if it would be built today (2008 dollars and technology). The implication of the estimated construction cost is that cost reductions are critical in the planning phase to bring the cost within a reasonable envelope. Hence we propose to set a budget ceiling that seems feasible given the support to be expected from the scientific community and funding agencies. Given a budget ceiling, a design-to-cost process should be followed. We propose to set a construction phase budget cap of $800M (2008 dollars) for KOI as an initial goal. Narrowing down of the science goals in combination with technology development to reduce cost and technological complexity are the main areas of activities for the next decade. We propose to establish a virtual project office to coordinate these activities.
On the arc structures of the Saturnian kilometric radiation
Boudjada, M. Y.; Galopeau, P. H. M.; Rucker, H. O.; Voller, W.
2012-09-01
We report on the analysis of the dynamic spectra of the Saturnian kilometric radiation (SKR) recorded by the Cassini Radio and Plasma Wave Science Experiment (RPWS) in the frequency range from 100 kHz to about 1 MHz. We investigate the Saturnian kilometric spectra recorded by RPWS experiment from 01st Jan. 2004 to 31st Dec. 2007. Different Saturnian 'sources' can be defined by spectral characteristics. We show that the SKR presents different kinds of arc structures. Those arcs may be classified in two sets: the 'vertex early arcs' (VEA) and the 'vertex late arcs' (VLA). The arcs of the first group set open toward increasing time, while the arcs of the other one open towards decreasing time. A total of 556 arcs have been observed during the four investigated years, where 310 and 246 correspond, respectively, to the vertex early and late arcs. The arc occurrences are mainly observed when the spacecraft was close to the apoapses, and also when the Cassini latitude was in the range -20° and +20°. Similar VEA and VLA arc structures have been reported in the case of the Jovian hectometric (HOM) and decametric (DAM) radio emissions. In this contribution we put emphasis on the common and unusual arc features by comparing the auroral emissions related to Jupiter and Saturn.
DEFF Research Database (Denmark)
Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald;
2016-01-01
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with co...
Square Kilometre Array station configuration using two-stage beamforming
Jiwani, Aziz; Razavi-Ghods, Nima; Hall, Peter J; Padhi, Shantanu; de Vaate, Jan Geralt bij
2012-01-01
The lowest frequency band (70 - 450 MHz) of the Square Kilometre Array will consist of sparse aperture arrays grouped into geographically-localised patches, or stations. Signals from thousands of antennas in each station will be beamformed to produce station beams which form the inputs for the central correlator. Two-stage beamforming within stations can reduce SKA-low signal processing load and costs, but has not been previously explored for the irregular station layouts now favoured in radio astronomy arrays. This paper illustrates the effects of two-stage beamforming on sidelobes and effective area, for two representative station layouts (regular and irregular gridded tile on an irregular station). The performance is compared with a single-stage, irregular station. The inner sidelobe levels do not change significantly between layouts, but the more distant sidelobes are affected by the tile layouts; regular tile creates diffuse, but regular, grating lobes. With very sparse arrays, the station effective area...
The influence of Titan on Saturn kilometric radiation
Directory of Open Access Journals (Sweden)
J. D. Menietti
2010-02-01
Full Text Available Previous studies have shown that the occurrence probability of Saturn Kilometric Radiation (SKR appears to be influenced by the local time of Titan. Using a more extensive set of data than the original study, we confirm the correlation of higher occurrence probability of SKR when Titan is located near local midnight. In addition, the direction finding capability of the Cassini Radio Plasma Wave instrument (RPWS is used to determine if this radio emission emanates from particular source regions. We find that most source regions of SKR are located in the mid-morning sector of local time even when Titan is located near midnight. However, some emission does appear to have a source in the Saturnian nightside, consistent with electron precipitation from field lines that have recently mapped to near Titan.
Source-finding for the Australian Square Kilometre Array Pathfinder
Whiting, Matthew
2012-01-01
The Australian Square Kilometre Array Pathfinder (ASKAP) presents a number of challenges in the area of source finding and cataloguing. The data rates and image sizes are very large, and require automated processing in a high-performance computing environment. This requires development of new tools, that are able to operate in such an environment and can reliably handle large datasets. These tools must also be able to accommodate the different types of observations ASKAP will make: continuum imaging, spectral-line imaging, transient imaging. The ASKAP project has developed a source-finder known as Selavy, built upon the Duchamp source-finder (Whiting 2012). Selavy incorporates a number of new features, which we describe here. Since distributed processing of large images and cubes will be essential, we describe the algorithms used to distribute the data, find an appropriate threshold and search to that threshold and form the final source catalogue. We describe the algorithm used to define a varying threshold t...
Square Kilometre Array: The radio telescope of the XXI century
Grainge, K.; Alachkar, B.; Amy, Shaun; Barbosa, D.; Bommineni, M.; Boven, P.; Braddock, R.; Davis, J.; Diwakar, P.; Francis, V.; Gabrielczyk, R.; Gamatham, R.; Garrington, S.; Gibbon, T.; Gozzard, D.; Gregory, S.; Guo, Y.; Gupta, Y.; Hammond, J.; Hindley, D.; Horn, U.; Hughes-Jones, R.; Hussey, M.; Lloyd, S.; Mammen, S.; Miteff, S.; Mohile, V.; Muller, J.; Natarajan, S.; Nicholls, J.; Oberland, R.; Pearson, M.; Rayner, T.; Schediwy, S.; Schilizzi, R.; Sharma, S.; Stobie, S.; Tearle, M.; Wang, B.; Wallace, B.; Wang, L.; Warange, R.; Whitaker, R.; Wilkinson, A.; Wingfield, N.
2017-04-01
The Square Kilometre Array (SKA) will be the world's largest and most sensitive radio telescope. It will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of theUniverse, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. This project envisages the construction of 133 15-m antennas in South Africa and 131072 log-periodic antennas in Australia, together with the associated infrastructure in the two desert sites. In addition, the SKA is an exemplar Big Data project, with data rates of over 10 Tbps being transported from the telescope to HPC/HTC facilities.
Cosmology with the Square Kilometre Array by SKA-Japan
Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji
2016-12-01
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. The cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.
Kilometric shock-associated events and microwave bursts
Kundu, M. R.; Macdowall, R. J.; Stone, R. G.
1990-01-01
The peak times of impulsive microwaves bursts are compared with those of shock-associated (SA) kilometric radio events. The first peaks in these two frequency regimes are usually well-correlated in time, but the last peaks of the SA events observed at 1 MHz occur an average of 20 min after the last impulsive microwave peaks. In some cases, the SA events overlap in time with the post-burst increases of microwave bursts; sometimes there is general correspondence in their intensity time profiles. These observations suggest that the earlier components of the SA events are usually caused by electrons accelerated in or near the microwave source region. The possibility that the later components of some SA events could be associated with nonthermal electrons responsible for microwave post-burst increases, although they have traditionally been attributed to electrons accelerated at type II burst producing shocks in the upper corona is discussed.
Cosmology with the Square Kilometre Array by SKA-Japan
Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji
2016-10-01
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. The cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.
Theory of the fine structure of auroral kilometric radiation
Grabbe, C. L.
1982-01-01
Recent data from ISEE 1 show auroral kilometric radiation (AKR) with finely separated bands in frequency. The observation that the AKR fine structure frequency separation is about equal to the ion cyclotron frequency at the AKR source is strong evidence for the interaction of AKR and electrostatic ion cyclotron (EIC) waves in the source, as proposed by Grabbe et al. (1980) to explain the origin of AKR. It is pointed out that no other wave of frequency close to the band separation is known to exist in the auroral source region. The fine structure observed in the source region AKR is the first evidence for EIC waves in the lower source region (3000 - 5000 km attitude), as required in the theory of Grabbe et al.
Probing magnetic fields with Square Kilometre array and its precursors
Roy, Subhashis; Subramanian, Kandaswamy; Mangalam, Arun; Seshadri, TR; Chand, Hum
2016-01-01
Origin of magnetic fields, its structure and effects on dynamical processes in stars to galaxies are not well understood. Lack of a direct probe has hampered its study. The first phase of Square Kilometre Array (SKA-I), will have more than an order of magnitude higher sensitivity than existing radio telescopes. In this contribution, we discuss specific science cases that are of interest to the Indian community concerned with astrophysical turbulence and magnetic fields. The SKA-I will allow observations of a large number of background sources with detectable polarisation and measure their Faraday depths (FDs) through the Milky Way, other galaxies and their circum-galactic medium. This will probe line-of-sight magnetic fields in these objects well and provide field configurations. Detailed comparison of observational data with models which consider various processes giving rise to field amplification and maintenance will then be possible. Such observations will also provide the coherence scale of the fields an...
Multi-Spacecraft Observations of Saturn Kilometric Radio Emission
MacDowall, R. J.; Hess, R. A.
2011-01-01
Saturn kilometric radiation (SKR) is the auroral radio emission of Saturn, which has been observed by Voyager 1 & 2, Cassini, and Ulysses. Ulysses is able to detect the intense intervals of SKR from distances up to 10 AU, because of its long antennas (72 m tip-to-tip) and sensitive radio receivers. Studies of SKR by A. Lecacheux gave the surprising result that the periodicity of SKR varied with time; it was not locked to a planetary rotation of Saturn. This result has been confirmed by Cassini radio observations. Here, we compare Ulysses and Cassini observations of SKR to constrain a mode! for the SKR emission geometry. SpecifIcally, we examine the question - are the brighter sources of 5KR fixed in Saturn longitude or local time? The results have significant consequences for our understanding of SKR and its varying periodicity
Cosmology with the Square Kilometre Array by SKA-Japan
Yamauchi, Daisuke; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji
2016-01-01
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many of the fundamental questions in cosmology; such as the physics in the very early Universe, the origin of the cosmic acceleration and the nature of the dark matter. The future world's largest radio telescope, Square Kilometre Array (SKA), will be able to open the new frontier of cosmology and will be one of the most powerful tools for cosmology in the next decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver the precision cosmology. In this article we briefly review the role of the SKA from the view point of the modern cosmology. The cosmology science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.
SKA-Japan Pulsar Science with the Square Kilometre Array
Takahashi, Keitaro; Iwata, Kengo; Kameya, Osamu; Kumamoto, Hiroki; Kuroyanagi, Sachiko; Mikami, Ryo; Naruko, Atsushi; Ohno, Hiroshi; Shibata, Shinpei; Terasawa, Toshio; Yonemaru, Naoyuki; Yoo, Chulmoon
2016-01-01
The Square Kilometre Array will revolutionize pulsar studies with its wide field-of-view, wide-band observation and high sensitivity, increasing the number of observable pulsars by more than an order of magnitude. Pulsars are of interest not only for the study of neutron stars themselves but for their usage as tools for probing fundamental physics such as general relativity, gravitational waves and nuclear interaction. In this article, we summarize the activity and interests of SKA-Japan Pulsar Science Working Group, focusing on an investigation of modified gravity theory with the supermassive black hole in the Galactic Centre, gravitational-wave detection from cosmic strings and binary supermassive black holes, a study of the physical state of plasma close to pulsars using giant radio pulses and determination of magnetic field structure of Galaxy with pulsar pairs.
DEFF Research Database (Denmark)
Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald;
2016-01-01
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...
DEFF Research Database (Denmark)
Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald;
2016-01-01
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...
The lunar Askaryan technique with the Square Kilometre Array
James, Clancy W; Bray, Justin D; Buitink, Stijn; Dagkesamanskii, Rustam D; Ekers, Ronald D; Falcke, Heino; Gayley, Ken G; Huege, Tim; Mevius, Maaijke; Mutel, Robert L; Protheroe, Raymond J; Scholten, Olaf; Spencer, Ralph E; ter Veen, Sander
2016-01-01
The lunar Askaryan technique is a method to study the highest-energy cosmic rays, and their predicted counterparts, the ultra-high-energy neutrinos. By observing the Moon with a radio telescope, and searching for the characteristic nanosecond-scale Askaryan pulses emitted when a high-energy particle interacts in the outer layers of the Moon, the visible lunar surface can be used as a detection area. Several previous experiments, at Parkes, Goldstone, Kalyazin, Westerbork, the ATCA, Lovell, LOFAR, and the VLA, have developed the necessary techniques to search for these pulses, but existing instruments have lacked the necessary sensitivity to detect the known flux of cosmic rays from such a distance. This will change with the advent of the SKA. The Square Kilometre Array (SKA) will be the world's most powerful radio telescope. To be built in southern Africa, Australia and New Zealand during the next decade, it will have an unsurpassed sensitivity over the key 100 MHz to few-GHZ band. We introduce a planned expe...
Variability of southern and northern periodicities of Saturn Kilometric Radiation
Lamy, Laurent
Among the persistent questions raised by the existence of a rotational modulation of the Saturn Kilometric Radiation (SKR), the origin of the variability of the 10.8 hours SKR period at a 1% level over weeks to years remains intriguing. While its short-term fluctuations (20-30 days) have been related to the variations of the solar wind speed, its long-term fluctuations (months to years) were proposed to be triggered by Enceladus mass-loading and/or seasonal variations. This situation has become even more complicated since the recent identification of two separated periods at 10.8h and 10.6h, each varying with time, corresponding to SKR sources located in the southern (S) and the northern (N) hemispheres, respectively. Here, six years of Cassini continuous radio measurements are investigated, from 2004 (pre-equinox) to the end of 2010 (post-equinox). From S and N SKR, radio periods and phase systems are derived separately for each hemisphere and fluctuations of radio periods are investigated at time scales of years to a few months. Then, the S phase is used to demonstrate that the S SKR rotational modulation is consistent with an intrinsically rotating phenomenon, in contrast with the early Voyager picture.
Searching for Extraterrestrial Intelligence with the Square Kilometre Array
Siemion, Andrew P V; Cheng-Jin, Jin; Chennamangalam, Jayanth; Cordes, James; DeBoer, David R; Falcke, Heino; Garrett, Mike; Garrington, Simon; Gurvits, Leonid; Hoare, Melvin; Korpela, Eric J; Lazio, Joseph; Messerschmitt, David; Morrison, Ian S; O'Brien, Tim; Paragi, Zsolt; Penny, Alan; Spitler, Laura; Tarter, Jill; Werthimer, Dan
2014-01-01
The vast collecting area of the Square Kilometre Array (SKA), harnessed by sensitive receivers, flexible digital electronics and increased computational capacity, could permit the most sensitive and exhaustive search for technologically-produced radio emission from advanced extraterrestrial intelligence (SETI) ever performed. For example, SKA1-MID will be capable of detecting a source roughly analogous to terrestrial high-power radars (e.g. air route surveillance or ballistic missile warning radars, EIRP (EIRP = equivalent isotropic radiated power, ~10^17 erg sec^-1) at 10 pc in less than 15 minutes, and with a modest four beam SETI observing system could, in one minute, search every star in the primary beam out to ~100 pc for radio emission comparable to that emitted by the Arecibo Planetary Radar (EIRP ~2 x 10^20 erg sec^-1). The flexibility of the signal detection systems used for SETI searches with the SKA will allow new algorithms to be employed that will provide sensitivity to a much wider variety of si...
Anisotropic cubic curvature couplings
Bailey, Quentin G
2016-01-01
To complement recent work on tests of spacetime symmetry in gravity, cubic curvature couplings are studied using an effective field theory description of spacetime-symmetry breaking. The associated mass dimension 8 coefficients for Lorentz violation studied do not result in any linearized gravity modifications and instead are revealed in the first nonlinear terms in an expansion of spacetime around a flat background. We consider effects on gravitational radiation through the energy loss of a binary system and we study two-body orbital perturbations using the post-Newtonian metric. Some effects depend on the internal structure of the source and test bodies, thereby breaking the Weak Equivalence Principle for self-gravitating bodies. These coefficients can be measured in solar-system tests, while binary-pulsar systems and short-range gravity tests are particularly sensitive.
Probing Magnetic Fields with Square Kilometre Array and its Precursors
Indian Academy of Sciences (India)
Subhashis Roy; Sharanya Sur; Kandaswamy Subramanian; Arun Mangalam; T. R. Seshadri; Hum Chand
2016-12-01
Origin of magnetic fields, its structure and effects on dynamical processes in stars to galaxies are not well understood. Lack of a direct probe has remained a problem for its study. The first phase of Square Kilometre Array (SKA-I), will have almost an order of magnitude higher sensitivity than the best existing radio telescope at GHz frequencies. In this contribution, we discuss specific science cases that are of interest to the Indian community concerned with astrophysical turbulence and magnetic fields. The SKA-I will allow observations of a large number of background sources with detectable polarization and measure their Faraday depths (FDs) through the Milky Way, other galaxies and their circum-galactic mediums. This will probe line-of-sight magnetic fields in these objects well and provide field configurations. Detailed comparison of observational data (e.g., pitch angles in spirals) with models which consider various processes giving rise to field amplification and maintenance (e.g., various types of dynamo models) will then be possible. Such observations will also provide the coherence scale of the fields and its random component through RM structure function. Measuring the random component is important to characterize turbulence in the medium. Observations of FDs with redshift will provide important information on magnetic field evolution as a function of redshift. The background sources could also be used to probe magnetic fields and its coherent scale in galaxy clusters and in bridges formed between interacting galaxies. Other than FDs, sensitive observations of synchrotron emission from galaxies will provide complimentary information on their magnetic field strengths in the sky plane. The core shift measurements of AGNs can provide more precise measurements of magnetic field in the sub parsec region near the black hole and its evolution. The low band of SKA-I will also be useful to study circularly polarized emission from Sun and comparing various
Spectral performance of Square Kilometre Array Antennas - II. Calibration performance
Trott, Cathryn M.; de Lera Acedo, Eloy; Wayth, Randall B.; Fagnoni, Nicolas; Sutinjo, Adrian T.; Wakley, Brett; Punzalan, Chris Ivan B.
2017-09-01
We test the bandpass smoothness performance of two prototype Square Kilometre Array (SKA) SKA1-Low log-periodic dipole antennas, SKALA2 and SKALA3 ('SKA Log-periodic Antenna'), and the current dipole from the Murchison Widefield Array (MWA) precursor telescope. Throughout this paper, we refer to the output complex-valued voltage response of an antenna when connected to a low-noise amplifier, as the dipole bandpass. In Paper I, the bandpass spectral response of the log-periodic antenna being developed for the SKA1-Low was estimated using numerical electromagnetic simulations and analysed using low-order polynomial fittings, and it was compared with the HERA antenna against the delay spectrum metric. In this work, realistic simulations of the SKA1-Low instrument, including frequency-dependent primary beam shapes and array configuration, are used with a weighted least-squares polynomial estimator to assess the ability of a given prototype antenna to perform the SKA Epoch of Reionisation (EoR) statistical experiments. This work complements the ideal estimator tolerances computed for the proposed EoR science experiments in Trott & Wayth, with the realized performance of an optimal and standard estimation (calibration) procedure. With a sufficient sky calibration model at higher frequencies, all antennas have bandpasses that are sufficiently smooth to meet the tolerances described in Trott & Wayth to perform the EoR statistical experiments, and these are primarily limited by an adequate sky calibration model and the thermal noise level in the calibration data. At frequencies of the Cosmic Dawn, which is of principal interest to SKA as one of the first next-generation telescopes capable of accessing higher redshifts, the MWA dipole and SKALA3 antenna have adequate performance, while the SKALA2 design will impede the ability to explore this era.
Observation management challenges of the Square Kilometre Array
Bridger, Alan; Williams, Stewart J.; Nicol, Mark; Klaassen, Pamela; Thompson, Roger S.; Knapic, Cristina; Jerse, Giovanna; Orlati, Andrea; Messina, Marco; Valame, Snehal
2016-07-01
The Square Kilometre Array (SKA) will be the world's most advanced radio telescope, designed to explore some of the biggest questions in astronomy today, such as the epoch of re-ionization, the nature of gravity and the origins of cosmic magnetism. SKA1, the first phase of SKA construction, is currently being designed by a large team of experts world-wide. SKA1 comprises two telescopes: a 200-element dish interferometer in South Africa and a 130000-element dipole antenna aperture array in Australia. To enable the ground-breaking science of the SKA an advanced Observation Management system is required to support both the needs of the astronomical community users and the SKA Observatory staff. This system will ensure that the SKA realises its scientiffc aims and achieves optimal scientific throughput. This paper provides an overview of the design of the system that will accept proposals from SKA users, and result in the execution of the scripts that will obtain science data, taking in the stages of detailed preparation, planning and scheduling of the observations and onwards tracking. It describes the unique challenges of the differing requirements of two telescopes, one of which is very much a software telescope, including the need to schedule the data processing as well as the acquisition, and to react to both internally and externally discovered transient events. The scheduling of multiple parallel sub-array use is covered, along with the need to handle commensal observing - using the same data stream to satisfy the science goals of more than one project simultaneously. An international team from academia and industry, drawing on expertise and experience from previous telescope projects, the virtual observatory and comparable problems in industry, has been assembled to design the solution to this challenging but exciting problem.
Quantum teleportation over 143 kilometres using active feed-forward.
Ma, Xiao-Song; Herbst, Thomas; Scheidl, Thomas; Wang, Daqing; Kropatschek, Sebastian; Naylor, William; Wittmann, Bernhard; Mech, Alexandra; Kofler, Johannes; Anisimova, Elena; Makarov, Vadim; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton
2012-09-13
The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.
Saturn kilometric radiation periodicity before and after equinox
Fischer, G.; Gurnett, D. A.; Kurth, W. S.; Ye, S.-Y.; Groene, J. B.
2014-04-01
The rotation period of Saturn's magnetosphere was found to vary with time, and changing periodicities were identified in magnetic fields [1], radio emissions [2], and charged particles [3]. In this presentation we show the varying period of Saturn kilometric radiation (SKR) from 2004 to early 2014, a time period of almost 10 years. From 2004 until early 2009 SKR had two periods, 10.8 h and 10.6 h, attributed to SKR radiated from the southern and northern hemisphere, respectively [4]. The periods converged during 2009 and show a complicated behavior afterwards which we will analyze in more detail. Our analysis is first applied to the complete SKR signal, and second to SKR intensities separated by spacecraft latitude and wave polarization, with right-handed SKR attributed to the northern hemisphere and lefthanded SKR to the southern hemisphere. We apply the so-called tracking filter analysis [5], and we will also simply follow the phases of normalized SKR intensity maxima (north and south) with time. Both analyses yield similar results. A comparison of SKR periodicities after equinox to the planetary period oscillations of the magnetic field [6] shows major differences, and we will try to explain the deviations. We also identify minor SKR components where the modulation phase deviation exceeds one rotation each time Cassini completes one orbit, i.e. this is consistent with the characteristic of a searchlight-like signal. However, the main SKR signal still acts like a clock with a modulation phase independent of the local time of the Cassini spacecraft.
A possible influence of the Great White Spot on Saturn kilometric radiation periodicity
National Research Council Canada - National Science Library
G. Fischer; S.-Y. Ye; J. B. Groene; A. P. Ingersoll; K. M. Sayanagi; J. D. Menietti; W. S. Kurth; D. A. Gurnett
2014-01-01
The periodicity of Saturn kilometric radiation (SKR) varies with time, and its two periods during the first 5 years of the Cassini mission have been attributed to SKR from the northern and southern hemisphere...
National Research Council Canada - National Science Library
Goodwin, Adrian N
2009-01-01
A flexible tree taper model based on a cubic polynomial is described. It is algebraically invertible and integrable, and can be constrained by one or two diameters, neither of which need be diameter at breast height (DBH...
Lee, M. C.; Kuo, S. P.
1986-01-01
The theory of resonant electron diffusion as an effective saturation process of the auroral kilometric radiation has been formulated. The auroral kilometric radiation is assumed to be amplified by the synchrotron maser instability that is driven by an electron distribution of the loss-cone type. The calculated intensity of the saturated radiation is found to have a significantly lower value in comparison with that caused by the quasi-linear diffusion process as an alternative saturation process. This indicates that resonant electron diffusion dominates over quasi-linear diffusion in saturating the synchrotron maser instability.
Universal Reconfiguration of (Hyper-)cubic Robots
Abel, Zachary; Kominers, Scott D.
2008-01-01
We study a simple reconfigurable robot model which has not been previously examined: cubic robots comprised of three-dimensional cubic modules which can slide across each other and rotate about each others' edges. We demonstrate that the cubic robot model is universal, i.e., that an n-module cubic robot can reconfigure itself into any specified n-module configuration. Additionally, we provide an algorithm that efficiently plans and executes cubic robot motion. Our results directly extend to a...
Cubication of Conservative Nonlinear Oscillators
Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…
Cryptographic Analysis in Cubic Time
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Seidl, H.
2004-01-01
The spi-calculus is a variant of the polyadic pi-calculus that admits symmetric cryptography and that admits expressing communication protocols in a precise though still abstract way. This paper shows that context-independent control flow analysis can be calculated in cubic time despite the fact ...
The diagonalization of cubic matrices
Cocolicchio, D.; Viggiano, M.
2000-08-01
This paper is devoted to analysing the problem of the diagonalization of cubic matrices. We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite the complex roots of the associated resolvent secular equation in terms of transcendental functions and we derive the diagonalizing matrix.
Cubication of conservative nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2009-09-15
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.
Cubic Matrix, Nambu Mechanics and Beyond
Kawamura, Y
2002-01-01
We propose a generalization of cubic matrix mechanics by introducing a canonical triplet and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we consider can be interpreted as a “quantum” generalization of Nambu mechanics.
Cubical sets and the topological topos
DEFF Research Database (Denmark)
Spitters, Bas
2016-01-01
Coquand's cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understanding of this model. We make three contributions...... show that it can also be a target for cubical realization by showing that Coquand's cubical sets classify the geometric theory of flat distributive lattices. As a side result, we obtain a simplicial realization of a cubical set. 2. Using the internal `interval' in the topos of cubical sets, we...... construct a Moore path model of identity types. 3. We construct a premodel structure internally in the cubical type theory and hence on the fibrant objects in cubical sets....
Numbers for reducible cubic scrolls
Directory of Open Access Journals (Sweden)
Israel Vainsencher
2004-12-01
Full Text Available We show how to compute the number of reducible cubic scrolls of codimension 2 in (math blackboard symbol Pn incident to the appropriate number of linear spaces.Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em (math blackboard symbol Pn incidentes a espaços lineares apropriados.
Solving Cubic Equations by Polynomial Decomposition
Kulkarni, Raghavendra G.
2011-01-01
Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…
Cubic Icosahedra? A Problem in Assigning Symmetry
Lloyd, D. R.
2010-01-01
There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…
The Australian Square Kilometre Array Pathfinder: Performance of the Boolardy Engineering Test Array
McConnell, D.; Allison, J. R.; Bannister, K.; Bell, M. E.; Bignall, H. E.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Hegarty, S.; Heywood, I.; Hotan, A. W.; Indermuehle, B. T.; Lenc, E.; Marvil, J.; Popping, A.; Raja, W.; Reynolds, J. E.; Sault, R. J.; Serra, P.; Voronkov, M. A.; Whiting, M.; Amy, S. W.; Axtens, P.; Ball, L.; Bateman, T. J.; Bock, D. C.-J.; Bolton, R.; Brodrick, D.; Brothers, M.; Brown, A. J.; Bunton, J. D.; Cheng, W.; Cornwell, T.; DeBoer, D.; Feain, I.; Gough, R.; Gupta, N.; Guzman, J. C.; Hampson, G. A.; Hay, S.; Hayman, D. B.; Hoyle, S.; Humphreys, B.; Jacka, C.; Jackson, C. A.; Jackson, S.; Jeganathan, K.; Joseph, J.; Koribalski, B. S.; Leach, M.; Lensson, E. S.; MacLeod, A.; Mackay, S.; Marquarding, M.; McClure-Griffiths, N. M.; Mirtschin, P.; Mitchell, D.; Neuhold, S.; Ng, A.; Norris, R.; Pearce, S.; Qiao, R. Y.; Schinckel, A. E. T.; Shields, M.; Shimwell, T. W.; Storey, M.; Troup, E.; Turner, B.; Tuthill, J.; Tzioumis, A.; Wark, R. M.; Westmeier, T.; Wilson, C.; Wilson, T.
2016-09-01
We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array's performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope.
Indian Academy of Sciences (India)
P. Kharb; D. V. Lal; V. Singh; J. Bagchi; C. H. Ishwara Chandra; A. Hota; C. Konar; Y. Wadadekar; P. Shastri; M. Das; K. Baliyan; B. B. Nath; M. Pandey-Pommier
2016-12-01
We present detailed science cases that a large fraction of the Indian AGN community is interested in pursuing with the upcoming Square Kilometre Array (SKA). These interests range from understanding low luminosity active galactic nuclei in the nearby Universe to powerful radio galaxies at high redshifts. Important unresolved science questions in AGN physics are discussed. Ongoing low-frequency surveys with the SKA pathfinder telescope GMRT, are highlighted.
The cyclotron maser theory of AKR and Z-mode radiation. [Auroral Kilometric Radiation
Wu, C. S.
1985-01-01
The cyclotron maser mechanism which may be responsible for the generation of auroral kilometric radiation and Z-mode radiation is discussed. Emphasis is placed on the basic concepts of the cyclotron maser theory, particularly the relativistic effect of the cyclotron resonance condition. Recent development of the theory is reviewed. Finally, the results of a computer simulation study which helps to understand the nonlinear saturation of the maser instability are reported.
Cubic metaplectic forms and theta functions
Proskurin, Nikolai
1998-01-01
The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.
Investigation of a possible control by Saturn satellites of auroral kilometric radiation
Boudjada, M. Y.; Galopeau, P. H. M.; Rucker, H. O.
2013-09-01
We attempt in this contribution to investigate the possible control of the Saturnian kilometric radiation by the planet's satellites. We use the observation of the Radio and Plasma Wave Science (RPWS) onboard the Cassini spacecraft. We consider the variation of the flux density versus the observation in time and frequency. The auroral kilometric emissions of Saturn are recorded in the frequency band from few kilohertz up to 1 MHz. The investigated period started from 01 Jan. 2004 to 31 Dec. 2007. We distinguish in this analysis between different Saturnian 'sources' which can be recognized by their spectral characteristics. We define two kinds of arc structures: the 'vertex early arcs' (VEA) and the 'vertex late arcs' (VLA). The arcs of the first group set open toward increasing time, while the arcs of the other one open towards decreasing time. A total of 556 arcs have been observed during the four investigated years, where 310 and 246 correspond, respectively, to the vertex early and late arcs. We show how the occurrence of arcs may be related to the position of the satellite around the planet Saturn. We emphasis in this analysis on the eventual control of the Saturnian kilometric radiation by Titan. Our results are compared with previous investigations performed by Daigne et al. (1982) and Kurth et al. (2006) using, respectively, Voyager and Cassini observations.
Photonic Crystal Cavities in Cubic Polytype Silicon Carbide Films
Radulaski, Marina; Buckley, Sonia; Rundquist, Armand; Provine, J; Alassaad, Kassem; Ferro, Gabriel; Vučković, Jelena
2013-01-01
We present the design, fabrication, and characterization of high quality factor and small mode volume planar photonic crystal cavities from cubic (3C) thin films (thickness ~ 200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1250 - 1600 nm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.
Weighted cubic and biharmonic splines
Kvasov, Boris; Kim, Tae-Wan
2017-01-01
In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.
Transparent polycrystalline cubic silicon nitride
Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo
2017-01-01
Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948
The compressibility of cubic white and orthorhombic, rhombohedral, and simple cubic black phosphorus
Energy Technology Data Exchange (ETDEWEB)
Clark, Simon M; Zaug, Joseph
2010-03-10
The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The ?alpha phase was found to transform into the alpha' phase at 0.87 +- 0.04 GPa with a volume change of 0.1 +- 0.3 cc/mol. A fit of a second order Birch- Murnaghan equation to the data gave Vo = 16.94 ? 0.08 cc/mol and Ko = 6.7 +- 0.5 GPa for the alpha phase and Vo = 16.4 +- 0.1 cc/mol and Ko = 9.1 +- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to the A17 phase of black phosphorus at 2.68 +- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our data combined with previous measurements gave Vo = 11.43 +- 0.05 cc/mol and Ko = 34.7 +- 0.5 GPa for the A17 phase, Vo = 9.62 +- 0.01 cc/mol and Ko = 65.0 +- 0.6 GPa for the A7 phase and , Vo = 9.23 +- 0.01 cc/mol and Ko = 72.5 +- 0.3 GPa for the simple cubic phase.
Tame Kernels of Pure Cubic Fields
Institute of Scientific and Technical Information of China (English)
Xiao Yun CHENG
2012-01-01
In this paper,we study the p-rank of the tame kernels of pure cubic fields.In particular,we prove that for a fixed positive integer m,there exist infinitely many pure cubic fields whose 3-rank of the tame kernel equal to m.As an application,we determine the 3-rank of their tame kernels for some special pure cubic fields.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Energy Technology Data Exchange (ETDEWEB)
Steinberg, J.L.; Hoang, S. [Observatoire de Paris, Meudon (France)
1993-08-01
Here the authors use a ray tracing technique to map the appearance of the image of auroral kilometric radiation (AKR), originating above the auroral zone, as seen by a distant observer between 0200 and 0800 LT, at distances of 50 to 250 R{sub E}. It has been suggested that distant imaging of AKR may provide a way of imaging structures in the earths magnetosphere. They use satellite measurements to constrain the size and characteristics of the AKR source region, and their projections provide results consistent with data recorded by the ISEE-3 satellite.
Extragalactic radio surveys in the pre-Square Kilometre Array era
Simpson, Chris
2017-07-01
The era of the Square Kilometre Array is almost upon us, and pathfinder telescopes are already in operation. This brief review summarizes our current knowledge of extragalactic radio sources, accumulated through six decades of continuum surveys at the low-frequency end of the electromagnetic spectrum and the extensive complementary observations at other wavelengths necessary to gain this understanding. The relationships between radio survey data and surveys at other wavelengths are discussed. Some of the outstanding questions are identified and prospects over the next few years are outlined.
Pulsar Acceleration Searches on the GPU for the Square Kilometre Array
Dimoudi, Sofia
2015-01-01
Pulsar acceleration searches are methods for recovering signals from radio telescopes, that may otherwise be lost due to the effect of orbital acceleration in binary systems. The vast amount of data that will be produced by next generation instruments such as the Square Kilometre Array (SKA) necessitates real-time acceleration searches, which in turn requires the use of HPC platforms. We present our implementation of the Fourier Domain Acceleration Search (FDAS) algorithm on Graphics Processor Units (GPUs) in the context of the SKA, as part of the Astro-Accelerate real-time data processing library, currently under development at the Oxford e-Research Centre (OeRC), University of Oxford.
The Piecewise Cubic Method (PCM) for computational fluid dynamics
Lee, Dongwook; Faller, Hugues; Reyes, Adam
2017-07-01
We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge-Kutta method. We demonstrate that the solutions of PCM converges at fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme on a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions.
The Piecewise Cubic Method (PCM) for Computational Fluid Dynamics
Lee, Dongwook; Reyes, Adam
2016-01-01
We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge-Kutta method. We demonstrate that the solutions of PCM converges in fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme in a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions.
Cubical local partial orders on cubically subdivided spaces - Existence and construction
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
2006-01-01
The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...
Cubical local partial orders on cubically subdivided spaces - existence and construction
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...
CLASSIFICATION OF CUBIC PARAMETERIZED HOMOGENEOUS VECTOR FIELDS
Institute of Scientific and Technical Information of China (English)
Karnal H.Yasir; TANG Yun
2002-01-01
In this paper the cubic homogeneous parameterized vector fields are studied.The classification of the phase portrait near the critical point is presented. This classification is an extension of the result given by Takens to the cubic homogeneous parameterized vector fields with six parameters.
CLASSIFICATION OF CUBIC PARAMETERIZED HOMOGENEOUS VECTOR FIELDS
Institute of Scientific and Technical Information of China (English)
KamalH.Yasir; TNAGYun
2002-01-01
In this paper the cubic homogeneous parameterized vector fields are studied.The classification of the phase portrait near the critical point is presented.This classification is an extension of the result given by takens to the cubic homogeneous parameterized vector fields with six parameters.
A user interface framework for the Square Kilometre Array: concepts and responsibilities
Marassi, Alessandro; Brajnik, Giorgio; Nicol, Mark; Alberti, Valentina; Le Roux, Gerhard
2016-07-01
The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world's largest radio telescope, with eventually over a square kilometre of collecting area and including a general headquarters as well as two radio telescopes: SKA1-Mid in South Africa and SKA1-Low in Australia. The SKA project consists of a number of subsystems (elements) among which the Telescope Manager (TM) is the one involved in controlling and monitoring the SKA telescopes. The TM element has three primary responsibilities: management of astronomical observations, management of telescope hardware and software subsystems, management of data to support system operations and all stakeholders (operators, maintainers, engineers and science users) in achieving operational, maintenance and engineering goals. Operators, maintainers, engineers and science users will interact with TM via appropriate user interfaces (UI). The TM UI framework envisaged is a complete set of general technical solutions (components, technologies and design information) for implementing a generic computing system (UI platform). Such a system will enable UI components to be instantiated to allow for human interaction via screens, keyboards, mouse and to implement the necessary logic for acquiring or deriving the information needed for interaction. It will provide libraries and specific Application Programming Interfaces (APIs) to implement operator and engineer interactive interfaces. This paper will provide a status update of the TM UI framework, UI platform and UI components design effort, including the technology choices, and discuss key challenges in the TM UI architecture, as well as our approaches to addressing them.
Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts
Quéno, Louis; Vionnet, Vincent; Dombrowski-Etchevers, Ingrid; Lafaysse, Matthieu; Dumont, Marie; Karbou, Fatima
2016-07-01
Distributed snowpack simulations in the French and Spanish Pyrenees are carried out using the detailed snowpack model Crocus driven by the numerical weather prediction system AROME at 2.5 km grid spacing, during four consecutive winters from 2010 to 2014. The aim of this study is to assess the benefits of a kilometric-resolution atmospheric forcing to a snowpack model for describing the spatial variability of the seasonal snow cover over a mountain range. The evaluation is performed by comparisons to ground-based measurements of the snow depth, the snow water equivalent and precipitations, to satellite snow cover images and to snowpack simulations driven by the SAFRAN analysis system. Snow depths simulated by AROME-Crocus exhibit an overall positive bias, particularly marked over the first summits near the Atlantic Ocean. The simulation of mesoscale orographic effects by AROME gives a realistic regional snowpack variability, unlike SAFRAN-Crocus. The categorical study of daily snow depth variations gives a differentiated perspective of accumulation and ablation processes. Both models underestimate strong snow accumulations and strong snow depth decreases, which is mainly due to the non-simulated wind-induced erosion, the underestimation of strong melting and an insufficient settling after snowfalls. The problematic assimilation of precipitation gauge measurements is also emphasized, which raises the issue of a need for a dedicated analysis to complement the benefits of AROME kilometric resolution and dynamical behaviour in mountainous terrain.
Intrinsic wave properties of Saturn Kilometric Radiation and evolution with propagation
Lamy, L.; Cecconi, B.; Zarka, P. M.; Cassini/Rpws, Mag; Caps Teams
2010-12-01
Investigating the crossing of the southern source region of Saturn Kilometric Radiation (SKR) by the Cassini spacecraft in late 2008, we review the intrinsic properties of SKR waves and their evolution with propagation through the kronian high-latitude plasma. In particular, we identify SKR magneto-ionic modes and estimate the electron/wave energy conversion efficiency thanks to in situ and remote observations. Then, we focus on the unusual locus of radio sources, illustrating an enhanced auroral activity. The beaming pattern is derived from different techniques for local and distant radio sources, and shows that kilometric waves are generally emitted at large angles with respect to the local magnetic field vector. Finally, we show that the SKR polarization is elliptical at the source, but becomes gradually circular along the ray path. The SKR polarization transfer is satisfactorily described in the frame of wave propagation in a cold plasma and conditions of weak mode coupling. SKR characteristics are analyzed comparatively to other equivalent auroral planetary radio emissions.
Auroral electron distributions within and close to the Saturn kilometric radiation source region
Schippers, P.; Arridge, C. S.; Menietti, J. D.; Gurnett, D. A.; Lamy, L.; Cecconi, B.; Mitchell, D. G.; André, N.; Kurth, W. S.; Grimald, S.; Dougherty, M. K.; Coates, A. J.; Krupp, N.; Young, D. T.
2011-05-01
On 17 October 2008, Cassini observed for the first time the electron populations associated with the crossing of a Saturn kilometric radiation source region and its surroundings. These observations allow for the first time the constraint and quantification of the high-latitude acceleration processes, the current systems, and the origin of the low-frequency electromagnetic waves. Enhanced fluxes of field-aligned energetic electrons were measured by the Cassini electron plasma spectrometer in conjunction with unusual intense field-aligned current systems identified using the magnetometer instrument. In the region where downward field-aligned currents were measured, electron data show evidence of two types of upward accelerated electron beams: a broadband energetic (1-100 keV) electron population that is observed throughout the region and a narrow-banded (0.1-1 keV) electron population that is observed sporadically. In the regions where the magnetic field signatures showed evidence for upward field-aligned currents, we observe electron loss cone distributions and some evidence of shell-like distributions. Such nonthermal electron populations are commonly known as a potential free energy source to drive plasma instabilities. In the downward current region, the low-energy and energetic beams are likely the source of the very low frequency emissions. In the upward current region, the shell distribution is identified as a potential source for Saturn kilometric radiation generation via the cyclotron maser instability.
Low Frequency Extensions of the Saturn Kilometric Radiation as a Proxy for Magnetospheric Dynamics.
Reed, J.; Jackman, C. M.; Whiter, D. K.; Kurth, W. S.; Lamy, L.
2016-12-01
Saturn Kilometric Radiation (SKR) is a radio emission formed via the cyclotron maser instability on field aligned currents near the auroral regions of Saturn. The SKR has been found to respond to both internal and external driving, and to be linked to both solar wind compressions and magnetotail reconnection events. The radio emission is remotely sensed quasi-continuously and therefore offers the potential to be used as a proxy for magnetospheric activity when the spacecraft is not in an ideal viewing region for observing signatures of reconnection. In this work we use data taken by the Cassini magnetometer and radio and plasma wave sensor while Cassini was executing its deepest tail orbits in 2006. We characterise the behaviour of the SKR over this period and develop an automatic method for finding low frequency extensions (LFE), where the SKR emission extends down to lower frequencies below the main band. LFEs have been shown to occur in response to reconnection at Saturn (Jackman et al, 2009) and their appearance in Earth's analogous Auroral Kilometric Radiation (AKR) has been shown to coincide with substorm onset (e.g. Morioka et al, 2007). Using a new catalogue of LFEs we discuss their correlation with known tail reconnection events and solar wind shocks (as inferred from the use of propagated solar wind models). We also look at their properties such as length and recurrence rate, as well as their relationship to the planetary periodicities.
On the Magnetospheric Engine Behind Kilometric Radiation at Earth and Saturn
Brandt, Pontus; Mitchell, Donald
2014-05-01
The planets of the solar system display a range of different space environments and solar interaction regimes, from non/weakly magnetized, to magnetized with convective- versus rotation-dominated magnetospheres. All magnetized planets with an appreciable magnetosphere are immersed in a dynamic energetic particle (hot plasma), as well as cold plasma, environment. These five planetary magnetospheres (Earth, Jupiter, Saturn, Uranus and Neptune) are also significant emitters of low-frequency radio waves that are consistent with a cyclotron-maser instability set up in a field-aligned current region. Radio observations in the Kilometric Radiation (AKR) emissions in the ~30-800 kHz range have long been known to be associated with auroral intensifications and magnetospheric substorms. In a similar fashion, recent remote imaging using Energetic Neutral Atoms (ENAs) obtained by the Cassini mission have revealed that the periodic Saturn Kilometric Radiation (SKR) emission from Saturn's high-latitude magnetosphere is highly correlated with simultaneous large-scale injections of energetic particles in the night side magnetosphere. These observations imply that the engine behind the AKR and SKR is current system associated with the planet ward fast plasma flows during an injection and/or the resulting plasma pressure gradients of the heated plasma.
Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism
Omidi, N.; Gurnett, D. A.; Wu, C. S.
1984-01-01
The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.
Ultrahard nanotwinned cubic boron nitride.
Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan
2013-01-17
Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.
Cubic III-nitrides: potential photonic materials
Onabe, K.; Sanorpim, S.; Kato, H.; Kakuda, M.; Nakamura, T.; Nakamura, K.; Kuboya, S.; Katayama, R.
2011-01-01
The growth and characterization of some cubic III-nitride films on suitable cubic substrates have been done, namely, c- GaN on GaAs by MOVPE, c-GaN and c-AlGaN on MgO by RF-MBE, and c-InN and c-InGaN (In-rich) on YSZ by RFMBE. This series of study has been much focused on the cubic-phase purity as dependent on the respective growth conditions and resulting electrical and optical properties. For c-GaN and c-InN films, a cubic-phase purity higher than 95% is attained in spite of the metastable nature of the cubic III-nitrides. However, for c-AlGaN and c-InGaN films, the cubic-phase purity is rapidly degraded with significant incorporation of the hexagonal phase through stacking faults on cubic {111} faces which may be exposed on the roughened growing or substrate surface. It has been shown that the electron mobilities in c-GaN and c-AlGaN films are much related to phase purity.
Cubic Curves, Finite Geometry and Cryptography
Bruen, A A; Wehlau, D L
2011-01-01
Some geometry on non-singular cubic curves, mainly over finite fields, is surveyed. Such a curve has 9,3,1 or 0 points of inflexion, and cubic curves are classified accordingly. The group structure and the possible numbers of rational points are also surveyed. A possible strengthening of the security of elliptic curve cryptography is proposed using a `shared secret' related to the group law. Cubic curves are also used in a new way to construct sets of points having various combinatorial and geometric properties that are of particular interest in finite Desarguesian planes.
Generalized Vaidya spacetime for cubic gravity
Ruan, Shan-Ming
2015-01-01
We present a kind of generalized Vaidya solutions of a new cubic gravity in five dimensions whose field equations in spherically spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally we present the first law and second law hold in this gravity. Although all the results are analogue to those in Lovelock gravity, we in fact introduce the contribution of new cubic term in five dimensions where cubic Lovelock term is just zero.
Cubical sets as a classifying topos
DEFF Research Database (Denmark)
Spitters, Bas
Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De...... Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation...
Energy Technology Data Exchange (ETDEWEB)
Kahler, S.W.; Cliver, E.W.; Cane, H.V.
1986-01-01
Shock-associated (SA) events are a class of kilometric-wavelength solar radio bursts first observed with the ISEE-3 Radio Astronomy Experiment. These fast-drift events are typically associated with metric type II bursts and hypothesized that the SA events were due to electrons accelerated by coronal shocks. Compare SA events from 1978 to 1982 with metric type II bursts and solar energetic particle (SEP) events. Most metric type II bursts are not obviously associated with SA events at 1980 kHz. Metric type II bursts associated with magnetically well connected flares and SA emission are well correlated with SEP events; those without SA emission are poorly correlated with SEP events. The largest SEP events from flares at any longitude are well correlated with SAs. These results are consistent with the hypothesis that the escaping electrons giving rise to SA emission are accelerated in coronal shocks.
Interstellar Medium and Star Formation Studies with the Square Kilometre Array
Indian Academy of Sciences (India)
P. Manoj; S. Vig; G. Maheswar; U. S. Kamath; A. Tej
2016-12-01
Stars and planetary systems are formed out of molecular clouds in the interstellar medium. Although the sequence of steps involved in star formation are generally known, a comprehensive theory which describes the details of the processes that drive formation of stars is still missing. The Square Kilometre Array (SKA), with its unprecedented sensitivity and angular resolution, will play a major role in filling these gaps in our understanding. In this article, we present a few science cases that the Indian star formation community is interested in pursuing with SKA, which include investigation of AU-sized structures in the neutral ISM, the origin of thermal and non-thermal radio jets from protostars and the accretion history of protostars, and formation of massive stars and their effect on the surrounding medium.
The Square Kilometre Array Science Data Processor. Preliminary compute platform design
Broekema, P. C.; van Nieuwpoort, R. V.; Bal, H. E.
2015-07-01
The Square Kilometre Array is a next-generation radio-telescope, to be built in South Africa and Western Australia. It is currently in its detailed design phase, with procurement and construction scheduled to start in 2017. The SKA Science Data Processor is the high-performance computing element of the instrument, responsible for producing science-ready data. This is a major IT project, with the Science Data Processor expected to challenge the computing state-of-the art even in 2020. In this paper we introduce the preliminary Science Data Processor design and the principles that guide the design process, as well as the constraints to the design. We introduce a highly scalable and flexible system architecture capable of handling the SDP workload.
Broadband Polarimetry with the Square Kilometre Array: A Unique Astrophysical Probe
Gaensler, B M; Akahori, Takuya; Banfield, Julie; Beck, Rainer; Carretti, Ettore; Farnes, Jamie; Haverkorn, Marijke; Heald, George; Jones, David; Landecker, Thomas; Mao, Sui Ann; Norris, Ray; O'Sullivan, Shane; Rudnick, Lawrence; Schnitzeler, Dominic; Seymour, Nicholas; Sun, Xiaohui
2015-01-01
Faraday rotation of polarised background sources is a unique probe of astrophysical magnetic fields in a diverse range of foreground objects. However, to understand the properties of the polarised sources themselves and of depolarising phenomena along the line of sight, we need to complement Faraday rotation data with polarisation observations over very broad bandwidths. Just as it is impossible to properly image a complex source with limited u-v coverage, we can only meaningfully understand the magneto-ionic properties of polarised sources if we have excellent coverage in $\\lambda^2$-space. We here propose a set of broadband polarisation surveys with the Square Kilometre Array, which will provide a singular set of scientific insights on the ways in which galaxies and their environments have evolved over cosmic time.
Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts
Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei
2016-12-01
Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth's radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two small storm periods 4-6 April and 18-20 May 2013 and show, using a 3-D ray tracing simulation, that AKR can propagate downward all the way into the equatorial plane in the radiation belts under appropriate conditions. The simulated results can successfully explain the observed AKR's spatial distribution and frequency range, and the current results have a wide application to all other magnetized astrophysical objects in the universe.
Hotan, A W; Harvey-Smith, L; Humphreys, B; Jeffs, B D; Shimwell, T; Tuthill, J; Voronkov, M; Allen, G; Amy, S; Ardern, K; Axtens, P; Ball, L; Bannister, K; Barker, S; Bateman, T; Beresford, R; Bock, D; Bolton, R; Bowen, M; Boyle, B; Braun, R; Broadhurst, S; Brodrick, D; Brooks, K; Brothers, M; Brown, A; Cantrall, C; Carrad, G; Chapman, J; Cheng, W; Chippendale, A; Chung, Y; Cooray, F; Cornwell, T; Davis, E; de Souza, L; DeBoer, D; Diamond, P; Edwards, P; Ekers, R; Feain, I; Ferris, D; Forsyth, R; Gough, R; Grancea, A; Gupta, N; Guzman, JC; Hampson, G; Haskins, C; Hay, S; Hayman, D; Hoyle, S; Jacka, C; Jackson, C; Jackson, S; Jeganathan, K; Johnston, S; Joseph, J; Kendall, R; Kesteven, M; Kiraly, D; Koribalski, B; Leach, M; Lenc, E; Lensson, E; Li, L; Mackay, S; Macleod, A; Maher, T; Marquarding, M; McClure-Griffiths, N; McConnell, D; Mickle, S; Mirtschin, P; Norris, R; Neuhold, S; Ng, A; O'Sullivan, J; Pathikulangara, J; Pearce, S; Phillips, C; Qiao, RY; Reynolds, J E; Rispler, A; Roberts, P; Roxby, D; Schinckel, A; Shaw, R; Shields, M; Storey, M; Sweetnam, T; Troup, E; Turner, B; Tzioumis, A; Westmeier, T; Whiting, M; Wilson, C; Wilson, T; Wormnes, K; Wu, X
2014-01-01
This paper describes the system architecture of a newly constructed radio telescope - the Boolardy Engineering Test Array, which is a prototype of the Australian Square Kilometre Array Pathfinder telescope. Phased array feed technology is used to form multiple simultaneous beams per antenna, providing astronomers with unprecedented survey speed. The test array described here is a 6-antenna interferometer, fitted with prototype signal processing hardware capable of forming at least 9 dual-polarisation beams simultaneously, allowing several square degrees to be imaged in a single pointed observation. The main purpose of the test array is to develop beamforming and wide-field calibration methods for use with the full telescope, but it will also be capable of limited early science demonstrations.
Interstellar medium and star formation studies with the Square Kilometre Array
Manoj, P; Mahewar, G; Kamath, U S; Tej, A
2016-01-01
Stars and planetary systems are formed out of molecular clouds in the interstellar medium. Although the sequence of steps involved in star formation are generally known, a comprehensive theory which describes the details of the processes that drive formation of stars is still missing. The Square Kilometre Array (SKA), with its unprecedented sensitivity and angular resolution, will play a major role in filling these gaps in our understanding. In this article, we present a few science cases that the Indian star formation community is interested in pursuing with SKA, which include investigation of AU-sized structures in the neutral ISM, the origin of thermal and non-thermal radio jets from protostars and the accretion history of protostars, and formation of massive stars and their effect on the surrounding medium.
Synergy between the Large Synoptic Survey Telescope and the Square Kilometre Array
Bacon, David; Abdalla, Filipe B; Brown, Michael; Bull, Philip; Camera, Stefano; Fender, Rob; Grainge, Keith; Ivezic, Zeljko; Jarvis, Matt; Jackson, Neal; Kirk, Donnacha; Mann, Bob; McEwen, Jason; McKean, John; Newman, Jeffrey A; Raccanelli, Alvise; Sahlen, Martin; Santos, Mario; Tyson, Anthony; Zhao, Gong-Bo
2015-01-01
We provide an overview of the science benefits of combining information from the Square Kilometre Array (SKA) and the Large Synoptic Survey Telescope (LSST). We first summarise the capabilities and timeline of the LSST and overview its science goals. We then discuss the science questions in common between the two projects, and how they can be best addressed by combining the data from both telescopes. We describe how weak gravitational lensing and galaxy clustering studies with LSST and SKA can provide improved constraints on the causes of the cosmological acceleration. We summarise the benefits to galaxy evolution studies of combining deep optical multi-band imaging with radio observations. Finally, we discuss the excellent match between one of the most unique features of the LSST, its temporal cadence in the optical waveband, and the time resolution of the SKA.
The Australian Square Kilometre Array Pathfinder: Performance of the Boolardy Engineering Test Array
McConnell, D; Bannister, K; Bell, M E; Bignall, H E; Chippendale, A P; Edwards, P G; Harvey-Smith, L; Hegarty, S; Heywood, I; Hotan, A W; Indermuehle, B T; Lenc, E; Marvil, J; Popping, A; Raja, W; Reynolds, J E; Sault, R J; Serra, P; Voronkov, M A; Whiting, M; Amy, S W; Axtens, P; Ball, L; Bateman, T J; Bock, D C -J; Bolton, R; Brodrick, D; Brothers, M; Brown, A J; Bunton, J D; Cheng, W; Cornwell, T; DeBoer, D; Feain, I; Gough, R; Gupta, N; Guzman, J C; Hampson, G A; Hay, S; Hayman, D B; Hoyle, S; Humphreys, B; Jacka, C; Jackson, C A; Jackson, S; Jeganathan, K; Joseph, J; Koribalski, B S; Leach, M; Lensson, E S; MacLeod, A; Mackay, S; Marquarding, M; McClure-Griffiths, N M; Mirtschin, P; Mitchell, D; Neuhold, S; Ng, A; Norris, R; Pearce, S; Qiao, R Y; Schinckel, A E T; Shields, M; Shimwell, T W; Storey, M; Troup, E; Turner, B; Tuthill, J; Tzioumis, A; Wark, R M; Westmeier, T; Wilson, C; Wilson, T
2016-01-01
We describe the performance of the Boolardy Engineering Test Array (BETA), the prototype for the Australian Square Kilometre Array Pathfinder telescope ASKAP. BETA is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarization beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of BETA's performance: sensitivity, beam characteristics, polarimetric properties and image quality. We summarise the astronomical science that it has produced and draw lessons from operating BETA that will be relevant to the commissioning and operation of the final ASKAP telescope.
Saturn Kilometric Radiation Near a Source Center on Day 73, 2008
Menietti, J. D.; Mutel, R. L.; Schippers, P.; Ye, S.-Y.; Santolik, O.; Kurth, W. S.; Gurnett, D. A.; Lamy, L.; Cecconi, B.
The Cassini spacecraft flew very near a source region of Saturn kilometric radiation (SKR) on day 073 of 2008. This is the second known encounter with a source region at high latitude. The radio and plasma wave instrument, RPWS, observed intense SKR in the extraordinary (X) mode. The electron low-energy spectrometer (ELS) obtained a phase space distribution of sufficient energy and pitch angle resolution to allow growth rate calculations for the observed wave emissions. There is evidence of a shell or horseshoe electron plasma distribution that is unstable to the growth of SKR via the cyclotron maser instability. We present results of these calculations for comparison with a previously reported source region encounter.
Arnaud, N.; Balembois, L.; Bizouard, M. A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.
2017-02-01
The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry-Perot cavities on the arms and the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.
Lamy, L.; Cecconi, B.; Zarka, P.; Canu, P.; Schippers, P.; Kurth, W. S.; Mutel, R. L.; Gurnett, D. A.; Menietti, D.; Louarn, P.
2011-04-01
The Cassini mission crossed the source region of the Saturn kilometric radiation (SKR) on 17 October 2008. On this occasion, the Radio and Plasma Wave Science (RPWS) experiment detected both local and distant radio sources, while plasma parameters were measured in situ by the magnetometer and the Cassini Plasma Spectrometer. A goniopolarimetric inversion was applied to RPWS three-antenna electric measurements to determine the wave vector k and the complete state of polarization of detected waves. We identify broadband extraordinary (X) mode as well as narrowband ordinary (O) mode SKR at low frequencies. Within the source region, SKR is emitted just above the X mode cutoff frequency in a hot plasma, with a typical electron-to-wave energy conversion efficiency of ˜1% (2% peak). The knowledge of the k vector is then used to derive the locus of SKR sources in the kronian magnetosphere, which shows X and O components emanating from the same regions. We also compute the associated beaming angle at the source θ‧ = (k, -B) either from (1) in situ measurements or a model of the magnetic field vector (for local to distant sources) or (2) polarization measurements (for local sources). Obtained results, similar for both modes, suggest quasi-perpendicular emission for local sources, whereas the beaming pattern of distant sources appears as a hollow cone with a frequency-dependent constant aperture angle: θ‧ = 75° ± 15° below 300 kHz, decreasing at higher frequencies to reach θ‧ (1000 kHz) = 50° ± 25°. Finally, we investigate quantitatively the SKR polarization state, observed to be strongly elliptical at the source, and quasi-purely circular for sources located beyond approximately two kronian radii. We show that conditions of weak mode coupling are achieved along the raypath, under which the magnetoionic theory satisfactorily describes the evolution of the observed polarization. These results are analyzed comparatively with the auroral kilometric radiation at
MOVING SCREW DISLOCATION IN CUBIC QUASICRYSTAL
Institute of Scientific and Technical Information of China (English)
ZHOU Wang-min; SONG Yu-hai
2005-01-01
The elasticity theory of the dislocation of cubic quasicrystals is developed.The governing equations of anti-plane elasticity dynamics problem of the quasicrystals were reduced to a solution of wave equations by introducing displacement functions,and the analytical expressions of displacements, stresses and energies induced by a moving screw dislocation in the cubic quasicrystalline and the velocity limit of the dislocation were obtained. These provide important information for studying the plastic deformation of the new solid material.
2-rational Cubic Spline Involving Tension Parameters
Indian Academy of Sciences (India)
M Shrivastava; J Joseph
2000-08-01
In the present paper, 1-piecewise rational cubic spline function involving tension parameters is considered which produces a monotonic interpolant to a given monotonic data set. It is observed that under certain conditions the interpolant preserves the convexity property of the data set. The existence and uniqueness of a 2-rational cubic spline interpolant are established. The error analysis of the spline interpolant is also given.
Semisymmetric Cubic Graphs of Order 162
Indian Academy of Sciences (India)
Mehdi Alaeiyan; Hamid A Tavallaee; B N Onagh
2010-02-01
An undirected graph without isolated vertices is said to be semisymmetric if its full automorphism group acts transitively on its edge set but not on its vertex set. In this paper, we inquire the existence of connected semisymmetric cubic graphs of order 162. It is shown that for every odd prime , there exists a semisymmetric cubic graph of order 162 and its structure is explicitly specified by giving the corresponding voltage rules generating the covering projections.
Cubical version of combinatorial differential forms
DEFF Research Database (Denmark)
Kock, Anders
2010-01-01
The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....
Effect of pressure on itinerant magnetism and spin disorder in cubic FeGe.
Pulikkotil, J J; Auluck, S; Rout, P K; Budhani, R C
2012-03-01
The results of ab initio calculations of the pressure dependence of Fe magnetism in cubic FeGe are presented. We find that when the pressure-volume scale is set by means of generalized gradient approximation total energies and magnetism is described by means of the local density approximation, the critical pressure at which the magnetic phase transition occurs is estimated at ≈18 GPa, which is in good agreement with experiments. Using the disordered local moment method we find a localized to itinerant model cross-over of Fe magnetism in cubic FeGe, as a function of volume. Moreover, our calculations also suggest subtle signatures of longitudinal spin fluctuations in cubic FeGe, and that the stiffness parameter softens with increasing pressure. We associate the retention of metallicity in FeGe under pressure with the spin-disorder scattering. The effect of spin-orbit coupling on the electronic structure is also discussed.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Superhard BC(3) in cubic diamond structure.
Zhang, Miao; Liu, Hanyu; Li, Quan; Gao, Bo; Wang, Yanchao; Li, Hongdong; Chen, Changfeng; Ma, Yanming
2015-01-01
We solve the crystal structure of recently synthesized cubic BC(3) using an unbiased swarm structure search, which identifies a highly symmetric BC(3) phase in the cubic diamond structure (d-BC(3)) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d-BC(3) are in excellent agreement with experimental data. Calculated stress-strain relations of d-BC(3) demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. The present results establish the first boron carbide in the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.
Cubical Cohomology Ring of 3D Photographs
Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271
2011-01-01
Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.
An innovative, highly sensitive receiver system for the Square Kilometre Array Mid Radio Telescope
Tan, Gie Han; Lehmensiek, Robert; Billade, Bhushan; Caputa, Krzysztof; Gauffre, Stéphane; Theron, Isak P.; Pantaleev, Miroslav; Ljusic, Zoran; Quertier, Benjamin; Peens-Hough, Adriaan
2016-07-01
The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz - 13.8 GHz with an option for an upper limit of 24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.
Probing Statistical Isotropy of Cosmological Radio Sources using Square Kilometre Array
Indian Academy of Sciences (India)
Shamik Ghosh; Pankaj Jain; Gopal Kashyap; Rahul Kothari; Sharvari Nadkarni-Ghosh; Prabhakar Tiwari
2016-12-01
There currently exist many observations which are not consistent with the cosmological principle. We review these observations with a particular emphasis on those relevant for the Square Kilometre Array (SKA). In particular, several different data sets indicate a preferred direction pointing approximately towards the Virgo cluster. We also observe a hemispherical anisotropy in the Cosmic Microwave Background radiation (CMB) temperature fluctuations. Although these inconsistencies may be attributed to systematic effects, there remains the possibility that they indicate new physics and various theories have been proposed to explain them. One possibility, which we discuss in this review, is the generation of perturbation modes during the early pre-inflationary epoch, when the Universe may not obey the cosmological principle. Better measurements will provide better constraints on these theories. In particular, we propose measurement of the dipole in number counts, sky brightness, polarized flux and polarization orientations of radio sources. We also suggest test of alignment of linear polarizations of sources as a function of their relative separation. Finally we propose measurement of hemispherical anisotropy or equivalently dipole modulation in radio sources.
Neutron Star Physics in the Square Kilometre Array Era: An Indian Perspective
Indian Academy of Sciences (India)
Sushan Konar; Manjari Bagchi; Debades Bandyopadhyay; Sarmistha Banik; Dipankar Bhattacharya; Sudip Bhattacharyya; R. T. Gangadhara; A. Gopakumar; Yashwant Gupta; B. C. Joshi; Yogesh Maan; Chandreyee Maitra; Dipanjan Mukherjee; Archana Pai; Biswajit Paul; Alak K. Ray; Firoza K. Sutaria
2016-12-01
It is an exceptionally opportune time for astrophysics when a number of next-generation mega-instruments are poised to observe the Universe across the entire electromagnetic spectrum with unprecedented data quality. The Square Kilometre Array (SKA) is undoubtedly one of the major components of this scenario. In particular, the SKA is expected to discover tens of thousands of new neutron stars giving a major fillip to a wide range of scientific investigations. India has a sizeable community of scientists working on different aspects of neutron star physics with immediate access to both the uGMRT (an SKA pathfinder) and the recently launched X-ray observatory Astrosat. The current interests of the community largely centre around studies of (a) the generation of neutron stars and the SNe connection, (b) the neutron star population and evolutionary pathways, (c) the evolution of neutron stars in binaries and the magnetic fields, (d) the neutron star equation of state, (e) the radio pulsar emission mechanism, and (f) the radio pulsars as probes of gravitational physics. Most of these studies are the main goals of the SKA first phase, which is likely to be operational in the next four years. This article summarizes the science goals of the Indian neutron star community in the SKA era, with significant focus on coordinated efforts among the SKA and other existing/upcoming instruments.
Neutron Stars in the Light of Square Kilometre Array: Data, Statistics and Science
Indian Academy of Sciences (India)
Mihir Arjunwadkar; Akanksha Kashikar; Manjari Bagchi
2016-12-01
The Square Kilometre Array (SKA), when it becomes functional, is expected to enrich Neutron Star (NS) catalogues by at least an order of magnitude over their current state. This includes the discovery of new NS objects leading to better sampling of under-represented NS categories, precision measurements of intrinsic properties such as spin period and magnetic field, as also data on related phenomena such as microstructure, nulling, glitching, etc. This will present a unique opportunity to seek answers to interesting and fundamental questions about the extreme physics underlying these exotic objects in the Universe. In this paper, we first present a meta-analysis (from a methodological viewpoint) of statistical analyses performed using existing NS data, with a two-fold goal. First, this should bring out how statistical models and methods are shaped and dictated by the science problem being addressed. Second, it is hoped that these analyses will provide useful starting points for deeper analyses involving richer data from SKA whenever it becomes available. We also describe a few other areas of NS science which we believe will benefit from SKA which are of interest to the Indian NS community.
Horizontal sliding of kilometre-scale hot spring area during the 2016 Kumamoto earthquake
Tsuji, Takeshi; Ishibashi, Jun’Ichiro; Ishitsuka, Kazuya; Kamata, Ryuichi
2017-02-01
We report horizontal sliding of the kilometre-scale geologic block under the Aso hot springs (Uchinomaki area) caused by vibrations from the 2016 Kumamoto earthquake (Mw 7.0). Direct borehole observations demonstrate the sliding along the horizontal geological formation at ~50 m depth, which is where the shallowest hydrothermal reservoir developed. Owing to >1 m northwest movement of the geologic block, as shown by differential interferometric synthetic aperture radar (DInSAR), extensional open fissures were generated at the southeastern edge of the horizontal sliding block, and compressional deformation and spontaneous fluid emission from wells were observed at the northwestern edge of the block. The temporal and spatial variation of the hot spring supply during the earthquake can be explained by the horizontal sliding and borehole failures. Because there was no strain accumulation around the hot spring area prior to the earthquake and gravitational instability could be ignored, the horizontal sliding along the low-frictional formation was likely caused by seismic forces from the remote earthquake. The insights derived from our field-scale observations may assist further research into geologic block sliding in horizontal geological formations.
Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres
Hensen, B.; Bernien, H.; Dréau, A. E.; Reiserer, A.; Kalb, N.; Blok, M. S.; Ruitenberg, J.; Vermeulen, R. F. L.; Schouten, R. N.; Abellán, C.; Amaya, W.; Pruneri, V.; Mitchell, M. W.; Markham, M.; Twitchen, D. J.; Elkouss, D.; Wehner, S.; Taminiau, T. H.; Hanson, R.
2015-10-01
More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in `loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 +/- 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S certification.
Kaiser, M. L.; Alexander, J. K.
1977-01-01
The spectral properties of terrestrial kilometric radiation (TKR) derived from observations made during radio-astronomy experiments on board the Imp 6 and Radio Astronomy Explorer 2 spacecraft are studied. As viewed from near the equatorial plane, TKR is most intense and most often observed in the 2100-2400 LT zone and is rarely seen in the 0900-1200 LT zone. The absolute flux levels in the 100- to 600-kHz TKR band increase significantly with increasing substorm activity as inferred from the auroral electrojet index (AE). In the late-evening sector the median power increases by about 3 orders of magnitude between quiet periods (AE less than 75 gammas) and disturbed periods (AE above 200 gammas). The peak flux density usually occurs near 250 kHz, although the frequency of the peak in the flux spectrum appears to vary inversely with AE from a maximum near 300 kHz during very quiet times to a minimum below 200 kHz during very disturbed times. The half-power bandwidth is typically 100% of the peak frequency. The variation of TKR flux density with apparent source altitude indicates that source strength decreases more rapidly than the inverse square of distance.
The Cosmic Dawn and Epoch of Reionization with the Square Kilometre Array
Koopmans, L V E; Mellema, G; Abdalla, F; Aguirre, J; Ahn, K; Barkana, R; van Bemmel, I; Bernardi, G; Bonaldi, A; Briggs, F; de Bruyn, A G; Chang, T C; Chapman, E; Chen, X; Ciardi, B; Datta, K K; Dayal, P; Ferrara, A; Fialkov, A; Fiore, F; Ichiki, K; Illiev, I T; Inoue, S; Jelić, V; Jones, M; Lazio, J; Maio, U; Majumdar, S; Mack, K J; Mesinger, A; Morales, M F; Parsons, A; Pen, U -L; Santos, M; Schneider, R; Semelin, B; de Souza, R S; Subrahmanyan, R; Takeuchi, T; Trott, C; Vedantham, H; Wagg, J; Webster, R; Wyithe, S
2015-01-01
Concerted effort is currently ongoing to open up the Epoch of Reionization (EoR) ($z\\sim$15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-$\\alpha$ emitters, quasars and drop-outs) in this redshift regime in relatively small fields of view, no direct detection of neutral hydrogen, via the redshifted 21-cm line, has yet been established. Such a direct detection is expected in the coming years, with ongoing surveys, and could open up the entire universe from $z\\sim$6-200 for astrophysical and cosmological studies, opening not only the EoR, but also its preceding Cosmic Dawn ($z\\sim$30-15) and possibly even the later phases of the Dark Ages ($z\\sim$200-30). All currently ongoing experiments attempt statistical detections of the 21-cm signal during the EoR, with limited signal-to-noise. Direct imaging, except maybe on the largest (degree) scales at lower redshifts, as well as higher redshifts will remain out of reach. The Square Kilometre Array(SKA) will revolu...
Saturn kilometric radiation intensities during the Saturn auroral campaign of 2013
Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Lamy, L.; Dougherty, M. K.; Nichols, J.; Bunce, E. J.; Pryor, W.; Baines, K.; Stallard, T.; Melin, H.; Crary, F. J.
2016-01-01
The Saturn auroral campaign carried out in the spring of 2013 used multiple Earth-based observations, remote-sensing observations from Cassini, and in situ-observations from Cassini to further our understanding of auroras at Saturn. Most of the remote sensing and Earth-based measurements are, by nature, not continuous. And, even the in situ measurements, while continuously obtained, are not always obtained in regions relevant to the study of the aurora. Saturn kilometric radiation, however, is remotely monitored nearly continuously by the Radio and Plasma Wave Science instrument on Cassini. This radio emission, produced by the cyclotron maser instability, is tightly tied to auroral processes at Saturn as are auroral radio emissions at other planets, most notably Jupiter and Earth. This paper provides the time history of the intensity of the radio emissions through the auroral campaign as a means of understanding the temporal relationships between the sometimes widely spaced observations of the auroral activity. While beaming characteristics of the radio emissions are known to prevent single spacecraft observations of this emission from being a perfect auroral activity indicator, we demonstrate a good correlation between the radio emission intensity and the level of UV auroral activity, when both measurements are available.
Observations of Saturn Kilometric Radiation during the Saturn Auroral Campaign of Spring 2013
Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Lamy, L.; Mitchell, D. G.; Dougherty, M. K.; Nichols, J.; Pryor, W.; Baines, K. H.; Dyudina, U.; Stallard, T.; O'Donoghue, J.; Melin, H.; Crary, F. J.; Miller, S.
2013-09-01
During April and May 2013, a concerted effort to study Saturn's auroras was mounted using multi-wavelength observations from Cassini and a number of Earth-based observations. It has been shown that the integrated power of Saturn Kilometric Radiation (SKR) provides a good proxy for auroral activity and there is at least a qualitative correlation between auroral brightness and SKR intensity. While the SKR observations can be complicated by beaming issues, they provide a reasonable, continuous context within which to place other observations. For example, during the first Hubble Space Telescope visit on 5 April 2013, a brightened poleward expansion of the UV aurora was observed while the SKR intensity was elevated during most of the day as shown in Figure 1. In the following, more extended interval of the campaign over 19 - 23 April 2013, the SKR intensity is low for the first few days but intensifies later in the interval, reflecting increasing UV auroral activity as seen by Hubble. In this paper we will present the SKR intensities over time intervals of the auroral campaign along with other Cassini and Earth-based observations for selected events.
Search for an eventual control of Saturnian kilometric radiation by Titan satellite
Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Lecacheux, Alain; Rucker, Helmut
2013-04-01
The Cassini Radio and Plasma Wave Science Experiment (RPWS) revealed prominent arcs when the data are displayed in time-frequency coordinates, in the so-called dynamic spectra. We show that the Saturnian Kilometric Radiation (SKR) presents different kinds of characteristic appearances like arc structures. Those arcs may be classified in two sets: the 'vertex early arcs' (VEA) and the 'vertex late arcs' (VLA), and are observed in the frequency range between 80 kHz and 1 MHz. We investigate the probable control of the SKR arcs by the Titan satellite. We emphasis in this study on the arc observational parameters (e.g. the probability of occurrence, the local time and the gyro-frequency) and their eventual relations to the geometrical configuration between Saturn, Titan, and the observed (i.e. Cassini spacecraft). We follow in this analysis a similar method applied to the control of Jovian decametric emissions by the Io satellite. This method consists principally to observe, on one side, the arc curvatures and their corresponding maximum frequency, and on the other side the orbital phase of the Titan satellite around the planet. This leads us to provide a first attempt concerning the 'controls' of non-thermal Jovian and Saturnian radio emissions, respectively, by Io and Titan satellites.
Alexander, J. K.; Kaiser, M. L.
1976-01-01
Observations are presented of lunar occultations of the earth at 250 kHz obtained with the Radio-Astronomy-Explorer-2 satellite which were used to derive two dimensional maps of the location of the sources of terrestrial kilometric radiation (TKR). By examining the two dimensional source distributions as a function of the observer's location (lunar orbit) with respect to the magnetosphere, the average three dimensional location of the emission regions can be estimated. Although TKR events at 250 kHz can often be observed at projected distances corresponding to the 250 kHz electron gyro or plasma level (approximately 2 earth radii), many events are observed much farther from the earth (between 5 and 15 earth radii). Dayside emission apparently in the region of the polar cusp and the magnetosheath and night emission associated with regions of the magnetotail are examined. The nightside emission is suggestive of a mechanism involving plasma sheet electron precipitation in the pre-midnight sector.
Japanese Cosmic Dawn/Epoch of Reionization Science with the Square Kilometre Array
Hasegawa, Kenji; Ichiki, Kiyotomo; Inoue, Akio K; Inoue, Susumu; Ishiyama, Tomoaki; Shimabukuro, Hayato; Takahashi, Keitaro; Tashiro, Hiroyuki; Yajima, Hidenobu; Yokoyama, Shu-ichiro; Yoshikawa, Kohji; Yoshiura, Shintaro
2016-01-01
Cosmic reionization is known to be a major phase transition of the gas in the Universe. Since astronomical objects formed in the early Universe, such as the first stars, galaxies and black holes, are expected to have caused cosmic reionization, the formation history and properties of such objects are closely related to the reionization process. In spite of the importance of exploring reionization, our understandings regarding reionization is not sufficient yet. Square Kilometre Array (SKA) is a next-generation large telescope that will be operated in the next decade. Although several programs of next-generation telescopes are currently scheduled, the SKA will be the unique telescope with a potential to directly observe neutral hydrogen up to z~30, and provide us with valuable information on the Cosmic Dawn (CD) and the Epoch of Reionization (EoR). The early science with the SKA will start in a few years; it is thus the time for us to elaborate a strategy for CD/EoR Science with the SKA. The purpose of this do...
Extending cosmological tests of General Relativity with the Square Kilometre Array
Bull, Philip
2016-01-01
Tests of general relativity (GR) are still in their infancy on cosmological scales, but forthcoming experiments promise to greatly improve their precision over a wide range of distance scales and redshifts. One such experiment, the Square Kilometre Array (SKA), will carry out several wide and deep surveys of resolved and unresolved neutral hydrogen (HI) 21cm line-emitting galaxies, mapping a significant fraction of the sky from $0 \\le z \\lesssim 6$. I present forecasts for the ability of a suite of possible SKA HI surveys to detect deviations from GR by reconstructing the cosmic expansion and growth history. SKA Phase 1 intensity mapping surveys can achieve sub-1% measurements of $f\\sigma_8$ out to $z\\approx 1$, with an SKA1-MID Band 2 survey out to $z \\lesssim 0.6$ able to surpass contemporary spectroscopic galaxy surveys such as DESI and Euclid in terms of constraints on modified gravity parameters if challenges such as foreground contamination can be tackled effectively. A more futuristic Phase 2 HI survey...
Lamy, L; Zarka, P; Canu, P; Schippers, P; Kurth, W S; Mutel, R L; Gurnett, D A; Menietti, J D; Louarn, P
2011-01-01
The Cassini mission crossed the source region of the Saturn kilometric radiation (SKR) on 17 October 2008. On this occasion, the Radio and Plasma Wave Science (RPWS) experiment detected both local and distant radio sources, while plasma parameters were measured in situ by the magnetometer (MAG) and the Cassini Plasma Spectrometer (CAPS). A goniopolarimetric inversion was applied to RPWS 3-antenna electric measurements to determine the wave vector k and the complete state of polarization of detected waves. We identify broadband extraordinary (X) as well as narrowband ordinary (O) mode SKR at low frequencies. Within the source region, SKR is emitted just above the X mode cutoff frequency in a hot plasma, with a typical electron-to-wave energy conversion efficiency of 1% (2% peak). The knowledge of the k-vector is then used to derive the locus of SKR sources in the kronian magnetosphere, that shows X and O components emanating from the same regions. We also compute the associated beaming angle at the source thet...
Measurements of the Cosmological Evolution of Magnetic Fields with the Square Kilometre Array
Krause, Martin; Bolton, Rosie; Geisbuesch, Joern; Green, David A; Riley, Julia
2009-01-01
We investigate the potential of the Square Kilometre Array (SKA) for measuring the magnetic fields in clusters of galaxies via Faraday rotation of background polarised sources. [...] We find that about 10 per cent of the sky is covered by a significant extragalactic Faraday screen. Most of it has rotation measures between 10 and 100 rad/m/m. We argue that the cluster centres should have up to about 5000 rad/m/m. We show that the proposed mid frequency aperture array of the SKA as well as the lowest band of the SKA dish array are well suited to make measurements for most of these rotation measure values, typically requiring a signal-to-noise of ten. We calculate the spacing of sources forming a grid for the purpose of measuring foreground rotation measures: it reaches a spacing of 36 arcsec for a 100 hour SKA observation per field. We also calculate the statistics for background RM measurements in clusters of galaxies. We find that a first phase of the SKA would allow us to take stacking experiments out to hig...
Possible Gamma-Ray Burst radio detections by the Square Kilometre Array. New perspectives
Ruggeri, Alan Cosimo
2016-01-01
The next generation interferometric radio telescope, the Square Kilometre Array (SKA), which will be the most sensitive and largest radio telescope ever constructed, could greatly contribute to the detection, survey and characterization of Gamma Ray Bursts (GRBs). By the SKA, it will be possible to perform the follow up of GRBs even for several months. This approach would be extremely useful to extend the Spectrum Energetic Distribution (SED) from the gamma to the to radio band and would increase the number of radio detectable GRBs. In principle, the SKA could help to understand the physics of GRBs by setting constraints on theoretical models. This goal could be achieved by taking into account multiple observations at different wavelengths in order to obtain a deeper insight of the sources. Here, we present an estimation of GRB radio detections, showing that the GRBs can really be observed by the SKA. The approach that we present consists in determining blind detection rates derived by a very large sample con...
Neutron Star Physics in the Square Kilometre Array Era: An Indian Perspective
Konar, Sushan; Bagchi, Manjari; Bandyopadhyay, Debades; Banik, Sarmistha; Bhattacharya, Dipankar; Bhattacharyya, Sudip; Gangadhara, R. T.; Gopakumar, A.; Gupta, Yashwant; Joshi, B. C.; Maan, Yogesh; Maitra, Chandreyee; Mukherjee, Dipanjan; Pai, Archana; Paul, Biswajit; Ray, Alak K.; Sutaria, Firoza K.
2016-12-01
It is an exceptionally opportune time for astrophysics when a number of next-generation mega-instruments are poised to observe the Universe across the entire electromagnetic spectrum with unprecedented data quality. The Square Kilometre Array (SKA) is undoubtedly one of the major components of this scenario. In particular, the SKA is expected to discover tens of thousands of new neutron stars giving a major fillip to a wide range of scientific investigations. India has a sizeable community of scientists working on different aspects of neutron star physics with immediate access to both the uGMRT (an SKA pathfinder) and the recently launched X-ray observatory Astrosat. The current interests of the community largely centre around studies of (a) the generation of neutron stars and the SNe connection, (b) the neutron star population and evolutionary pathways, (c) the evolution of neutron stars in binaries and the magnetic fields, (d) the neutron star equation of state, (e) the radio pulsar emission mechanism, and (f) the radio pulsars as probes of gravitational physics. Most of these studies are the main goals of the SKA first phase, which is likely to be operational in the next four years. This article summarizes the science goals of the Indian neutron star community in the SKA era, with significant focus on coordinated efforts among the SKA and other existing/upcoming instruments.
Purely cubic action for string field theory
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Purely cubic action for string field theory
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
DEFICIENT CUBIC SPLINES WITH AVERAGE SLOPE MATCHING
Institute of Scientific and Technical Information of China (English)
V. B. Das; A. Kumar
2005-01-01
We obtain a deficient cubic spline function which matches the functions with certain area matching over a greater mesh intervals, and also provides a greater flexibility in replacing area matching as interpolation. We also study their convergence properties to the interpolating functions.
Counting rational points on cubic curves
Institute of Scientific and Technical Information of China (English)
HEATH-BROWN; Roger; TESTA; Damiano
2010-01-01
We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in the proof is a combination of the "determinant method" with an m-descent on the curve.
CONSTRAINED RATIONAL CUBIC SPLINE AND ITS APPLICATION
Institute of Scientific and Technical Information of China (English)
Qi Duan; Huan-ling Zhang; Xiang Lai; Nan Xie; Fu-hua (Frank) Cheng
2001-01-01
In this paper, a kind of rational cubic interpolation functionwith linear denominator is constructed. The constrained interpolation with constraint on shape of the interpolating curves and on the second-order derivative of the interpolating function is studied by using this interpolation, and as the consequent result, the convex interpolation conditions have been derived.
Anisotropy of a cubic ferromagnet at criticality
Kudlis, A.; Sokolov, A. I.
2016-10-01
Critical fluctuations change the effective anisotropy of cubic ferromagnet near the Curie point. If the crystal undergoes phase transition into orthorhombic phase and the initial anisotropy is not too strong, reduced anisotropy of nonlinear susceptibility acquires at Tc the universal value δ4*=2/v* 3 (u*+v*) where u* and v* are coordinates of the cubic fixed point on the flow diagram of renormalization group equations. In the paper, the critical value of the reduced anisotropy is estimated within the pseudo-ɛ expansion approach. The six-loop pseudo-ɛ expansions for u*, v*, and δ4* are derived for the arbitrary spin dimensionality n . For cubic crystals (n =3 ) higher-order coefficients of the pseudo-ɛ expansions obtained turn out to be so small that use of simple Padé approximants yields reliable numerical results. Padé resummation of the pseudo-ɛ series for u*, v*, and δ4* leads to the estimate δ4*=0.079 ±0.006 , indicating that detection of the anisotropic critical behavior of cubic ferromagnets in physical and computer experiments is certainly possible.
Binomial Squares in Pure Cubic Number Fields
Lemmermeyer, Franz
2011-01-01
Let K = Q(\\omega) with \\omega^3 = m be a pure cubic number field. We show that the elements\\alpha \\in K^\\times whose squares have the form a - \\omega form a group isomorphic to the group of rational points on the elliptic curve E_m: y^2= x^3 - m.
The cactus rank of cubic forms
Bernardi, Alessandra
2011-01-01
We prove that the smallest degree of an apolar 0-dimensional scheme to a general cubic form in $n+1$ variables is at most $2n+2$, when $n\\geq 8$, and therefore smaller than the rank of the form. When n=8 we show that the bound is sharp, i.e. the smallest degree of an apolar subscheme is 18.
Feurer, Denis; Planchon, Olivier; Maaoui, Mohamed Amine; Boussema, Mohamed Rached; Pierrot-Deseilligny, Marc
2017-01-01
This work proposes an alternative method to answer the issue of quasi-exhaustive mapping of erosion features on kilometre square areas by remote sensing. This study presents a method to produce decimetric Digital Elevation Models (DEMs) with kite aerial photography and an algorithm to map gully erosion from these DEMs. Kite aerial photography is robust and cheap in comparison to Unmanned Aerial Vehicles (UAVs). The use of such a simple apparatus is made possible if the flight angle of ...
Possible gamma-ray burst radio detections by the Square Kilometre Array. New perspectives
Ruggeri, Alan Cosimo; Capozziello, Salvatore
2016-09-01
The next generation interferometric radio telescope, the Square Kilometre Array (SKA), which will be the most sensitive and largest radio telescope ever constructed, could greatly contribute to the detection, survey and characterization of Gamma Ray Bursts (GRBs). By the SKA, it will be possible to perform the follow up of GRBs even for several months. This approach would be extremely useful to extend the Spectrum Energetic Distribution (SED) from the gamma to the to radio band and would increase the number of radio detectable GRBs. In principle, the SKA could help to understand the physics of GRBs by setting constraints on theoretical models. This goal could be achieved by taking into account multiple observations at different wavelengths in order to obtain a deeper insight of the sources. Here, we present an estimation of GRB radio detections, showing that the GRBs can really be observed by the SKA. The approach that we present consists in determining blind detection rates derived by a very large sample consisting of merging several GRB catalogues observed by current missions as Swift, Fermi, Agile and INTEGRAL and by previous missions as BeppoSAX, CGRO, GRANAT, HETE-2, Ulysses and Wind. The final catalogue counts 7516 distinct sources. We compute the fraction of GRBs that could be observed by the SKA at high and low frequencies, above its observable sky. Considering the planned SKA sensitivity and through an extrapolation based on previous works and observations, we deduce the minimum fluence in the range 15-150 keV. This is the energy interval where a GRB should emit to be detectable in the radio band by the SKA. Results seem consistent with observational capabilities.
Indian Academy of Sciences (India)
Poonam Chandra; G. C. Anupama; K. G. Arun; Shabnam Iyyani; Kuntal Misra; D. Narasimha; Alak Ray; L. Resmi; Subhashis Roy; Firoza Sutaria
2016-12-01
With the high sensitivity and wide-field coverage of the Square Kilometre Array (SKA), large samples of explosive transients are expected to be discovered. Radio wavelengths, especially in commensal survey mode, are particularly well-suited for uncovering the complex transient phenomena. This is because observations at radio wavelengths may suffer less obscuration than in other bands (e.g. optical/IR or X-rays) due to dust absorption. At the same time, multiwaveband information often provides critical source classification rapidly than possible with only radio band data. Therefore, multiwaveband observational efforts with wide fields of view will be the key to progress of transients astronomy from the middle 2020s offering unprecedented deep images and high spatial and spectral resolutions. Radio observations of Gamma Ray Bursts (GRBs) with SKA will uncover not only much fainter bursts and verifying claims of sensitivity-limited population versus intrinsically dim GRBs, they will also unravel the enigmatic population of orphan afterglows. The supernova rate problem caused by dust extinction in optical bands is expected to be lifted in the SKA era. In addition, the debate of single degenerate scenario versus double degenerate scenario will be put to rest for the progenitors of thermonuclear supernovae, since highly sensitive measurements will lead to very accurate mass loss estimation in these supernovae. One also expects to detect gravitationally lensed supernovae in far away Universe in the SKA bands. Radio counterparts of the gravitational waves are likely to become a reality once SKA comes online. In addition, SKA is likely to discover various new kinds of transients.
Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case
Villaescusa-Navarro, Francisco; Alonso, David; Viel, Matteo
2017-04-01
We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21 cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometre Array (SKA) instrument, makes it undetectable at redshifts z ≳ 1. We however demonstrate that the BAO peak can still be detected in the radial 21 cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21 cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21 cm power spectrum. We systematically investigate the signal to noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by ∼5 per cent with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to ∼65 per cent at z ∼ 2-3. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of ∼20 per cent in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21 cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate H(z) with measure the expansion with competitive per cent level precision on redshifts z ≲ 2.5.
A possible influence of the Great White Spot on Saturn kilometric radiation periodicity
Fischer, G.; Ye, S.-Y.; Groene, J. B.; Ingersoll, A. P.; Sayanagi, K. M.; Menietti, J. D.; Kurth, W. S.; Gurnett, D. A.
2014-12-01
The periodicity of Saturn kilometric radiation (SKR) varies with time, and its two periods during the first 5 years of the Cassini mission have been attributed to SKR from the northern and southern hemisphere. After Saturn equinox in August 2009, there were long intervals of time (March 2010 to February 2011 and September 2011 to June 2012) with similar northern and southern SKR periods and locked SKR phases. However, from March to August 2011 the SKR periods were split up again, and the phases were unlocked. In this time interval, the southern SKR period slowed down by ~ 0.5% on average, and there was a large jump back to a faster period in August 2011. The northern SKR period speeded up and coalesced again with the southern period in September 2011. We argue that this unusual behavior could be related to the so-called Great White Spot (GWS), a giant thunderstorm that raged in Saturn's atmosphere around that time. For several months in 2011, the visible head of the GWS had the same period of ~ 10.69 h as the main southern SKR modulation signal. The GWS was most likely a source of intense gravity waves that may have caused a global change in Saturn's thermospheric winds via energy and momentum deposition. This would support the theory that Saturn's magnetospheric periodicities are driven by the upper atmosphere. Since the GWS with simultaneous SKR periodicity measurements have only been made once, it is difficult to prove a physical connection between these two phenomena, but we provide plausible mechanisms by which the GWS might modify the SKR periods.
Etherington, Thomas R.; Perry, George L. W.
2017-01-01
Lightning is a key component of the Earth's atmosphere and climate systems, and there is a potential positive feedback between a warming climate and increased lightning activity. In the biosphere, lightning is important as the main natural ignition source for wildfires and because of its contribution to the nitrogen cycle. Therefore, it is important to develop lightning climatologies to characterise and monitor lightning activity. While traditional methods for constructing lightning climatologies are suitable for examining lightning's influence on atmospheric processes, they are less well suited for examining questions about biosphere-lightning interactions. For example, examining the interaction between lightning and wildfires requires linking atmospheric processes to finer scale terrestrial processes and patterns. Most wildfires ignited by lightning are less than one hectare in size, and so require lightning climatologies at a comparable spatial resolution. However, such high resolution lightning climatologies cannot be derived using the traditional cell-count methodology. Here we present a novel geocomputational approach for analysing lightning data at high spatial resolutions. Our approach is based on probabilistic computational methods and is capable of producing a sub-kilometre lightning climatology that honours the spatial accuracy of the strike locations and is adaptive to underlying spatial patterns. We demonstrate our methods by applying them to the mid-latitude oceanic landmass of New Zealand, an area with geographic conditions that are under-represented in existing lightning climatologies. Our resulting lightning climatology has unparalleled spatial resolution, and the spatial and temporal patterns we observe in it are consistent with other continental and tropical lightning climatologies. To encourage further use and development of our probabilistic approach, we provide Python scripts that demonstrate the method alongside our resulting New Zealand
Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres.
Hensen, B; Bernien, H; Dréau, A E; Reiserer, A; Kalb, N; Blok, M S; Ruitenberg, J; Vermeulen, R F L; Schouten, R N; Abellán, C; Amaya, W; Pruneri, V; Mitchell, M W; Markham, M; Twitchen, D J; Elkouss, D; Wehner, S; Taminiau, T H; Hanson, R
2015-10-29
More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in 'loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 ± 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S ≤ 2 and found S = 2.42 ± 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.
Energy Density Bounds in Cubic Quasi-Topological Cosmology
dS, U Camara; Sotkov, G M
2013-01-01
We investigate the thermodynamical and causal consistency of cosmological models of the cubic Quasi-Topological Gravity (QTG) in four dimensions, as well as their phenomenological consequences. Specific restrictions on the maximal values of the matter densities are derived by requiring the apparent horizon's entropy to be a non-negative, non-decreasing function of time. The QTG counterpart of the Einstein-Hilbert (EH) gravity model of linear equation of state is studied in detail. An important feature of this particular QTG cosmological model is the new early-time acceleration period of the evolution of the Universe, together with the standard late-time acceleration present in the original EH model. The QTG correction to the causal diamond's volume is also calculated.
THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE
Directory of Open Access Journals (Sweden)
T. O. Parashchuk
2016-07-01
Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.
Face-Centered-Cubic Nanostructured Polymer Foams
Cui, C.; Baughman, R. H.; Liu, L. M.; Zakhidov, A. A.; Khayrullin, I. I.
1998-03-01
Beautifully iridescent polymer foams having Fm-3m cubic symmetry and periodicities on the scale of the wavelength of light have been synthesized by the templating of porous synthetic opals. These fabrication processes involve the filling of porous SiO2 opals (with typical cubic lattice parameters of 250 nm) with either polymers or polymer precursors, polymerization of the precursors if necessary, and removal of the fcc array of SiO2 balls to provide an all-polymer structure. The structures of these foams are similar to periodic minimal surfaces, although the Gaussian curvature can have both positive and negative values. Depending upon whether the internal surfaces of the opal are polymer filled or polymer coated, the polymer replica has either one or two sets of independent channels. We fill these channels with semiconductors, metals, or superconductors to provide electronic and optical materials with novel properties dependent on the nanoscale periodicity.
Cubic Polynomials with Rational Roots and Critical Points
Gupta, Shiv K.; Szymanski, Waclaw
2010-01-01
If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.
Use of Pom Pons to Illustrate Cubic Crystal Structures.
Cady, Susan G.
1997-01-01
Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)
Shape preserving rational bi-cubic function
Directory of Open Access Journals (Sweden)
Malik Zawwar Hussain
2012-11-01
Full Text Available The study is dedicated to the development of shape preserving interpolation scheme for monotone and convex data. A rational bi-cubic function with parameters is used for interpolation. To preserve the shape of monotone and convex data, the simple data dependent constraints are developed on these parameters in each rectangular patch. The developed scheme of this paper is confined, cheap to run and produce smooth surfaces.
Cubic Lienard Equations with Quadratic Damping (Ⅱ)
Institute of Scientific and Technical Information of China (English)
Yu-quan Wang; Zhu-jun Jing
2002-01-01
Applying Hopf bifurcation theory and qualitative theory, we show that the general cubic Lienard equations with quadratic damping have at most three limit cycles. This implies that the guess in which the system has at most two limit cycles is false. We give the sufficient conditions for the system has at most three limit cycles or two limit cycles. We present two examples with three limit cycles or two limit cycles by using numerical simulation.
Local atomic structure in cubic stabilized zirconia
Energy Technology Data Exchange (ETDEWEB)
Villella, P.; Conradson, S. D.; Espinosa-Faller, F. J.; Foltyn, S. R.; Sickafus, K. E.; Valdez, J. A.; Degueldre, C. A.
2001-09-01
X-ray-absorption fine structure measurements have been used to elucidate the local atomic structure of quaternary Zr, Y, Er, Ce/U cubic stabilized zirconia. These compounds display more complicated local environments than those reported for simpler binary systems. While the shortest cation-O distances are similar to those found in the binary cubic stabilized compounds, responding to the different sizes of the cations, we have identified large distortions in the first-shell oxygen distribution involving long, 2.8--3.2 {angstrom} cation-O distances that are similar to those found in the amorphous phase of zirconium. The cation-cation distributions are also found to be quite complicated (non-Gaussian) and element specific. The U-near neighbor distances are expanded relative to the Ce ions for which it substitutes, consistent with the larger size of the actinide, and the U-cation distribution is also more complicated. In terms of the effects of this substitution on the other cation sites, the local environment around Y is altered while the Zr and Er local environments remain unchanged. These results point out the importance of collective and correlated interactions between the different pairs of cations and the host lattice that are mediated by the local strain fields generated by the different cations. The presence of pair-specific couplings has not been commonly included in previous analyses and may have implications for the stabilization mechanisms of cubic zirconia.
The special symplectic structure of binary cubics
Slupinski, Marcus
2009-01-01
Let $k$ be a field of characteristic not 2 or 3. Let $V$ be the $k$-space of binary cubic polynomials. The natural symplectic structure on $k^2$ promotes to a symplectic structure $\\omega$ on $V$ and from the natural symplectic action of $\\textrm{Sl}(2,k)$ one obtains the symplectic module $(V,\\omega)$. We give a complete analysis of this symplectic module from the point of view of the associated moment map, its norm square $Q$ (essentially the classical discriminant) and the symplectic gradient of $Q$. Among the results are a symplectic derivation of the Cardano-Tartaglia formulas for the roots of a cubic, detailed parameters for all $\\textrm{Sl}(2,k)$ and $\\textrm{Gl}(2,k)$-orbits, in particular identifying a group structure on the set of $\\textrm{Sl}(2,k)$-orbits of fixed nonzero discriminant, and a purely symplectic generalization of the classical Eisenstein syzygy for the covariants of a binary cubic. Such fine symplectic analysis is due to the special symplectic nature inherited from the ambient excepti...
Method of synthesizing cubic system boron nitride
Energy Technology Data Exchange (ETDEWEB)
Yuzu, S.; Sumiya, H.; Degawa, J.
1987-10-13
A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.
Clusters of Galaxies and the Cosmic Web with Square Kilometre Array
Indian Academy of Sciences (India)
Ruta Kale; K. S. Dwarakanath; Dharam Vir Lal; Joydeep Bagchi; Surajit Paul; Siddharth Malu; Abhirup Datta; Viral Parekh; Prateek Sharma; Mamta Pandey-Pommier
2016-12-01
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive
Linear prediction studies for the solar wind and Saturn kilometric radiation
Directory of Open Access Journals (Sweden)
U. Taubenschuss
2006-11-01
Full Text Available The external control of Saturn kilometric radiation (SKR by the solar wind has been investigated in the frame of the Linear Prediction Theory (LPT. The LPT establishes a linear filter function on the basis of correlations between input signals, i.e. time profiles for solar wind parameters, and output signals, i.e. time profiles for SKR intensity. Three different experiments onboard the Cassini spacecraft (RPWS, MAG and CAPS yield appropriate data sets for compiling the various input and output signals. The time period investigated ranges from DOY 202 to 326, 2004 and is only limited due to limited availability of CAPS plasma data for the solar wind. During this time Cassini was positioned mainly on the morning side on its orbit around Saturn at low southern latitudes. Four basic solar wind quantities have been found to exert a clear influence on the SKR intensity profile. These quantities are: the solar wind bulk velocity, the solar wind ram pressure, the magnetic field strength of the interplanetary magnetic field (IMF and the y-component of the IMF. All four inputs exhibit nearly the same level of efficiency for the linear prediction indicating that all four inputs are possible drivers for triggering SKR. Furthermore, they act at completely different lag times ranging from ~13 h for the ram pressure to ~52 h for the bulk velocity. The lag time for the magnetic field strength is usually beyond ~40 h and the lag time for the y-component of the magnetic field is located around 30 h. Considering that all four solar wind quantities are interrelated in a corotating interaction region, only the influence of the ram pressure seems to be of reasonable relevance. An increase in ram pressure causes a substantial compression of Saturn's magnetosphere leading to tail collapse, injection of hot plasma from the tail into the outer magnetosphere and finally to an intensification of auroral dynamics and SKR emission. So, after the onset of magnetospheric
Simulated square kilometre array maps from Galactic 3D-emission models
Sun, X. H.; Reich, W.
2009-11-01
Context: Planning of the Square Kilometre Array (SKA) requires simulations of the expected sky emission at arcsec angular resolution to evaluate its scientific potential, to constrain its technical realization in the best possible way, and to guide the observing strategy. Aims: We simulate high-resolution total intensity, polarization, and rotation measure (RM) maps of selected fields based on our recent global 3D-model of Galactic emission. Methods: Simulations of diffuse Galactic emission were conducted using the hammurabi code modified for arcsec angular resolution patches towards various Galactic directions. The random magnetic field components are set to follow a Kolmogorov-like power-law spectrum. We analysed the simulated maps in terms of their probability density functions (PDFs) and structure functions. Results: We present maps for various Galactic longitudes and latitudes at 1.4 GHz, which is the frequency where deep SKA surveys are proposed. The maps are about 1.5 ° in size and have an angular resolution of about 1.6 °. Total intensity emission is smoother in the plane than at high latitudes because of the different contributions from the regular and random magnetic field. The high-latitude fields show more extended polarized emission and RM structures than those in the plane, where patchy emission structures dominate on very small scales. The RM PDFs in the plane are close to Gaussians, but clearly deviate from that at high latitudes. The RM structure functions show smaller amplitudes and steeper slopes towards high latitudes. These results emerge from much more turbulent cells being passed through by the line-of-sights in the plane. Although the simulated random magnetic field components distribute in 3D, the magnetic field spectrum extracted from the structure functions of RMs conforms to 2D in the plane and approaches 3D at high latitudes. This is partly related to the outer scale of the turbulent magnetic field, but mainly to the different lengths
Energy Technology Data Exchange (ETDEWEB)
Song, T., E-mail: songting_lzjtu@yeah.net [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Ma, Q. [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Sun, X.W., E-mail: xsun@carnegiescience.edu [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 (United States); Liu, Z.J., E-mail: liuzj_lzcu@163.com [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Department of Physics, Lanzhou City University, Lanzhou 730070 (China); Fu, Z.J. [School of Electrical and Electronic Engineering, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Wei, X.P.; Wang, T.; Tian, J.H. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China)
2016-09-07
The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.
Fiber-to-the-telescope: MeerKAT, the South African precursor to Square Kilometre Telescope Array
Gibbon, Tim B.; Rotich Kipnoo, Enoch K.; Gamatham, Romeo R. G.; Leitch, Andrew W. R.; Siebrits, Renier; Julie, Roufurd; Malan, Sias; Rust, Warnich; Kapp, Francois; Venkatasubramani, Thondikulam L.; Wallace, Bruce; Peens-Hough, Adriaan; Herselman, Paul
2015-04-01
Scientific curiosity to probe the nature of the universe is pushing the boundaries of big data transport and computing for radio telescopes. MeerKAT, the South African precursor to Square Kilometre Array, has 64 antennas separated by up to 12 km. By 2018, each antenna will stream up to 160 Gbps over optical fiber to a central computing engine. The antenna digitizers require highly accurate clock signals distributed with high stability. This paper outlines requirements and key design aspects of the MeerKAT network with timing reference overlay. Fieldwork results are presented into the impact of birefringence and polarization fluctuations on clock stability.
Wild, Sarah
2012-01-01
An ambitious scientific project is unfolding in the desert of South Africa, with a multi-decade timeline that will eventually see expansion into Western Australia-a project that is detailed and celebrated in this book on the Square Kilometre Array (SKA). The SKA will be the largest and most sensitive radio telescope, expanding the capabilities of scientific probing and addressing significant unanswered questions about the universe, such as on the formation of galaxies and the nature of gravity. Keen technology correspondent Sarah Wild covers the important development with this exploration of i
Symmetry transition in the cubic phase of a ternary surfactant system
Radiman, S.; Toprakcioglu, C.; Faruqi, A.R.
1990-01-01
We report a small-angle X-ray and neutron scattering investigation in the cubic phase of the ternary system water/didodecyldimethyl ammonium bromide (DDAB)/octane. We have observed a systematic variation in the lattice parameter as a function of water content, which can be related to the change in interfacial area per unit cell with the aqueous volume fraction. Our results are consistent with a bicontinuous periodic constant mean curvature structure, and show a transition from diamond to body...
Cherenkov and Scintillation Properties of Cubic Zirconium
Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.
2008-01-01
Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed
Tachyon Vacuum in Cubic Superstring Field Theory
Erler, Theodore
2008-01-01
In this paper we give an exact analytic solution for tachyon condensation in the modified (picture 0) cubic superstring field theory. We prove the absence of cohomology and, crucially, reproduce the correct value for the D-brane tension. The solution is surprising for two reasons: First, the existence of a tachyon vacuum in this theory has not been definitively established in the level expansion. Second, the solution {\\it vanishes} in the GSO$(-)$ sector, implying a ``tachyon vacuum'' solution exists even for a {\\it BPS} D-brane.
Generalized fairing algorithm of parametric cubic splines
Institute of Scientific and Technical Information of China (English)
WANG Yuan-jun; CAO Yuan
2006-01-01
Kjellander has reported an algorithm for fairing uniform parametric cubic splines. Poliakoff extended Kjellander's algorithm to non-uniform case. However, they merely changed the bad point's position, and neglected the smoothing of tangent at bad point. In this paper, we present a fairing algorithm that both changed point's position and its corresponding tangent vector. The new algorithm possesses the minimum property of energy. We also proved Poliakoff's fairing algorithm is a deduction of our fairing algorithm. Several fairing examples are given in this paper.
Fractal Symmetries: Ungauging the Cubic Code
Williamson, Dominic J
2016-01-01
Gauging is a ubiquitous tool in many-body physics. It allows one to construct highly entangled topological phases of matter from relatively simple phases and to relate certain characteristics of the two. Here we develop a gauging procedure for general submanifold symmetries of Pauli Hamiltonians, including symmetries of fractal type. We show a relation between the pre- and post- gauging models and use this to construct short range entangled phases with fractal like symmetries, one of which is mapped to the cubic code by the gauging.
The Exact Limit of Some Cubic Towers
DEFF Research Database (Denmark)
Anbar Meidl, Nurdagül; Beelen, Peter; Nguyen, Nhut
2016-01-01
Recently, a new explicit tower of function fields was introduced by Bassa, Beelen, Garcia and Stichtenoth (BBGS). This resulted in currently the best known lower bound for Ihara’s constant in the case of non-prime finite fields. In particular over cubic fields, the tower’s limit is at least as good...... as Zink’s bound; i.e. λ(BBGS/Fq3 ) ≥ 2(q2 - 1)/(q + 2). In this paper, the exact value of λ(BBGS/Fq3 ) is computed. We also settle a question stated by Ihara....
Competing structural instabilities in cubic perovskites
Vanderbilt, D
1994-01-01
We study the antiferrodistortive instability and its interaction with ferroelectricity in cubic perovskite compounds. Our first-principles calculations show that coexistence of both instabilities is very common. We develop a first-principles scheme to study the thermodynamics of these compounds when both instabilities are present, and apply it to SrTiO$_3$. We find that increased pressure enhances the antiferrodistortive instability while suppressing the ferroelectric one. Moreover, the presence of one instability tends to suppress the other. A very rich $P$--$T$ phase diagram results.
Rheological properties of Cubic colloidal suspensions
Boromand, Arman; Maia, Joao
2016-11-01
Colloidal and non-colloidal suspensions are ubiquitous in many industrial application. There are numerous studies on these systems to understand and relate their complex rheological properties to their microstructural evolution under deformation. Although most of the experimental and simulation studies are centered on spherical particles, in most of the industrial applications the geometry of the colloidal particles deviate from the simple hard sphere and more complex geometries exist. Recent advances in microfabrication paved the way to fabricate colloidal particles with complex geometries for applications in different areas such as drug delivery where the fundamental understanding of their dynamics has remained unexplored. In this study, using dissipative particle dynamics, we investigate the rheological properties of cubic (superball) particles which are modeled as the cluster of core-modified DPD particles. Explicit representation of solvent particles in the DPD scheme will conserve the full hydrodynamic interactions between colloidal particles. Rheological properties of these cubic suspensions are investigated in the dilute and semi-dilute regimes. The Einstein and Huggins coefficients for these particles with different superball exponent will be calculate which represent the effect of single particle's geometry and multibody interactions on viscosity, respectively. The response of these suspensions is investigated under simple shear and oscillatory shear where it is shown that under oscillation these particles tend to form crystalline structure giving rise to stronger shear-thinning behavior recently measured experimentally.
All unitary cubic curvature gravities in D dimensions
Energy Technology Data Exchange (ETDEWEB)
Sisman, Tahsin Cagri; Guellue, Ibrahim; Tekin, Bayram, E-mail: sisman@metu.edu.tr, E-mail: e075555@metu.edu.tr, E-mail: btekin@metu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)
2011-10-07
We construct all the unitary cubic curvature gravity theories built on the contractions of the Riemann tensor in D-dimensional (anti)-de Sitter spacetimes. Our construction is based on finding the equivalent quadratic action for the general cubic curvature theory and imposing ghost and tachyon freedom, which greatly simplifies the highly complicated problem of finding the propagator of cubic curvature theories in constant curvature backgrounds. To carry out the procedure we have also classified all the unitary quadratic models. We use our general results to study the recently found cubic curvature theories using different techniques and the string generated cubic curvature gravity model. We also study the scattering in critical gravity and give its cubic curvature extensions.
Black holes in Einsteinian cubic gravity
Hennigar, Robie A
2016-01-01
Using numerical and perturbative methods, we construct the first examples of black hole solutions in Einsteinian cubic gravity and study their thermodynamics. Focusing first on four dimensional solutions, we show that these black holes have a novel equation of state in which the pressure is a quadratic function of the temperature. Despite this, they undergo a first order phase transition with associated van der Waals behaviour. We then construct perturbative solutions for general $D \\ge 5$ and study the properties of these solutions for $D=5$ and $D=6$ in particular. We find novel examples of zeroth order phase transitions and find super-entropic behaviour over a large portion of the parameter space. We analyse the specific heat, determining that the black holes are thermodynamically stable over large regions of parameter space.
Triangulation of cubic panorama for view synthesis.
Zhang, Chunxiao; Zhao, Yan; Wu, Falin
2011-08-01
An unstructured triangulation approach, new to our knowledge, is proposed to apply triangular meshes for representing and rendering a scene on a cubic panorama (CP). It sophisticatedly converts a complicated three-dimensional triangulation into a simple three-step triangulation. First, a two-dimensional Delaunay triangulation is individually carried out on each face. Second, an improved polygonal triangulation is implemented in the intermediate regions of each of two faces. Third, a cobweblike triangulation is designed for the remaining intermediate regions after unfolding four faces to the top/bottom face. Since the last two steps well solve the boundary problem arising from cube edges, the triangulation with irregular-distribution feature points is implemented in a CP as a whole. The triangular meshes can be warped from multiple reference CPs onto an arbitrary viewpoint by face-to-face homography transformations. The experiments indicate that the proposed triangulation approach provides a good modeling for the scene with photorealistic rendered CPs.
Black holes in a cubic Galileon universe
Babichev, Eugeny; Lehébel, Antoine; Moskalets, Tetiana
2016-01-01
We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.
Finite element differential forms on cubical meshes
Arnold, Douglas N
2012-01-01
We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.
Capturing dynamic cation hopping in cubic pyrochlores
Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.
2011-08-01
In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.
On the plane-wave cubic vertex
Lucietti, J; Sinha, A K; Lucietti, James; Schäfer-Nameki, Sakura; Sinha, Aninda
2004-01-01
The exact bosonic Neumann matrices of the cubic vertex in plane-wave light-cone string field theory are derived using the contour integration techniques developed in our earlier paper. This simplifies the original derivation of the vertex. In particular, the Neumann matrices are written in terms of \\mu-deformed Gamma-functions, thus casting them into a form that elegantly generalizes the well-known flat-space solution. The asymptotics of the \\mu-deformed Gamma-functions allow one to determine the large-\\mu behaviour of the Neumann matrices including exponential corrections. We provide an explicit expression for the first exponential correction and make a conjecture for the subsequent exponential correction terms.
Polarization conversion in cubic Raman crystals
McKay, Aaron; Sabella, Alexander; Mildren, Richard P.
2017-01-01
Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB. PMID:28169327
On the Stability of Cubic Galileon Accretion
Bergliaffa, Santiago P E
2016-01-01
We examine the stability of steady-state galileon accretion for the case of a Schwarzshild black hole. Considering the galileon action up to the cubic term in a static and spherically symmetric background we obtain the general solution for the equation of motion which is divided in two branches. By perturbing this solution we define an effective metric which determines the propagation of fluctuations. In this general picture we establish the position of the sonic horizon together with the matching condition of the two branches on it. Restricting to the case of a Schwarzschild background, we show, via the analysis of the energy of the perturbations and its time derivative, that the accreting field is linearly stable.
Low pressure growth of cubic boron nitride films
Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)
1997-01-01
A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.
Shape preserving rational cubic spline for positive and convex data
Directory of Open Access Journals (Sweden)
Malik Zawwar Hussain
2011-11-01
Full Text Available In this paper, the problem of shape preserving C2 rational cubic spline has been proposed. The shapes of the positive and convex data are under discussion of the proposed spline solutions. A C2 rational cubic function with two families of free parameters has been introduced to attain the C2 positive curves from positive data and C2 convex curves from convex data. Simple data dependent constraints are derived on free parameters in the description of rational cubic function to obtain the desired shape of the data. The rational cubic schemes have unique representations.
Lal, Dharam Vir; Jiménez-Monferrer, Sergio
2010-01-01
The Square Kilometre Array (SKA) will be operating at the time when several new large optical, X-ray and Gamma-ray facilities are expected to be working. To make SKA both competitive and complementary to these large facilities, thorough design studies are needed, focused in particular on imaging performance of the array. One of the crucial aspects of such studies is the choice of the array configuration, which affects substantially the resolution, rms noise, sidelobe level and dynamic range achievable with the SKA. We present here a quantitative assessment of the effect of the array configuration on imaging performance of the SKA, introducing the spatial dynamic range (SDR) and a measure of incompleteness of the Fourier domain coverage ($\\Delta u/u$) as prime figures of merit.
Performance evaluation of a micro ultrasonic motor using a one-cubic-millimeter stator.
Mashimo, Tomoaki
2015-10-01
A piezoelectric ultrasonic motor has two significant advantages, high energy density and simple structure, and these advantages can help in the miniaturization of the motor. We build a prototype micro ultrasonic motor using a stator with a volume of approximately 1 cubic millimeter. To evaluate its representative performance values (torque, angular velocity, and energy efficiency), we built an experimental setup and operated the prototype motor by varying experimental conditions, such as the preload between the stator and rotor and the amplitude of voltages applied to motor. The performance values obtained at the millimeter to sub-millimeter scale are discussed analytically using the macro scale models of ultrasonic motors. Experimentally, the prototype motor has generated a torque of more than 10 μNm with a 1-cubic-millimeter stator. The motor described herein is now the smallest micro ultrasonic motor with a practical torque, although its efficiency is still low.
Note: A cubic electromagnetic harvester that convert vibration energy from all directions.
Han, Mengdi; Qiu, Guolin; Liu, Wen; Meng, Bo; Zhang, Xiao-Sheng; Zhang, Haixia
2014-07-01
We investigate the output performance of a cubic harvester which can scavenge low-frequency vibration energy from all directions. By adjusting the size and shape of the inside magnets, higher induced voltages and output power can be achieved. The optimal magnet is found to be cubic shape with the length of 6.35 mm (25.6% volume ratio), which can generate 4.27 mV root mean square voltage and 2.45 μW average power at the frequency of 28.86 Hz and acceleration of 1.17 g. The device is also demonstrated as a self-powered tilt sensor by measuring induced voltages at different tilt angles.
CRACK PROBLEM UNDER SHEAR LOADING IN CUBIC QUASICRYSTAL
Institute of Scientific and Technical Information of China (English)
周旺民; 范天佑; 尹姝媛
2003-01-01
The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function. Based on the work, the analytic solutions of elastic field of cubic quasicrystal with a penny-shaped crack under the shear loading are found, and the stress intensity factor and strain energy release rate are determined.
Cubic Polynomials with Real or Complex Coefficients: The Full Picture
Bardell, Nicholas S.
2016-01-01
The cubic polynomial with real coefficients has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance…
An application of Cubical Cohomology to Adinkras and Supersymmetry Representations
Doran, Charles; Landweber, Greg
2012-01-01
An Adinkra is a class of graphs with certain signs marking its vertices and edges, which encodes off-shell representations of the super Poincar\\'e algebra. The markings on the vertices and edges of an Adinkra are cochains for cubical cohomology. This article explores the cubical cohomology of Adinkras, treating these markings analogously to characteristic classes on smooth manifolds.
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2012-01-01
Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.
Rational Cubics and Conics Representation: A Practical Approach
Directory of Open Access Journals (Sweden)
M. Sarfraz
2012-08-01
Full Text Available A rational cubic spline, with one family of shape parameters, has been discussed with the view to its application in Computer Graphics. It incorporates both conic sections and parametric cubic curves as special cases. The parameters (weights, in the description of the spline curve can be used to modify the shape of the curve, locally and globally, at the knot intervals. The rational cubic spline attains parametric smoothness whereas the stitching of the conic segments preserves visually reasonable smoothness at the neighboring knots. The curve scheme is interpolatory and can plot parabolic, hyperbolic, elliptic, and circular splines independently as well as bits and pieces of a rational cubic spline.Key Words: Computer Graphics, Interpolation, Spline, Conic, Rational Cubic
On cubic equations over $P-$adic field
Mukhamedov, Farrukh; Saburov, Mansoor
2012-01-01
We provide a solvability criteria for a depressed cubic equation in domains $\\bz_p^{*},\\bz_p,\\bq_p$. We show that, in principal, the Cardano method is not always applicable for such equations. Moreover, the numbers of solutions of the depressed cubic equation in domains $\\bz_p^{*},\\bz_p,\\bq_p$ are provided. Since $\\bbf_p\\subset\\bq_p,$ we generalize J.-P. Serre's \\cite{JPSJ} and Z.H.Sun's \\cite{ZHS1,ZHS3} results concerning with depressed cubic equations over the finite field $\\bbf_p$. Finally, all depressed cubic equations, for which the Cardano method could be applied, are described and the $p-$adic Cardano formula is provided for those cubic equations.
HR Department
2011-01-01
Following discussion in the Standing Concertation Committee meeting of 21 March 2011, the kilometre allowance was increased from 0,65 CHF/km to 0,70 CHF/km as from 11 April 2011 which is the first date of the new overtime period. Department Head Office
Allison, J. R.; Sadler, E. M.; Moss, V. A.; Whiting, M. T.; Hunstead, R. W.; Pracy, M. B.; Curran, S. J.; Croom, S. M.; Glowacki, M.; Morganti, R.; Shabala, S. S.; Zwaan, M. A.; Allen, G.; Amy, S. W.; Axtens, P.; Ball, L.; Bannister, K. W.; Barker, S.; Bell, M. E.; Bock, D. C.-J.; Bolton, R.; Bowen, M.; Boyle, B.; Braun, R.; Broadhurst, S.; Brodrick, D.; Brothers, M.; Brown, A.; Bunton, J. D.; Cantrall, C.; Chapman, J.; Cheng, W.; Chippendale, A. P.; Chung, Y.; Cooray, F.; Cornwell, T.; DeBoer, D.; Diamond, P.; Edwards, P. G.; Ekers, R.; Feain, I.; Ferris, R. H.; Forsyth, R.; Gough, R.; Grancea, A.; Gupta, N.; Guzman, J. C.; Hampson, G.; Harvey-Smith, L.; Haskins, C.; Hay, S.; Hayman, D. B.; Heywood, I.; Hotan, A. W.; Hoyle, S.; Humphreys, B.; Indermuehle, B. T.; Jacka, C.; Jackson, C.; Jackson, S.; Jeganathan, K.; Johnston, S.; Joseph, J.; Kendall, R.; Kesteven, M.; Kiraly, D.; Koribalski, B. S.; Leach, M.; Lenc, E.; Lensson, E.; Mackay, S.; Macleod, A.; Marquarding, M.; Marvil, J.; McClure-Griffiths, N.; McConnell, D.; Mirtschin, P.; Norris, R. P.; Neuhold, S.; Ng, A.; O'Sullivan, J.; Pathikulangara, J.; Pearce, S.; Phillips, C.; Popping, A.; Qiao, R. Y.; Reynolds, J. E.; Roberts, P.; Sault, R. J.; Schinckel, A.; Serra, P.; Shaw, R.; Shields, M.; Shimwell, T.; Storey, M.; Sweetnam, T.; Troup, E.; Turner, B.; Tuthill, J.; Tzioumis, A.; Voronkov, M. A.; Westmeier, T.; Wilson, C. D.
2015-01-01
We report the discovery of a new 21-cm H I absorption system using commissioning data from the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP). Using the 711.5-1015.5 MHz band of ASKAP we were able to conduct a blind search for the 21-cm line in a
The Body Center Cubic Quark Lattice Model
Lin Xu, Jiao
2004-01-01
The Standard Model while successful in many ways is incomplete; many questions remain. The origin of quark masses and hadronization of quarks are awaiting an answer. From the Dirac sea concept, we infer that two kinds of elementary quarks (u(0) and d(0)) constitute a body center cubic (BCC) quark lattice with a lattice constant a < $10^{-18}$m in the vacuum. Using energy band theory and the BCC quark lattice, we can deduce the rest masses and the intrinsic quantum numbers (I, S, C, b and Q) of quarks. With the quark spectrum, we deduce a baryon spectrum. The theoretical spectrum is in agreement well with the experimental results. Not only will this paper provide a physical basis for the Quark Model, but also it will open a door to study the more fundamental nature at distance scales <$10^{-18}$m. This paper predicts some new quarks $u_{c}$(6490) and d$_{b}$(9950), and new baryons $\\Lambda_{c}^{+}$(6500), $\\Lambda_{b}^{0}$(9960).
Freymuth, Heye; Brandmeier, Melanie; Wörner, Gerhard
2015-06-01
Volcanism during the Neogene in the Central Volcanic Zone (CVZ) of the Andes produced (1) stratovolcanoes, (2) rhyodacitic to rhyolitic ignimbrites which reach volumes of generally less than 300 km3 and (3) large-volume monotonous dacitic ignimbrites of up to several thousand cubic kilometres. We present models for the origin of these magma types using O and Sr isotopes to constrain crust/mantle proportions for the large-volume ignimbrites and explore the relationship to the evolution of the Andean crust. Oxygen isotope ratios were measured on phenocrysts in order to avoid the effects of secondary alteration. Our results show a complete overlap in the Sr-O isotope compositions of lavas from stratovolcanoes and low-volume rhyolitic ignimbrites as well as older (>9 Ma) large-volume dacitic ignimbrites. This suggests that the mass balance of crustal and mantle components are largely similar. By contrast, younger (70 km3 Ma-1 km-1 (assuming plutonic/volcanic ratios of 1:5) which are additional to, but within the order of, the arc background magmatic flux. Comparing our results to average shortening rates observed in the Andes, we observe a "lag-time" with large-volume eruptions occurring after accelerated shortening. A similar delay exists between the ignimbrite pulses and the subduction of the Juan Fernandez ridge. This is consistent with the idea that large-volume ignimbrite eruptions occurred in the wake of the N-S passage of the ridge after slab steepening has allowed hot asthenospheric mantle to ascend into and cause the melting of the mantle wedge. In our model, the older large-volume dacitic ignimbrites in the northern part of the CVZ have lower (15-37 %) crustal contributions because they were produced at times when the Central Andean crust was thinner and colder, and large-scale melting in the middle crust could not be achieved. Younger ignimbrite flare-ups further south (22°S) formed with a significantly higher crustal contribution (22-68 %) because at that
What will we do with 104,000,000 cubic feet of Fernald waste?
Energy Technology Data Exchange (ETDEWEB)
Motl, G.P.; Krieger, G.J. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project; Rast, D.M. [USDOE Fernald Area Office, OH (United States)
1995-04-01
The Fernald Site, a Department of Energy (DOE) uranium metal production facility that ceased production in 1989, is now being remediated by the DOE under terms of a Consent Agreement with the United States Environmental Protection Agency (USEPA) and a Consent Decree with the State of Ohio. It is estimated that the cleanup will generate 104,000,000 cubic feet of low-level radioactive waste including construction debris, pit sludge, radium residue and a huge volume of uranium contaminated soil. The waste handling strategy for this huge volume of waste includes minimizing remedial waste generation, recycling material when economically feasible, free-releasing clean material and volume reduction. It is anticipated that large scale radium residue vitrification and sludge drying equipment/facilities will be constructed onsite for waste treatment prior to off-site disposal. Fernald waste disposition will include both onsite disposal (if approved under CERCLA) and off-site disposal at both commercial and DOE waste disposal facilities. The waste disposition strategy selected reflects a diverse variety of technical, political, regulatory and economic factors. This presentation will describe the current views at Fernald on {open_quotes}what will we do with 104,000,000 cubic feet of Fernald waste.{close_quotes}
Cubic B-spline curve approximation by curve unclamping
Chen, Xiao-Diao; Ma, Weiyin; Paul, Jean-Claude
2010-01-01
International audience; A new approach for cubic B-spline curve approximation is presented. The method produces an approximation cubic B-spline curve tangent to a given curve at a set of selected positions, called tangent points, in a piecewise manner starting from a seed segment. A heuristic method is provided to select the tangent points. The first segment of the approximation cubic B-spline curve can be obtained using an inner point interpolation method, least-squares method or geometric H...
On q-power cycles in cubic graphs
DEFF Research Database (Denmark)
Bensmail, Julien
2017-01-01
In the context of a conjecture of Erdos and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning...... the remaining case q = 2 (which corresponds to the conjecture of Erdos and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only....
On q-power cycles in cubic graphs
DEFF Research Database (Denmark)
Bensmail, Julien
2016-01-01
In the context of a conjecture of Erdos and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning...... the remaining case q = 2 (which corresponds to the conjecture of Erdos and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only....
Lin, Derong; Zhao, Qing; Hu, Lijiang; Xing, Baoshan
2014-05-01
Hexane, octane, phenyl, and biphenyl-bridged bis(triethoxysilyl) precursors were used in synthesizing cubic mesoporous bridged polysilsesquioxane (BPS) copolymers. Structural characterization was carried out by FTIR, small angle XRD, Brunauer-Emmett-Teller-N2 sorption, (1)H NMR, and TEM. We successfully synthesized both "rigid" and "soft" 3D cubic mesoporous BPS with high surface area and pore volume, as attested by the comprehensive characterization data. Adsorption of pyrene, phenanthrene, nitrobenzene, and 2,4-dichlorophenol on BPS was greatly affected by adsorbate properties, i.e., Kow, solvation properties and molecular size. Hydrophobic interaction dominantly controlled organic pollutants' sorption on BPS. Other interactions, e.g., π-π and H-bond interactions, also have effects on sorption as indicated by Kow normalized sorption isotherms. Rigid aromatic BPS (phenyl and biphenyl) showed a higher sorption capacity than soft aliphatic BPS (hexane and octane). A conceptual model was proposed to further explain the phenomena. This study suggests a promising application of cubic mesoporous BPS in wastewater treatment.
Cubic Gallium Nitride on Micropatterned Si (001) for Longer Wavelength LEDs
Energy Technology Data Exchange (ETDEWEB)
Durniak, Mark T. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Materials Science and Engineering; Chaudhuri, Anabil [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Smith, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Material Sciences; Allerman, Andrew A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Material Sciences; Lee, S. C. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Brueck, S. R. J. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Wetzel, Christian [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Physics, Applied Physics, and Astronomy and Dept. of Materials Science and Engineering
2016-03-01
GaInN/GaN heterostructures of cubic phase have the potential to overcome the limitations of wurtzite structures commonly used for light emitting and laser diodes. Wurtzite GaInN suffers from large internal polarization fields, which force design compromises ( 0001 ) towards ultra-narrow quantum wells and reduce recombination volume and efficiency. Cubic GaInN microstripes grown at Rensselaer Polytechnic Institute by metal organic vapor phase epitaxy on micropatterned Si , with {111} v-grooves oriented along Si ( 001 ) , offer a system free of internal polarization fields, wider quantum wells, and smaller <00$\\bar1$> bandgap energy. We prepared 6 and 9 nm Ga _{x} In _{1-x} N/GaN single quantum well structures with peak wavelength ranges from 520 to 570 nm with photons predominately polarized perpendicular to the grooves. We estimate a cubic InN composition range of 0 < x < 0.5 and an upper limit of the internal quantum efficiency of 50%. Stripe geometry and polarization may be suitable for mode confinement and reduced threshold stimulated emission.
Directory of Open Access Journals (Sweden)
Ishfaq Ahmad Ganaie
2014-01-01
Full Text Available Cubic Hermite collocation method is proposed to solve two point linear and nonlinear boundary value problems subject to Dirichlet, Neumann, and Robin conditions. Using several examples, it is shown that the scheme achieves the order of convergence as four, which is superior to various well known methods like finite difference method, finite volume method, orthogonal collocation method, and polynomial and nonpolynomial splines and B-spline method. Numerical results for both linear and nonlinear cases are presented to demonstrate the effectiveness of the scheme.
Nucleation barriers at corners for cubic-to-tetragonal phase transformation
Bella, Peter
2013-01-01
We are interested in the energetic cost of a martensitic inclusion of volume $V$ in austenite for the cubic-to-tetragonal phase transformation. In contrast with the work of [Kn\\"upfer, Kohn, Otto: Comm. Pure Appl. Math. 66 (2013), no. 6, 867--904], we consider domain with a corner and obtain a better scaling law for the minimal energy ($E_{min} \\sim \\min(V^{2/3},V^{7/9})$). Our predictions are in a good agreement with physical experiments where nucleation of martensite is usually observed near the corners of the specimen.
Idier, D.; Falqués, A.
2014-04-01
Sandy coasts are characterized by a number of rhythmic patterns like, amongst others, shoreline undulations or sandwaves at a kilometric scale. One hypothesis for their formation is that high angle waves (large incidence angle with respect to shore normal) could induce an instability of the shoreline (Ashton et al., 2001). More recently, a scaling for their wavelength has also been proposed (van den Berg et al., 2014). The existing studies rely mainly on modelling but quantitative field tests are lacking. We aim at investigating how both the formation hypothesis of these shoreline undulations and the theoretical scaling do fit with nature at a global scale. The first step, which is the goal of this paper, is to set up the methodology by analyzing the Atlantic African coast as test site. First, based on global databases, shoreline wavelength LS, wave characteristics (obliquity θW and wavelength λW) and mean shoreface slope β are determined. Then the wave obliquity is confronted with the presence of shoreline undulations. Finally the values of the ratio β LS / λW are estimated and discussed in comparison with the estimate of van den Berg et al. (2014). It is found that the correlation between shoreline sandwave occurrence and wave obliquity is very good, allowing the identification of 5 new potential unstable shoreline stretches, whereas the results on the scaling are not conclusive and deserve further investigations.
A Failure of Serendipity: the Square Kilometre Array will struggle to eavesdrop on Human-like ETI
Forgan, D H
2010-01-01
The Square Kilometre Array (SKA) will operate in frequency ranges often used by military radar and other communications technology. It has been shown that if Extraterrestrial Intelligences (ETIs) communicate using similar technology, then the SKA should be able to detect such transmissions up to distances of ~100 pc (~300 light years) from Earth. However, Mankind has greatly improved its communications technology over the last century, dramatically reducing signal leakage and making the Earth "radio quiet". If ETIs follow the same pattern as the human race, will we be able to detect their signal leakage before they become radio quiet? We investigate this question using Monte Carlo Realisation techniques to simulate the growth and evolution of intelligent life in the Galaxy. We show that if civilisations are "human" in nature (i.e. they are only "radio loud" for ~100 years, and can only detect each other with an SKA-like instrument out to 100 pc, within a maximum communication time of 100 years), then the prob...
A 65 nm CMOS broadband self-calibrated power detector for the square kilometre array radio telescope
Directory of Open Access Journals (Sweden)
Ge Wu
2014-08-01
Full Text Available In this study, a 65 nm complementary metal oxide semiconductor (CMOS broadband self-calibrated high-sensitivity power detector for use in the Square Kilometre Array (SKA, the next-generation high-sensitivity radio telescope, is presented. The power detector calibration is performed by adjusting voltages at the bulk terminals of the input transistors to compensate for mismatches in the output voltages because of process, voltage and temperature variations. Measurements show that the power detector, preceded by an input power-match circuit with 6 dB gain, has an input signal range from −48 to −11 dBm over which a 0.95 dB maximum error in the detected power is observed when the calibration rate is 20 kHz. The proposed broadband power detector has a 3 dB upper band edge of 1.8 GHz, which adequately covers the midband SKA frequency range from 0.7 to 1.4 GHz. The settling time and the calibration time are both <5 μs. The circuit consumes 1.2 mW from a 1.2 V power supply and the input-match circuit consumes another 5.8 mW. The presented power detector achieves the best combination of the detection range and sensitivity of previously published circuits.
Gurnett, D. A.; Groene, J. B.; Persoon, A. M.; Kurth, W. S.; Kivelson, M. G.; Khurana, K. K.; Southwood, D. J.; Dougherty, M. K.
2010-12-01
Saturn kilometric radiation (SKR), which is an intense radio emission generated at high latitudes in Saturn's magnetosphere, displays a strong rotationally driven modulation at two rates, one characteristic of radiation from the northern auroral zone, and the other from the southern auroral zone. During the period from about 2007 to 2009, Cassini observations show that the rotation rates were about 816 and 780 deg/day, corresponding to rotational periods of about 10.6 and 10.8 hr. However, as Saturn approached equinox in August 2009, the two rotation rates began to converge, and have since crossed in early 2010. This interchange of the rotational modulation rates of SKR in the two hemispheres potentially provides an important clue as to how angular momentum is transferred from the interior of Saturn to the magnetosphere. Using these measurements a new longitude system has been developed, one for the northern hemisphere and one for the southern hemisphere (SLS4-N and SLS4-S). These longitude systems are used to investigate similar variations in the rotational modulation of Saturn's magnetic field and field-aligned currents.
Andrews, D. J.; Cecconi, B.; Cowley, S. W. H.; Dougherty, M. K.; Lamy, L.; Provan, G.; Zarka, P.
2011-09-01
Initial Voyager observations of Saturn kilometric radiation (SKR) indicated that the modulations in emitted power near the ˜11 h planetary rotation period are “strobe like,” varying with a phase independent of observer position, while subsequent Cassini studies of related oscillations in the magnetospheric magnetic field and plasma parameters have shown that these rotate around the planet with a period close to the SKR period. However, analysis of magnetic oscillation data over the interval 2004-2010 reveals the presence of variable secular drifts between the phases of the dominant southern period magnetic oscillations and SKR modulations, which become very marked after Cassini apoapsis moved for the first time into the postdusk sector in mid-2009. Here we use a simple theoretical model to show that such phase drifts arise if the SKR modulation phase also rotates around the auroral oval, combined with a highly restricted view of the SKR sources by the spacecraft due to the conical beaming of the emissions. Strobe-like behavior then occurs in the predawn-to-noon sector where the spacecraft has a near-continuous view of the most intense midmorning SKR sources, in agreement with the Voyager findings, while elsewhere the SKR modulation phase depends strongly on spacecraft local time, being in approximate antiphase with the midmorning sources in the postdusk sector. Supporting evidence for this scenario is provided through an independent determination of the variable rotation period of the southern magnetic field perturbations throughout the 6 year interval.
Directory of Open Access Journals (Sweden)
S. V. Badman
2008-11-01
Full Text Available Voyager spacecraft measurements of Saturn kilometric radiation (SKR identified two features of these radio emissions: that they pulse at a period close to the planetary rotation period, and that the emitted intensity is correlated with the solar wind dynamic pressure (Desch and Kaiser, 1981; Desch, 1982; Desch and Rucker, 1983. In this study the inter-relation between the intensity and the pulsing of the SKR is analysed using Cassini spacecraft measurements of the interplanetary medium and SKR over the interval encompassing Cassini's approach to Saturn, and the first extended orbit. Cassini Plasma Spectrometer ion data were only available for a subset of the dates of interest, so the interplanetary conditions were studied primarily using the near-continuously available magnetic field data, augmented by the ion moment data when available. Intense SKR bursts were identified when solar wind compressions arrived at Saturn. The intensity of subsequent emissions detected by Cassini during the compression intervals was variable, sometimes remaining intense for several planetary rotations, sometimes dimming and rarely disappearing. The timings of the initial intense SKR peaks were sometimes independent of the long-term pulsing behaviour identified in the SKR data. Overall, however, the pulsing of the SKR peaks during the disturbed intervals was not significantly altered relative to that during non-compression intervals.
Global infinite energy solutions for the cubic wave equation
Burq, N.; L. Thomann; Tzvetkov, N.
2012-01-01
International audience; We prove the existence of infinite energy global solutions of the cubic wave equation in dimension greater than 3. The data is a typical element on the support of suitable probability measures.
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
Spinning solitons in cubic-quintic nonlinear media
Indian Academy of Sciences (India)
Lucian-Cornel Crasovan; Boris A Malomed; Dumitru Mihalache
2001-11-01
We review recent theoretical results concerning the existence, stability and unique features of families of bright vortex solitons (doughnuts, or ‘spinning’ solitons) in both conservative and dissipative cubic-quintic nonlinear media.
Stress Intensity of Antiplane Conjugate Cracks in Cubic Quasicrystal
Institute of Scientific and Technical Information of China (English)
ZHANG Lei
2008-01-01
Based on the theory of Muskhelishvili, the general solutions for stress and strain of conjugate cracks in cubic quasicrystal are obtained, with which the stress intensity factors of cubic quasicrystal at crack tips and the stress distribution functions of phonon and phason fields are given. The results show that though phason field is coupled with phonon field by constitutive equations, the stress intensity factors are not coupled with any other factors.
Optical studies of cubic III-nitride structures
Powell, Ross E L
2014-01-01
The properties of cubic nitrides grown by molecular beam epitaxy (MBE) on GaAs (001) have been studied using optical and electrical techniques. The aim of these studies was the improvement of the growth techniques in order to improve the quality of grown nitrides intended for bulk substrate and optoelectronic device applications. We have also characterised hexagonal nanocolumn structures incorporating indium. Firstly, bulk films of cubic AlxGa1-xN with aluminium fractions (x) spanning the ...
Spinor bose gases in cubic optical lattice
Energy Technology Data Exchange (ETDEWEB)
Mobarak, Mohamed Saidan Sayed Mohamed
2014-01-27
In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the
Soare, Richard J.; Conway, Susan J.; Pearce, Geoffrey D.; Costard, François; Séjourné, Antoine
2013-08-01
At the middle latitudes of Utopia Planitia (˜35-45°N; ˜65-101°E) hundreds of small-sized mounds located in sub-kilometre impact craters dot the landscape. Their shape varies from circular to crescentic and their height ranges from ˜10 to 50 m. Often, metre to decametre pitting is observed, as is metres-thick banding or stratification. Mound albedo is relatively high, i.e. ˜0.16. The plain's terrain in the region, previously linked to the latitude-dependent mantle (LDM) of ice-dust, displays pitting and albedo similar to the small intra-crater mounds. Some workers have suggested that the mounds and the plain's terrain share a common ice-dust origin. If so, then scrutinising the mounds could provide analogical insight on the key geological characteristics and spatial distribution of the LDM itself. Other workers have hypothesised that the mounds are eroded sedimentary landforms or periglacial mounds underlain by a perennial ice-core (closed-system pingos). In this article we develop and then discuss each of the three mound-hypotheses in a much more substantial manner than has been done hitherto. Towards this end we use high-resolution images, present a detailed regional-map of mound distribution and establish a regional platform of topographical analysis using MOLA data superposed on a large-scale CTX mosaic. Although the ice-dust hypothesis is consistent with some observations and measurements, we find that a (loess-based) sedimentary hypothesis shows greater plausibility. Of the three hypotheses evaluated, the pingo or periglacial one is the weakest.
A new hypercube variant: Fractal Cubic Network Graph
Directory of Open Access Journals (Sweden)
Ali Karci
2015-03-01
Full Text Available Hypercube is a popular and more attractive interconnection networks. The attractive properties of hypercube caused the derivation of more variants of hypercube. In this paper, we have proposed two variants of hypercube which was called as “Fractal Cubic Network Graphs”, and we have investigated the Hamiltonian-like properties of Fractal Cubic Network Graphs FCNGr(n. Firstly, Fractal Cubic Network Graphs FCNGr(n are defined by a fractal structure. Further, we show the construction and characteristics analyses of FCNGr(n where r=1 or r=2. Therefore, FCNGr(n is a Hamiltonian graph which is obtained by using Gray Code for r=2 and FCNG1(n is not a Hamiltonian Graph. Furthermore, we have obtained a recursive algorithm which is used to label the nodes of FCNG2(n. Finally, we get routing algorithms on FCNG2(n by utilizing routing algorithms on the hypercubes.
Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters
Souza, T. X. R.; Macedo, C. A.
2016-01-01
In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653
Superconductivity in cubic noncentrosymmetric PdBiSe Crystal
Joshi, B.; Thamizhavel, A.; Ramakrishnan, S.
2015-03-01
Mixing of spin singlet and spin triplet superconducting pairing state is expected in noncentrosymmetric superconductors (NCS) due to the inherent presence of Rashba-type antisymmetric spin-orbit coupling. Unlike low symmetry (tetragonal or monoclinic) NCS, parity is isotropicaly broken in space for cubic NCS and can additionally lead to the coexistence of magnetic and superconducting state under certain conditions. Motivated with such enriched possibility of unconventional superconducting phases in cubic NCS we are reporting successful formation of single crystalline cubic noncentrosymmetric PdBiSe with lattice parameter a = 6.4316 Å and space group P21 3 (space group no. 198) which undergoes to superconducting transition state below 1.8 K as measured by electrical transport and AC susceptibility measurements. Significant strength of Rashba-type antisymmetric spin-orbit coupling can be expected for PdBiSe due to the presence of high Z (atomic number) elements consequently making it potential candidate for unconventional superconductivity.
Cubic interactions of Maxwell-like higher spins
Francia, Dario; Mkrtchyan, Karapet
2016-01-01
We study the cubic vertices for Maxwell-like higher-spins in flat space. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.
Extended temperature dependence of elastic constants in cubic crystals.
Telichko, A V; Sorokin, B P
2015-08-01
To extend the theory of the temperature dependence of the elastic constants in cubic crystals beyond the second- and third-order elastic constants, the fourth-order elastic constants, as well as the non-linearity in the thermal expansion temperature dependence, have been taken into account. Theoretical results were represented as temperature functions of the effective elastic constants and compared with experimental data for a number of cubic crystals, such as alkali metal halides, and elements gold and silver. The relations obtained give a more accurate description of the experimental temperature dependences of second-order elastic constants for a number of cubic crystals, including deviations from linear behavior. A good agreement between theoretical estimates and experimental data has been observed.
Tetragonal and cubic zirconia multilayered ceramic constructs created by EPD.
Mochales, Carolina; Frank, Stefan; Zehbe, Rolf; Traykova, Tania; Fleckenstein, Christine; Maerten, Anke; Fleck, Claudia; Mueller, Wolf-Dieter
2013-02-14
The interest in electrophoretic deposition (EPD) for nanomaterials and ceramics production has widely increased due to the versatility of this technique to effectively combine different materials in unique shapes and structures. We successfully established an EPD layering process with submicrometer sized powders of Y-TZP with different mol percentages of yttrium oxide (3 and 8%) and produced multilayers of alternating tetragonal and cubic phases with a clearly defined interface. The rationale behind the design of these multilayer constructs was to optimize the properties of the final ceramic by combining the high mechanical toughness of the tetragonal phase of zirconia together with the high ionic conductivity of its cubic phase. In this work, a preliminary study of the mechanical properties of these constructs proved the good mechanical integrity of the multilayered constructs obtained as well as crack deflection in the interface between tetragonal and cubic zirconia layers.
Body-centered-cubic Ni and its magnetic properties.
Tian, C S; Qian, D; Wu, D; He, R H; Wu, Y Z; Tang, W X; Yin, L F; Shi, Y S; Dong, G S; Jin, X F; Jiang, X M; Liu, F Q; Qian, H J; Sun, K; Wang, L M; Rossi, G; Qiu, Z Q; Shi, J
2005-04-08
The body-centered-cubic (bcc) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bcc Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52+/-0.08 micro(B)/atom. The cubic magnetocrystalline anisotropy of bcc Ni is determined to be +4.0x10(5) ergs x cm(-3), as opposed to -5.7x10(4) ergs x cm(-3) for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bcc Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation.
Hardness and thermal stability of cubic silicon nitride
DEFF Research Database (Denmark)
Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.
2001-01-01
The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...... temperature has an average hardness of 35.31 GPa, slightly larger than SiO2 stishovite, which is often referred to as the third hardest material after diamond and cubic boron nitride. The cubic phase is stable up to 1673 K in air. At 1873 K, alpha -and beta -Si3N4 phases are observed, indicating a phase...... transformation sequence of c-to-alpha -to-beta -Si3N4 phases....
Image interpolation by two-dimensional parametric cubic convolution.
Shi, Jiazheng; Reichenbach, Stephen E
2006-07-01
Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates this investigation of nonseparable cubic convolution. This paper derives two new nonseparable, 2-D cubic-convolution kernels. The first kernel, with three parameters (designated 2D-3PCC), is the most general 2-D, piecewise-cubic interpolator defined on [-2, 2] x [-2, 2] with constraints for biaxial symmetry, diagonal (or 90 degrees rotational) symmetry, continuity, and smoothness. The second kernel, with five parameters (designated 2D-5PCC), relaxes the constraint of diagonal symmetry, based on the observation that many images have rotationally asymmetric statistical properties. This paper also develops a closed-form solution for determining the optimal parameter values for parametric cubic-convolution kernels with respect to ensembles of scenes characterized by autocorrelation (or power spectrum). This solution establishes a practical foundation for adaptive interpolation based on local autocorrelation estimates. Quantitative fidelity analyses and visual experiments indicate that these new methods can outperform several popular interpolation methods. An analysis of the error budgets for reconstruction error associated with blurring and aliasing illustrates that the methods improve interpolation fidelity for images with aliased components. For images with little or no aliasing, the methods yield results similar to other popular methods. Both 2D-3PCC and 2D-5PCC are low-order polynomials with small spatial support and so are easy to implement and efficient to apply.
Higher-spin Interactions from CFT: The Complete Cubic Couplings
Sleight, Charlotte
2016-01-01
In this letter we provide a complete holographic reconstruction of the cubic couplings in the minimal bosonic higher-spin theory in AdS$_{d+1}$. For this purpose we also determine the OPE coefficients of all single-trace conserved currents in the $d$-dimensional free scalar $O\\left(N\\right)$ vector model, and compute the tree-level three-point Witten diagram amplitudes for a generic cubic interaction of higher-spin gauge fields in the metric-like formulation.
Classifying Cubic Edge-Transitive Graphs of Order 8
Indian Academy of Sciences (India)
Mehdi Alaeiyan; M K Hosseinipoor
2009-11-01
A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let be a prime. It was shown by Folkman (J. Combin. Theory 3(1967) 215--232) that a regular edge-transitive graph of order 2 or 22 is necessarily vertex-transitive. In this paper, an extension of his result in the case of cubic graphs is given. It is proved that, every cubic edge-transitive graph of order 8 is symmetric, and then all such graphs are classified.
Possible form of multi-polar interaction in cubic lattice
Energy Technology Data Exchange (ETDEWEB)
Sakai, Osamu; Shiina, Ryousuke; Shiba, Hiroyuki
2003-05-01
The invariant form of interaction between multi-poles, including the octupole, is studied for the simple cubic (SC), body centered and face centered cubic lattices. The coupling terms can be arranged in a way similar to that of the hopping matrix between the LCAO's. A table for SC by Shiina et al. (J. Phys. Soc. Japan 66 (1997) 1741) is generalized for the general wave number case of the three types of lattice. Recent experimental result of TmTe is thereby analyzed. The development of the ferromagnetic moment below the anti-ferromagnetic transition under the anti-ferro quadrupolar order phase is discussed in this connection.
Possible form of multi-polar interaction in cubic lattice
Sakai, Osamu; Shiina, Ryousuke; Shiba, Hiroyuki
2003-05-01
The invariant form of interaction between multi-poles, including the octupole, is studied for the simple cubic (SC), body centered and face centered cubic lattices. The coupling terms can be arranged in a way similar to that of the hopping matrix between the LCAO's. A table for SC by Shiina et al. (J. Phys. Soc. Japan 66 (1997) 1741) is generalized for the general wave number case of the three types of lattice. Recent experimental result of TmTe is thereby analyzed. The development of the ferromagnetic moment below the anti-ferromagnetic transition under the anti-ferro quadrupolar order phase is discussed in this connection.
Counting perfect matchings of cubic graphs in the geometric dual
Jiménez, Andrea
2010-01-01
Lov\\'asz and Plummer conjectured, in the mid 1970's, that every cubic graph G with no cutedge has an exponential in |V(G)| number of perfect matchings. In this work we show that every cubic planar graph G whose geometric dual graph is a stack triangulation has at least 3 times the golden ratio to |V(G)|/72 distinct perfect matchings. Our work builds on a novel approach relating Lov\\'asz and Plummer's conjecture and the number of so called groundstates of the widely studied Ising model from statistical physics.
Elastic interaction of point defects in crystals with cubic symmetry
Kuz'michev, S. V.; Kukushkin, S. A.; Osipov, A. V.
2013-07-01
The energy of elastic mechanical interaction between point defects in cubic crystals is analyzed numerically. The finite-element complex ANSYS is used to investigate the character of interaction between point defects depending on their location along the crystallographic directions , , and on the distance from the free boundary of the crystal. The numerical results are compared with the results of analytic computations of the energy of interaction between two point defects in an infinite anisotropic medium with cubic symmetry. The interaction between compressible and incompressible defects of general type is studied. Conditions for onset of elastic attraction between the defects, which leads to general relaxation of the crystal elastic energy, are obtained.
Cubic surfaces and their invariants: Some memories of Raymond Stora
Directory of Open Access Journals (Sweden)
Michel Bauer
2016-11-01
I then turn to the study of the family of cubic surfaces. They depend on 20 parameters, and the action of the 15 parameter group SL4(C splits the family in orbits depending on 5 parameters. This takes us into the realm of (geometric invariant theory. I review briefly the classical theorems on the structure of the ring of polynomial invariants and illustrate its many facets by looking at a simple example, before turning to the already involved case of cubic surfaces. The invariant ring was described in the 19th century. I show how to retrieve this description via counting/generating functions and character formulae.
Formation and properties of reverse micellar cubic liquid crystals and derived emulsions.
Rodríguez-Abreu, Carlos; Shrestha, Lok Kumar; Varade, Dharmesh; Aramaki, Kenji; Maestro, Alicia; Quintela, Arturo López; Solans, Conxita
2007-10-23
The structure of the reverse micellar cubic (I2) liquid crystal and the adjacent micellar phase in amphiphilic block copolymer/water/oil systems has been studied by small-angle X-ray scattering (SAXS), rheometry, and differential scanning calorimetry (DSC). Upon addition of water to the copolymer/oil mixture, spherical micelles are formed and grow in size until a disorder-order transition takes place, which is related to a sudden increase in the viscosity and shear modulus. The transition is driven by the packing of the spherical micelles into a Fd3m cubic lattice. The single-phase I2 liquid crystals show gel-like behavior and elastic moduli higher than 104 Pa, as determined by oscillatory measurements. Further addition of water induces phase separation, and it is found that reverse water-in-oil emulsions with high internal phase ratio and stabilized by I2 liquid crystals can be prepared in the two-phase region. Contrary to liquid-liquid emulsions, both the elastic modulus and the viscosity decrease with the fraction of dispersed water, due to a decrease in the crystalline fraction in the sample, although the reverse emulsions remain gel-like even at high volume fractions of the dispersed phase. A temperature induced order-disorder transition can be detected by calorimetry and rheometry. Upon heating the I2 liquid crystals, two thermal events associated with small enthalpy values were detected: one endothermic, related to the "melting" of the liquid crystal, and the other exothermic, attributed to phase separation. The melting of the liquid crystal is associated with a sudden drop in viscosity and shear moduli. Results are relevant for understanding the formation of cubic-phase-based reverse emulsions and for their application as templates for the synthesis of structured materials.
Kaulakys, B.; Alaburda, M.; Ruseckas, J.
2016-05-01
A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.
Phase diagrams and synthesis of cubic boron nitride
Turkevich, V Z
2002-01-01
On the basis of phase equilibria, the lowest temperatures, T sub m sub i sub n , above which at high pressures cubic boron nitride crystallization from melt solution is allowable in terms of thermodynamics have been found for a number of systems that include boron nitride.
Interaction of dispersed cubic phases with blood components
DEFF Research Database (Denmark)
Bode, J C; Kuntsche, Judith; Funari, S S;
2013-01-01
The interaction of aqueous nanoparticle dispersions, e.g. based on monoolein/poloxamer 407, with blood components is an important topic concerning especially the parenteral way of administration. Therefore, the influence of human and porcine plasma on dispersed cubic phases was investigated...
Cubic surfaces and their invariants: Some memories of Raymond Stora
Bauer, Michel
2016-11-01
Cubic surfaces embedded in complex projective 3-space are a classical illustration of the use of old and new methods in algebraic geometry. Recently, they made their appearance in physics, and in particular aroused the interest of Raymond Stora, to the memory of whom these notes are dedicated, and to whom I'm very much indebted. Each smooth cubic surface has a rich geometric structure, which I review briefly, with emphasis on the 27 lines and the combinatorics of their intersections. Only elementary methods are used, relying on first order perturbation/deformation theory. I then turn to the study of the family of cubic surfaces. They depend on 20 parameters, and the action of the 15 parameter group SL4 (C) splits the family in orbits depending on 5 parameters. This takes us into the realm of (geometric) invariant theory. I review briefly the classical theorems on the structure of the ring of polynomial invariants and illustrate its many facets by looking at a simple example, before turning to the already involved case of cubic surfaces. The invariant ring was described in the 19th century. I show how to retrieve this description via counting/generating functions and character formulae.
Exact solutions for the cubic-quintic nonlinear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Zhu Jiamin [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China)]. E-mail: zjm64@163.com; Ma Zhengyi [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China); Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China)
2007-08-15
In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.
Combinatorics on Words in Symbolic Dynamics: the Antisymmetric Cubic Map
Institute of Scientific and Technical Information of China (English)
Wan Ji DAI; Kebo L(U); Jun WANG
2008-01-01
This paper is contributed to the combinatorial properties of the periodic kneading words of antisymmetric cubic maps defined on a interval.The least words of given lengths,the adjacency relations on the words of given lengths and the parity-alternative property in some sets of such words are established.
A Unified Approach to Teaching Quadratic and Cubic Equations.
Ward, A. J. B.
2003-01-01
Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)
Orientational phase transition in cubic liquid crystals with positional order
Pokrovsky, V.L.; Saidachmetov, P.A.
1988-01-01
An electric field can give rise to a shear deformation of a cubic liquid crystal with long-range positional order fixed by two plates. The critical value of the field does not depend on the size of the system and depends crucially on the orientation.
An effective packing density of binary cubic crystals
Eremin, I. E.; Eremina, V. V.; Sychev, M. S.; Moiseenko, V. G.
2015-04-01
The methodology of effective macroscopic calculation of numerical values of internuclear distances in binary crystals of a cubic crystal system is based on the use of coefficients of the structural packing density of the crystal lattice. The possibility of combining the reference data on the main physicochemical parameters of the substance is implemented by synthesis of the corresponding mathematical models.
Trapping of cubic ZnO nanocrystallites at ambient conditions
DEFF Research Database (Denmark)
Decremps, F.; Pellicer-Porres, J.; Datchi, F.
2002-01-01
Dense powder of nanocrystalline ZnO has been recovered at ambient conditions in the metastable cubic structure after a heat treatment at high pressure (15 GPa and 550 K). Combined x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) experiments have been performed to probe both long-ra...
Specific heat of the simple-cubic Ising model
Feng, X.; Blöte, H.W.J.
2010-01-01
We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions
Connecting the Dots Parametrically: An Alternative to Cubic Splines.
Hildebrand, Wilbur J.
1990-01-01
Discusses a method of cubic splines to determine a curve through a series of points and a second method for obtaining parametric equations for a smooth curve that passes through a sequence of points. Procedures for determining the curves and results of each of the methods are compared. (YP)
Cubic spline approximation techniques for parameter estimation in distributed systems
Banks, H. T.; Crowley, J. M.; Kunisch, K.
1983-01-01
Approximation schemes employing cubic splines in the context of a linear semigroup framework are developed for both parabolic and hyperbolic second-order partial differential equation parameter estimation problems. Convergence results are established for problems with linear and nonlinear systems, and a summary of numerical experiments with the techniques proposed is given.
Rheology of cubic particles suspended in a Newtonian fluid.
Cwalina, Colin D; Harrison, Kelsey J; Wagner, Norman J
2016-05-18
Many real-world industrial processes involve non-spherical particles suspended in a fluid medium. Knowledge of the flow behavior of these suspensions is essential for optimizing their transport properties and designing processing equipment. In the present work, we explore and report on the rheology of concentrated suspensions of cubic-shaped colloidal particles under steady and dynamic shear flow. These suspensions exhibit a rich non-Newtonian rheology that includes shear thickening and normal stress differences at high shear stresses. Scalings are proposed to connect the material properties of these suspensions of cubic particle to those measured for suspensions of spherical particles. Negative first normal stress differences indicate that lubrication hydrodynamic forces dominate the stress in the shear-thickened state. Accounting for the increased lubrication hydrodynamic interactions between the flat surfaces of the cubic particles allows for a quantitative comparison of the deviatoric stress in the shear-thickened state to that of spherical particles. New semi-empirical models for the viscosity and normal stress difference coefficients are presented for the shear-thickened state. The results of this study indicate that cubic particles offer new and unique opportunities to formulate colloidal dispersions for field-responsive materials.
Infinite Face Centered Cubic Network of Identical Resistors
Asad, J H
2012-01-01
The equivalent resistance between the origin and any other lattice site, in an infinite Face Centered Cubic network consisting from identical resistors, has been expressed rationally in terms of the known value and . The asymptotic behavior is investigated, and some calculated values for the equivalent resistance are presented.
Trace spaces in a pre-cubical complex
DEFF Research Database (Denmark)
Raussen, Martin
In directed algebraic topology, (spaces of) directed irreversible (d)-paths are studied from a topological and from a categorical point of view. Motivated by models for concurrent computation, we study in this paper spaces of d-paths in a pre-cubical complex. Such paths are equipped with a natural...
Morphosynthesis of cubic silver cages on monolithic activated carbon.
Wang, Fei; Zhao, Hong; Lai, Yijian; Liu, Siyu; Zhao, Binyuan; Ning, Yuesheng; Hu, Xiaobin
2013-11-14
Cubic silver cages were prepared on monolithic activated carbon (MAC) pre-absorbed with Cl(-), SO4(2-), or PO4(3-) anions. Silver insoluble salts served as templates for the morphosynthesis of silver cages. The silver ions were reduced by reductive functional groups on MAC micropores through a galvanic cell reaction mechanism.
SUPERCONVERGENCE ANALYSIS FOR CUBIC TRIANGULAR ELEMENT OF THE FINITE ELEMENT
Institute of Scientific and Technical Information of China (English)
Qi-ding Zhu
2000-01-01
In this paper, we construct a projection interpolation for cubic triangular ele- ment by using othogonal expansion triangular method. We show two fundamental formulas of estimation on a special partion and obtain a superconvergence result of 1 -e order higher for the placement function and its tangential derivative on the third order Lobatto points and Gauss points on each edge of triangular element.
Integrability of Lotka-Volterra Planar Complex Cubic Systems
Dukarić, Maša; Giné, Jaume
In this paper, we study the Lotka-Volterra complex cubic systems. We obtain necessary conditions of integrability for these systems with some restriction on the parameters. The sufficiency is proved for all conditions, except one which remains open, using different methods.
Global Well-Posedness for Cubic NLS with Nonlinear Damping
Antonelli, Paolo
2010-11-04
We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.
10 CFR 590.208 - Small volume exports.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Small volume exports. 590.208 Section 590.208 Energy... WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Applications for Authorization To Import or Export Natural Gas § 590.208 Small volume exports. Any person may export up to 100,000 cubic feet of natural...
First-Principles Calculations of Elastic Properties of Cubic Ni2MnGa
Institute of Scientific and Technical Information of China (English)
CHEN Dong; XIAO Qi-Min; ZHAO Ying-Lu; YU Ben-Hai; WANG Chun-Lei; SHI De-Seng
2009-01-01
Dependence of bulk modulus on both pressure and temperature, the elastic constants Cij and the pressure and temperature dependence of normalized volume V/Vo of cubic Ni2MnGa alloy axe successfully obtained using the first-principles plane-wave pseudopotential (PW-PP) method as well as the quasi-harmonic Debye model. We analyse the relationship between bulk modulus and temperature up to 800 K and obtain the relationships between bulk modulus B and pressures at different temperatures. It is found that the bulk modulus B increases monotonically with increasing pressure. Moreover, the temperature dependences of the Debye temperature are also analysed. The calculated results are in agreement with the available experimental data and the previous theoretical results.
Gelfgat, Alexander
2015-01-01
Transition from steady to oscillatory buoyancy convection of air in a laterally heated cubic box is studied numerically by straight-forward time integration of Boussinesq equations using a series of gradually refined finite volume grids. Horizontal and spanwise cube boundaries are assumed to be either perfectly thermally conducting or perfectly thermally insulated, which results in four different sets of thermal boundary conditions. Critical Grashof numbers are obtained by interpolation of numerically extracted growth/decay rates of oscillations amplitude to zero. Slightly supercritical flow regimes are described by time-averaged flows, snapshots, and spatial distribution of oscillations amplitude. Possible similarities and dissimilarities with two-dimensional instabilities in laterally heated square cavities are discussed. Arguments for grid and time step independence of the results are given.
Radulaski, Marina; Müller, Kai; Lagoudakis, Konstantinos G; Zhang, Jingyuan Linda; Buckley, Sonia; Kelaita, Yousif A; Alassaad, Kassem; Ferro, Gabriel; Vučković, Jelena
2014-01-01
We present the design, fabrication and characterization of cubic (3C) silicon carbide microdisk resonators with high quality factor modes at visible and near infrared wavelengths (600 - 950 nm). Whispering gallery modes with quality factors as high as 2,300 and corresponding mode volumes V ~ 2 ({\\lambda}/n)^3 are measured using laser scanning confocal microscopy at room temperature. We obtain excellent correspondence between transverse-magnetic (TM) and transverse-electric (TE) polarized resonances simulated using Finite Difference Time Domain (FDTD) method and those observed in experiment. These structures based on ensembles of optically active impurities in 3C-SiC resonators could play an important role in diverse applications of nonlinear and quantum photonics, including low power optical switching and quantum memories.
Rotation-limited growth of three-dimensional body-centered-cubic crystals.
Tarp, Jens M; Mathiesen, Joachim
2015-07-01
According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.
Cubic ideal ferromagnets at low temperature and weak magnetic field
Hofmann, Christoph P.
2017-04-01
The low-temperature series for the free energy density, pressure, magnetization and susceptibility of cubic ideal ferromagnets in weak external magnetic fields are discussed within the effective Lagrangian framework up to three loops. The structure of the simple, body-centered, and face-centered cubic lattice is taken into account explicitly. The expansion involves integer and half-integer powers of the temperature. The corresponding coefficients depend on the magnetic field and on low-energy effective constants that can be expressed in terms of microscopic quantities. Our formulas may also serve as efficiency or consistency check for other techniques like Green's function methods, where spurious terms in the low-temperature expansion have appeared. We explore the sign and magnitude of the spin-wave interaction in the pressure, magnetization and susceptibility, and emphasize that our effective field theory approach is fully systematic and rigorous.
Counting real cubics with passage/tangency conditions
Lanzat, Sergei
2010-01-01
We study the following question: given a set of seven points and an immersed curve in the real plane R^2, all in general position, how many real rational nodal plane cubics pass through these points and are tangent to this curve. We count each such cubic with a certain sign, and present an explicit formula for their algebraic number. This number is preserved under small regular homotopies of the curve, but jumps (in a well-controlled way) when in the process of homotopy we pass a certain singular discriminant. We discuss the relation of such enumerative problems with finite type invariants. Our approach is based on maps of configuration spaces and the intersection theory in the spirit of classical algebraic topology.
Reversible Nanoparticle Cubic Lattices in Blue Phase Liquid Crystals.
Gharbi, Mohamed Amine; Manet, Sabine; Lhermitte, Julien; Brown, Sarah; Milette, Jonathan; Toader, Violeta; Sutton, Mark; Reven, Linda
2016-03-22
Blue phases (BPs), a distinct class of liquid crystals (LCs) with 3D periodic ordering of double twist cylinders involving orthogonal helical director twists, have been theoretically studied as potential templates for tunable colloidal crystals. Here, we report the spontaneous formation of thermally reversible, cubic crystal nanoparticle (NP) assemblies in BPs. Gold NPs, functionalized to be highly miscible in cyanobiphenyl-based LCs, were dispersed in BP mixtures and characterized by polarized optical microscopy and synchrotron small-angle X-ray scattering (SAXS). The NPs assemble by selectively migrating to periodic strong trapping sites in the BP disclination lines. The NP lattice, remarkably robust given the small particle size (4.5 nm diameter), is commensurate with that of the BP matrix. At the BP I to BP II phase transition, the NP lattice reversibly switches between two different cubic structures. The simultaneous presence of two different symmetries in a single material presents an interesting opportunity to develop novel dynamic optical materials.
Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure
Suteewong, Teeraporn
2011-01-19
Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.
Cubic Composite Sensor with Photodiodes for Tracking Solar Orientation
Directory of Open Access Journals (Sweden)
Yong-Nong Chang
2013-01-01
Full Text Available A cubic composite solar sensor with photo diode is proposed for tracking the relative solar orientation. The proposed solar sensor composes of five photodiode detectors which are placed on the front, rear, left, right, and horizontal facets in a cubic body, respectively. The solar detectors placed on five facets can detect solar power of different facets. Based on the geometric coordinate transformation principle, the relationship equations of solar light orientation between measured powers with respect to various facets can be conducted. As a result, the solar orientation can be precisely achieved without needing any assistance of electronic compass and extra orientation angle corrector. Eventually, the relative solar light orientation, the elevation angle, and azimuth angle of the solar light can be measured precisely.
Nonlinear optical imaging of defects in cubic silicon carbide epilayers.
Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A
2014-06-11
Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.
Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem
Directory of Open Access Journals (Sweden)
Xiaomei Zhang
2012-01-01
Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.
Plasma simulation with the Differential Algebraic Cubic Interpolated Propagation scheme
Energy Technology Data Exchange (ETDEWEB)
Utsumi, Takayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
A computer code based on the Differential Algebraic Cubic Interpolated Propagation scheme has been developed for the numerical solution of the Boltzmann equation for a one-dimensional plasma with immobile ions. The scheme advects the distribution function and its first derivatives in the phase space for one time step by using a numerical integration method for ordinary differential equations, and reconstructs the profile in phase space by using a cubic polynomial within a grid cell. The method gives stable and accurate results, and is efficient. It is successfully applied to a number of equations; the Vlasov equation, the Boltzmann equation with the Fokker-Planck or the Bhatnagar-Gross-Krook (BGK) collision term and the relativistic Vlasov equation. The method can be generalized in a straightforward way to treat cases such as problems with nonperiodic boundary conditions and higher dimensional problems. (author)
Quantum spectra and classical periodic orbit in the cubic billiard
Institute of Scientific and Technical Information of China (English)
Dehua Wang; Yongjiang Yu; Shenglu Lin
2006-01-01
Quantum billiards have attracted much interest in many fields. People have made a lot of researches on the two-dimensional (2D) billiard systems. Contrary to the 2D billiard, due to the complication of its classical periodic orbits, no one has studied the correspondence between the quantum spectra and the classical orbits of the three-dimensional (3D) billiards. Taking the cubic billiard as an example, using the periodic orbit theory, we find the periodic orbit of the cubic billiard and study the correspondence between the quantum spectra and the length of the classical orbits in 3D system. The Fourier transformed spectrum of this system has allowed direct comparison between peaks in such plot and the length of the periodic orbits, which verifies the correctness of the periodic orbit theory. This is another example showing that semiclassical method provides a bridge between quantum and classical mechanics.
Quantum Phase Transitions in Anti-ferromagnetic Planar Cubic Lattices
Wellard, C J; Wellard, Cameron; Orus, Roman
2004-01-01
Motivated by its relation to an NP-hard problem we analyze the ground state properties of anti-ferromagnetic Ising-spin networks in planar cubic lattices under the action of homogeneous transverse and longitudinal magnetic fields. We consider different instances of the cubic geometry and find a set of quantum phase transitions for each one of the systems, which we characterize by means of entanglement behavior and majorization theory. Entanglement scaling at the critical region is in agreement with results arising from conformal symmetry, therefore even the simplest planar systems can display very large amounts of quantum correlation. No conclusion can be made as to the scaling behavior of the minimum energy gap, with the data allowing equally good fits to exponential and power law decays. Analysis of entanglement and especially of majorization instead of the energy spectrum proves to be a good way of detecting quantum phase transitions in highly frustrated configurations.
Higher-Order Approximation of Cubic-Quintic Duffing Model
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Babazadeh, H.
2011-01-01
We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find improved approximate solutions for strongly nonlinear Duffing oscillations with cubic-quintic nonlinear restoring force. This approach yields simple linear algebraic equations instead of nonlinear algebraic equations...... without analytical solution which makes it a unique solution. It is demonstrated that this method works very well for the whole range of parameters in the case of the cubic-quintic oscillator, and excellent agreement of the approximate frequencies with the exact one has been observed and discussed....... Moreover, it is not limited to the small parameter such as in the classical perturbation method. Interestingly, this study revealed that the relative error percentage in the second-order approximate analytical period is less than 0.042% for the whole parameter values. In addition, we compared...
3D Medical Image Interpolation Based on Parametric Cubic Convolution
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In the process of display, manipulation and analysis of biomedical image data, they usually need to be converted to data of isotropic discretization through the process of interpolation, while the cubic convolution interpolation is widely used due to its good tradeoff between computational cost and accuracy. In this paper, we present a whole concept for the 3D medical image interpolation based on cubic convolution, and the six methods, with the different sharp control parameter, which are formulated in details. Furthermore, we also give an objective comparison for these methods using data sets with the different slice spacing. Each slice in these data sets is estimated by each interpolation method and compared with the original slice using three measures: mean-squared difference, number of sites of disagreement, and largest difference. According to the experimental results, we present a recommendation for 3D medical images under the different situations in the end.
Experimental core electron density of cubic boron nitride
DEFF Research Database (Denmark)
Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse
candidate because of its many similarities with diamond: bonding pattern in the extended network structure, hardness, and the quality of the crystallites.3 However, some degree ionic interaction is a part of the bonding in boron nitride, which is not present in diamond. By investigating the core density...... beyond multipolar modeling of the valence density. As was recently shown in a benchmark study of diamond by Bindzus et al.1 The next step is to investigate more complicated chemical bonding motives, to determine the effect of bonding on the core density. Cubic boron nitride2 lends itself as a perfect...... in boron nitride we may obtain a deeper understanding of the effect of bonding on the total density. We report here a thorough investigation of the charge density of cubic boron nitride with a detailed modelling of the inner atom charge density. By combining high resolution powder X-ray diffraction data...
Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications
Li, Jibin; Feng, Zhaosheng
We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.
The Number of Real Roots of a Cubic Equation
Kavinoky, Richard; Thoo, John B.
2008-01-01
To find the number of distinct real roots of the cubic equation (1) x[caret]3 + bx[caret]2 + cx + d = 0, we could attempt to solve the equation. Fortunately, it is easy to tell the number of distinct real roots of (1) without having to solve the equation. The key is the discriminant. The discriminant of (1) appears in Cardan's (or Cardano's) cubic…
A highly ordered cubic mesoporous silica/graphene nanocomposite
Lee, Chang-Wook; Roh, Kwang Chul; Kim, Kwang-Bum
2013-09-01
A highly ordered cubic mesoporous silica (KIT-6)/graphene nanocomposite and 2D KIT-6 nanoflakes were synthesized using a novel synthesis methodology. The non-ionic triblock copolymer, P123, played a dual role as a structure-directing agent in the formation of the cubic mesoporous structure and as a cross-linking agent between mesoporous silica and graphene. The prepared (KIT-6)/graphene nanocomposite could act as a template for the preparation of mesoporous material/graphene nanocomposites.A highly ordered cubic mesoporous silica (KIT-6)/graphene nanocomposite and 2D KIT-6 nanoflakes were synthesized using a novel synthesis methodology. The non-ionic triblock copolymer, P123, played a dual role as a structure-directing agent in the formation of the cubic mesoporous structure and as a cross-linking agent between mesoporous silica and graphene. The prepared (KIT-6)/graphene nanocomposite could act as a template for the preparation of mesoporous material/graphene nanocomposites. Electronic supplementary information (ESI) available: S1: TEM images of disordered mesoporous silica/graphene nanocomposite; S2: TEM images of KIT-6/GO nanocomposite; S3: Thermogravimetric analysis of KIT-6/GO and KG-400-700; S4: SEM and TEM images of KIT-6; S5: Low angle XRD, Raman spectra, N2 adsorption isotherms, pore size distribution and photographic images of the prepared samples; S6: TEM image and N2 adsorption isotherms of mesoporous carbon/graphene nanocomposite; S7: XPS C1s spectra of the prepared samples. See DOI: 10.1039/c3nr03108j
Multiscale Modeling of Point and Line Defects in Cubic Lattices
2007-01-01
and discli- nations with finite micropolar elastoplasticity . Int. J. Plasticity. 22:210–256, 2006. 56. Menzel, A., and Steinmann, P., On the contin...Voyiadjis, G. Z., A finite strain plastic- damage model for high velocity impact using combined viscosity and gradient localization limiters: Part I...Theoretical for- mulation. Int. J. Damage Mech. 15:293–334, 2006. 58. Milstein, F., and Chantasiriwan, S,. Theoretical study of the response of 12 cubic
INTEGRABILITY AND LINEARIZABILITY FOR A CLASS OF CUBIC KOLMOGOROV SYSTEMS
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The integrability and linearizability for a class of cubic Kolmogorov systems are studied. A recursive formula to compute the saddle quantities of the systems is deduced firstly, and integrable conditions for the systems are obtained. Then a recursive formula to compute the coefficients of the normal form for saddle points of the systems is also applied. Finally linearizable conditions of the origin for the systems are given. Both formulas to find necessary conditions are all linear and readily done using c...
Infinite Body Centered Cubic Network of Identical Resistors
Asad, J H
2013-01-01
We express the equivalent resistance between the origin and any other lattice site in an infinite Body Centered Cubic (BCC) network consisting of identical resistors each of resistance R rationally in terms of known values and . The equivalent resistance is then calculated. Finally, for large separation between the origin and the lattice site two asymptotic formulas for the resistance are presented and some numerical results with analysis are given.
Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.
Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim
2014-01-01
Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride
2014-01-01
Poly-crystalline cubic boron nitride (PCBN) is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM) is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materia...
Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin
DEFF Research Database (Denmark)
Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog
2014-01-01
PURPOSE: The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS: Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process...... variables and lyophilized. Structural elucidation of the reconstituted formulation was performed using HR-TEM and SAXS analysis. The developed formulation was subjected to exhaustive cell culture experiments for delivery potential (Caco-2 cells) and efficacy (MCF-7 cells). Finally, in vivo pharmacokinetics...
The traveling salesman problem on cubic and subcubic graphs
Boyd, Sylvia; van der Ster, Suzanne; Stougie, Leen
2011-01-01
We study the Travelling Salesman Problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3 conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal values of the TSP and its linear programming relaxation (the subtour elimination relaxation), is 4/3. We present the first algorithm for cubic graphs with approximation ratio 4/3. The proof uses polyhedral techniques in a surprising way, which is of independent interest. In fact we prove constructively that for any cubic graph on $n$ vertices a tour of length 4n/3-2 exists, which also implies the 4/3 conjecture, as an upper bound, for this class of graph-TSP. Recently, M\\"omke and Svensson presented a randomized algorithm that gives a 1.461-approximation for graph-TSP on general graphs and as a side result a 4/3-approximation algorithm for this problem on subcubic graphs, also settling the 4/3 conjectur...
Field-effect transistors based on cubic indium nitride.
Oseki, Masaaki; Okubo, Kana; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi
2014-02-04
Although the demand for high-speed telecommunications has increased in recent years, the performance of transistors fabricated with traditional semiconductors such as silicon, gallium arsenide, and gallium nitride have reached their physical performance limits. Therefore, new materials with high carrier velocities should be sought for the fabrication of next-generation, ultra-high-speed transistors. Indium nitride (InN) has attracted much attention for this purpose because of its high electron drift velocity under a high electric field. Thick InN films have been applied to the fabrication of field-effect transistors (FETs), but the performance of the thick InN transistors was discouraging, with no clear linear-saturation output characteristics and poor on/off current ratios. Here, we report the epitaxial deposition of ultrathin cubic InN on insulating oxide yttria-stabilized zirconia substrates and the first demonstration of ultrathin-InN-based FETs. The devices exhibit high on/off ratios and low off-current densities because of the high quality top and bottom interfaces between the ultrathin cubic InN and oxide insulators. This first demonstration of FETs using a ultrathin cubic indium nitride semiconductor will thus pave the way for the development of next-generation high-speed electronics.
Malmir, Hessam; Sahimi, Muhammad; Tabar, M Reza Rahimi
2016-12-01
Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO_{2} sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016)2045-232210.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.
Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)
Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.
2002-08-01
Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application.
Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi
2016-12-01
Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO2 sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016), 10.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.
Integer roots of quadratic and cubic polynomials with integer coefficients
Zelator, Konstantine
2011-01-01
The subject matter of this work is quadratic and cubic polynomial functions with integer coefficients;and all of whose roots are integers. The material of this work is directed primarily at educators,students,and teachers of mathematics,grades K12 to K20.The results of this work are expressed in Theorems3,4,and5. Of these theorems, Theorem3, is the one that most likely, the general reader of this article will have some familiarity with.In Theorem3, precise coefficient conditions are given;in order that a quadratic trinomial(with integer) have two integer roots or zeros.On the other hand, Theorems4 and5 are largely unfamiliar territory. In Theorem4, precise coefficient conditions are stated; for a monic cubic polynomial to have a double(i.e.of multiplicity 2) integer root, and a single integer root(i.e.of multiplicity 1).The entire family of such cubics can be described in terms of four groups or subfamilies; each such group being a two-integer parameter subfamily. In Theorem5, a one-integer parameter family o...
Arithmetic Problems in Cubic and Quartic Function Fields
Bembom, Tobias
2010-01-01
One of the main themes in this thesis is the description of the signature of both the infinite place and the finite places in cubic function fields of any characteristic and quartic function fields of characteristic at least 5. For these purposes, we provide a new theory which can be applied to cubic and quartic function fields and to even higher dimensional function fields. One of the striking advantages of this theory to other existing methods is that is does not use the concept of p-adic completions and we can dispense of Cardano's formulae. Another key result comprises the construction of cubic function fields of unit rank 1 and 2, with an obvious fundamental system. One of the main ingredients for such constructions is the definition of the maximum value. This definition is new and very prolific in the context of finding fundamental systems. We conclude the thesis with miscellaneous results on the divisor class number h, including a new approach for finding divisors of h.
Dynamic properties of the cubic nonlinear Schr(o)dinger equation by symplectic method
Institute of Scientific and Technical Information of China (English)
Liu Xue-Shen; Wei Jia-Yu; Ding Pei-Zhu
2005-01-01
The dynamic properties of a cubic nonlinear Schrodinger equation are investigated numerically by using the symplectic method with different space approximations. The behaviours of the cubic nonlinear Schrodinger equation are discussed with different cubic nonlinear parameters in the harmonically modulated initial condition. We show that the conserved quantities will be preserved for long-time computation but the system will exhibit different dynamic behaviours in space difference approximation for the strong cubic nonlinearity.
30 CFR 203.73 - How do suspension volumes apply to natural gas?
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do suspension volumes apply to natural gas... suspension volumes apply to natural gas? You must measure natural gas production under the royalty-suspension volume as follows: 5.62 thousand cubic feet of natural gas, measured in accordance with 30 CFR part...
Trabant, Dennis C.
1999-01-01
The volume of four of the largest glaciers on Iliamna Volcano was estimated using the volume model developed for evaluating glacier volumes on Redoubt Volcano. The volume model is controlled by simulated valley cross sections that are constructed by fitting third-order polynomials to the shape of the valley walls exposed above the glacier surface. Critical cross sections were field checked by sounding with ice-penetrating radar during July 1998. The estimated volumes of perennial snow and glacier ice for Tuxedni, Lateral, Red, and Umbrella Glaciers are 8.6, 0.85, 4.7, and 0.60 cubic kilometers respectively. The estimated volume of snow and ice on the upper 1,000 meters of the volcano is about 1 cubic kilometer. The volume estimates are thought to have errors of no more than ?25 percent. The volumes estimated for the four largest glaciers are more than three times the total volume of snow and ice on Mount Rainier and about 82 times the total volume of snow and ice that was on Mount St. Helens before its May 18, 1980 eruption. Volcanoes mantled by substantial snow and ice covers have produced the largest and most catastrophic lahars and floods. Therefore, it is prudent to expect that, during an eruptive episode, flooding and lahars threaten all of the drainages heading on Iliamna Volcano. On the other hand, debris avalanches can happen any time. Fortunately, their influence is generally limited to the area within a few kilometers of the summit.
Vacancy-induced mechanical stabilization of cubic tungsten nitride
Balasubramanian, Karthik; Khare, Sanjay; Gall, Daniel
2016-11-01
First-principles methods are employed to determine the structural, mechanical, and thermodynamic reasons for the experimentally reported cubic WN phase. The defect-free rocksalt phase is both mechanically and thermodynamically unstable, with a negative single crystal shear modulus C44=-86 GPa and a positive enthalpy of formation per formula unit Hf=0.623 eV with respect to molecular nitrogen and metallic W. In contrast, WN in the NbO phase is stable, with C44=175 GPa and Hf=-0.839 eV . A charge distribution analysis reveals that the application of shear strain along [100] in rocksalt WN results in an increased overlap of the t2 g orbitals which causes electron migration from the expanded to the shortened W-W bond axes, yielding a negative shear modulus due to an energy reduction associated with new bonding states 8.1-8.7 eV below the Fermi level. A corresponding shear strain in WN in the NbO phase results in an energy increase and a positive shear modulus. The mechanical stability transition from the NaCl to the NbO phase is explored using supercell calculations of the NaCl structure containing Cv=0 %-25 % cation and anion vacancies, while keeping the N-to-W ratio constant at unity. The structure is mechanically unstable for Cvconcentration, the isotropic elastic modulus E of cubic WN is zero, but increases steeply to E =445 GPa for Cv=10 % , and then less steeply to E =561 GPa for Cv=25 % . Correspondingly, the hardness estimated using Tian's model increases from 0 to 15 to 26 GPa as Cv increases from 5% to 10% to 25%, indicating that a relatively small vacancy concentration stabilizes the cubic WN phase and that the large variations in reported mechanical properties of WN can be attributed to relatively small changes in Cv.
Cubic Phases, Cubosomes and Ethosomes for Cutaneous Application.
Esposito, Elisabetta; Drechsler, Markus; Nastruzzi, Claudio; Cortesi, Rita
2016-01-01
Cutaneous administration represents a good strategy to treat skin diseases, avoiding side effects related to systemic administration. Apart from conventional therapy, based on the use of semi-solid formulation such as gel, ointments and creams, recently the use of specialized delivery systems based on lipid has been taken hold. This review provides an overview about the use of cubic phases, cubosomes and ethosomes, as lipid systems recently proposed to treat skin pathologies. In addition in the final part of the review cubic phases, cubosomes and ethosomes are compared to solid lipid nanoparticles and lecithin organogel with respect to their potential as delivery systems for cutaneous application. It has been reported that lipid nanosystems are able to dissolve and deliver active molecules in a controlled fashion, thereby improving their bioavailability and reducing side-effects. Particularly lipid matrixes are characterized by skin affinity and biocompatibility allowing their application on skin. Indeed, after cutaneous administration, the lipid matrix of cubic phases and cubosomes coalesces with the lipids of the stratum comeum and leads to the formation of a lipid depot from which the drug associated to the nanosystem can be released in the deeper skin strata in a controlled manner. Ethosomes are characterized by a malleable structure that promotes their interaction with skin, improving their potential as skin delivery systems with respect to liposomes. Also in the case of solid lipid nanoparticles it has been suggested a deep interaction between lipid matrix and skin strata that endorses sustained and prolonged drug release. Concerning lecithin organogel, the peculiar structure of this system, where lecithin exerts a penetration enhancer role, allows a deep interaction with skin strata, promoting the transdermal absorption of the encapsulated drugs.
Cubature Formula and Interpolation on the Cubic Domain
Institute of Scientific and Technical Information of China (English)
Huiyuan Li; Jiachang Sun; Yuan Xu
2009-01-01
Several cubature formulas on the cubic domains are derived using the dis-crete Fourier analysis associated with lattice tiling, as developed in [10]. The main results consist of a new derivation of the Gaussian type cubature for the product Cheby-shev weight functions and associated interpolation polynomials on [-1,1]2, as well as new results on [-1,1]3. In particular, compact formulas for the fundamental interpo-lation polynomials are derived, based on n3/4 + (n2) nodes of a cubature formula on [-1,1]3.
CLOSED SMOOTH SURFACE DEFINED FROM CUBIC TRIANGULAR SPLINES
Institute of Scientific and Technical Information of China (English)
Ren-zhong Feng; Ren-hong Wang
2005-01-01
In order to construct closed surfaces with continuous unit normal, we introduce a new spline space on an arbitrary closed mesh of three-sided faces. Our approach generalizes an idea of Goodman and is based on the concept of 'Geometric continuity' for piecewise polynomial parametrizations. The functions in the spline space restricted to the faces are cubic triangular polynomials. A basis of the spline space is constructed of positive functions which sum to 1. It is also shown that the space is suitable for interpolating data at the midpoints of the faces.
Exotic Universal Solutions in Cubic Superstring Field Theory
Erler, Theodore
2010-01-01
We present a class of analytic solutions of cubic superstring field theory in the universal sector on a non-BPS D-brane. Computation of the action and gauge invariant overlap reveal that the solutions carry half the tension of a non-BPS D-brane. However, the solutions do not satisfy the reality condition. In fact, they display an intriguing topological structure: We find evidence that conjugation of the solutions is equivalent to a gauge transformation that cannot be continuously deformed to the identity.
Research on the Cutting Performance of Cubic Boron Nitride Tools
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic c...
Self-trapping transition in nonlinear cubic lattices
Naether, Uta; Guzmán-Silva, Diego; Molina, Mario I; Vicencio, Rodrigo A
2013-01-01
We explore the fundamental question about the critical nonlinearity value needed to dynamically localize energy in discrete nonlinear cubic (Kerr) lattices. We focus on the effective frequency and participation ratio of the profile to determine the transition into localization, performing several numerical simulations in one-, two-, and three-dimensional lattices. A simple criterium is developed - for the case of an initially localized excitation - defining the transition region in parameter space ("dynamical tongue") from a delocalized to a localized profile. A general analytical estimate of the critical nonlinearity value for which this transition occurs is obtained.
Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy.
Salazar-Alvarez, G; Qin, J; Sepelák, V; Bergmann, I; Vasilakaki, M; Trohidou, K N; Ardisson, J D; Macedo, W A A; Mikhaylova, M; Muhammed, M; Baró, M D; Nogués, J
2008-10-08
The magnetic properties of maghemite (gamma-Fe2O3) cubic and spherical nanoparticles of similar sizes have been experimentally and theoretically studied. The blocking temperature, T(B), of the nanoparticles depends on their shape, with the spherical ones exhibiting larger T(B). Other low temperature properties such as saturation magnetization, coercivity, loop shift or spin canting are rather similar. The experimental effective anisotropy and the Monte Carlo simulations indicate that the different random surface anisotropy of the two morphologies combined with the low magnetocrystalline anisotropy of gamma-Fe2O3 is the origin of these effects.
Configuration spaces of an embedding torus and cubical spaces
Jourdan, Jean-Philippe
2006-01-01
For a smooth manifold M obtained as an embedding torus, A U Cx[-1,1], we consider the ordered configuration space F_k(M) of k distinct points in M. We show that there is a homotopical cubical resolution of F_k(M) defined from the configuration spaces of A and C. From it, we deduce a universal method for the computation of the pure braid groups of a manifold. We illustrate the method in the case of the Mobius band.
Ionic Conduction in Cubic Zirconias at Low Temperatures
Institute of Scientific and Technical Information of China (English)
Ying LI; Yunfa CHEN; Jianghong GONG
2004-01-01
The ac conductivities of Y2O3 or CaO-stabilized cubic zirconias were obtained from complex impedance measurements in the temperature range from 373 to 473 K. By analyzing the temperature-dependence of the resultant dc conductivities, it was shown that the activation energies for conduction are lower than those reported previously for the same materials at high temperatures. Comparing the activation energy data with the theoretically estimated values revealed that there may exist a certain, although very small, amount of free oxygen vacancies in the test samples at low temperatures and the conduction in the test samples is a result of the migration of these free oxygen vacancies.
Cubic to tetragonal crystal lattice reconstruction during ordering or decomposition
Energy Technology Data Exchange (ETDEWEB)
Cheong, Byung-kl [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering
1992-09-01
This thesis studied thermodynamic stability and morphology of product phases in diffusional phase transformations involving cubic-to-tetragonal crystal lattice reconstructions. Two different kinds of diffusional transformations were examined: L1{sub 0} ordering (fcc to fct lattice change) and decomposition of off-stoichiometric B2 ordering alloys accompanying bcc to fcc Bain transformation. In the first case, Fe-45 at.% Pd alloys were studied by TEM; in the second, the Bain strain relaxation during decomposition of hyper-eutectoid Cu-9.04 wt% Be alloy was studied. CuAu and InMg were also studied.
On the {P2, P3}-Factor of Cubic Graphs
Institute of Scientific and Technical Information of China (English)
GOU Kui-xiang; SUN Liang
2005-01-01
Let G = ( V, E) be a finite simple graph and Pn denote the path of order n. A spanning subgraph F is called a {P2, P3}-factor of G if each component of F is isomorphic to P2 or P3. With the path-covering method, it is proved that any connected cubic graph with at least 5 vertices has a { P2, P3 }-factor F such that | P3 (F) |≥|P2 (F) |, where P2 (F) and P3 (F) denote the set of components of P2 and P3 in F,respectively.
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-05
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.
Compressibility and thermal expansion of cubic silicon nitride
DEFF Research Database (Denmark)
Jiang, Jianzhong; Lindelov, H.; Gerward, Leif
2002-01-01
The compressibility and thermal expansion of the cubic silicon nitride (c-Si3N4) phase have been investigated by performing in situ x-ray powder-diffraction measurements using synchrotron radiation, complemented with computer simulations by means of first-principles calculations. The bulk...... compressibility of the c-Si3N4 phase originates from the average of both Si-N tetrahedral and octahedral compressibilities where the octahedral polyhedra are less compressible than the tetrahedral ones. The origin of the unit cell expansion is revealed to be due to the increase of the octahedral Si-N and N-N bond...
Theoretical and Experimental Study of Time Reversal in Cubic Crystals
Institute of Scientific and Technical Information of China (English)
陆铭慧; 张碧星; 汪承灏
2004-01-01
The self-adaptive focusing of the time reversal in anisotropic media is studied theoretically and experimentally. It is conducted for the compressional wave field in the cubic crystal silicon. The experimental result is in agreement with our theoretical analysis. The focusing gain and the displacement distributions of the time reversal field are analysed in detail. It is shown that the waves from different elements of the transducer array arrive at the original place of the source simultaneously after the time reversal operation. The waveform distortions caused by the velocity anisotropy can automatically be compensated for after the time reversal processing.
Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride
Directory of Open Access Journals (Sweden)
Kuruc Marcel
2014-12-01
Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.
Cubic Plus Association Equation of State for Flow Assurance Projects
DEFF Research Database (Denmark)
dos Santos, Leticia Cotia; Abunahman, Samir Silva; Tavares, Frederico Wanderley
2015-01-01
Thermodynamic hydrate inhibitors such as methanol, ethanol, (mono) ethylene glycol (MEG), and triethylene glycol (TEG) are widely used in the oil and gas industry. On modeling these compounds, we show here how the CPA equation of state was implemented in an in-house process simulator as an in......-built model: To validate the implementation, we show calulations for binary systems containing hydrate inhibitors and water or hydrocarbons using the Cubic Plus Association (CPA) and Soave-Redlich-Kwong (SRK) equation of states, also comparing against experimental data. For streams containing natural gas...
Elasticity tensor and ultrasonic velocities for anisotropic cubic polycrystal
Institute of Scientific and Technical Information of China (English)
2008-01-01
The orientation distribution of crystallites in a polycrystal can be described by the orientation distribution function(ODF) . The ODF can be expanded under the Wigner D-bases. The expanded coefficients in the ODF are called the texture coefficients. In this paper,we use the Clebsch-Gordan expression to derive an explicit expression of the elasticity tensor for an anisotropic cubic polycrystal. The elasticity tensor contains three material constants and nine texture coefficients. In order to measure the nine texture coefficients by ultrasonic wave,we give relations between the nine texture coefficients and ultrasonic propagation velocities. We also give a numerical example to check the relations.
Tensor tomography of stresses in cubic single crystals
Directory of Open Access Journals (Sweden)
Dmitry D. Karov
2015-03-01
Full Text Available The possibility of optical tomography applying to investigation of a two-dimensional and a three-dimensional stressed state in single cubic crystals has been studied. Stresses are determined within the framework of the Maxwell piezo-optic law (linear dependence of the permittivity tensor on stresses and weak optical anisotropy. It is shown that a complete reconstruction of stresses in a sample is impossible both by translucence it in the parallel planes system and by using of the elasticity theory equations. For overcoming these difficulties, it is offered to use a method of magnetophotoelasticity.
Astuti, Valerio; Rovelli, Carlo
2016-01-01
Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.
Directory of Open Access Journals (Sweden)
C. P. Chui
2014-08-01
Full Text Available The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.
Cubic optical elements for an accommodative intraocular lens.
Simonov, Aleksey N; Vdovin, Gleb; Rombach, Michiel C
2006-08-21
We present a new accommodative intraocular lens based on a two-element varifocal Alvarez lens. The intraocular lens consists of (1) an anterior element combining a spherical lens for refractive power with a cubic surface for the varifocal effect, and (2) a posterior element with a cubic surface only. The focal length of the IOL lens changes when the superimposed refractive elements shift in opposite directions in a plane perpendicular to the optical axis. The ciliary muscle will drive the accommodation by a natural process of contraction and relaxation. Results of ray-tracing simulations of the model eye with the two-element intraocular lens are presented for on-axis and off-axis vision. The configuration of the lens is optimized to reduce refractive errors as well as effects of misalignment. A prototype with a clear aperture of ~5.7 mm is manufactured and evaluated in air with a Shack-Hartmann wave-front sensor. It provides an accommodation range of ~4 dioptres in the eye at a ~0.75-mm lateral displacement of the optical elements. The experimentally measured on-axis optical performance of the IOL lens agrees with the theoretically predicted performance.
Nonlinear structure formation in the Cubic Galileon gravity model
Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia
2013-01-01
We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the {\\tt ECOSMOG} code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by $\\sim 25%$ with respect to the standard $\\Lambda$CDM model today. The modified expansion rate accounts for $\\sim 20%$ of this enhancement, while the fifth force is responsible for only $\\sim 5%$. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime ($k \\gtrsim 0.1 h\\rm{Mpc}^{-1}$), the fifth force leads to only a modest increase ($\\lesssim 8%$) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other...
A family of quasi-cubic blended splines and applications
Institute of Scientific and Technical Information of China (English)
SU Ben-yue; TAN Jie-qing
2006-01-01
A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter α, defined by the introduced base functions, include the B-spline curves and can approximate the B-spline curves from both sides. The curves can be adjusted easily by using the shape parameter α, where dpi(α,t) is linear with respect to dα for the fixed t. With the shape parameter chosen properly,the defined curves can be used to precisely represent straight line segments, parabola segments, circular arcs and some transcendental curves, and the corresponding tensor product surfaces can also represent spherical surfaces, cylindrical surfaces and some transcendental surfaces exactly. By abandoning positive property, this paper proposes a new C2 continuous blended interpolation spline based on piecewise trigonometric polynomials associated with a sequence of local parameters. Illustration showed that the curves and surfaces constructed by the blended spline can be adjusted easily and freely. The blended interpolation spline curves can be shape-preserving with proper local parameters since these local parameters can be considered to be the magnification ratio to the length of tangent vectors at the interpolating points. The idea is extended to produce blended spline surfaces.
Partially Blended Constrained Rational Cubic Trigonometric Fractal Interpolation Surfaces
Chand, A. K. B.; Tyada, K. R.
2016-08-01
Fractal interpolation is an advance technique for visualization of scientific shaped data. In this paper, we present a new family of partially blended rational cubic trigonometric fractal interpolation surfaces (RCTFISs) with a combination of blending functions and univariate rational trigonometric fractal interpolation functions (FIFs) along the grid lines of the interpolation domain. The developed FIFs use rational trigonometric functions pi,j(θ) qi,j(θ), where pi,j(θ) and qi,j(θ) are cubic trigonometric polynomials with four shape parameters. The convergence analysis of partially blended RCTFIS with the original surface data generating function is discussed. We derive sufficient data-dependent conditions on the scaling factors and shape parameters such that the fractal grid line functions lie above the grid lines of a plane Π, and consequently the proposed partially blended RCTFIS lies above the plane Π. Positivity preserving partially blended RCTFIS is a special case of the constrained partially blended RCTFIS. Numerical examples are provided to support the proposed theoretical results.
Observation of Body-Centered Cubic Gold Nanocluster.
Liu, Chao; Li, Tao; Li, Gao; Nobusada, Katsuyuki; Zeng, Chenjie; Pang, Guangsheng; Rosi, Nathaniel L; Jin, Rongchao
2015-08-17
The structure of nanoparticles plays a critical role in dictating their material properties. Gold is well known to adopt face-centered cubic (fcc) structure. Herein we report the first observation of a body-centered cubic (bcc) gold nanocluster composed of 38 gold atoms protected by 20 adamantanethiolate ligands and two sulfido atoms ([Au38S2(SR)20], where R=C10H15) as revealed by single-crystal X-ray crystallography. This bcc structure is in striking contrast with the fcc structure of bulk gold and conventional Au nanoparticles, as well as the bi-icosahedral structure of [Au38(SCH2CH2Ph)24]. The bcc nanocluster has a distinct HOMO-LUMO gap of ca. 1.5 eV, much larger than the gap (0.9 eV) of the bi-icosahedral [Au38(SCH2CH2Ph)24]. The unique structure of the bcc gold nanocluster may be promising in catalytic applications.
Four-dimensional black holes in Einsteinian cubic gravity
Bueno, Pablo; Cano, Pablo A.
2016-12-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.
Novel Cubic Magnetite Nanoparticle Synthesis Using Room Temperature Ionic Liquid
Directory of Open Access Journals (Sweden)
M. Sundrarajan
2012-01-01
Full Text Available Room Temperature Ionic liquids are relatively more useful in the synthesis of inorganic nanostructured materials because of their unique properties. To synthesize the iron oxide nanoparticle in simple precipitation method, a novel ionic liquid was used as the greener medium and stabilizing agent namely “1-n-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][TfO]”. The crystallinity, chemical structure, morphology and magnetic properties of the synthesized magnetite nanoparticles have been characterized by using X-ray diffraction (XRD, Fourier Transform Infrared (FT-IR, Scanning electron microscopy (SEM, Atomic force microscopy(AFM, Transmission electron microscopy (TEM and Vibrating sample magnetometer (VSM studies. The XRD study is divulge that the synthesized magnetite nanoparticles have inverse spinel face centered cubic structure. The FT-IR vibration peaks show the formation of Fe3O4 nanoparticles, where the vibration peak for Fe-O is deliberately presence at 584 cm-1. The average particle size of the synthesized nanoparticles is found to be 35 nm. Homogeneously dispersed cubic shape with superstructure is found through SEM, AFM and TEM examination studies. The synthesized iron oxide nanoparticles have a high saturation magnetization value of 25 emu/g, which is very much useful for biomedical applications.
Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors
Yi, Eongyu; Wang, Weimin; Kieffer, John; Laine, Richard M.
2017-06-01
Cubic-Li7La3Zr2O12 (LLZO) is regarded as one of the most promising solid electrolytes for the construction of inherently safe, next generation all-solid-state Li batteries. Unfortunately, sintering these materials to full density with controlled grain sizes, mechanical and electrochemical properties relies on energy and equipment intensive processes. In this work, we elucidate key parameters dictating LLZO densification by tracing the compositional and structural changes during processing calcined and ball-milled Al3+ doped LLZO powders. We find that the powders undergo ion (Li+/H+) exchange during room temperature processing, such that on heating, the protonated LLZO lattice collapses and crystallizes to its constituent oxides, leading to reaction driven densification at sizes and protonation cannot be decoupled, and actually aid densification. We conclude that using fully decomposed nanoparticle mixtures, as obtained by liquid-feed flame spray pyrolysis, provides an ideal approach to use high surface and reaction energy to drive densification, resulting in pressureless sintering of Ga3+ doped LLZO thin films (25 μm) at 1130 °C/0.3 h to ideal microstructures (95 ± 1% density, 1.2 ± 0.2 μm average grain size) normally accessible only by pressure-assisted sintering. Such films offer both high ionic conductivity (1.3 ± 0.1 mS cm-1) and record low ionic area specific resistance (2 Ω cm2).
Non-spherical micelles in an oil-in-water cubic phase
DEFF Research Database (Denmark)
Leaver, M.; Rajagopalan, V.; Ulf, O.
2000-01-01
The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...... phase, both with and without SDS, was established by NMR self-diffusion. In addition H-2 NMR relaxation experiments have demonstrated that the micelles in the cubic phase are non-spherical, having grown and changed shape upon formation of the cubic phase from the micellar solution. Small angle...... scattering experiments indicate that the lattice parameter for the cubic phase is inconsistent with a simple packing of micelles. Whilst insufficient reflections were observed to establish the space group of the cubic phase uniquely, those that were are consistent with two commonly observed space groups...
A. Beléndez; ALVAREZ, M. L.; Francés, J.; S. Bleda; Beléndez, T.; Nájera, A.; Arribas, E.
2012-01-01
Accurate approximate closed-form solutions for the cubic-quintic Duffing oscillator are obtained in terms of elementary functions. To do this, we use the previous results obtained using a cubication method in which the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a cubic Duffing equation. Explicit approximate solutions are then expressed as a function of the complete elliptic integral of the first kind and the Jacobi ...
Quantum-Carnot engine for particle confined to cubic potential
Sutantyo, Trengginas Eka P.; Belfaqih, Idrus H.; Prayitno, T. B.
2015-09-01
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
Gauge Fixing of Modified Cubic Open Superstring Field Theory
Kohriki, Maiko; Kunitomo, Hiroshi
2011-01-01
The gauge-fixing problem of modified cubic open superstring field theory is discussed in detail both for the Ramond and Neveu-Schwarz sectors in the Batalin-Vilkovisky (BV) framework. We prove for the first time that the same form of action as the classical gauge-invariant one with the ghost-number constraint on the string field relaxed gives the master action satisfying the BV master equation. This is achieved by identifying independent component fields based on the analysis of the kernel structure of the inverse picture changing operator. The explicit gauge-fixing conditions for the component fields are discussed. In a kind of $b_0=0$ gauge, we explicitly obtain the NS propagator which has poles at the zeros of the Virasoro operator $L_0$.
Quantum-Carnot engine for particle confined to cubic potential
Energy Technology Data Exchange (ETDEWEB)
Sutantyo, Trengginas Eka P., E-mail: trengginas.eka@gmail.com; Belfaqih, Idrus H., E-mail: idrushusin21@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, State University of Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta Timur 13220 (Indonesia)
2015-09-30
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
Perbaikan Metode Penghitungan Debit Sungai Menggunakan Cubic Spline Interpolation
Directory of Open Access Journals (Sweden)
Budi I. Setiawan
2007-09-01
Full Text Available Makalah ini menyajikan perbaikan metode pengukuran debit sungai menggunakan fungsi cubic spline interpolation. Fungi ini digunakan untuk menggambarkan profil sungai secara kontinyu yang terbentuk atas hasil pengukuran jarak dan kedalaman sungai. Dengan metoda baru ini, luas dan perimeter sungai lebih mudah, cepat dan tepat dihitung. Demikian pula, fungsi kebalikannnya (inverse function tersedia menggunakan metode. Newton-Raphson sehingga memudahkan dalam perhitungan luas dan perimeter bila tinggi air sungai diketahui. Metode baru ini dapat langsung menghitung debit sungaimenggunakan formula Manning, dan menghasilkan kurva debit (rating curve. Dalam makalah ini dikemukaan satu canton pengukuran debit sungai Rudeng Aceh. Sungai ini mempunyai lebar sekitar 120 m dan kedalaman 7 m, dan pada saat pengukuran mempunyai debit 41 .3 m3/s, serta kurva debitnya mengikuti formula: Q= 0.1649 x H 2.884 , dimana Q debit (m3/s dan H tinggi air dari dasar sungai (m.
On the undamped vibration absorber with cubic stiffness characteristics
Gatti, G.
2016-09-01
In order to improve the performance of a vibration absorber, a nonlinear spring can be used on purpose. This paper presents an analytical insight on the characteristics of an undamped nonlinear vibration absorber when it is attached to a linear spring-mass-damper oscillator. In particular, the nonlinear attachment is modelled as a Duffing's oscillator with a spring characteristics having a linear positive stiffness term plus a cubic stiffness term. The effects of the nonlinearity, mass ratio and frequency ratio are investigated based on an approximate analytical formulation of the amplitude-frequency equation. Comparisons to the linear case are shown in terms of the frequency response curves. The nonlinear absorber seems to show an improved robustness to mistuning respect to the corresponding linear device. However, such a better robustness may be limited by some instability of the expected harmonic response.
Cubic Spline Interpolation Reveals Different Evolutionary Trends of Various Species
Directory of Open Access Journals (Sweden)
Li Zhiqiang
2016-01-01
Full Text Available Instead of being uniform in each branch of the biological evolutionary tree, the speed of evolution, measured in the number of mutations over a fixed number of years, seems to be much faster or much slower than average in some branches of the evolutionary tree. This paper describes an evolutionary trend discovery algorithm that uses cubic spline interpolation for various branches of the evolutionary tree. As shown in an example, within the vertebrate evolutionary tree, human evolution seems to be currently speeding up while the evolution of chickens is slowing down. The new algorithm can automatically identify those branches and times when something unusual has taken place, aiding data analytics of evolutionary data.
Palladium in cubic silicon carbide: Stability and kinetics
Roma, Guido
2009-12-01
Several technological applications of silicon carbide are concerned with the introduction of palladium impurities. Be it intentional or not, this may lead to the formation of silicides. Not only this process is not well understood, but the basic properties of palladium impurities in silicon carbide, such as solubility or diffusion mechanisms, are far from being known. Here the stability and kinetics of isolated Pd impurities in cubic silicon carbide are studied by first principles calculations in the framework of density functional theory. The preferential insertion sites, as well as the main migration mechanisms, are analyzed and presented here, together with the results for solution and migration energies. The early stages of nucleation are discussed based on the properties of isolated impurities and the smallest clusters.
Four-dimensional black holes in Einsteinian cubic gravity
Bueno, Pablo
2016-01-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordstr\\"om-(Anti) de Sitter (RN-(A)dS) black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are determined by a single blackening factor which satisfies a non-linear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature $T$, the Wald entropy $\\mathsf{S}$ and the Abbott-Deser mass $M$ of the solutions analytically as functions of the horizon radius and the ECG coupling constant $\\lambda$. Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case.
Structure and energetics of nanotwins in cubic boron nitrides
Zheng, Shijian; Zhang, Ruifeng; Huang, Rong; Taniguchi, Takashi; Ma, Xiuliang; Ikuhara, Yuichi; Beyerlein, Irene J.
2016-08-01
Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.
Linear and cubic dynamic susceptibilities in quantum spin glass
Busiello, G; Sushkova, V G
2001-01-01
The low temperature behaviour of the dynamic nonlinear (cubic) susceptibility chi sub 3 sup ' (omega, T) in quantum d-dimensional Ising spin glass with short-range interactions between spins is investigated in terms of the quantum droplet model and the quantum-mechanical nonlinear response theory is employed. We have revealed a glassy like behaviour of droplet dynamics. The frequency dependence of chi sub 3 sup ' (omega, T) is very remarkable, the temperature dependence is found at very low temperatures (quantum regime). The nonlinear response depends on the tunneling rate for a droplet which regulates the strength of quantum fluctuations. This response has a strong dependence on the distribution of droplet free energies and on the droplet length scale average. Implications for experiments in quantum spin glasses like disordered dipolar quantum Ising magnet LiHo sub x Y sub 1 sub - sub x F sub 4 and pseudospin are noted.
A cubic autocatalytic reaction in a continuous stirred tank reactor
Energy Technology Data Exchange (ETDEWEB)
Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang Malaysia (Malaysia)
2015-10-22
In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.
Submicron cubic boron nitride as hard as diamond
Energy Technology Data Exchange (ETDEWEB)
Liu, Guoduan; Kou, Zili, E-mail: kouzili@scu.edu.cn, E-mail: yanxz@hpstar.ac.cn; Lei, Li; Peng, Fang; Wang, Qiming; Wang, Kaixue; Wang, Pei; Li, Liang; Li, Yong; Wang, Yonghua [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Yan, Xiaozhi, E-mail: kouzili@scu.edu.cn, E-mail: yanxz@hpstar.ac.cn; Li, Wentao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); Bi, Yan [Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physic, China Academy of Engineering Physics, Mianyang 621900 (China); Leng, Yang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong (China); He, Duanwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physic, China Academy of Engineering Physics, Mianyang 621900 (China)
2015-03-23
Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.
PT-Symmetric Cubic Anharmonic Oscillator as a Physical Model
Mostafazadeh, A
2004-01-01
We perform a perturbative calculation of the physical observables, in particular pseudo-Hermitian position and momentum operators, the equivalent Hermitian Hamiltonian operator, and the classical Hamiltonian for the PT-symmetric cubic anharmonic oscillator, $ H=p^1/(2m)+\\mu^2x^2/2+i\\epsilon x^3 $. Ignoring terms of order $ \\epsilon^4 $ and higher, we show that this system describes an ordinary quartic anharmonic oscillator with a position-dependent mass and real and positive coupling constants. This observation elucidates the classical origin of the reality and positivity of the energy spectrum. We also discuss the quantum-classical correspondence for this PT-symmetric system, compute the associated conserved probability density, and comment on the issue of factor-ordering in the pseudo-Hermitian canonical quantization of the underlying classical system.
Enhanced initial protein adsorption on an engineered nanostructured cubic zirconia
Sabirianov, R F; Namavar, F
2010-01-01
Motivated by experimentally observed biocompatibility enhancement of nanoengineered cubic zirconia ZrO2 coatings to mesenchymal stromal cells, we have carried out computational analysis of the initial immobilization of one of known structural fragment of the adhesive protein (fibronectin) on the corresponding surface. We constructed an atomistic model of the zirconia nano-hillock of 3-fold symmetry based on AFM and TEM images. First-principle quantum-mechanical calculations show a substantial variation of electrostatic potential at the hillock due to the presence of surface features such as edges and vertexes. Using an implemented Monte Carlo simulated annealing method we found the orientation of the immobilized protein on the zirconia surface (both flat and nanostructured) and contribution of the each amino acid residue from the protein sequence to the adsorption energy. Accounting for the variation of the dielectric permittivity at the protein-implant interface we use a model distance-dependent dielectric f...
Inverse cubic law of index fluctuation distribution in Indian markets
Pan, R K; Pan, Raj Kumar; Sinha, Sitabhra
2006-01-01
One of the principal statistical features characterizing the activity in financial markets is the distribution of fluctuations in market indicators such as the index. While the developed stock markets such as the New York Stock Exchange (NYSE) have been found to show heavy-tailed fluctuation distribution, there have been claims that emerging markets behave differently. Here we investigate the distribution of several indices from the Indian financial market, one of the largest emerging markets in the world. We have used both tick-by-tick data from the National Stock Exchange (NSE) and daily closing data from both NSE and Bombay Stock Exchange (BSE). We find that the cumulative distribution of index fluctuations has long tails consistent with a power law having exponent $\\alpha \\approx 3$, independent of the time-scale of observation or the market index used for the analysis. This ``inverse cubic law'' is quantitatively similar to what has been observed in developed markets, thereby providing strong evidence th...
Entanglement across a cubic interface in 3+1 dimensions
Devakul, Trithep; Singh, Rajiv R. P.
2014-08-01
We calculate the area, edge, and corner Renyi entanglement entropies in the ground state of the transverse-field Ising model, on a simple-cubic lattice, by high-field and low-field series expansions. We find that while the area term is positive and the line term is negative as required by strong subadditivity, the corner contributions are positive in three dimensions. Analysis of the series suggests that the expansions converge up to the physical critical point from both sides. The leading area-law Renyi entropies match nicely from the high- and low-field expansions at the critical point, forming a sharp cusp there. We calculate the coefficients of the logarithmic divergence associated with the corner entropy and compare them with conformal field theory results with smooth interfaces and find a striking correspondence.
Room temperature quantum emission from cubic silicon carbide nanoparticles.
Castelletto, Stefania; Johnson, Brett C; Zachreson, Cameron; Beke, David; Balogh, István; Ohshima, Takeshi; Aharonovich, Igor; Gali, Adam
2014-08-26
The photoluminescence (PL) arising from silicon carbide nanoparticles has so far been associated with the quantum confinement effect or to radiative transitions between electronically active surface states. In this work we show that cubic phase silicon carbide nanoparticles with diameters in the range 45-500 nm can host other point defects responsible for photoinduced intrabandgap PL. We demonstrate that these nanoparticles exhibit single photon emission at room temperature with record saturation count rates of 7 × 10(6) counts/s. The realization of nonclassical emission from SiC nanoparticles extends their potential use from fluorescence biomarker beads to optically active quantum elements for next generation quantum sensing and nanophotonics. The single photon emission is related to single isolated SiC defects that give rise to states within the bandgap.
Spatial 't Hooft loop to cubic order in hot QCD
Giovannangeli, P
2002-01-01
Spatial 't Hooft loops of strength k measure the qualitative change in the behaviour of electric colour flux in confined and deconfined phase of SU (N) gauge theory. They show an area law in the deconfined phase, known analytica lly to two loop order with a ``k-scaling'' law k(N-k). In this paper we comput e the O(g^3) correction to the tension. It is due to neutral gluon fields that get their mass through interaction with the wall. The simple k-scaling is lost in cubic order. The generic problem of non-convexity shows up in this order an d the cure is provided. The result for large N is explicitely given. We show tha t nonperturbative effects appear at O(g^5).
Plasmon polaritons in cubic lattices of spherical metallic nanoparticles
Lamowski, Simon; Mariani, Eros; Weick, Guillaume; Pauly, Fabian
2016-01-01
We investigate theoretically plasmon polaritons in cubic lattices of interacting spherical metallic nanoparticles. Dipolar localized surface plasmons on each nanoparticle couple through the near field dipole-dipole interaction and form collective plasmons which extend over the whole metamaterial. Coupling these collective plasmons in turn to photons leads to plasmon polaritons. We derive within a quantum model general semi-analytical expressions to evaluate both plasmon and plasmon-polariton dispersions that fully account for nonlocal effects in the dielectric function of the metamaterial. Within this model, we discuss the influence of different lattice symmetries and predict related polaritonic gaps within the near-infrared to the visible range of the spectrum that depend on wavevector direction and polarization.
Cubic Derivative Interactions and Asymptotic Dynamics of the Galileon Vacuum
De Arcia, Roberto; León, Genly; Nucamendi, Ulises; Quiros, Israel
2015-01-01
In this paper we apply the tools of the dynamical systems theory in order to uncover the whole asymptotic structure of the vacuum interactions of a galileon model with a cubic derivative interaction term. It is shown that, contrary to what occurs in the presence of background matter, the galileon interactions of vacuum appreciably modify the late-time cosmic dynamics. In particular, a local late-time attractor representing phantom behavior arises which is inevitably associated with a big rip singularity. It seems that the gravitational interactions of the background matter with the galileon screen the effects of the gravitational self-interactions of the galileon, thus erasing any potential modification of the late-time dynamics by the galileon vacuum processes. Unlike other galileon models inspired in the DGP scenario, self-accelerating solutions do not arise in this model.
Quantum corrections for the cubic Galileon in the covariant language
Saltas, Ippocratis D.; Vitagliano, Vincenzo
2017-05-01
We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach in this context is discussed, while all calculations are explicitly presented.
Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
Directory of Open Access Journals (Sweden)
Przemyslaw Nogly
2015-03-01
Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.
Hairy black holes in cubic quasi-topological gravity
Dykaar, Hannah; Hennigar, Robie A.; Mann, Robert B.
2017-05-01
We construct a class of five dimensional black hole solutions to cubic quasi-topological gravity with conformal scalar hair and study their thermodynamics. We find these black holes provide the second example of black hole λ-lines: a line of second order (continuous) phase transitions, akin to the fluid/superfluid transition of 4He. Examples of isolated critical points are found for spherical black holes, marking the first in the literature to date. We also find various novel and interesting phase structures, including an isolated critical point occurring in conjunction with a double reentrant phase transition. The AdS vacua of the theory are studied, finding ghost-free configurations where the scalar field takes on a non-zero constant value, in notable contrast to the five dimensional Lovelock case.
Structure and energetics of nanotwins in cubic boron nitrides
Energy Technology Data Exchange (ETDEWEB)
Zheng, Shijian, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn; Ma, Xiuliang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Ruifeng, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn [School of Materials Science and Engineering, and International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191 (China); Huang, Rong [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062 (China); Taniguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ikuhara, Yuichi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656 (Japan); Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2016-08-22
Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.
Adaptive Predistortion Using Cubic Spline Nonlinearity Based Hammerstein Modeling
Wu, Xiaofang; Shi, Jianghong
In this paper, a new Hammerstein predistorter modeling for power amplifier (PA) linearization is proposed. The key feature of the model is that the cubic splines, instead of conventional high-order polynomials, are utilized as the static nonlinearities due to the fact that the splines are able to represent hard nonlinearities accurately and circumvent the numerical instability problem simultaneously. Furthermore, according to the amplifier's AM/AM and AM/PM characteristics, real-valued cubic spline functions are utilized to compensate the nonlinear distortion of the amplifier and the following finite impulse response (FIR) filters are utilized to eliminate the memory effects of the amplifier. In addition, the identification algorithm of the Hammerstein predistorter is discussed. The predistorter is implemented on the indirect learning architecture, and the separable nonlinear least squares (SNLS) Levenberg-Marquardt algorithm is adopted for the sake that the separation method reduces the dimension of the nonlinear search space and thus greatly simplifies the identification procedure. However, the convergence performance of the iterative SNLS algorithm is sensitive to the initial estimation. Therefore an effective normalization strategy is presented to solve this problem. Simulation experiments were carried out on a single-carrier WCDMA signal. Results show that compared to the conventional polynomial predistorters, the proposed Hammerstein predistorter has a higher linearization performance when the PA is near saturation and has a comparable linearization performance when the PA is mildly nonlinear. Furthermore, the proposed predistorter is numerically more stable in all input back-off cases. The results also demonstrate the validity of the convergence scheme.
Verma, Purnima; Ahuja, Munish
2016-10-01
The purpose of this study was to investigate the potential of cubic liquid crystalline nanoparticles for ocular delivery of tropicamide. Ultrasound-assisted fragmentation of cubic liquid crystalline bulk phases resulted in cubic liquid crystalline nanoparticles employing Pluronic F127 as dispersant. The effects of process variables such as sonication time, sonication amplitude, sonication depth, and pre-mixing time on particle size and polydispersity index was investigated using central composite design. The morphology of tropicamide-loaded nanoparticles was found to be nearly cubical in shape by transmission electron microscopy observation. Further, small angle X-ray scattering experiment confirmed the presence of D and P phase cubic structures in coexistence. The optimized tropicamide-loaded cubic nanoparticles showed in vitro corneal permeation of tropicamide across isolated porcine cornea comparable to its commercial preparation, Tropicacyl®. Ocular tolerance was evaluated by Hen's egg-chorioallantoic membrane test and histological studies. The results of in vivo mydriatic response study demonstrated a remarkably higher area under mydriatic response curve (AUC0→1440 min) values of cubic nanoparticles over Tropicacyl® indicating better therapeutic value of cubic nanoparticles. Furthermore, tropicamide-loaded cubic nanoparticles exhibited prolonged mydriatic effect on rabbits as compared to commercial conventional aqueous ophthalmic solution.
USAF Advanced Terrestrial Energy Study. Volume 2. Technology Handbook.
1983-04-01
volume of Stirling svstems hecause the regenerator determines the dimensions of the system envelone. Table 27. STIRLING SYSTEM VOLUME (CUBIC FEET...Rankine Cycles Batteries Gas Turbines Stirling Engines Thermal Energy Storage 20. ABSTRACT (Confilime 4n roere. olde If neo**WY 41011184100140 & Wee bi A...TECHNOLOGY DESCRIPTIONS 13 Diesels, 13 Gas Turbines. 31 Stirlings , 49 Organic Rankine Cycle; 67 Fuel Cells 83 Photovoltaic Energy Conversion System, 102 Wind
Geometric optimization of a solar cubic-cavity multi-tubular reactor
Valades-Pelayo, P. J.; Arancibia-Bulnes, C. A.; Villafan-Vidales, H.; Romero-Paredes, H.
2016-05-01
A multi-tubular solar thermochemical cavity reactor is proposed and the tubular array optimized. The optimized reactor design aims at operating under different temperatures and carrying out different kinds of thermochemical reactions. The radiation entering the receptacle comes from a solar concentrating system and the reactor consists of a cubic receptacle made of woven graphite, housing nine 2.54 cm diameter tungsten tubes. A model is developed and implemented considering high-temperature radiative transfer at steady state. The temperature distribution within the cavity surfaces is determined by employing a hybrid Monte Carlo-Finite Volume approach. Optimal tube distributions are explored by using a custom-made stochastic, multi-parameter, optimization algorithm. In this way, multiple global maxima are determined. Patterns among all possible optimal tube distributions within the cavity are obtained for different scenarios, by maximizing average tube temperature. From this study, practical guidelines are obtained for future application in the design of solar cavity reactors and more specifically, on the layout of multi tubular arrays to optimize radiative heat transfer.
The compressibility of cubic white, orthorhombic black and rhombohedral black phosphorus
Energy Technology Data Exchange (ETDEWEB)
Clark, S; Zaug, J M
2009-06-05
The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The {alpha} phase was found to transform into the {alpha}' phase at 0.87 {+-} 0.04 GPa with a volume change of 0.1 {+-} 0.3 cc/mol. A fit of a second order Birch-Murghanan equation to the data gave Vo = 16.94 {+-} 0.08 cc/mol and K{sub o} = 6.7 {+-} 0.5 GPa for the {alpha} phase and Vo = 16.4 {+-} 0.1 cc/mol and K{sub o} = 9.1 {+-} 0.3 GPa for the {alpha}' phase. The {alpha}' phase was found to transform to the A17 phase of black phosphorus at 2.68 {+-} 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our orthorhombic and rhombohedral black phosphorus data gave Vo = 11.43 {+-} 0.02 cc/mol and K{sub o} = 34.7 {+-} 0.5 GPa for the A17 phase and Vo = 9.62 {+-} 0.01 cc/mol and K{sub o} = 65.0 {+-} 0.6 GPa for the A7 phase.
Atomic ordering in cubic bismuth telluride alloy phases at high pressure
Loa, I.; Bos, J.-W. G.; Downie, R. A.; Syassen, K.
2016-06-01
Pressure-induced transitions from ordered intermetallic phases to substitutional alloys to semi-ordered phases were studied in a series of bismuth tellurides. By using angle-dispersive x-ray diffraction, the compounds Bi4Te5 , BiTe, and Bi2Te were observed to form alloys with the disordered body-centered cubic (bcc) crystal structure upon compression to above 14-19 GPa at room temperature. The BiTe and Bi2Te alloys and the previously discovered high-pressure alloys of Bi2Te3 and Bi4Te3 were all found to show atomic ordering after gentle annealing at very moderate temperatures of ˜100 ∘C . Upon annealing, BiTe transforms from bcc to the B2 (CsCl) crystal-structure type, and the other phases adopt semi-disordered variants thereof, featuring substitutional disorder on one of the two crystallographic sites. The transition pressures and atomic volumes of the alloy phases show systematic variations across the BimTen series including the end members Bi and Te. First-principles calculations were performed to characterize the electronic structure and chemical bonding properties of B2-type BiTe and to identify the driving forces of the ordering transition. The calculated Fermi surface of B2-type BiTe has an intricate structure and is predicted to undergo three topological changes between 20 and 60 GPa.
Directory of Open Access Journals (Sweden)
A. Gonzalez-Esparza
2009-10-01
Full Text Available Fast CME/shocks propagating in the interplanetary medium can generate kilometric Type II (km-TII radio emissions at the local plasma frequency and/or its harmonic, so these radio emissions provide a means of remotely tracking CME/shocks. We apply a new analysis technique, using the frequency drift of km-TII spectrum obtained by the Thermal Noise Receiver (TNR of the WIND/WAVES experiment, to infer, at some adequate intervals, the propagation speed of six CME/shocks. We combine these results with previously reported speeds from coronagraph white light and interplanetary scintillation observations, and in-situ measurements, to study the temporal speed evolution of the six events. The speed values obtained by the km-TII analysis are in a reasonable agreement with the speed measurements obtained by other techniques at different heliocentric distance ranges. The combination of all the speed measurements show a gradual deceleration of the CME/shocks as they propagate to 1 AU. This new technique can be useful in studying the evolution of fast CME/shocks when adequate intervals of km-TII emissions are available.
Alam, Mohammad Mydul; Ushiyama, Kousuke; Aramaki, Kenji
2009-01-01
We investigated the phase behavior, formation, and rheology of the cubic phase (I(1)) and related O/I(1) gel emulsion in water/Tween 80/oil systems using squalane, liquid paraffin (LP), and decane as oil components. In the phase behavior study, the phase sequences were similar for squalane and LP systems, while a lamellar liquid crystal (L(alpha)) was observed for decane system. In all the systems the addition of oil to W(m) or H(1) phase induced the I(1) phase, which can solubilize some amounts of oil followed by the appearance of I(1)+O phase. The formation of the O/I(1) gel emulsion has been studied at a fixed w/s (50/50) and we found that 30 wt% decane, 70 wt% squalane, and 60 wt% LP can form the gel emulsion. The water/Tween 80/squalane system has been taken as a model system to study viscoelastic properties of the I(1) phase and O/I(1) gel emulsion. The I(1) phase shows a typical hard gel cubic structure under the frequency and the values of the complex viscosity, /eta*/ and the elastic modulus, G ' increase with the addition of squalane, which could be due to the neighboring micellar interaction. On the other hand, the decreasing values of the viscoelastic parameters in the O/I(1) gel emulsion simply relate to the volume fraction of the I(1) phase in the system.
Electric quadrupole interaction in cubic BCC α-Fe
Energy Technology Data Exchange (ETDEWEB)
Błachowski, A.; Komędera, K. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Cios, G.; Żukrowski, J. [AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Górnicki, R. [RENON, ul. Gliniana 15/15, PL-30-732 Kraków (Poland)
2016-07-15
Mössbauer transmission spectra for the 14.41-keV resonant line in {sup 57}Fe have been collected at room temperature by using {sup 57}Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V{sub zz} = +1.61(4) × 10{sup 19} Vm{sup −2} for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the {sup 57}Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the {sup 57}Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V{sub zz} = +1.92(4) × 10{sup 19} Vm{sup −2}. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge
New cubic structure compounds as actinide host phases
Energy Technology Data Exchange (ETDEWEB)
Stefanovsky, S V [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation); Yudintsev, S V; Livshits, T S, E-mail: profstef@mtu-net.ru [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetny lane 35, Moscow 119017 (Russian Federation)
2010-03-15
Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds - stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd{sub 2}Zr{sub 2}O{sub 7}) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 deg. C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn{sup 4+} substitution for Zr{sup 4+} reduces production temperature and the compounds REE{sub 2}ZrSnO{sub 7} may be hot-pressed or cold pressed and sintered at {approx}1400 deg. C. Pyrochlore, A{sub 2}B{sub 2}O{sub 7-x} (two-fold elementary fluorite unit cell), and murataite, A{sub 3}B{sub 6}C{sub 2}O{sub 20-y} (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C - murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO{sub 2} (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C {yields} 8C {yields} 3C phases with the highest actinide concentration in the core and the lowest - in the rim of the grains. Radiation resistance of the 'murataite' is comparable to titanate pyrochlores. One
Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics
Li, Yangyang
2013-05-01
The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid
Extending a Property of Cubic Polynomials to Higher-Degree Polynomials
Miller, David A.; Moseley, James
2012-01-01
In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…
Deformation-induced structural transition in body-centred cubic molybdenum.
Wang, S J; Wang, H; Du, K; Zhang, W; Sui, M L; Mao, S X
2014-03-07
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original -oriented body-centred cubic structure to a -oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into -oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions.
The Normals to a Parabola and the Real Roots of a Cubic
Bains, Majinder S.; Thoo, J. B.
2007-01-01
The geometric problem of finding the number of normals to the parabola y = x[squared] through a given point is equivalent to the algebraic problem of finding the number of distinct real roots of a cubic equation. Apollonius solved the former problem, and Cardano gave a solution to the latter. The two problems are bridged by Neil's (semi-cubical)…
Deformation-induced structural transition in body-centred cubic molybdenum
Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.
2014-03-01
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original -oriented body-centred cubic structure to a -oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into -oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions.
Application and Realization of the Computer Animation Design Based on Improved Cubic B-spline Curves
Directory of Open Access Journals (Sweden)
Ni Na
2015-01-01
Full Text Available Based on the application of the cubic B-spline curves in the computer animation design, taking into account the security and confidentiality of the information, this paper improves the animation design techniques by the use of the improved cubic B-spline curves. Finally, this paper provides the relevant C language programs of the animation design.
The Normals to a Parabola and the Real Roots of a Cubic
Bains, Majinder S.; Thoo, J. B.
2007-01-01
The geometric problem of finding the number of normals to the parabola y = x[squared] through a given point is equivalent to the algebraic problem of finding the number of distinct real roots of a cubic equation. Apollonius solved the former problem, and Cardano gave a solution to the latter. The two problems are bridged by Neil's (semi-cubical)…
Cubic Invariant Spherical Surface Harmonics in Conjunction With Diffraction Strain Pole-Figures
Brakman, C.M.
1986-01-01
Four kinds of cubic invariant spherical surface harmonics are introduced. It has been shown previously that these harmonics occur in the equations relating measured diffraction (line-shift) elastic strain and macro-stresses generating these strains for the case of textured cubic materials. As a cons
Stability of the high-pressure body-centered-cubic phase of helium
Frenkel, D.
1986-01-01
This paper report absolute free-energy calculations of the fluid, body-centered-cubic, and face-centered-cubic phases of helium at T=327.04 K. We find that at and around this temperature the model potential proposed by Aziz et al. doe not yield a stable bcc phase. Quantum corrections do not alter th
Stability of the high-pressure body-centered-cubic phase of helium
Frenkel, D.
1987-01-01
This paper report absolute free-energy calculations of the fluid, body-centered-cubic, and face-centered-cubic phases of helium at T=327.04 K. We find that at and around this temperature the model potential proposed by Aziz et al. doe not yield a stable bcc phase. Quantum corrections do not alter this conclusion
Comparison of Dust Lattice Waves in Three-Dimensional Cubic Configurations
Institute of Scientific and Technical Information of China (English)
B. Farokhi; A. Hameditabar
2012-01-01
A three-dimensional (3D) dusty plasma crystalline with cubic configurations is considered. We calculate the interaction between particles up to distance √2a, implying the second-neighbor interactions for the simple cubic structure, the third-neighbor interactions for the body-centered cubic structure, and the forth-neighbor interactions the for face-centered cubic structure. Longitudinal and transverse dispersion relations are derived in arbitrary directions. The dispersion relations are studied in special directions, I.e. (1,0,0), (l,l,0)/√2, and (1,1, l)/√3- Study of dispersion relations with more neighbor interactions show that in some cases the results change physically.%A three-dimensional (3D) dusty plasma crystalline with cubic configurations is considered.We calculate the interaction between particles up to distance (√2)a,implying the second-neighbor interactions for the simple cubic structure,the third-neighbor interactions for the body-centered cubic structure,and the forth-neighbor interactions the for face-centered cubic structure.Longitudinal and transverse dispersion relations are derived in arbitrary directions.The dispersion relations are studied in special directions,i.e.(1,0,0),(1,1,0)/(√2),and (1,1,1)/(√3).Study of dispersion relations with more neighbor interactions show that in some cases the results change physically.
Extending a Property of Cubic Polynomials to Higher-Degree Polynomials
Miller, David A.; Moseley, James
2012-01-01
In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…
A popular metastable omega phase in body-centered cubic steels
Energy Technology Data Exchange (ETDEWEB)
Ping, D.H., E-mail: ping.de-hai@nims.go.jp [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Geng, W.T., E-mail: geng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)
2013-05-15
Steel remains to be one of the most common structural materials in the world as human civilization advances from the Iron Age to the ongoing Silicon Age. Our knowledge of its microstructure evolution and structure–performance relationship is nevertheless still incomplete. We report the observation and characterization of a long ignored metastable phase formed in steels with body-centered cubic (bcc) structure using both transmission electron microscopy and density functional theory calculations. This ω phase has a hexagonal structure and coherent interface with the matrix: a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. It is 3.6% smaller in volume and 0.18 eV higher in energy than bcc-Fe, with atoms in alternating close- and loose-packed layers couple anti-ferromagnetically. Carbon plays a crucial role in promoting bcc to ω transformation. At a concentration higher than 4 at.% they tend to segregate from the bcc matrix to the ω-phase; at about 14 at.%, they can induce bcc to ω transformation; and finally at 25 at.%, they stabilize the ω phase as ω-Fe{sub 3}C. The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms, leading to improved resistance of martensitic steels to irradiation damage. - Highlights: ► A long-ignored metastable ω phase in body-centered cubic (bcc) steel. ► The ω phase has hexagonal structure with lattice parameters a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. ► Carbon enrichment is found to play a crucial role on the bcc-to-ω phase transformation. ► The ω phase is strongly related to the martensitic transformation and twinning structure. ► The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms.
Thermodynamic properties of the cubic plutonium hydride solid solution
Energy Technology Data Exchange (ETDEWEB)
Haschke, J M
1981-12-01
Pressure, temperature, and composition data for the cubic solid solution plutonium hydride phase, PuH/sub x/, have been measured by microbalance methods. Integral enthalpies and entropies of formation have been evaluated for the composition range 1.90 less than or equal to X less than or equal to 3.00. At 550/sup 0/K, ..delta..H/sup 0/ /sub f/(PuH/sub x/(s)) varies linearly from approximately (-38 +- 1) kcal mol/sup -1/ at PuH/sub 190/ to (-50 +- 1 kcal mol/sup -1/) at PuH/sub 3/ /sub 00/. Thermochemical values obtained by reevaluating tensimetric data from the literature are in excellent agreement with these results. Isotopic effects have been quantified by comparing the results for hydride and deuteride, and equations are presented for predicting ..delta..H/sup 0/ /sub f/ and ..delta..S/sup 0/ /sub f/ values for PuH/sub x/(s) and PuD/sub x/(s).
Twinning of cubic diamond explains reported nanodiamond polymorphs
Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.
2015-12-01
The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin ( rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications.
Diamine Functionalized Cubic Mesoporous Silica for Ibuprofen Controlled Delivery.
Sivaguru, J; Selvaraj, M; Ravi, S; Park, H; Song, C W; Chun, H H; Ha, C-S
2015-07-01
A diamine functionalized cubic mesostructured KIT-6 (N-KIT-6) has been prepared by post-synthetic method using calcined mesoporous KIT-6 with a diamine source, i.e., N-'[3-(tri methoxysilyl)- propyl]'ethylenediamine. The KIT-6 mesoporous silica used for N-KIT-6 was synthesized under weak acidic hydrothermal method using bitemplates, viz., Pluronic P123 and 1-butanol. The synthesized mesoporous materials, KIT-6 and N-KIT-6, have been characterized by the relevant instrumental techniques such as SAXS, N2 sorption isotherm, FT-IR, SEM, TEM and TGA to prove the standard mesoporous materials with the identification of diamine groups. The characterized mesoporous materials, KIT-6 and N-KIT-6, have been extensively used in the potential application of controlled drug delivery, where ibuprofen (IBU) employed as a model drug. The rate of IBU adsorption and release was monitored by UV vis-spectrometer. On the basis of the experimental results of controlled drug delivery system, the results of IBU adsorption and releasing rate in N-KIT-6 are higher than those of KIT-6 because of the higher hydrophobic nature as well as rich basic sites on the surface of inner pore wall silica.
Oriented-cycle partitions of cubic distance-transitive graphs
Dejter, Italo J
2011-01-01
The notion of a $\\mathcal C$-ultrahomogeneous (or $\\mathcal C$-UH) graph, due to D. Isaksen et al., is adapted to digraphs and applied to the cubic distance-transitive (or CDT) graphs $G$, considered as digraphs by replacing each edge with a pair of oppositely oriented arcs, where $\\mathcal C$ is formed by oriented cycles $\\vec{C_g}$ and $(k-1)$-arcs $\\vec{P_k}$, with $g=$ girth and $k=$ largest $s$ such that $G$ is $s$-arc transitive. All CDT graphs are shown to be strongly fastened $\\{C_g\\}_{P_k}$-UH graphs, ($g=$ girth). However, only seven of them behave as $\\{\\vec{C_g}\\}_{\\vec{P}_k}$-UH digraphs. Each of these seven graphs $G$ gives place to a digraph ${\\mathcal D}(G)$ whose vertices are the $(k-1)$-arcs of $G$; an arc in ${\\mathcal D}(G)$ is traced between each two $(k-1)$-arcs in a common $g$-cycle of $G$ sharing exactly one arc, while each remaining edge of ${\\mathcal D}(G)$ is associated with a reversal of $(k-1)$-arcs in $G$. It is shown that ${\\mathcal D}(G)$ has regular indegree $=$ outdegree $=2$...
The Structure of the Cubic Coincident Site Lattice Rotation Group
Energy Technology Data Exchange (ETDEWEB)
Reed, B W; Minich, R W; Rudd, R E; Kumar, M
2004-01-13
This work is intended to be a mathematical underpinning for the field of grain boundary engineering and its relatives. The interrelationships within the set of rotations producing coincident site lattices in cubic crystals are examined in detail. Besides combining previously established but widely scattered results into a unified context, the present work details newly developed representations of the group structure in terms of strings of generators (based on quaternionic number theory, and including uniqueness proofs and rules for algebraic manipulation) as well as an easily visualized topological network model. Important results that were previously obscure or not universally understood (e.g. the {Sigma} combination rule governing triple junctions) are clarified in these frameworks. The methods also facilitate several general observations, including the very different natures of twin-limited structures in two and three dimensions, the inadequacy of the {Sigma} combination rule to determine valid quadruple nodes, and a curious link between allowable grain boundary assignments and the four-color map theorem. This kind of understanding is essential to the generation of realistic statistical models of grain boundary networks (particularly in twin-dominated systems) and is especially applicable to the field of grain boundary engineering.
Hardness analysis of cubic metal mononitrides from first principles
Fulcher, B. D.; Cui, X. Y.; Delley, B.; Stampfl, C.
2012-05-01
Density functional theory calculations are performed to evaluate the hardness of various cubic metal nitrides: rocksalt TiN, VN, ZrN, NbN, AlN, and SiN; zincblende AlN and BN; and diamond C for comparison. The isotropic elastic stiffness constants cij, bulk modulus K, shear modulus G, Young's modulus E, and isotropic Poisson's ratio ν¯ are calculated. From simulated uniaxial stress-strain curves, ideal strength values σmax in the [100], [110], and [111] directions are also evaluated for all systems. In particular, rocksalt AlN is found to possess both high elastic moduli and ideal strength. These quantities are then compared for correlations with existing experimental Vicker's hardness data. The bulk modulus is found to be a poor indicator of hardness, while E, G, 1/ν¯, and σmax all exhibit stronger correlations. With a view to circumvent the need to run computationally expensive relaxation steps, different methodologies for approximating uniaxial stress-strain curves are introduced. Utilizing the anisotropic Poisson's ratio to approximate the relaxed transverse lattice parameters at a given axial strain is a good approximation to stress-strain curves, and the ideal strengths obtained in this way exhibit strong correlations to experimental Vicker's hardness values.
Assembly of body-centered cubic crystals in hard spheres.
Xu, W-S; Sun, Z-Y; An, L-J
2011-05-01
We investigate the crystallization of monodisperse hard spheres confined by two square patterned substrates (possessing the basic character of the body-centered cubic (bcc) crystal structure) at varying substrate separations via molecular dynamics simulation. Through slowly increasing the density of the system, we find that crystallization under the influence of square patterned substrates can set in at lower densities compared with the homogeneous crystallization. As the substrate separation decreases, the density, where crystallization occurs (i.e., pressure drops), becomes small. Moreover, two distinct regimes are identified in the plane of bcc particle fraction and density for the separation range investigated. For large substrate separations, the bcc particle fraction displays a local maximum as the density is increased, and the resulting formed crystals have a polycrystalline structure. However, and more importantly, another situation emerges for small substrate separations: the capillary effects (stemming from the presence of two substrates) overwhelm the bulk driving forces (stemming from the spontaneous thermal fluctuations in the bulk) during the densification, eventually resulting in the formation of a defect-free bcc crystal (unstable with respect to the bulk hard-sphere crystals) by using two square patterned substrates.
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
Directory of Open Access Journals (Sweden)
Raimund Fromme
2015-09-01
Full Text Available Serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP, using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.
Mechanical properties for irradiated face-centred cubic nanocrystalline metals
Xiao, X. Z.; Song, D. K.; Chu, H. J.; Xue, J. M.; Duan, H. L.
2015-01-01
In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials. PMID:27547091
Cubic-interaction-induced deformations of higher-spin symmetries
Joung, Euihun
2013-01-01
The deformations of higher-spin symmetries induced by cubic interactions of symmetric massless bosonic fields are analyzed within the metric-like formalism. Our analysis amends the existing classification according to gauge-algebra deformations taking into account also gauge-transformation deformations. In particular, we identify a class of couplings which leave the gauge algebra Abelian but deform one (out of three) gauge transformation, and another class of couplings which deform all three gauge transformations in (A)dS but only two in the flat-space limit. The former class is related to higher-spin algebra multiplets (representations of the global algebra) together with the massless-massive-massive couplings, which we also briefly discuss. The latter class is what makes (A)dS a distinguished background for higher-spin interactions and includes in particular the gravitational interactions of higher-spin fields, retrospectively accounting for the Fradkin-Vasiliev solution to the Aragon-Deser problem. We also...
Bastide, Alain; Boyer, Harry
2014-01-01
The aim of this paper is to show the influence of the atmospheric boundary layer profile on the distribution of velocity in a building having two large openings. The knowledge of the flow form inside a building is useful to define a thermal environment favourable with thermal comfort and good air quality. In computational fluid dynamics, several profiles of atmospheric boundary layer can be used like logarithmic profiles or power profiles. This paper shows the impact of these profiles on the indoor airflow. Non-ventilated or ventilated parts of room are found. They show respectively ineffective ventilation and effective ventilation. A qualitative and global approach allows to observe the flows in a cubic building and to show the influence of each profile according to the external ground roughness and the incidence angle of the wind. Some zones, where occupants move, are named volumes of life. Ventilation is there observed using traditional tools in order to analyze quantitatively the ventilation of these zone...
Andrews, D. J.; Coates, A. J.; Cowley, S. W. H.; Dougherty, M. K.; Lamy, L.; Provan, G.; Zarka, P.
2010-12-01
It has recently been shown using Cassini radio data that Saturn kilometric radiation (SKR) emissions from the Northern and Southern hemispheres of Saturn are modulated at distinctly different periods, ˜10.6 h in the north and ˜10.8 h in the south, during the southern summer conditions that prevailed during the interval from 2004 to near-equinox in mid-2009. Here we examine Cassini magnetospheric magnetic field data over the same interval and show that two corresponding systems of magnetic field oscillations that have the same overall periods, as the corresponding SKR modulations, to within ˜0.01% are also present. Specifically, we show that the rotating quasi-dipolar field perturbations on southern open field lines and the rotating quasi-uniform field in the inner region of closed field lines have the same period as the southern SKR modulations, although with some intervals of slow long-term phase drift of unknown origin, while the rotating quasi-dipolar field perturbations on northern open field lines have the same period as the northern SKR modulations. We also show that while the equatorial quasi-uniform field and effective southern transverse dipole are directed down tail and toward dawn at southern SKR maxima, as found in previous studies, the corresponding northern transverse dipole is directed approximately opposite, pointing sunward and also slightly toward dawn at northern SKR maxima. We discuss these findings in terms of the presence of two independent high-latitude field-aligned current systems that rotate with different periods in the two hemispheres.
Magnetic phase transformations of face-centered cubic and hexagonal close-packed Co at zero Kelvin.
Saal, James E; Shang, ShunLi; Wang, Yi; Liu, Zi-Kui
2010-03-10
The 0 K pressure-induced magnetic phase transformations of face-centered cubic (FCC) and hexagonal close packed (HCP) Co have been examined using first-principles calculations. Issues of fitting an equation of state to the first-principles energy versus volume data points containing a magnetic transformation and comparing to experimental phase equilibria are discussed. It is found that a fitting scheme employing only data where the magnetic moment decreases linearly with volume offers a physically meaningful behavior for the equation of state at metastable volumes. From this fitting, the ferromagnetic to nonmagnetic transformations with increasing pressure at 0 K are at 77 GPa and 123 GPa for FCC and HCP, respectively, and are first order and second order, respectively, on the basis of an unambiguous measure proposed in the paper. In addition to the HCP/FCC structure transformation at 99 GPa, another transformation at negative pressures is predicted, at - 31 GPa. These results are shown to be consistent with the extrapolations of the experimental pressure-temperature phase diagram to 0 K.
Magnetic phase transformations of face-centered cubic and hexagonal close-packed Co at zero Kelvin
Energy Technology Data Exchange (ETDEWEB)
Saal, James E; Shang Shunli; Wang Yi; Liu Zikui, E-mail: jes531@psu.ed [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2010-03-10
The 0 K pressure-induced magnetic phase transformations of face-centered cubic (FCC) and hexagonal close packed (HCP) Co have been examined using first-principles calculations. Issues of fitting an equation of state to the first-principles energy versus volume data points containing a magnetic transformation and comparing to experimental phase equilibria are discussed. It is found that a fitting scheme employing only data where the magnetic moment decreases linearly with volume offers a physically meaningful behavior for the equation of state at metastable volumes. From this fitting, the ferromagnetic to nonmagnetic transformations with increasing pressure at 0 K are at 77 GPa and 123 GPa for FCC and HCP, respectively, and are first order and second order, respectively, on the basis of an unambiguous measure proposed in the paper. In addition to the HCP/FCC structure transformation at 99 GPa, another transformation at negative pressures is predicted, at - 31 GPa. These results are shown to be consistent with the extrapolations of the experimental pressure-temperature phase diagram to 0 K.
Generalized Additive Models, Cubic Splines and Penalized Likelihood.
1987-05-22
in case control studies ). All models in the table include dummy variable to account for the matching. The first 3 lines of the table indicate that OA...Ausoc. Breslow, N. and Day, N. (1980). Statistical methods in cancer research, volume 1- the analysis of case - control studies . International agency
Stable vortex solitons in a vectorial cubic-quintic model
Energy Technology Data Exchange (ETDEWEB)
Mihalache, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Mazilu, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Malomed, B A [Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Lederer, F [Institute of Solid State Theory and Theoretical Optics, Friedrich-Schiller Universitaet Jena, Max-Wien-Platz 1, D-07743, Jena (Germany)
2004-05-01
We investigate the stability of vectorial (two-component) vortex solitons of two types. Their stationary shapes are identical, but their stability (which is the most important issue for spinning solitons) is drastically different. These are solitons with vorticities (S,S) and (S,-S) in the two components. The analysis is performed in a vectorial cubic-quintic model, with the two components nonlinearly coupled by the incoherent cross-phase-modulation interaction, but we expect that the results are quite generic. The stability was investigated by means of computing eigenvalues of perturbations around the stationary solitons, as well as in direct simulations. We also report new analytical results for the well-known problem of the description of the stationary form of scalar solitons in media of this type. The analytical results explain the shape of the spinning solitons, and the strong dependence of their norm (power) on the vorticity, in both the 2D and 3D cases. In this paper we also give the first estimate of the physical characteristics (power and radius) of the stable solitons with different values of S, making use of recently measured values of the necessary nonlinear parameters. All the two-component solitons of type (S,-S) are unstable. In contrast, those of type (S,S) have their stability regions, the size of which strongly depends on S. An unstable soliton always splits into a set of separating zero-spin ones, in precise compliance with the azimuthal index of the most unstable perturbation eigenmode. Direct simulations demonstrate that stable solitons readily self-trap from arbitrary initial pulses which belong to their topological class.
2007-01-01
Küsimusele, kas te toetate ärimees Leonid Tsingisseri ideed kasiinode väljaviimise kohta suurematest linnadest, vastavad Tallinna aselinnapea Olga Sõtnik, BLRT Grupi juhatuse esimees Fjodor Berman, Riigikogu väliskomisjoni liige Janno Reiljan, AS-i Glaskek juht Vladimir Oberschneider, Riigikogu väliskomisjoni liige Sergei Ivanov ja Riigikogu rahanduskomisjoni liige Taavi Veskimägi
Polyol synthesis and characterizations of cubic ZrO{sub 2}:Eu{sup 3+} nanocrystals
Energy Technology Data Exchange (ETDEWEB)
Meetei, S. Dhiren [Department of Physics, Manipur University, Canchipur-795 003, Imphal (India); Singh, Sh. Dorendrajit, E-mail: dorendrajit@yahoo.co.in [Department of Physics, Manipur University, Canchipur-795 003, Imphal (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2012-02-15
Highlights: Black-Right-Pointing-Pointer By polyol route nanocrystalline cubic ZrO{sub 2}:Eu{sup 3+} can be synthesized. Black-Right-Pointing-Pointer Cubic phase is the most desirable phase of zirconia. Black-Right-Pointing-Pointer Distinguishing cubic from tetragonal phase is difficult. Black-Right-Pointing-Pointer Characterizations of the samples are done by XRD, TEM, FTIR and PL. Black-Right-Pointing-Pointer Eu{sup 3+} emission peaks vary as charge transfer state in ZrO{sub 2}:Eu{sup 3+}. - Abstract: Nanocrystalline ZrO{sub 2} and ZrO{sub 2}:Eu{sup 3+} were synthesized by polyol route. The x-ray diffraction (XRD) pattern of ZrO{sub 2} shows presence of both monoclinic and tetragonal phase of zirconia, while that of ZrO{sub 2}:Eu{sup 3+} show cubic structure. Cubic phase is the most desired phase of zirconia. However, it is difficult to distinguish between the tetragonal and cubic phases solely from XRD study. Therefore, the characterizations of cubic phase in the doped samples are substantiated by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and photoluminescence (PL) studies. Interplaner spacing, d{sub hkl} are calculated from the selected area electron diffraction (SAED) rings and they are found to be consistent with that of cubic zirconia. FT-IR spectra of doped and undoped samples are found to be different. This is attributed to the presence of both monoclinic and tetragonal phase in the undoped sample and only cubic phase in the doped samples. PL excitation and emission spectra of the samples are studied. The asymmetry ratio is found to be less than that of the reported tetragonal phase indicating that the present analyzing samples have higher symmetry than tetragonal phase. Variations of Eu{sup 3+} emission peaks are observed as that of charge transfer state (CTS).
Leblond, Hervé; Mihalache, Dumitru; 10.1103/PHYSREVA.81.033824
2011-01-01
By using a reductive perturbation method, we derive from Maxwell-Bloch equations a cubic generalized Kadomtsev-Petviashvili equation for ultrashort spatiotemporal optical pulse propagation in cubic (Kerr-like) media without the use of the slowly varying envelope approximation. We calculate the collapse threshold for the propagation of few-cycle spatiotemporal pulses described by the generic cubic generalized Kadomtsev-Petviashvili equation by a direct numerical method and compare it to analytic results based on a rigorous virial theorem. Besides, typical evolution of the spectrum (integrated over the transverse spatial coordinate) is given and a strongly asymmetric spectral broadening of ultrashort spatiotemporal pulses during collapse is evidenced.
Mechanism of the body-centered cubic--hexagonal close-packed phase transition in iron.
Bassett, W A; Huang, E
1987-11-06
The transition from body-centered cubic to hexagonal close-packed phase in iron has been studied in a diamond anvil cell with synchrotron radiation. The hexagonal close-packed phase, when it first appears, has a ratio of lattice parameters that is significantly larger than normal. This is attributed to a displacive mechanism that causes a distortion of the hexagonal close-packed structure in a body-centered cubic matrix. The hexagonal close-packed phase adjacent to a boundary with the body-centered cubic phase is stretched in the c direction and compressed in the a direction when it first forms.
Chen, Shouhui; Zhou, Rihui; Chen, Yaqin; Fu, Yuanyuan; Li, Ping; Song, Yonghai; Wang, Li
2017-04-01
In this work, Prussian blue nanocrystals, a kind of cubic metal-organic frameworks, was firstly covered by a uniform layer of resorcinol-formaldehyde (RF) resin, and then followed with heat treatment at different pyrolysis temperatures. The effects of pyrolysis temperature on the morphologies, phase, pore size, and electrochemical performance of the pyrolysis products were studied in this work. The composite generated at 600 ∘C, FexC600, was a hollow cubic composite of Fe3O4 covered by a thin RF-derived carbon layer. The carbon layer on FexC600 was a robust and conductive protective layer, which can accommodate Fe3O4 NPs and withstand the huge volume change of Fe3O4 during the process of discharge and charge. When used as anodes for lithium-ion batteries, FexC600 showed excellent electrochemical performance. It delivered a discharge capacity of 1126 mAh g-1 with a coulombic efficiency of 98.8% at the current density of 100 mA g-1 after 100 times discharge/charge cycling. It even delivered a capacity of 492 mAh g-1 at the current density of 500 mA g-1. This cubic hollow composite would be a promising alternative anode material for lithium-ion batteries.
Deluque Toro, C. E.; Rodríguez M., Jairo Arbey; Landínez Téllez, D. A.; Moreno Salazar, N. O.; Roa-Rojas, J.
2014-12-01
The Ba2YTaO6 double perovskite presents a transition from cubic (Fm-3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba2YTaO6 in space group Fm-3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba2YTaO6 (I4/m) phase is the most stable one. © 2013 Elsevier Science.
Idzikowski, Bogdan; Śniadecki, Zbigniew; Puźniak, Roman; Kaczorowski, Dariusz
2017-01-01
Ce100-xAlx (x=45 and 50) alloys were synthesized by rapid quenching technique in the form of ribbons composed of nanocrystalline phase of CeAl with the ClCs-type structure (Pm-3m space group) embedded in an amorphous matrix. The cubic CeAl phase is known as metastable with random distribution of Ce and Al atoms in the unit cell. The crystalline volume fraction is about 7.5% in Ce55Al45 and 3% in Ce50Al50. The alloy Ce55Al45 shows better thermal stability than Ce50Al50, indicated by higher effective activation energy and higher crystallization temperature. Small off-stoichiometry in Ce55Al45 results in degrading the glass forming ability and promotes formation of the cubic CeAl phase, as confirmed by magnetic measurements. In both alloys, the Ce ions are in stable trivalent state and order magnetically near 20 K. Another magnetic phase transition close to 10 K was found for Ce50Al50 and was attributed to the presence of the well-known stable orthorhombic CeAl phase. To the best of our knowledge, the magnetic behavior of the CeAl cubic phase is reported here for the first time.
DEFF Research Database (Denmark)
Kontogeorgis, Georgios; Philippos, Coutsikos; Vassilis, Harismiadis
1998-01-01
A novel method for investigating the performance of the repulsive and attractive terms of a cubic equation of state (EoS) along with different combining rules for the cross covolume (b(12)) and cross-energy (a(12)) parameters used with the van der Waals one-fluid theory is presented. The method...... reasonably expect that the residual part will be close to one and, consequently, the combinatorial-free volume part will be close to the experimental value. For these solutions the main effect of nonideality comes from size/shape differences rather than energetic ones. Thus, it is reasonable to assume...
Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.
2008-01-01
One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…
Study of unsteady cavitation on NACA66 hydrofoil using dynamic cubic nonlinear subgrid-scale model
Directory of Open Access Journals (Sweden)
Xianbei Huang
2015-11-01
Full Text Available In this article, we describe the use of a new dynamic cubic nonlinear model, a new nonlinear subgrid-scale model, for simulating the cavitating flow around an NACA66 series hydrofoil. For comparison, the dynamic Smagorinsky model is also used. It is found that the dynamic cubic nonlinear model can capture the turbulence spectrum, while the dynamic Smagorinsky model fails. Both models reproduce the cavity growth/destabilization cycle, but the results of the dynamic cubic nonlinear model are much smoother. The re-entrant jet is clearly captured by the models, and it is shown that the re-entrant jet cuts the cavity into two parts. In general, the dynamic cubic nonlinear model provides improvement over the dynamic Smagorinsky model for the calculation of cavitating flow.
Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier
Neumeyer, S.; Sorokin, V. S.; Thomsen, J. J.
2017-01-01
We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation with appended quadratic nonlinearity is considered as the model system, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic nonlinearities may generate additional amplitude-frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability in the amplitude-phase characteristics are predicted, supporting previously reported experimental observations.
Rheological Properties of Cubic Liquid Crystals Formed from Monoglyceride／H2O Systems
Institute of Scientific and Technical Information of China (English)
水玲玲; 王志宁; 郑利强
2005-01-01
Monoglyceride (MO) can form various liquid crystalline phases spontaneously in the presence of various amount of water at room temperature. The appropriate compositions from binary phase diagram of MO/H2O were selected to form cubic phases. The selected systems were studied at different salt concentrations and pH value using rheological methods. There was a weak effect of salt on viscoelastic properties of cubic phases formed from MO/H2O system. Hexagonal phase was formed when pH value was decreased or increased. The viscoelasticity of cubic phases was different from that of hexagonal liquid crystals. Rheological properties of MO/H2O cubic phases were stable at pH and salt concentration similar to physiological condition.
Institute of Scientific and Technical Information of China (English)
LI She-Qiang; FU Xing-Qiu; HU Bing; DENG Jia-Jun; CHEN Lei
2009-01-01
The oxidation of formic acid on edge-truncated cubic platinum nanoparticles/C catalysts is investigated. X-ray photoelectron spectroscopy analysis indicates that the surface of edge-truncated cubic platinum nanoparticles is composed of two types of coordination sites. The oxidation behavior of formic acid on edge-truncated cubic platinum nanoparticles/C is investigated using cyclic voltammetry. The apparent activation energies are found to be 54.2, 55.0, 61.8, 69.5, 71.9, 69.26, 65.28kJ/mol at 0.15, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7 V, respectively. A specific surface area activity of 1.76mA·cm~(-2) at 0.4 V indicates that the edge-truncated cubic Platinum nanoparticles are a promising anode catalyst for direct formic acid fuel cells.
Unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials
DEFF Research Database (Denmark)
Willatzen, Morten; Wang, Zhong Lin
2015-01-01
A unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials is presented whereby the lattice displacement vector and the internal ionic displacement vector are found simultaneously. It is shown that phonon couplings exist in pairs only; either between the electric...... potential and the lattice displacement coordinate perpendicular to the phonon wave vector or between the two other lattice displacement components. The former leads to coupled acousto-optical phonons by virtue of the piezoelectric effect. We then establish three new conjectures that entirely stem from...... piezoelectricity in a cubic structured material slab. First, it is shown that isolated optical phonon modes generally cannot exist in piezoelectric cubic slabs. Second, we prove that confined acousto-optical phonon modes only exist for a discrete set of in-plane wave numbers in piezoelectric cubic slabs. Third...
ON THE NUMBER OF LIMIT CYCLES OF A CUBIC SYSTEM NEAR A CUSPIDAL LOOP
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we investigate the limit cycle bifurcations in a cubic near-Hamiltonian system by perturbing a cuspidal loop and prove that 5 limit cycles can appear in a neighborhood of the cuspidal loop.
Russier, V.
2016-07-01
The low temperature behavior of densely packed interacting spherical single domain nanoparticles (MNP) is investigated by Monte Carlo simulations in the framework of an effective one spin model. The particles are distributed through a hard sphere like distribution with periodic boundary conditions and interact through the dipole dipole interaction (DDI) with an anisotropy energy including both cubic and uniaxial symmetry components. The cubic component is shown to play a sizable role on the value of the blocking temperature Tb only when the MNP easy axes are parallel to the cubic easy direction ([111] direction for a negative cubic anisotropy constant). The nature of the collective low temperature state, either ferromagnetic or spin glass like, is found to depend on the ratio of the anisotropy to the dipolar energies characterizing partly the disorder in the system.
Effective optical path length for tandem diffuse cubic cavities as gas absorption cell
Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.
2014-12-01
Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.
CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS
Energy Technology Data Exchange (ETDEWEB)
Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang
2016-09-26
The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.
Is inner core seismic anisotropy a marker of plastic flow of cubic iron?
Lincot, A; Cardin, Philippe
2015-01-01
This paper investigates whether observations of seismic anisotropy are compatible with a cubic structure of the inner core Fe alloy. We assume that anisotropy is the result of plastic deformation within a large scale flow induced by preferred growth at the inner core equator. Based on elastic moduli from the literature, bcc- or fcc-Fe produce seismic anisotropy well below seismic observations ($\\textless{}0.4\\%$). A Monte-Carlo approach allows us to generalize this result to any form of elastic anisotropy in a cubic system. Within our model, inner core global anisotropy is not compatible with a cubic structure of Fe alloy. Hence, if the inner core material is indeed cubic, large scale coherent anisotropic structures, incompatible with plastic deformation induced by large scale flow, must be present.
Structure of the body-centered cubic phase of lipid systems.
Saludjian, P; Reiss-Husson, F
1980-12-01
A new model is proposed for the structure of the body-centered cubic phase of lipid systems. Infinite rods of polar groups (and water) are arranged with axes parallel to the four cubic [unk]1 1 1[unk] directions. The hydrocarbon chains fill the space between the rods to form a continuous matrix. With this unified topology, the model explains satisfactorily the x-ray diffraction patterns of strontium soaps, lecithin, galactolipids, potassium soaps, and hexadecyltrimethylammonium bromide and explains the transition between cubic/H(II) phases. The paradoxical thermal effects on the lipid cubic phase, in particular the decrease of unit cell dimensions with increasing temperature, can be explained with the proposed model by mechanisms similar to those used for the monodimensional and bidimensional (mesomorphic) phases.
Flux pinning effect of cubic equiaxed morphology and its Ti stabilizing in Nb3Sn superconductors
Institute of Scientific and Technical Information of China (English)
ZHANG ChaoWu; ZHOU Lian; Andre SULPICE; Jean-Louis SOUBEYROUX; TANG XianDe; Christophe VERWAERDE; Gia Ky HOANG
2009-01-01
zes the cubic equiaxed phase at lower temperature so that heat reaction temperature is effectively reduced,the flux pinning performance is largely reinforced and the transport critical current density Jc is substantially promoted.
Xiaolong Wang; Yi Wang; Zhizhu Cao; Weizhong Zou; Liping Wang; Guojun Yu; Bo Yu; Jinjun Zhang
2013-01-01
In general, proper orthogonal decomposition (POD) method is used to deal with single-parameter problems in engineering practice, and the linear interpolation is employed to establish the reduced model. Recently, this method is extended to solve the double-parameter problems with the amplitudes being achieved by cubic B-spline interpolation. In this paper, the accuracy of reduced models, which are established with linear interpolation and cubic B-spline interpolation, respectively, is verified...
Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations
Joan Goh; Ahmad Abd. Majid; Ahmad Izani Md. Ismail
2012-01-01
Numerical solutions of one-dimensional heat and advection-diffusion equations are obtained by collocation method based on cubic B-spline. Usual finite difference scheme is used for time and space integrations. Cubic B-spline is applied as interpolation function. The stability analysis of the scheme is examined by the Von Neumann approach. The efficiency of the method is illustrated by some test problems. The numerical results are found to be in good agreement with the exact solution.
GA Based Rational cubic B-Spline Representation for Still Image Interpolation
Samreen Abbas; Malik Zawwar Hussain; Misbah Irshad
2016-01-01
In this paper, an image interpolation scheme is designed for 2D natural images. A local support rational cubic spline with control parameters, as interpolatory function, is being optimized using Genetic Algorithm (GA). GA is applied to determine the appropriate values of control parameter used in the description of rational cubic spline. Three state-of-the-art Image Quality Assessment (IQA) models with traditional one are hired for comparison with existing image interpolation schemes and perc...
High-pressure phase of the cubic spinel NiMn2O4
DEFF Research Database (Denmark)
Åsbrink, S.; Waskowska, A.; Olsen, J. Staun
1998-01-01
It has been observed that the fee spinel NiMn2O4 transforms to a tetragonal structure at about 12 GPa. The tetragonal phase does not revert to the cubic phase upon decompression and its unit-cell constants at ambient pressure are a(0)=8.65(8) and c(0)=7.88(15) Angstrom (distorted fee). Within thr......). The bulk modulus of the cubic phase is 206(4) GPa....
The double-end-pumped cubic Nd:YVO4 laser: Temperature distribution and thermal stress
Indian Academy of Sciences (India)
P Elahi; S Morshedi
2010-01-01
Thermal effects of a double-end-pumped cubic Nd:YVO4 laser crystal are investigated in this paper. A detailed analysis of temperature distribution and thermal stress in cubic crystal with circular shape pumping is discussed. It has been shown that by considering the total input powers as constant, the double-end-pumped configurations with equal pump power can be considered as having a minimum thermal effect with respect to the other end-pumped configuration.
Connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups
Institute of Scientific and Technical Information of China (English)
XU ShangJin; WU ZhengFei; DENG YunPing
2009-01-01
A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups. Two sufficient and necessary conditions for such graphs to be 1- or 2-arcregular are given and based on the conditions, several infinite families of 1- or 2-arc-regular cubic Cayley graphs of alternating groups are constructed.
Exact Solutions of Discrete Complex Cubic Ginzburg-Landau Equation and Their Linear Stability
Institute of Scientific and Technical Information of China (English)
张金良; 刘治国
2011-01-01
The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics. In this paper, the exact solutions of the discrete complex cubic Ginzburg-Landau equation are derived using homogeneous balance principle and the GI/G-expansion method, and the linear stability of exact solutions is discussed.
三次系统的Berlinskii定理%ON THE BERLINSKII'S THEOREM FOR CUBIC SYSTEMS
Institute of Scientific and Technical Information of China (English)
袁蔚莉
2001-01-01
In [1]-[3], the Berlinskii's theorem of the distribution of critical points for quadratic differential systems is extended to the general n-th differential systems with n2 finite critical points. In this paper, we prove that 5- 4 distribution of critical points for cubic system is impossible by using the method of basic triangle and index formula. Then we discuss the possible distributions of cubic systems with eight, seven or six finite critical points.
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)
2011-01-01
Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.
Equitable and semi-equitable coloring of cubic graphs and its application in batch scheduling
Directory of Open Access Journals (Sweden)
Furmańczyk Hanna
2015-03-01
Full Text Available In the paper we consider the problems of equitable and semi-equitable coloring of vertices of cubic graphs. We show that in contrast to the equitable coloring, which is easy, the problem of semi-equitable coloring is NP-complete within a broad spectrum of graph parameters. This affects the complexity of batch scheduling of unit-length jobs with cubic incompatibility graph on three uniform processors to minimize the makespan.
Relations among Dirichlet series whose coefficients are class numbers of binary cubic forms II
Ohno, Yasuo
2011-01-01
As a continuation of the authors and Wakatsuki's previous paper [5], we study relations among Dirichlet series whose coefficients are class numbers of binary cubic forms. We show that for any integral models of the space of binary cubic forms, the associated Dirichlet series satisfies a simple explicit relation to that of the dual other than the usual functional equation. As an application, we write the functional equations of these Dirichlet series in self dual forms.
Certified Approximation of Parametric Space Curves with Cubic B-spline Curves
Shen, Liyong; Gao, Xiao-Shan
2012-01-01
Approximating complex curves with simple parametric curves is widely used in CAGD, CG, and CNC. This paper presents an algorithm to compute a certified approximation to a given parametric space curve with cubic B-spline curves. By certified, we mean that the approximation can approximate the given curve to any given precision and preserve the geometric features of the given curve such as the topology, singular points, etc. The approximated curve is divided into segments called quasi-cubic B\\'{e}zier curve segments which have properties similar to a cubic rational B\\'{e}zier curve. And the approximate curve is naturally constructed as the associated cubic rational B\\'{e}zier curve of the control tetrahedron of a quasi-cubic curve. A novel optimization method is proposed to select proper weights in the cubic rational B\\'{e}zier curve to approximate the given curve. The error of the approximation is controlled by the size of its tetrahedron, which converges to zero by subdividing the curve segments. As an applic...
Log-cubic method for generation of soil particle size distribution curve.
Shang, Songhao
2013-01-01
Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor.
On Application of Non-cubic EoS to Compositional Reservoir Simulation
DEFF Research Database (Denmark)
Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan
Compositional reservoir simulation uses almost exclusively cubic equations of state (EoS) such as the SRK EoS and the PR EoS. This is in contrast with process simulation in the downstream industry where more recent and advanced thermodynamic models are quickly adopted. Many of these models are non......-cubic EoS, such as the PC-SAFT EoS. A major reason for the use of the conventional cubic EoS in reservoir simulation is the concern over computation time. Flash computation is the most time consuming part in compositional reservoir simulation, and the extra complexity of the non-cubic EoS may significantly...... such models. In this work we test the feasibility of applying a non-cubic EoS to reservoir simulation, using a slimtube simulator to simulate multicomponent gas injection using both the traditional SRK EoS and the non-cubic PC-SAFT EoS. Computation times for both models were compared. In addition, C7...
High reflected cubic cavity as long path absorption cell for infrared gas sensing
Yu, Jia; Gao, Qiang; Zhang, Zhiguo
2014-10-01
One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.
Origin of birefringence in common silicate garnet: intergrowth of different cubic phases
Antao, S.; Klincker, A.; Round, S.
2013-05-01
Birefringence is unexpected in ideal high symmetry cubic minerals, such as common silicate garnets. Birefringence in cubic garnet was reported over a century ago, but the origin still remains questionable. Some grossular, spessartine, andradite, and uvarovite samples may show birefringence under cross-polarized light, which may indicate that they are not optically cubic. Several reasons were given as the cause of the birefringence, but the main one appears to be cation order that may cause symmetry reduction. The crystal structure of several birefringent garnet samples (grossular, spessartine, andradite, and uvarovite) were refined by the Rietveld method, space group Ia-3d, and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate the samples are homogeneous or non-homogenous with two or three distinct compositions. Each birefringent sample contains an assemblage of cubic phases that have slightly different unit-cell parameters. The intergrowth of different phases causes strain-induced birefringence that arises from mismatch of different cubic unit-cell parameters. These results have many implications, including garnet phase transitions from cubic to lower symmetry in the mantle, which has important geophysical consequences.
Chong, Ketpin; Tan, Olivia Li Ling; Almsherqi, Zakaria A; Lin, Qingsong; Kohlwein, Sepp D; Deng, Yuru
2015-03-01
Biological membranes with cubic symmetry are a hallmark of virus-infected or diseased cells. The mechanisms of formation and specific cellular functions of cubic membranes, however, are unclear. The best-documented cubic membrane formation occurs in the free-living giant amoeba Chaos carolinense. In that system, mitochondrial inner membranes undergo a reversible structural change from tubular to cubic membrane organization upon starvation of the organism. As a prerequisite to further analyze the structural and functional features of cubic membranes, we adapted protocols for the isolation of mitochondria from starved amoeba and have identified buffer conditions that preserve cubic membrane morphology in vitro. The requirement for high concentration of ion-chelating agents in the isolation media supports the importance of a balanced ion milieu in establishing and maintaining cubic membranes in vivo.
Directory of Open Access Journals (Sweden)
Gede Suantika
2012-07-01
Full Text Available This experiment aimed to know the effect of nitrifying bacteria and Chlorellasp. addition and different number of 3-dimensional cubical bamboo shelter in enhancing growth performance of Giant Freshwater Prawn (Macrobrachium rosenbergii de Man during nursery phase in indoor system. During28 days of culture, treatment II (4 shelters addition~40% culture volume occupation resulted in better prawn growth and culture performance compared to control (no shelter addition (p<0,05. At the end of experiment, treatment II shown the highest biomass, SGR, mean body weight and length of the prawn with (1.96+0.05 g.cage-1, 8.24%BW.day-1, (2.18 +0,89 g and (6.50 +0.91 cm, respectively. However, the results were not significantly different compared to treatment I (2 shelters addition~20%culture volume occupation. Survival rate the two treatments (treatment I="90"%, and treatment II="92"% was significantly higher compared to control (78%. During the experiments, increase of ammonium concentration and nitrate can be controlled and maintained by addition of nitrifying bacteria and microalgae which can keep the microbial loop between ammonium reduction by bacteria and nitrate uptake by microalgae in balance. Addition of nitrifying bacteria and microalgae and also availability of 40% bamboo shelter occupation in the culture can enhance prawn culture productivity.
Gover, A. Rod; Waldron, Andrew
2017-09-01
We develop a universal distributional calculus for regulated volumes of metrics that are suitably singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulæ for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulæ. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently, Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.
Directory of Open Access Journals (Sweden)
Dian L
2013-02-01
Full Text Available Linghui Dian,1,2,* Zhiwen Yang,3,* Feng Li,1 Zhouhua Wang,1 Xin Pan,1 Xinsheng Peng,2 Xintian Huang,1 Zhefei Guo,1 Guilan Quan,1 Xuan Shi,1 Bao Chen,1 Ge Li,4 Chuanbin Wu1,41School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, People’s Republic of China; 2School of Pharmaceutical Sciences, Guangdong Medical College, Dongguan, People’s Republic of China; 3Department of Gastroenterology, Songjiang Branch of the Affiliated First People’s Hospital of Shanghai Jiaotong University, Shanghai, People’s Republic of China; 4Guangdong Research Center for Drug Delivery Systems, Guangzhou, People’s Republic of China*These authors contributed equally to this workAbstract: In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P < 0.05. The ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment.Keywords: ibuprofen, cubic nanoparticles, oral drug delivery, bioavailability
Cowley, S. W. H.; Provan, G.
2016-07-01
We discuss the planetary period oscillations (PPOs) observed by the Cassini spacecraft in Saturn's magnetosphere, in particular the relationship between the properties of the PPOs in the post-equinox interval as observed in magnetic field data by Andrews et al. (2012) and Provan et al. (2013, 2014) and in Saturn kilometric radiation (SKR) emissions by Fischer et al. (2014, 2015), whose results are somewhat discrepant. We show that differences in the reported PPO periods, a fundamental property which should be essentially identical in the two data sets, can largely be accounted for by the phenomenon of dual modulation of the SKR emissions in polarization-separated data, in which the modulation associated with one hemisphere is also present in the other. Misidentification of the modulations results in a reported reversal in the SKR periods in the initial post-equinox interval, south for north and vice versa, relative to the magnetic oscillations whose hemispheric origin is more securely identified through the field component phase relations. Dual modulation also results in the apparent occurrence of phase-locked common periods in the northern and southern SKR data during later intervals during which two separate periods are clearly discerned in the magnetic data through beat modulations in both phase and amplitude. We further show that the argument of Fischer et al. (2015) concerning the phase relation between the magnetic field oscillations and the SKR modulations is erroneous, the phase difference between them revealing the local time (LT) of the upward field-aligned current of the PPO current system at times of SKR modulation maxima. Furthermore, this LT is found to vary significantly over the Cassini mission from dawn, to dusk, and to noon, depending on the LT of apoapsis where the spacecraft spends most time. These variations are consistent with the view that the SKR modulation is fundamentally a rotating system like the magnetic perturbations, though
Characterizations of Cubic ZnMgO Films Grown on Si(111) at Low Substrate Temperature
Institute of Scientific and Technical Information of China (English)
邱东江; 吴惠桢; 陈乃波; 徐天宁
2003-01-01
Cubic ZnMgO thin films in the (100) orientation were grown on Si (111) substrates by reactive electron beamevaporation at low substrate temperature. X-ray photoelectron spectroscopy (XPS) analyses show that Mgcontent as high as 75 at.% in the cubic ZnMgO film can be obtained. Secondary ion mass spectroscopy (SIMS)measurement indicates the evidence of Mg richness in the interface between the ZnMgO film and the Si substrate,and it is probably the primary reason to form the MgO-like cubic ZnMgO structures rather than the wurtziteone. The optical band gap of cubic ZnMgO is estimated to be 5.76eV, which was measured by the transmissionspectrum of the cubic ZnMgO film grown on the sapphire substrate under the same growth condition with thaton Si (111). The band gap is of 2.39eV blueshifted compared with that of ZnO (3.37eV), which should renderapplications in the fabrication of ZnMgO-related heterostructures.
Structural Characterization of Cubic GaN Grown on GaAs(001) Substrates
Institute of Scientific and Technical Information of China (English)
ZHENG Xinhe; QU Bo; WANG Yutian; YANG Hui; LIANGJunwu; HAN Jingyi
2001-01-01
Structural characteristics of cubic GaN epilayers grown on GaAs(001) were studied using X-ray double-crystal diffraction technique. The structure factors of cubic GaN(002) and (004) components are approximately identical. However, the integrated intensities of the rocking curve for cubic (002) components are over five times as those of (004)components. The discrepancy has been interpreted in detail considering other factors. In the conventional double crystal rocking curve, the peak broadening includes such information caused by the orientation distribution (mosaicity) and the distribution of lattice spacing. These two kinds of distributions can be distinguished by the triple-axis diffraction in which an analyzer crystal is placed in front of the detector.Moreover, the peak broadening was analyzed by reciprocal lattice construction and Eward sphere. By using triple-axis diffraction of cubic (002) and (113)components, domain size and dislocation density were estimated. The fully relaxed lattice parameter of cubic GaN was determined to be about 0.451 ± 0.001nm.
Cubic map algebra functions for spatio-temporal analysis
Mennis, J.; Viger, R.; Tomlin, C.D.
2005-01-01
We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.
Spacecraft Habitable Volume: Results of an Interdisciplinary Workshop
Fitts, David J.; Connolly, Janis; Howard, Robert
2011-01-01
NASA's Human Exploration Framework Team posed the question: "Is 80 cubic meters per person of habitable volume acceptable for a proposed Deep Space Habitat?" The goal of the workshop was to address the "net habitable volume" necessary for long-duration human spaceflight missions and identify design and psychological issues and mitigations. The objectives were: (1) Identify psychological factors -- i.e., "stressors" -- that impact volume and layout specifications for long duration missions (2) Identify mitigation strategies for stressors, especially those that can be written as volume design specifications (3) Identify a forward research roadmap -- i.e., what future work is needed to define and validate objective design metrics? (4) Provide advisories on the human factors consequences of poor net habitable volume allocation and layout design.
Kudryavtsev, Y. V.; Perekos, A. E.; Uvarov, N. V.; Kolchiba, M. R.; Synoradzki, K.; Dubowik, J.
2016-05-01
Magnetic and transport properties of near stoichiometric metastable FexMnyGaz alloys (46 ≤ x ≤ 52, 17 ≤ y ≤ 25, 26 ≤ z ≤ 30) with face-centered cubic (FCC), body-centered cubic (BCC), and two-phase (FCC + BCC) structures are investigated. The experimental results are analyzed in terms of first-principles calculations of stoichiometric Fe2MnGa alloy with the L21, L12, and the tetragonally distorted L21 structural orderings. It is shown that the pure BCC and FCC phases have distinct magnetic and transport properties. Two-phase Fe2MnGa alloys have magnetic and transport properties typical of the mixed BCC and FCC phases. Among the investigated alloys, Fe46Mn24Ga30 has a martensitic transformation accompanied with significant changes of its magnetic and transport properties.
GREEN＇S FUNCTION AND EFFECTIVE ELASTIC STIFFNESS TENSOR FOR ARBITRARY AGGREGATES OF CUBIC CRYSTALS
Institute of Scientific and Technical Information of China (English)
HuangMojia; ZhengChaomei
2004-01-01
A closed but approximate formula of Green's function for an arbitrary aggregate of cubic crystallites is given to derive the effective elastic stiffness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and five texture coefficients,accounts for the effects of the orientation distribution function (ODF) up to terms linear in the texture coefficients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy.Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe's formula and Synge's contour integral through numerical integration. As an application of Green's function, we briefly describe the procedure of deriving the effective elastic stiffness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the finite element method and our effective elastic stiffness tensor is made by an example.
Directory of Open Access Journals (Sweden)
Xiaolong Wang
2013-01-01
Full Text Available In general, proper orthogonal decomposition (POD method is used to deal with single-parameter problems in engineering practice, and the linear interpolation is employed to establish the reduced model. Recently, this method is extended to solve the double-parameter problems with the amplitudes being achieved by cubic B-spline interpolation. In this paper, the accuracy of reduced models, which are established with linear interpolation and cubic B-spline interpolation, respectively, is verified via two typical examples. Both results of the two methods are satisfying, and the results of cubic B-spline interpolation are more accurate than those of linear interpolation. The results are meaningful for guiding the application of the POD interpolation to complex multiparameter problems.
On the magnetization process and the associated probability in anisotropic cubic crystals
Khedr, D. M.; Aly, Samy H.; Shabara, Reham M.; Yehia, Sherif
2017-05-01
We present a theoretical method to calculate specific magnetic properties, e.g. magnetization curves, magnetic susceptibility and probability landscapes along the [100], [110] and [111] crystallographic directions of a crystal of cubic symmetry. The probability landscape displays the evolution of the most probable angular orientation of the magnetization vector, for selected temperatures and magnetic fields. Our method is based on the premises of classical statistical mechanics. The energy density, used in the partition function, is the sum of magnetic anisotropy and Zeeman energies, however no other energies e.g. elastic or magnetoelastic terms are considered in the present work. Model cubic systems of diverse anisotropies are analyzed first, and subsequently material magnetic systems of cubic symmetry; namely iron, nickel and Cox Fe100-x compounds, are discussed. We highlight a correlation between magnetization curves and the associated probability landscapes. In addition, determination of easiest axes of magnetization, using energy consideration, is done and compared with the results of the present method.
Directory of Open Access Journals (Sweden)
Xingxing Wang
2011-01-01
Full Text Available Cubic copper hexacyanoferrate (CuHCF nanoparticles prepared via electrolytic deposition are presented with their morphology and crystalline structure characterized with SEM and XRD. The advantage of this methodology is that it allows the fabrication of uniform cubic nanoparticles with permeable structures onto the desired underlying electrode substrate. It was observed that the CuHCF film acts as a permeable membrane for cations such as K+, Na+, Li+, and NH4+ with a selection order of K+> Li+>NH4+> Na+. Furthermore, the analytical utility of these cubic-like CuHCF morphologies supported on a glassy carbon electrode was evaluated towards the electrochemical oxidation of hydrazine which was found to exhibit a linear response over the range 66 M to 17 mM with a detection limit corresponding to 16.5 M.
Directory of Open Access Journals (Sweden)
A. Beléndez
2012-01-01
Full Text Available Accurate approximate closed-form solutions for the cubic-quintic Duffing oscillator are obtained in terms of elementary functions. To do this, we use the previous results obtained using a cubication method in which the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a cubic Duffing equation. Explicit approximate solutions are then expressed as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function cn. Then we obtain other approximate expressions for these solutions, which are expressed in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean is used and the rational harmonic balance method is applied to obtain the periodic solution of the original nonlinear oscillator.
Pressure-induced phase transformations in cubic Gd[subscript 2]O[subscript 3
Energy Technology Data Exchange (ETDEWEB)
Bai, Ligang; Liu, Jing; Li, Xiaodong; Jiang, Sheng; Xiao, Wansheng; Li, Yanchun; Tang, Lingyun; Zhang, Yufeng; Zhang, Dechun; (Chinese Aca. Sci.)
2009-10-21
High-pressure transformation and compression behavior of Gd{sub 2}O{sub 3} were investigated using synchrotron radiation x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature. The structural transformation from a cubic to a monoclinic phase occurred during the sample precompression process. Phase transitions from both the cubic and the monoclinic polymorphs to a hexagonal structure were observed. The hexagonal phase was stable up to the highest pressure in this study and was not quenchable and transformed to a monoclinic phase after pressure release. The bulk moduli of Gd{sub 2}O{sub 3} for the cubic, monoclinic, and hexagonal phases were obtained by fitting the compression data to the Birch-Murnaghan equation of state. Moreover, an anomaly of the hexagonal type Gd{sub 2}O{sub 3} was observed.
Cubic one-regular graphs of order twice a square-free integer
Institute of Scientific and Technical Information of China (English)
2008-01-01
A graph is one-regular if its automorphism group acts regularly on the set of its arcs.Let n be a square-free integer.In this paper,we show that a cubic one-regular graph of order 2n exists if and only if n=3tp1p2…ps≥13,where t≤1,s≥1 and pi’s are distinct primes such that 3|（Pi—1）. For such an integer n,there are 2s-1 non-isomorphic cubic one-regular graphs of order 2n,which are all Cayley graphs on the dihedral group of order 2n.As a result,no cubic one-regular graphs of order 4 times an odd square-free integer exist.
Baena, J D; Marques, R
2007-01-01
In this paper a systematic approach to the design of bulk isotropic magnetic metamaterials is presented. The role of the symmetries of both the constitutive element and the lattice are analyzed. For this purpose it is assumed that the metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice. The minimum symmetries needed to ensure an isotropic behavior are analyzed, and some particular configurations are proposed. Besides, an equivalent circuit model is proposed for the considered cubic SRR resonators. Experiments are carried out in order to validate the proposed theory. We hope that this analysis will pave the way to the design of bulk metamaterials with strong isotropic magnetic response, including negative permeability and left-handed metamaterials.
Pivotal surfaces in inverse hexagonal and cubic phases of phospholipids and glycolipids.
Marsh, Derek
2011-03-01
Data on the location and dimensions of the pivotal surfaces in inverse hexagonal (H(II)) and inverse cubic (Q(II)) phases of phospholipids and glycolipids are reviewed. This includes the H(II) phases of dioleoyl phosphatidylethanolamine, 2:1 mol/mol mixtures of saturated fatty acids with the corresponding diacyl phosphatidylcholine, and glucosyl didodecylglycerol, and also the Q(II)(230/G) gyroid inverse cubic phases of monooleoylglycerol and glucosyl didodecylglycerol. Data from the inverse cubic phases are largely compatible with those from inverse hexagonal H(II)-phases. The pivotal plane is located in the hydrophobic region, relatively close to the polar-apolar interface. The area per lipid at the pivotal plane is similar in size to lipid cross-sectional areas found in the fluid lamellar phase (L(α)) of lipid bilayers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
The structure model of a cubic aperiodic phase ('quasicrystal without forbidden symmetry axes').
Kraposhin, V S; Talis, A L; Thanh Lam, Ha
2008-03-19
A model structure of the aperiodic cubic phase (a cubic quasicrystal) has been constructed as a periodical packing of hierarchical octahedral clusters which were composed of truncated tetrahedra (Friauf-Laves polyhedra) and chains of Frank-Kasper polyhedra with 14 vertices. The construction of the hierarchical model for the cubic aperiodic phase became possible due to the discovery of a new space subdivision with equal edges and with vertices belonging to two orbits of the space group Fm3m. The subdivision is characterized by unique values and unique relations between the coordinates of the starting points of two orbits. Calculated x-ray diffraction patterns for the proposed hierarchical model are in qualitative agreement with published experimental x-ray patterns for aperiodical phases observed in melt-quenched Mg-Al and Fe-Nb-B-Si alloys.
Formation Mechanism and Binding Energy for Body-Centered Cubic Structure of He+9 Cluster
Institute of Scientific and Technical Information of China (English)
ZHANG Jian-Ping; GOU Qing-Quan; LI Ping
2004-01-01
The formation mechanism for the body-centered cubic structure of He+9 cluster is proposed and its total energy curve is calculated by the method of a Modified Arrangement Channel Quantum Mechanics. The energy is the function of separation R between the nuclei at the center and an apex of the body-centered cubic structure. The result of the calculation shows that the curve has a minimal energy -25.6669 (a.u.) at R = 2.550ao. The binding energy of He+9 with respect to He+ + 8He was calculated to be 0.8857 a.u. This means that the cluster of He+9 may be formed in the body-centered cubic structure of R = 2.55a0.
Interaction in equilibrium plasmas of charged macroparticles located in nodes of cubic lattices
Filippov, A. V.
2016-11-01
Interaction of two charged pointlike macroparticles located at nodes of simple cubic (sc), body-centered cubic (bcc) and face-centered cubic (fcc) lattices in an equilibrium plasma is studied within the linearized Poisson-Boltzmann model. It is shown that the boundary shape has a strong influence on the electrostatic interaction between two macroparticles, which switches from repulsion at small interparticle distances to attraction as it approaches the halflength of a computational cell. It is found that in a case of dust particles arranged in the nodes of the sc, bcc and fcc lattices, the electrostatic force acting on them is equal to zero and the nature of the interaction changes from repulsion to attraction; hence, the infinite sc, bcc and fcc lattices of charged dust particles are thermodynamically stable at rather low temperatures.
Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography
Demurtas, Davide; Guichard, Paul; Martiel, Isabelle; Mezzenga, Raffaele; Hébert, Cécile; Sagalowicz, Laurent
2015-11-01
Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase.
Epitaxial and bulk growth of cubic silicon carbide on off-oriented 4H-silicon carbide substrates
Norén, Olof
2015-01-01
The growth of bulk cubic silicon carbide has for a long time seemed to be something for the future. However, in this thesis the initial steps towards bulk cubic silicon carbide have been taken. The achievement of producing bulk cubic silicon carbide will have a great impact in various fields of science and industry such as for example the fields of semiconductor technology within electronic- and optoelectronic devices and bio-medical applications. The process that has been used to grow the bu...
Synthesis of Nano-Scale Fast Ion Conducting Cubic Li7La3Zr2O12
2013-09-25
0.24 moles of aluminum was added using aluminum oxide (50 nm, Merck) to the precursor solution before gelation occurs. The process flow diagram...cubic Li A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of...Park, NC 27709-2211 batteries, solution based process , synthesizing cubic LLZO, fast ionic conductivity REPORT DOCUMENTATION PAGE 11. SPONSOR
Pure QCD in small volumes and the low lying glueball spectrum
Energy Technology Data Exchange (ETDEWEB)
Korthals Altes, C.P. (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique 2)
1989-07-01
We give a pedagogical review of perturbative calculations in small volumes of the low-lying glueball mass-spectrum. Various boundary conditions are compared. Twisted boundary conditions, respecting cubic invariance, are shown to be very useful in obtaining numerical mass-spectra. (orig.).
Drag force in bimodal cubic-quintic nonlinear Schr\\"odinger equation
Feijoo, David; Paredes, Ángel; Michinel, Humberto
2016-01-01
We consider a system of two cubic-quintic non-linear Schr\\"odinger equations in two dimensions, coupled by repulsive cubic terms. We analyse situations in which a probe lump of one of the modes is surrounded by a fluid of the other one and analyse their interaction. We find a realization of D'Alembert's paradox for small velocities and non-trivial drag forces for larger ones. We present numerical analysis including the search of static and traveling form-preserving solutions along with simulations of the dynamical evolution in some representative examples.
Analysis of moderately thin-walled beam cross-sections by cubic isoparametric elements
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Krenk, Steen
2014-01-01
numerically by introducing a cubic-linear two-dimensional isoparametric element. The cubic interpolation of this element accurately represents quadratic shear stress variations along cross-section walls, and thus moderately thin-walled cross-sections are effectively discretized by these elements. The ability......In technical beam theory the six equilibrium states associated with homogeneous tension, bending, shear and torsion are treated as individual load cases. This enables the formulation of weak form equations governing the warping from shear and torsion. These weak form equations are solved...... of this element to represent curved geometries, and to accurately determine cross-section parameters and shear stress distributions is demonstrated....
1:2 INTERNAL RESONANCE OF COUPLED DYNAMIC SYSTEM WITH QUADRATIC AND CUBIC NONLINEARITIES
Institute of Scientific and Technical Information of China (English)
陈予恕; 杨彩霞; 吴志强; 陈芳启
2001-01-01
The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied. The normal forms of this system in 1: 2 internal resonance were derived by using the direct method of normal form. In the normal forms, quadratic and cubic nonlinearities were remained. Based on a new convenient transformation technique, the 4-dimension bifurcation equations were reduced to 3-dimension. A bifurcation equation with one-dimension was obtained. Then the bifurcation behaviors of a universal unfolding were studied by using the singularity theory. The method of this paper can be applied to analyze the bifurcation behavior in strong internal resonance on 4-dimension center manifolds.
Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations
Directory of Open Access Journals (Sweden)
Joan Goh
2012-01-01
Full Text Available Numerical solutions of one-dimensional heat and advection-diffusion equations are obtained by collocation method based on cubic B-spline. Usual finite difference scheme is used for time and space integrations. Cubic B-spline is applied as interpolation function. The stability analysis of the scheme is examined by the Von Neumann approach. The efficiency of the method is illustrated by some test problems. The numerical results are found to be in good agreement with the exact solution.
GA Based Rational cubic B-Spline Representation for Still Image Interpolation
Directory of Open Access Journals (Sweden)
Samreen Abbas
2016-12-01
Full Text Available In this paper, an image interpolation scheme is designed for 2D natural images. A local support rational cubic spline with control parameters, as interpolatory function, is being optimized using Genetic Algorithm (GA. GA is applied to determine the appropriate values of control parameter used in the description of rational cubic spline. Three state-of-the-art Image Quality Assessment (IQA models with traditional one are hired for comparison with existing image interpolation schemes and perceptual quality check of resulting images. The results show that the proposed scheme is better than the existing ones in comparison.
Optical properties of GaAs 2D hexagonal and cubic photonic crystal
Energy Technology Data Exchange (ETDEWEB)
Arab, F., E-mail: farab@CDTA.DZ; Assali, A.; Grain, R.; Kanouni, F. [Centre for Development of Advanced Technologies (CDTA) Research Unit in Optics and Photonics (UROP), University of Setif 1, El Bez, 19000 Setif (Algeria)
2015-03-30
In this paper we present our theoretical study of 2D hexagonal and cubic rods GaAs in air, with plan wave expansion (PWE) and finite difference time domain (FDTD) by using BandSOLVE and FullWAVE of Rsoft photonic CAD package. In order to investigate the effect of symmetry and radius, we performed calculations of the band structures for both TM and TE polarization, contour and electromagnetic propagation and transmission spectra. Our calculations show that the hexagonal structure gives a largest band gaps compare to cubic one for a same filling factor.
Investigation of Cubic EOS Models for HFO-1234yf Refrigerant Used In Automotive application
Agrawal, Anant; Cornelio, Avi Anthony; Limperich, Dirk
2012-01-01
The need for a consistent and reliable calculation of thermodynamic property of refrigerants has been a topic of research since the past decade. This paper reports a study of various cubic equations of state (EOS) for a refrigerant to be used in automotive applications. Thermodynamic properties of refrigerant 2,3,3,3-tetrafluoropropene (HFO- 1234yf) using three different cubic equations of state, i.e. Peng-Robinson (PR), Yu-Lu (YL) and Guo-Du (GD), are modeled, compared and analyzed. A generi...
Recurrence approach and higher rank cubic algebras for the N-dimensional superintegrable systems
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2016-03-01
By applying the recurrence approach and coupling constant metamorphosis, we construct higher order integrals of motion for the Stackel equivalents of the N-dimensional superintegrable Kepler-Coulomb model with non-central terms and the double singular oscillators of type (n,N-n). We show how the integrals of motion generate higher rank cubic algebra C(3)\\oplus {L}1\\oplus {L}2 with structure constants involving Casimir operators of the Lie algebras L 1 and L 2. The realizations of the cubic algebras in terms of deformed oscillators enable us to construct finite dimensional unitary representations and derive the degenerate energy spectra of the corresponding superintegrable systems.
Equation of state for charge-doping-induced deformation and hardening in cubic crystals
Li, Yao; Liu, Xiaofei; Guo, Wanlin
2017-08-01
Charge doping would inevitably induce strain, which can significantly influence device performance but cannot be directly predicted by classical mechanical laws. Here we present a set of equations of states for deformable cubic crystals subjected to charge doping by introducing the quantum electronic stress at fixed lattice as equivalent mechanical pressure into the classical hydrostatic pressure-vs-deformation equations. The equations are proved to be efficient for all the cubic crystals considered in this work (diamond, Si, Ge, GaAs, Al, and ZrO2) by first-principles calculations. The proposed method and presented equations should pave a convenient way to predict doping effects on device performance.
Ising low-temperature polynomials and hard-sphere gases on cubic lattices of general dimension
Butera, P
2015-01-01
We derive and analyze the low-activity and low-density expansions of the pressure for the model of a hard-sphere gas on cubic lattices of general dimension $d$, through the 13th order. These calculations are based on our recent extension to dimension d of the low-temperature expansions for the specific free-energy of the spin-1/2 Ising models subject to a uniform magnetic field on the (hyper-)simple-cubic lattices. Estimates of the model parameters are given also for some other lattices
Ferrighi, Lara; Frediani, Luca; Ruud, Kenneth
2010-01-01
The theory and an implementation of the solvent contribution to the cubic response function for the polarizable continuum model for multiconfigurational self-consistent field wave functions is presented. The excited-state polarizability of benzene, para-nitroaniline, and nitrobenzene has been obtained from the double residue of the cubic response function calculated in the presence of an acetonitrile and dioxane solvent. The calculated excited-state polarizabilities are compared to results obtained from the linear response function of the explicitly optimized excited states.
Connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups. Two suffcient and necessary conditions for such graphs to be 1- or 2-arc-regular are given and based on the conditions, several infinite families of 1-or 2-arc-regular cubic Cayley graphs of alternating groups are constructed.
Spinor-Helicity Three-Point Amplitudes from Local Cubic Interactions
Conde, Eduardo; Mkrtchyan, Karapet
2016-01-01
We make an explicit link between the cubic interactions of off-shell fields and the on-shell three-point amplitudes in four dimensions. Both the cubic interactions and the on-shell three-point amplitudes had been independently classified in the literature, but their relation has not been made explicit. The aim of this note is to provide such a relation and discuss similarities and differences of their constructions. For the completeness of our analysis, we also derive the covariant form of all parity-odd massless vertices.
Finite Element Treatment of Vortex States in 3D Cubic Superconductors in a Tilted Magnetic Field
Peng, Lin; Cai, Chuanbing
2017-03-01
The time-dependent Ginzburg-Landau equations have been solved numerically by a finite element analysis for superconducting samples with a cubic shape in a tilted magnetic field. We obtain different vortex patterns as a function of the external magnetic field. With a magnetic field not parallel to the x- or y-axis, the vortices attempt to change their orientation accordingly. Our analysis of the corresponding changes in the magnetic response in different directions can provide information not only about vorticity but also about the three-dimensional vortex arrangement, even about the very subtle changes for the superconducting samples with a cubic shape in a tilted magnetic field.
Energy Technology Data Exchange (ETDEWEB)
Stalin, S. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Senthilvelan, M., E-mail: velan@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)
2011-10-17
In this Letter, we formulate an exterior differential system for the newly discovered cubically nonlinear integrable Camassa-Holm type equation. From the exterior differential system we establish the integrability of this equation. We then study Cartan prolongation structure of this equation. We also discuss the method of identifying conservation laws and Baecklund transformation for this equation from the identified exterior differential system. -- Highlights: → An exterior differential system for a cubic nonlinear integrable equation is given. → The conservation laws from the exterior differential system is derived. → The Baecklund transformation from the Cartan-Ehresmann connection is obtained.
Limit cycles from a cubic reversible system via the third-order averaging method
Directory of Open Access Journals (Sweden)
Linping Peng
2015-04-01
Full Text Available This article concerns the bifurcation of limit cycles from a cubic integrable and non-Hamiltonian system. By using the averaging theory of the first and second orders, we show that under any small cubic homogeneous perturbation, at most two limit cycles bifurcate from the period annulus of the unperturbed system, and this upper bound is sharp. By using the averaging theory of the third order, we show that two is also the maximal number of limit cycles emerging from the period annulus of the unperturbed system.
Cubic systems with invariant affine straight lines of total parallel multiplicity seven
Directory of Open Access Journals (Sweden)
Alexandru Suba
2013-12-01
Full Text Available In this article, we study the planar cubic differential systems with invariant affine straight lines of total parallel multiplicity seven. We classify these system according to their geometric properties encoded in the configurations of invariant straight lines. We show that there are only 17 different topological phase portraits in the Poincar\\'e disc associated to this family of cubic systems up to a reversal of the sense of their orbits, and we provide representatives of every class modulo an affine change of variables and rescaling of the time variable.
Preconditioning cubic spline collocation method by FEM and FDM for elliptic equations
Energy Technology Data Exchange (ETDEWEB)
Kim, Sang Dong [KyungPook National Univ., Taegu (Korea, Republic of)
1996-12-31
In this talk we discuss the finite element and finite difference technique for the cubic spline collocation method. For this purpose, we consider the uniformly elliptic operator A defined by Au := -{Delta}u + a{sub 1}u{sub x} + a{sub 2}u{sub y} + a{sub 0}u in {Omega} (the unit square) with Dirichlet or Neumann boundary conditions and its discretization based on Hermite cubic spline spaces and collocation at the Gauss points. Using an interpolatory basis with support on the Gauss points one obtains the matrix A{sub N} (h = 1/N).
Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process
Institute of Scientific and Technical Information of China (English)
徐家跃; 雷秀云; 蒋新; 何庆波; 房永征; 张道标; 何雪梅
2009-01-01
We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400-1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...
Lee, Jin-Yeon; Kwak, Da-Hee; Lee, Young-Woo; Lee, Seul; Park, Kyung-Won
2015-04-14
The electrocatalytic properties for electro-oxidation reactions of shape-controlled Pt-based catalysts have been improved by alloying with 2nd elements. In this study, we demonstrate cubic PtPd alloy nanoparticles synthesized using a thermal decomposition method. The cubic PtPd nanoparticles exhibit a homogeneous distribution of alloy nanostructures in the presence of Pt and Pd metallic phases. The improved electrocatalytic activity for the electro-oxidation reactions of methanol and formic acid as chemical fuels might be attributed to the cubic alloy nanostructures. Furthermore, the cubic PtPd alloy nanoparticles as electrocatalysts exhibit excellent stability for electro-oxidation reactions.
Smith, S. Jerrod
2013-01-01
From the 1890s through the 1970s the Picher mining district in northeastern Ottawa County, Oklahoma, was the site of mining and processing of lead and zinc ore. When mining ceased in about 1979, as much as 165–300 million tons of mine tailings, locally referred to as “chat,” remained in the Picher mining district. Since 1979, some chat piles have been mined for aggregate materials and have decreased in volume and mass. Currently (2013), the land surface in the Picher mining district is covered by thousands of acres of chat, much of which remains on Indian trust land owned by allottees. The Bureau of Indian Affairs manages these allotted lands and oversees the sale and removal of chat from these properties. To help the Bureau of Indian Affairs better manage the sale and removal of chat, the U.S. Geological Survey, in cooperation with the Bureau of Indian Affairs, estimated the 2005 and 2010 volumes and masses of selected chat piles remaining on allotted lands in the Picher mining district. The U.S. Geological Survey also estimated the changes in volume and mass of these chat piles for the period 2005 through 2010. The 2005 and 2010 chat-pile volume and mass estimates were computed for 34 selected chat piles on 16 properties in the study area. All computations of volume and mass were performed on individual chat piles and on groups of chat piles in the same property. The Sooner property had the greatest estimated volume (4.644 million cubic yards) and mass (5.253 ± 0.473 million tons) of chat in 2010. Five of the selected properties (Sooner, Western, Lawyers, Skelton, and St. Joe) contained estimated chat volumes exceeding 1 million cubic yards and estimated chat masses exceeding 1 million tons in 2010. Four of the selected properties (Lucky Bill Humbah, Ta Mee Heh, Bird Dog, and St. Louis No. 6) contained estimated chat volumes of less than 0.1 million cubic yards and estimated chat masses of less than 0.1 million tons in 2010. The total volume of all
Molecular mobility with respect to accessible volume in Monte Carlo lattice model for polymers
Diani, J.; Gilormini, P.
2017-02-01
A three-dimensional cubic Monte Carlo lattice model is considered to test the impact of volume on the molecular mobility of amorphous polymers. Assuming classic polymer chain dynamics, the concept of locked volume limiting the accessible volume around the polymer chains is introduced. The polymer mobility is assessed by its ability to explore the entire lattice thanks to reptation motions. When recording the polymer mobility with respect to the lattice accessible volume, a sharp mobility transition is observed as witnessed during glass transition. The model ability to reproduce known actual trends in terms of glass transition with respect to material parameters, is also tested.
Gover, A Rod
2016-01-01
For any conformally compact manifold with hypersurface boundary we define a canonical renormalized volume functional and compute an explicit, holographic formula for the corresponding anomaly. For the special case of asymptotically Einstein manifolds, our method recovers the known results. The anomaly does not depend on any particular choice of regulator, but the coefficients of divergences do. We give explicit formulae for these divergences valid for any choice of regulating hypersurface; these should be relevant to recent studies of quantum corrections to entanglement entropies. The anomaly is expressed as a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. We show that the variation of these energy functionals is exactly the obstruction to solving a singular Yamabe type problem with boundary data along the...
Unified cluster expansion method applied to the configurational thermodynamics of cubic Ti1-xAlxN
Alling, Björn; Ruban, Andrei; Karimi, Ayat; Hultman, Lars; Abrikosov, Igor
2012-02-01
We study the thermodynamics of cubic Ti1-xAlxN using a unified cluster expansion approach for the alloy problem [1]. The purely configurational part of the alloy Hamiltonian is expanded in terms of concentration and volume-dependent effective cluster interactions. By separate expansions of the chemical fixed lattice, and local lattice relaxation terms of the ordering energies, we demonstrate how the screened generalized perturbation method can be fruitfully combined with a concentration-dependent Connolly-Williams cluster expansion method, getting the best out of both two schemes that are traditionally used separately. Utilizing the obtained Hamiltonian in Monte Carlo simulations we access the free energy of Ti1-xAlxN alloys and construct the isostructural phase diagram. The results show striking similarities with the previously obtained mean-field results: The metastable c-TiAlN is subject to coherent spinodal decomposition over a large part of the concentration range, e.g., from x 0.33 at 2000 K. [4pt] [1] B. Alling, A. V. Ruban, A. Karimi, L. Hultman, and I. A. Abrikosov, PHYSICAL REVIEW B 83, 104203 (2011)
Kang, Chang-Jong; Kim, Kyoo; Min, B. I.
2013-03-01
Polonium is the only element which has the simple-cubic (SC) structure in the periodic table. We have studied its structural stability based on the phonon dispersion calculations using the first-principles all-electron full-potential band method. We have demonstrated that the strong spin-orbit coupling (SOC) in SC-Po suppresses the Peierls instability and makes the SC structure stable. We have also discussed the structural chirality realized in beta-Po, as a consequence of the phonon instability. Further, we have investigated the possible superconductivity in SC-Po, and predicted that it becomes a superconductor with Tc ~ 4 K at ambient pressure. The transverse soft phonon mode at q ~ 2/3 R, which is greatly affected by the SOC, plays an important role both in the structural stability and the superconductivity in SC-Po. We have explored effects of the SOC and the volume variation on the phonon dispersions and superconducting properties of SC-Po.
P-V-T equation of state of cubic CaSiO3 perovskite from first-principles computation
Kawai, Kenji; Tsuchiya, Taku
2014-04-01
Ca-perovskite (Pv) is considered to be one of the most abundant minerals in the Earth's lower mantle (LM) with an ideal cubic structure at LM pressures and temperatures. In this study, a pressure-volume-temperature (P-V-T) equation of state model for Ca-Pv is constructed using density functional first-principles molecular dynamics simulations. The calculated P-V-T data yield KT0 1000 K = 203.95 GPa, V0 1000 K = 46.17 Å3/formula unit, γ0 = 1.576, and q = 0.96 within the framework of the Mie-Grüneisen-Debye formulation. We compare the density and bulk sound velocity of Ca-Pv with those of iron-bearing Mg-Pv and seismological values. Along an adiabatic temperature gradient, Ca-Pv has ~2.5% higher density and ~0.7% faster bulk sound velocity than the preliminary reference Earth model, while it has ~3.8% higher density and ~2.7% slower bulk sound velocity than iron-bearing Mg-Pv. Our results indicate that a possible lateral variation in the Ca-Pv fraction in the LM could produce an anticorrelation between VΦ and ρ.
DFT Study of the Electronic Structure of Cubic-SiC Nanopores with a C-Terminated Surface
Directory of Open Access Journals (Sweden)
M. Calvino
2014-01-01
Full Text Available A study of the dependence of the electronic structure and energetic stability on the chemical surface passivation of cubic porous silicon carbide (pSiC was performed using density functional theory (DFT and the supercell technique. The pores were modeled by removing atoms in the [001] direction to produce a surface chemistry composed of only carbon atoms (C-phase. Changes in the electronic states of the porous structures were studied by using different passivation schemes: one with hydrogen (H atoms and the others gradually replacing pairs of H atoms with oxygen (O atoms, fluorine (F atoms, and hydroxide (OH radicals. The results indicate that the band gap behavior of the C-phase pSiC depends on the number of passivation agents (other than H per supercell. The band gap decreased with an increasing number of F, O, or OH radical groups. Furthermore, the influence of the passivation of the pSiC on its surface relaxation and the differences in such parameters as bond lengths, bond angles, and cell volume are compared between all surfaces. The results indicate the possibility of nanostructure band gap engineering based on SiC via surface passivation agents.
Yang, Yu; Yao, Hongwei; Hong, Mei
2015-04-16
Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR line shapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic (31)P or (2)H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static (31)P chemical shift line shapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that (31)P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit 2 orders of magnitude shorter T2 relaxation times. These differences are explained by the different time scales of lipid lateral diffusion on the cubic-phase surface versus the time scales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static (31)P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena
Motion of a Rigid Rod Rocking Back and Forth Cubic-Quintic Duffing Oscillators
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Karimpour, S.
2012-01-01
In this work, we implemented the first-order approximation of the Iteration Perturbation Method (IPM) for approximating the behavior of a rigid rod rocking back and forth on a circular surface without slipping as well as Cubic-Quintic Duffing Oscillators. Comparing the results with the exact...
The thermal expansion of a face-centered cubic lattice with central two-body interactions
Bicknese, V.
1965-01-01
The thermal expansion e is calculated by minimizing the free energy, including the cubic and quartic phonon-interaction terms. The free energy is expanded to third order in e. The work is closely related to that of Maradudin and Maradudin, Flinn and Coldwell-Horsfall. The resulting formulas are appl
Magnetic Behaviour of the Cubic La(Fe,Al)13 Compounds
Kraan, A.M. van der; Buschow, K.H.J.; Palstra, T.T.M.
1983-01-01
The magnetic properties of the cubic NaZn13 type pseudobinary compounds LaFexAl13-x were studied in the temperature range T=4.2 - 300 K by means of 57Fe-Mössbauer spectroscopy, magnetization and zero-field susceptibility measurements. The compounds LaFexAl13-x show a rather peculiar concentration de
KOELINK, MH; DEMUL, FFM; GREVE, J; GRAAFF, R; DASSEL, ACM; AARNOUDSE, JG
1992-01-01
In addition to the static cubic lattice model for photon migration in turbid biological media by Bonner et al. [J. Opt. Soc. Am. A 4, 423-432 (1987)], a dynamic method is presented to calculate the average absolute Doppler shift as a function of the distance between the point of injection of photons
Indian Academy of Sciences (India)
R S Kaushal; Ranjit Kumar; Awadhesh Prasad
2006-08-01
Attempts have been made to look for the soliton content in the solutions of the recently studied nonlinear diffusion-reaction equations [R S Kaushal, J. Phys. 38, 3897 (2005)] involving quadratic or cubic nonlinearities in addition to the convective flux term which renders the system nonconservative and the corresponding Hamiltonian non-Hermitian.
Cubic Trigonometric B-spline Galerkin Methods for the Regularized Long Wave Equation
Irk, Dursun; Keskin, Pinar
2016-10-01
A numerical solution of the Regularized Long Wave (RLW) equation is obtained using Galerkin finite element method, based on Crank Nicolson method for the time integration and cubic trigonometric B-spline functions for the space integration. After two different linearization techniques are applied, the proposed algorithms are tested on the problems of propagation of a solitary wave and interaction of two solitary waves.
Motion of a Rigid Rod Rocking Back and Forth Cubic-Quintic Duffing Oscillators
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Karimpour, S.
2012-01-01
In this work, we implemented the first-order approximation of the Iteration Perturbation Method (IPM) for approximating the behavior of a rigid rod rocking back and forth on a circular surface without slipping as well as Cubic-Quintic Duffing Oscillators. Comparing the results with the exact...
On the 3-rank of tame kernels of certain pure cubic number fields
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper,we present some explicit formulas for the 3-rank of the tame kernels of certain pure cubic number fields,and give the density results concerning the 3-rank of the tame kernels.Numerical examples are given in Tables 1 and 2.
Phonon softening induced cubic-to-tetragonal phase transition in ReO3
Liu, Yaming; Zhang, Niu; Jia, Yu; Sun, Qiang; Chao, Mingju
2015-10-01
Within density functional theory, the structural, electronic and lattice dynamical properties of ReO3 in cubic Pm-3m and tetragonal P4/mbm phases are studied by using quasiharmonic approximation. The enthalpy-pressure curves show that a phase transition may take place at 5.0 kbar and the nonexistence of imaginary frequency in phonon dispersions demonstrates the two phases are dynamically stable under proper conditions. With the increase of pressure, an obvious softening of M3 mode at M point appears in cubic phase, and a cubic-to-tetragonal phase transition is accompanied with the presence of negative frequency in M3 mode at 5.0 kbar. In detail, one type of O atoms displaced from x = 0.2500 to x = 0.2401, which corresponds to the softening of M3 mode, are responsible for the phase transition. Our theoretical results show that ReO3 can exist in the tetragonal P4/mbm phase, and a cubic-to-tetragonal phase transition will appear at around 5.0 kbar.
The bulk modulus of cubic spinel selenides: an experimental and theoretical study
DEFF Research Database (Denmark)
Waskowska, A.; Gerward, Leif; Olsen, J.S.
2009-01-01
It is argued that mainly the selenium sublattice determines the overall compressibility of the cubic spinel selenides, AB2Se4, and that the bulk modulus for these compounds is about 100GPa. The hypothesis is supported by experiments using high-pressure X-ray diffraction and synchrotron radiation...
Recovery of Graded Index Profile of Planar Waveguide by Cubic Spline Function
Institute of Scientific and Technical Information of China (English)
YANG Yong; CHEN Xian-Feng; LIAO Wei-Jun; XIA Yu-Xing
2007-01-01
A method is proposed to recover the refractive index profile of graded waveguide from the effective indices by a cubic spline interpolation function. Numerical analysis of several typical index distributions show that the refractive index profile can be reconstructed closely to its exact profile by the presented interpolation model.
Polarized infrared reflectance study of free standing cubic GaN grown by molecular beam epitaxy
Energy Technology Data Exchange (ETDEWEB)
Lee, S.C., E-mail: saicheonglee86@yahoo.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ng, S.S.; Hassan, H. Abu; Hassan, Z.; Zainal, N. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Novikov, S.V.; Foxon, C.T.; Kent, A.J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)
2014-07-01
Optical properties of free standing cubic gallium nitride grown by molecular beam epitaxy system are investigated by a polarized infrared (IR) reflectance technique. A strong reststrahlen band, which reveals the bulk-like optical phonon frequencies, is observed. Meanwhile, continuous oscillation fringes, which indicate the sample consists of two homogeneous layers with different dielectric constants, are observed in the non-reststrahlen region. By obtaining the first derivative of polarized IR reflectance spectra measured at higher angles of incidence, extra phonon resonances are identified at the edges of the reststrahlen band. The observations are verified with the theoretical results simulated based on a multi-oscillator model. - Highlights: • First time experimental studies of IR optical phonons in bulk like, cubic GaN layer. • Detection of extra phonon modes of cubic GaN by polarized IR reflectance technique. • Revelation of IR multiphonon modes of cubic GaN by first derivative numerical method. • Observation of multiphonon modes requires very high angle of incidence. • Resonance splitting effect induced by third phonon mode is a qualitative indicator.
Directory of Open Access Journals (Sweden)
K. Ravi
2014-03-01
Full Text Available In this paper, using fixed point method we prove the generalized Hyers Ulam Rassias stability of the additive cubic functional equationf(x-ky=k2[f(x+y+ f(x-y]+2(1- k2f(x for fixed integers k, with k≠0,±1 in paranormed spaces.
Hilhorst, J.; Wolters, J. R.; Petukhov, A.V.
2010-01-01
Hard sphere crystal growth is a delicate interplay between kinetics and thermodynamics, where the former is commonly thought to favour a random hexagonal close packed structure and the latter leads to a face centered cubic crystal. In this article, we discuss the influence of slanted stacking faults