WorldWideScience

Sample records for cubic fluorite structure

  1. High-pressure U3O8 with the fluorite-type structure

    International Nuclear Information System (INIS)

    Zhang, F.X.; Lang, M.; Wang, J.W.; Li, W.X.; Sun, K.; Prakapenka, V.; Ewing, R.C.

    2014-01-01

    A new high-pressure phase of U 3 O 8 , which has a fluorite-type structure, forms at pressures greater than ∼8.1 GPa that was confirmed by in situ x-ray diffraction (XRD) measurements. The fluorite-type U 3 O 8 is stable at pressures at least up to ∼40 GPa and temperatures to 1700 K, and quenchable to ambient conditions. Based on the XRD analysis, there is a huge volume collapse (>20%) for U 3 O 8 during the phase transition and the quenched high-pressure phase is 28% denser than the initial orthorhombic phase at ambient conditions. The high-pressure phase has a very low compressibility comparing with the starting orthorhombic phase. - Graphical abstract: α-U 3 O 8 is in a layered structure with orthorhombic symmetry, at high pressures, it transformed to a fluorite-type cubic structure. There are a lot of defects in the cubic structure, and it is a new kind of hyperstoichiometric uranium oxide, which is stable at ambient conditions. - Highlights: • A new fluorite-type high-pressure phase was found in hyperstoichometric UO 2 +x (x∼0.8). • The new high-pressure structure is quenchable to ambient conditions. • Pressure driven phase transition in orthorhombic U 3 O 8 was first found

  2. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lybye, D.; Bonanos, N.

    2004-01-01

    Many metal oxides of fluorite and perovskite related structures are oxide ion conductors, which have practical applications in devices such as oxygen sensors, solid oxide fuel cells (SOFC) and electrolysers. Several structural and thermodynamic parameters such as (1) critical radius of the pathway...... such parameters for fluorite and perovskite oxides by considering their sensitivities to the individual ionic radii. Based on experimental data available in the literature, it is argued that lattice distortion (lattice stress and deviation from cubic symmetry) due to ion radii mismatch determines the ionic...... conductivity to a very large extent, and that lattice distortion is of much greater importance than many other proposed parameters. In case of the perovskites, the charge of the B-site ion is also of major importance. (C) 2004 Published by Elsevier B.V....

  3. Properties of complex tungstates, niobates, translated with fluorite-like structure

    International Nuclear Information System (INIS)

    Vetkina, S.N.; Zolin, V.F.; Sirotinkin, V.P.; Smirnov, S.A.

    1989-01-01

    Spectra of ternary tungstates, niobates and tantalates (MeLa 2 WO 7 , La 3 TO 7 ; Me=Ba, Sr; T=Ta, Nb) related to the layered fluorite group are analyzed. The laser pumping and time resolved luminescence are used for selecting spectra of unequivalent centers. The symmetry of the first center is near to the distorted cubic one. The vibrational spectra of europium in Eu 3 NbO 7 and SrLa 2 WO 7 are due to the chain-like structure of niobates and to the net-like structure of tantalates. The stimulated emission of Nd 3+ in powders of BaLa 2 WO 7 and La 3 NbO 7 is observed at wavelengths of 1.07 and 1.063 μm, respectively

  4. The orthorhombic fluorite related compounds Ln/sub 3/RuO/sub 7/, Ln=Nd, Sm and Eu

    International Nuclear Information System (INIS)

    Van Berkel, F.P.F.; Ijdo, D.J.W.

    1986-01-01

    Fluorite-related Ru(V) compound with composition Ln/sub 3/RuO/sub 7/ have been found. These compounds with space group Cmcm adopt a superstructure of the cubic fluorite structure with a/sub orth/=2a/sub c/, b/sub orth/=c/sub orth/=a/sub c/√2. These compounds have the same structure as La/sub 3/NbO/sub 7/

  5. Electronic, elastic, acoustic and optical properties of cubic TiO2: A DFT approach

    International Nuclear Information System (INIS)

    Mahmood, Tariq; Cao, Chuanbao; Tahir, Muhammad; Idrees, Faryal; Ahmed, Maqsood; Tanveer, M.; Aslam, Imran; Usman, Zahid; Ali, Zulfiqar; Hussain, Sajad

    2013-01-01

    The electronic, elastic, acoustic and optical properties of cubic phases TiO 2 fluorite and pyrite are investigated using the first principles calculations. We have employed five different exchange–correlation functions within the local density and generalized gradient approximations using the ultrasoft plane wave pseudopotential method. The calculated band structures of cubic-TiO 2 elucidate that the TiO 2 fluorite and pyrite are direct and indirect semiconductors in contrast to the previous findings. From our studied properties such as bulk and shear moduli, elastic constants C 44 and Debye temperature for TiO 2 fluorite and pyrite, we infer that both the cubic phases are not superhard materials and the pyrite phase is harder than fluorite. The longitudinal and transversal acoustic wave speeds for both phases in the directions [100], [110] and [111] are determined using the pre-calculated elastic constants. In addition, we also calculate the optical properties such as dielectric function, absorption spectrum, refractive index and energy loss function using the pre-optimized structure. On the observation of optical properties TiO 2 fluorite phase turn out to be more photocatalytic than pyrite

  6. Formation, structure and magnetism of the metastable defect fluorite phases AVO3.5+x (A=In, Sc)

    International Nuclear Information System (INIS)

    Shafi, Shahid P.; Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario

    2007-01-01

    We report the preparation and stability of ScVO 3.5+x and the novel phase InVO 3.5+x . AVO 3.5+x (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO 3 bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 deg. C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO 3.5+x structures following this pathway are 0.00≤x≤0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO 3.54 and ScVO 3.70 crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)A, respectively with A 3+ /V 4+ disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V 4+ and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state. - Graphical abstract: Topotactic oxidation of AVO 3 bixbyite to AVO 3.5 defect fluorite structure followed by in-situ powder X-ray diffraction. The upper structural diagram shows a six coordinated (A/V)-O 6 fragment in bixbyite, the lower structure illustrates the same seven-fold coordinated (A/V)-O 7 cubic environment in the defect fluorite structure

  7. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln3OsO7 (Ln=Pr, Tb)

    International Nuclear Information System (INIS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2013-01-01

    Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr 3 OsO 7 exhibits magnetic transitions at 8 and 73 K, and Tb 3 OsO 7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln 3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice. - Graphical abstract: Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr 3 OsO 7 exhibits magnetic transitions at 8 and 73 K, and Tb 3 OsO 7 magnetically orders at 8 and 60 K. Highlights: ► Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) with an ordered defect-fluorite structure have been prepared. ► Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). ► These compounds show complex magnetic behavior at low temperatures due to magnetic ordering of Ln and Os.

  8. Surface modelling on heavy atom crystalline compounds: HfO2 and UO2 fluorite structures

    International Nuclear Information System (INIS)

    Evarestov, Robert; Bandura, Andrei; Blokhin, Eugeny

    2009-01-01

    The study of the bulk and surface properties of cubic (fluorite structure) HfO 2 and UO 2 was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO 2 differ from those found for other metal oxides with the closed-shell configuration of d-electrons

  9. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  10. Surface modelling on heavy atom crystalline compounds: HfO{sub 2} and UO{sub 2} fluorite structures

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, Robert [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Prospect, Peterhof, St. Petersburg 198504 (Russian Federation)], E-mail: re1973@re1973.spb.edu; Bandura, Andrei; Blokhin, Eugeny [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Prospect, Peterhof, St. Petersburg 198504 (Russian Federation)

    2009-01-15

    The study of the bulk and surface properties of cubic (fluorite structure) HfO{sub 2} and UO{sub 2} was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO{sub 2} differ from those found for other metal oxides with the closed-shell configuration of d-electrons.

  11. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb)

    Energy Technology Data Exchange (ETDEWEB)

    Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doi, Yoshihiro [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2013-02-15

    Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr{sub 3}OsO{sub 7} exhibits magnetic transitions at 8 and 73 K, and Tb{sub 3}OsO{sub 7} magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln{sup 3+} sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice. - Graphical abstract: Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr{sub 3}OsO{sub 7} exhibits magnetic transitions at 8 and 73 K, and Tb{sub 3}OsO{sub 7} magnetically orders at 8 and 60 K. Highlights: Black-Right-Pointing-Pointer Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) with an ordered defect-fluorite structure have been prepared. Black-Right-Pointing-Pointer Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). Black-Right-Pointing-Pointer These compounds show complex magnetic behavior at low temperatures due to magnetic ordering of Ln and Os.

  12. Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2−x)TiO5 series

    International Nuclear Information System (INIS)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Reyes, Massey de los; Sharma, Neeraj; Ling, Christopher D.; Gault, Baptiste; Smith, Katherine L.; Avdeev, Maxim; Cairney, Julie M.

    2014-01-01

    A series of single phase compounds with nominal stoichiometry Sm (x) Yb (2−x) TiO 5 (x=2, 1.4, 1, 0.6, and 0) have been successfully fabricated to generate a range of crystal structures covering the most common polymorphs previously discovered in the Ln 2 TiO 5 series (Ln=lanthanides and yttrium). Four of the five samples have not been previously fabricated in bulk, single phase form so their crystal structures are refined and detailed using powder synchrotron and single crystal x-ray diffraction, neutron diffraction and transmission electron microscopy. Based on the phase information from diffraction data, there are four crystal structure types in this series; orthorhombic Pnma, hexagonal P6 3 /mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The cubic materials show modulated structures with variation between long and short range ordering and the variety of diffraction techniques were used to describe these complex crystal structure types. - Graphical abstract: A high resolution image of the compound Sm 0.6 Yb 1.4 TiO 5 showing contrast from lattice fringes and the corresponding fast Fourier transform (FFT) of the HREM image with pyrochlore related diffraction spots marked “P” and fluorite marked “F”. The crystal is oriented down the [1 1 0] zone axis based on the Fd-3m structure. The ideal crystal structure (no vacancies) of the cubic, pyrochlore-like (Sm 0.6 Yb 1.4 TiO 5 ). - Highlights: • First fabrication of bulk single-phase material with stoichiometry Sm 2 TiO 5 . • Systematic study of crystal structure types within Ln 2 TiO 5 series (Ln=lanthanides). • A novel technique using IFFT of HREM images to study cubic structures

  13. Size of oxide vacancies in fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Norby, Poul; Hendriksen, Peter Vang

    2015-01-01

    An analysis of the effective radii of vacancies and the stoichiometric expansion coefficient is performed on metal oxides with fluorite and perovskite structures. Using the hard sphere model with Shannon ion radii we find that the effective radius of the oxide vacancy in fluorites increases...... with increasing ion radius of the host cation and that it is significantly smaller than the radius of the oxide ion in all cases, from 37% smaller for HfO2 to 13 % smaller for ThO2. The perovskite structured LaGaO3 doped with Sr or Mg or both is analyzed in some detail. The results show that the effective radius...... of an oxide vacancy in doped LaGaO3 is only about 6 % smaller than the oxide ion. In spite of this the stoichiometric expansion coefficient (a kind of chemical expansion coefficient) of the similar perovskite, LaCrO3, is significantly smaller than the stoichiometric expansion coefficient of the fluorite...

  14. Configurational Model for Conductivity of Stabilized Fluorite Structure Oxides

    DEFF Research Database (Denmark)

    Poulsen, Finn Willy

    1981-01-01

    The formalism developed here furnishes means by which ionic configurations, solid solution limits, and conductivity mechanisms in doped fluorite structures can be described. The present model differs markedly from previous models but reproduces qualitatively reality. The analysis reported...

  15. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln3OsO7 (Ln=Pr, Tb)

    Science.gov (United States)

    Hinatsu, Yukio; Doi, Yoshihiro

    2013-02-01

    Ternary rare-earth osmates Ln3OsO7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr3OsO7 exhibits magnetic transitions at 8 and 73 K, and Tb3OsO7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice.

  16. Jubilite: A 4-,8-connected Cubic Structural Pattern in Space Group Pm3

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2005-05-01

    Full Text Available Abstract: In the course of investigating structural modifications of the 3-,4-connected net known as the Pt3O4 structure-type (waserite, a novel 4-,8-connected structure-type was discovered. This lattice is generated by replacing the 3-connected trigonal planar vertices of the Pt3O4 structure-type with 4-connected tetrahedral vertices, to achieve a structure which possesses a generic empirical formula of JK6L8. In such a topological modification, the four 3-fold axes of the parent cubic, Pm3n, Pt3O4 structure-type are retained. Thus the 4-connected tetrahedral vertices are oriented so as to preserve cubic symmetry in the resulting Pm3, JK6L8 (jubilite lattice. The unit cell contains a single 8-connected cubecentered vertex, six 4-connected distorted square planar vertices and eight 4-connected distorted tetrahedral vertices. It is a Wellsean structure with a Wells point symbol given by (4166484(42826(43838 and a Schläfli symbol of (53/4, 4.2667. This latter index reveals a decrease in the lattice’s polygonality and concomitant increase in the connectivity through the transformation from waserite to jubilite. The topology of the parent waserite lattice (Pt3O4 corresponds to that of the Catalan structures with the Wells point symbol (843(834, which has the Schläfli symbol (8, 3.4285. Finally, it can be seen that a sequence of structure-types starting with waserite (Pt3O4 and moving to jubilite (JK6L8 and finally to fluorite (CaF2 represents a continuous crystallographic structural transformation in which the symmetry and topology undergo concomitant changes from one structure-type (waserite to the other structure-types. The topology of the fluorite lattice, represented by the Wells point symbol (424(462, and the Schläfli symbol (4, 51/3, indicates a discontinuous topological transformation from the intermediate jubilite lattice; like the discontinuous topological transformation from Pt3O4 to JK6L8; in which the

  17. Properties of complex tungstates, niobates, translated with fluorite-like structure. Svojstva slozhnykh vol'framatov, niobatov, tantalatov s flyuoritopodobnoj strukturoj

    Energy Technology Data Exchange (ETDEWEB)

    Vetkina, S N; Zolin, V F; Sirotinkin, V P; Smirnov, S A

    1989-04-01

    Spectra of ternary tungstates, niobates and tantalates (MeLa{sub 2}WO{sub 7}, La{sub 3}TO{sub 7}; Me=Ba, Sr; T=Ta, Nb) related to the layered fluorite group are analyzed. The laser pumping and time resolved luminescence are used for selecting spectra of unequivalent centers. The symmetry of the first center is near to the distorted cubic one. The vibrational spectra of europium in Eu{sub 3}NbO{sub 7} and SrLa{sub 2}WO{sub 7} are due to the chain-like structure of niobates and to the net-like structure of tantalates. The stimulated emission of Nd{sup 3+} in powders of BaLa{sub 2}WO{sub 7} and La{sub 3}NbO{sub 7} is observed at wavelengths of 1.07 and 1.063 {mu}m, respectively.

  18. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite

    Science.gov (United States)

    Jiang, Wei; Gao, Zhiyong; Khoso, Sultan Ahmed; Gao, Jiande; Sun, Wei; Pu, Wei; Hu, Yuehua

    2018-03-01

    Fluorite, a chief source of fluorine in the nature, usually coexists with calcite mineral in ore deposits. Worldwide, flotation techniques with a selective collector and/or a selective depressant are commonly preferred for the separation of fluorite from calcite. In the present study, an attempt was made to use benzhydroxamic acid (BHA) as a collector for the selective separation of fluorite from calcite without using any depressant. Results obtained from the flotation experiments for single mineral and mixed binary minerals revealed that the BHA has a good selective collecting ability for the fluorite when 50 mg/L of BHA was used at pH of 9. The results from the zeta potential and X-ray photoelectron spectroscopy (XPS) indicated that the BHA easily chemisorbs onto the fluorite as compared to calcite. Crystal chemistry calculations showed the larger Ca density and the higher Ca activity on fluorite surface mainly account for the selective adsorption of BHA on fluorite, leading to the selective separation of fluorite from calcite. Moreover, a stronger hydrogen bonding with BHA and the weaker electrostatic repulsion with BHA- also contribute to the stronger interaction of BHA species with fluorite surface.

  19. Elasticity of fluorite at high temperatures

    Science.gov (United States)

    Eke, J.; Tennakoon, S.; Mookherjee, M.

    2017-12-01

    Fluorite (CaF2) is a simple halide with cubic space group symmetry (Fm-3m) and is often used as an internal pressure calibrant in moderate high-pressure/high-temperature experiments [1]. In order to gain insight into the elastic behavior of fluorite, we have conducted Resonant Ultrasound Spectroscopy (RUS) on a single crystal of fluorite with rectangular parallelepiped geometry. Using single crystal X-ray diffraction, we aligned the edges of the rectangular parallelepiped with [-1 1 1], [-1 1 -2], and [-1 -1 0] crystallographic directions. We conducted the RUS measurements up to 620 K. RUS spectra are influenced by the geometry, density, and the full elastic moduli tensor of the material. In our high-temperature RUS experiments, the geometry and density were constrained using thermal expansion from previous studies [2]. We determined the elasticity by minimizing the difference between observed resonance and calculated Eigen frequency using Rayleigh-Ritz method [3]. We found that at room temperature, the single crystal elastic moduli for fluorite are 170, 49, and 33 GPa for C11, C12, and C44 respectively. At room temperatures, the aggregate bulk modulus (K) is 90 GPa and the shear modulus (G) is 43 GPa. We note that the elastic moduli and sound wave velocities decrease linearly as a function of temperature with dVP /dT and dVS /dT being -9.6 ×10-4 and -5.0 ×10-4 km/s/K respectively. Our high-temperature RUS results are in good agreement with previous studies on fluorite using both Ultrasonic methods and Brillouin scattering [4,5]. Acknowledgement: This study is supported by US NSF awards EAR-1639552 and EAR-1634422. References: [1] Speziale, S., Duffy, T. S. 2002, Phys. Chem. Miner., 29, 465-472; [2] Roberts, R. B., White, G. K., 1986, J. Phys. C: Solid State Phys., 19, 7167-7172. [3] Migliori, A., Maynard, J. D., 2005, Rev. Sci. Instrum., 76, 121301. [4] Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., Hayes, W., 1978, J. Phys. C Solid State Phys

  20. A new anion-deficient fluorite-related superstructure of Bi{sub 28}V{sub 8}O{sub 62}

    Energy Technology Data Exchange (ETDEWEB)

    Đorđević, T., E-mail: tamara.djordjevic@univie.ac.at [Institut für Mineralogie und Kristallographie-Geozentrum, Universität Wien, Althansstr. 14, A-1090 Wien (Austria); Karanović, Lj., E-mail: ljika2002@yahoo.com [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade (Serbia)

    2014-12-15

    New hydrothermally synthesized Bi{sub 28}V{sub 8}O{sub 62} was structurally characterized using single-crystal X-ray diffraction data. Bi{sub 28}V{sub 8}O{sub 62} crystallizes in the novel type of defect fluorite structure related to the face-centered cubic δ-Bi{sub 2}O{sub 3}. It is monoclinic, s. g. P2{sub 1}/c, and the relation to the fluorite subcell is given as a∼(3/2)a{sub F}+(3/2)c{sub F}; b∼ −b{sub F}; c∼2a{sub F} −4c{sub F} (F in subscript indicate the unit cell parameter of fluorite). Its structure is characterized by slabs of edge sharing OBi{sub 4} tetrahedra surrounded by the OBi{sub 3} triangles. As a part of these OBi{sub 3} triangles, two positionally disordered Bi{sup 3+} cations were observed in the marginal part of the slabs. The slabs are extending along b axis and are linked by inter-slab portion of the structure composed of VO{sub 4} tetrahedra and BiO{sub 6−x} coordination polyhedra, where x is a number of vacant oxygen sites. Raman spectra verified the coordination environment of vanadium atoms in the structure. - Graphical abstract: The [4{sup ¯}01] projection of two slabs and inter-slab part of the structure in one layer parallel to the (3{sup ¯}08)=(002{sup ¯}){sub F} plane (F in subscript indicate a fluorite type structure). The large green circles are Bi atoms. Small blue circles represent partly and fully occupied O sites, respectively. Pink (hatched black) are V1O{sub 4} and blue (hatched white) are V2O{sub 4} coordination tetrahedra. - Highlights: • Single crystals of Bi{sub 28}V{sub 8}O{sub 62} were grown using hydrothermal technique. • The crystal structure of Bi{sub 28}V{sub 8}O{sub 62} was solved using single-crystal XRD method. • Bi{sub 28}V{sub 8}O{sub 62} has an anion-deficient fluorite-related superstructure. • Raman spectrum confirmed the coordination environment of vanadium atoms. • Relation to the structurally related compound was discussed.

  1. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  2. Lattice shear distortions in fluorite structure oxides

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.

    1979-01-01

    Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion

  3. The structural basis of the fluorite-related rare earth higher oxides

    International Nuclear Information System (INIS)

    Kang, Z.C.; Eyring, LeRoy

    1996-01-01

    In this paper phenomenological structural principles, and rules for their application are advanced for predicting the ideal structures of the higher oxides of the rare earths. These principles allow to establish a generic formula incorporating all known phases, guide the correct modelling of the established structures and demonstrate that structures previously proposed but proven incorrect do not follow the structural principles. They also can be used to predict the structures not yet established for known phases, including polymorphs, and provide rationalization for phases fitting the generic formula that have not yet been found. The structural principles flow naturally from the fluorite substructure characteristic of all established phases. 39 refs., 5 tabs., 16 figs

  4. The reasons for the color green fluorite Mehmandooye cover using UV spectroscopy and XRF results

    Science.gov (United States)

    Pirzadeh, Sara; Zahiri, Reza

    2016-04-01

    Fluorite mineral or fluorine with chemical formula CaF2 is most important mineralfluor in nature. This mineral crystallization to colors yellow, green, pink, blue, purple, colorless and sometimes black andin cubic system crystallized.assemi transparent and glass with polished.fluoritethe purity include 48/9% fluoreand 51/9% calcium. How the creation colors in minerals different greatly indebted to Kurt Nassau research from Bell Labs, Murray Hill, New Jersey.almostall the mechanisms that cause color in minerals, are the result of the interaction of light waves with the electrons The main factors affecting the color generation include the following: 1)the presence of a constructive element inherent (essential ingredient mineral composition) 2)The presence of a minor impurities (such a element as involved in latticesolid solution) 3) appearancedefects in the crystal structure 4) There are some physical boundaries with distances very small and delicate, like blades out of the solution (which may be the play of colors or Chatvyansy) 5) Mixing mechanical impurities dispersed in a host mineral Based on the results of the analysis, XRF and UV spectrum and also based on the results of ICP, because the color green fluorite examined, the focus color (F_center) and also the presence of some elementsintermediate (such as Y (yttrium). [1] Bill, H., Calas, G. Color centres associated rare earth ions and the origin of coloration in natural fluorites// PhysChem Min, (1978), v 3, pp. 117-131.

  5. Coloring of synthetic fluorite

    International Nuclear Information System (INIS)

    Birsoy, R.

    1980-01-01

    A synthetic fluorite of the Harshaw Chemical Company is analyzed for rare earth elements, yttrium, and sodium. Samples of this fluorite are irradiated with X-rays, γ-rays, neutrons, electrons, protons, and α-particles at different energies, and their absorption spectra are analyzed. Analyzing the thermal bleaching of these radiation-coloured fluorites shows that both, impurities and radiation play a part in the coloration of synthetic fluorite. However, the main contribution comes from the radiation induced lattice defects. In the visible region spectra, the colour centre of the 5800 to 5900 A absorption band is probably mainly related with large aggregates of F-centres. The 5450 and the 5300 A absorption bands are mainly related to monovalent and divalent ion impurities and their association with lattice defects. The 3800 A absorption band seems to be related with F-centre aggregates. However, the contribution from the rare earth elements related complex color centres also plays some part for the production of this absorption band. These results indicate that the color centres of different origin can absorb light at the same wavelength. (author)

  6. Laser site selective spectroscopy of rare-earth defects in fluorites

    International Nuclear Information System (INIS)

    Murdoch, K.M.

    1998-01-01

    Full text: Rare-earth (R 3+ ) doped fluorites (CaF 2 , SrF 2 , and BaF 2 ) have long been a model system for investigating the defect chemistry of crystalline solids. The trivalent R 3+ ions substitute for the divalent cations of the host and are charge compensated by the inclusion of additional interstitial fluoride ions (F - j ). A variety of R 3+ centres arise, including cubic symmetry R 3+ sites remote from any F - j , single R 3+ ions associated with one neighbouring F - j , and clusters of R 3+ associated with multiple F - j . Additional R 3+ centres are produced by chemical modifications involving the substitution of host anions or cations. Numerous experimental studies have shown that the relative populations of these centres are determined by the size of the R 3+ ions, the R 3+ concentration in the crystal, the crystals thermal history, and any pressure treatments. A considerable volume of theoretical work has also been presented to interpret these results. Laser site selective spectroscopy has proved a powerful technique for probing the defect chemistry of R 3+ doped fluorites. Some of the important results and conclusions of these experiments will be reviewed. A detailed account, with references to the original studies, has also been published recently

  7. Disorder–order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects

    International Nuclear Information System (INIS)

    Gaboriaud, R.J.; Paumier, F.; Lacroix, B.

    2016-01-01

    This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y_2O_3. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability

  8. Disorder–order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Gaboriaud, R.J.; Paumier, F. [Institut Pprime, Department of Material Sciences, CNRS-University of Poitiers SP2MI-BP 30179, 86962 Futuroscope-Chasseneuil cedex (France); Lacroix, B. [CSIC, Institut de Ciencia de Materiales, University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2016-02-29

    This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y{sub 2}O{sub 3}. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability.

  9. Study of thermophysical and anharmonic properties of fluorite compounds

    International Nuclear Information System (INIS)

    Singh, R.K.; Pandey, N.K.

    1983-01-01

    An extensive study is made of thermophysical and anharmonic properties of fluorite compounds using an interionic potential, which consists of a long-range Coulomb and three-body interactions and the short-range overlap repulsion and van der Waals attraction. The agreement achieved between experimental and theoretical results on third-order elastic constants and pressure derivatives of second order elastic constants are generally better than those obtained by others. This potential succeeds in predicting various thermophysical properties, like compressibility and its pressure and temperature derivatives, thermal expansion and Grueneisen parameters of seven crystals of fluorite structure. (author)

  10. Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure

    Science.gov (United States)

    Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.

    2018-04-01

    Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.

  11. Optical storage media based on fluorite activated crystals

    International Nuclear Information System (INIS)

    Mokienko, I.Yu.; Poletimov, A.E.; Shcheulin, A.S.

    1991-01-01

    Earlier studied mechanisms of photo- and thermotransformations of defects in pure and activated additively coloured crystals with fluorite structure are considered to suggest several methods of reversible optical recording of images, characterized by high resistance to high-power laser radiation and mechanical deformation

  12. Lattice thermal expansion and solubility limits of neodymium-doped ceria

    International Nuclear Information System (INIS)

    Zhang, Jinhua; Ke, Changming; Wu, Hongdan; Yu, Jishun; Wang, Jingran

    2016-01-01

    Nd x Ce 1−x O 2−0.5x (x=0–1.0) powders were prepared by reverse coprecipitation-calcination method and characterized by XRD. The crystal structure of product powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value. An empirical equation simulating the lattice parameter of neodymium doped ceria was established based on the experimental data. The lattice parameters of the fluorite structure solid solutions increased with extensive adoption of Nd 3+ , and the heating temperature going up. The average thermal expansion coefficients of neodymium doped ceria with fluorite structure are higher than 13.5×10 −6 °C −1 from room temperature to 1200 °C. - Graphical abstract: The crystal structure of Nd x Ce 1−x O 2−0.5x (x=0–1.0) powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value.

  13. Lattice thermal expansion and solubility limits of neodymium-doped ceria

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinhua, E-mail: jhzhang1212@126.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); State Key laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); Ke, Changming [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Wu, Hongdan [College of Resources and Enviromental Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Yu, Jishun [State Key laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); Wang, Jingran [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2016-11-15

    Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders were prepared by reverse coprecipitation-calcination method and characterized by XRD. The crystal structure of product powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value. An empirical equation simulating the lattice parameter of neodymium doped ceria was established based on the experimental data. The lattice parameters of the fluorite structure solid solutions increased with extensive adoption of Nd{sup 3+}, and the heating temperature going up. The average thermal expansion coefficients of neodymium doped ceria with fluorite structure are higher than 13.5×10{sup −6} °C{sup −1} from room temperature to 1200 °C. - Graphical abstract: The crystal structure of Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value.

  14. Stability of fluorite-type La{sub 2}Ce{sub 2}O{sub 7} under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.X., E-mail: zhangfx@umich.edu [Department of Earth and Environmental Sciences, The University of Michigan, Ann Arbor, MI 48109 (United States); State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); Tracy, C.L. [Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109 (United States); Lang, M. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37966 (United States); Ewing, R.C. [Department of Geological Sciences, Stanford University, Stanford, CA 94305 (United States)

    2016-07-25

    The structural stability of fluorite-type La{sub 2}Ce{sub 2}O{sub 7} was studied at pressure up to ∼40 GPa and under hydrothermal conditions of ∼1 GPa and up to 350 °C, respectively, using synchrotron X-ray diffraction (XRD) and Raman scattering measurements. XRD measurements indicated that the fluorite-type La{sub 2}Ce{sub 2}O{sub 7} is not stable at pressures greater than 22.6 GPa and gradually transformed to a high-pressure phase. The high-pressure phase is not stable and changed back to the fluorite-type structure when pressure is released. The La{sub 2}Ce{sub 2}O{sub 7} fluorite is also not stable under hydrothermal conditions and began to react with water at 200–250 °C. Both Raman and XRD results suggest that lanthanum hydroxide La(OH){sub 3} and La{sup 3+}-doped CeO{sub 2} fluorite are the dominant products after hydrothermal treatment. - Graphical abstract: The fluorite-type La{sub 2}Ce{sub 2}O{sub 7} reacted with water at hydrothermal condition (1 GPa, and above 200 °C), and formed rare earth hydroxides. - Highlights: • La{sub 2}Ce{sub 2}O{sub 7} transforms to a metastable phase at pressure higher than 21 GPa. • La{sub 2}Ce{sub 2}O{sub 7} reacts with water at ∼1 GPa and above 200 °C. • The pressure-induced phase transition is reversible.

  15. High-pressure phase transformations of fluorite-type dioxides

    International Nuclear Information System (INIS)

    Lin-Gun Liu

    1980-01-01

    Phase transformations in six fluorite-type dioxides ('TbO 2 ', PbO 2 , 'PrO 2 ', CeO 2 , UO 2 and ThO 2 in the order of increasing cation size, where the quotation marks indicate non-stoichiometric materials) have been investigated in the diamond-anvil press coupled with laser heating. Together with earlier work, the results show that the post-fluorite phase transformations of these dioxides fall into two groups. The smaller cation group (HfO 2 , ZrO 2 and 'TbO 2 ') transforms to a cotunnite or a distorted cotunnite-type structure at pressures in the vicinity of 100 kbar and at about 1000 0 C. The larger cation group (from PbO 2 to ThO 2 ) is believed to transform to a different type of orthorhombic modification at high pressures. It is plausible that this high-pressure phase may possess a Ni 2 Si-related structure, as was observed in ThO 2 and 'PrO 2 ' at pressures greater than 150 and 200 kbar, respectively. (orig./ME)

  16. Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure

    International Nuclear Information System (INIS)

    Ito, Masato; Setoyama, Daigo; Matsunaga, Junji; Muta, Hiroaki; Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    2006-01-01

    Bulk titanium, yttrium, and zirconium hydrides, which have the same structure as that of fluorite-type fcc C 1, were produced and their mechanical properties were investigated. With an increase in the hydrogen content, the lattice parameters of titanium and zirconium hydrides increased, whereas those of yttrium hydride decreased. The elastic moduli of titanium and zirconium hydrides decreased by hydrogen addition, whereas those of yttrium hydride increased. There are linear relations between the electronegativities and hydrogen content dependence of the properties. Therefore, the mechanical properties of the metal hydrides are considered to be determined by a common rule based on the electronegativity

  17. Selective Flotation of Calcite from Fluorite: A Novel Reagent Schedule

    Directory of Open Access Journals (Sweden)

    Zhiyong Gao

    2016-10-01

    Full Text Available Fluorite is an important strategic mineral. In general, fluorite ores will contain a certain amount of calcite gangue mineral. Thus, they need to be separated from each other. For an economic separation, a reverse flotation process is used to float calcite gangue from fluorite. However, little information on the separation is available. In this study, a novel reagent schedule using citric acid (CA as the depressant, sodium fluoride (NaF as the regulator and sulfoleic acid (SOA as the collector, was developed to separate calcite from fluorite. The results demonstrated a high selectivity for the flotation of calcite from fluorite using this new reagent schedule. The best selective separation for a single mineral and mixed binary minerals was obtained when 200 mg/L of NaF, 50 mg/L of CA, and 6 mg/L of SOA were used at pH 9. In addition, a batch flotation experiment was carried out using a run-of-mine feed material. Selective separation was achieved with 85.18% calcite removal while only 11.2% of fluorite was lost. An attempt was made to understand the effect of the new reagent schedule on the flotation of calcite. The results from both microflotation and bench scale flotation demonstrated a great potential for industrial application using this novel reagent schedule to upgrade fluorite ore.

  18. Elements-admixtures of fluorite. Research technique

    International Nuclear Information System (INIS)

    Fayziev, A.R.

    2002-01-01

    Present article is devoted to elements-admixtures of fluorite and research techniques used. As a material for researches the mono mineral samples of fluorite of various geologic deposits and ores were used. The determination of sodium and potassium was conducted by means of flame photometry. Strontium, uranium, thorium, lead and rubidium were determined by means of quantitative X-ray spectroscopic analysis. The barium analysis was conducted by means of quantitative method. The manganese analysis was conducted by means of electron paramagnetic resonance.

  19. Fermi surfaces properties of AuAl2, AuGa2, and AuIn2 with the CaF2-type cubic structure

    Science.gov (United States)

    Nishimura, K.; Kakihana, M.; Suzuki, F.; Yara, T.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2018-05-01

    We grew high-quality single crystals of AuAl2, AuGa2, and AuIn2 with the fluorite (CaF2)-type cubic structure and determined the Fermi surface properties by the de Haas-van Alphen (dHvA) experiments using full-potential LAPW bad calculations. The Fermi surface and optical properties for three compounds were once studied from an interest of colors because AuAl2 has a striking bright reddish-purple color, whereas AuGa2 and AuIn2 are, respectively, neutral and bluish. The detected dHvA frequencies in the present study are found to be in a wide range of (0.1-13)×107 Oe. The main dHvA branches for three compounds are in excellent agreement with the theoretical ones, but some dHvA branches with small dHvA frequencies are slightly deviated from the theoretical ones, especially in AuGa2 and AuIn2.

  20. The use of natural fluorite as a dosemeter

    International Nuclear Information System (INIS)

    Mafra Neto, F.

    1980-01-01

    The possibility of the use of natural fluorite as a dosimeter for X and gama radiations was studied. Its main characteristics such as sensitivity, linearity, fading, standard-deviation, energy dependency, and so on were examined. By the experimental tests, made in the medical area of radiotherapy, we state fluorite as an excellent dosimeter. (Author) [pt

  1. Solid State Structure-Reactivity Studies on Bixbyites, Fluorites and Perovskites Belonging to the Vanadate, Titanate and Cerate Families

    Science.gov (United States)

    Shafi, Shahid P.

    This thesis primarily focuses on the systematic understanding of structure-reactivity relationships in two representative systems: bixbyite and related structures as well as indium doped CeO2. Topotactic reaction routes have gained significant attention over the past two decades due to their potential to access kinetically controlled metastable materials. This has contributed substantially to the understanding of solid state reaction pathways and provided first insights into mechanisms. Contrary to the widely used ex-situ methods, in-situ techniques including powder x-ray diffraction and thermogravimetric-differential thermal analysis have been employed extensively throughout this work in order to follow the reaction pathways in real time. Detailed analysis of the AVO3 (A = In, Sc) bixbyite reactivity under oxidative conditions has been carried out and a variety of novel metastable oxygen defect phases have been identified and characterized. The novel metastable materials have oxygen deficient fluorite structures and consequently are potential ion conductors. Structural aspects of the topotactic vs. reconstructive transformations are illustrated with this model system. The structure-reactivity study of AVO3 phases was extended to AVO3 perovskite family. Based on the research methodologies and results from AVO3 bixbyite reactivity studies a generalized mechanistic oxidation pathway has been established with a non-vanadium phase, ScTiO3 bixbyite. However, there is stark contrast in terms of structural stability and features beyond this stability limit during AVO3 and ScTiO3 bixbyite reaction pathways. A series of complex reaction sequences including phase separation and phase transitions were identified during the investigation of ScTiO3 reactivity. The two-step formation pathway for the fluorite-type oxide ion conductor Ce1-xInxO2-delta (0 ≤ x ≤ 0.3) is being reported. The formation of the BaCe1-xInxO 3-delta perovskites and the subsequent CO2-capture reaction

  2. The fluorite-pyrochlore transformation of Ho2-yNdyZr2O7

    International Nuclear Information System (INIS)

    Clements, Richard; Hester, James R.; Kennedy, Brendan J.; Ling, Chris D.; Stampfl, Anton P.J.

    2011-01-01

    Twelve members of the Ho 2-y Nd y Zr 2 O 7 series, prepared using conventional solid state methods, have been characterised by neutron powder diffraction. Ho 2 Zr 2 O 7 has a defect fluorite structure whereas Nd 2 Zr 2 O 7 is found to adopt the ordered pyrochlore structure with the composition induced fluorite-pyrochlore transformation occurring near y=1. Rietveld analysis on the neutron data for all the compositions reveals an increase in lattice parameter as a function of y across the entire series, with a small discontinuity associated with the transformation. The neutron profile results suggest that domains of pyrochlore-type initially begin to form before crystallising into a separate phase, and therefore that anion and cation ordering processes are distinct. There is a strong correlation between the extent of disorder in the anion sublattice and the x-parameter of 48f oxygen. These results point the way to a better understanding of the stability observed in pyrochlore structures. - Graphical abstract: Neutron diffraction profiles for Nd 2-y Ho y Zr 2 O 7 type oxides reveal details of the transformation from the ordered pyrochlore structure (y=0) to the disordered fluorite structure (y=2). Highlights: → Structures of twelve members of the Ho 2-y Nd y Zr 2 O 7 series studied using neutron powder diffraction. → Domains of pyrochlore-type materials form at low doping levels. → Higher doping stabilises the pyrochlore. → Anion and cation ordering processes are distinct.

  3. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States); Anderson, Thomas J. [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Gout, Delphine [Oak Ridge National Lab, Neutron Scattering Science Division, Oak Ridge, TN (United States); Ubic, Rick [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States)

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which became weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.

  4. Fluid Evolution During Mineralization of Atashkuh Fluorite-Barite (±Sulfide Deposit, South of Delijan

    Directory of Open Access Journals (Sweden)

    Seyed Javad Moghaddasi

    2016-07-01

    Full Text Available Introduction More than 30 fluorite occurrences with approximately 1.35 million tons of reserves have been recognized in Iran (Ghorbani, 2013. The Atashkuh fluorite-barite (±sulfide deposit is one of four occurrences located south of the city of Delijan in Markazi province, about 80 km SE of Arak city. The Atashkuh deposit occurs between the central Iran structural zone on the north and the Sanandaj-Sirjan structural zone on the south. The geology of the area is dominated by folded and faulted Jurassic carbonates and shales (Thiele et al., 1968. The lower Jurassic shale and calcareous sandstone of the Shemshak Formation and the Middle to Upper Jurassic dolomite of the Badamu Formation are the main host rocks for the fluorite veins. In this study, 40 samples from fluorite veins and host rocks were collected, from which 25 thin sections and 8 doubly-polished thin sections were prepared. Micro-thermometric studies were conducted on primary fluid inclusions using the Linkam THM600 heating-freezing stage. In addition, 10 samples were analyzed by XRD. Results Fluid inclusion data indicate that the Atashkuh fluorite-barite (±sulfides veins were deposited as a result of mixing a primary multi-component Na-K(-Mg-Ca high-salinity brine (SH type inclusions with less saline calcium-rich connate water (LVHH type inclusions and pressure reduction of ore bearing fluids. Fluid inclusions containing halite in high-salinity brine, and hydrohalite in connate water show suggest a high-salinity brine and connate water before mixing. The main mineralization stage was followed by circulation of low temperature meteoric water, responsible for the late stage mineralization. The micro-thermometry results suggest that the main fluorite mineralization occurred at 250 °C and 150 Mpa pressure. Dolomitization and silicification are the main alteration types associated with the Atashkuh mineralization. The occurrence of chlorite, talc, illite and dolomitized host rock all

  5. Radiation stability of fluorite-type nuclear oxides

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, Frederico [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France)], E-mail: Frederico.Garrido@csnsm.in2p3.fr; Vincent, Laetitia [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France); Nowicki, Lech [Andrzej Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Sattonnay, Gael [Laboratoire d' Etudes des Materiaux Hors-Equilibre, Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR 8182, Universite Paris-Sud, Batiment 410, 91405 Orsay Cedex (France); Thome, Lionel [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France)

    2008-06-15

    Oxides with the fluorite-type structure are radiation tolerant materials. They are widely used or envisaged in hostile nuclear environments, such as nuclear fuels or inert transmutation matrices for actinide burning. Study of the radiation stability of this class of solids in various radiative fields is of major importance. Two issues which may affect the stability of materials are considered in this work: the production of radiation damage (ballistic contribution); the modification of the matrix composition by doping (chemical contribution). Both contributions may drastically affect the solid stability. Urania and zirconia single crystals were chosen as fluorite-type canonical systems. They were implanted with low-energy inert gases (He or Xe). The damage in-growth, due to both ballistic and chemical contributions, was investigated by in situ RBS/C experiments in the channelling mode and TEM. Two main steps in the disordering kinetics were observed for both inert gases. Relevant key parameters were found to be: the number of displaced lattice atoms created by the slowing-down of energetic ions during the implantation process; the concentration of noble gas atoms in the solid which cause the formation of large stress fields surrounding gas aggregates.

  6. Rare Earths in fluorite deposits of Elika Formation (East of Mazandaran Province

    Directory of Open Access Journals (Sweden)

    Zahra Mehraban

    2016-07-01

    Full Text Available Introduction The Central Alborz in eastern Mazandaran province is host to the most important carbonate-hosted fluorite deposits in Iran, such as Pachi-Miana, Sheshroodbar, Era and Kamarposht. In these deposits, mineralization occurs in the upper parts of the middle Triassic Elika formation (Vahabzadeh et al., 2009 and references therein. These deposits have long been studied, and various models are presented for ore genesis. Nevertheless, ore genesis in these deposits is still unclear. The present study of the geochemistry of the REEs of these deposits is intended to improve genetic models. Materials and methods Three hundred samples were taken from above mentioned deposits. Samples were categorized into 5 groups: (1 fluorite ore types, (2 ore-stage calcite, (3 carbonate host rocks, (4 basaltic rock around the deposits, and (5 shale of the Shemshak formation. Fourteen pure fluorite samples, 4 samples of pure calcite, 4 samples of carbonate host rock, 1 sample of basalt and 1 sample of shale were analyzed for REEs by ICP-MS at West Lab in Australia. Results Analytical data on fluorite from the Elika deposits show very low REE concentrations (0.5-18ppm, in calcite(0.5-3ppm in carbonate host rocks – limestone (1.8-7ppm, and in dolomitic limestone 6.5ppm, compared with upper Triassic basalt (43ppm and shale (261ppm. REE in fluorite of these deposits are strongly enriched (10 3 to 10 6 times relative to normal sea water, ore stage calcite and carbonate host rocks, especially for mid-REEs (Eu, Gd and heavy REEs (Lu, Yb, La/Yb=~0.05. Also, LREEs depletion (La/Sm= 2-10 and HREEs (La/Yb=0.01-0.08 relatively enrichment of fluorites compared with limestone (La/Sm=2.5-4, La/Yb=0.1-1.5 and dolomitic limestone (La/Sm=4.28, La/Yb=0.07-0.4 host rocks as well as positive Eu anomaly are the most important REEs signatures in fluorites. Fluorite elsewhere in the world with low total REE conten thas been interpreted to have a sedimentary origin (Ronchi et al

  7. Performance of cubic ZrO{sub 2} doped CeO{sub 2}: First-principles investigation on elastic, electronic and optical properties of Ce{sub 1−x} Zr{sub x}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Dong [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan (China); Zeng, Chunhua, E-mail: zchh2009@126.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan (China); Faculty of Science, Kunming University of Science and Technology, Kunming 650093, Yunnan (China); Wang, Hua, E-mail: wanghuaheat@hotmail.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan (China); Luo, Hongchun [Faculty of Science, Kunming University of Science and Technology, Kunming 650093, Yunnan (China); Cheng, Xianming [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan (China); Xiang, Chao [College of Mechanical and Electrical Engineering, Yangtze Normal University, Fuling 408100, Chongqing (China); Wei, Yonggang; Li, Kongzhai; Zhu, Xing [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan (China)

    2016-06-25

    The structural, elastic, electronic and optical properties of Ce{sub 1−x} Zr{sub x}O{sub 2} (x = 0, 0.25, 0.5, 0.75, 1) fluorite type oxides are studied by researchers using the method of density functional theory (DFT) + U method. The calculated equilibrium lattice parameter, cell volume, elastic and optical properties for CeO{sub 2} and ZrO{sub 2} are all in good agreement with the available experimental data and other theoretical results. It is found that Ce substituted by Zr leads to the formation of the pseudo-cubic fluorite-type structure. With doping concentration × increasing, the lattice parameter, cell volume and the bond length of d{sub Ce−O} and d{sub Zr−O} decrease linearly. It is interesting to find that the hardness of materials increase with Zr concentration increasing. For Ce{sub 0.75} Zr{sub 0.25} O{sub 2}, we also find that its ductility is good. Meanwhile, the range of the conduction band energy in the doped system becomes wider than that in the undoped system. The overlapping band phenomenon occur for all substitutions in Ce{sub 1−x} Zr{sub x}O{sub 2} (from x = 0.25 to x = 0.75), especially for the structure of Ce{sub 0.5} Zr{sub 0.5} O{sub 2} and Ce{sub 0.25} Zr{sub 0.75} O{sub 2}, its second band gaps almost disappear. Based on the dielectric functions obtained, it is shown that the static dielectric constant ε{sub 0} and refractive index n{sub 0} obviously decrease with Zr concentration increasing. After discussing, we know that CeO{sub 2} is suitable as a useful high-refractive index film material in single and multilayered optical coatings, whereas ZrO{sub 2} can be used as gate-dielectric materials in metal-oxide semiconductor (MOS) devices, in metallurgy and as a thermal barrier coating in engines. - Highlights: • Structural, and optical properties of fluorite type oxides are studied; • Ce substituted by Zr leads to formation of pseudo-cubic fluorite-type structure; • Hardness of materials are increased with Zr

  8. Evaluation of Sulfonate-Based Collectors with Different Hydrophobic Tails for Flotation of Fluorite

    Directory of Open Access Journals (Sweden)

    Renji Zheng

    2018-02-01

    Full Text Available This investigation aims to demonstrate the effects of hydrophobic tails on the affinity and relevant flotation response of sulfonate-based collectors for fluorite. For this purpose, a series of alkyl sulfonates with different hydrophobic tails, namely sodium decanesulfonate (C10, sodium dodecylsulfate (C12, sodium hexadecanesulfonate (C16, and sodium dodecylbenzenesulfonate (C12B were applied. The flotation tests showed that C12 and C12B had a better collecting performance than C10 and C16 at pH < 10, and the flotation recovery of fluorite was higher when adopting C12B as a collector compared with C12 with a strong base. The adsorption behaviors of collectors on the fluorite surface were studied through zeta potential, Fourier transform infrared (FTIR, and X-ray photoelectron spectroscopy (XPS analyses. It was found that the affinity of alkyl sulfonates for fluorite was enhanced with the increase of the alkyl chain length from C10 to C16. The existence of phenyl in the hydrophobic tail of sulfonates could improve its activity for fluorite by reducing its surface tension. The abnormal phenomenon C16 with a high affinity for fluorite had a low collecting performance for fluorite mainly due to its overlong alkyl chain, resulting in low solubility in pulp, which restrained its interaction with fluorite. We concluded that C12B was the most applicable collector for fluorite among these reagents due to its high activity, high solubility, and low cost, which was further substantiated by calculating their molecular frontier orbital energy.

  9. Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure

    Energy Technology Data Exchange (ETDEWEB)

    Inabayashi, Masaki; Doi, Yoshihiro; Wakeshima, Makoto; Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp

    2017-06-15

    Solid solutions Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} (0≤x≤1.0) and (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} (0≤x≤0.7) were obtained as a single phase compound. They crystallize in an orthorhombic superstructure derived from that of the cubic fluorite with space group Cmcm. The results of the Rietveld analysis for X-ray diffraction profiles of Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} showed that Ru and Ta atoms are randomly situated at the six-coordinate 4b site. For (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}, with increasing the concentration of Y ions (x value), the smaller Y ions occupy selectively the seven-coordinate 8g site rather than the eight-coordinate 4a site. Through magnetic susceptibility measurements for Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7}, the antiferromagnetic transition temperatures decrease linearly with increasing x value, and at x=0.75 no magnetic ordering was found down to 1.8 K, indicating the magnetic interaction is not one-dimensional, but three-dimensional. On the other hand, the antiferromagnetic transition temperature for (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} decreases with increasing x value, but above x≥0.50 it becomes constant (~12 K). This result indicates that Pr{sup 3+} ions at the seven-coordinate site greatly contribute to the antiferromagnetic interactions observed in (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}. Density functional calculations of Pr{sub 3}RuO{sub 7} demonstrate that the electronic structure gives insulating character and that oxygen 2p orbitals hybridize strongly with Ru 4d orbitals in the valence band (VB). Near the top of VB, the Pr 4 f orbitals at the seven-coordinated site also show a weak hybridization with the O(1) 2p orbitals. The Ru-O(1)-Pr superexchange pathway take part in three-dimensional magnetic interaction and play an important role in an enhancement of long-range magnetic ordering. - Graphical abstract: The spin densities and the spin polarization of Pr{sub 3}RuO{sub 7} are shown

  10. Nano-crystals of cerium–hafnium binary oxide: Their size-dependent structure

    Energy Technology Data Exchange (ETDEWEB)

    Raitano, Joan M. [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, NY 10027 (United States); Khalid, Syed [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Marinkovic, Nebojsa [Chemical Engineering Department, Columbia University, 500 W 120th St, Mudd 801, New York, NY 10027 (United States); Chan, Siu-Wai, E-mail: sc174@columbia.edu [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, NY 10027 (United States)

    2015-09-25

    Highlights: • (1 − x)CeO{sub 2}–xHfO{sub 2} was precipitated (0 < x < 1) and calcined in air. • For x ⩽ 0.14, crystallites ⩽140 nm in size exhibit only the fluorite structure. • This low hafnia solubility is attributable to no auto-reduction (Ce{sup 3+} = 0). • The low solubility is also due to the high temperature required for homogenization. • Coarsening is lessened as Hf{sup 4+} ions slow cation diffusion in these crystallites. - Abstract: Cerium oxide (CeO{sub 2}, “ceria”) and hafnium oxide (HfO{sub 2}, “hafnia”) were aqueously co-precipitated and subsequently calcined to allow for homogenization. The size of the (1−x)CeO{sub 2}–xHfO{sub 2} crystallites, determined by the Scherrer equation, varied from 140 nm for x = 0 to 15 nm for x = 0.73. For x ⩽ 0.14, only cubic structures are visible in X-ray diffractograms, and the lattice parameters are consistent with the values expected for structurally cubic solid solutions of hafnia in ceria. At x = 0.26, tetragonal and monoclinic phases nucleated with the former not being observed in the bulk phase diagram for ceria–hafnia. Therefore, the solubility limit of the cubic structure is between x = 0.14 and x = 0.26 for 40–61 nm crystallites, the sizes of these respective compositions. More specifically, for the 40 nm crystallites of x = 0.26 (1 − x)CeO{sub 2}–xHfO{sub 2}, 15% of the hafnia remains in a structurally cubic solid solution with ceria based on the observed cubic lattice parameter. The compositional domain for the cubic fluorite structure in this study is narrower than other nanostructured (1 − x)CeO{sub 2}–xHfO{sub 2} studies, especially studies with crystallite sizes less than 10 nm, but wider than observed in the bulk and helps to expand the size regime over which the relationship between crystallite size and phase stability is known. The extent of this cubic-structure domain is mainly attributable to the intermediate crystallite size and the roughly zero Ce{sup 3

  11. Investigation of thermally induced anion disorder in fluorites using neutron scattering techniques

    DEFF Research Database (Denmark)

    Hutchings, M T; Clausen, Kurt Nørgaard; Dickens, M H

    1984-01-01

    Some materials with the fluorite structures show a pronounced specific heat anomaly well below their melting temperature. This anomaly is a consequence of lattice disorder and is associated with the onset of fast-ion conduction. This paper presents the results of a series of experiments in which...

  12. The Structure and Magnetic Properties of Pr 3MO7 with M = Nb, Ta, and Sb

    Science.gov (United States)

    Vente, J. F.; Helmholdt, R. B.; IJdo, D. J. W.

    1994-01-01

    The crystal structure of the fluorite-related praseodymium compounds with the composition Pr 3MO7, M = Nb, Ta, and Sb, have been determined using Rietveld refinement from X-ray and neutron powder diffraction data at 293 and 4 K. The structure described is orthorhombic with space group Cmcm (No. 63). It is a superstructure of the cubic fluorite structure with unit cell parameters a orth ≈ 2a c, b orth ≈ c orth ≈ a c2, as in La 3NbO 7. This structure consists of chains of corner linked MO 6 octahedra parallel with the c-axis. The magnetic susceptibility was measured between 4 and 300 K. The compounds obey the Curie-Weiss law including a Van Vleck temperature independent term. Pr 3SbO 7 shows a small deviation from this law below 25 K.

  13. The ionic conductivity and defect structure of fluorite-type solid solutions Basub(1-x)Usub(x)Fsub(2+2x)

    International Nuclear Information System (INIS)

    Ouwerkerk, M.

    1986-01-01

    The crystal growth and the characterization of the solid solutions Msub(1-x)Usub(x)Fsub(2+2x) (M = Ca, Sr, Ba and Pb) are described. X-ray diffraction and X-ray fluorescence methods have been utilized to determine the U 4+ content of the solid solutions. The incorporation of UF 4 in PbF 2 is found to have a stabilizing effect on the β-PbF 2 (fluorite) structure. A study of the conductivity properties of Basub(1-x)Usub(x)Fsub(2+2x) and of Pbsub(1-x)Usub(x)Fsub(2+2x) is presented. The effect of an anion excess on the diffuse phase transition and the specific heat anomaly of single crystals Msub(1-x)Usub(x)Fsub(2+2x) was studied with impedance spectroscopy and calorimetric measurements. Finally, a study of the fluorite-type solid solutions Basub(1-x)Lasub(x)Fsub(2+x) and Basub(1-x)Usub(x)Fsub(2+2x) using the Thermally Stimulated Depolarization Current (TSDC) technique is presented. (Auth.)

  14. Trace-element and Sr-Nd isotopic evidence for the origin of the Sardinian fluorite mineralization (Italy)

    International Nuclear Information System (INIS)

    Castorina, F.; Masi, U.; Padalino, G.; Palomba, M.

    2008-01-01

    The fluorite-bearing hydrothermal mineralization in Sardinia mainly occurs within Paleozoic volcanic and metasedimentary rocks. Only 3 occurrences are located in volcanic and siliciclastic Cenozoic rocks. Most Sardinian fluorites exhibit relatively high rare earth and Y (REY) contents, strong positive Y anomalies, slightly negative Ce and generally positive Eu anomalies. These features indicate that the REY were mobilized mainly from non-carbonate rocks. Neither Sr nor Nd isotopes can be used to date radiometrically the Sardinian fluorites. However, the measured Sr-isotope ratios of the fluorites hosted by Paleozoic rocks fit mixing lines in the 1000/Sr versus 87 Sr/ 86 Sr plot once recalculated at 280 Ma, suggesting that the age inferred for the correction probably represents that of the formation of the fluorite mineralization. Mixing likely occurred between diluted surficial waters and brines circulating mainly through the Lower Paleozoic metasedimentary basement. The Cenozoic fluorites exhibit chemical and isotopic features similar to those of the Paleozoic fluorites, except the Nuraghe Onigu fluorite displaying a possible contribution of Sr from Cenozoic magmatic rocks. The initial ε Nd values of the Paleozoic fluorites fit the age proposed for the formation of the deposits. Moreover, the values suggest that radiogenic Nd was provided to the fluids from the Ordovician siliciclastic basement, except for 3 deposits where the potential source rocks of Nd were mainly Ordovician acidic magmatic rocks. The initial ε Nd values of the Cenozoic fluorites suggest a provenance of Nd essentially from the leaching of Variscan granitoids

  15. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  16. Electronic structures of (Pb sub 2 Cu)Sr sub 2 Eu sub x Ce sub n sub - sub x Cu sub 2 O sub 2 sub n sub + sub 6 (n=2, 3): Effect of fluorite blocks between adjacent CuO sub 2 layers

    CERN Document Server

    Arai, M

    2003-01-01

    The electronic structures of (Pb sub 2 Cu)Sr sub 2 Eu sub x Ce sub n sub - sub x Cu sub 2 O sub 2 sub n sub + sub 6 (n = 2, 3) compounds which have fluorite blocks between two adjacent CuO sub 2 layers have been studied by using ab-initio method. It is found that the anisotropy is enhanced by inserting the fluorite blocks. The Fermi velocity perpendicular to the CuO sub 2 layers decreases as the thickness of fluorite blocks increases. The Eu substitution is found to affect both the atomic positions and electronic structures. The distance between apical oxygen and copper becomes shorter by the Eu substitution. The energy bands derived from oxygens in the fluorite blocks approach Fermi energy as the content of Eu substitution increases. (author)

  17. Cubic AlGaN/GaN structures for device application

    Energy Technology Data Exchange (ETDEWEB)

    Schoermann, Joerg

    2007-05-15

    The aim of this work was the growth and the characterization of cubic GaN, cubic AlGaN/GaN heterostructures and cubic AlN/GaN superlattice structures. Reduction of the surface and interface roughness was the key issue to show the potential for the use of cubic nitrides in futur devices. All structures were grown by plasma assisted molecular beam epitaxy on free standing 3C-SiC (001) substrates. In situ reflection high energy electron diffraction was first investigated to determine the Ga coverage of c-GaN during growth. Using the intensity of the electron beam as a probe, optimum growth conditions were found when a 1 monolayer coverage is formed at the surface. GaN samples grown under these conditions reveal excellent structural properties. On top of the c-GaN buffer c-AlGaN/GaN single and multiple quantum wells were deposited. The well widths ranged from 2.5 to 7.5 nm. During growth of Al{sub 0.15}Ga{sub 0.85}N/GaN quantum wells clear reflection high energy electron diffraction oscillations were observed indicating a two dimensional growth mode. We observed strong room-temperature, ultraviolet photoluminescence at about 3.3 eV with a minimum linewidth of 90 meV. The peak energy of the emission versus well width is reproduced by a square-well Poisson- Schroedinger model calculation. We found that piezoelectric effects are absent in c-III nitrides with a (001) growth direction. Intersubband transition in the wavelength range from 1.6 {mu}m to 2.1 {mu}m was systematically investigated in AlN/GaN superlattices (SL), grown on 100 nm thick c-GaN buffer layers. The SLs consisted of 20 periods of GaN wells with a thickness between 1.5 nm and 2.1 nm and AlN barriers with a thickness of 1.35 nm. The first intersubband transitions were observed in metastable cubic III nitride structures in the range between 1.6 {mu}m and 2.1 {mu}m. (orig.)

  18. Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Closest-Packed Structure

    Science.gov (United States)

    Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.

    2008-01-01

    One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…

  19. Thermoluminescence in fluorite: sensitization mechanism

    International Nuclear Information System (INIS)

    Cruz, M.T. da; Watanabe, S.; Mayhugh, M.R.

    1974-01-01

    The sensitization of the major glow peaks (approximately to 100 and 200 0 C) in fluorite correlates with population of traps causing higher temperature glow peaks. When considered with supralinearity results, it is concluded that either the sensitization results from an increase in trap-filling efficiencies, or the deeper traps are not filled during irradiation

  20. Effect of natural irradiation in fluorites: possible implications for nuclear waste management?

    Czech Academy of Sciences Publication Activity Database

    Vlček, V.; Skála, Roman; Goliáš, V.; Drahokoupil, Jan; Čížek, J.; Strnad, L.; Ederová, J.

    2012-01-01

    Roč. 57, č. 1 (2012), s. 45-52 ISSN 1802-6222 R&D Projects: GA ČR GA106/07/0805; GA AV ČR KAN300100801 Institutional research plan: CEZ:AV0Z30130516 Keywords : fluorite * irradiation * X-ray diffraction * differential scanning calorimetry * defects * real structure Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.804, year: 2012

  1. Key insights on the structural characterization of textured Er2O3–ZrO2 nano-oxides prepared by a surfactant-free solvothermal route

    International Nuclear Information System (INIS)

    Julián-López, Beatriz; Luz, Verónica de la; Gonell, Francisco; Cordoncillo, Eloisa; López-Haro, Miguel; Calvino, Jose J.; Escribano, Purificación

    2012-01-01

    Highlights: ► Structural resolution of fluorite vs. pyrochlore in small nanocrystals. ► Simple template-free solvothermal synthesis of Er 2 O 3 –ZrO 2 nanooxides. ► Good control over size, morphology and surface properties (280 m 2 g −1 ). - Abstract: Zirconia-mixed oxides can exhibit cubic fluorite and pyrochlore structure. Their discrimination is not easy in nanooxides with a crystal size close to that of a few unit cells. In this work, high resolution transmission electron microscopy (HRTEM) has been employed to provide key insights on the structural characterization of a nanometric and porous mixed Er 2 O 3 –ZrO 2 oxide. The material was prepared by a simple template-free solvothermal route that provided nanocrystalline powders at low temperature (170 °C) with spherical morphology, and high surface area (∼280 m 2 g −1 ). The porosity was mainly originated from the assembling of organic complexing agents used in the synthesis to limit the crystal growth and to control hydrolysis and condensation reaction rates. The samples were characterized by thermal analysis, X-ray diffraction, scanning electron microscopy and N 2 adsorption measurements. A detailed study by HRTEM was conducted on microtomed samples. It was observed that the material was made of nanocrystals packed into spherical agglomerates. HRTEM simulations indicated that it is not possible to identify the pyrochlore phase in nanoparticles with diameter below 2 nm. In our samples, the analysis of the HRTEM lattice images by means of fast Fourier transform (FFT) techniques revealed well defined spots that can be assigned to different planes of a cubic fluorite-type phase, even in the raw material. Raman spectroscopy was also a powerful technique to elucidate the crystalline phase of the materials with the smallest nanoparticles. HREM and Raman results evidenced that the material is constituted, irrespective of the temperature of the final calcination step, by an ensemble of randomly

  2. Factors influencing the determination of fluorite by means of neutron activation analysis

    International Nuclear Information System (INIS)

    Lutze, H.

    1975-01-01

    Proceeding from the necessity of a rapid analysis of fluorite by neutron activation of an unprepared drill core the influence of interfering elements, of inhomogeneous fluorite distribution, of the sample volume and of moisture are examined. Recommendations are given to overcome these interferences. (author)

  3. Phase transition of the orthorhombic fluorite-related compounds Ln{sub 3}IrO{sub 7} (Ln = Pr, Nd, Sm, Eu)

    Energy Technology Data Exchange (ETDEWEB)

    Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.j [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doi, Yoshihiro; Nishimine, Hiroaki; Wakeshima, Makoto [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Sato, Mineo [Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181 (Japan)

    2009-12-04

    Rare earth iridium oxides Ln{sub 3}IrO{sub 7} (Ln = Pr, Nd, Sm, and Eu) were prepared and their structures were determined by X-ray diffraction measurements. At room temperature, Pr{sub 3}IrO{sub 7} crystallized in an orthorhombic superstructure of cubic fluorite with space group Cmcm. The differential thermal analysis (DTA) and specific heat measurements for Ln{sub 3}IrO{sub 7} (Ln = Pr, Nd, Sm, and Eu) showed a phase transition at 262, 342, 420, and 485 K, respectively. At low temperatures, Ln{sub 3}IrO{sub 7} crystallized in a monoclinic structure with the space group P2{sub 1}/n. The transition temperatures increased with decreasing the ionic radius of rare earths, which indicates that the transition is stress-induced and occurs with the lattice contraction on cooling. These results for Ln{sub 3}IrO{sub 7} were compared with the phase transitions observed for Ln{sub 3}MoO{sub 7}, Ln{sub 3}RuO{sub 7}, Ln{sub 3}ReO{sub 7}, and Ln{sub 3}OsO{sub 7}.

  4. Thermoluminescence in fluorite: sensitization mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, M.T. da; Watanabe, S; Mayhugh, M R

    1974-11-01

    The sensitization of the major glow peaks (approximately to 100 and 200/sup 0/ C) in fluorite correlates with population of traps causing higher temperature glow peaks. When considered with supralinearity results, it is concluded that either the sensitization results from an increase in trap-filling efficiencies, or the deeper traps are not filled during irradiation.

  5. Nuclear magnetic resonance in superionic conductors with fluorite-type structure; Ressonancia magnetica nuclear em condutores superionicos de estrutura fluorita

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Sergio Paulo Amaral

    1991-12-31

    The {sup 19} F NMR relaxation times T{sub 1} and T{sub 2} were measured in ternary and nonstoichiometric compounds with the fluorite-type structure. We have studied the Na{sub 0-4} Y{sub 0-6} F{sub 2-2} crystal in the temperature range 600 K to 900 K, where the crystal has not the fluorite structure. The T{sub 1} values were measured in 2 Larmor frequencies: 20.42 MHz and 34.24 MHz. The results for T{sub 1} were seem to be qualitatively similar to those measured in the system with two inequivalent sublattices. The T{sub 2} measurements, in the Pb{sub O84} Bi{sub 0-16} F{sub 2-16} crystal, were made during temperature cycles in the range of 300 K to 830 K. The difference in activation energy between cooling and heating half cycles, found to be approximately 0.08 eV, appear to be associated with the change in the clusters structure and not to the energy of defect formation. Finally, similar T{sub 2} measurements during temperature cycling was made in K{sub 0-4} Bi{sub 0-6} F{sub 2-2} : 2% Pb F{sub 2} crystal, in the temperature range 300 K to 800 K, but in this case no difference in the cooling and heating results was observed. We also measured, in the same temperature range, the T{sub 1} relaxation time in 3 Larmor frequencies: 11.71 MHz, 20.42 MHz and 34.24 Mhz. This results appear to indicate the existence of two hopping mechanism. (author). 132 refs., 68 figs.

  6. Application of X-ray technique to characterization of fluorite sample

    International Nuclear Information System (INIS)

    Cancado, R.Z.L.; Luz Ferreira, O. da.

    1986-01-01

    This investigation had the purpose of characterizing fluorite veins of ''Mineracao Sartor'', in Itaborai region/RJ, which is an excelent geographic position in relation to the consuming market. These studies have in view to give subsidy to future works to the best fluorite utilization. They realized tests with X-rays diffractometer and spectrometer, polarizing microscope and with a mounting of electric circuit to measure the type of semiconductivity. (C.M.C.T.R.) [pt

  7. Key insights on the structural characterization of textured Er{sub 2}O{sub 3}-ZrO{sub 2} nano-oxides prepared by a surfactant-free solvothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Julian-Lopez, Beatriz, E-mail: julian@qio.uji.es [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, 12071 Castellon (Spain); Luz, Veronica de la; Gonell, Francisco; Cordoncillo, Eloisa [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, 12071 Castellon (Spain); Lopez-Haro, Miguel; Calvino, Jose J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, Puerto Real, 11510 Cadiz (Spain); Escribano, Purificacion [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, Avda. Vicente Sos Baynat s/n, 12071 Castellon (Spain)

    2012-04-05

    Highlights: Black-Right-Pointing-Pointer Structural resolution of fluorite vs. pyrochlore in small nanocrystals. Black-Right-Pointing-Pointer Simple template-free solvothermal synthesis of Er{sub 2}O{sub 3}-ZrO{sub 2} nanooxides. Black-Right-Pointing-Pointer Good control over size, morphology and surface properties (280 m{sup 2} g{sup -1}). - Abstract: Zirconia-mixed oxides can exhibit cubic fluorite and pyrochlore structure. Their discrimination is not easy in nanooxides with a crystal size close to that of a few unit cells. In this work, high resolution transmission electron microscopy (HRTEM) has been employed to provide key insights on the structural characterization of a nanometric and porous mixed Er{sub 2}O{sub 3}-ZrO{sub 2} oxide. The material was prepared by a simple template-free solvothermal route that provided nanocrystalline powders at low temperature (170 Degree-Sign C) with spherical morphology, and high surface area ({approx}280 m{sup 2} g{sup -1}). The porosity was mainly originated from the assembling of organic complexing agents used in the synthesis to limit the crystal growth and to control hydrolysis and condensation reaction rates. The samples were characterized by thermal analysis, X-ray diffraction, scanning electron microscopy and N{sub 2} adsorption measurements. A detailed study by HRTEM was conducted on microtomed samples. It was observed that the material was made of nanocrystals packed into spherical agglomerates. HRTEM simulations indicated that it is not possible to identify the pyrochlore phase in nanoparticles with diameter below 2 nm. In our samples, the analysis of the HRTEM lattice images by means of fast Fourier transform (FFT) techniques revealed well defined spots that can be assigned to different planes of a cubic fluorite-type phase, even in the raw material. Raman spectroscopy was also a powerful technique to elucidate the crystalline phase of the materials with the smallest nanoparticles. HREM and Raman results evidenced

  8. Structural study on cubic-tetragonal transition of CH3NH3PbI3

    International Nuclear Information System (INIS)

    Kawamura, Yukihiko; Mashiyama, Hiroyuki; Hasebe, Katsuhiko

    2002-01-01

    The cubic-tetragonal phase transition of CH 3 NH 3 PbI 3 was investigated by single crystal X-ray diffractometry. The crystal structure was refined at five temperatures in the tetragonal phase. The PbI 6 octahedron rotates around the c-axis alternatively to construct the SrTiO 3 -type tetragonal structure. A methylammonium ion is partially ordered; 24 disordered states in the cubic phase are reduced to 8. With decreasing temperature, the rotation angle of the octahedron increases monotonically, which indicates it is an order parameter of the cubic-tetragonal transition. (author)

  9. Conclusion - Admixture elements as indicators of fluorite genesis

    International Nuclear Information System (INIS)

    Fayziev, A.R.

    2002-01-01

    The information obtained during scientific researches was generalized and analyzed. It was defined that studying of qualitative composition and quantitative content revealed the geochemical features of fluorite.

  10. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2011-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  11. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  12. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  13. Effect of Hydrostatic Pressure on the Structural, Electronic and Optical Properties of SnS2 with a Cubic Structure: The DFT Approach

    Science.gov (United States)

    Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.

    2018-02-01

    Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.

  14. Relationship between uranium-molybdenum, fluorite and gold deposits within provinces of continental volcanicity

    International Nuclear Information System (INIS)

    Modnikov, I.S.; Skvortsova, K.V.; Chesnokov, L.V.

    1974-01-01

    The article gives a comparative description of and the age relationships between uranium-molybdenum, gold and fluorite mineralizations in the areas of development of adhesite-diorite and liparite-granite vulcanoplutonic formations, which are most fully and intensively manifest in the intra-anticlinal and median blocks of folded regions in the final stages of geosynclinal development or during the final stages of tectono-magmatic activation. These formations usually fill vulcano-tectonic depression structures - overlaid troughs and inherited delections. The geological and geochemical data are evidence of the close temporal link between the hydrothermal process of ore formation and the type and scale of manifestations of the vulcano-plutonic magmatism that is responsible for the general geochemical features of the ores of deposits of various types. The formation of gold, fluorite and uranium-molybdenum deposits occurred immediately after the completion of effusive and intrusive magmatism during a single metallogenic cycle. The spatial distribution of the ore fields and deposits depends chiefly on the peculiarities of the tectonic make-up of the depression structures, and also on the type and scale of the manifestations of vulcano-plutonic magmatism. (B.Ya.)

  15. [Assessment of Soil Fluorine Pollution in Jinhua Fluorite Ore Areas].

    Science.gov (United States)

    Ye, Qun-feng; Zhou, Xiao-ling

    2015-07-01

    The contents of. soil total fluorine (TF) and water-soluble fluorine (WF) were measured in fluorite ore areas located in Jinhua City. The single factor index, geoaccumulation index and health risk assessment were used to evaluate fluorine pollution in soil in four fluorite ore areas and one non-ore area, respectively. The results showed that the TF contents in soils were 28. 36-56 052. 39 mg.kg-1 with an arithmetic mean value of 8 325.90 mg.kg-1, a geometric mean of 1 555. 94 mg.kg-1, and a median of 812. 98 mg.kg-1. The variation coefficient of TF was 172. 07% . The soil WF contents ranged from 0. 83 to 74. 63 mg.kg-1 with an arithmetic mean value of 16. 94 mg.kg-1, a geometric mean of 10. 59 mg.kg-1, and a median of 10. 17 mg.kg-1. The variation coefficient of WF was 100. 10%. The soil TF and WF contents were far higher than the national average level of the local fluorine epidemic occurrence area. The fluoride pollution in soil was significantly affected by human factors. Soil fluorine pollution in Yangjia, Lengshuikeng and Huajie fluorite ore areas was the most serious, followed by Daren fluorite ore area, and in non-ore area there was almost no fluorine pollution. Oral ingestion of soils was the main exposure route. Sensitivity analysis of model parameters showed that children's weight exerted the largest influence over hazard quotient. Furthermore, a significant positive correlation was found among the three kinds of evaluation methods.

  16. Geochemical characterization of rare earth elements from fluorite deposits of Tangua district - RJ

    International Nuclear Information System (INIS)

    Coelho, C.E.S.; Dardenne, M.A.

    1987-01-01

    The Tangua fluorite vein-type deposits are related to an alkaline complex of the same name, and situated in the District of Itaborai, in the State of Rio de Janeiro. The plutonic body of nepheline syenites (Tangua Massif) intrudes basement gneisses, with dykes and sills of trachitic and phonolitic nature of hundreds of meters in length and centimeters to tens of meters in thickness. The fluorite veins are emplaced both in gneisses and alkaline rocks (plutonic body and dykes) in NE-ENE structures created or reactivated during the opening of the South Atlantic Ocean. The geochemical study of rare earth elements reveals that these mineralizations show very low contents in these elements, and a relatively high fractionation spectres. In the deposit environment, four mineralization phases were differenciated, with the first one being considered as the initial solution; the second one characterized by a new europium rich-solution; the third one, representing the evolution of this new solution, but in a reducing environment, with precipitation of pyrite; and the last one, representing a new batch of the initial solution. As a consequence of the REE's and fluid inclusions studies, we are able to suggest an origen by weathering of the country rocks due to superficial meteorics solutions along faults and fractures, that when heated in deep environments, promote lixiviation of silica and fluorine and precipitate the fluorites when their ascending movement comes to an end. (author) [pt

  17. On the dynamic Stability of a quadratic-cubic elastic model structure ...

    African Journals Online (AJOL)

    The main substance of this investigation is the determination of the dynamic buckling load of an imperfect quadratic-cubic elastic model structure , which ,in itself, is a Mathematical generalization of some of the many physical structures normally encountered in engineering practice and allied fields. The load function in ...

  18. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures

    DEFF Research Database (Denmark)

    Goff, J.P.; Hayes, W.; Hull, S.

    1999-01-01

    The defect structure of cubic fluorite structured yttria-stabilized zirconia (ZrO2)(1-x)(Y2O3)(x) has been investigated over the composition range 0.100(3)less than or equal to x less than or equal to 0.241 (10) and temperatures T(K) up to 2780(10) K, using single-crystal specimens. Analysis of n......, we propose that the anomalous decrease in the ionic conductivity with increasing x is a consequence of the decreasing mobility of the isolated defects, possibly due to blockage by the increasing number of static aggregates....

  19. Changing the cubic ferrimagnetic domain structure in temperature region of spin flip transition

    International Nuclear Information System (INIS)

    Djuraev, D.R.; Niyazov, L.N.; Saidov, K.S.; Sokolov, B.Yu.

    2011-01-01

    The transformation of cubic ferrimagnetic Tb 0.2 Y 2.8 Fe 5 O 12 domain structure has been studied by magneto optic method in the temperature region of spontaneous spin flip phase transition (SPT). It has been found that SPT occurs in a finite temperature interval where the coexistence of low- and high- temperature magnetic phase domains has observed. A character of domain structure evolution in temperature region of spin flip essentially depends on the presence of mechanical stresses in crystal. Interpretation of experimental results has been carried out within the framework of SPT theory for a cubic crystal. (authors)

  20. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    International Nuclear Information System (INIS)

    Song, T.; Ma, Q.; Sun, X.W.; Liu, Z.J.; Fu, Z.J.; Wei, X.P.; Wang, T.; Tian, J.H.

    2016-01-01

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.

  1. Complete three-dimensional photonic bandgap in a simple cubic structure

    International Nuclear Information System (INIS)

    Lin, Shawn-Yu; Fleming, J. G.; Lin, Robin; Sigalas, M. M.; Biswas, R.; Ho, K. M.

    2001-01-01

    The creation of a three-dimensional (3D) photonic crystal with simple cubic (sc) symmetry is important for applications in the signal routing and 3D waveguiding of light. With a simple stacking scheme and advanced silicon processing, a 3D sc structure was constructed from a 6-in. silicon wafer. The sc structure is experimentally shown to have a complete 3D photonic bandgap in the infrared wavelength. The finite size effect is also observed, accounting for a larger absolute photonic bandgap

  2. Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin; Bowden, Mark E.; Varga, Tamas; Shutthanandan, Vaithiyalingam; Spurgeon, Steven R.; Yan, Pengfei; Wang, Chongmin; Ramuhalli, Pradeep; Henager, Charles H.

    2017-05-01

    Pyrochlore-structure oxides, A2B2O7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. The mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La2Zr2O7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr+ at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopy (STEM). At lower doses, the surface of the La2Zr2O7 film amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La2Zr2O7, the bandgap of a thick La2Zr2O7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.

  3. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    Science.gov (United States)

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  4. Direct reading spectrochemical determination of aluminium, iron and silicon in fluorite

    International Nuclear Information System (INIS)

    Roca, M.

    1966-01-01

    A quantitative spectrochemical method for the determination of Al, Fe and Si in fluorite has been worked out. The sample was supported in a graphite electrode with crater of 5 mm. in diameter, 2,5 mm deep, and burned by a d.c. are in a direct reading spectrometer. The excitation of samples has been studied without dilution as well as using graphite powder as diluent in the ratios 1:1, 1:4, and 1:9; the latter factor was chosen. Ag, Ca, Co, Cr, Mo and Sn were tested as internal standards. It has not been found any significant inter element effect. It is necessary to use natural fluorite as base material for the standards. (Author) 5 refs

  5. Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Zhou, Jian-Ping; Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming; Deng, Chao-Yong

    2012-01-01

    Graphical abstract: Bismuth ferrite (BiFeO 3 ) cubic micro-particles with smooth surfaces were synthesized. BiFeO 3 has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe 2 O 3 above 939 °C. Highlights: ► BiFeO 3 micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO 3 enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO 3 transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO 3 ) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO 3 cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi 3+ , Fe 3+ and O 2− ). The high temperature XRD and differential scanning calorimetry show that BiFeO 3 powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO 3 undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe 2 O 3 above 939 °C.

  6. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    Science.gov (United States)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    Burpalinsky rare metal alkaline massif in the Northern Baikal folded zone in southern margin of Siberian Platform, is a of intrusion central type, created 287 Ma covering area of about 250 km2. It is composed of nepheline syenites and pulaskites grading to quartz syenites in the contacts. Veines and dykes are represented by shonkinites, sodalite syenite, leucocratic granophyres, alkali granites and numerous rare metal alkaline syenite pegmatites and two dykes of carbonatites. All rocks except for granites are cut by a large apatite-fluorite dyke rocks with mica and magnetite, which in turn is cut by alaskite granites dyke. The massif has been studied by A.M. Portnov, A.A. Ganzeev et al. (1992) Burpalinsky massif is highly enriched with trace elements, which are concentrated in pegmatite dykes. About 70 rare-metal minerals we found in massif. Zr-silicates: zircon, eudialyte, lovenite, Ti-lovenite, velerite, burpalite, seidozerite, Ca- seidozerite, Rosenbuschite, vlasovite, katapleite, Ca-katapleite, elpidite. Ti- minerals:- sphene, astrophyllite, ramsaite, Mn-neptunite bafertisite, chevkinite, Mn-ilmenite, pirofanite, Sr-perrerit, landauite, rutile, anatase, brookite; TR- minerals - loparite, metaloparite, britolite, rinkolite, melanocerite, bastnesite, parisite, ankilite, monazite, fluocerite, TR-apatite; Nb- minerals - pyrochlore, loparite. Other rare minerals leucophanite, hambergite, pyrochlore, betafite, torite, thorianite, tayniolite, brewsterite, cryolite and others. We have proposed a new scheme massif: shonkinites - nepheline syenites - alkaline syenite - quartz syenites - veined rocks: mariupolites, rare-metal pegmatites, apatite, fluorite rock alyaskite and alkaline granites and carbonatites (Sotnikova, 2009). Apatite-fluorite rocks are found in the central part of massif. This is a large vein body of 2 km length and a 20 m width cutting prevailing pulaskites. Previously, these rocks were regarded as hydrothermal low-temperature phase. New geological and

  7. Cationic Phospholipids Forming Cubic Phases: Lipoplex Structure and Transfection Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C. (NWU)

    2008-10-29

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl-sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl-sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  8. Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; Macdonald, Robert C

    2008-01-01

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  9. Thermodynamic determination of fluorite phases of the ULnO4 type

    International Nuclear Information System (INIS)

    Paula, H.C.B.

    1981-12-01

    A method for the determination of structure and thermodynamical stability of fluorite phases of the ULnO 4 type is presented. Through the use of a solid body galvanic chain with CaO-doped ZrO 2 working as an oxygen ion conductor solid electrolyte, phase transformation temperatures are determined, as well as solubility enthalpies and entropies for ULnO 4 systems (Ln= Sm, Tb, Er, Ho, Tm, YB). X-ray analyses confirmed the electrochemical measurements. The emf measurement system is checked by using binary oxides with known composition and oxygen partial pressure. A comparison between stabilities of analysed compounds is also presented. (Author) [pt

  10. Structure and phase transition of BiFeO{sub 3} cubic micro-particles prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Ping, E-mail: zhoujp@snnu.edu.cn [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Deng, Chao-Yong [Department of Electronic Science, Guizhou University, Guizhou Guiyang 550025 (China)

    2012-11-15

    Graphical abstract: Bismuth ferrite (BiFeO{sub 3}) cubic micro-particles with smooth surfaces were synthesized. BiFeO{sub 3} has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe{sub 2}O{sub 3} above 939 °C. Highlights: ► BiFeO{sub 3} micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO{sub 3} enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO{sub 3} transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO{sub 3}) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO{sub 3} cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi{sup 3+}, Fe{sup 3+} and O{sup 2−}). The high temperature XRD and differential scanning calorimetry show that BiFeO{sub 3} powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO{sub 3} undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe{sub 2}O{sub 3} above 939 °C.

  11. Diagenetic and post-diagenetic fabrics in the Kamarposht fluorite mine (east of Mazandaran province: Explainaton and genetic interpretation

    Directory of Open Access Journals (Sweden)

    Faezeh Nabiloo

    2017-11-01

    barite as massive and vein, abundant galena and near contact between mineralization zones in carbonate host rocks (Elika Fm. and pyrite-bearing coalified shales (base of Shemshak Fm.? as faulted and/or interbedded are all distinctive geological features for the Kamarposht mine. Fluorite mainly occurs as interrupted, dense and voluminous massive bodies with/without galena which have occupied cavities and open spaces between brecciated fragments of dolomitic limestone relative to the form of disseminate grains, veinlets and geode. Massive and voluminous accumulations of barite in dissolution and karstic cavities and also as discordant veins relative to the bedding of the host rock which have been generated radial, breccias and zebra structures in barite ores. Galena occurs as veinlets and breccias with medium to coarse grain size with/without fluorite in dolomitic and silicified host rocks and also as vein-veinlets into and/or rime of massive barites. Discussion Based on field evidences and mode occurrence of ore minerals and ore textures, mineralization in the Kamaposht mine has occurred as syn-diagenetic (primary and post-diagenetic/epigenetic (main fabrics. Ores with disseminate particles of ore minerals, stylolite, geode and tiny veinlets fabrics have been interpreted as primary textures that co-exist with diagenesis of host rocks. These fabrics have been formed under diagenetic processes such as nucleation, re-crystalization and disolution of host rocks by diagenetic phreatic reactions that have caused increasing temperature-pressure due to increasing depth of burial diagenesis (Force et al., 1991; Fontbote and Gorzawski 1990; Rastad and Shariatmadar, 2001; Haeri-Ardakani et al., 2013. The main textures of mineralization in the Kamarposht mine namely open-space filling fabrics including veins and breccias fabrics with replacement, network and zebra textures which are associated with dolomitized and silicified host rock have been caused by late and/or post

  12. A kinetic study of the replacement of calcite marble by fluorite

    Science.gov (United States)

    Trindade Pedrosa, Elisabete; Boeck, Lena; Putnis, Christine V.; Putnis, Andrew

    2016-04-01

    Replacement reactions are relevant in any situation that involves the reequilibration between a solid and an aqueous fluid phase and are commonly controlled by an interface-coupled dissolution-precipitation mechanism (Putnis and Putnis, 2007). These reactions control many large-scale Earth processes whenever aqueous fluids are available, such as during metamorphism, metasomatism, and weathering. An important consequence of coupled dissolution-precipitation is the generation of porosity in the product phase that then allows the infiltration of the fluid within the mineral being replaced. Understanding the mechanism and kinetics of the replacement of carbonates by fluorite has application in earth sciences and engineering. Fluorite (CaF2) occurs in all kinds of rocks (igneous, sedimentary, and metamorphic) and its origin is commonly associated with hydrothermal fluids. Moreover, calcium carbonate has been suggested as a successful seed material for the sequestration of fluoride from contaminated waters (Waghmare and Arfin, 2015). The aim of the present work is to investigate aspects of the replacement of calcium carbonate by fluorite to better understand the mechanism and kinetics of this reaction. Small cubes (˜ 3 × 3 × 3 mm) of Carrara marble (CaCO3 > 99 %) were cut and reacted with a 4 M ammonium fluoride (NH4F) solution for different times (1 to 48 hours) and temperatures (60, 80, 100, and 140 ° C). The microstructure of the product phases was analysed using SEM. The kinetics of replacement was monitored from the Rietveld analysis of X-ray powder diffraction patterns of the products as a function of temperature and reaction time. After reaction, all samples preserved their size and external morphology (a pseudomorphic replacement) and the product phase (fluorite) was highly porous. The activation energy Ea (kJ/mol) of the replacement reaction was empirically determined by both model-fitting and model-free methods. The isoconversional method yielded an

  13. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  14. Formation of defect-fluorite structured NdNiOxHy epitaxial thin films via a soft chemical route from NdNiO3 precursors.

    Science.gov (United States)

    Onozuka, T; Chikamatsu, A; Katayama, T; Fukumura, T; Hasegawa, T

    2016-07-26

    A new phase of oxyhydride NdNiOxHy with a defect-fluorite structure was obtained by a soft chemical reaction of NdNiO3 epitaxial thin films on a substrate of SrTiO3 (100) with CaH2. The epitaxial relationship of this phase relative to SrTiO3 could be controlled by changing the reaction temperature. At 240 °C, NdNiOxHy grew with a [001] orientation, forming a thin layer of infinite-layer NdNiO2 at the interface between the NdNiOxHy and the substrate. Meanwhile, a high-temperature reaction at 400 °C formed [110]-oriented NdNiOxHy without NdNiO2.

  15. The Improvement Effect of Dispersant in Fluorite Flotation: Determination by the Analysis of XRD and FESEM-EDX

    Directory of Open Access Journals (Sweden)

    Y. J. Li

    2015-01-01

    Full Text Available Different dispersants were added in the dispersion process to improve the efficiency of fluorite flotation. The types and dosage of dispersant on the improvement of fluorite flotation were investigated; when the sodium polyacrylate (SPA was used as the dispersant and its addition is 0.5%, the concentrate grade of CaF2 increased from 90% to 98% and the fluorite recovery increased from 81% to 85%. Methods of X-ray powder diffraction (XRD, field emission scanning electron microscopy (FESEM, and Energy dispersive X-ray spectrometer (EDX were used to characterize the sample. According to the analysis of results, the optimal sample consisted of CaF2 and very little CaCO3 in the size range of 0–5 μm. It could be concluded that the mechanism of improvement for the concentrate grade and recovery of CaF2 was attributed to the change of potential energy barrier which caused the separation of particles with different charge. All results indicate that SPA has a great potential to be an efficient and cost-effective dispersant for the improvement of fluorite flotation.

  16. Topotactic oxidation pathway of ScTiO3 and high-temperature structure evolution of ScTiO3.5 and Sc4Ti3O12-type phases.

    Science.gov (United States)

    Shafi, Shahid P; Hernden, Bradley C; Cranswick, Lachlan M D; Hansen, Thomas C; Bieringer, Mario

    2012-02-06

    The novel oxide defect fluorite phase ScTiO(3.5) is formed during the topotactic oxidation of ScTiO(3) bixbyite. We report the oxidation pathway of ScTiO(3) and structure evolution of ScTiO(3.5), Sc(4)Ti(3)O(12), and related scandium-deficient phases as well as high-temperature phase transitions between room temperature and 1300 °Cusing in-situ X-ray diffraction. We provide the first detailed powder neutron diffraction study for ScTiO(3). ScTiO(3) crystallizes in the cubic bixbyite structure in space group Ia3 (206) with a = 9.7099(4) Å. The topotactic oxidation product ScTiO(3.5) crystallizes in an oxide defect fluorite structure in space group Fm3m (225) with a = 4.89199(5) Å. Thermogravimetric and differential thermal analysis experiments combined with in-situ X-ray powder diffraction studies illustrate a complex sequence of a topotactic oxidation pathway, phase segregation, and ion ordering at high temperatures. The optimized bulk synthesis for phase pure ScTiO(3.5) is presented. In contrast to the vanadium-based defect fluorite phases AVO(3.5+x) (A = Sc, In) the novel titanium analogue ScTiO(3.5) is stable over a wide temperature range. Above 950 °C ScTiO(3.5) undergoes decomposition with the final products being Sc(4)Ti(3)O(12) and TiO(2). Simultaneous Rietveld refinements against powder X-ray and neutron diffraction data showed that Sc(4)Ti(3)O(12) also exists in the defect fluorite structure in space group Fm3m (225) with a = 4.90077(4) Å. Sc(4)Ti(3)O(12) undergoes partial reduction in CO/Ar atmosphere to form Sc(4)Ti(3)O(11.69(2)).

  17. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  18. Structural insights into the cubic-hexagonal phase transition kinetics of monoolein modulated by sucrose solutions.

    Science.gov (United States)

    Reese, Caleb W; Strango, Zachariah I; Dell, Zachary R; Tristram-Nagle, Stephanie; Harper, Paul E

    2015-04-14

    Using DSC (differential scanning calorimetry), we measure the kinetics of the cubic-HII phase transition of monoolein in bulk sucrose solutions. We find that the transition temperature is dramatically lowered, with each 1 mol kg(-1) of sucrose concentration dropping the transition by 20 °C. The kinetics of this transition also slow greatly with increasing sucrose concentration. For low sucrose concentrations, the kinetics are asymmetric, with the cooling (HII-cubic) transition taking twice as long as the heating (cubic-HII) transition. This asymmetry in transition times is reduced for higher sucrose concentrations. The cooling transition exhibits Avrami exponents in the range of 2 to 2.5 and the heating transition shows Avrami exponents ranging from 1 to 3. A classical Avrami interpretation would be that these processes occur via a one or two dimensional pathway with variable nucleation rates. A non-classical perspective would suggest that these exponents reflect the time dependence of pore formation (cooling) and destruction (heating). New density measurements of monoolein show that the currently accepted value is about 5% too low; this has substantial implications for electron density modeling. Structural calculations indicate that the head group area and lipid length in the cubic-HII transition shrink by about 12% and 4% respectively; this reduction is practically the same as that seen in a lipid with a very different molecular structure (rac-di-12:0 β-GlcDAG) that makes the same transition. Thermodynamic considerations suggest there is a hydration shell about one water molecule thick in front of the lipid head groups in both the cubic and HII phases.

  19. Spectroscopic and computer modelling studies of mixed-cation superionic fluorites

    CSIR Research Space (South Africa)

    Netshisaulu, TT

    2005-10-19

    Full Text Available into the local environments of the Cd and Pb cations (as a function of composition and temperature) in CdF2 (xPbF(2)) mixed-cation superionic fluorites. A high degree of disorder is shown around both cations. However, the extent of disorder is even larger around...

  20. Influence of a hydrostatic pressure on the diffusion in metals having a cubic structure

    International Nuclear Information System (INIS)

    Beyeler, M.

    1969-01-01

    In view of obtaining informations on the structure of vacancies. We have determined, by diffusion experiments under high pressure, the activation volumes for self diffusion in different face centered cubic metals: silver, gold, copper, aluminium and in body centered cubic uranium (gamma phase). Activation volumes for noble metals diffusion in aluminium have also been investigated. The experimental results on gold, silver and copper are in good agreement with most of the theoretical models. The estimated activation volume for gamma uranium seems to indicate a vacancy mechanism.The results on aluminium for both self and impurity diffusion agree quite well with Friedel's theoretical predictions [fr

  1. Solid thermoluminescent dosemeter of sodium tetraborate and brazilian fluorite sensible to thermal neutrons

    International Nuclear Information System (INIS)

    Fratin, L.; Cruz, M.T. da

    1987-01-01

    A solid termoluminescent dosemeter of sodium tetraborate and brazilian fluorite sensible to thermal neutrons is described. The nuclears reactions 1) 10 B + n → 7 Li + He + Q1 (6,1%) where: Q1=2,79 MeV and Eα1 = 1,758 MeV and 2) 10 B + n → 7 Li* + 4 He + Q2 (93,9%) where: Q2 = 2,316 MeV and E2α 2 = 1,474 MeV are responsible by the thermoluminescent response of the thermal neutrons dosemeters. The stages in the fabrication process of this dosemeter of which are:1) sodium tetraborate vitrification, 2) mixture and pressing 3) sintering are cited. The obtainment of a natural fluorite dosemeter with sodium chloride is also shown. (C.G.C.) [pt

  2. Measurements of CaF2 concentration in fluorite ore using thermoluminescence techniques

    International Nuclear Information System (INIS)

    Lembo, L.; Maestri, G.; Pimpinella, M.; Benzi, V.; Muntoni, C.

    1990-01-01

    Fluorite powder is produced by means of a flotation process on crude ore extracted by the mines. A full automation of the flotation plant would reduce the operating cost and improve the quality and recovery of fluorite production. However, taking into account that the efficiency of a flotation cycle is directly dependent on the CaF 2 content in the concentrate and tail products, this automation requires a quasi-real-time quantitative analysis of CaF 2 concentration in the floated pulp. The feasibility was studied of using a thermoluminescence technique as an on-line analysis method to measure the CaF 2 concentration during the flotation cycle. A first set of experimental conditions to determine CaF 2 content in acid-grade fluorspar has been already developed and the preliminary results so far obtained are presented. (author)

  3. On the structure of critical energy levels for the cubic focusing NLS on star graphs

    International Nuclear Information System (INIS)

    Adami, Riccardo; Noja, Diego; Cacciapuoti, Claudio; Finco, Domenico

    2012-01-01

    We provide information on a non-trivial structure of phase space of the cubic nonlinear Schrödinger (NLS) on a three-edge star graph. We prove that, in contrast to the case of the standard NLS on the line, the energy associated with the cubic focusing Schrödinger equation on the three-edge star graph with a free (Kirchhoff) vertex does not attain a minimum value on any sphere of constant L 2 -norm. We moreover show that the only stationary state with prescribed L 2 -norm is indeed a saddle point. (fast track communication)

  4. Selective Separation of Fluorite, Barite and Calcite with Valonea Extract and Sodium Fluosilicate as Depressants

    Directory of Open Access Journals (Sweden)

    Zijie Ren

    2017-02-01

    Full Text Available Fluorite, barite and calcite are important industry minerals. However, they often co-exist, presenting difficulty in selectively separating them due to their similar surface properties. In this study, valonea extract and sodium fluosilicate were used as depressants to selectively separate them by flotation, with sodium oleate as the collector. The single mineral flotation results showed that valonea extract displayed the strongest depression on calcite, while sodium fluosilicate displayed the strongest depression on barite. These two depressants allowed selective separation of the three minerals through sequential flotation. The flotation of mixed minerals showed that 94% of the calcite was successfully depressed by the valonea extract, and 95% recovery of the fluorite was achieved in the subsequent flotation with sodium fluosilicate depressing barite. The different depressant–mineral interactions were investigated via electro-kinetic studies and molecular dynamics (MD simulations using the Materials Studio 6.0 program. The valonea extract exhibited the strongest adsorption on the calcite surface, and sodium fluosilicate exhibited the strongest adsorption on the barite surface, which prevented oleate species from reacting with Ca2+ or Ba2+ surface sites. This study provides useful guidance for how to process fluorite, barite and calcite resources.

  5. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho2Zr2O7 and RE2Th2O7 (RE=Ho, Y, Gd, Nd, La)

    Science.gov (United States)

    Solomon, Jonathan M.; Shamblin, Jacob; Lang, Maik; Navrotsky, Alexandra; Asta, Mark

    2016-12-01

    Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho2Zr2O7. In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE2Th2O7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.

  6. INAA in the determination of the elemental constituents of a natural fluorite

    International Nuclear Information System (INIS)

    Balogun, F.A.; Tubosun, I.A.; Adesanmi, C.A.; Ajao, J.A.; Akanle, A.O.; Spyrou, N.M.; Ojo, J.O.

    1997-01-01

    A complementary use of the comparative and the semi-absolute variations of instrumental neutron activation analysis (INAA) has enabled us to determine 22 different elements in a sample of natural fluorite originating from the younger granite province of Nigeria. The mineral has a brownish purple appearance with some veinlets having a deep purple coloration. Of all the 22 elements measured, Fe (851.36 ppm), Sb (7.69 ppm), Ag (87.4 ppm), Hg (2.71 ppm) and Se (1.97 ppm) are found to be exclusive to the veinlets while Au (109.15 ppm), Co (2.15 ppm) and W (173.20 ppm) are concentrated in the main matrix of the fluorite. With the aid of the semi-absolute method, it was possible to measure the Au concentration in the IAEA Soil-7 reference material to be 56.83±5.87% ppm. A qualitative electron microprobe analysis (EMA) showed that the bulk of the matrix is composed mainly of Ca and F, as expected. (author)

  7. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    Science.gov (United States)

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  8. Electrical properties of MBE grown Si{sub 3}N{sub 4}-cubic GaN MIS structures

    Energy Technology Data Exchange (ETDEWEB)

    Zado, A.; Lischka, K.; As, D.J. [University of Paderborn, Faculty of Science, Department of Physics, Warburger Str. 100, 33098 Paderborn (Germany)

    2012-03-15

    In this work we report on the electrical characterization of non-polar cubic GaN metal-insulator-semiconductor (MIS) structures. Si{sub 3}N{sub 4} layers were deposited in-situ on top of cubic GaN grown on 3C-SiC (001) substrates. The electric characteristics of the MIS structures are measured by capacitance and admittance spectroscopy techniques. From the hysteresis in the capacitance-voltage curves and the peak height of the conductance G{sub p} -{omega} frequency curves the interface state densities are calculated. We find interface traps about 0.3 eV below the conduction band. The density of these traps is D{sub it} = 2.5x10{sup 11} cm{sup -2}eV{sup -1}. This is one order of magnitude lower than in MIS structures with a Si{sub 3}N{sub 4} insulator produced by plasma enhanced vapour deposition and two orders of magnitude lower than in MIS structures on c-GaN with SiO{sub 2} as insulator (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. A density-functional and molecular-dynamics study on the physical properties of yttrium-doped tantalum oxynitride

    International Nuclear Information System (INIS)

    Wolff, H.; Schilling, H.; Lerch, M.; Dronskowski, R.

    2006-01-01

    Fluorite-type phases in the system Y-Ta-O-N have been studied using both first-principle electronic-structure calculations and molecular-dynamic simulations to validate the structural data and to explain unusual asymmetric reflection profiles observed in the experimental X-ray diffraction patterns. We provide evidence that the compounds may be macroscopically described as to represent cubic fluorite-type defect structures despite the fact that DFT calculations clearly show that all crystallographic unit cells appear as triclinically distorted. Additionally, we find that there is a minute (but hardly significant) tendency for anionic ordering at absolute zero temperature but none under reaction conditions. - Graphical abstract: Structural result of a room-temperature molecular-dynamic simulation of a supercell of Y 0.125 Ta 0.875 O 0.875 N□ 0.125

  10. Geo economical studies of Mina Florencia (Fluorite)

    International Nuclear Information System (INIS)

    Gomez Rifas, C.; Mari, C.; Theune, C.; Bosse, R.

    1982-01-01

    This report describes the works of Prospecting of Fluorite in Mina Florencia, in Maldonado Province. The project began in January of 1981, with the elaboration of a regional geologic cartography scale 1/20.000 of an area of 90,85 kilometers and cartography detailed scale 1/5.000 of the immediate area to Mina Florencia (6 kilometer that demonstrated the existence other veins of similar characteristic of the mine in exploration. Later on they were carried out geophysical studies (resistividad and electromagnetism, under the direction of the geophysical Fritz R. Haut of the BGR). The main geophysical anomalies inside the mining concession was studied by mechanical well, which results were showed in this report.

  11. Intricate disorder in defect fluorite/pyrochlore: a concord of chemistry and crystallography

    Czech Academy of Sciences Publication Activity Database

    Simeone, D.; Thorogood, G.J.; Huo, D.; Luneville, L.; Baldinozzi, G.; Petříček, Václav; Porcher, F.; Ribis, J.; Mazerolles, L.; Largeau, L.; Berar, J.F.; Surble, S.

    2017-01-01

    Roč. 7, Jun (2017), 1-7, č. článku 3727. ISSN 2045-2322 Institutional support: RVO:68378271 Keywords : disorder * atomic scale * metallic allys * oxides * fluorite/pyrochlore Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.259, year: 2016

  12. Continental basinal origin of ore fluids from southwestern Massif central fluorite veins (Albigeois, France): evidence from fluid inclusion and stable isotope analyses

    International Nuclear Information System (INIS)

    Munoz, M.; Boyce, A.J.; Courjault-Rade, P.; Fallick, A.E.; Tollon, F.

    1999-01-01

    The most important fluorspar mining district in France is located in the Palaeozoic basement of the Albigeois in southwestern French Massif Central. The massive fluorite is hosted within large E-W striking fractures, crosscutting Cambro-Ordovician clastics, associated with large zones of hypersilicified tectonic breccia which form the wall of the mined deposits. Fluid inclusion data for pre-fluorite and fluorite stage fluids have salinities between 20-26 wt% NaCl equiv., with homogenisation temperatures between 85-170C. Furthermore, low first ice melting temperatures (around -50C) indicates the presence of significant CaCl 2 and possibly MgCl 2 together with NaCl. Calculated fluid δ 18 O for pre-fluorite quartz ranges from -9.1per thousand to -5.2per thousand, with δD between -55per thousand to -64per thousand, placing the data directly on the present day meteoric water line. Fluorite stage fluids have δ 18 O between +0.1per thousand to +3.2per thousand, and δD ranging from -53per thousand to -75per thousand, indicating an interacted meteoric fluid origin. Combining the fluid inclusion and stable isotope data illustrates that the main fluorite depositing fluid has characteristics typical of a basinal brine. The authors have no evidence that a magmatic system was involved in the deposit genesis. The proposed model highlights that mineralisation was related to major Mesozoic extensional events coinciding with the gradual opening of the Atlantic and Tethys oceans. In order to account for the chemistry of the fluids, and the siting of the deposits, the authors postulate a genetic relationship with local, continental, evaporite-bearing basins coincident with, and controlled by the E-W fractures. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Structures of glide-set 90 deg. partial dislocation cores in diamond cubic semiconductors

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chrzan, D.C.

    2003-01-01

    Two core reconstructions of the 90 deg. partial dislocations in diamond cubic semiconductors, the so-called single- and double-period structures, are often found to be nearly degenerate in energy. This near degeneracy suggests the possibility that both core reconstructions may be present simultaneously along the same dislocation core, with the domain sizes of the competing reconstructions dependent on temperature and the local stress state. To explore this dependence, a simple statistical mechanics-based model of the dislocation core reconstructions is developed and analyzed. Predictions for the temperature-dependent structure of the dislocation core are presented

  14. Kinetic characterization of the first peak of natural fluorite from low ...

    African Journals Online (AJOL)

    Fluorite samples were irradiated with a low dose-rate (40 μGys-1 ) β- irradiation source to a test dose of 1.2 mGy and the heating rates of β = 1,3 and 5o Cs were considered, in order to minimize the effect of temperature lag. The role of thermal quenching (W) was investigated by evaluating the activation energy using the ...

  15. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  16. Application of mathematical statistics methods to study fluorite deposits

    International Nuclear Information System (INIS)

    Chermeninov, V.B.

    1980-01-01

    Considered are the applicability of mathematical-statistical methods for the increase of reliability of sampling and geological tasks (study of regularities of ore formation). Compared is the reliability of core sampling (regarding the selective abrasion of fluorite) and neutron activation logging for fluorine. The core sampling data are characterized by higher dispersion than neutron activation logging results (mean value of variation coefficients are 75% and 56% respectively). However the hypothesis of the equality of average two sampling is confirmed; this fact testifies to the absence of considerable variability of ore bodies

  17. First-principles prediction of structural, elastic, electronic and thermodynamic properties of the cubic SrUO{sub 3}-Perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, B. [Laboratoire de Génie Physique, Université Ibn Khaldoun, Tiaret, 14000 (Algeria); Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria); Bouafia, H., E-mail: hamza.tssm@gmail.com [Laboratoire de Génie Physique, Université Ibn Khaldoun, Tiaret, 14000 (Algeria); Abidri, B.; Abdellaoui, A. [Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria); Hiadsi, S.; Akriche, A. [Laboratoire de Microscope Electronique et Sciences des Matériaux, Université des Sciences et de la Technologie Mohamed Boudiaf, département de Génie Physique, BP1505 El m’naouar, Oran (Algeria); Benkhettou, N.; Rached, D. [Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria)

    2015-06-25

    Highlights: • The ground state properties of SrUO{sub 3}-Perovskite were investigated. • Elastic constants and their related parameters were calculated. • Electronic properties are treated using GGA-PBEsol + U approach. - Abstract: In this paper, we investigate bulk properties of the cubic SrUO{sub 3}-Perovskite in their nonmagnetic (NM), antiferromagnetic (AFM) and ferromagnetic (FM) states using all-electron self consistent Full Potential Augmented Plane Waves plus local orbital (FP-(L)APW + lo) method within PBEsol Generalized Gradiant density approximations. Our calculation allowed us to predict that the more stable magnetic state of the cubic SrUO{sub 3}-Perovskite is that of the ferromagnetic (FM). This work is the first prediction of elastic constants and their related parameters (Young modulus, shear modulus, Poisson ratio, Zener anisotropy and the Debye temperature) for this cubic compound using Mehl method. We have employed the GGA(PBEsol) and GGA(PBEsol) + U to investigate the electronic band structure, density of states and electronic charge density of SrUO{sub 3}-Perovskite. The electronic band structure calculations revealed that SrUO{sub 3} exhibits metallic behavior. On the other hand the charge density plots for [1 1 0] direction indicates a strong ionic character along the Sr–O bond while the U–O bond has strong covalent character. Finally, we have analyzed the thermodynamic properties using the quasi-harmonic Debye model to complete the fundamental characterization of cubic SrUO{sub 3}-Perovskite.

  18. The structural priciples that underlie the higher oxides of the rare earths

    International Nuclear Information System (INIS)

    Kang, Z.C.; Zhang, J.; Eyring, L.

    1996-01-01

    The structural principle that accounts for the anion-deficient, fluorite-related homologous series of higher rare earth oxides has awaited the determination of a sufficient number of their structures to test hypotheses. Recent structure refinement of five additional members has permitted extraction of a number of generalizations concerning their crystallization behavior. These general principles are outlined. Furthermore, based on the fluorite structure itself, a phenomenological structural principle is outlined that (1) unifies all known and possible phases in these fluorite-related systems under one generic formula, (2) models all known structures correctly and (3) enables modeling of any unknown structure or polymorph in the series. All that is required are electron diffraction patterns adequate to determine the supercell and a knowledge of its composition. (orig.)

  19. U-Th/He ages of fluorite mineralizations of the Tangua alkaline intrusion; Idades U-Th/He das mineralizacoes de fluorita da intrusao alcalina de Tangua

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, M.C.; Vargas, T., E-mail: geraldes@uerj.br, E-mail: vargas@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Geologia; Evans, N., E-mail: Noreen.Evans@csiro.au [CSIRO and Curtin University for Technology, Western Australia (Australia); Nummer, A.R., E-mail: nummer@ufrrj.br [Universidade Federal Rural do Rio de Janeiro (DEGEOC/IA/UFRRJ), RJ (Brazil)

    2015-07-01

    The Tangua massif is part of a group of alkaline complexes that occurs in an extensive zone of faults and E-W lineaments and includes the Brazilian Southeastern Rift. This work presents U-He ages of the fluorite mineralization. The Tangua alkaline massif is emplaced in coarse-grained biotite gneiss (Oriental Domain, central portion of the Ribeira belt). Cataclastic gneiss with intense weathering are restricted to the intrusion contacts. The alkaline body is comprised of pulaskites and umptekites, nephelinesyenites, foiaites, and pseudoleucite foiaites and is cut by phonolite dykes, trachytes and alkaline lamprophyres. In the locality of Barbosao, veins of fluorite occur, accompanied by silica and pyrite within trachyte dykes. These veins are parallel to the gneiss foliation (N 50 - 70 E) with an average thickness of 30 cm and the fluorite contains limonite and manganese oxides inclusions. The U-He ages range from <2Ma to 73Ma. The older age is coherent with 80-65 ma range of K-Ar ages reported in the literature. The veins of fluorite crosscut the lithologies associated with shear zones, and are important to economic exploration in the region. The petrographic and U-Th/He sating studies indicate the fluorite formation coeval to alkaline intrusion and meteoric water fluid circulation recently. (author)

  20. Growth of cubic InN on r-plane sapphire

    International Nuclear Information System (INIS)

    Cimalla, V.; Pezoldt, J.; Ecke, G.; Kosiba, R.; Ambacher, O.; Spiess, L.; Teichert, G.; Lu, H.; Schaff, W.J.

    2003-01-01

    InN has been grown directly on r-plane sapphire substrates by plasma-enhanced molecular-beam epitaxy. X-ray diffraction investigations have shown that the InN layers consist of a predominant zinc blende (cubic) structure along with a fraction of the wurtzite (hexagonal) phase which content increases with proceeding growth. The lattice constant for zinc blende InN was found to be a=4.986 A. For this unusual growth of a metastable cubic phase on a noncubic substrate an epitaxial relationship was proposed where the metastable zinc blende phase grows directly on the r-plane sapphire while the wurtzite phase arises as the special case of twinning in the cubic structure

  1. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  2. Generalized Born-Infeld actions and projective cubic curves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, S. [Department of Physics, CERN Theory Division, CH - 1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Italy); Porrati, M. [CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY, 10003 (United States); Sagnotti, A. [Department of Physics, CERN Theory Division, CH - 1211 Geneva 23 (Switzerland); Stora, R. [Department of Physics, CERN Theory Division, CH - 1211 Geneva 23 (Switzerland); Laboratoire d' Annecy-le-Vieux de Physique Theorique (LAPTH), F-74941, Annecy-le-Vieux, Cedex (France); Yeranyan, A. [INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Italy); Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89A, 00184, Roma (Italy)

    2015-04-01

    We investigate U(1){sup n} supersymmetric Born-Infeld Lagrangians with a second non-linearly realized supersymmetry. The resulting non-linear structure is more complex than the square root present in the standard Born-Infeld action, and nonetheless the quadratic constraints determining these models can be solved exactly in all cases containing three vector multiplets. The corresponding models are classified by cubic holomorphic prepotentials. Their symmetry structures are associated to projective cubic varieties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Structure and energetics of nanotwins in cubic boron nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shijian, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn; Ma, Xiuliang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Ruifeng, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn [School of Materials Science and Engineering, and International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191 (China); Huang, Rong [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062 (China); Taniguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ikuhara, Yuichi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656 (Japan); Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-08-22

    Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.

  4. Frustrated Heisenberg Antiferromagnets on Cubic Lattices: Magnetic Structures, Exchange Gaps, and Non-Conventional Critical Behaviour

    OpenAIRE

    Ignatenko, A. N.; Irkhin, V. Yu.

    2016-01-01

    We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...

  5. The influence of crystal structure on ion-irradiation tolerance in the Sm{sub (x)}Yb{sub (2-x)}TiO{sub 5} series

    Energy Technology Data Exchange (ETDEWEB)

    Aughterson, R.D., E-mail: roa@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Lumpkin, G.R.; Reyes, M. de los [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia); Gault, B. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Baldo, P.; Ryan, E. [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Whittle, K.R. [Centre for Materials and Structures, School of Engineering, The University of Liverpool, Liverpool L69 3GH UK (United Kingdom); Smith, K.L. [Government International and External Relations, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia); Cairney, J.M. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2016-04-01

    This ion-irradiation study covers the four major crystal structure types in the Ln{sub 2}TiO{sub 5} series (Ln = lanthanide), namely orthorhombic Pnma, hexagonal P6{sub 3}/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. This is the first systematic examination of the complete Ln{sub 2}TiO{sub 5} crystal system and the first reported examination of the hexagonal structure. A series of samples, based on the stoichiometry Sm{sub (x)}Yb{sub (2-x)}TiO{sub 5} (where x = 2, 1.4, 1, 0.6, and 0) have been irradiated using 1 MeV Kr{sup 2+} ions and characterised in-situ using a transmission electron microscope. Two quantities are used to define ion-irradiation tolerance: critical dose of amorphisation (D{sub c}), which is the irradiating ion dose required for a crystalline to amorphous transition, and the critical temperature (T{sub c}), above which the sample cannot be rendered amorphous by ion irradiation. The structure type plus elements of bonding are correlated to ion-irradiation tolerance. The cubic phases, Yb{sub 2}TiO{sub 5} and Sm{sub 0.6}Yb{sub 1.4}TiO{sub 5}, were found to be the most radiation tolerant, with T{sub c} values of 479 and 697 K respectively. The improved radiation tolerance with a change in symmetry to cubic is consistent with previous studies of similar compounds.

  6. Coagulation of fines in fluorite froth flotation; Coagulacion de finos en la flotacion de la fluorita

    Energy Technology Data Exchange (ETDEWEB)

    Sarquis, P. E.; Gonzalez, M.; Moyano, A.; Bazan, V.

    2011-07-01

    Fluorite, a valuable mineral in the metallurgical industry, can be found together with silicates, carbonates and oxides in ore deposits. Commercial concentrates with more than 95 % of CaF{sub 2} are obtained processing the mineral in flotation plants and using oleic acid as fluorite collector. Depressor reagents such as sodium silicate, tannin and sodium carbonate are commonly employed to allow the oleic acid selective performance. These reagents cause a dispersant effect separating the solid-liquid solution on tailing plants. Fine particles in the recovered water enter the circuit and affect the flotation efficiency. The effect of coagulant ions was studied as a method to clarify the returned water. The problem of the presence of these ions is related to its reactions with the collector by the formation of compounds and possibly on the selectivity. Variable quantities of Al{sup 3}+, Fe{sup 3}+ and Ca{sup 2}+ ions were added to the flotation to evaluate its effect on the fluorite recovery, in the selectivity and in solids content in recirculation water. Results show that some ions fail to improve water quality and are detrimental to flotation. On the contrary, some ions contribute to reduce fine content in suspension. Therefore, although there is a recovery reduction, such effect can be counteracted increasing the collector consumption a little. (Author) 21 refs.

  7. Study of genesis in Qahr-Abad fluorite deposit using fluid inclusion, southeast of Saqqez, the Kurdistan province

    Directory of Open Access Journals (Sweden)

    Mehrdad Barati

    2017-07-01

    Full Text Available Introduction The Qahr-abad fluorite deposit is located in the area of 36°10′ 3′′ N and 46°34′ 21′′E within the Sanandaj-Sirjan district east of the Kurdistan province , Iran and it is located ~57 km southeast of the city of Saqqez (Kholghi Khasraghi, 1999. This deposit is developed as scatter lenses, veins, and veinlets (stockwork structure within carbonate rocks of Elika formation and controlled by the regional NW–SE trending Zagross thrust nappe system. Fault trends in this area are perpendicular to fault trends in the Zagros zone. The fault dips are nearly vertical and mineralization has occurred in the brecciation fault zone (Talaii, 2010. The rough geological instruction of the deposit has indicated that it is similar to worldwide Epithermal deposits. The mineralization occurs as replacement (type I/ open-space (type II vein fillings and bodies within Mesozoic lime stones (mostly Upper Triassic and Lower Jurassic members of the Elika Formation, where they crop out to form horst structures. The mineralization is typically associated with post Pliocene disjunctive faults, which in part appear to have served as channel ways for the fluorite forming fluids that are representative of the geological setting of the mineralized area. Fluorite occurs in several color variations such as green, violet, blue, white or colorless, and is accompanied by quartz, barite and calcite (Moslehi, 2013. Materials and methods The minerals sampled for the fluid inclusion study include fluorite from mineralization stages. Samples covered all ore types. Micro thermometry analyses for 23 samples were performed after careful microscopic observation of 35 sections and 30 doubly polished sections. Micro thermometry was undertaken using a Linkam THS600 heating-freezing stage, with a measurable temperature range of between −196 and +600 °C (precision of freezing data and homogenization temperature of ±0.2 °C. Micro thermometry was undertaken in the

  8. RhCd{sub 9+δ} (-1.18 ≤δ≤0.29) a γ-brass related cubic giant cell structure

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Partha Pratim [Indian Institute of Technology, Kharagpur (India). Dept. of Chemistry

    2017-09-01

    The compound RhCd{sub 9+δ} (-1.18 ≤δ≤0.29) has been synthesized and the average structure has been analyzed by single crystal X-ray diffraction. The average structure crystallizes in the face centered cubic space group F43m (216) and contains ∝405 atoms/unit cell. It represents a (2a{sub γ}){sup 3}-superstructure of cubic γ-brass and is isostructural to Rh{sub 7-x}Mg{sub 44+x}. The comparison between the structures of RhCd{sub 9+δ} and Rh{sub 7-x}Mg{sub 44+x} has been presented using a layer description. The structure of the title phase has also been described by a ''cluster'' concept. The electronic structure of RhCd{sub 9+δ} (-1.18 ≤δ≤0.29) shows that the phase is stabilized by a Hume-Rothery mechanism.

  9. Conductivity and hydration trends in disordered fluorite and pyrochlore oxides: A study on lanthanum cerate–zirconate based compounds

    DEFF Research Database (Denmark)

    Besikiotis, Vasileios; Ricote, Sandrine; Jensen, Molly Hjorth

    2012-01-01

    In the present contribution we discuss the influence of order/disorder on the concentration and mobility of ionic charge carriers in undoped and acceptor (calcium) doped fluorite and pyrochlore structured lanthanum cerate–zirconate solid solutions: (La1−yCay)2(Ce1−xZrx)2O7−δ (y=0, 0.02, 0.10; x=0...... enthalpy becomes more exothermic with higher cerium content, i.e. with more disordered materials. The proton conductivity decreases upon acceptor substitution of La3+ with Ca2+ which is attributed to trapping of the charge carriers by the effectively negative acceptor....

  10. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  11. Cubical local partial orders on cubically subdivided spaces - existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes, such ...... that the underlying geometry of an HDA may be quite complicated....

  12. Cubical local partial orders on cubically subdivided spaces - Existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    2006-01-01

    The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...... that the underlying geometry of an HDA may be quite complicated....

  13. Neutron diffraction study of cubic titanium carbohydride at the homogeneity lower limit

    International Nuclear Information System (INIS)

    Khidirov, I.; Mirzaev, B.B.; Mukhtarova, N.N.

    2004-01-01

    Cubic carbohydride TiC 0.47H0.22 was prepared by means of quenching from 1200 deg.C followed by the heat treatment using special regime for preventing the hydrogen yield out the lattice. It is shown that at the lower limit of homogeneity range of the cubic carbohydride, hydrogen atoms occupy the tetrahedral interstices 8(c) of the disordered cubic structure with space group of Fm3m. It is found that carbon and hydrogen atoms are partially ordered by annealing at 900-700 deg.C. The ordered structure is face-centred cubic lattice with the parameter a ≅2a 0 , where a 0 is the lattice parameter in disordered structure. The crystal structure of the disordered phase is described within the framework of space group Fd3m, where the carbon atoms occupy mainly (70%) octahedral interstices 16(c) and another ones of carbon and all hydrogen atoms occupy the octahedral interstices 16(d). (author)

  14. Structure of δ-Bi2O3 from density functional theory: A systematic crystallographic analysis

    International Nuclear Information System (INIS)

    Aidhy, Dilpuneet S.; Sinnott, Susan B.; Wachsman, Eric D.; Phillpot, Simon R.; Nino, Juan C.

    2009-01-01

    A systematic crystallographic analysis of the and vacancy-ordered structure of cubic δ-Bi 2 O 3 obtained from electronic-structure calculations is presented. The ordering of vacancies leads to a doubling of the unit-cell that results in a 2x2x2 fluorite super-structure, with an associated reduction in its space group symmetry from Fm3-barm to Fm3-bar. The Bi atoms present inside the vacancy-ordered oxygen sublattice have equal Bi-O bond lengths, whereas, those present inside the vacancy-ordered oxygen sublattice have three different pairs of Bi-O bond lengths. The specific ionic displacements and electronic charge configurations also depend on the nature of vacancy ordering in the oxygen sub-lattice. - Graphical abstract: 1/8 of a 2x2x2 δ-Bi 2 O 3 superstructure having Fm3-bar space group. Every oxygen (black) has three possible positions, only one of which is filled either by O1 (red) or O 2 (blue).

  15. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    Science.gov (United States)

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  16. Some elements go cubic under pressure

    Czech Academy of Sciences Publication Activity Database

    Legut, Dominik

    2007-01-01

    Roč. 60, č. 10 (2007), s. 17-17 ISSN 0031-9228 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio * polonium * cubic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.133, year: 2007

  17. Naturally irradiated fluorite as a historic violet pigment: Raman spectroscopic and X-ray diffraction study

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Zdeňka; Bezdička, Petr; Němec, I.; Hradilová, J.; Šrein, V.; Blažek, Jan; Hradil, David

    2015-01-01

    Roč. 46, č. 2 (2015), s. 236-243 ISSN 0377-0486 R&D Projects: GA ČR GAP103/12/2211 Institutional support: RVO:61388980 ; RVO:67985556 Keywords : fluorite * pigment * fluorescence bands * diffraction lines broadening * irradiation Subject RIV: CA - Inorganic Chemistry Impact factor: 2.395, year: 2015

  18. Crystal structure of fluorite-related Ln3SbO7 (Ln=La–Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering

    International Nuclear Information System (INIS)

    Siqueira, K.P.F.; Borges, R.M.; Granado, E.; Malard, L.M.; Paula, A.M. de; Moreira, R.L.; Bittar, E.M.; Dias, A.

    2013-01-01

    Ln 3 SbO 7 (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) ceramics were synthesized by solid-state reaction in optimized conditions of temperature and time to yield single-phase ceramics. The crystal structures of the obtained ceramics were investigated by synchrotron X-ray diffraction, second harmonic generation (SHG) and Raman scattering. All samples exhibited fluorite-type orthorhombic structures with different oxygen arrangements as a function of the ionic radius of the lanthanide metal. For ceramics with the largest ionic radii (La–Nd), the ceramics crystallized into the Cmcm space group, while the ceramics with intermediate and smallest ionic radii (Sm–Dy) exhibited a different crystal structure belonging to the same space group, described under the Ccmm setting. The results from SHG and Raman scattering confirmed these settings and ruled out any possibility for the non-centrosymmetric C222 1 space group describing the structure of the small ionic radii ceramics, solving a recent controversy in the literature. Besides, the Raman modes for all samples are reported for the first time, showing characteristic features for each group of samples. - Graphical abstract: Raman spectrum for La 3 SbO 7 ceramics showing their 22 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. - Highlights: • Ln 3 SbO 7 ceramics belonging to the space groups Cmcm and Ccmm are synthesized. • SXRD, SHG and Raman scattering confirmed the orthorhombic structures. • Ccmm instead of C222 1 is the correct one based on SHG and Raman data

  19. Disclosure of domain structure in cubic CaxZr1-xO2-x, 0x15 ≤ x ≤ 0x20, by Talbot image enhancement of high-resolution electron micrographs

    International Nuclear Information System (INIS)

    Rossell, H.J.; Wilson, I.J.; Sellar, J.R.

    1991-01-01

    High-resolution electron microscope images have been recorded of several cystalline samples of calcia-stabilized zirconia (Ca-CSZ) and of the fluorite-related superstructure phase φ 1 (CaZr 4 O 9 ). The contrast of the CSZ images has been enhanced markedly by the light-optical Talbot self-imaging technique. Is is demonstrated that the CSZ crystals contain a coherent dispersion of microdomains approximately 30 A in diameter, and that the structure of the microdomains is that of φ 1 . (orig.)

  20. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    International Nuclear Information System (INIS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-01-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y 2 O 3 ), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y 2 O 3 ), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  1. Fine structure and energy spectrum of exciton in direct band gap cubic semiconductors with degenerate valence bands

    International Nuclear Information System (INIS)

    Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Que Huong

    1987-06-01

    The influence of the cubic structure on the energy spectrum of direct exciton is investigated, using the new method suggested by Nguyen Van Hieu and co-workers. Explicit expressions of the exciton energy levels 1S, 2S and 2P are derived. A comparison with the experiments and the other theory is done for ZnSe. (author). 10 refs, 1 fig., 2 tabs

  2. Low-temperature synthesis of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} with cubic garnet-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui [Texas Materials Institute, ETC 9.184, University of Texas at Austin, Austin, TX 78712 (United States); Li, Yutao [Texas Materials Institute, ETC 9.184, University of Texas at Austin, Austin, TX 78712 (United States); State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Goodenough, John B., E-mail: jgoodenough@mail.utexas.edu [Texas Materials Institute, ETC 9.184, University of Texas at Austin, Austin, TX 78712 (United States)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer One-step synthesis and its optimization of cubic garnet Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} at 750 Degree-Sign C. Black-Right-Pointing-Pointer Instability above 800 Degree-Sign C of the Al-free cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}. Black-Right-Pointing-Pointer Li{sup +}-ion conductivity without adventitious Al{sup 3+}. -- Abstract: In this paper, we report the direct synthesis of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} with the cubic garnet-type structure at low temperature with a lattice constant of 13.0035 Angstrom-Sign . The synthesis condition is optimized to be at 750 Degree-Sign C for 8 h with 30 wt% excess lithium salt. No intermediate grinding was involved in this straightforward route. Without the adventitious of Al{sup 3+}, the cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} is unstable above 800 Degree-Sign C and has an ionic conductivity of the order of 10{sup -6} S cm{sup -1}.

  3. Effect of superconductivity on the cubic to tetragonal structural transition due to a two-fold degenerate electronic band

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Khanra, B.C.; Ray, D.K.

    1978-01-01

    The effect of the BCS superconductivity on the cubic to tetragonal structural transition arising from a two-fold degenerate electronic band is investigated within the mean field approximation. The phase diagram of the two transitions is given for a half filled esub(g)-band. Modification of the two transitions when they are close together is also discussed. (author)

  4. Inhibition of Neuroblastoma cancer cells viability by ferromagnetic Mn doped CeO_2 monodisperse nanoparticles mediated through reactive oxygen species

    International Nuclear Information System (INIS)

    Abbas, Fazal; Jan, Tariq; Iqbal, Javed; Haider Naqvi, M. Sajjad; Ahmad, Ishaq

    2016-01-01

    Here we report the Mn doping induced effects on structural, Raman, optical, magnetic and anticancer properties of CeO_2 nanoparticles prepared via soft chemical route. Structural and microstructural results infer that the synthesized nanoparticles have single phase cubic fluorite structure of CeO_2 and that Mn doping results in enhancement of the structural defects. Scanning electron microscopy results reveal the formation of monodisperse nanoparticles having average particle size ranging from 30 to 41 nm. The optical absorbance spectroscopy analysis discloses the band gap energy tailoring of CeO_2 nanoparticles via Mn doping. Room temperature ferromagnetism (RTFM) has been found in both as-prepared and Mn doped CeO_2 nanoparticles. This RTFM of the synthesized nanoparticles have been attributed to the Mn ions and surface defects such as oxygen vacancies. Finally, the influence of Mn dopant on the cell viability and reactive oxygen species (ROS) generation levels of CeO_2 nanoparticles in the presence of healthy and cancerous cells have been studied. It has been observed that the differential cytotoxicity of the synthesized nanoparticles is strongly correlated with level of ROS generation. - Highlights: • Mn doped CeO_2 nanoparticles with cubic fluorite structure were synthesized. • Mn dopant significantly tailored the band gap of CeO_2 nanoparticles. • The synthesized nanoparticles exhibited room temperature ferromagnetic behavior. • The cytotoxicity of these nanoparticles was reported for the first time. • The synthesized nanoparticles exhibited differential cytotoxicity.

  5. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    Science.gov (United States)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  6. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); King, Glen C. (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  7. Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure

    Science.gov (United States)

    Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim

    2018-03-01

    Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.

  8. Investigation of lanthanide ions and other paramagnetic impurities in natural fluorite by electron paramagnetic resonance: examples of application to mining exploration and geochemistry

    International Nuclear Information System (INIS)

    Chatagnon, B.

    1981-01-01

    This research thesis reports the application to geology, and more particularly to geochemistry and mining exploration, of a physical method: the electron paramagnetic resonance (EPR). After a report of a bibliographical investigation on mineralogy and geochemistry of fluorite and lanthanides, as well as on paramagnetic centres observed by physicists in synthetic fluorite, the author reports an experimental work, and describes two examples of application of EPR: firstly, the exploration of radioactive ores, and secondly, with the joint use of neutron activation analysis, the characterization of the redox status of the hydrothermal solution which is at the origin of fluorinated mineralisation

  9. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases.

    Science.gov (United States)

    Shearman, Gemma C; Khoo, Bee J; Motherwell, Mary-Lynn; Brakke, Kenneth A; Ces, Oscar; Conn, Charlotte E; Seddon, John M; Templer, Richard H

    2007-06-19

    Inverse bicontinuous cubic lyotropic phases are a complex solution to the dilemma faced by all self-assembled water-amphiphile systems: how to satisfy the incompatible requirements for uniform interfacial curvature and uniform molecular packing. The solution reached in this case is for the water-amphiphile interfaces to deform hyperbolically onto triply periodic minimal surfaces. We have previously suggested that although the molecular packing in these structures is rather uniform the relative phase behavior of the gyroid, double diamond, and primitive inverse bicontinuous cubic phases can be understood in terms of subtle differences in packing frustration. In this work, we have calculated the packing frustration for these cubics under the constraint that their interfaces have constant mean curvature. We find that the relative packing stress does indeed differ between phases. The gyroid cubic has the least packing stress, and at low water volume fraction, the primitive cubic has the greatest packing stress. However, at very high water volume fraction, the double diamond cubic becomes the structure with the greatest packing stress. We have tested the model in two ways. For a system with a double diamond cubic phase in excess water, the addition of a hydrophobe may release packing frustration and preferentially stabilize the primitive cubic, since this has previously been shown to have lower curvature elastic energy. We have confirmed this prediction by adding the long chain alkane tricosane to 1-monoolein in excess water. The model also predicts that if one were able to hydrate the double diamond cubic to high water volume fractions, one should destabilize the phase with respect to the primitive cubic. We have found that such highly swollen metastable bicontinuous cubic phases can be formed within onion vesicles. Data from monoelaidin in excess water display a well-defined transition, with the primitive cubic appearing above a water volume fraction of 0.75. Both of

  10. Structure and thermal expansion of Lu2O3 and Yb2O3 up to the melting points

    Science.gov (United States)

    Pavlik, Alfred; Ushakov, Sergey V.; Navrotsky, Alexandra; Benmore, Chris J.; Weber, Richard J. K.

    2017-11-01

    Knowledge of thermal expansion and high temperature phase transformations is essential for prediction and interpretation of materials behavior under the extreme conditions of high temperature and intense radiation encountered in nuclear reactors. Structure and thermal expansion of Lu2O3 and Yb2O3 were studied in oxygen and argon atmospheres up to their melting temperatures using synchrotron X-ray diffraction on laser heated levitated samples. Both oxides retained the cubic bixbyite C-type structure in oxygen and argon to melting. In contrast to fluorite-type structures, the increase in the unit cell parameter of Yb2O3 and Lu2O3 with temperature is linear within experimental error from room temperature to the melting point, with mean thermal expansion coefficients (8.5 ± 0.6) · 10-6 K-1 and (7.7 ± 0.6) · 10-6 K-1, respectively. There is no indication of a superionic (Bredig) transition in the C-type structure or of a previously suggested Yb2O3 phase transformation to hexagonal phase prior to melting.

  11. Integrable peakon equations with cubic nonlinearity

    International Nuclear Information System (INIS)

    Hone, Andrew N W; Wang, J P

    2008-01-01

    We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)

  12. First principles study of the structural and electronic properties of double perovskite Ba2YTaO6 in cubic and tetragonal phases

    International Nuclear Information System (INIS)

    Deluque Toro, C.E.; Rodríguez M, Jairo Arbey; Landínez Téllez, D.A.; Moreno Salazar, N.O.; Roa-Rojas, J.

    2014-01-01

    The Ba 2 YTaO 6 double perovskite presents a transition from cubic (Fm−3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba 2 YTaO 6 in space group Fm−3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba 2 YTaO 6 (I4/m) phase is the most stable one. © 2013 Elsevier Science. All rights reserved

  13. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    Science.gov (United States)

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  14. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  15. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho2Zr2O7 and RE2Th2O7 (RE=Ho, Y, Gd, Nd, La)

    OpenAIRE

    Jonathan M. Solomon; Jacob Shamblin; Maik Lang; Alexandra Navrotsky; Mark Asta

    2016-01-01

    Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated e...

  16. Cubic metaplectic forms and theta functions

    CERN Document Server

    Proskurin, Nikolai

    1998-01-01

    The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.

  17. Electronic structure and metallization of cubic GdH{sub 3} under pressure: Ab initio many-body GW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [School of Physics and Electronic Sciences, Guizhou Education University, Guiyang 550018 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China); Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China)

    2016-07-07

    The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.

  18. Polarization Change in Face-Centered Cubic Opal Films

    Science.gov (United States)

    Wolff, Christian; Romanov, Sergei; Küchenmeister, Jens; Peschel, Ulf; Busch, Kurt

    2011-10-01

    Artificial opals are a popular platform for investigating fundamental properties of Photonic Crystals (PhC). In this work, we provide a theoretical analysis of polarization-resolved transmission experiments through thin opal films. Despite the full cubic symmetry of the PhC, this system provides a very efficient mechanism for manipulating the polarization state of light. Based on band structure calculations and Bloch mode analysis, we find that this effect closely resembles classical birefringence. Due to the cubic symmetry, however, a description using tensorial quantities is not possible. This indicates fundamental limitations of effective material models for Photonic Crystals and demonstrates the importance of accurately modelling the microscopic geometry of such systems.

  19. Synthesis of Fluorite (CaF2 Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel

    Directory of Open Access Journals (Sweden)

    Mohammad Misbah Khunur

    2012-06-01

    Full Text Available This paper report the synthesis and characterization of fluorite single crystal prepared from gypsum waste of phosphoric acid production in silica gel. Instead of its high calcium, gypsum was used to recycle the waste which was massively produces in the phosphoric acid production. The gypsum waste, the raw material of CaCl2 supernatant, was dissolved in concentrated HCl and then precipitated as calcium oxalate (CaC2O4 by addition of ammonium oxalate. The CaCl2 was obtained by dissolving the CaC2O4 with HCl 3M. The crystals were grown at room temperature in silica gel and characterized by AAS, FTIR and powder XRD. The optimum crystal growth condition, which is pH of gel, CaCl2 concentration and growth time, were investigated. The result shows that at optimum condition of pH 5.80, CaCl2 concentrations of 1.2 M, and growth time of 144 hours, colorless crystals with the longest size of 3 mm, were obtained (72.57%. Characterization of the synthesized crystal by AAS indicates that the obtained crystal has high purity. Meanwhile, analysis by FTIR spectra shows a Ca–F peak at 775 cm-1, and powder-XRD analysis confirms that the obtained crystal was fluorite (CaF2. © 2012 BCREC UNDIP. All rights reservedReceived: 11st April 2012; Revised: 4th June 2012; Accepted: 13rd June 2012[How to Cite: M.M. Khunur, A. Risdianto, S. Mutrofin, Y.P. Prananto. (2012. Synthesis of Fluorite (CaF2 Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 71-77.  doi:10.9767/bcrec.7.1.3171.71-77 ][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.3171.71-77 ] | View in 

  20. Fermi surfaces of the pyrite-type cubic AuSb2 compared with split Fermi surfaces of the ullmannite-type cubic chiral NiSbS and PdBiSe

    Science.gov (United States)

    Nishimura, K.; Kakihana, M.; Nakamura, A.; Aoki, D.; Harima, H.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    We grew high-quality single crystals of AuSb2 with the pyrite (FeS2)-type cubic structure by the Bridgman method and studied the Fermi surface properties by the de Haas-van Alphen (dHvA) experiment and the full potential LAPW band calculation. The Fermi surfaces of AuSb2 are found to be similar to those of NiSbS and PdBiSe with the ullmannite (NiSbS)-type cubic chiral structure because the crystal structures are similar each other and the number of valence electrons is the same between two different compounds. Note that each Fermi surface splits into two Fermi surfaces in NiSbS and PdBiSe, reflecting the non-centrosymmetric crystal structure.

  1. Structural and magnetic behavior of the cubic oxyfluoride SrFeO{sub 2}F studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Corey M., E-mail: thompco@mcmaster.ca [Department of Chemistry, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Blakely, Colin K. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Flacau, Roxana [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0 (Canada); Greedan, John E. [Department of Chemistry, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Poltavets, Viktor V. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)

    2014-11-15

    The oxyfluoride SrFeO{sub 2}F has been prepared via a low temperature route involving the infinite-layer SrFeO{sub 2} and XeF{sub 2}. SrFeO{sub 2}F crystallizes in the cubic space group Pm-3m with disordered oxygen and fluorine atoms on the anion site. Recent reports demonstrated that SrFeO{sub 2}F is antiferromagnetic at room temperature and the zero field cooled and field cooled curves diverge at ∼150 K and ∼60 K, suggesting that the material has a spin glassy magnetic state at low temperatures. In this article, variable-temperature neutron diffraction (4–723 K) was performed to clarify the magnetic behavior observed in this material. Neutron powder diffraction measurements confirmed the antiferromagnetic (AFM) ordering of the system at room temperature. Below 710(1) K, the magnetic structure is a G-type AFM structure characterized by a propagation vector k=(1/2 , 1/2 , 1/2 ). The ordered moments on Fe{sup 3+} are 4.35(6)µ{sub B} at 4 K and 4.04(5)µ{sub B} at 290 K. Our results indicate that the cubic structure is retained all the way to base temperature (4 K) in contrast to PbFeO{sub 2}F. These results are compared with those of Pb and Ba analogs which exhibit very similar magnetic behavior. Furthermore, the observation of magnetic reflections at 4 K in the diffraction pattern shows the absence of the previously proposed spin glassy behavior at low temperatures. Previous proposals to explain the ZFC/FC divergences are examined. - Graphical abstract: Variable temperature powder neutron diffraction was employed to follow the evolution of the long range antiferromagnetic state in SrFeO{sub 2}F. - Highlights: • SrFeO{sub 2}F prepared via low temperature route involving SrFeO{sub 2} and XeF{sub 2}. • The cubic structure, Pm-3m, is retained at low temperatures, 4 K. • The magnetic structure is G-type AFM with T{sub N}=710 K and Fe{sup 3+} moment of 4.35µ{sub B}. • A small volume, bulk decoupled, spin glassy domain/cluster mechanism is proposed.

  2. Unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Zhong Lin

    2015-01-01

    A unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials is presented whereby the lattice displacement vector and the internal ionic displacement vector are found simultaneously. It is shown that phonon couplings exist in pairs only; either between the electric...... piezoelectricity in a cubic structured material slab. First, it is shown that isolated optical phonon modes generally cannot exist in piezoelectric cubic slabs. Second, we prove that confined acousto-optical phonon modes only exist for a discrete set of in-plane wave numbers in piezoelectric cubic slabs. Third...... potential and the lattice displacement coordinate perpendicular to the phonon wave vector or between the two other lattice displacement components. The former leads to coupled acousto-optical phonons by virtue of the piezoelectric effect. We then establish three new conjectures that entirely stem from...

  3. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  4. HRTEM studies of dislocations in cubic BN

    International Nuclear Information System (INIS)

    Nistor, L.C.; Tendeloo, G. van; Dinca, G.

    2004-01-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. HRTEM studies of dislocations in cubic BN

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L.C. [National Institute for Materials Physics, P.O. Box MG-7 Magurele, 077125 Bucharest (Romania); Tendeloo, G. van [University of Antwerp, EMAT, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Dinca, G. [Dacia Synthetic Diamond Factory, Timisoara av. 5, P.O. Box 58-52, 077350 Bucharest (Romania)

    2004-09-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Bi1−xNbxO1.5+x (x=0.0625, 0.12) fast ion conductors: Structures, stability and oxide ion migration pathways

    International Nuclear Information System (INIS)

    Tate, Matthew L.; Hack, Jennifer; Kuang, Xiaojun; McIntyre, Garry J.; Withers, Ray L.; Johnson, Mark R.; Radosavljevic Evans, Ivana

    2015-01-01

    A combined experimental and computational study of Bi 1−x Nb x O 1.5+x (x=0.0625 and 0.12) has been carried out using laboratory X-ray, neutron and electron diffraction, impedance measurements and ab-initio molecular dynamics. We demonstrate that Bi 0.9375 Nb 0.0625 O 1.5625 , previously reported to adopt a cubic fluorite-type superstructure, can form two different polymorphs depending on the synthetic method: a metastable cubic phase is produced by quenching; while slower cooling yields a stable material with a tetragonal √2×√2×1 superstructure, which undergoes a reversible phase transition into the cubic form at ~680 °C on subsequent reheating. Neutron diffraction reveals that the tetragonal superstructure arises mainly from ordering in the oxygen sublattice, with Bi and Nb remaining disordered, although structured diffuse scattering observed in the electron diffraction patterns suggests a degree of short-range ordering. Both materials are oxide ion conductors. On thermal cycling, Bi 0.88 Nb 0.12 O 1.62 exhibits a decrease in conductivity of approximately an order of magnitude due to partial transformation into the tetragonal phase, but still exhibits conductivity comparable to yttria-stabilised zirconia (YSZ). Ab-initio molecular dynamics simulations performed on Bi 0.9375 Nb 0.0625 O 1.5625 show that oxide ion diffusion occurs by O 2− jumps between edge- and corner-sharing OM 4 groups (M=Bi, Nb) via tetrahedral □M 4 and octahedral □M 6 vacancies. - Graphical abstract: Oxide ion migration in tetragonal Bi 0.9375 Nb 0.0625 O 1.5625 occurs by O 2− jumps between edge- and corner-sharing OM 4 groups (M=Bi, Nb) via tetrahedral M 4 and octahedral M 6 vacancies. - Highlights: • Bi 0.9375 Nb 0.0625 O 1.5625 adopts a tetragonal √2×√2×1 fluorite superstructure. • Superstructure is due to ordering in the O-sublattice, with Bi/Nb disordered. • Bi 0.9375 Nb 0.0625 O 1.5625 is a good oxide ion conductor. • O 2− jump between OM 4 groups (M

  7. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    Science.gov (United States)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  8. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Peng, E-mail: doup@tsinghua.edu.cn [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko, E-mail: kimura@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Okuda, Takanari, E-mail: okuda.takanari@kki.kobelco.com [Kobelco Research Institute, 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo 651-2271 (Japan); Inoue, Masaki, E-mail: inoue.masaki@jaea.go.jp [Advanced Nuclear System R& D Directorate, Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan); Ukai, Shigeharu, E-mail: s-ukai@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Ohnuki, Somei, E-mail: ohnuki@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Fujisawa, Toshiharu, E-mail: fujisawa@esi.nagoya-u.ac.jp [EcoTopia Science Institute, Nagoya University, Furo, Chikusa-ku, Nagoya 464-8603 (Japan); Abe, Fujio, E-mail: ABE.Fujio@nims.go.jp [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Jiang, Shan, E-mail: js93518@gmail.com [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Yang, Zhigang, E-mail: zgyang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-03-15

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y{sub 2}O{sub 3}), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y{sub 2}O{sub 3}), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  9. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study

    Science.gov (United States)

    Dian, Linghui; Yang, Zhiwen; Li, Feng; Wang, Zhouhua; Pan, Xin; Peng, Xinsheng; Huang, Xintian; Guo, Zhefei; Quan, Guilan; Shi, Xuan; Chen, Bao; Li, Ge; Wu, Chuanbin

    2013-01-01

    In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment. PMID:23468008

  10. Inhibition of Neuroblastoma cancer cells viability by ferromagnetic Mn doped CeO{sub 2} monodisperse nanoparticles mediated through reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Fazal; Jan, Tariq [Laboratory of Nanoscience and Technology (LNT), Department of Physics, International Islamic University Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@iiu.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, International Islamic University Islamabad (Pakistan); Haider Naqvi, M. Sajjad [Department of Biochemistry, University of Karachi, Karachi (Pakistan); Ahmad, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan)

    2016-04-15

    Here we report the Mn doping induced effects on structural, Raman, optical, magnetic and anticancer properties of CeO{sub 2} nanoparticles prepared via soft chemical route. Structural and microstructural results infer that the synthesized nanoparticles have single phase cubic fluorite structure of CeO{sub 2} and that Mn doping results in enhancement of the structural defects. Scanning electron microscopy results reveal the formation of monodisperse nanoparticles having average particle size ranging from 30 to 41 nm. The optical absorbance spectroscopy analysis discloses the band gap energy tailoring of CeO{sub 2} nanoparticles via Mn doping. Room temperature ferromagnetism (RTFM) has been found in both as-prepared and Mn doped CeO{sub 2} nanoparticles. This RTFM of the synthesized nanoparticles have been attributed to the Mn ions and surface defects such as oxygen vacancies. Finally, the influence of Mn dopant on the cell viability and reactive oxygen species (ROS) generation levels of CeO{sub 2} nanoparticles in the presence of healthy and cancerous cells have been studied. It has been observed that the differential cytotoxicity of the synthesized nanoparticles is strongly correlated with level of ROS generation. - Highlights: • Mn doped CeO{sub 2} nanoparticles with cubic fluorite structure were synthesized. • Mn dopant significantly tailored the band gap of CeO{sub 2} nanoparticles. • The synthesized nanoparticles exhibited room temperature ferromagnetic behavior. • The cytotoxicity of these nanoparticles was reported for the first time. • The synthesized nanoparticles exhibited differential cytotoxicity.

  11. Enhanced lithium-ion storage performance by structural phase transition from two-dimensional rhombohedral Fe_2O_3 to cubic Fe_3O_4

    International Nuclear Information System (INIS)

    Ren, Yurong; Wang, Jiawei; Huang, Xiaobing; Ding, Jianning

    2016-01-01

    Highlights: • The rhombohedral Fe_2O_3 transforms to the cubic Fe_3O_4 via a calcination treatment. • Phase structure of anodes has great influences on their electrochemical performances. • Fe_3O_4/reduced graphene oxide shows a high capacity of 825.3 mAh g"−"1 at 50 mA g"−"1. - Abstract: The electrochemical performance of a material varies with its structural phase transition. It is found that the rhombohedral Fe_2O_3 can transform to the cubic Fe_3O_4 via a calcination treatment in a nitrogen atmosphere, and lithium-ion storage performances of Fe_3O_4 get an obvious improvement due to its structural advantages. On the basis of data calculated by X-ray diffraction, the larger unit cell volume as well as the higher void fraction of cubic Fe_3O_4 provides lithium-ions with more transport channels for Li ions diffusion and storage without serious volume change, and thus the cubic Fe_3O_4 delivers an excellent reversible capacity of 921.1 mAh g"−"1 after 15 cycles at the current density of 50 mA g"−"1, which is much higher than 328.3 mAh g"−"1 for the rhombohedral Fe_2O_3. To further enhance the structural stability of electrodes, reduced graphene oxide is introduced. The Fe_3O_4/reduced graphene oxide show an excellent specific capacity of 825.3 mAh g"−"1 after 40 cycles and impressive rate performance of 600 mAh g"−"1 at the current density of 400 mA g"−"1, which are much higher than that of Fe_3O_4 (417 and 300 mAh g"−"1), Fe_2O_3 (137.4 and 95 mAh g"−"1) and Fe_2O_3/reduced graphene oxide (390.1 and 480 mAh g"−"1). These results demonstrate that the structural phase transition and reduced graphene oxide of Fe_3O_4/reduced graphene oxide composites offer unique characteristics suitable for high-performance energy storage application.

  12. Direct reading spectrochemical determination of aluminium, iron and silicon in fluorite; Determinacion espectroquimica de lectura directa de aluminio, hierro y silicio en fluorita

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M

    1966-07-01

    A quantitative spectrochemical method for the determination of Al, Fe and Si in fluorite has been worked out. The sample was supported in a graphite electrode with crater of 5 mm. in diameter, 2,5 mm deep, and burned by a d.c. are in a direct reading spectrometer. The excitation of samples has been studied without dilution as well as using graphite powder as diluent in the ratios 1:1, 1:4, and 1:9; the latter factor was chosen. Ag, Ca, Co, Cr, Mo and Sn were tested as internal standards. It has not been found any significant inter element effect. It is necessary to use natural fluorite as base material for the standards. (Author) 5 refs.

  13. Polymorphism of a lipid extract from Pseudomonas fluorescens: Structure analysis of a hexagonal phase and of a novel cubic phase of extinction symbol Fd--

    International Nuclear Information System (INIS)

    Mariani, P.; Rivas, E.; Delacroix, H.; Luzzati, V.

    1990-01-01

    The phase diagram of the Pseudomonas fluorescens lipid extract is unusual, in the sense that it displays a cubic phase straddled by a hexagonal phase. The hexagonal phase was studied over an extended concentration range, and the reflections were phased on the assumption that the structure contains circular cylinders of known radius. The cubic phase, whose extinction symbol is Fd--, was analyzed by reference to space group No. 227 (Fd3m). The phases of the reflections were determined by using a novel pattern recognition approach, based upon the notion that the average fourth power of the electron density contrast 4 > is dependent on chemical composition but not on physical structure, provided that the function Δr(r) satisfies the constraints = 0 and 2 > = 1. The authors analyzed two cubic samples of different composition: for each of them they generated all the phase combinations compatible with the X-ray scattering data and they searched for those whose 4 > best agrees with the hexagonal phase. They concluded that the chemical composition of the phases being compared must be identical, that the X-ray scattering data should not be truncated artificially, and that the apodization must be mild so that the curvature takes a value intermediate between those corresponding to the raw data of the two phases. The structure may be visualized as a 3D generalization of the lipid monolayer. The structure, moreover, does not belong to the class of the infinite periodic surfaces without intersections

  14. Ab initio pseudopotential studies of cubic BC2N under high pressure

    International Nuclear Information System (INIS)

    Pan Zicheng; Sun Hong; Chen Changfeng

    2005-01-01

    We present the results of a systematic study of the structural, electronic, and vibrational properties of various cubic BC 2 N phases under high pressure. Ab initio pseudopotential total-energy and phonon calculations have been carried out to examine the changes in the structural parameters, bonding behaviours, band structures, and dynamic instabilities caused by phonon softening in these phases. We find that an experimentally synthesized high-density phase of cubic BC 2 N exhibits outstanding stability in the structural and electronic properties up to very high pressures. On the other hand, another experimentally identified phase with lower density and lower symmetry undergoes a dramatic structural transformation with a volume and bond-length collapse and a concomitant semi-metal to semiconductor transition. A third phase is predicted to be favourable over the above-mentioned lower-density phase by the enthalpy calculations. However, the dynamic phonon calculations reveal that it develops imaginary phonon modes and, therefore, is unstable in the experimental pressure range. The calculations indicate that its synthesis may be achieved at reduced pressures. These results provide a comprehensive understanding for the high-pressure behaviour of the cubic BC 2 N phases and reveal their interesting properties that can be verified by experiments

  15. Crystal structure of (Al,V)4(P4O12)3, archetype of double cubic ring tetraphosphate

    International Nuclear Information System (INIS)

    Yakubovich, O. V.; Biralo, G. V.; Dimitrova, O. V.

    2012-01-01

    The crystal structure of the (Al,V) 4 (P 4 O 12 ) 3 solid solution, obtained in the single-crystal form by hydrothermal synthesis in the Al(OH) 3 -VO 2 -NaCl-H 3 PO 4 -H 2 O system, has been solved by X-ray diffraction analysis (Xcalibur-S-CCD diffractometer, R = 0.0257): a = 13.7477(2) Å, sp. gr. I 4 bar 3d, Z = 4, and ρ calcd = 2.736 g/cm 3 . It is shown that the crystal structure of the parent cubic Al 4 (P 4 O 12 ) 3 modification can formally be considered an archetype for the formation of double isosymmetric tetraphosphates on its basis.

  16. Topological Oxide Insulator in Cubic Perovskite Structure

    Science.gov (United States)

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  17. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  18. Cubic Gallium Nitride on Micropatterned Si (001) for Longer Wavelength LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Durniak, Mark T. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Materials Science and Engineering; Chaudhuri, Anabil [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Smith, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Material Sciences; Allerman, Andrew A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Material Sciences; Lee, S. C. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Brueck, S. R. J. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Wetzel, Christian [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Physics, Applied Physics, and Astronomy and Dept. of Materials Science and Engineering

    2016-03-01

    GaInN/GaN heterostructures of cubic phase have the potential to overcome the limitations of wurtzite structures commonly used for light emitting and laser diodes. Wurtzite GaInN suffers from large internal polarization fields, which force design compromises ( 0001 ) towards ultra-narrow quantum wells and reduce recombination volume and efficiency. Cubic GaInN microstripes grown at Rensselaer Polytechnic Institute by metal organic vapor phase epitaxy on micropatterned Si , with {111} v-grooves oriented along Si ( 001 ) , offer a system free of internal polarization fields, wider quantum wells, and smaller <00$\\bar1$> bandgap energy. We prepared 6 and 9 nm Ga x In 1-x N/GaN single quantum well structures with peak wavelength ranges from 520 to 570 nm with photons predominately polarized perpendicular to the grooves. We estimate a cubic InN composition range of 0 < x < 0.5 and an upper limit of the internal quantum efficiency of 50%. Stripe geometry and polarization may be suitable for mode confinement and reduced threshold stimulated emission.

  19. 3D confocal imaging in CUBIC-cleared mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-07-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  20. 3D confocal imaging in CUBIC-cleared mouse heart

    International Nuclear Information System (INIS)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-01-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  1. Crystal structure and ion-diffusion pathway of inorganic materials through neutron diffraction

    International Nuclear Information System (INIS)

    Yashima, Masatomo

    2012-01-01

    The present brief review describes the application of neutron powder diffractometry and maximum-entropy method to the studies of crystal structure and diffusional pathways of mobile ions in ionic conducting ceramic materials. La 0.62 Li 0.16 TiO 3 and L i0.6 FePO 4 exhibit two- and one-dimensional networks of Li cation diffusional pathways, respectively. In the fluorite-structure ionic conductors such as celia solid solution Ce 0.93 Y 0.07 O 1.96 , bismuth oxide solid solution δ-Bi 1.4 Yb 0.6 O 3 and copper iodide CuI, a similar curved diffusion pathway along the directions is observed. In the cubic ABO 3 perovskite-type ionic conductor, lanthanum gallate solid solution, the mobile ions diffuse along a curved line keeping the interatomic distance between the B cation and O 2- anion. We have experimentally confirmed that the anisotropic thermal motions of the apex O2 atom and the interstitial O3 atoms are essential for the high oxygen permeability of the K 2 NiF 4 -type mixed conductor. Diffusion paths of proton are visualized along c axis in hexagonal hydroxyapatite. (author)

  2. First principles study of the structural and electronic properties of double perovskite Ba{sub 2}YTaO{sub 6} in cubic and tetragonal phases

    Energy Technology Data Exchange (ETDEWEB)

    Deluque Toro, C.E., E-mail: deluquetoro@gmail.com [Grupo de Nuevos Materiales, Universidad Popular del Cesar, Valledupar (Colombia); Rodríguez M, Jairo Arbey [Grupo de Estudios de Materiales—GEMA, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Landínez Téllez, D.A. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Moreno Salazar, N.O. [Departamento de Física, Universidade Federal de Sergipe (Brazil); Roa-Rojas, J. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia)

    2014-12-15

    The Ba{sub 2}YTaO{sub 6} double perovskite presents a transition from cubic (Fm−3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba{sub 2}YTaO{sub 6} in space group Fm−3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba{sub 2}YTaO{sub 6} (I4/m) phase is the most stable one. {sup ©} 2013 Elsevier Science. All rights reserved.

  3. Pair Distribution Function Analysis of Structural Disorder by Nb5+ Inclusion in Ceria: Evidence for Enhanced Oxygen Storage Capacity from Under-Coordinated Oxide.

    Science.gov (United States)

    Hiley, Craig I; Playford, Helen Y; Fisher, Janet M; Felix, Noelia Cortes; Thompsett, David; Kashtiban, Reza J; Walton, Richard I

    2018-02-07

    Partial substitution of Ce 4+ by Nb 5+ is possible in CeO 2 by coinclusion of Na + to balance the charge, via hydrothermal synthesis in sodium hydroxide solution. Pair distribution function analysis using reverse Monte Carlo refinement reveals that the small pentavalent substituent resides in irregular coordination positions in an average fluorite lattice, displaced away from the ideal cubic coordination toward four oxygens. This results in under-coordinated oxygen, which explains significantly enhanced oxygen storage capacity of the materials of relevance to redox catalysis used in energy and environmental applications.

  4. Structural Phase Transition and Compressibility of CaF2 Nanocrystals under High Pressure

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    2018-05-01

    Full Text Available The structural phase transition and compressibility of CaF2 nanocrystals with size of 23 nm under high pressure were investigated by synchrotron X-ray diffraction measurement. A pressure-induced fluorite to α-PbCl2-type phase transition starts at 9.5 GPa and completes at 20.2 GPa. The phase-transition pressure is lower than that of 8 nm CaF2 nanocrystals and closer to bulk CaF2. Upon decompression, the fluorite and α-PbCl2-type structure co-exist at the ambient pressure. The bulk modulus B0 of the 23 nm CaF2 nanocrystals for the fluorite and α-PbCl2-type phase are 103(2 and 78(2 GPa, which are both larger than those of the bulk CaF2. The CaF2 nanocrystals exhibit obviously higher incompressibility compare to bulk CaF2. Further analysis demonstrates that the defect effect in our CaF2 nanocrystals plays a dominant role in the structural stability.

  5. Elastic properties of cubic perovskite BaRuO{sub 3} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Han Deming; Liu Xiaojuan; Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-08-01

    We present first-principles investigations on the structural and elastic properties of the cubic perovskite BaRuO{sub 3} using density-functional theory within both local density approximation (LDA) and generalized gradient approximation (GGA). Basic physical properties, such as lattice constant, shear modulus, elastic constants (C{sub ij}) are calculated. The calculated energy band structures show that the cubic perovskite BaRuO{sub 3} is metallic. We have also predicted the Young's modulus (Y), Poisson's ratio ({upsilon}), and Anisotropy factor (A).

  6. First-principles investigation on the mechanism of photocatalytic properties for cubic and orthorhombic KNbO3

    Science.gov (United States)

    Xu, Yong-Qiang; Wu, Shao-Yi; Ding, Chang-Chun; Wu, Li-Na; Zhang, Gao-Jun

    2018-03-01

    The geometric structures, band structures, density of states and optical absorption spectra are studied for cubic and orthorhombic KNbO3 (C- and O-KNO) crystals by using first-principles calculations. Based on the above calculation results, the mechanisms of photocatalytic properties for both crystals are further theoretically investigated to deepen the understandings of their photocatalytic activity from the electronic level. Calculations for the effective masses of electron and hole are carried out to make comparison in photocatalytic performance between cubic and orthorhombic phases. Optical absorption in cubic phase is found to be stronger than that in orthorhombic phase. C-KNO has smaller electron effective mass, higher mobility of photogenerated electrons, lower electron-hole recombination rate and better light absorption capacity than O-KNO. So, the photocatalytic activity of cubic phase can be higher than orthorhombic one. The present work may be beneficial to explore the series of perovskite photocatalysts.

  7. Rotated domain network in graphene on cubic-SiC(001)

    International Nuclear Information System (INIS)

    Chaika, Alexander N; Aristov, Victor Y; Molodtsova, Olga V; Zakharov, Alexei A; Marchenko, Dmitry; Sánchez-Barriga, Jaime; Varykhalov, Andrei; Babenkov, Sergey V; Portail, Marc; Zielinski, Marcin; Murphy, Barry E; Krasnikov, Sergey A; Lübben, Olaf; Shvets, Igor V

    2014-01-01

    The atomic structure of the cubic-SiC(001) surface during ultra-high vacuum graphene synthesis has been studied using scanning tunneling microscopy (STM) and low-energy electron diffraction. Atomically resolved STM studies prove the synthesis of a uniform, millimeter-scale graphene overlayer consisting of nanodomains rotated by ±13.5° relative to the 〈110〉-directed boundaries. The preferential directions of the domain boundaries coincide with the directions of carbon atomic chains on the SiC(001)-c(2 × 2) reconstruction, fabricated prior to graphene synthesis. The presented data show the correlation between the atomic structures of the SiC(001)-c(2 × 2) surface and the graphene/SiC(001) rotated domain network and pave the way for optimizing large-area graphene synthesis on low-cost cubic-SiC(001)/Si(001) wafers. (paper)

  8. First-principles cluster variation calculations of tetragonal-cubic transition in ZrO2

    International Nuclear Information System (INIS)

    Mohri, Tetsuo; Chen, Ying; Kiyokane, Naoya

    2013-01-01

    Highlights: ► Cluster variation method is extended to study displacive transition. ► Electronic structure total energy calculations are performed on ZrO2. ► Tetragonal-cubic transition is studied within the framework of order -disorder transition. -- Abstract: It is attempted to extend the basic idea of continuous displacement cluster variation method (CDCVM) to the study of a displacive phase transition. As a preliminary study, we focus on cubic to tetragonal transition in ZrO 2 in which oxygen atoms on the cubic lattice are displaced alternatively in the opposite direction (upward and downward) along the tetragonal axis. Within the CDCVM, displaced atoms are regarded as different atomic species, and two distinguished atoms, A-oxygen (upward shifting) and B-oxygen (downward shifting), are introduced in the description of the free energy. FLAPW electronic structure total energy calculations are performed to extract effective interaction energies among displaced oxygen atoms, and by combing them with CDCVM, the transition temperature is calculated from the first-principles

  9. Structure and stability of nonstoichiometric cubic phase δ-NbN1.2(O,C)

    International Nuclear Information System (INIS)

    Shalaeva, E.V.; Mitrofanov, B.V.; Shveikin, G.P.

    1996-01-01

    The nonstoichiometric δ-niobium nitride with surplus content of nitrogen atoms and the NaCl-type structure (a=0.439 nm), i.e. δ-NbN 1.2 (O, C), is stabilized in epitaxial deposited films. The diffraction patterns of these films display intensive diffuse scattering with regular intensity vanishings in the form of plane regions in the vicinity of structural and superstructural reciprocal space points of the δ-phase and in the form of spherical surfaces in the neighbourhood of structural points. The analysis performed shows that this scattering can be associated with the presence of mixed-nature short-range order regions in the nonstoichiometric δ-NbN 1.2 (O, C) phase which are characterized by longitudinal uncorrelated atomic displacement waves, as well as by concentration-type waves. The ordered oxycarbonitride phase (X-phase) described in the first approximation by the cubic lattice with parameter a=0.392 nm is found to precipitate when annealing the films at T=873 K. It has been established that the diffuse scattering occurring in δ-NbN 1.2 (O, C) and the structure of short-range order regions exhibit certain correlation with the structure of the precipitated ordered phase - G 100 x ∼1.1G 100 δ = K 1 ; G 010 x ∼1.1G 010 δ = K 2 (where K 1 and K 2 are wave vectors of longitudinal atomic displacement waves characterizing short-range order). (orig.)

  10. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  11. Interpolation of natural cubic spline

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    1992-01-01

    Full Text Available From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.

  12. Diffusion pathway of mobile ions and crystal structure of ionic and mixed conductors. A brief review

    International Nuclear Information System (INIS)

    Yashima, Masatomo

    2009-01-01

    A brief review on the field of Solid State Ionics, including the diffusion pathway of mobile ions, crystal structure and materials, is presented. In the fluorite-structured ionic conductors such as ceria solid solution Ce 0.93 Y 0.07 O 1.96 , bismuth oxide solid solution δ-Bi 1.4 Yb 0.6 O 3 and copper iodide CuI, a similar curved diffusion pathway along the directions is observed. In the ionic and mixed conductors with the cubic ABO 3 perovskite-type structure such as lanthanum gallate and lanthanum cobaltite solid solutions, the mobile ions diffuse along a curved line keeping the interatomic distance between the B cation and O 2- anion to some degree. The structure and diffusion path of double-perovskite-type La 0.64 Ti 0.92 Nb 0.08 O 2.99 , K 2 NiF 4 -type (Pr 0.9 La 0.1 ) 2 (Ni 0.74 Cu 0.21 Ga 0.05 )O 4+δ , and apatite-type La 9.69 (Si 5.70 Mg 0.30 )O 26.24 are described. The diffusion paths of Li + ions in La 0.62 Li 0.16 TiO 3 and Li 0.6 FePO 4 are two- and one-dimensional, respectively. (author)

  13. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    Science.gov (United States)

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic

  14. Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound.

    Science.gov (United States)

    Zelený, Martin; Straka, Ladislav; Sozinov, Alexei; Heczko, Oleg

    2018-05-08

    In order to explain the formation of low-temperature phases in stoichiometric Ni 2 MnGa magnetic shape memory alloy, we investigate the phase transformation paths from cubic austenite with Heusler structure to low-symmetry martensitic structures. We used ab initio calculations combined with the generalized solid state nudged elastic band method to determine the minimum energy path and corresponding changes in crystal lattice. The four-, five-, and seven-layered modulated phases of martensite (4O, 10M, and 14M) are built as the relaxed nanotwinned non-modulated (NM) phase. Despite having a total energy larger than the other martensitic phases, the 10M phase will spontaneously form at 0 K, because there is no energy barrier on the path and the energy decreases with a large negative slope. Moreover, a similar negative slope in the beginning of path is found also for the transformation to the 6M premartensite, which appears as a local minimum on the path leading further to 10M martensite. Transformation paths to other structures exhibit more or less significant barriers in the beginning hindering such a transformation from austenite. These findings correspond to experiment and demonstrates that the kinetics of the transformation is decisive for the selection of the particular low-symmetry structure.

  15. Dielectric properties and microstructural characterization of cubic pyrochlored bismuth magnesium niobates

    KAUST Repository

    Zhang, Yuan

    2013-08-06

    Cubic bismuth pyrochlores in the Bi2O3 Bi 2O3-MgO-Nb2O5 Nb2O 5 system have been investigated as promising dielectric materials due to their high dielectric constant and low dielectric loss. Here, we report on the dielectric properties and microstructures of cubic pyrochlored Bi 1.5 MgNb 1.5 O 7 Bi1.5MgNb1.5O7 (BMN) ceramic samples synthesized via solid-state reactions. The dielectric constant (measured at 1 MHz) was measured to be ∼ 120 ∼120 at room temperature, and the dielectric loss was as low as 0.001. X-ray diffraction patterns demonstrated that the BMN samples had a cubic pyrochlored structure, which was also confirmed by selected area electron diffraction (SAED) patterns. Raman spectrum revealed more than six vibrational models predicted for the ideal pyrochlore structure, indicating additional atomic displacements of the A and O′ O\\' sites from the ideal atomic positions in the BMN samples. Structural modulations of the pyrochlore structure along the [110] and [121] directions were observed in SAED patterns and high-resolution transmission electron microscopy (HR-TEM) images. In addition, HR-TEM images also revealed that the grain boundaries (GBs) in the BMN samples were much clean, and no segregation or impure phase was observed forming at GBs. The high dielectric constants in the BMN samples were ascribed to the long-range ordered pyrochlore structures since the electric dipoles formed at the superstructural direction could be enhanced. The low dielectric loss was attributed to the existence of noncontaminated GBs in the BMN ceramics. © 2013 Springer-Verlag Berlin Heidelberg.

  16. Self-oriented Ag-based polycrystalline cubic nanostructures through polymer stabilization

    Science.gov (United States)

    Alonso, Amanda; Vigués, Núria; Rodríguez-Rodríguez, Rosalía; Borrisé, Xavier; Muñoz, María; Muraviev, Dmitri N.; Mas, Jordi; Muñoz-Berbel, Xavier

    2016-10-01

    This paper presents the study of the dynamics of the formation of polymer-assisted highly-orientated polycrystalline cubic structures (CS) by a fractal-mediated mechanism. This mechanism involves the formation of seed Ag@Co nanoparticles by InterMatrix Synthesis and subsequent overgrowth after incubation at a low temperature in chloride and phosphate solutions. These ions promote the dissolution and recrystallization in an ordered configuration of pre-synthetized nanoparticles initially embedded in negatively-charged polymeric matrices. During recrystallization, silver ions aggregate in AgCl@Co fractal-like structures, then evolve into regular polycrystalline solid nanostructures (e.g. CS) in a single crystallization step on specific regions of the ion exchange resin (IER) which maintain the integrity of polycrystalline nanocubes. Here, we study the essential role of the IER in the formation of these CS for the maintenance of their integrity and stability. Thus, this synthesis protocol may be easily expanded to the composition of other nanoparticles providing an interesting, cheap and simple alternative for cubic structure formation and isolation.

  17. Determination of enrichment processes and radon concentration in underground mines of fluorite and coal in Santa Catarina state: criteria for radiation risk assessment

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendants in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m 3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m 3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the foot wall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m 3 . The inefficiency of the ventilation

  18. Thermal and chemical variations of the Nigerian Benue trough lead-zinc-barite-fluorite deposits

    Science.gov (United States)

    Ogundipe, Ibukun Emmanuel

    2017-08-01

    The Benue trough is an intra-continental rift initiated in the Cretaceous during the opening of the South Atlantic Ocean. Lead-zinc-barite-fluorite mineralization occurs along the 600 km axis of the trough in three discrete sub-basins which coincide with the lower, middle and upper mineral districts of the Benue Valley. Lithologically these sub-basins are dominated by black carbonaceous shale in the Lower Benue, platform carbonates in the Middle Benue and sandstones in the Upper Benue. Micro-thermometric analysis of fluid inclusions in sphalerite, fluorite, barite and quartz have shown that each mineral district has its own unique thermal and chemical imprint. For example, the temperature can be bracketed between 109 °C and 160 °C for lower Benue, 89 °C-144 °C for the Middle Benue and 176 °C-254 °C for the Upper Benue. Chemical differentiation also exists between each mineral district with the Lower Benue having 22 wt % equivalent NaCl while the Middle and Upper Benue have 18 and 16 wt % equivalent NaCl respectively. This study shows that inter-district thermal and chemical variations exist between the ore-stage sulfide and post-sulfide gangue minerals of the entire Benue Valley. Similarly, intra-district thermal and chemical variations have also been observed among all the paragenetic minerals of each district. The thermal variations may be as a result of variations in the geothermal gradient accompanying continental rifting from one district to the other. The variations in the chemistry between the Lower Benue and the Upper Benue paragenic minerals may be as a result of the distinct lithological differences across the Benue Trough.

  19. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  20. Cubical sets as a classifying topos

    DEFF Research Database (Denmark)

    Spitters, Bas

    Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De...... Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation...

  1. Generalized Vaidya spacetime for cubic gravity

    Science.gov (United States)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  2. Low-pH-induced transformation of bilayer membrane into bicontinuous cubic phase in dioleoylphosphatidylserine/monoolein membranes.

    Science.gov (United States)

    Okamoto, Yoshihide; Masum, Shah Md; Miyazawa, Haruna; Yamazaki, Masahito

    2008-04-01

    Cubic biomembranes, nonbilayer membranes with connections in three-dimensional space that have a cubic symmetry, have been observed in various cells. Interconversion between the bilayer liquid-crystalline (L(alpha)) phase and cubic phases attracted much attention in terms of both biological and physicochemical aspects. Herein we report the pH effect on the phase and structure of dioleoylphosphatidylserine (DOPS)/monoolein (MO) membranes under a physiological ion concentration condition, which was revealed by small-angle X-ray scattering (SAXS) measurement. At neutral pH, DOPS/MO membranes containing high concentrations of DOPS were in the L(alpha) phase. First, the pH effect on the phase and structure of the multilamellar vesicles (MLVs) of the DOPS/MO membranes preformed at neutral pH was investigated by adding various low-pH buffers into the MLV suspension. For 20%-DOPS/80%-MO MLVs, at and below pH 2.9, a transition from the L(alpha) to cubic (Q(224)) phase occurred within 1 h. This phase transition was reversible; a subsequent increase in pH to a neutral one in the membrane suspension transformed the cubic phase into the original L(alpha) phase. Second, we found that a decrease in pH transformed large unilamellar vesicles of DOPS/MO membranes into the cubic phase under similar conditions. We have proposed the mechanism of the low-pH-induced phase transition and also made a quantitative analysis on the critical pH of the phase transition. This finding is the first demonstration that a change in pH can induce a reversible phase transition between the L(alpha) and cubic phases of lipid membranes within 1 h.

  3. The Li–Si–(O)–N system revisited: Structural characterization of Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O

    Energy Technology Data Exchange (ETDEWEB)

    Casas-Cabanas, M. [CIC energiGUNE, Parque Tecnológico de Álava, Albert Einstein 48, ED.CIC, 01510 Miñano (Spain); Santner, H. [Institut de Ciència de Materials de Barcelona (CSIC) Campus UAB, 08193 Bellaterra, Catalonia (Spain); Palacín, M.R., E-mail: rosa.palacin@icmab.es [Institut de Ciència de Materials de Barcelona (CSIC) Campus UAB, 08193 Bellaterra, Catalonia (Spain)

    2014-05-01

    A systematic study of the Li–Si–(O)–N system is presented. The synthetic conditions to prepare Li{sub 2}SiN{sub 2}, Li{sub 5}SiN{sub 3}, Li{sub 18}Si{sub 3}N{sub 10}, Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O are described and the structure of the last two compounds has been solved for the first time. While Li{sub 21}Si{sub 3}N{sub 11} crystallizes as a superstructure of the anti-fluorite structure with Li and Si ordering, Li{sub 7}SiN{sub 3}O exhibits the anti-fluorite structure with both anion and cation disorder. - Graphical abstract: A systematic study of the Li–Si–(O)–N system is presented. Li{sub 21}Si{sub 3}N{sub 11} crystallizes as a superstructure of the anti-fluorite structure with Li and Si ordering, Li{sub 7}SiN{sub 3}O exhibits the anti-fluorite structure with both anion and cation disorder. - Highlights: • Li{sub 2}SiN{sub 2}, Li{sub 5}SiN{sub 3}, Li{sub 18}Si{sub 3}N{sub 10}, Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O are prepared. • The structures of Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O are presented. • Li{sub 21}Si{sub 3}N{sub 11} exhibits an anti-fluorite superstructure with Li and Si ordering.

  4. Fluid evolution and mineralogy of Mn-Fe-barite-fluorite mineralizations at the contact of the Thuringian Basin, Thüringer Wald and Thüringer Schiefergebirge in Germany

    Directory of Open Access Journals (Sweden)

    Majzlan Juraj

    2016-02-01

    Full Text Available Numerous small deposits and occurrences of Mn-Fe-fluorite-barite mineralization have developed at the contact of the Thuringian Basin, Thüringer Wald and Thüringer Schiefergebirge in central Germany. The studied mineralizations comprise the assemblages siderite+ankerite-calcite-fluorite-barite and hematite-Mn oxides-calcite-barite, with the precipitation sequence in that order within each assemblage. A structural geological analysis places the origin of the barite veins between the Middle Jurassic and Early Cretaceous. Primary fluid inclusions contain water vapour and an aqueous phase with NaCl and CaCl2 as the main solutes, with salinities mostly between 24–27 mass. % CaCl2 eq. Th measurements range between 85 °C and 160 °C in barite, between 139 °C and 163 °C in siderite, and between 80 °C and 130 °C in fluorite and calcite. Stable isotopes (S, O point to the evaporitic source of sulphur in the observed mineralizations. The S,C,O isotopic compositions suggest that barite and calcite could not have precipitated from the same fluid. The isotopic composition of the fluid that precipitated barite is close to the sea water in the entire Permo–Mesozoic time span whereas calcite is isotopically distinctly heavier, as if the fluids were affected by evaporation. The fluid evolution in the siliciclastic/volcanic Rotliegend sediments (as determined by a number of earlier petrological and geochemical studies can be correlated with the deposition sequence of the ore minerals. In particular, the bleaching of the sediments by reduced Rotliegend fluids (basinal brines could be the event that mobilized Fe and Mn. These elements were deposited as siderite+ankerite within the Zechstein carbonate rocks and as hematite+Mn oxides within the oxidizing environment of the Permian volcanic and volcanoclastic rocks. A Middle-Jurassic illitization event delivered Ca, Na, Ba, and Pb from the feldspars into the basinal brines. Of these elements, Ba was

  5. Studying magnetic structure of Bi doped Co2MnO4 cubic spinel by neutron diffraction

    International Nuclear Information System (INIS)

    Rajeevan, N.E.; Kaushik, S.D.; Kumar, Ravi

    2016-01-01

    In present work, we studied effect of Bi doped spinel Bi x Co 2-x MnO 4 (x = 0, 0.05, 0.10, 0.15 and 0.20) samples on their crystal as well as magnetic structure by employing neutron diffraction of wavelength 1.48 A using focusing crystal diffractometer of UGC-DAECSR Mumbai Centre at Dhruva, Trombay, Mumbai, India. The analysis of the neutron diffraction using Fullprof program reveals that crystal structure due to Bi doping remains intact and all the samples have been formed in the cubic spinel structure with Fd3m (space group no. 227). The lattice parameter shows the positive thermal expansion upon Bi doping across the temperature range. In order to understand the implication on the spin structure and magnetism in the detail, temperature dependent neutron diffraction study is carried out on some of the samples (x = 0, 0.1) in the series. The ND pattern of x = 0.1 at 2.9K is shown. The experimental finding in terms of modified magnetic structure upon Bi doping are discussed which are understood in terms of variation in the ferroelectric properties, bond lengths and their effect on the CoO 6 polyhedra. Furthermore, Bi substitution in Co 2 MnO 4 spinel brings in the balance of structural distortion, which affects both ferrimagnetism and ferroelectricity

  6. Spinning solitons in cubic-quintic nonlinear media

    Indian Academy of Sciences (India)

    Spinning solitons in cubic-quintic nonlinear media ... features of families of bright vortex solitons (doughnuts, or 'spinning' solitons) in both conservative and dissipative cubic-quintic nonlinear media. ... Pramana – Journal of Physics | News.

  7. Structure and defect studies of In2O3:Zn,Zr for higher stability TCO

    Science.gov (United States)

    Herwadkar, Aditi; Kim, Kwiseon

    2010-03-01

    The defects structures among the transparent conducting oxides (TCO) plays a major role in determining stability of the oxide over a temperature range and in tuning electrical and optical properties for the different TCO applications In2O3 crystallizes in the cubic bixbyite structure. The structure can be derived from the related fluorite structure by removing one fourth of the anions and allowing for small shifts of the ionic positions. In2O3 has two non-equivalent six-fold coordinated cation sites. For one of the sites, the cation is bounded by two structural vacancy along the body diagonal and for the other non-equivalent site the vacancies lie along the face diagonal. These vacancies are actually empty oxygen vacancy positions. Indium is in +3 charge state. ZnO on the other hand crystallizes to form wurtzite structure with four-fold coordination for Zn and is in +2 charge state where as the crystal structure of ZrO is rulite with Zr in +4 charge state and is four fold coordinated. Co-doping of Zn and Zr with each substituting the In atom satisfies the octet rule and is lower in energy then the individual substitutions with overall neutrality. The formation enthalpy as a function of pair (Zn, Zr) shows a minimum at experimental composition of In2(Zn,Zr)3O24. We in this work present the electronic structure optimization and study the defect states in this material.

  8. Unusually large unit cell of lipid bicontinuous cubic phase: towards nature's length scales

    Science.gov (United States)

    Kim, Hojun; Leal, Cecilia

    Lipid bicontinuous cubic phases are of great interest for drug delivery, protein crystallization, biosensing, and templates for directing hard material assembly. Structural modulations of lipid mesophases regarding phase identity and unit cell size are often necessary to augment loading and gain pore size control. One important example is the need for unit cells large enough to guide the crystallization of bigger proteins without distortion of the templating phase. In nature, bicontinuous cubic constructs achieve unit cell dimensions as high as 300 nm. However, the largest unit cell of lipid mesophases synthesized in the lab is an order of magnitude lower. In fact, it has been predicted theoretically that lipid bicontinuous cubic phases of unit cell dimensions exceeding 30 nm could not exist, as high membrane fluctuations would damp liquid crystalline order. Here we report non-equilibrium assembly methods of synthesizing metastable bicontinuous cubic phases with unit cell dimensions as high as 70 nm. The phases are stable for very long periods and become increasingly ordered as time goes by without changes to unit cell dimensions. We acknowledge the funding source as a NIH.

  9. BDA: A novel method for identifying defects in body-centered cubic crystals.

    Science.gov (United States)

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  10. Trapping of cubic ZnO nanocrystallites at ambient conditions

    DEFF Research Database (Denmark)

    Decremps, F.; Pellicer-Porres, J.; Datchi, F.

    2002-01-01

    Dense powder of nanocrystalline ZnO has been recovered at ambient conditions in the metastable cubic structure after a heat treatment at high pressure (15 GPa and 550 K). Combined x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) experiments have been performed to probe both long......-range order and local crystallographic structure of the recovered sample. Within uncertainty of these techniques (about 5%), all the crystallites are found to adopt the NaCl structure. From the analysis of XRD and XAS spectra, the cell volume per chemical formula unit is found to be 19.57(1) and 19...

  11. Tailoring band structure and band filling in a simple cubic (IV, III)-VI superconductor

    Science.gov (United States)

    Kriener, M.; Kamitani, M.; Koretsune, T.; Arita, R.; Taguchi, Y.; Tokura, Y.

    2018-04-01

    Superconductivity and its underlying mechanisms are one of the most active research fields in condensed-matter physics. An important question is how to enhance the transition temperature Tc of a superconductor. In this respect, the possibly positive role of valence-skipping elements in the pairing mechanism has been attracting considerable interest. Here we follow this pathway and successfully enhance Tc up to almost 6 K in the simple chalcogenide SnTe known as a topological crystalline insulator by doping the valence-skipping element In substitutionally for the Sn site and codoping Se for the Te site. A high-pressure synthesis method enabled us to form single-phase solid solutions Sn1 -xInxTe1 -ySey over a wide composition range while keeping the cubic structure necessary for the superconductivity. Our experimental results are supported by density-functional theory calculations which suggest that even higher Tc values would be possible if the required doping range was experimentally accessible.

  12. Bi{sub 1−x}Nb{sub x}O{sub 1.5+x} (x=0.0625, 0.12) fast ion conductors: Structures, stability and oxide ion migration pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tate, Matthew L. [Department of Chemistry, Durham University, Science Site, South Road, Durham DH1 3LE (United Kingdom); Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Hack, Jennifer [Department of Chemistry, Durham University, Science Site, South Road, Durham DH1 3LE (United Kingdom); Institut Laue-Langevin, Grenoble (France); Kuang, Xiaojun [Department of Chemistry, Durham University, Science Site, South Road, Durham DH1 3LE (United Kingdom); McIntyre, Garry J. [Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Withers, Ray L. [Research School of Chemistry, Australian National University, Canberra, ACT (Australia); Johnson, Mark R. [Institut Laue-Langevin, Grenoble (France); Radosavljevic Evans, Ivana, E-mail: ivana.radosavljevic@durham.ac.uk [Department of Chemistry, Durham University, Science Site, South Road, Durham DH1 3LE (United Kingdom); Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia)

    2015-05-15

    A combined experimental and computational study of Bi{sub 1−x}Nb{sub x}O{sub 1.5+x} (x=0.0625 and 0.12) has been carried out using laboratory X-ray, neutron and electron diffraction, impedance measurements and ab-initio molecular dynamics. We demonstrate that Bi{sub 0.9375}Nb{sub 0.0625}O{sub 1.5625}, previously reported to adopt a cubic fluorite-type superstructure, can form two different polymorphs depending on the synthetic method: a metastable cubic phase is produced by quenching; while slower cooling yields a stable material with a tetragonal √2×√2×1 superstructure, which undergoes a reversible phase transition into the cubic form at ~680 °C on subsequent reheating. Neutron diffraction reveals that the tetragonal superstructure arises mainly from ordering in the oxygen sublattice, with Bi and Nb remaining disordered, although structured diffuse scattering observed in the electron diffraction patterns suggests a degree of short-range ordering. Both materials are oxide ion conductors. On thermal cycling, Bi{sub 0.88}Nb{sub 0.12}O{sub 1.62} exhibits a decrease in conductivity of approximately an order of magnitude due to partial transformation into the tetragonal phase, but still exhibits conductivity comparable to yttria-stabilised zirconia (YSZ). Ab-initio molecular dynamics simulations performed on Bi{sub 0.9375}Nb{sub 0.0625}O{sub 1.5625} show that oxide ion diffusion occurs by O{sup 2−} jumps between edge- and corner-sharing OM{sub 4} groups (M=Bi, Nb) via tetrahedral □M{sub 4} and octahedral □M{sub 6} vacancies. - Graphical abstract: Oxide ion migration in tetragonal Bi{sub 0.9375}Nb{sub 0.0625}O{sub 1.5625} occurs by O{sup 2−} jumps between edge- and corner-sharing OM{sub 4} groups (M=Bi, Nb) via tetrahedral M{sub 4} and octahedral M{sub 6} vacancies. - Highlights: • Bi{sub 0.9375}Nb{sub 0.0625}O{sub 1.5625} adopts a tetragonal √2×√2×1 fluorite superstructure. • Superstructure is due to ordering in the O-sublattice, with Bi

  13. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  14. Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: A DFT study

    Directory of Open Access Journals (Sweden)

    Saad Tariq

    2015-07-01

    Full Text Available Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO3 have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS’s plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results.

  15. The effect of B-site substitution on structural transformation and ionic conductivity in Ho2(ZryTi1−y)2O7

    International Nuclear Information System (INIS)

    Shafique, Muhammad; Kennedy, Brenden J.; Iqbal, Yaseen; Ubic, Rick

    2016-01-01

    Compounds in the pyrochlore system Ho 2 (Zr y Ti 1−y ) 2 O 7 exhibit an order-disorder transition from pyrochlore to a defect-fluorite type structure. Compositions in this system were prepared via mechanical milling, followed by a two-step sintering process. Structural characterization was carried out via Rietveld refinements using neutron powder diffraction data, supported by X-ray diffraction to determine the phase and location of the pyrochlore-fluorite transformation. Unit-cell parameters were determined for the whole series using Rietveld refinements as well as the Nelson–Riley function. The neutron refinement results confirmed that the cation disorder was independent of the anion Frenkel disorder. The relation between the x-parameter in the oxygen 48f position and anion Frenkel disorder was found to be linear for the pyrochlore structure. The ionic conductivity studies were undertaken via AC impedance analysis to determine the electronic behaviour and its relation to the structural change in the temperature range 300°C–700 °C. The trends in ionic conductivity and activation energy were explained structurally via neutron powder diffraction and X-ray diffraction data. The pyrochlore-fluorite boundary composition (at y = 0.5) exhibited the lowest activation energy and highest ionic conductivity. - Highlights: • Ho 2 (Zr y Ti 1-y ) 2 O 7 structure changed from ordered pyrochlore to defect-fluorite at y = 0.6. • Ho 2 (Zr 0.5 Ti 0.5 ) 2 O 7 exhibited high ionic conductivity and low activation energy. • Doping improved stability in ionic conductivity behaviour at lower temperature.

  16. A Note on Cubic Convolution Interpolation

    OpenAIRE

    Meijering, E.; Unser, M.

    2003-01-01

    We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

  17. Eu3+-doped (Y0.5La0.5)2O3: new nanophosphor with the bixbyite cubic structure

    Science.gov (United States)

    Đorđević, Vesna; Nikolić, Marko G.; Bartova, Barbora; Krsmanović, Radenka M.; Antić, Željka; Dramićanin, Miroslav D.

    2013-01-01

    New red sesquioxide phosphor, Eu3+-doped (Y0.5La0.5)2O3, was synthesized in the form of nanocrystalline powder with excellent structural ordering in cubic bixbyite-type, and with nanoparticle sizes ranging between 10 and 20 nm. Photoluminescence measurements show strong, Eu3+ characteristic, red emission ( x = 0.66 and y = 0.34 CIE color coordinates) with an average 5D0 emission lifetime of about 1.3 ms. Maximum splitting of the 7F1 manifold of the Eu3+ ion emission behaves in a way directly proportional to the crystal field strength parameter, and experimental results show perfect agreement with theoretical values for pure cubic sesquioxides. This could be used as an indicator of complete dissolution of Y2O3 and La2O3, showing that (Y0.5La0.5)2O3:Eu3+ behaves as a new bixbyite structure oxide, M2O3, where M acts as an ion having average ionic radius of constituting Y3+ and La3+. Emission properties of this new phosphor were documented with detailed assignments of Eu3+ energy levels at 10 K and at room temperature. Second order crystal field parameters were found to be B 20 = -66 cm-1 and B 22 = -665 cm-1 at 10 K and B 20 = -78 cm-1 and B 22 = -602 cm-1 at room temperature, while for the crystal field strength the value of 1495 cm-1 was calculated at 10 K and 1355 cm-1 at room temperature.

  18. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  19. Controlled hydrothermal synthesis of CeO{sub 2} nanospheres and their excellent magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Xiaofei [Suzhou University, Anhui Key Laboratory of Spintronics and Nanomaterials Research, Suzhou, Anhui (China)

    2017-04-15

    Monodisperse spherical CeO{sub 2} nanostructures with irregular and rough surfaces have successfully been synthesized via a facile hydrothermal technology. XRD, SEM, XPS, Raman scattering, and M-H curves were employed to characterize the samples. The results showed that the spherical CeO{sub 2} nanostructures have a cubic fluorite structure and that there are Ce{sup 3+} ions and oxygen vacancies in the surface of the samples. The M-H curve of CeO{sub 2} nanospheres exhibits excellent room-temperature ferromagnetism (RT-FM), which is likely ascribed to the effects of the Ce{sup 3+} ions and oxygen vacancies. (orig.)

  20. Orientational anharmonicity of interatomic interaction in cubic monocrystals

    International Nuclear Information System (INIS)

    Belomestnykh, Vladimir N.; Tesleva, Elena P.

    2010-01-01

    Anharmonicity of interatomic interaction from a position of physical acoustics under the standard conditions is investigated. It is shown that the measure of anharmonicity of interatomic interaction (Grilneisen parameter) is explicitly expressed through velocities of sound. Calculation results of orientation anharmonicity are shown on the example of 116 cubic monocrystals with different lattice structural type and type of chemical bond. Two types of anharmonicity interatomic interaction anisotropy are determined. Keywords: acoustics, orientational anharmonicity, Gruneisen parameter, velocity of sound

  1. On q-power cycles in cubic graphs

    DEFF Research Database (Denmark)

    Bensmail, Julien

    2017-01-01

    In the context of a conjecture of Erdos and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning...... the remaining case q = 2 (which corresponds to the conjecture of Erdos and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only....

  2. Nonsymmorphic cubic Dirac point and crossed nodal rings across the ferroelectric phase transition in LiOsO3

    Science.gov (United States)

    Yu, Wing Chi; Zhou, Xiaoting; Chuang, Feng-Chuan; Yang, Shengyuan A.; Lin, Hsin; Bansil, Arun

    2018-05-01

    Crystalline symmetries can generate exotic band-crossing features, which can lead to unconventional fermionic excitations with interesting physical properties. We show how a cubic Dirac point—a fourfold-degenerate band-crossing point with cubic dispersion in a plane and a linear dispersion in the third direction—can be stabilized through the presence of a nonsymmorphic glide mirror symmetry in the space group of the crystal. Notably, the cubic Dirac point in our case appears on a threefold axis, even though it has been believed previously that such a point can only appear on a sixfold axis. We show that a cubic Dirac point involving a threefold axis can be realized close to the Fermi level in the nonferroelectric phase of LiOsO3. Upon lowering temperature, LiOsO3 has been shown experimentally to undergo a structural phase transition from the nonferroelectric phase to the ferroelectric phase with spontaneously broken inversion symmetry. Remarkably, we find that the broken symmetry transforms the cubic Dirac point into three mutually crossed nodal rings. There also exist several linear Dirac points in the low-energy band structure of LiOsO3, each of which is transformed into a single nodal ring across the phase transition.

  3. The Boolean Algebra of Cubical Areas as a Tensor Product in the Category of Semilattices with Zero

    Directory of Open Access Journals (Sweden)

    Nicolas Ninin

    2014-10-01

    Full Text Available In this paper we describe a model of concurrency together with an algebraic structure reflecting the parallel composition. For the sake of simplicity we restrict to linear concurrent programs i.e. the ones with no loops nor branching. Such programs are given a semantics using cubical areas. Such a semantics is said to be geometric. The collection of all these cubical areas enjoys a structure of tensor product in the category of semi-lattice with zero. These results naturally extend to fully fledged concurrent programs up to some technical tricks.

  4. Synthesis and Optical Properties of Cubic Gold Nanoframes.

    Science.gov (United States)

    Au, Leslie; Chen, Yeechi; Zhou, Fei; Camargo, Pedro H C; Lim, Byungkwon; Li, Zhi-Yuan; Ginger, David S; Xia, Younan

    2008-12-01

    This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl(2) (-). A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy. With their hollow and open structures, the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.

  5. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2014-01-01

    We use density functional theory calculations to investigate the stability of cubic perovskites for photo-electrochemical water splitting taking both materials in their bulk crystal structure and dissolved phases into account. The method is validated through a detailed comparison of the calculated...

  6. The influence of coordinated defects on inhomogeneous broadening in cubic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Matheson, P. L., E-mail: phil.matheson@uvu.edu; Sullivan, Francis P.; Evenson, William E. [Utah Valley University, Department of Physics (United States)

    2016-12-15

    The joint probability distribution function (JPDF) of electric field gradient (EFG) tensor components in cubic materials is dominated by coordinated pairings of defects in shells near probe nuclei. The contributions from these inner shell combinations and their surrounding structures contain the essential physics that determine the PAC-relevant quantities derived from them. The JPDF can be used to predict the nature of inhomogeneous broadening (IHB) in perturbed angular correlation (PAC) experiments by modeling the G{sub 2} spectrum and finding expectation values for V{sub zz} and η. The ease with which this can be done depends upon the representation of the JPDF. Expanding on an earlier work by Czjzek et al. (Hyperfine Interact. 14, 189–194, 1983), Evenson et al. (Hyperfine Interact. 237, 119, 2016) provide a set of coordinates constructed from the EFG tensor invariants they named W{sub 1} and W{sub 2}. Using this parameterization, the JPDF in cubic structures was constructed using a point charge model in which a single trapped defect (TD) is the nearest neighbor to a probe nucleus. Individual defects on nearby lattice sites pair with the TD to provide a locus of points in the W{sub 1}−W{sub 2} plane around which an amorphous-like distribution of probability density grows. Interestingly, however, marginal, separable PDFs appear adequate to model IHB relevant cases. We present cases from simulations in cubic materials illustrating the importance of these near-shell coordinations.

  7. Facile hydrothermal synthesis of CeO 2 nanopebbles

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) nanopebbles have been synthesized using a facile hydrothermal method. X-ray diffraction pattern (XRD) and transmission electron microscopy analyses confirm the presence of CeO2 nanopebbles. XRD shows the formation of cubic fluorite CeO2 and the average particle size estimated from the ...

  8. Determination of enrichment processes and the concentrations of radon in underground mines of fluorite and coal in Santa Catarina state: criteria for evaluation of radiological risks

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendent in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the footwall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m3. The inefficiency of the ventilation system

  9. Synthesis and Optical Properties of Cubic Gold Nanoframes

    OpenAIRE

    Au, Leslie; Chen, Yeechi; Zhou, Fei; Camargo, Pedro H. C.; Lim, Byungkwon; Li, Zhi-Yuan; Ginger, David S.; Xia, Younan

    2008-01-01

    This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl2−. A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single na...

  10. Low temperature formation of higher-k cubic phase HfO2 by atomic layer deposition on GeOx/Ge structures fabricated by in-situ thermal oxidation

    International Nuclear Information System (INIS)

    Zhang, R.; Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S.

    2016-01-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO 2 using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO x interfacial layer. It is found that the cubic phase is dominant in the HfO 2 film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO 2 film on a 1-nm-thick GeO x form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO 2 can be induced by the formation of six-fold crystalline GeO x structures in the underlying GeO x interfacial layer

  11. Structural, electronic and elastic properties of the cubic CaTiO{sub 3} under pressure: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, Saad, E-mail: saadigi@hotmail.com; Ahmed, Afaq; Tariq, Samar [Centre of Excellence in Solid State Physics, University of Punjab, Lahore, 54000 (Pakistan); Saad, Saher [Centre for High Energy Physics, University of the Punjab, Lahore (Pakistan)

    2015-07-15

    Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO{sub 3} have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS’s plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results.

  12. Chemical ordering in substituted fluorite oxides: A computational investigation of Ho2 Zr2 O7 and RE2 Th2 O7 (RE=Ho, Y, Gd, Nd, La)

    OpenAIRE

    Solomon, JM; Shamblin, J; Lang, M; Navrotsky, A; Asta, M

    2016-01-01

    © 2016 The Author(s). Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ord...

  13. Response to reply on “Structural and magnetic behavior of the cubic oxyfluoride SrFeO2F studied by neutron diffraction”

    International Nuclear Information System (INIS)

    Thompson, Corey M.; Blakely, Colin K.; Flacau, Roxana; Greedan, John E.; Poltavets, Viktor V.

    2015-01-01

    Clemens et al. reported on the results published by us (Thompson et al. J. Solid State Chem. 219 (2014) 173–178) on the crystal structure of SrFeO 2 F, which they suggest to actually crystallize in the orthorhombic space group Imma rather than the cubic Pm-3m structure at lower temperatures (Clemens et al. J. Solid State Chem. (2015), (http://dx.doi.org/10.1016/j.jssc.2015.02.022)). In this report, we provide evidence to support their claim that at lower temperatures (<523 K) the structure is evidently Imma. Furthermore, we will highlight the significance of our previous report and comment on the proposed explanations of the magnetic behavior of SrFeO 2 F reported by both groups

  14. Shape Preserving Interpolation Using C2 Rational Cubic Spline

    Directory of Open Access Journals (Sweden)

    Samsul Ariffin Abdul Karim

    2016-01-01

    Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.

  15. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...

  16. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...

  17. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    International Nuclear Information System (INIS)

    Peterman, D.J.

    1980-01-01

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH 2 and YH 2 were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH 2 cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 2 lattice. These experimental results also suggest that, in contrast to recent calculations, LaH 3 is a small-band-gap semiconductor

  18. Electrostatic Effects in Phase Transitions of Biomembranes between Cubic Phases and Lamellar Liquid-Crystalline (Lα) phase

    Science.gov (United States)

    Masum, Shah Md.; Li, Shu Jie; Tamba, Yukihiro; Yamashita, Yuko; Yamazaki, Masahito

    2004-04-01

    Elucidation of the mechanisms of transitions between cubic phase and liquid-crystalline (Lα) phase, and between different IPMS cubic phases, are essential for understanding of dynamics of biomembranes and topological transformation of lipid membranes. Recently, we found that electrostatic interactions due to surface charges of lipid membranes induce transition between cubic phase and Lα phase, and between different IPMS cubic phases. As electrostatic interactions increase, the most stable phase of a monoolein (MO) membrane changes: Q224 ⇒ Q229 ⇒ Lα. We also found that a de novo designed peptide partitioning into electrically neutral lipid membrane changed the phase stability of the MO membranes. As peptide-1 concentration increased, the most stable phase of a MO membrane changes: Q224 ⇒ Q229 ⇒Lα. In both cases, the increase in the electrostatic repulsive interaction greatly reduced the absolute value of spontaneous curvature of the MO monolayer membrane. We also investigated factors such as poly (L-lysine) and osmotic stress to control structure and phase stability of DOPA/MO membranes. Based on these results, we discuss the mechanism of the effect of electrostatic interactions on the stability of cubic phase.

  19. Synthesis of Gold Nanoparticle-Embedded Silver Cubic Mesh Nanostructures Using AgCl Nanocubes for Plasmonic Photocatalysis.

    Science.gov (United States)

    Joo, Jang Ho; Kim, Byung-Ho; Lee, Jae-Seung

    2017-11-01

    A novel room-temperature aqueous synthesis for gold nanoparticle-embedded silver cubic mesh nanostructures using AgCl templates via a template-assisted coreduction method is developed. The cubic AgCl templates are coreduced in the presence of AuCl 4 - and Ag + , resulting in the reduction of AuCl 4 - into gold nanoparticles on the outer region of AgCl templates, followed by the reduction of AgCl and Ag + into silver cubic mesh nanostructures. Removal of the template clearly demonstrates the delicately designed silver mesh nanostructures embedded with gold nanoparticles. The synthetic mechanism, structural properties, and surface functionalization are spectroscopically investigated. The plasmonic photocatalysis of the cubic mesh nanostructures for the degradation of organic pollutants and removal of highly toxic metal ions is investigated; the photocatalytic activity of the cubic mesh nanostructures is superior to those of conventional TiO 2 catalysts and they are catalytically functional even in natural water, owing to their high surface area and excellent chemical stability. The synthetic development presented in this study can be exploited for the highly elaborate, yet, facile design of nanomaterials with outstanding properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  1. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita; Richtarik, Peter

    2018-01-01

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\cal O}(1/\\epsilon)$, ${\\cal O}(1/\\sqrt{\\epsilon})$ and ${\\cal O}(\\log (1/\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  2. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita

    2018-02-12

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\\\cal O}(1/\\\\epsilon)$, ${\\\\cal O}(1/\\\\sqrt{\\\\epsilon})$ and ${\\\\cal O}(\\\\log (1/\\\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  3. Diamond cubic phase of monoolein and water as an amphiphilic matrix for electrophoresis of oligonucleotides.

    Science.gov (United States)

    Carlsson, Nils; Winge, Ann-Sofie; Engström, Sven; Akerman, Björn

    2005-10-06

    We used a cubic liquid crystal formed by the nonionic monoglyceride monoolein and water as a porous matrix for the electrophoresis of oligonucleotides. The diamond cubic phase is thermodynamically stable when in contact with a water-rich phase, which we exploit to run the electrophoresis in the useful submarine mode. Oligonucleotides are separated according to size and secondary structure by migration through the space-filling aqueous nanometer pores of the regular liquid crystal, but the comparatively slow migration means the cubic phase will not be a replacement for the conventional DNA gels. However, our demonstration that the cubic phase can be used in submarine electrophoresis opens up the possibility for a new matrix for electrophoresis of amphiphilic molecules. From this perspective, the results on the oligonucleotides show that water-soluble particles of nanometer size, typical for the hydrophilic parts of membrane-bound proteins, may be a useful separation motif. A charged contamination in the commercial sample of monoolein, most likely oleic acid that arises from its hydrolysis, restricts useful buffer conditions to a pH below 5.6.

  4. Neutrosophic Cubic MCGDM Method Based on Similarity Measure

    Directory of Open Access Journals (Sweden)

    Surapati Pramanik

    2017-06-01

    Full Text Available The notion of neutrosophic cubic set is originated from the hybridization of the concept of neutrosophic set and interval valued neutrosophic set. We define similarity measure for neutrosophic cubic sets and prove some of its basic properties.

  5. Cubical version of combinatorial differential forms

    DEFF Research Database (Denmark)

    Kock, Anders

    2010-01-01

    The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....

  6. P-union and P-intersection of neutrosophic cubic sets

    OpenAIRE

    Florentin Smarandache; Chang Su Kim

    2015-01-01

    Conditions for the P-intersection and P-intersection of falsity-external (resp. indeterminacy-external and truth-external) neutrosophic cubic sets to be an falsity-external (resp. indeterminacy-external and truth- external) neutrosophic cubic set are provided. Conditions for the P-union and the P-intersection of two truth-external (resp. indeterminacy-external and falsity-external) neutrosophic cubic sets to be a truth-internal (resp. indeterminacy-internal and falsity-internal) neutrosoph...

  7. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  8. High-pressure phase of the cubic spinel NiMn2O4

    DEFF Research Database (Denmark)

    Åsbrink, S.; Waskowska, A.; Olsen, J. Staun

    1998-01-01

    experimental uncertainty, there is no volume change at the transition. The cia ratio of the tetragonal spinel is almost independent of pressure and equal to 0.91. The phase transition is attributed to the Jahn-Teller-type distortion and the ionic configurationcan be assumed as (Mn3+)(tetr)[Ni2+Mn3+](oct......It has been observed that the fee spinel NiMn2O4 transforms to a tetragonal structure at about 12 GPa. The tetragonal phase does not revert to the cubic phase upon decompression and its unit-cell constants at ambient pressure are a(0)=8.65(8) and c(0)=7.88(15) Angstrom (distorted fee). Within thr......). The bulk modulus of the cubic phase is 206(4) GPa....

  9. Elastic energy and metastable phase equilibria for coherent mixtures in cubic systems

    International Nuclear Information System (INIS)

    Williams, R.O.

    1979-02-01

    Expressions were derived for the elastic energy due to coherency for cubic systems for an isotropic structure and for (100) or (111) habit planes for a lamellar structure. For the metastable equilibria the usual tangent compositions are replaced by compositions that are tangent to the elastic energy curve. For a loss of coherency there is an energy decrease due to the elastic effects and a further decrease associated with compositional changes. Information contained within this treatment permits calculation of the x-ray diffraction effects for such structures

  10. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    Science.gov (United States)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  11. Response to reply on “Structural and magnetic behavior of the cubic oxyfluoride SrFeO{sub 2}F studied by neutron diffraction”

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Corey M., E-mail: thompco@mcmaster.ca [Department of Chemistry and Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Blakely, Colin K. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Flacau, Roxana [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0 (Canada); Greedan, John E. [Department of Chemistry and Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Poltavets, Viktor V. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)

    2015-03-15

    Clemens et al. reported on the results published by us (Thompson et al. J. Solid State Chem. 219 (2014) 173–178) on the crystal structure of SrFeO{sub 2}F, which they suggest to actually crystallize in the orthorhombic space group Imma rather than the cubic Pm-3m structure at lower temperatures (Clemens et al. J. Solid State Chem. (2015), (http://dx.doi.org/10.1016/j.jssc.2015.02.022)). In this report, we provide evidence to support their claim that at lower temperatures (<523 K) the structure is evidently Imma. Furthermore, we will highlight the significance of our previous report and comment on the proposed explanations of the magnetic behavior of SrFeO{sub 2}F reported by both groups.

  12. Non-spherical micelles in an oil-in-water cubic phase

    DEFF Research Database (Denmark)

    Leaver, M.; Rajagopalan, V.; Ulf, O.

    2000-01-01

    phase, both with and without SDS, was established by NMR self-diffusion. In addition H-2 NMR relaxation experiments have demonstrated that the micelles in the cubic phase are non-spherical, having grown and changed shape upon formation of the cubic phase from the micellar solution. Small angle...... associated with the micellar cubic phase, Pm3n and Fd3m. The micellar volumes calculated for these space groups are similar and are consistent with a change in micellar geometry from spherical to prolate.......The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...

  13. Bifurcation of limit cycles for cubic reversible systems

    Directory of Open Access Journals (Sweden)

    Yi Shao

    2014-04-01

    Full Text Available This article is concerned with the bifurcation of limit cycles of a class of cubic reversible system having a center at the origin. We prove that this system has at least four limit cycles produced by the period annulus around the center under cubic perturbations

  14. Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials

    National Research Council Canada - National Science Library

    Krell, Andreas; Hutzler, Thomas; Klimke, Jens

    2006-01-01

    Sintered sub-micrometer alumina (alpha-Al2O3) is the hardest transparent armor. However, its trigonal structure gives rise to a strong thickness effect that makes thicker components translucent. Cubic ceramics (no birefringence...

  15. Synthetic murataite-3C, a complex form for long-term immobilization of nuclear waste. Crystal structure and its comparison with natural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomova, Anna S.; Krivovichev, Sergey V. [St. Petersburg State Univ. (Russian Federation). Dept. of Crystallography; Yudintsev, Sergey V. [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, St. Petersburg (Russian Federation); Stefanovsky, Sergey V. [MosNPO Radon, Moscow (Russian Federation)

    2013-03-01

    The structure of synthetic murataite-3C intended for long-term immobilization of high-level radioactive waste has been solved using crystals prepared by melting in an electric furnace at 1500 C. The material is cubic, F- anti 43m, a = 14.676(15) A, V = 3161.31(57) A{sup 3}. The structure is based upon a three-dimensional framework consisting of {alpha}-Keggin [Al{sup [4]}Ti{sub 12}{sup [6]}O{sub 40}] clusters linked by sharing the O5 atoms. The Keggin-cluster-framework interpenetrates with the metal-oxide substructure that can be considered as a derivative of the fluorite structure. The crystal chemical formula of synthetic murataite-3C derived from the obtained structure model can be written as {sup [8]}Ca{sub 6}{sup [8]}Ca{sub 4}{sup [6]}Ti{sub 12}{sup [5]}Ti{sub 4}{sup [4]}AlO{sub 42}. Its comparison with the natural murataite shows that the synthetic material has a noticeably less number of vacancies in the cation substructure and contains five instead of four symmetrically independent cation positions. The presence of the additional site essentially increases the capacity of synthetic murataite with respect to large heavy cations such as actinides, rare earth and alkaline earth metals in comparison with the material of natural origin. (orig.)

  16. Bifurcation of cubic nonlinear parallel plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2005-01-01

    The Hopf bifurcation of plate-type beams with cubic nonlinear stiffness in axial flow was studied. By assuming that all the plates have the same deflections at any instant, the nonlinear model of plate-type beam in axial flow was established. The partial differential equation was turned into an ordinary differential equation by using Galerkin method. A new algebraic criterion of Hopf bifurcation was utilized to in our analysis. The results show that there's no Hopf bifurcation for simply supported plate-type beams while the cantilevered plate-type beams has. At last, the analytic expression of critical flow velocity of cantilevered plate-type beams in axial flow and the purely imaginary eigenvalues of the corresponding linear system were gotten. (authors)

  17. Cubic interactions of Maxwell-like higher spins

    Energy Technology Data Exchange (ETDEWEB)

    Francia, Dario [Scuola Normale Superiore and INFN,Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Monaco, Gabriele Lo [Dipartimento di Fisica, Università di Pisa,Piazza Fibonacci, 3, I-56126, Pisa (Italy); Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Mkrtchyan, Karapet [Max Planck Institut für Gravitationsphysik,Am Mühlenberg 1, Potsdam 14476 (Germany)

    2017-04-12

    We study the cubic vertices for Maxwell-like higher-spins in flat and (A)dS background spaces of any dimension. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.

  18. High-throughput continuous hydrothermal flow synthesis of Zn-Ce oxides: unprecedented solubility of Zn in the nanoparticle fluorite lattice.

    Science.gov (United States)

    Kellici, Suela; Gong, Kenan; Lin, Tian; Brown, Sonal; Clark, Robin J H; Vickers, Martin; Cockcroft, Jeremy K; Middelkoop, Vesna; Barnes, Paul; Perkins, James M; Tighe, Christopher J; Darr, Jawwad A

    2010-09-28

    High-throughput continuous hydrothermal flow synthesis has been used as a rapid and efficient synthetic route to produce a range of crystalline nanopowders in the Ce-Zn oxide binary system. High-resolution powder X-ray diffraction data were obtained for both as-prepared and heat-treated (850 degrees C for 10 h in air) samples using the new robotic beamline I11, located at Diamond Light Source. The influence of the sample composition on the crystal structure and on the optical and physical properties was studied. All the nanomaterials were characterized using Raman spectroscopy, UV-visible spectrophotometry, Brunauer-Emmett-Teller surface area and elemental analysis (via energy-dispersive X-ray spectroscopy). Initially, for 'as-prepared' Ce(1-x)Zn(x)O(y), a phase-pure cerium oxide (fluorite) structure was obtained for nominal values of x=0.1 and 0.2. Biphasic mixtures were obtained for nominal values of x in the range of 0.3-0.9 (inclusive). High-resolution transmission electron microscopy images revealed that the phase-pure nano-CeO(2) (x=0) consisted of ca 3.7 nm well-defined nanoparticles. The nanomaterials produced herein generally had high surface areas (greater than 150 m(2) g(-1)) and possessed combinations of particle properties (e.g. bandgap, crystallinity, size, etc.) that were unobtainable or difficult to achieve by other more conventional synthetic methods.

  19. The effect of k-cubic Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases

    International Nuclear Information System (INIS)

    Chai Zheng; Hu Mao-Jin; Wang Rui-Qiang; Hu Liang-Bin

    2014-01-01

    We study the theoretical effect of k-cubic (i.e. cubic-in-momentum) Dresselhaus spin—orbit coupling on the decay time of persistent spin helix states in semiconductor two-dimensional electron gases. We show that the decay time of persistent spin helix states may be suppressed substantially by k-cubic Dresselhaus spin—orbit coupling, and after taking the effect of k-cubic Dresselhaus spin—orbit interaction into account, the theoretical results obtained accord both qualitatively and quantitatively with other recent experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. An Abel type cubic system

    Directory of Open Access Journals (Sweden)

    Gary R. Nicklason

    2015-07-01

    Full Text Available We consider center conditions for plane polynomial systems of Abel type consisting of a linear center perturbed by the sum of 2 homogeneous polynomials of degrees n and 2n-1 where $n \\ge 2$. Using properties of Abel equations we obtain two general systems valid for arbitrary values on n. For the cubic n=2 systems we find several sets of new center conditions, some of which show that the results in a paper by Hill, Lloyd and Pearson which were conjectured to be complete are in fact not complete. We also present a particular system which appears to be a counterexample to a conjecture by Zoladek et al. regarding rational reversibility in cubic polynomial systems.

  1. Cubication of conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  2. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  3. The effect of hydrostatic pressure on the physical properties of magnesium arsenide in cubic and hexagonal phases

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Ali, E-mail: mokhtari@sci.sku.ac.i [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, P. B. 115, Shahrekord (Iran, Islamic Republic of); Sedighi, Matin [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, P. B. 115, Shahrekord (Iran, Islamic Republic of)

    2010-04-01

    Full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT) was applied to study the structural and electronic properties of the magnesium arsenide in both cubic and hexagonal phases. The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). The lattice parameters, bulk modulus and its pressure derivative, cohesive energy, band structures and effective mass of electrons and holes (EME and EMH) were obtained and compared to the available experimental and theoretical results. A phase transition was predicted at pressure of about 1.63 GPa from the cubic to the hexagonal phase. The effect of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths, anti-symmetry gap (the energy gap between two parts of the valence bands), EME and EMH were investigated using both GGA96 and EV-GGA methods. High applied pressure can decrease (increase) the holes mobility of cubic (hexagonal) phase of this compound.

  4. The effect of hydrostatic pressure on the physical properties of magnesium arsenide in cubic and hexagonal phases

    International Nuclear Information System (INIS)

    Mokhtari, Ali; Sedighi, Matin

    2010-01-01

    Full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT) was applied to study the structural and electronic properties of the magnesium arsenide in both cubic and hexagonal phases. The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). The lattice parameters, bulk modulus and its pressure derivative, cohesive energy, band structures and effective mass of electrons and holes (EME and EMH) were obtained and compared to the available experimental and theoretical results. A phase transition was predicted at pressure of about 1.63 GPa from the cubic to the hexagonal phase. The effect of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths, anti-symmetry gap (the energy gap between two parts of the valence bands), EME and EMH were investigated using both GGA96 and EV-GGA methods. High applied pressure can decrease (increase) the holes mobility of cubic (hexagonal) phase of this compound.

  5. Hierarchical Na-doped cubic ZrO{sub 2} synthesis by a simple hydrothermal route and its application in biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Lara-García, Hugo A.; Romero-Ibarra, Issis C.; Pfeiffer, Heriberto, E-mail: pfeiffer@iim.unam.mx

    2014-10-15

    Hierarchical growth of cubic ZrO{sub 2} phase was successfully synthesized via a simple hydrothermal process in the presence of different surfactants (cationic, non-ionic and anionic) and sodium hydroxide. The structural and microstructural characterizations of different ZrO{sub 2} powders were performed using various techniques, such as X-ray diffraction, transmission electron microscopy, N{sub 2} adsorption–desorption, scanning electron microscopy and infrared. Results indicated that sodium addition stabilized the cubic ZrO{sub 2} phase by a Na-doping process, independently of the surfactant used. In contrast, microstructural characteristics varied as a function of the surfactant and sodium presence. In addition, water vapor (H{sub 2}O) and carbon dioxide (CO{sub 2}) sorption properties were evaluated on ZrO{sub 2} samples. Results evidenced that sample surface reactivity changed as a function of the sodium content. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction using the different synthesized samples, obtaining yields of 93%. - Graphical abstract: Hierarchical growth of cubic Na-ZrO{sub 2} phase was synthesized by hydrothermal processes in the presence of surfactants and sodium. Sodium addition stabilized the cubic phase by a Na-doping process, while the microstructural characteristics varied with surfactants. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction. - Highlights: • Cubic-ZrO{sub 2} phase was synthesized via a simple hydrothermal process. • ZrO{sub 2} structure and microstructures changed as a function of the surfactant. • Cubic-ZrO{sub 2} phase was evaluated on the biodiesel transesterification reaction.

  6. Nonlinear dynamics of quadratically cubic systems

    International Nuclear Information System (INIS)

    Rudenko, O V

    2013-01-01

    We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

  7. Theoretical investigations of the bulk modulus in the tetra-cubic transition of PbTiO3 material

    Directory of Open Access Journals (Sweden)

    Renan A. P. Ribeiro

    2014-01-01

    Full Text Available Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.

  8. On Application of Non-cubic EoS to Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan

    Compositional reservoir simulation uses almost exclusively cubic equations of state (EoS) such as the SRK EoS and the PR EoS. This is in contrast with process simulation in the downstream industry where more recent and advanced thermodynamic models are quickly adopted. Many of these models are non-cubic...... EoS, such as the PC-SAFT EoS. A major reason for the use of the conventional cubic EoS in reservoir simulation is the concern over computation time. Flash computation is the most time consuming part in compositional reservoir simulation, and the extra complexity of the non-cubic EoS may significantly...... increase the time consumption. In addition to this, the non-cubic EoS also needs a C7+ characterization. The main advantage of the non-cubic EoS is that it provides for a more accurate descrition of fluid properties, and it is therefore of interest to investigate the computational aspects of using...

  9. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  10. Structure and properties of the Mn doped CeO{sub 2} thin film grown on LaAlO{sub 3} (0 0 1) via a modified sol–gel spin-coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.com [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Department of Physics, Ismailia (Egypt); Al-Ghamdi, A.A. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Al-Agel, F.A. [Hail University, College of Science, Department of Physics, Hail (Saudi Arabia); Al-Arfaj, E. [Umm Alqura University, Department of Physics, Makkah (Saudi Arabia); Qaseem University, Physics Department, Qaseem (Saudi Arabia); Shokr, F.S. [King Abdulaziz University, Faculty of Science & Arts, Department of Physics, Rabigh (Saudi Arabia); Al-Gahtany, S.A. [King Abdulaziz University, Faculty of Science for Girls, Department of Physics, Jeddah (Saudi Arabia); Alshahrie, Ahmed [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Hafez, M. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Department of Physics, Ismailia (Egypt); Bronstein, L.M. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Indiana University, Department of Chemistry, Bloomington, IN 47405 (United States); Beall, Gary W. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2015-08-15

    Highlights: • Mn doped CeO{sub 2} was grown on LaAlO{sub 3} (0 0 1) via sol–gel technique. • The concentration of the Mn ions was varied from 1 to 13 at.%. • The incorporation of 7 at.% of Mn ions was found to provide formation of exceptionally smooth films. • This amount demonstrated the highest saturation magnetization of 1.75 μ{sub B}/Mn and coercive field of 487 Gauss. - Abstract: Here we report Mn doped cerium oxide films prepared on the LaAlO{sub 3} (0 0 1) substrate via an ethylene glycol modified sol–gel spin coating technique and evaluation of their properties as diluted magnetic semiconductors. Cerium oxide was selected because of its high dielectric constant and fluorite cubic structure, matching the silicon and lanthanum aluminate based electronic devices. The concentration of the Mn ions was varied from 1 to 13 at.% and the influence of this concentration on the structure, surface morphology, optical and magnetic properties of these films was studied using scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy, ellipsometric spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and magnetic measurements. The incorporation of 7 at.% of Mn ions was found to provide formation of exceptionally smooth films, demonstrating the highest saturation magnetization of 1.75 μ{sub B}/Mn and the coercive field of 487 Gauss. These properties are assigned to the conversion of Ce{sup 4+} to Ce{sup 3+} upon incorporation of Mn ions into the CeO{sub 2} structure and the oxidation of Mn{sup 2+} to Mn{sup 4+}, creating two oxygen vacancies to preserve the cubic structure of cerium oxide and promoting ferromagnetism.

  11. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    Science.gov (United States)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  12. Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow

    Science.gov (United States)

    Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.

    2018-05-01

    It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.

  13. Kinks in systems with cubic and quartic anharmonicity

    International Nuclear Information System (INIS)

    Kashcheev, V.N.

    1988-01-01

    For a classical system of interacting particles with on-site cubic or quartic anharmonicity explicit analytic solutions of the d'Alembert equation are obtained in the form of kinks in the presence of dissipation (viscous or Rayleigh) and a constant force. These kinks will be asymptotically stable in the case of quartic anharmonicity and unstable in the case cubic anharmonicity

  14. Correction of Sample-Time Error for Time-Interleaved Sampling System Using Cubic Spline Interpolation

    Directory of Open Access Journals (Sweden)

    Qin Guo-jie

    2014-08-01

    Full Text Available Sample-time errors can greatly degrade the dynamic range of a time-interleaved sampling system. In this paper, a novel correction technique employing a cubic spline interpolation is proposed for inter-channel sample-time error compensation. The cubic spline interpolation compensation filter is developed in the form of a finite-impulse response (FIR filter structure. The correction method of the interpolation compensation filter coefficients is deduced. A 4GS/s two-channel, time-interleaved ADC prototype system has been implemented to evaluate the performance of the technique. The experimental results showed that the correction technique is effective to attenuate the spurious spurs and improve the dynamic performance of the system.

  15. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Science.gov (United States)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  16. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  17. Martensitic cubic → tetragonal transition

    International Nuclear Information System (INIS)

    Schumann, H.

    1983-01-01

    Indium-thallium alloys containing 14 to 30% At. Tl have a cubic face-centred beta phase wich changes into a tetragonal face-centred alpha martensite during solidification. The martensite contains twin crystals that are large enough to be seen by means of a light microscope. The phenomenological crystallographic martensite theory was used to calculate Miller's index of the habit plane, the formation of the surface relief, the orientation relations and the critical thickness ratio of the twins. In a beta monocrystal frequently only one of the 24 crystallographic possible habit planes are formed at one end of the sample and migrate through the whole crystal when the temperature drops. Externally applied tension and compression influence in different ways the direction in which the habit plane moves and can even destroy the twinned structure, i.e. they can modify the substructure of the martensite crystal. This induces superelasticity, an effect that has also been described quantitatively. (author)

  18. New cubic perovskites for one- and two-photon water splitting using the computational materials repository

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Landis, David; Thygesen, Kristian Sommer

    2012-01-01

    screening of around 19 000 oxides, oxynitrides, oxysulfides, oxyfluorides, and oxyfluoronitrides in the cubic perovskite structure with PEC applications in mind. We address three main applications: light absorbers for one- and two-photon water splitting and high-stability transparent shields to protect...

  19. Deformation of the cubic open string field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin, E-mail: taejin@kangwon.ac.kr

    2017-05-10

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  20. Deformation of the cubic open string field theory

    International Nuclear Information System (INIS)

    Lee, Taejin

    2017-01-01

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  1. Deformation of the cubic open string field theory

    Directory of Open Access Journals (Sweden)

    Taejin Lee

    2017-05-01

    Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  2. Dicyanamide Salts that Adopt Smectic, Columnar, or Bicontinuous Cubic Liquid-Crystalline Mesophases.

    Science.gov (United States)

    Park, Geonhui; Goossens, Karel; Shin, Tae Joo; Bielawski, Christopher W

    2018-04-25

    Although dicyanamide (i.e., [N(CN) 2 ] - ) has been commonly used to obtain low-viscosity, halogen-free, room-temperature ionic liquids, liquid-crystalline salts containing such anions have remained virtually unexplored. Here we report a series of amphiphilic dicyanamide salts that, depending on their structures and compositions, adopt smectic, columnar, or bicontinuous cubic thermotropic liquid-crystalline mesophases, even at room temperature in some cases. Their thermal properties were explored by polarized light optical microscopy, differential scanning calorimetry, thermogravimetric analysis (including evolved gas analysis), and variable-temperature synchrotron X-ray diffraction. Comparison of the thermal phase characteristics of these new liquid-crystalline salts featuring "V-shaped" [N(CN) 2 ] - anions with those of structural analogues containing [SCN] - , [BF 4 ] - , [PF 6 ] - , or [CF 3 SO 3 ] - anions indicated that not only the size of the counterion but also its shape should be considered in the development of mesomorphic salts. Collectively, these discoveries may be expected to facilitate the design of thermotropic ionic liquid crystals that form inverted-type bicontinuous cubic and other sophisticated liquid-crystalline phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Department of Physics, Pollachi Institute of Engineering and Technology, Pollachi 642 205 (India); Ananthapadmanabhan, P.V.; Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Vision for Wisdom, Temple of Consciousness, Aliyar 642 101 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Suresh, G. [Department of Physics, Park College of Engineering and Technology, Coimbatore 641 659 (India); Su, L.T.; Tok, A.I.Y. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2013-06-15

    Pure zirconium oxide powders with particle size 2–33 nm are synthesized by reactive plasma processing. Transmission electron microscopy investigation of these particles revealed size dependent behavior for their phase stabilization. The monoclinic phase is found to be stable when particle size is ≥20 nm; Tetragonal is found to be stabilized in the range of 7–20 nm and as the particle size decreases to 6 nm and less, the cubic phase is stabilized. - Highlights: ► Direct conversion of micron-sized zirconium hydride powder to single crystal ZrO{sub 2} nanopowder. ► Size dependent stabilization of cubic, tetragonal and monoclinic phases in the reactive plasma synthesized ZrO{sub 2} nanopowder. ► Transmission electron microscopic investigation to identify particles of different sizes and their corresponding phase structure.

  4. Interaction of dispersed cubic phases with blood components

    DEFF Research Database (Denmark)

    Bode, J C; Kuntsche, Judith; Funari, S S

    2013-01-01

    The interaction of aqueous nanoparticle dispersions, e.g. based on monoolein/poloxamer 407, with blood components is an important topic concerning especially the parenteral way of administration. Therefore, the influence of human and porcine plasma on dispersed cubic phases was investigated. Part...... activity of cubic phases based on monoolein and poloxamer 188, on soy phosphatidylcholine, glycerol dioleate and polysorbate 80 or the parenteral fat emulsion Lipofundin MCT 20%....

  5. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R., E-mail: zhang@mosfet.t.u-tokyo.ac.jp [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S. [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x} interfacial layer.

  6. THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE

    Directory of Open Access Journals (Sweden)

    T. O. Parashchuk

    2016-07-01

    Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.

  7. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  8. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  9. d and f electrons in a qp-quantized cubical field

    International Nuclear Information System (INIS)

    Kibler, M.; Sztucki, J.

    1993-03-01

    A procedure for qp-quantizing a crystal-field potential V with an arbitrary symmetry G is developed. Such a procedure is applied to the case where V involves cubic components (G=0) of the degrees 4 and 6. This case corresponds to d and f electrons in a qp-quantized cubical potential. It is shown that the qp-quantization of the considered cubical potential is equivalent to a symmetry breaking of type O→D 4 . A general conjecture about this symmetry breaking phenomenon is given. (author) 21 refs

  10. Synthesis of Cubic Phase-Co Microspheres by Mechanical Solid-State Reaction-Thermal Decomposition and Research on Its Growth Kinetics

    Directory of Open Access Journals (Sweden)

    Ying Deng

    2016-01-01

    Full Text Available Cubic phase cobalt (Co, which can be used as a key component for composite materials given its excellent ductility and internal structure, is not easy to obtain at room temperature. In this study, oxalic acid and cobalt nitrate are used as raw materials to synthesize the cobalt oxalate precursor, which has a stable structure with a five-membered chelate ring. Cobalt oxalate microspheres, having a high internal energy content, were prepared by using mechanical solid-state reaction in the presence of a surfactant, which can produce spherical micelles. The thermal decomposition of the precursor was carried out by maintaining it in a nitrogen atmosphere at 450°C for 3 h. At the end of the procedure, 100 nm cubic phase-Co microspheres, stable at room temperature, were obtained. Isothermal and nonisothermal kinetic mechanisms of cobalt grain growth were investigated. The cubic-Co grain growth activation energy, Q, was calculated in this study to be 71.47 kJ/mol. The required reaction temperature was low, making the production process simple and suitable for industrial applications.

  11. Structures of Bi14WO24 and Bi14MoO24 from neutron powder diffraction data

    International Nuclear Information System (INIS)

    Ling, C.D.; Withers, R.L.; Thompson, J.G.; Schmid, S.

    1999-01-01

    The (isomorphous) structures of Bi 14 WO 24 , tetradecabismuth tungsten tetracosaoxide, and Bi 14 MoO 24 , tetradecabismuth molybdenum tetracosaoxide, have been solved and refined using neutron powder diffraction data in the space group I4/m. The metal-atom array is fully ordered in terms of composition, and in terms of atomic positions deviates only slightly from a fluorite-type δ-Bi 2 O 3 -related parent structure. Three independent O-atom sites (accounting for 70 out of 78 O atoms in the unit cell) are also very close to fluorite-type parent positions. The remaining two O-atom sites, which coordinate W, exhibit partial occupancies and displacive disorder, neither of which could be better modelled by lowering of symmetry. The W site is coordinated by four O atoms in highly distorted tetrahedral coordination, the tetrahedron necessarily being orientationally disordered on that site. Nonetheless, the structure appears to be chemically reasonable. (orig.)

  12. Effect of electrostatic interactions on phase stability of cubic phases of biomembranes.

    Science.gov (United States)

    Li, Shu Jie; Masum, Shah Md; Yamashita, Yuko; Tamba, Yukihiro; Yamazaki, Masahito

    2002-06-01

    We investigated effect of electrostatic interactions due to surfacecharges on structures and stability of cubic phases of monoolein (MO)membrane using the small-angle X-ray scattering method. Firstly, wechanged the surface charge density of the membrane by usingdioleoylphosphatidic acid (DOPA). As increasing DOPA concentration in themembrane at 30 wt % lipid concentration, a Q(224) to Q(229) phasetransition occurred at 0.6 mol % DOPA, and at and above 25 mol %, DOPA/MOmembranes were in the L(α) phase. NaCl in the bulk phase reduced theeffect of DOPA. These results indicate that as the electrostaticinteractions increase, the most stable phase changes as follows: Q(224)⇒ Q(229) ⇒ L(α). The increase in DOPAconcentration reduced the absolute value of spontaneous curvature of themembrane, | H(0) |. Secondly, we changed the surface charge of themembrane by adding a de novo designed peptide, which has netpositive charges and a binding site on the electrically neutral membraneinterface. The peptide-1 (WLFLLKKK) induced a Q(224) to Q(229)phase transition in the MO membrane at low peptide concentration. As NaClconcentration increases, the MO/peptide-1 membrane changed from Q(229)to Q(224) phase. The increase in peptide-1 concentration reduced |H(0) |. Based on these results, the stability of the cubic phases and themechanism of phase transition between cubic phase and L(α) phase arediscussed.

  13. A popular metastable omega phase in body-centered cubic steels

    Energy Technology Data Exchange (ETDEWEB)

    Ping, D.H., E-mail: ping.de-hai@nims.go.jp [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Geng, W.T., E-mail: geng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    Steel remains to be one of the most common structural materials in the world as human civilization advances from the Iron Age to the ongoing Silicon Age. Our knowledge of its microstructure evolution and structure–performance relationship is nevertheless still incomplete. We report the observation and characterization of a long ignored metastable phase formed in steels with body-centered cubic (bcc) structure using both transmission electron microscopy and density functional theory calculations. This ω phase has a hexagonal structure and coherent interface with the matrix: a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. It is 3.6% smaller in volume and 0.18 eV higher in energy than bcc-Fe, with atoms in alternating close- and loose-packed layers couple anti-ferromagnetically. Carbon plays a crucial role in promoting bcc to ω transformation. At a concentration higher than 4 at.% they tend to segregate from the bcc matrix to the ω-phase; at about 14 at.%, they can induce bcc to ω transformation; and finally at 25 at.%, they stabilize the ω phase as ω-Fe{sub 3}C. The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms, leading to improved resistance of martensitic steels to irradiation damage. - Highlights: ► A long-ignored metastable ω phase in body-centered cubic (bcc) steel. ► The ω phase has hexagonal structure with lattice parameters a{sub ω} = √2 × a{sub bcc} and c{sub ω} = √3/2 × a{sub bcc}. ► Carbon enrichment is found to play a crucial role on the bcc-to-ω phase transformation. ► The ω phase is strongly related to the martensitic transformation and twinning structure. ► The ω phase in bcc Fe can serve as sinks for vacancies, H, and He atoms.

  14. Minimal knotted polygons in cubic lattices

    International Nuclear Information System (INIS)

    Van Rensburg, E J Janse; Rechnitzer, A

    2011-01-01

    In this paper we examine numerically the properties of minimal length knotted lattice polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices by sieving minimal length polygons from a data stream of a Monte Carlo algorithm, implemented as described in Aragão de Carvalho and Caracciolo (1983 Phys. Rev. B 27 1635), Aragão de Carvalho et al (1983 Nucl. Phys. B 215 209) and Berg and Foester (1981 Phys. Lett. B 106 323). The entropy, mean writhe, and mean curvature of minimal length polygons are computed (in some cases exactly). While the minimal length and mean curvature are found to be lattice dependent, the mean writhe is found to be only weakly dependent on the lattice type. Comparison of our results to numerical results for the writhe obtained elsewhere (see Janse van Rensburg et al 1999 Contributed to Ideal Knots (Series on Knots and Everything vol 19) ed Stasiak, Katritch and Kauffman (Singapore: World Scientific), Portillo et al 2011 J. Phys. A: Math. Theor. 44 275004) shows that the mean writhe is also insensitive to the length of a knotted polygon. Thus, while these results for the mean writhe and mean absolute writhe at minimal length are not universal, our results demonstrate that these values are quite close the those of long polygons regardless of the underlying lattice and length

  15. Cubic Pencils and Painlev\\'e Hamiltonians

    OpenAIRE

    Kajiwara, Kenji; Masuda, Tetsu; Noumi, Masatoshi; Ohta, Yasuhiro; Yamada, Yasuhiko

    2004-01-01

    We present a simple heuristic method to derive the Painlev\\'e differential equations from the corresponding geometry of rational surafces. We also give a direct relationship between the cubic pencils and Seiberg-Witten curves.

  16. The Combinatorial Rigidity Conjecture is False for Cubic Polynomials

    DEFF Research Database (Denmark)

    Henriksen, Christian

    2003-01-01

    We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.......We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995....

  17. Fundamentals and applications of neutron diffraction. Applications 4. Crystal structure analysis of ionic conducting ceramic materials by means of neutron diffractometry

    International Nuclear Information System (INIS)

    Yashima, Masatomo

    2010-01-01

    The crystal structure and ionic diffusion path of ionic and mixed ionic-electronic conductors, which are important in a variety of applications such as fuel cells, gas sensors, catalyst and batteries, are reviewed. α-AgI has many occupational sites of mobile Ag ions. β-alumina exhibits two-dimensional Na ionic diffusion. In the fluorite-structured superionic conductors such as ceria solid solution Ce 0.93 Y 0.07 O 1.96 , bismuth oxide solid solution δ-Bi 1.4 -Yb 0.6 O 3 and copper iodide CuI, a similar curved diffusion pathway along the directions is observed. In the ionic conductors with the cubic ABO 3 perovskite-type structure such as lanthanum gallate and lanthanum cobaltite solid solutions, the mobile ions diffuses along a curved line keeping the interatomic distance between the B cation and O 2- anion to some degree. The structure and diffusion path of double-perovskite-type La 0.64 Ti 0.92 Nb 0.08 O 2.99 , K 2 NiF 4 -type(Pr 0.9 La 0.1 ) 2 (Ni 0.74 Cu 0.21 Ga 0.05 )O 4+δ , and apatite-type La 9.69 (Si 5.70 Mg 0.30 )O 26.24 are described. The structure and diffusion path of lithium-ion conductors La 0.62 Li 0.16 TiO 3 and Li 0.6 FePO 4 are also discussed. The diffusion paths of La 0.62 Li 0.16 TiO 3 and Li 0.6 FePO 4 are two- and one-dimensional, respectively. (author)

  18. General description of new equipment 'Fluorite-III' for Bor-Oendoer fluorate factory

    International Nuclear Information System (INIS)

    Bayar, V.; Basankhueue, O.; Ganzorig, J.; Dushan, P.; Lodoisamba, S.; Otgooloi, B.; Tsehlmehg, A.; Shagjjamba, D.

    1992-01-01

    A new equipment 'Fluorite-III' is described which is used to register and analyze three kinds of following informations: 1. Pulse count for determination of ore's concentration which is transferring by the factory conveyor. 2. Pulse count for determination of ore's thickness which is transferring also by the factory conveyor. 3. Information about that: Is the conveyor moving or not during our measurements. First and second kinds of information are registered by two detectors which is established on the different places from the factory conveyor. Constraction of these detectors are the same. Every one of them consists of a ''photo multiplier tube'' and a scintillator of ''sodium-iodine''. The third information is corresponding to the ''transistor and transistical logic'' level. Every counters data and the information about the conveyor should be transferred every time to the computer which is compatible with the IBM/PC for further treatment through the following devices: 1. Three State Buffer which is made from ''Generic Array Logic'' device. 2. Universal Asynchronous Receiver and Transmitter (UART) which is of type (AY 3-1015). 3. 20 milli-ampere current interface with optical isolators. Also in this way but in reverse order by these devices we can control all processes of the measurements from the computer. 1 fig

  19. Superconductivity in U-T alloys (T = Mo, Pt, Pd, Nb, Zr stabilized in the cubic γ-U structure by splat-cooling technique

    Directory of Open Access Journals (Sweden)

    N.-T.H. Kim-Ngan

    2016-06-01

    Full Text Available We succeed to retain the high-temperature (cubic γ-U phase down to low temperatures in U-T alloys with less required T alloying concentration (T = Mo, Pt, Pd, Nb, Zr by means of splat-cooling technique with a cooling rate better than 106 K/s. All splat-cooled U-T alloys become superconducting with the critical temperature Tc in the range of 0.61 K–2.11 K. U-15 at.% Mo splat consisting of the γ-U phase with an ideal bcc A2 structure is a BCS superconductor having the highest critical temperature (2.11 K.

  20. Language pathway tracking: comparing nTMS-based DTI fiber tracking with a cubic ROIs-based protocol.

    Science.gov (United States)

    Negwer, Chiara; Sollmann, Nico; Ille, Sebastian; Hauck, Theresa; Maurer, Stefanie; Kirschke, Jan S; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2017-03-01

    OBJECTIVE Diffusion tensor imaging (DTI) fiber tracking (FT) has been widely used in glioma surgery in recent years. It can provide helpful information about subcortical structures, especially in patients with eloquent space-occupying lesions. This study compared the newly developed navigated transcranial magnetic stimulation (nTMS)-based DTI FT of language pathways with the most reproducible protocol for language pathway tractography, using cubic regions of interest (ROIs) for the arcuate fascicle. METHODS Thirty-seven patients with left-sided perisylvian lesions underwent language mapping by repetitive nTMS. DTI FT was performed using the cubic ROIs-based protocol and the authors' nTMS-based DTI FT approach. The same minimal fiber length and fractional anisotropy were chosen (50 mm and 0.2, respectively). Both protocols were performed with standard clinical tractography software. RESULTS Both methods visualized language-related fiber tracts (i.e., corticonuclear tract, arcuate fascicle, uncinate fascicle, superior longitudinal fascicle, inferior longitudinal fascicle, arcuate fibers, commissural fibers, corticothalamic fibers, and frontooccipital fascicle) in all 37 patients. Using the cubic ROIs-based protocol, 39.9% of these language-related fiber tracts were detected in the examined patients, as opposed to 76.0% when performing nTMS-based DTI FT. For specifically tracking the arcuate fascicle, however, the cubic ROIs-based approach showed better results (97.3% vs 75.7% with nTMS-based DTI FT). CONCLUSIONS The cubic ROIs-based protocol was designed for arcuate fascicle tractography, and this study shows that it is still useful for this intention. However, superior results were obtained using the nTMS-based DTI FT for visualization of other language-related fiber tracts.

  1. Synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to hexapod structures and their surface properties.

    Science.gov (United States)

    Lyu, Lian-Ming; Wang, Wei-Ching; Huang, Michael H

    2010-12-17

    We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.

  2. Trace spaces in a pre-cubical complex

    DEFF Research Database (Denmark)

    Raussen, Martin

    2009-01-01

    In directed algebraic topology, directed irreversible (d)-paths and spaces consisting of d-paths are studied from a topological and from a categorical point of view. Motivated by models for concurrent computation, we study in this paper spaces of d-paths in a pre-cubical complex. Such paths...... are equipped with a natural arc length which moreover is shown to be invariant under directed homotopies. D-paths up to reparametrization (called traces) can thus be represented by arc length parametrized d-paths. Under weak additional conditions, it is shown that trace spaces in a pre-cubical complex...... are separable metric spaces which are locally contractible and locally compact. Moreover, they have the homotopy type of a CW-complex....

  3. em>Ab initio em>LSDA and LSDA+em>U em>study of pure and Cd-doped cubic lanthanide sesquioxides

    DEFF Research Database (Denmark)

    Richard, D.; Muñoz, E.L.; Rentería, M.

    2013-01-01

    The electronic, structural, and hyperfine properties of pure and Cd-doped lanthanide (Ln) sesquioxides with the cubic bixbyite structure (Ln2O3, Ln ranging from La to Lu) have been studied using the full-potential augmented plane wave plus local orbital (APW+lo) method within the local spin density...

  4. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles

    Directory of Open Access Journals (Sweden)

    Jie Lai

    2009-12-01

    Full Text Available Jie Lai1,2, Yi Lu1, Zongning Yin2, Fuqiang Hu3, Wei Wu11School of Pharmacy, Fudan University, Shanghai, China, 2West China School of Pharmacy, Sichuan University, Chengdu, China, 3School of Pharmacy, Zhejiang University, Hangzhou, ChinaAbstract: Efforts to improve the oral bioavailability of cyclosporine A (CyA remains a challenge in the field of drug delivery. In this study, glyceryl monooleate (GMO/poloxamer 407 cubic nanoparticles were evaluated as potential vehicles to improve the oral bioavailability of CyA. Cubic nanoparticles were prepared via the fragmentation of a bulk GMO/poloxamer 407 cubic phase gel by sonication and homogenization. The cubic inner structure formed was verified using Cryo-TEM. The mean diameters of the nanoparticles were about 180 nm, and the entrapment efficiency of these particles for CyA was over 85%. The in vitro release of CyA from these nanoparticles was less than 5% at 12 h. The results of a pharmacokinetic study in beagle dogs showed improved absorption of CyA from cubic nanoparticles as compared to microemulsion-based Neoral®; higher Cmax (1371.18 ± 37.34 vs 969.68 ± 176.3 ng mL-1, higher AUC0–t (7757.21 ± 1093.64 vs 4739.52 ± 806.30 ng h mL-1 and AUC0–∞ (9004.77 ± 1090.38 vs 5462.31 ± 930.76 ng h mL-1. The relative oral bioavailability of CyA cubic nanoparticles calculated on the basis of AUC0–∞ was about 178% as compared to Neoral®. The enhanced bioavailability of CyA is likely due to facilitated absorption by cubic nanoparticles rather than improved release.Keywords: nanoparticles, cubosomes, cyclosporine A, glyceryl monooleate, oral drug delivery, bioavailability, beagle dogs

  5. Spectra and energy levels of Eu{sup 3+} in cubic phase Gd{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Eric R. [Kratos Defense and Security Solutions, Inc., 5030 Bradford Dr., Huntsville, AL 35805 (United States); Gruber, John B. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249-0697 (United States); Wellenius, Patrick; Muth, John F. [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States); Everitt, Henry O. [Department of Physics, Duke University, Durham, NC 27708 (United States); Army Aviation and Missile RD and E Center, Redstone Arsenal, AL 35898 (United States)

    2010-07-15

    In pulsed laser deposition of the sesquioxide semiconductor Gd{sub 2}O{sub 3}, adjusting the chamber oxygen pressure controls the crystalline structure of the host. This technique was used to deposit thin films of nominally 1.6% by weight europium-doped, cubic phase Gd{sub 2}O{sub 3} using 50 mTorr of oxygen. Structural measurements using high-resolution transmission electron microscopy and selected area electron diffraction confirm the films were polycrystalline, cubic phase Eu:Gd{sub 2}O{sub 3}. The spectroscopic assignment of emission lines to specific radiative transitions within the trivalent Eu ion is confirmed by theoretical analysis of the appropriate crystal field Hamiltonian. Detailed crystal-field splittings are presented for the {sup 5}D{sub J=0-2} and {sup 7}F{sub J=0-5} multiplet manifolds of Eu{sup 3+} in this host material. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. The planar cubic Cayley graphs

    CERN Document Server

    Georgakopoulos, Agelos

    2018-01-01

    The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

  7. Mesostructured germanium with cubic pore symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Armatas, G S; Kanatzidis, M G [Michigan State Univ., Michigan (United States), Dept. of Chemistry

    2006-11-15

    Regular mesoporous oxide materials have been widely studied and have a range of potential applications, such as catalysis, absorption and separation. They are not generally considered for their optical and electronic properties. Elemental semiconductors with nanopores running through them represent a different form of framework material with physical characteristics contrasting with those of the more conventional bulk, thin film and nanocrystalline forms. Here we describe cubic meso structured germanium, MSU-Ge-l, with gyroidal channels containing surfactant molecules, separated by amorphous walls that lie on the gyroid (G) minimal surface as in the mesoporous silica MCM-48. Although Ge is a high-meltin covalent semiconductor that is difficult to prepare from solution polymerization, we succeeded in assembling a continuous Ge network using a suitable precursor for Ge{sup 4-} atoms. Our results indicate that elemental semiconductors from group 14 of the periodic table can be made to adopt meso structured forms such as MSU-Ge-1, which features two three-dimensional labyrinthine tunnels obeying la3d space group symmetry and separated by a continuous germanium minimal surface that is otherwise amorphous. A consequence of this new structure for germanium, which has walls only one nanometre thick, is a wider electronic energy bandgap (1.4 eV versus 0.66 eV) than has crystalline or amorphous Ge. Controlled oxidation of MSU-Ge-1 creates a range of germanium suboxides with continuously varying Ge:O ratio and a smoothly increasing energy gap. (author)

  8. Fundamental aspects of Am and Cm in zirconia-based materials. Investigations using X-ray diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    Raison, P.E.; Haire, R.G.; Assefa, Z.

    2002-01-01

    We have investigated incorporation of americium and curium in selected zirconia-based materials. Fundamental aspects were explored via X-ray diffraction and Raman spectroscopy. First explored was the pseudo ternary system, AmO 2 -ZrO 2 -Y 2 O 3 . It was found that stable, cubic solid solutions (Am x Zr 1-x Y y )O 2-2/y can be obtained for selected compositions. The cell parameters of the cubic phases were established as being linear with the AmO 2 content. For the Cm 2 O 3 -ZrO 2 system, it was determined that diphasic materials are produced, except for two compositions: 25 mol% and 50 mol% of CmO 1.5 . For these compositions a single-phase cubic fluorite type solid solution (a=5.21A±0.01) and a pyrochlore oxide Cm 2 Zr 2 O 7 (a=10.63A±0.02) are formed, respectively. The stability of pyrochlore oxides is also being investigated as a function of self-irradiation, using shorter-lived isotopes, one being the californium pyrochlore 249 Cf 2 Zr 2 O 7 . We obtained evidence that after six months of storage the pyrochlore oxide is undergoing structural change. Additional studies are in progress. (author)

  9. Order-disorder phase transformation in ion-irradiated rare earth sesquioxides

    International Nuclear Information System (INIS)

    Tang, M.; Valdez, J. A.; Sickafus, K. E.; Lu, P.

    2007-01-01

    An order-to-disorder (OD) transformation induced by ion irradiation in rare earth (RE) sesquioxides, Dy 2 O 3 , Er 2 O 3 , and Lu 2 O 3 , was studied using grazing incidence x-ray diffraction and transmission electron microscopy. These sesquioxides are characterized by a cubic C-type RE structure known as bixbyite. They were irradiated with heavy Kr ++ ions (300 keV) and light Ne + ions (150 keV) at cryogenic temperature (∼120 K). In each oxide, following a relatively low ion irradiation dose of ∼2.5 displacements per atom, the ordered bixbyite structure was transformed to a disordered, anion-deficient fluorite structure. This OD transformation was found in all three RE sesquioxides (RE=Dy, Er, and Lu) regardless of the ion type used in the irradiation. The authors discuss the irradiation-induced OD transformation process in terms of anion disordering, i.e., destruction of the oxygen order associated with the bixbyite structure

  10. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

  11. [Multimodal medical image registration using cubic spline interpolation method].

    Science.gov (United States)

    He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-12-01

    Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

  12. Regularizing cubic open Neveu-Schwarz string field theory

    International Nuclear Information System (INIS)

    Berkovits, Nathan; Siegel, Warren

    2009-01-01

    After introducing non-minimal variables, the midpoint insertion of Y Y-bar in cubic open Neveu-Schwarz string field theory can be replaced with an operator N ρ depending on a constant parameter ρ. As in cubic open superstring field theory using the pure spinor formalism, the operator N ρ is invertible and is equal to 1 up to a BRST-trivial quantity. So unlike the linearized equation of motion Y Y-bar QV = 0 which requires truncation of the Hilbert space in order to imply QV = 0, the linearized equation N ρ QV = 0 directly implies QV = 0.

  13. Growth of InAs Wurtzite Nanocrosses from Hexagonal and Cubic Basis

    DEFF Research Database (Denmark)

    Krizek, Filip; Kanne, Thomas; Razmadze, Davydas

    2017-01-01

    . Two methods use conventional wurtzite nanowire arrays as a 6-fold hexagonal basis for growing single crystal wurtzite nanocrosses. A third method uses the 2-fold cubic symmetry of (100) substrates to form well-defined coherent inclusions of zinc blende in the center of the nanocrosses. We show......Epitaxially connected nanowires allow for the design of electron transport experiments and applications beyond the standard two terminal device geometries. In this Letter, we present growth methods of three distinct types of wurtzite structured InAs nanocrosses via the vapor-liquid-solid mechanism...

  14. Synthesis and structural characterization of (Bi2O3)1–x (Y2O3)x and ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Fast ion conductors; fluorite structure; fuel cell materials. 1. Introduction. Fast ion conductors have been a subject of extensive re- search because of their interesting physical properties as ... potential of enormous commercial and ecologi- cal benefits provided suitable high performance material can be developed.

  15. Radiation effects in cubic zirconia: A model system for ceramic oxides

    Science.gov (United States)

    Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.

    2009-06-01

    Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.

  16. Numbers for reducible cubic scrolls

    Directory of Open Access Journals (Sweden)

    Israel Vainsencher

    2004-12-01

    Full Text Available We show how to compute the number of reducible cubic scrolls of codimension 2 in (math blackboard symbol Pn incident to the appropriate number of linear spaces.Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em (math blackboard symbol Pn incidentes a espaços lineares apropriados.

  17. The phase space of the focused cubic Schroedinger equation: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Burlakov, Yuri O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    distinctly different components. They point out the interesting fact that the phase space into distinctly different components. They point out the interesting fact that the phase transition type behavior of the discretized cubic Schroedinger equation can be observed in a discretization with as few as 2 points. The refinement of the discretization does not change the global picture qualitatively. The authors vary two parameters in the canonical ensemble of the cubic Schroedinger equation: the first parameter is the temperature, the second one is a certain constraint on the function space. They demonstrate that at a fixed low temperature, as the constraint varies, the canonical ensemble of the cubic Schroedinger equation undergoes a bifurcation which is manifested both in the change in the shape of the typical function and in a corresponding change of the structure of the phase space.

  18. Accelerator-based analytical technique in the evaluation of some Nigeria's natural minerals: Fluorite, tourmaline and topaz

    Energy Technology Data Exchange (ETDEWEB)

    Olabanji, S.O. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), viale dell' Universita 2, 35020 Legnaro, Padova (Italy)]. E-mail: skayode2002@yahoo.co.uk; Ige, O.A. [Natural History Museum, Obafemi Awolowo University, Ile-Ife (Nigeria); Mazzoli, C. [Dipartimento di Mineralogia e Petrologia, Universita di Padova, 35100 Padova (Italy); Ceccato, D. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35100 Padova (Italy); Akintunde, J.A. [CERD, Obafemi Awolowo University, Ile-Ife (Nigeria); De Poli, M. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Moschini, G. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL), viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35100 Padova (Italy)

    2005-10-15

    For the first time, the complementary accelerator-based analytical technique of PIXE and electron microprobe analysis (EMPA) were employed for the characterization of some Nigeria's natural minerals namely fluorite, tourmaline and topaz. These minerals occur in different areas in Nigeria. The minerals are mainly used as gemstones and for other scientific and technological applications and therefore are very important. There is need to characterize them to know the quality of these gemstones and update the geochemical data on them geared towards useful applications. PIXE analysis was carried out using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy. The novel results which show many elements at different concentrations in these minerals are presented and discussed.

  19. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  20. Nuclear spin relaxation due to motion on inequivalent sites: H diffusion on O and T sites in the face-centred cubic structure

    International Nuclear Information System (INIS)

    Luo Xinjun; Sholl, C A

    2003-01-01

    Magnetization recoveries for nuclear spin relaxation of like spins due to magnetic dipolar coupling and diffusion on inequivalent sites involve a sum of exponentials. The theory is applied to diffusion on octahedral and tetrahedral interstitial sites in the face-centred cubic structure. Monte Carlo simulations have been used to generate relaxation data for parameters typical for H in metals. It is found that only a single exponential would be observable in the high- and low-temperature limits, but that two-exponential recoveries could be observable in the vicinity of the maximum in the relaxation rate as a function of temperature. The Monte Carlo relaxation data has been fitted using a Bloembergen-Pound-Purcell (BPP) model to assess the accuracy of the BPP model

  1. An insight into the local O{sub h} {yields}T{sub d} instability in BaF{sub 2}:Mn{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fernandez, P; Aramburu, J A; Barriuso, M T; Moreno, M, E-mail: morenom@unican.e

    2010-11-01

    While most complexes in fluorite-type lattices (CaF{sub 2}, SrF{sub 2}, CdF{sub 2}) containing Mn{sup 2+} impurities remain cubic at all temperatures, electron paramagnetic resonance (EPR) measurements have shown that the one in BaF{sub 2} is tetrahedral below 50K. This surprising behaviour is intrinsic to the centre and not associated to any close defect or pure lattice phase-transition. Through the use of density functional (DFT) calculations we show that the distortion is linked to the unexpected low force constant along the tetrahedral distortion mode with a{sub 2u} symmetry in these complexes and the large metal-ligand distance existing in BaF{sub 2}:Mn{sup 2+}. Ultimately, these facts reflect that, for substitutional impurities in fluorite-type crystals, the ligand-ligand interaction is dominant over the metal-ligand one.

  2. Modeling the dispersion of atmospheric pollution using cubic splines and chapeau functions

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Kern, C D; Long, P E

    1979-01-01

    Two methods that can be used to solve complex, three-dimensional, advection-diffusion transport equations are investigated. A quasi-Lagrangian cubic spline method and a chapeau function method are compared in advecting a passive scalar. The methods are simple to use, computationally fast, and reasonably accurate. Little numerical dissipation is manifested by the schemes. In simple advection tests with equal mesh spacing, the chapeau function method maintains slightly more accurate peak values than the cubic spline method. In tests with unequal mesh spacing, the cubic spline method has less noise, but slightly more damping than the standard chapeau method has. Both cubic splines and chapeau functions can be used to solve the three-dimensional problem of gaseous emissions dispersion without excessive programing complexity or storage requirements. (10 diagrams, 39 references, 2 tables)

  3. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations

    Science.gov (United States)

    Hajabdollahi, Farzaneh; Premnath, Kannan N.

    2018-05-01

    Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several

  4. Hairy black holes in cubic quasi-topological gravity

    Energy Technology Data Exchange (ETDEWEB)

    Dykaar, Hannah [Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Department of Physics, McGill University,3600 rue University, Montreal, QC, H3A 2T8 (Canada); Hennigar, Robie A.; Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)

    2017-05-09

    We construct a class of five dimensional black hole solutions to cubic quasi-topological gravity with conformal scalar hair and study their thermodynamics. We find these black holes provide the second example of black hole λ-lines: a line of second order (continuous) phase transitions, akin to the fluid/superfluid transition of {sup 4}He. Examples of isolated critical points are found for spherical black holes, marking the first in the literature to date. We also find various novel and interesting phase structures, including an isolated critical point occurring in conjunction with a double reentrant phase transition. The AdS vacua of the theory are studied, finding ghost-free configurations where the scalar field takes on a non-zero constant value, in notable contrast to the five dimensional Lovelock case.

  5. Semiconducting cubic titanium nitride in the Th3P4 structure

    Energy Technology Data Exchange (ETDEWEB)

    Bhadram, Venkata S.; Liu, Hanyu; Xu, Enshi; Li, Tianshu; Prakapenka, Vitali B.; Hrubiak, Rostislav; Lany, Stephan; Strobel, Timothy A.

    2018-01-01

    We report the discovery of a long-sought-after phase of titanium nitride with stoichiometry Ti 3 N 4 using diamond anvil cell experiments combined with in situ high-resolution x-ray diffraction and Raman spectroscopy techniques, supported by ab initio calculations. Ti 3 N 4 crystallizes in the cubic Th 3 P 4 structure [space group I ¯ 4 3 d (220)] from a mixture of TiN and N 2 above ≈ 75 GPa and ≈ 2400 K. The density ( ≈ 5.22 g/cc) and bulk modulus ( K 0 = 290 GPa) of cubic- Ti 3 N 4 ( c - Ti 3 N 4 ) at 1 atm, estimated from the pressure-volume equation of state, are comparable to rocksalt TiN. Ab initio calculations based on the GW approximation and using hybrid functionals indicate that c - Ti 3 N 4 is a semiconductor with a direct band gap between 0.8 and 0.9 eV, which is larger than the previously predicted values. The c - Ti 3 N 4 phase is not recoverable to ambient pressure due to dynamic instabilities, but recovery of Ti 3 N 4 in the defect rocksalt (or related) structure may be feasible.

  6. First-principles study of dielectric properties of cerium oxide

    International Nuclear Information System (INIS)

    Yamamoto, Takenori; Momida, Hiroyoshi; Hamada, Tomoyuki; Uda, Tsuyoshi; Ohno, Takahisa

    2005-01-01

    We have theoretically investigated the dielectric properties of fluorite CeO 2 as well as hexagonal and cubic Ce 2 O 3 by using first-principles pseudopotentials techniques within the local density approximation. Calculated electronic and lattice dielectric constants of CeO 2 are in good agreement with previous theoretical and experimental results. For Ce 2 O 3 , the hexagonal phase has a lattice dielectric constant comparable to that of CeO 2 , whereas the cubic phase has a much smaller one. We have concluded that the enhancement of the dielectric constant in CeO 2 epitaxially grown on Si is not due to its lattice expansion experimentally observed nor regular formation of oxygen vacancies in CeO 2

  7. Hyperfine interactions in the cubic semiconductor CdO

    International Nuclear Information System (INIS)

    Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M.

    1990-01-01

    The time-differential perturbed angular correlation technique has been applied using 111 In probes, which decay through electron capture to 111 Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 degree C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around V zz =0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions

  8. Hyperfine interactions in the cubic semiconductor CdO

    Energy Technology Data Exchange (ETDEWEB)

    Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Argentina (AR))

    1990-01-15

    The time-differential perturbed angular correlation technique has been applied using {sup 111}In probes, which decay through electron capture to {sup 111}Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 {degree}C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around {ital V}{sub {ital zz}}=0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions.

  9. Cubic-to-Tetragonal Phase Transitions in Ag-Cu Nano rods

    International Nuclear Information System (INIS)

    Delogu, F.; Mascia, M.

    2012-01-01

    Molecular dynamics simulations have been used to investigate the structural behavior of nano rods with square cross section. The nano rods consist of pure Ag and Cu phases or of three Ag and Cu domains in the sequence Ag-Cu-Ag or Cu-Ag-Cu. Ag and Cu domains are separated by coherent interfaces. Depending on the side length and the size of individual domains, Ag and Cu can undergo a transition from the usual face-centered cubic structure to a body-centered tetragonal one. Such transition can involve the whole nano rod, or only the Ag domains. In the latter case, the transition is accompanied by a loss of coherency at the Ag-Cu interfaces, with a consequent release of elastic energy. The observed behaviors are connected with the stresses developed at the nano rod surfaces.

  10. Mechanical, electronic, chemical bonding and optical properties of cubic BaHfO3: First-principles calculations

    International Nuclear Information System (INIS)

    Liu Qijun; Liu Zhengtang; Feng Liping; Tian Hao

    2010-01-01

    We have performed ab-initio total energy calculations using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT) to study structural parameters, mechanical, electronic, chemical bonding and optical properties of cubic BaHfO 3 . The calculated lattice parameter and independent elastic constants are in good agreement with previous theoretical and experimental work. The bulk, shear and Young's modulus, Poisson coefficient, compressibility and Lame constants are obtained using Voigt-Reuss-Hill method and the Debye temperature is estimated using Debye-Grueneisen model, which are consistent with previous results. Electronic and chemical bonding properties have been studied from the calculations of band structure, density of states and charge densities. Furthermore, in order to clarify the mechanism of optical transitions of cubic BaHfO 3 , the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption efficient, loss function and complex conductivity function are calculated. Then, we have explained the origins of spectral peaks on the basis of the theory of crystal-field and molecular-orbital bonding.

  11. Characterizing the relationship between hyperstoichiometry, defect structure and local corrosion kinetics of uranium dioxide

    International Nuclear Information System (INIS)

    He Heming; Qin, Z.; Shoesmith, D.W.

    2010-01-01

    The ability of the UO 2 fluorite structure to accommodate large amounts of interstitial oxygen in various lattice sites leads to the formation of hyper-stoichiometric phases. The defect structures occurring in hyper-stoichiometric UO 2+x over the range 0.02 ≤ x ≤ 0.1 have been characterized by SEM/EDX and Raman analyses. The results demonstrate that as the nominal stoichiometry increases from 2.002 to 2.1, the diversity of defective structures existing on the UO 2+ surface also increases. Scanning electrochemical microscopy (SECM) measurements combined with a theoretical model were used to determine the rate constant for the reduction of the redox mediator ferrocene methanol, acting as a cathodic oxidant to corrode the four UO 2+x specimens. The rate constant was found to vary with location on the surface. Stoichiometric locations, with a well defined fluorite structure, exhibited very low corrosion rates. Higher rates were observed at more non-stoichiometric locations with the highest rates being obtained on locations exhibiting tetragonal distortions as their composition approached UO 2.33 . The distribution of rates increases with the degree of nominal non-stoichiometry as the diversity of microstructures existing on the UO 2+x surface increases.

  12. Interacting Frenkel defects at high concentration and the superionic transition in fluorite crystals

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-11-01

    A spherical cell model is proposed to account for the explicit concentration dependence of Frenkel defects in an ionic system. In the model, the linearized Debye-Hueckel equation is soluble exactly, subject to the boundary condition that the electric field is zero at the cell boundary R, related to the concentration α of defects by R proportional to csup(-1/3). This screened field is used to calculate the chemical potential, which in turn leads to a condition for the instability of the interacting defect assembly. This condition allows one to calculate the enhancement of the concentration of defects above its Arrhenius value at the point of instability in terms of (a) the critical concentration csub(c), (b) a/R, where a is the radius of defect and (c) the Debye-Hueckel screening length kappasub(c). It is clear from the cell model that this enhancement factor is reduced somewhat in the relevant range of parameters in some of the fluorites from its value in extended Debye-Hueckel theory. It is anticipated that the instability discussed here should afford an upper bound to csub(c) at the superionic transition, within the range of validity of the model. The excess he at capacity csub(p) is also discussed briefly. (author)

  13. Multicolor upconversion emission of dispersed ultrasmall cubic Sr2LuF7 nanocrystals synthesized by a solvothermal process

    International Nuclear Information System (INIS)

    Gong, Lunjun; Ma, Mo; Xu, Changfu; Li, Xujun; Wang, Suiping; Lin, Jianguo; Yang, Qibin

    2013-01-01

    Lanthanide (Ln 3+ ) doped Sr 2 LuF 7 (Ln 3+ =Er 3+ /Tm 3+ /Yb 3+ ) nanocrystals (NCs) were synthesized via a solvothermal process using oleate as stabilizing agent. The as-synthesized NCs with a mean diameter of sub-20 nm can be well dispersed in cyclohexane and show a pure cubic phase structure with space group Fm3 ¯ m. Following appropriate lanthanide ion doping, the NCs show intense red, green, blue and white-color upconversion emission (UC) under the excitation of a 980 nm laser. Predominant near-infrared UC can also be obtained in the Yb 3+ /Tm 3+ doped Sr 2 LuF 7 NCs. The energy transfer UC mechanisms for the fluorescent intensity were also investigated. The desirable property of the ultrasmall dispersed NCs makes them promising materials for the applications in miniaturized solid-state light sources, multicolor three-dimensional display devices and fluorescent labels for biomedical imaging. - Highlights: ► Cubic-structure (Fm3 ¯ m) Sr 2 LuF 7 nanocrystals were synthesized for the first time. ► Nanocrystals (sub-20 nm) with cubic or spherical shape can be well dispersed. ► By doping properly, the nanocrystals show intense multicolor upconversion. ► Predominant near-infrared upconversion can be obtained in Sr 2 LuF 7 nanocrystals. ► Upconversion mechanism for the fluorescent intensity is mainly energy transfer.

  14. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  15. Thermodynamic mixing properties of the UO{sub 2}–HfO{sub 2} solid solution: Density functional theory and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ke, E-mail: keyuan@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Becker, Udo [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-03-15

    HfO{sub 2} is a neutron absorber and has been mechanically mixed with UO{sub 2} in nuclear fuel in order to control the core power distribution. During nuclear fission, the temperature at the center of the fuel pellet can reach above 1300 K, where hafnium may substitute uranium and form the binary solid solution of UO{sub 2}–HfO{sub 2}. UO{sub 2} adopts the cubic fluorite structure, but HfO{sub 2} can occur in monoclinic, tetragonal, and cubic structures. The distribution of Hf and U ions in the UO{sub 2}–HfO{sub 2} binary and its atomic structure influence the thermal conductivity and melting point of the fuel. However, experimental data on the UO{sub 2}–HfO{sub 2} binary are limited. Therefore, the enthalpies of mixing of the UO{sub 2}–HfO{sub 2} binary with three different structures were calculated in this study using density functional theory and subsequent Monte Carlo simulations. The free energy of mixing was obtained from thermodynamic integration of the enthalpy of mixing over temperature. From the ΔG of mixing, a phase diagram of the binary was obtained. The calculated UO{sub 2}–HfO{sub 2} binary forms extensive solid solution across the entire compositional range, but there are a variety of possible exsolution phenomena associated with the different HfO{sub 2} polymorphs. As the structure of the HfO{sub 2} end member adopts lower symmetry and becomes less similar to cubic UO{sub 2}, the miscibility gap of the phase diagram expands, accompanied by an increase in cell volume by 7–10% as the structure transforms from cubic to monoclinic. Close to the UO{sub 2} end member, which is relevant to the nuclear fuel, the isometric uranium-rich solid solutions exsolve as the fuel cools, and there is a tendency to form the monoclinic hafnium-rich phase in the matrix of the isometric, uranium-rich solid solution phase.

  16. Total Positivity of the Cubic Trigonometric Bézier Basis

    Directory of Open Access Journals (Sweden)

    Xuli Han

    2014-01-01

    Full Text Available Within the general framework of Quasi Extended Chebyshev space, we prove that the cubic trigonometric Bézier basis with two shape parameters λ and μ given in Han et al. (2009 forms an optimal normalized totally positive basis for λ,μ∈(-2,1]. Moreover, we show that for λ=-2 or μ=-2 the basis is not suited for curve design from the blossom point of view. In order to compute the corresponding cubic trigonometric Bézier curves stably and efficiently, we also develop a new corner cutting algorithm.

  17. On local and global aspects of the 1:4 resonance in the conservative cubic Hénon maps

    Science.gov (United States)

    Gonchenko, M.; Gonchenko, S. V.; Ovsyannikov, I.; Vieiro, A.

    2018-04-01

    We study the 1:4 resonance for the conservative cubic Hénon maps C± with positive and negative cubic terms. These maps show up different bifurcation structures both for fixed points with eigenvalues ±i and for 4-periodic orbits. While for C-, the 1:4 resonance unfolding has the so-called Arnold degeneracy [the first Birkhoff twist coefficient equals (in absolute value) to the first resonant term coefficient], the map C+ has a different type of degeneracy because the resonant term can vanish. In the last case, non-symmetric points are created and destroyed at pitchfork bifurcations and, as a result of global bifurcations, the 1:4 resonant chain of islands rotates by π/4. For both maps, several bifurcations are detected and illustrated.

  18. INVESTIGATION OF CURVES SET BY CUBIC DISTRIBUTION OF CURVATURE

    Directory of Open Access Journals (Sweden)

    S. A. Ustenko

    2014-03-01

    Full Text Available Purpose. Further development of the geometric modeling of curvelinear contours of different objects based on the specified cubic curvature distribution and setpoints of curvature in the boundary points. Methodology. We investigate the flat section of the curvilinear contour generating under condition that cubic curvature distribution is set. Curve begins and ends at the given points, where angles of tangent slope and curvature are also determined. It was obtained the curvature equation of this curve, depending on the section length and coefficient c of cubic curvature distribution. The analysis of obtained equation was carried out. As well as, it was investigated the conditions, in which the inflection points of the curve are appearing. One should find such an interval of parameter change (depending on the input data and the section length, in order to place the inflection point of the curvature graph outside the curve section borders. It was determined the dependence of tangent slope of angle to the curve at its arbitrary point, as well as it was given the recommendations to solve a system of integral equations that allow finding the length of the curve section and the coefficient c of curvature cubic distribution. Findings. As the result of curves research, it is found that the criterion for their selection one can consider the absence of inflection points of the curvature on the observed section. Influence analysis of the parameter c on the graph of tangent slope angle to the curve showed that regardless of its value, it is provided the same rate of angle increase of tangent slope to the curve. Originality. It is improved the approach to geometric modeling of curves based on cubic curvature distribution with its given values at the boundary points by eliminating the inflection points from the observed section of curvilinear contours. Practical value. Curves obtained using the proposed method can be used for geometric modeling of curvilinear

  19. Defect ordering in aliovalently doped cubic zirconia from first principles

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.; Crosbie, G.M.; Stechel, E.B.

    2001-01-01

    Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δ-Zr 3 Y 4 O 12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y 2 O 3 - and Sc 2 O 3 -stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In 2 O 3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations

  20. A local cubic smoothing in an adaptation mode

    International Nuclear Information System (INIS)

    Dikoussar, N.D.

    2001-01-01

    A new approach to a local curve approximation and the smoothing is proposed. The relation between curve points is defined using a special cross-ratio weight functions. The coordinates of three curve points are used as parameters for both the weight functions and the tree-point cubic model (TPS). A very simple in computing and stable to random errors cubic smoother in an adaptation mode (LOCUS) is constructed. The free parameter of TPS is estimated independently of the fixed parameters by recursion with the effective error suppression and can be controlled by the cross-ratio parameters. Efficiency and the noise stability of the algorithm are confirmed by examples and by comparison with other known non-parametric smoothers

  1. Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

    International Nuclear Information System (INIS)

    Yu Xiao-Xiang; Wang Chong-Yu

    2013-01-01

    An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long-range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Influence of a hydrostatic pressure on the diffusion in metals having a cubic structure; Contribution a l'etude de l'influence de la pression hydrostatique sur la diffusion dans les metaux cubiques

    Energy Technology Data Exchange (ETDEWEB)

    Beyeler, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    In view of obtaining informations on the structure of vacancies. We have determined, by diffusion experiments under high pressure, the activation volumes for self diffusion in different face centered cubic metals: silver, gold, copper, aluminium and in body centered cubic uranium (gamma phase). Activation volumes for noble metals diffusion in aluminium have also been investigated. The experimental results on gold, silver and copper are in good agreement with most of the theoretical models. The estimated activation volume for gamma uranium seems to indicate a vacancy mechanism.The results on aluminium for both self and impurity diffusion agree quite well with Friedel's theoretical predictions. [French] Pour preciser la structure des lacunes, on a, par des etudes de diffusion sous haute pression determine les volumes d'activation correspondant a l'autodiffusion dans des metaux de structure cubique face centree: argent, or, cuivre et aluminium et dans un metal de structure cubique centree: l'uranium gamma. On a egalement determine les volumes d'activation pour l'heterodiffusion des metaux nobles dans l'aluminium. Les resultats obtenus pour l'or, l'argent et le cuivre sont en accord avec la plupart des modeles theoriques classiques. Le volume d'activation d'autodiffusion evalue pour l'uranium gamma est compatible avec une diffusion par lacune. Les resultats concernant l'aluminium et l'heterediffusion des metaux nobles dans l'aluminium verifient assez bien les previsions theoriques de Friedel. (auteur)

  3. New halides of neodymium and their crystal structures

    International Nuclear Information System (INIS)

    Loechner, U.

    1980-01-01

    The crystal structures of the peritectic phases NdClsub(2.27) (t-phase) and NdClsub(2.37) (rh-phase) were determined. The structure of the rh-phase was solved, from the t-phase only the elementary cell could be determined because no single crystals of sufficient quality were obtained. Jutting out feature of the rh-phase which has to be formulated as Nd 14 Cl 32 O is a polyeder cluster of 6 quadratic antiprisms the inner cubo octahedric cavity of which is occupied by an oxygen atom. The linkage of these polyeder cluster ensues only under each other along the triple axis of the rhomboedric system over 3 upper and 3 lower common borders each. Therewith for the first time a superlattice of the fluorite-type was found in which this unit exclusively occurs. The type of linkage of polyeder clusters causes the occurrence of an exceptional polyeder around the twovalent Nd ions which can be looked at as a zwitter polyeder of icosahedron and cube and therefore coordinates tenfold the twovalent neodymium. The strict order of chemically and crystallografically clearly differentiated cations is expressed by a hexagonal-rhomboedric superstructure of the fluorite-aristotyp with a doubled c-axis. The phase diagram of the system Nd-NdBr 3 was determined and a structure proposition was worked out for the first Vernier phase in there with n=4 of the series Lnsub(n)Xsub(2n+1). (SPI)

  4. Cubic Invariant Spherical Surface Harmonics in Conjunction With Diffraction Strain Pole-Figures

    NARCIS (Netherlands)

    Brakman, C.M.

    1986-01-01

    Four kinds of cubic invariant spherical surface harmonics are introduced. It has been shown previously that these harmonics occur in the equations relating measured diffraction (line-shift) elastic strain and macro-stresses generating these strains for the case of textured cubic materials. As a

  5. Maximal independent set graph partitions for representations of body-centered cubic lattices

    DEFF Research Database (Denmark)

    Erleben, Kenny

    2009-01-01

    corresponding to the leaves of a quad-tree thus has a smaller memory foot-print. The adjacency information in the graph relieves one from going up and down the quad-tree when searching for neighbors. This results in constant time complexities for refinement and coarsening operations.......A maximal independent set graph data structure for a body-centered cubic lattice is presented. Refinement and coarsening operations are defined in terms of set-operations resulting in robust and easy implementation compared to a quad-tree-based implementation. The graph only stores information...

  6. Study of the cubic - to - monoclinic transformation in magnesia partially stabilized zirconia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1988-01-01

    The transformation of the cubic phase to the stable monoclinic phase in ZrO 2 : 3%MgO quenched from 1450 0 C to RT has been studied by X-ray diffractometry in order to explain the thermal hysteresis in the electrical conductivity. The monoclinic-to-cubic ratio has been measured for samples annealed in the 500 0 C-1000 0 C temperature range. The results show that the decrease in the cubic phase content is the main responsible for the thermal hysteresis in the electrical conductivity of the magnesia partially stabilized zirconia solid electrolytes. (author) [pt

  7. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    Science.gov (United States)

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  8. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    Science.gov (United States)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  9. Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, F.J., E-mail: fbonilla@cicenergigune.com; Lacroix, L.-M.; Blon, T., E-mail: thomas.blon@insa-toulouse.fr

    2017-04-15

    Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hard-axis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain/multidomain size range (10–50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis vortex states. Thus, to track experimentally these V<111> states, one should focused on (i) nanocuboids exhibiting a nearly perfect cubic shape (size distorsion <12%) made of (ii) a material which combines a zero or positive MCA and a high saturation magnetization, such as Fe or FeCo; and (iii) a low magnetic field environment, V<111> being only observed in virgin or remanent states. - Highlights: • The <111> vortex is numerically determined in nanocubes of cubic anisotropy. • It constitutes an intermediate state in the single-domain limit. • Such a vortex can only be stabilized in perfect or slightly deformed nanocuboids. • It exists in nanocuboids made of materials with zero or positive cubic anisotropy. • The associated magnetization reversal is described by a rotation of the vortex axis.

  10. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  11. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang; Zhu, Xinhua; Al-Kassab, Talaat

    2014-01-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric constants of

  12. A molecular dynamics study on the oxygen diffusion in doped fluorites: the effect of the dopant distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon, A. [M2E/XaRMAE/IREC, Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Josep Pla 2, Torre 2, B2, 08019 Barcelona (Spain); Morata, A.; Peiro, F. [MIND/XaRMAE/IN2UB, Department of Electronics, University of Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Dezanneau, G. [Laboratoire Structures, Proprietes et Modelisation des Solides, Grande Voie des Vignes, Ecole Centrale Paris, F-92295 Chatenay-Malabry Cedex (France)

    2011-02-15

    The effect of the dopant distribution on the oxygen diffusion in doped fluorites typically used for solid oxide fuel cells electrolyte applications has been analysed by using molecular dynamics simulations. The oxygen mass transport in both yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria has been studied and compared in the range of temperatures between 1,159 and 1,959 K. A new methodology based on the analysis of local environments is used to describe the diffusion process at an atomic scale. Preferred vacancy migration pathways, most suitable conduction models, energy landscapes and jump efficiency have been detailed for each material. Finally, a particular case of non-random distribution of dopants in YSZ is presented in order to quantitatively evaluate the effect of the dopant pattern on the mass transport properties and the potential of the methodology developed here for understanding and foreseeing real configurations at the nanoscale. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Quantum corrections for the cubic Galileon in the covariant language

    Energy Technology Data Exchange (ETDEWEB)

    Saltas, Ippocratis D. [Institute of Astrophysics and Space Sciences, Faculty of Sciences, Campo Grande, PT1749-016 Lisboa (Portugal); Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt [Multidisciplinary Center for Astrophysics and Department of Physics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2017-05-01

    We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach in this context is discussed, while all calculations are explicitly presented.

  14. Study On Beneficiation Technology Of Dong Pao Rare-Earth-Barite-Fluorite With Two Product Plans About Content And Recovery Of Rare-Earth Fine Ores

    International Nuclear Information System (INIS)

    Duong Van Su; Truong Thi Ai; Bui Ba Duy; Bui Thi Bay; Nguyen Hong Ha; Le Thi Hong Ha; Doan Thi Mo; Doan Dac Ban; Nguyen Hoang Son

    2014-01-01

    The ore sample used in the research was taken from the F3 ore bodies and the sample of the F7, F9 and F16 ore bodies which contain the average of 5.98% TR 2 O 3 ; they are multi-metals ore which is difficult to enrich, highly weather with very complex ingredients. The process of the experiment is the ore is crushed, ground, screened and classified reasonably to -0.1 mm and divided into 3 particle size with the following technique: (1) -0.020 mm is primary sludge and the rare-earth fine ore; (2) 0.075-1 mm is gotten through the sludge concentrating table with the output is the 2 parts: the heavy part which is dried magnetic separator with high magnetism to get the rare-earth fine ore and the light one; (3) Light minerals, non-magnetic and ferromagnetic minerals group are ground together to 85% of them get size within -0.075 mm then mix it with 0.020-0.075 mm group. Using flotation separator, get barite-rare earth mixture and fluorite. After that, we separate this mixture by secondary flotation and get refined rare earth, barite and fluorite mineral. The result of the theme: (1) product plan A-rare-earth fine ore has TR 2 O 3 content archive 42.07% with recovery is 69.70%; (2) product plan B-rare-earth fine ore has TR 2 O 3 content archive 29.64% with recovery is 80.01%. (author)

  15. The new insight into the structure-activity relation of Pd/CeO2-ZrO2-Nd2O3 catalysts by Raman, in situ DRIFTS and XRD Rietveld analysis.

    Science.gov (United States)

    Yang, X; Yang, L; Lin, J; Zhou, R

    2016-01-28

    Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.

  16. Cubic and quartic planar differential systems with exact algebraic limit cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Bendjeddou

    2011-01-01

    Full Text Available We construct cubic and quartic polynomial planar differential systems with exact limit cycles that are ovals of algebraic real curves of degree four. The result obtained for the cubic case generalizes a proposition of [9]. For the quartic case, we deduce for the first time a class of systems with four algebraic limit cycles and another for which nested configurations of limit cycles occur.

  17. Conformal Interpolating Algorithm Based on Cubic NURBS in Aspheric Ultra-Precision Machining

    International Nuclear Information System (INIS)

    Li, C G; Zhang, Q R; Cao, C G; Zhao, S L

    2006-01-01

    Numeric control machining and on-line compensation for aspheric surface are key techniques in ultra-precision machining. In this paper, conformal cubic NURBS interpolating curve is applied to fit the character curve of aspheric surface. Its algorithm and process are also proposed and imitated by Matlab7.0 software. To evaluate the performance of the conformal cubic NURBS interpolation, we compare it with the linear interpolations. The result verifies this method can ensure smoothness of interpolating spline curve and preserve original shape characters. The surface quality interpolated by cubic NURBS is higher than by line. The algorithm is benefit to increasing the surface form precision of workpieces in ultra-precision machining

  18. First-principle calculations of the structural, elastic and bonding properties of Cs{sub 2}NaLnCl{sub 6} (Ln=La–Lu) cubic elpasolites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.G.; Liu, D.X.; Feng, B.; Tian, Y.; Li, L. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland)

    2016-01-15

    For the first time the structural, elastic and bonding properties of 15 elpasolite crystals Cs{sub 2}NaLnCl{sub 6} (Ln denotes all lanthanides from La to Lu) were calculated systematically using the CRYSTAL09 program. Several trends in the variation of these properties in relation to the atomic number Z of the Ln ions were found; in particular, the lattice parameter of these compounds decreases with Z (which can lead to the increased crystal field splittings of the 5d states for the heavier Ln ions), whereas the elastic constants and Debye temperature increase. The degree of covalency of the Ln–Cl chemical bonds is increased toward the end of the lanthanide series. - Highlights: • Structural, elastic and bonding properties of 15 cubic elpasolites Cs{sub 2}NaLnCl{sub 6} (Ln=La,…,Lu) are calculated. • Relations between these quantities and Ln atomic number were found. • Possible correlation between the elastic properties and Stokes shift is proposed.

  19. Structures, magnetic, and thermal properties of Ln3MoO7 (Ln=La, Pr, Nd, Sm, and Eu)

    International Nuclear Information System (INIS)

    Nishimine, Hiroaki; Wakeshima, Makoto; Hinatsu, Yukio

    2005-01-01

    Ternary lanthanide-molybdenum oxides Ln 3 MoO 7 (Ln=La, Pr, Nd, Sm, Eu) have been prepared. Their structures were determined by X-ray diffraction measurements. They crystallize in a superstructure of cubic fluorite and the space group is P2 1 2 1 2 1 . The Mo ion is octahedrally coordinated by six oxygens and the slightly distorted octahedra share corners forming a zig-zag chain parallel to the b-axis. These compounds have been characterized by magnetic susceptibility and specific heat measurements. The La 3 MoO 7 shows complex magnetic behavior at 150 and 380K. Below these temperatures, there is a large difference in the temperature-dependence of the magnetic susceptibility measured under zero-field-cooled condition and under field-cooled condition. The Nd 3 MoO 7 show a clear antiferromagnetic transition at 2.5K. From the susceptibility measurements, both Pr 3 MoO 7 and Sm 3 MoO 7 show the existence of magnetic anomaly at 8.0 and 2.5K, respectively. The results of the specific heat measurements also show anomalies at the corresponding magnetic transition temperatures. The differential scanning calorimetry measurements indicate that two phase-transitions occur for any Ln 3 MoO 7 compound in the temperature range between 370 and 710K

  20. Dipaths and dihomotopies in a cubical complex

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    2005-01-01

    In the geometric realization of a cubical complex without degeneracies, a $\\Box$-set, dipaths and dihomotopies may not be combinatorial, i.e., not geometric realizations of combinatorial dipaths and equivalences. When we want to use geometric/topological tools to classify dipaths on the 1-skeleton...

  1. Pd@Au core-shell nanocrystals with concave cubic shapes: kinetically controlled synthesis and electrocatalytic properties.

    Science.gov (United States)

    Zhang, Ling; Niu, Wenxin; Zhao, Jianming; Zhu, Shuyun; Yuan, Yali; Hua, Lianzhe; Xu, Guobao

    2013-01-01

    A new type of concave cubic Pd@Au core-shell nanocrystals is synthesized through a kinetically controlled growth process. Pd nanocubes of 56 nm are used as the inner core, and CTAC and Br(-) are used as the capping agent and selective adsorbent, respectively. A suitable ratio of HAuCl4 and cubic Pd seeds and the presence of Br(-) anions are critical to the growth of the concave cubic Pd@Au core-shell nanocrystals. The fast deposition rate on the corners of the cubic Pd seeds promotes the overgrowth of the Au outer shell along the direction, leading to the formation of concave cubic nanostructures. The reduction process is monitored by the surface plasmon resonance spectra of the nanocrystals, and the extinction band became broader and red shifted as the nanocrystals became larger. The electrocatalytic properties of the concave cubic Pd@Au core-shell nanocrystals were investigated with the cathodic electrochemiluminescence reaction of luminol and H2O2. A possible electrocatalytic mechanism was proposed and analyzed.

  2. Electronic structure of A15 compounds

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1980-01-01

    For the past twenty-five years compounds with the A15 crystal structure have dominated the class of high temperature superconductors. The crystal structure of an A15 compound A 3 B is cubic (space group O/sub h/ 3 ). However, the site symmetry (D/sub 2d/) of the A atoms is much lower than cubic, an unusual occurrence in cubic binary compounds. Variations on this theme have supplied the basis of many theoretical models of the anomalous temperature (T) dependence of normal state properties and the low temperature cubic reversible tetragonal structural transformations which accompany high values of T/sub c/ in A15 compounds. In this paper results of self-consistent pseudopotential band structure calculations are used to assess some important aspects of the unique and unusual behavior in A15 compounds: (1) the role of the B atom in determining the overall electronic structure will be shown to be important; (2) the effect of the low site symmetry of the A atom on the charge density and potential will be assessed; and (3) the bonding will be shown to be metallic-covalent with no significant A-B charge transfer

  3. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Sogne, E. [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); European School of Molecular Medicine (SEMM), IFOM-IEO, Milano (Italy); Merlini, M. [Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, via Mangiagalli 32, 20133 Milano (Italy); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-08-07

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  4. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    International Nuclear Information System (INIS)

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P.; Sogne, E.; Merlini, M.; Ducati, C.

    2016-01-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  5. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    KAUST Repository

    Borghi, F.

    2016-08-05

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments. Published by AIP Publishing.

  6. First-principles comparison of the cubic and tetragonal phases of Mo3Sb7

    KAUST Repository

    Nazir, Safdar; Auluck, Sushil V.; Pulikkotil, Jiji Thomas Joseph; Singh, Nirpendra; Schwingenschlö gl, Udo

    2011-01-01

    Using ab initio density functional based methods, we study the normal metal state properties of the ∼3 K Mo3Sb7 superconductor, in its high temperature cubic and low temperature tetragonal structures. Although the density of states at the Fermi energy is reasonably high in both structures, our calculations unequivocally show that there exists no long range magnetic ordering in this system. We also address the optical properties of the compound. The magnetism in Mo3Sb7 is studied by fixed spin moment calculations, which yield a shallow non-magnetic minimum, thus inferring propensity to a magnetic instability. © 2011 Elsevier B.V. All rights reserved.

  7. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    KAUST Repository

    Borghi, F.; Sogne, Elisa; Lenardi, C.; Podestà , A.; Merlini, M.; Ducati, C.; Milani, P.

    2016-01-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments. Published by AIP Publishing.

  8. First-principles comparison of the cubic and tetragonal phases of Mo3Sb7

    KAUST Repository

    Nazir, Safdar

    2011-03-01

    Using ab initio density functional based methods, we study the normal metal state properties of the ∼3 K Mo3Sb7 superconductor, in its high temperature cubic and low temperature tetragonal structures. Although the density of states at the Fermi energy is reasonably high in both structures, our calculations unequivocally show that there exists no long range magnetic ordering in this system. We also address the optical properties of the compound. The magnetism in Mo3Sb7 is studied by fixed spin moment calculations, which yield a shallow non-magnetic minimum, thus inferring propensity to a magnetic instability. © 2011 Elsevier B.V. All rights reserved.

  9. Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting

    Science.gov (United States)

    Wu, Christine J.; Söderlind, Per; Glosli, James N.; Klepeis, John E.

    2009-03-01

    There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures.

  10. Structure and Thermal Expansion of YSZ and La2Zr2O7 Above 1500°C from Neutron Diffraction on Levitated Samples

    International Nuclear Information System (INIS)

    Ushakov, Sergey V.; Neuefeind, Joerg C.

    2015-01-01

    High-temperature time-of-flight neutron diffraction experiments were performed in this paper on cubic yttria-stabilized zirconia (YSZ, 10 mol% YO 1.5 ) and lanthanum zirconate (LZ) prepared by laser melting. Three spheroids of each composition were aerodynamically levitated and rotated in argon flow and heated with a CO 2 laser. Unit cell, positional and atomic displacement parameters were obtained by Rietveld analysis. Below ~1650°C the mean thermal expansion coefficient (TEC) for YSZ is higher than for LZ (13 ± 1 vs. 10.3 ± 0.6) × 10 -6 /K. From ~1650°C to the onset of melting of LZ at ~2250°C, TEC for YSZ and LZ are similar and within (7 ± 2) × 10 -6 /K. LZ retains the pyrochlore structure up to the melting temperature with Zr coordination becoming closer to perfectly octahedral. Congruently melting LZ is La deficient. The occurrence of thermal disordering of oxygen sublattice (Bredig transition) in defect fluorite structure was deduced from the rise in YSZ TEC to ~25 × 10 -6 /K at 2350°C–2550°C with oxygen displacement parameters (U iso ) reaching 0.1 Å 2 , similar to behavior observed in UO 2 . Acquisition of powder-like high-temperature neutron diffraction data from solid-levitated samples is feasible and possible improvements are outlined. Finally, this methodology should be applicable to a wide range of materials for high-temperature applications.

  11. Eisenstein Series Identities Involving the Borweins' Cubic Theta Functions

    Directory of Open Access Journals (Sweden)

    Ernest X. W. Xia

    2012-01-01

    Full Text Available Based on the theories of Ramanujan's elliptic functions and the (p, k-parametrization of theta functions due to Alaca et al. (2006, 2007, 2006 we derive certain Eisenstein series identities involving the Borweins' cubic theta functions with the help of the computer. Some of these identities were proved by Liu based on the fundamental theory of elliptic functions and some of them may be new. One side of each identity involves Eisenstein series, the other products of the Borweins' cubic theta functions. As applications, we evaluate some convolution sums. These evaluations are different from the formulas given by Alaca et al.

  12. Collective dynamics and self-diffusion in a diblock copolymer melt in the body-centered cubic phase

    DEFF Research Database (Denmark)

    Papadakis, C.M.; Rittig, F.; Almdal, K.

    2004-01-01

    The structure and dynamics of a strongly asymmetric poly(ethylene propylene)poly (dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range......: Above the order-to-disorder transition temperature, it is disordered, whereas the domain structure is body-centered cubic (bcc) below, being stable down to the lowest temperatures measured. In the disordered state, dynamic light scattering (DLS) in the polarized geometry reveals the heterogeneity mode...

  13. Ion mobility and conductivity in the M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (M=K, Rb) solid solutions with fluorite structure

    Energy Technology Data Exchange (ETDEWEB)

    Kavun, V. Ya., E-mail: kavun@ich.dvo.ru [Institute of Chemistry FEBRAS, 159, Pr. 100-letya Vladivostoka, Vladivostok 690022 (Russian Federation); Uvarov, N.F. [Institute of Solid State Chemistry and Mechanochemistry, SB RAS, 18, Kutateladze Str., Novosibirsk 630128 (Russian Federation); Slobodyuk, A.B.; Polyantsev, M.M.; Merkulov, E.B. [Institute of Chemistry FEBRAS, 159, Pr. 100-letya Vladivostoka, Vladivostok 690022 (Russian Federation); Ulihin, A.S. [Institute of Solid State Chemistry and Mechanochemistry, SB RAS, 18, Kutateladze Str., Novosibirsk 630128 (Russian Federation); Goncharuk, V.K. [Institute of Chemistry FEBRAS, 159, Pr. 100-letya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2017-05-15

    Ionic mobility and conductivity in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} and Rb{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (x=0.05, 0.09) solid solutions with the fluorite structure have been investigated using the methods of {sup 19}F NMR, X-ray diffraction and impedance spectroscopy. Types of ionic motions in the fluoride sublattice of solid solutions have been established and temperature ranges of their realization have been determined (150–450 K). Diffusion of fluoride ions is a dominating type of ionic motions in the fluoride sublattice of solid solutions under study above 350 K. Due to high ionic conductivity, above 10{sup –3} S/cm at 450 K, these solid solutions can be used as solid electrolytes in various electrochemical devices and systems. - Graphical abstract: Temperature dependence of the concentration of mobile (2, 4) and immobile (1, 3) F ions in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions. - Highlights: • Studied the ion mobility, conductivity in M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions (M=K, Rb). • An analysis of {sup 19}F NMR spectra made it possible to identify types of ion mobility. • The main type of ion motion above 300 K in solid solutions is a diffusion of ions F{sup –}. • The ionic conductivity of the solid solutions studied more than 10{sup –3} S/cm at 450 K.

  14. Mechanism and conditions of the chessboard structure formation

    International Nuclear Information System (INIS)

    Ni, Yong; Khachaturyan, Armen G.

    2008-01-01

    The observations of the pseudo-periodical chessboard (CB) microstructure in metal and ceramic solid solutions indicate that this is a general phenomenon. We propose a theory and three-dimensional (3-D) computational modeling explaining the origin of the CB microstructure in the cubic → tetragonal decomposition. The 3-D modeling demonstrates that the formation of two-phase CB structures is contingent on the formation of a compositionally stabilized precursor state with the tweed structure that is spontaneously formed at the initial stage of the transformation. The modeling has shown that this tweed structure is a distribution of spatially correlated tetragonal nanodomains whose spatial arrangement has the CB topological features. This precursor tweed structure serves as a template for the precipitation of the equilibrium cubic phase. The CB-like tweed template channels the microstructure evolution towards the two-phase CB structure whose complex and detailed 3-D geometry is in excellent agreement with electron microscopic observations. The thermodynamic analysis and obtained evolution sequences allow us to formulate the necessary thermodynamic, structural and kinetic conditions for the CB structure formation. Reasons for its relative stability are discussed. It is also shown that the coherency between the cubic and tetragonal phases comprising the CB structure produces the stress-induced tetragonality of the cubic phase, orthorhombicity of the tetragonal phase, and rotations of cubic phase rods. These effects should diminish and disappear upon lifting of coherency

  15. Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles

    Directory of Open Access Journals (Sweden)

    Mi-An Xue

    2012-01-01

    Full Text Available A two-phase fluid flow model solving Navier-Stokes equations was employed in this paper to investigate liquid sloshing phenomena in cubic tank with horizontal baffle, perforated vertical baffle, and their combinatorial configurations under the harmonic motion excitation. Laboratory experiment of liquid sloshing in cubic tank with perforated vertical baffle was carried out to validate the present numerical model. Fairly good agreements were obtained from the comparisons between the present numerical results and the present experimental data, available numerical data. Liquid sloshing in cubic tank with multiple baffles was investigated numerically in detail under different external excitation frequencies. Power spectrum of the time series of free surface elevation was presented with the aid of fast Fourier transform technique. The dynamic impact pressures acting on the normal and parallel sidewalls were discussed in detail.

  16. Cubic interaction in extended theories of massless higher-spin fields

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A

    1987-08-17

    A cubic interaction of all massless higher-spin fields with s greater than or equal to 1 is constructed, based on the extended higher-spin superalgebras suggested previously by one of us (M.V.). This interaction incorporates gravitational and Yang-Mills interactions of massless higher-spin fields, which turn out to be consistent in the cubic order. An essential novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. An explicit form is found for deformed higher-spin gauge transformations leaving the action invariant.

  17. Shock-Assisted Superficial Hexagonal-to-Cubic Phase Transition in GaN/Sapphire Interface Induced by Using Ultra-violet Laser Lift-Of Techniques

    International Nuclear Information System (INIS)

    Wei-Hua, Chen; Xiao-Dong, Hu; Xiang-Ning, Kang; Xu-Rong, Zhou; Xiao-Min, Zhang; Tong-Jun, Yu; Zhi-Jian, Yang; Ke, Xu; Guo-Yi, Zhang; Xu-Dong, Shan; Li-Ping, You

    2009-01-01

    Ultra-violet (KrF excimer laser, λ = 248 nm) laser lift-of (LLO) techniques have been operated to the GaN/sapphire structure to separate GaN from the sapphire substrate. Hexagonal to cubic phase transformation induced by the ultra-violet laser lift-of (UV-LLO) has been characterized by micro-Raman spectroscopy, micro-photoluminescence, along with high-resolution transmission electron microscopy (HRTEM). HRTEM indicates that UV-LLO induced phase transition takes place above the LLO interface, without phase transition under the LLO interface. The formed cubic GaN often exists as nanocrystal grains attaching on the bulk hexagonal GaN. The half-loop-cluster-like UV-LLO interface indicates that the LLO-induced shock waves has generated and played an assistant role in the decomposition of the hexagonal GaN and in the formation of cubic GaN grains at the LLO surface

  18. On the number of longest and almost longest cycles in cubic graphs

    DEFF Research Database (Denmark)

    Chia, Gek Ling; Thomassen, Carsten

    2012-01-01

    We consider the questions: How many longest cycles must a cubic graph have, and how many may it have? For each k >= 2 there are infinitely many p such that there is a cubic graph with p vertices and precisely one longest cycle of length p-k. On the other hand, if G is a graph with p vertices, all...

  19. CubiCal - Fast radio interferometric calibration suite exploiting complex optimisation

    Science.gov (United States)

    Kenyon, J. S.; Smirnov, O. M.; Grobler, T. L.; Perkins, S. J.

    2018-05-01

    It has recently been shown that radio interferometric gain calibration can be expressed succinctly in the language of complex optimisation. In addition to providing an elegant framework for further development, it exposes properties of the calibration problem which can be exploited to accelerate traditional non-linear least squares solvers such as Gauss-Newton and Levenberg-Marquardt. We extend existing derivations to chains of Jones terms: products of several gains which model different aberrant effects. In doing so, we find that the useful properties found in the single term case still hold. We also develop several specialised solvers which deal with complex gains parameterised by real values. The newly developed solvers have been implemented in a Python package called CubiCal, which uses a combination of Cython, multiprocessing and shared memory to leverage the power of modern hardware. We apply CubiCal to both simulated and real data, and perform both direction-independent and direction-dependent self-calibration. Finally, we present the results of some rudimentary profiling to show that CubiCal is competitive with respect to existing calibration tools such as MeqTrees.

  20. Different magnetic properties of rhombohedral and cubic Ni2+ doped indium oxide nanomaterials

    Directory of Open Access Journals (Sweden)

    Qingbo Sun

    2011-12-01

    Full Text Available Transition metal ions doped indium oxide nanomaterials were potentially used as a kind of diluted magnetic semiconductors in transparent spintronic devices. In this paper, the influences of Ni2+ doped contents and rhombohedral or cubic crystalline structures of indium oxide on magnetic properties were investigated. We found that the magnetic properties of Ni2+ doped indium oxide could be transferred from room temperature ferromagnetisms to paramagnetic properties with increments of doped contents. Moreover, the different crystalline structures of indium oxide also greatly affected the room temperature ferromagnetisms due to different lattice constants and almost had no effects on their paramagnetic properties. In addition, both the ferromagnetic and paramagnetic properties were demonstrated to be intrinsic and not caused by impurities.

  1. Study of helium behaviour in body-centered cubic structures for new nuclear reactor generations: experimental approach in well characterized materials

    International Nuclear Information System (INIS)

    Gorondy-Novak, Sofia Maria

    2017-01-01

    The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions "4He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr

  2. Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

    Science.gov (United States)

    Zhan, Chun; Yao, Zhenpeng; Lu, Jun; Ma, Lu; Maroni, Victor A.; Li, Liang; Lee, Eungje; Alp, Esen E.; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Johnson, Christopher; Thackeray, Michael M.; Chan, Maria K. Y.; Wolverton, Chris; Amine, Khalil

    2017-12-01

    Anionic redox reactions in cathodes of lithium-ion batteries are allowing opportunities to double or even triple the energy density. However, it is still challenging to develop a cathode, especially with Earth-abundant elements, that enables anionic redox activity for real-world applications, primarily due to limited strategies to intercept the oxygenates from further irreversible oxidation to O2 gas. Here we report simultaneous iron and oxygen redox activity in a Li-rich anti-fluorite Li5FeO4 electrode. During the removal of the first two Li ions, the oxidation potential of O2- is lowered to approximately 3.5 V versus Li+/Li0, at which potential the cationic oxidation occurs concurrently. These anionic and cationic redox reactions show high reversibility without any obvious O2 gas release. Moreover, this study provides an insightful guide to designing high-capacity cathodes with reversible oxygen redox activity by simply introducing oxygen ions that are exclusively coordinated by Li+.

  3. The Exact Limit of Some Cubic Towers

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Beelen, Peter; Nguyen, Nhut

    2017-01-01

    Recently, a new explicit tower of function fields was introduced by Bassa, Beelen, Garcia and Stichtenoth (BBGS). This resulted in currently the best known lower bound for Ihara’s constant in the case of non-prime finite fields. In particular over cubic fields, the tower’s limit is at least as go...

  4. Higher-Order Approximation of Cubic-Quintic Duffing Model

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Babazadeh, H.

    2011-01-01

    We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find improved approximate solutions for strongly nonlinear Duffing oscillations with cubic-quintic nonlinear restoring force. This approach yields simple linear algebraic equations instead of nonlinear algebraic equations...

  5. Mass-induced instability of SAdS black hole in Einstein-Ricci cubic gravity

    Science.gov (United States)

    Myung, Yun Soo

    2018-05-01

    We perform the stability analysis of Schwarzschild-AdS (SAdS) black hole in the Einstein-Ricci cubic gravity. It shows that the Ricci tensor perturbations exhibit unstable modes for small black holes. We call this the mass-induced instability of SAdS black hole because the instability of small black holes arises from the massiveness in the linearized Einstein-Ricci cubic gravity, but not a feature of higher-order derivative theory giving ghost states. Also, we point out that the correlated stability conjecture holds for the SAdS black hole by computing the Wald entropy of SAdS black hole in Einstein-Ricci cubic gravity.

  6. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua; Zhao, Lijuan

    2016-01-01

    Tm 3+ ions doped β-PbF 2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm 3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O h to D 4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm 3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field

  7. Face centered cubic SnSe as a Z2 trivial Dirac nodal line material

    OpenAIRE

    Tateishi, Ikuma; Matsuura, Hiroyasu

    2018-01-01

    The presence of Dirac nodal line in the time-reversal and inversion symmetric system is dictated by Z2 index when spin-orbit interaction is absent. With the first principles calculation, we show that the Dirac nodal line can emerge in Z2 trivial material by calculating the band structure of SnSe of face centered cubic lattice as an example and it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obta...

  8. Structural Characteristics of Bimetallic Catalysts Supported on Nano-Ceria

    Directory of Open Access Journals (Sweden)

    J. F. Bozeman

    2011-01-01

    Full Text Available Cu-Pt bimetal catalysts supported on nanocrystalline CeO2 (nano-ceria are synthesized via the low-cost sol-gel approach followed by impregnation processing. The average particle size of the catalytic composites is 63 nm. Ceria nanopowders sequentially impregnated in copper solution and then in Pt solution transformed into Pt-skin-structured Cu-Pt/ceria nanocomposite, based on the surface elemental and bulk compositional analyses. The ceria supporter has a fluorite structure, but the structure of Cu and Pt catalytic contents, not detected by X-ray diffraction spectroscopy due to the low loading level, is yet conclusive. The bimetallic catalytic nanocomposites may potentially serve as sulfur-tolerant anode in solid oxide fuel cells.

  9. Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines

    Science.gov (United States)

    Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya

    2017-11-01

    Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1

  10. Investigation of the mechanism of interaction at the hydrothermal conditions of zeolite – cubic analcime with the Li+, Mg2+, Sr2+ and Fe3+ ions

    Directory of Open Access Journals (Sweden)

    Asta TRAIDARAITĖ

    2013-09-01

    Full Text Available Analcime and clinoptilolite are among the most abundant zeolites in nature. During recent decades natural analcimes and clinoptilolites, also synthetic modified analcimes have been investigated as potential and innovative substances, possible to use for the immobilization of radioactive waste, molecular catalysis and other purposes. However, natural analcimes like many natural rocks are contamined with various impurities (about 30 %, which significally reduces their sorption possibilities and possibilities of their using in such chemical technologies as catalysis, fractioning of hydrocarbons and other. In this article the stability of cubic analcime at the hydrothermal conditions at 180 °C temperature in solutions of various concentrations, containing Li+, Mg2+, Sr2+ and Fe3+ ions has been examined. These processes have big signification for the formation of ion-exchanged analcimes, its sorption properties and also if ions have been immobilized in analcime structure. It has been established, that as result of interaction between cubic analcime and lithium chloride solutions the formation of new compounds: lithium silicate and silinaite occurs. At the same hydrothermal conditions the interaction between cubic analcime and chloride solutions, containing Sr2+, Mg2+ and Fe3+ ions pass without formation of new compounds, and only with interposition of these ions in the structure of cubic analcime. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1496

  11. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging.

    Science.gov (United States)

    Susaki, Etsuo A; Tainaka, Kazuki; Perrin, Dimitri; Yukinaga, Hiroko; Kuno, Akihiro; Ueda, Hiroki R

    2015-11-01

    Here we describe a protocol for advanced CUBIC (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis). The CUBIC protocol enables simple and efficient organ clearing, rapid imaging by light-sheet microscopy and quantitative imaging analysis of multiple samples. The organ or body is cleared by immersion for 1-14 d, with the exact time required dependent on the sample type and the experimental purposes. A single imaging set can be completed in 30-60 min. Image processing and analysis can take whole-brain neural activities at single-cell resolution using Arc-dVenus transgenic (Tg) mice. CUBIC informatics calculated the Venus signal subtraction, comparing different brains at a whole-organ scale. These protocols provide a platform for organism-level systems biology by comprehensively detecting cells in a whole organ or body.

  12. Studies on Structural and Morphological Properties of Multidoped Ceria Ce 0.8 Nd 0.0025 Sm 0.0025 Gd 0.005 Dy 0.095 Y 0.095 O 2 - δ ( x = 0.2 ) as Solid Solutions

    KAUST Repository

    Stojmenović, Marija; Pagnacco, Maja C.; Dodevski, Vladimir; Gulicovski, Jelena; Zunic, Milan; Bošković, Snežana

    2016-01-01

    spectroscopy results, single phase solid solutions of fluorite structure were evidenced regardless of the number of dopants and synthesis procedure. Both XRPD and TEM were analyses evidenced nanometer particle dimensions. The SPRT method results in obtaining

  13. Particle linear theory on a self-gravitating perturbed cubic Bravais lattice

    International Nuclear Information System (INIS)

    Marcos, B.

    2008-01-01

    Discreteness effects are a source of uncontrolled systematic errors of N-body simulations, which are used to compute the evolution of a self-gravitating fluid. We have already developed the so-called ''particle linear theory''(PLT), which describes the evolution of the position of self-gravitating particles located on a perturbed simple cubic lattice. It is the discrete analogue of the well-known (Lagrangian) linear theory of a self-gravitating fluid. Comparing both theories permits us to quantify precisely discreteness effects in the linear regime. It is useful to develop the PLT also for other perturbed lattices because they represent different discretizations of the same continuous system. In this paper we detail how to implement the PLT for perturbed cubic Bravais lattices (simple, body, and face-centered) in a cubic simulation box. As an application, we will study the discreteness effects--in the linear regime--of N-body simulations for which initial conditions have been set up using these different lattices.

  14. Testing a generalized cubic Galileon gravity model with the Coma Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Terukina, Ayumu; Yamamoto, Kazuhiro; Okabe, Nobuhiro [Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Matsushita, Kyoko; Sasaki, Toru, E-mail: telkina@theo.phys.sci.hiroshima-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp, E-mail: okabe@hiroshima-u.ac.jp, E-mail: matusita@rs.kagu.tus.ac.jp, E-mail: j1213703@ed.tus.ac.jp [Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2015-10-01

    We obtain a constraint on the parameters of a generalized cubic Galileon gravity model exhibiting the Vainshtein mechanism by using multi-wavelength observations of the Coma Cluster. The generalized cubic Galileon model is characterized by three parameters of the turning scale associated with the Vainshtein mechanism, and the amplitude of modifying a gravitational potential and a lensing potential. X-ray and Sunyaev-Zel'dovich (SZ) observations of the intra-cluster medium are sensitive to the gravitational potential, while the weak-lensing (WL) measurement is specified by the lensing potential. A joint fit of a complementary multi-wavelength dataset of X-ray, SZ and WL measurements enables us to simultaneously constrain these three parameters of the generalized cubic Galileon model for the first time. We also find a degeneracy between the cluster mass parameters and the gravitational modification parameters, which is influential in the limit of the weak screening of the fifth force.

  15. Hardness and thermal stability of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.

    2001-01-01

    The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...

  16. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hui [School of Science, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: zhanghui14305@sohu.com; Duan Renguan [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li Fan [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Tang Qing [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li Wenchao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2007-07-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3.

  17. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    International Nuclear Information System (INIS)

    Zhang Hui; Duan Renguan; Li Fan; Tang Qing; Li Wenchao

    2007-01-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3

  18. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation.

    Science.gov (United States)

    Rao, Lu; Jiang, Yan-Xia; Zhang, Bin-Wei; Cai, Yuan-Rong; Sun, Shi-Gang

    2014-07-21

    Cubic PtRh alloys supported on graphene (PtxRhy/GN) with different atomic ratio of Pt and Rh were directly synthesized for the first time using the modified polyol method with Br(-) for the shape-directing agents. The process didn't use surface-capping agents such as PVP that easily occupy the active sites of electrocatalysts and are difficult to remove. Graphene is the key factor for cubic shape besides Br(-) and keeping catalysts high-dispersed. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structure and morphology of these electrocatalysts. The results showed that they were composed of homogeneous cubic PtRh alloys. Traditional electrochemical methods, such as cyclic voltammetry and chronoamperometry, were used to investigate the electrocatalytic properties of PtxRhy/GN towards ethanol electrooxidation. It can be seen that PtxRhy/GN with all atomic ratios exhibited high catalytic activity, and the most active one has a composition with Pt : Rh = 9 : 1 atomic ratio. Electrochemical in situ FTIR spectroscopy was used to evaluate the cleavage of C-C bond in ethanol at room temperature in acidic solutions, the results illustrated that Rh in an alloy can promote the split of C-C bond in ethanol, and the alloy catalyst with atomic ratio Pt : Rh = 1 : 1 showed obviously better performance for the C-C bond breaking in ethanol and higher selectivity for the enhanced activity of ethanol complete oxidation to CO2 than alloys with other ratios of Pt and Rh. The investigation indicates that high activity of PtxRhy/GN electrocatalyst towards ethanol oxidation is due to the specific shape of alloys and the synergistic effect of two metal elements as well as graphene support.

  19. Exact optical solitons in (n + 1)-dimensions with anti-cubic nonlinearity

    Science.gov (United States)

    Younis, Muhammad; Shahid, Iram; Anbreen, Sumaira; Rizvi, Syed Tahir Raza

    2018-02-01

    The paper studies the propagation of optical solitons in (n + 1)-dimensions under anti-cubic law of nonlinearity. The bright, dark and singular optical solitons are extracted using the extended trial equation method. The constraint conditions, for the existence of these solitons, are also listed. Additionally, a couple of other solutions known as singular periodic and Jacobi elliptic solutions, fall out as a by-product of this scheme. The obtained results are new and reported first time in (n + 1)-dimensions with anti-cubic law of nonlinearity.

  20. Deformed lattice states in a Zn{sub 0.9}V{sub 0.1}Se cubic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Maksimov, V. I., E-mail: kokailo@rambler.ru; Dubinin, S. F.; Surkova, T. P.; Parkhomenko, V. D. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-01-15

    Neutron scattering patterns have been recorded for a bulk Zn{sub 0.9}V{sub 0.1}Se cubic crystal at room temperature; they are indicative of macroscopic deformation in the material and its significant inhomogeneity. Specific features of the previously found state, preceding the fcc ↔ hcp structural transformation of the sphalerite lattice upon strong destabilization induced by vanadium ions in the doped ZnSe matrix, are discussed taking into account the data obtained.

  1. Pressure-driven insulator-metal transition in cubic phase UO2

    Science.gov (United States)

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-01

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ∼45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure. Simultaneously, the so-called “Zhang-Rice state”, which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.

  2. Effect of Eu{sup 3+} doping on the structural and photoluminescence properties of cubic CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yan; Sun, Yidi; Zou, Haifeng; Sheng, Ye; Zhou, Xiuqing; Zhang, Bowen; Zhou, Bing, E-mail: zhoubing@jlu.edu.cn

    2016-01-15

    Graphical abstract: - Highlights: • The doping of Eu{sup 3+} ions decreased the size of CaCO{sub 3} nanoparticles. • The doping of Eu{sup 3+} ions brought about the change of CaCO{sub 3}'s optical bandgap. • Multiple sites of Eu{sup 3+} in CaCO{sub 3} nanocrystals have been identified. - Abstract: CaCO{sub 3}:xEu{sup 3+} (x = 0, 0.010, 0.015, 0.020, and 0.025) cubic nanoparticles were synthesized by carbonation method. The powder XRD patterns and SEM images of the CaCO{sub 3}:xEu{sup 3+} nanoparticles demonstrate that both the crystalline sizes and average particle sizes of synthesized samples decreased with the increase of Eu{sup 3+} content until x = 0.020. Kubelka–Munk plots and bandgap energy estimation indicate that the doping of Eu{sup 3+} ions changed optical bandgap of CaCO{sub 3}. Photoluminescence (PL) spectra show that the PL intensity of the CaCO{sub 3}:xEu{sup 3+} nanoparticles was enhanced with the increase of Eu{sup 3+} content in cubic CaCO{sub 3}:xEu{sup 3+}, and concentration quenching occurred when Eu{sup 3+} concentration exceeded 2.0 mol%. In addition, the doped sites of Eu{sup 3+} in CaCO{sub 3} crystalline were identified by the site-selective spectroscopy and decay curves.

  3. Experimental and computational study on the phase stability of Al-containing cubic transition metal nitrides

    International Nuclear Information System (INIS)

    Rovere, Florian; Mayrhofer, Paul H; Music, Denis; Ershov, Sergey; Baben, Moritz to; Schneider, Jochen M; Fuss, Hans-Gerd

    2010-01-01

    The phase stability of Al-containing cubic transition metal (TM) nitrides, where Al substitutes for TM (i.e. TM 1-x Al x N), is studied as a function of the TM valence electron concentration (VEC). X-ray diffraction and thermal analyses data of magnetron sputtered Ti 1-x Al x N, V 1-x Al x N and Cr 1-x Al x N films indicate increasing phase stability of cubic TM 1-x Al x N at larger Al contents and higher temperatures with increasing TM VEC. These experimental findings can be understood based on first principle investigations of ternary cubic TM 1-x Al x N with TM = Sc, Ti, V, Cr, Y, Zr and Nb where the TM VEC and the lattice strain are systematically varied. However, our experimental data indicate that, in addition to the decomposition energetics (cubic TM 1-x Al x N → cubic TMN + hexagonal AlN), future stability models have to include nitrogen release as one of the mechanisms that critically determine the overall phase stability of TM 1-x Al x N.

  4. Synthesis and characterization of Ce{sub 1-x}SmXO{sub 2-(x/2)} as solid electrolyte for application in IT-SOFCs; Sintese e caracterizacao de Ce{sub 1-x}SmXO{sub 2-(x/2)} como eletrolito solido para aplicacao em IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Nicodemo, J.P.; Martinelli, A.E.; Nascimento, R.M. [Universidade Federal do Rio Grande do Norte (DECM/UFRN), Natal, RN (Brazil). Dept. de Engenharia de Materiais], e-mail: juli_pivotto@yahoo.com.br; Melo, D.M.A. [Universidade Federal do Rio Grande do Norte (DQ/UFRN), Natal, RN (Brazil). Dept. de Quimica; Cela, B. [Universidade Federal do Rio Grande do Norte (PPGCEM/UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Macedo, D.A. [Universidade Federal do Rio Grande do Norte (PPGEM/UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2008-07-01

    Mixed rare earth doped CeO{sub 2} oxide-based have been extensively studied for use in solid electrolytes for fuel cells. Ceramics-based CeO{sub 2} have high ionic conductivity and enable the operation of solid oxide fuel cells (SOFCs) in intermediate temperatures, in the range of 500 to 750 deg C. In this work, was investigated the Sm{sub 2}O{sub 3} doped CeO{sub 2} by Pechini method to obtain Ce{sub 0,9}Sm{sub 0,1}O{sub 1,95}. The resulting powders were characterized by the chemical composition (EDS) and crystallographic (XRD), thermal analysis (TG/ATD and DTG), and particles morphology (SEM). After calcinations of 500 and 700 deg C for 2 hours were obtained nanosized powders with crystalline structure of cubic phase type fluorite fully formed. (author)

  5. Influence of a hydrostatic pressure on the diffusion in metals having a cubic structure; Contribution a l'etude de l'influence de la pression hydrostatique sur la diffusion dans les metaux cubiques

    Energy Technology Data Exchange (ETDEWEB)

    Beyeler, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    In view of obtaining informations on the structure of vacancies. We have determined, by diffusion experiments under high pressure, the activation volumes for self diffusion in different face centered cubic metals: silver, gold, copper, aluminium and in body centered cubic uranium (gamma phase). Activation volumes for noble metals diffusion in aluminium have also been investigated. The experimental results on gold, silver and copper are in good agreement with most of the theoretical models. The estimated activation volume for gamma uranium seems to indicate a vacancy mechanism.The results on aluminium for both self and impurity diffusion agree quite well with Friedel's theoretical predictions. [French] Pour preciser la structure des lacunes, on a, par des etudes de diffusion sous haute pression determine les volumes d'activation correspondant a l'autodiffusion dans des metaux de structure cubique face centree: argent, or, cuivre et aluminium et dans un metal de structure cubique centree: l'uranium gamma. On a egalement determine les volumes d'activation pour l'heterodiffusion des metaux nobles dans l'aluminium. Les resultats obtenus pour l'or, l'argent et le cuivre sont en accord avec la plupart des modeles theoriques classiques. Le volume d'activation d'autodiffusion evalue pour l'uranium gamma est compatible avec une diffusion par lacune. Les resultats concernant l'aluminium et l'heterediffusion des metaux nobles dans l'aluminium verifient assez bien les previsions theoriques de Friedel. (auteur)

  6. Thermodynamics of face-centered-cubic silicon nucleation at the nanoscale from laser ablation

    International Nuclear Information System (INIS)

    Hu Shengliang; Li Wuhong; Liu Wei; Dong Yingge; Cao Shirui; Yang Jinlong

    2011-01-01

    The thermodynamic nucleation and the phase transition of the face-centered-cubic structure of Si (fcc-Si) on the nanoscale are performed by taking the effect of nanosize-induced additional pressure on the fcc-Si formation under the conditions generated by laser ablation in liquid into account. The thermodynamic analyses showed that the formation of fcc-Si nanocrystals with sizes of 2-6 nm would take place prior to that of large fcc-Si nanocrystals, and the phase transition probability from diamond-like structure Si (d-Si) to fcc-Si is rather high, up to 10 -3 -10 -2 , under the conditions created by laser ablation of an Si target in water. These theoretical results suggest that laser ablation in liquid would be an effective industrial route to prepare ultrasmall fcc-Si nanocrystals.

  7. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    International Nuclear Information System (INIS)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-01-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application

  8. Computed phase equilibria for burnable neutron absorbing materials for advanced pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)

    2009-03-31

    Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.

  9. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    International Nuclear Information System (INIS)

    Wang, S.; Wang, M.P.; Chen, C.; Xiao, Z.; Jia, Y.L.; Li, Z.; Wang, Z.X.

    2014-01-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compression axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different

  10. Temperature dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3

    International Nuclear Information System (INIS)

    Arenholz, Elke; Mannella, N.; Booth, C.H.; Rosenhahn, A.; Sell, B.C.; Nambu, A.; Marchesini, S.; Mun, B. S.; Yang, S.-H.; Watanabe, M.; Ibrahim, K.; Arenholz, E.; Young, A.; Guo, J.; Tomioka, Y.; Fadley, C.S.

    2007-01-01

    We have studied the temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La 1-x Sr x MnO 3 (x= 0.3-0.4) with core and valence level photoemission (PE), x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), resonant inelastic x-ray scattering (RIXS), extended x-ray absorption fine structure (EXAFS) spectroscopy and magnetometry. As the temperature is varied across the Curie temperature T c , our PE experiments reveal a dramatic change of the electronic structure involving an increase in the Mn spin moment from ∼ 3 (micro)B to ∼ 4 (micro)B, and a modification of the local chemical environment of the other constituent atoms indicative of electron localization on the Mn atom. These effects are reversible and exhibit a slow-timescale ∼200 K-wide hysteresis centered at T c . Based upon the probing depths accessed in our PE measurements, these effects seem to survive for at least 35-50 (angstrom) inward from the surface, while other consistent signatures for this modification of the electronic structure are revealed by more bulk sensitive spectroscopies like XAS and XES/RIXS. We interpret these effects as spectroscopic fingerprints for polaron formation, consistent with the presence of local Jahn-Teller distortions of the MnO 6 octahedra around the Mn atom, as revealed by the EXAFS data. Magnetic susceptibility measurements in addition show typical signatures of ferro-magnetic clusters formation well above the Curie temperature

  11. Curvature and bottlenecks control molecular transport in inverse bicontinuous cubic phases

    Science.gov (United States)

    Assenza, Salvatore; Mezzenga, Raffaele

    2018-02-01

    We perform a simulation study of the diffusion of small solutes in the confined domains imposed by inverse bicontinuous cubic phases for the primitive, diamond, and gyroid symmetries common to many lipid/water mesophase systems employed in experiments. For large diffusing domains, the long-time diffusion coefficient shows universal features when the size of the confining domain is renormalized by the Gaussian curvature of the triply periodic minimal surface. When bottlenecks are widely present, they become the most relevant factor for transport, regardless of the connectivity of the cubic phase.

  12. Electron paramagnetic resonance and neutron activation study of lanthanide ions behaviour in fluorite. Application to the geochemical study of Montroc and Burc veins (Tarn)

    International Nuclear Information System (INIS)

    Meary, Alain

    1983-01-01

    In order to obtain a better understanding of fluorite deposits, rare earth impurities have been analyzed for a large number of samples taken from cross-sections of several low temperature hydrothermal veins; two types of measurements have been used: Electron Paramagnetic Resonance (EPR) and Neutron Activation Analysis (NAA). This enabled us to measure a 'deficit of spins' relative to the total lanthanide concentration, this deficit reveals that the paramagnetic center observed by EPR is not the only mode of incorporation. For Gd no marked deficit is observed; that is the ratio of spin concentrations to total concentration [Gd 3+ ]/[Gd total ] is close to 1 in all the samples; on the other hand, the ratios [Eu 2+ ]/[Eu total ], [Ce 3- F i - ]/[Ce total ], and [Yb 3+ ]/ [Yb total ] exhibit large variations. The first result suggests that the major part of the lanthanides in the samples is incorporated in the crystal lattice and that clustering of lanthanides ions is not important. Deficit of spins observed for Ce and Nd are probably due to the dissociation of paramagnetic complexes Ce 3+ -F i - and Nd 3+ -F i - ; for Eu, it may be attributed to the oxidized state Eu 3+ . Moreover, the sign and the amplitude of the anomaly exhibited by Eu in the normalized lanthanides spectra may be correlated with the majority valence state of Eu in the crystal: a marked positive anomaly belongs to a deficit of paramagnetic divalent Eu and, inversely, if divalent Eu is the majority valence state, the Eu anomaly appears to be negative. The results obtained for the Montroc vein are consistent with a model involving discontinuous injections of hydrothermal solutions. They may be connected to variations of oxygen fugacity arising from cooling of these solutions and from precipitation of sulfides during fluorite precipitation. (author) [fr

  13. Specific heat of the simple-cubic Ising model

    NARCIS (Netherlands)

    Feng, X.; Blöte, H.W.J.

    2010-01-01

    We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions

  14. Optical properties of a new Bi{sub 38}Mo{sub 7}O{sub 78} semiconductor with fluorite-type δ-Bi{sub 2}O{sub 3} structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zuoshan; Bi, Shala; Wan, Yingpeng [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Huang, Pengjie [College of Textile and Clothing Engineering, Soochow University, Suzhou 215006 (China); Zheng, Min, E-mail: zhengmin@suda.edu.cn [College of Textile and Clothing Engineering, Soochow University, Suzhou 215006 (China)

    2017-03-31

    Highlights: • Bi{sub 38}Mo{sub 7}O{sub 78} semiconductor nanoparticles were synthesized by sol-gel method. • Bi{sub 38}Mo{sub 7}O{sub 78} keeps the structural characteristics of the patrimonial δ-Bi{sub 2}O{sub 3} structure. • Bi{sub 38}Mo{sub 7}O{sub 78} show an efficient optical absorption in visible light. • Photocatalytic property was markedly enhanced for Bi{sub 38}Mo{sub 7}O{sub 78} nanoparticles. • The mechanism of this photocatalysis system was proposed. - Abstract: Bi{sup 3+}-containing inorganic materials usually show rich optical and electronic properties due to the hybridization between 6s and 6p electronic components together with the lone pair in Bi{sup 3+} ions. In this work, a new semiconductor of bismuth molybdate Bi{sub 38}Mo{sub 7}O{sub 78} (19Bi{sub 2}O{sub 3}·7MoO{sub 3}) was synthesized by the sol-gel film coating and the following heat process. The samples developed into nanoparticles with average size of 40 nm. The phase formation was verified via the XRD Rietveld structural refinement. Orthorhombic Bi{sub 38}Mo{sub 7}O{sub 78} can be regarded to be derived from the cubic δ-phase Bi{sub 2}O{sub 3} structure. The microstructure was investigated by SEM, EDX, TEM, BET and XPS measurements. The UV-vis absorption spectra showed that the band gap of Bi{sub 38}Mo{sub 7}O{sub 78} (2.38 eV) was greatly narrowed in comparison with Bi{sub 2}O{sub 3} (2.6 eV). This enhances the efficient absorption of visible light. Meanwhile, the conduction band of is wider and shows more dispersion, which greatly benefits the mobility of the light-induced charges taking part in the photocatalytic reactions. Bi{sub 38}Mo{sub 7}O{sub 78} nanoparticles possess efficient activities on the photodegradation of methylene blue (MB) solutions under the excitation of visible-light. The photocatalysis activities and mechanisms were discussed on the crystal structure characteristics and the measurements such as photoluminescence, exciton lifetime and XPS results.

  15. Negative pressure driven valence instability of Eu in cubic Eu0.4La0.6Pd3

    International Nuclear Information System (INIS)

    Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R

    2009-01-01

    We report the change in the valency of Eu-ions in the binary intermetallic cubic compound EuPd 3 induced by La doping at rare-earth sites. Doping of La generates negative chemical pressure in the lattice, resulting in a significant increase of the lattice parameter without altering the simple-cubic structure of the compound. Results of dc-magnetic measurements suggest that this increase in the lattice parameter is associated with the valence transition of Eu-ions from Eu 3+ to a mixed-valent state. As Eu 2+ -ions possess a large magnetic moment, this valence transition significantly modifies the magnetic behavior of the compound. In contrast to introducing boron at the vacant body center site of the unit cell to change the valency of Eu-ions, as in the case of EuPd 3 B, our results suggest it can also be altered by doping a rare-earth ion of larger size at the lattice site of Eu in EuPd 3 .

  16. Phonons in face-centred cubic calcium and strontium

    International Nuclear Information System (INIS)

    Singh, S.P.; Rathore, R.P.S.

    1984-01-01

    The axially symmetric and unpaired forces are employed to analyse the phonon dispersion and elastic behaviour of face centred cubic calcium and strontium which have so far not been studied adequately. The model with three parameters predicts the results which agree marvellously with the recently measured data. (author)

  17. C2-rational cubic spline involving tension parameters

    Indian Academy of Sciences (India)

    preferred which preserves some of the characteristics of the function to be interpolated. In order to tackle such ... Shape preserving properties of the rational (cubic/quadratic) spline interpolant have been studied ... tension parameters which is used to interpolate the given monotonic data is described in. [6]. Shape preserving ...

  18. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-01-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D i =ε i (0) E i +χ i (3) |E i | 2 E i . We assume that linear ε i (0) and cubic nonlinear χ i (3) dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function χ eff (3) can be significantly greater (up to 10 3 times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity

  19. Plasma deposition of cubic boron nitride films from non-toxic material at low temperatures

    International Nuclear Information System (INIS)

    Karim, M.Z.; Cameron, D.C.; Murphy, M.J.; Hashmi, M.S.J.

    1991-01-01

    Boron nitride has become the focus of a considerable amount of interest because of its properties which relate closely to those of carbon. In particular, the cubic nitride phase has extreme hardness and very high thermal conductivity similar to the properties of diamond. The conventional methods of synthesis use the highly toxic and inflammable gas diborane (B 2 H 6 ) as the reactant material. A study has been made of the deposition of thin films of boron nitride (BN) using non-toxic material by the plasma-assisted chemical vapour deposition technique. The source material was borane-ammonia (BH 3 -NH 3 ) which is a crystalline solid at room temperature with a high vapour pressure. The BH 3 -NH 3 vapour was decomposed in a 13.56 MHz nitrogen plasma coupled either inductively or capacitively with the system. The composition of the films was assessed by measuring their IR absorption when deposited on silicon and KBr substrates. The hexagonal (graphitic) and cubic (diamond-like) allotropes can be distinguished by their characteristic absorption bands which occur at 1365 and 780 cm -1 (hexagonal) and 1070 cm -1 (cubic). We have deposited BN films consisting of a mixture of hexagonal and cubic phases; the relative content of the cubic phase was found to be directly dependent on r.f. power and substrate bias. (orig.)

  20. Mathemimetics II. Demonstratio Mirabilis of FLT by infinitely ascending cubical crystal growth

    Science.gov (United States)

    Trell, Erik

    2012-09-01

    Emulating Nature by observation and ground-up application of its patterns, structures and processes is a classical scientific practice which under the designation of Biomimetics has now been brought to the Nanotechnology scale where even highly complex systems can be realized by continuous or cyclically reiterated assembly of the respective self-similar eigen-elements, modules and algorithms right from their infinitesimal origin. This is actually quite akin to the genuine mathematical art and can find valuable renewed use as here exemplified by the tentatively original Demonstratio Mirabilis of FLT (Fermat's Last Theorem, or, in that case, Triumph) by infinitely ascending sheet-wise cubical crystal growth leading to the binomial `magic triangle' of his close fellow Blaise Pascal.

  1. Characterization of cubic yttria-stabilized zirconia obtained by spray pyrolysis

    International Nuclear Information System (INIS)

    Halmenschlager, Cibele M.; Nunes, Marilia; Vieira, Ramaugusto; Bergmann, Carlos Perez; Falcade, Tiago; Malfatti, Celia de Fraga

    2009-01-01

    Yttria-stabilized-zirconia (YSZ) has been the object of many studies as a SOFC electrolyte. The aim of this work is to produce, by spray pyrolysis process, thin and dense films of YSZ. A disk of steel 316L, previously heated, was used as substrate. The film was obtained with zirconium acetylacetonate (Zr(C 6 H 7 O 2 ) 4 ) and yttrium chloride (YCl 3.6 H 2 O), dissolved in a mixture of ethanol + butyl carbitol with volume ratio (1:1). ZrO 2 amorphous films were deposited in the substrate heated at many temperatures. After thermal treatment at 700 deg C the films were changed into cubic yttria-stabilized-zirconia structure. The thin films obtained were characterized by thermal analysis, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and micro-Raman spectroscopy. (author)

  2. Structural stability and electronic structure of YCu ductile ...

    African Journals Online (AJOL)

    We investigate the structural, elastic and electronic properties of cubic YCu intermetallic compound. Which crystallize in the CsCl- B2 type structure, the investigated using the first principle full potential linearized augmented plane wave method (FP-LAPW) within density functional Theory (DFT). We used generalized ...

  3. The n-component cubic model and flows: subgraph break-collapse method

    International Nuclear Information System (INIS)

    Essam, J.W.; Magalhaes, A.C.N. de.

    1988-01-01

    We generalise to the n-component cubic model the subgraph break-collapse method which we previously developed for the Potts model. The relations used are based on expressions which we recently derived for the Z(λ) model in terms of mod-λ flows. Our recursive algorithm is similar, for n = 2, to the break-collapse method for the Z(4) model proposed by Mariz and coworkers. It allows the exact calculation for the partition function and correlation functions for n-component cubic clusters with n as a variable, without the need to examine all of the spin configurations. (author) [pt

  4. Mechanical properties and electronic structure of anti-ReO3 structured cubic nitrides, M3N, of d block transition metals M: An ab initio study

    International Nuclear Information System (INIS)

    Zhou, Xiuquan; Gall, Daniel; Khare, Sanjay V.

    2014-01-01

    Highlights: • We use DFT to model the anti-ReO 3 structured transition metal nitrides M 3 N. • We predict their lattice constants, electronic structures and mechanical properties. • We correlate the metal d and nitrogen 2p orbitals with stability and hardness. • We established a high-throughput database for materials design. - Abstract: We report a systematic study of the anti-ReO 3 structured transition metal nitrides, M 3 N, using ab initio density functional theory computations in the local density approximation. Here M denotes all the 3d, 4d and 5d transition metals. Our calculations indicate that all M 3 N compounds except V 3 N of group 5 and Zn 3 N and Hg 3 N of group 12 are mechanically stable. For the stable M 3 N compounds, we report a database of predictions for their lattice constants, electronic properties and mechanical properties including bulk modulus, Young’s modulus, shear modulus, ductility, hardness and Debye temperature. It is found that most M 3 N compounds exhibit ductility with Vickers hardness between 0.4 GPa and 11.2 GPa. Our computed lattice constant for Cu 3 N, the only M 3 N compound where experiments exist, agrees well with the experimentally reported values. We report ratios of the melting points of all M 3 N compounds to that of Cu 3 N. The local density of states for all M 3 N compounds are obtained, and electronic band gaps are observed only for M of group 11 (Cu, Ag and Au) while the remaining M 3 N compounds are metallic without band gaps. Valence electron density along with the hybridization of the metal d and nitrogen 2p orbitals play an important role in determining the stability and hardness of different compounds. Our high-throughput databases for the cubic anti-ReO 3 structured transition metal nitrides should motivate future experimental work and shorten the time to their discovery

  5. Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si

    International Nuclear Information System (INIS)

    Seo, J.W.; Fompeyrine, J.; Guiller, A.; Norga, G.; Marchiori, C.; Siegwart, H.; Locquet, J.-P.

    2003-01-01

    We have studied the growth of epitaxial La 2 Zr 2 O 7 thin films on (111) Si. Although the interface structure can be strongly affected by the Si oxidation during the deposition process, epitaxial growth of La 2 Zr 2 O 7 was obtained. A detailed study by means of transmission electron microscopy reveals two types of structures (pyrochlore and fluorite) with the same average chemical composition but strong differences in reactivity and interface formation. The structural complexity of the ordered pyrochlore structure seems to prevent excess oxygen diffusion and interfacial SiO 2 formation

  6. Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: a first-principles investigation

    International Nuclear Information System (INIS)

    Liu, Z T Y; Khare, S V; Zhou, X; Gall, D

    2014-01-01

    We report systematic results from ab initio calculations with density functional theory on three cubic structures, zincblende (zb), rocksalt (rs) and cesium chloride (cc), of the ten 3d transition metal nitrides. We computed lattice constants, elastic constants, their derived moduli and ratios that characterize mechanical properties. Experimental measurements exist in the literature of lattice constants for rs-ScN, rs-TiN and rs-VN and of elastic constants for rs-TiN and rs-VN, all of which are in good agreement with our computational results. Similarly, computed Vickers hardness (H V ) values for rs-TiN and rs-VN are consistent with earlier experimental results. Several trends were observed in our rich data set of 30 compounds. All nitrides, except for zb-CrN, rs-MnN, rs-FeN, cc-ScN, cc-CrN, cc-NiN and cc-ZnN, were found to be mechanically stable. A clear correlation in the atomic density with the bulk modulus (B) was observed with maximum values of B around FeN, MnN and CrN. The shear modulus, Young’s modulus, H V and indicators of brittleness showed similar trends and all showed maxima for cc-VN. The calculated value of H V for cc-VN was about 30 GPa, while the next highest values were for rs-ScN and rs-TiN, about 24 GPa. A relation (H V ∝θ D 2 ) between H V and Debye temperature (θ D ) was investigated and verified for each structure type. A tendency for anti-correlation of the elastic constant C 44 , which strongly influences stability and hardness, with the number of electronic states around the Fermi energy was observed. (paper)

  7. On the magnetization process and the associated probability in anisotropic cubic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Khedr, D.M., E-mail: doaamohammed88@gmail.com [Department of Basic Science, Modern Academy of Engineering and Technology at Maadi, Cairo (Egypt); Aly, Samy H.; Shabara, Reham M. [Department of Physics, Faculty of Science at Damietta, University of Damietta, Damietta (Egypt); Yehia, Sherif [Department of Physics, Faculty of Science at Helwan, University of Helwan, Helwan (Egypt)

    2017-05-15

    We present a theoretical method to calculate specific magnetic properties, e.g. magnetization curves, magnetic susceptibility and probability landscapes along the [100], [110] and [111] crystallographic directions of a crystal of cubic symmetry. The probability landscape displays the evolution of the most probable angular orientation of the magnetization vector, for selected temperatures and magnetic fields. Our method is based on the premises of classical statistical mechanics. The energy density, used in the partition function, is the sum of magnetic anisotropy and Zeeman energies, however no other energies e.g. elastic or magnetoelastic terms are considered in the present work. Model cubic systems of diverse anisotropies are analyzed first, and subsequently material magnetic systems of cubic symmetry; namely iron, nickel and Co{sub x} Fe{sub 100−x} compounds, are discussed. We highlight a correlation between magnetization curves and the associated probability landscapes. In addition, determination of easiest axes of magnetization, using energy consideration, is done and compared with the results of the present method.

  8. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    International Nuclear Information System (INIS)

    Seetha, M.; Meena, P.; Mangalaraj, D.; Masuda, Yoshitake; Senthil, K.

    2012-01-01

    Highlights: ► For the first time HMT is used in the preparation of indium oxide. ► HMT itself acts as base for the precursor and results in cubic indium hydroxide. ► Modified hydrothermal route used for the preparation of cubic indium oxide crystals. ► As a new approach a composite film synthesized with prepared indium oxide. ► Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  9. A Unified Approach to Teaching Quadratic and Cubic Equations.

    Science.gov (United States)

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  10. Structural properties of pure and Fe-doped Yb films prepared by vapor condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Ayala, C., E-mail: chachi@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, P.O.B. 14-149, Lima 14 (Peru); Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES (Brazil); Suguihiro, N.M. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig (Germany); Baggio Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil)

    2014-10-15

    Ytterbium and iron-doped ytterbium films were prepared by vapor quenching on Kapton substrates at room temperature. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. The aim was to study the microstructure of pure and iron-doped films and thereby to understand the effects induced by iron incorporation. A coexistence of face centered cubic and hexagonal close packed-like structures was observed, the cubic-type structure being the dominant contribution. There is an apparent thickness dependence of the cubic/hexagonal relative ratios in the case of pure ytterbium. Iron-clusters induce a crystalline texture effect, but do not influence the cubic/hexagonal volume fraction. A schematic model is proposed for the microstructure of un-doped and iron-doped films including the cubic- and hexagonal-like structures, as well as the iron distribution in the ytterbium matrix. - Highlights: • Pure and Fe-doped Yb films have been prepared by vapor condensation. • Coexistence of fcc- and hcp-type structures was observed. • No oxide phases have been detected. • Fe-clustering does not affect the fcc/hcp ratio, but favors a crystalline texture. • A schematic model is proposed to describe microscopically the microstructure.

  11. Perovskite structures in the formation of nano-rods in REBa2Cu3O7-δ films self-organization to perovskite structures

    International Nuclear Information System (INIS)

    Mukaida, Masashi; Kai, Hideki; Shingai, Yuki

    2009-01-01

    Cubic perovskite structure has been found to play an important role for the nano-rod formation in REBa 2 Cu 3 O 7-δ films. BaWO 4 , with a sheelite structure, and BaNb 2 O 6 , with a tungsten bronze structure, were doped into REBa 2 Cu 3 O 7-δ targets. Laser-deposited, these materials form nano-rods in REBa 2 Cu 3 O 7-δ films accompanied by Ln elements, resulting in the composition of a pseudo-cubic perovskite structure. This was confirmed by selected area electron diffraction patterns (SADP) and composition mapping using energy-dispersive X-ray spectroscopy scanning transmission electron microscope (EDS-STEM) analysis. BaWO 4 with a sheelite structure, and BaNb 2 O 6 with a tungsten bronze structure, doped into targets no longer retain their structures, but can form pseudo-cubic perovskite structures in laser-deposited REBa 2 Cu 3 O 7-δ films. The perovskite crystal structure is thought to be important for nano-rod formation in the laser deposited REBa 2 Cu 3 O 7-δ film. (author)

  12. Analysis of moderately thin-walled beam cross-sections by cubic isoparametric elements

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2014-01-01

    In technical beam theory the six equilibrium states associated with homogeneous tension, bending, shear and torsion are treated as individual load cases. This enables the formulation of weak form equations governing the warping from shear and torsion. These weak form equations are solved...... numerically by introducing a cubic-linear two-dimensional isoparametric element. The cubic interpolation of this element accurately represents quadratic shear stress variations along cross-section walls, and thus moderately thin-walled cross-sections are effectively discretized by these elements. The ability...

  13. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting.

    Science.gov (United States)

    Dallago, M; Fontanari, V; Torresani, E; Leoni, M; Pederzolli, C; Potrich, C; Benedetti, M

    2018-02-01

    Traditional implants made of bulk titanium are much stiffer than human bone and this mismatch can induce stress shielding. Although more complex to produce and with less predictable properties compared to bulk implants, implants with a highly porous structure can be produced to match the bone stiffness and at the same time favor bone ingrowth and regeneration. This paper presents the results of the mechanical and dimensional characterization of different regular cubic open-cell cellular structures produced by Selective Laser Melting (SLM) of Ti6Al4V alloy, all with the same nominal elastic modulus of 3GPa that matches that of human trabecular bone. The main objective of this research was to determine which structure has the best fatigue resistance through fully reversed fatigue tests on cellular specimens. The quality of the manufacturing process and the discrepancy between the actual measured cell parameters and the nominal CAD values were assessed through an extensive metrological analysis. The results of the metrological assessment allowed us to discuss the effect of manufacturing defects (porosity, surface roughness and geometrical inaccuracies) on the mechanical properties. Half of the specimens was subjected to a stress relief thermal treatment while the other half to Hot Isostatic Pressing (HIP), and we compared the effect of the treatments on porosity and on the mechanical properties. Fatigue strength seems to be highly dependent on the surface irregularities and notches introduced during the manufacturing process. In fully reversed fatigue tests, the high performances of stretching dominated structures compared to bending dominated structures are not found. In fact, with thicker struts, such structures proved to be more resistant, even if bending actions were present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method

    International Nuclear Information System (INIS)

    Belendez, A.; Mendez, D.I.; Fernandez, E.; Marini, S.; Pascual, I.

    2009-01-01

    The nonlinear oscillations of a Duffing-harmonic oscillator are investigated by an approximated method based on the 'cubication' of the initial nonlinear differential equation. In this cubication method the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain explicit approximate formulas for the frequency and the solution as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function, respectively. These explicit formulas are valid for all values of the initial amplitude and we conclude this cubication method works very well for the whole range of initial amplitudes. Excellent agreement of the approximate frequencies and periodic solutions with the exact ones is demonstrated and discussed and the relative error for the approximate frequency is as low as 0.071%. Unlike other approximate methods applied to this oscillator, which are not capable to reproduce exactly the behaviour of the approximate frequency when A tends to zero, the cubication method used in this Letter predicts exactly the behaviour of the approximate frequency not only when A tends to infinity, but also when A tends to zero. Finally, a closed-form expression for the approximate frequency is obtained in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean as well as Legendre's formula to approximately obtain this mean are used.

  15. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-03-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D{sub i}={epsilon}{sub i}{sup (0)}E{sub i} +{chi}{sub i}{sup (3)}|E{sub i}|{sup 2}E{sub i}. We assume that linear {epsilon}{sub i}{sup (0)} and cubic nonlinear {chi}{sub i}{sup (3)} dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function {chi}{sub eff}{sup (3)} can be significantly greater (up to 10{sup 3} times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity.

  16. Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3-x through Halide Exchange.

    Science.gov (United States)

    Hoffman, Jacob B; Schleper, A Lennart; Kamat, Prashant V

    2016-07-13

    All-inorganic cesium lead halide (CsPbX3, X = Br(-), I(-)) perovskites could potentially provide comparable photovoltaic performance with enhanced stability compared to organic-inorganic lead halide species. However, small-bandgap cubic CsPbI3 has been difficult to study due to challenges forming CsPbI3 in the cubic phase. Here, a low-temperature procedure to form cubic CsPbI3 has been developed through a halide exchange reaction using films of sintered CsPbBr3 nanocrystals. The reaction was found to be strongly dependent upon temperature, featuring an Arrhenius relationship. Additionally, film thickness played a significant role in determining internal film structure at intermediate reaction times. Thin films (50 nm) showed only a small distribution of CsPbBrxI3-x species, while thicker films (350 nm) exhibited much broader distributions. Furthermore, internal film structure was ordered, featuring a compositional gradient within film. Transient absorption spectroscopy showed the influence of halide exchange on the excited state of the material. In thicker films, charge carriers were rapidly transferred to iodide-rich regions near the film surface within the first several picoseconds after excitation. This ultrafast vectorial charge-transfer process illustrates the potential of utilizing compositional gradients to direct charge flow in perovskite-based photovoltaics.

  17. First-principles study of the (001) surface of cubic Ba0.5Sr0.5TiO3

    International Nuclear Information System (INIS)

    Wang, Yuan Xu

    2008-01-01

    We have theoretically investigated basic properties of the (001) surface of cubic Ba 0.5 Sr 0.5 TiO 3 (BST) by the plane-wave pseudopotential method within the local-density approximation. For the BaSrO 2 -terminated surface, the surface-layer Sr atoms move inward and the surface-layer Ba atoms move outward. Moreover, the displacement of the surface-layer Sr atoms is much larger than the surface-layer Ba atoms. The rumpling of the BaSrO 2 -terminated surface is much larger than that of the Ti 2 O 4 -terminated one. The surface state appears in the band structure of the Ti 2 O 4 -terminated surface of BST. Based on the results of the calculated grand thermodynamic potential, only the BaSrO 2 -terminated surface can exist in the (001) surface of cubic BST. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Cubic systems with invariant affine straight lines of total parallel multiplicity seven

    Directory of Open Access Journals (Sweden)

    Alexandru Suba

    2013-12-01

    Full Text Available In this article, we study the planar cubic differential systems with invariant affine straight lines of total parallel multiplicity seven. We classify these system according to their geometric properties encoded in the configurations of invariant straight lines. We show that there are only 17 different topological phase portraits in the Poincar\\'e disc associated to this family of cubic systems up to a reversal of the sense of their orbits, and we provide representatives of every class modulo an affine change of variables and rescaling of the time variable.

  19. The influence of a cubic building on a roof mounted wind turbine

    OpenAIRE

    Micallef, D.; Sant, Tonio; Simao Ferreira, C.

    2016-01-01

    The performance of a wind turbine located above a cubic building is not well understood. This issue is of fundamental importance for the design of small scale wind turbines. One variable which is of particular importance in this respect is the turbine height above roof level. In this work, the power performance of a small wind turbine is assessed as a function of the height above the roof of a generic cubic building. A 3D Computational Fluid Dynamics model of a 10m x 10m x 10m building is use...

  20. Preconditioning cubic spline collocation method by FEM and FDM for elliptic equations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Dong [KyungPook National Univ., Taegu (Korea, Republic of)

    1996-12-31

    In this talk we discuss the finite element and finite difference technique for the cubic spline collocation method. For this purpose, we consider the uniformly elliptic operator A defined by Au := -{Delta}u + a{sub 1}u{sub x} + a{sub 2}u{sub y} + a{sub 0}u in {Omega} (the unit square) with Dirichlet or Neumann boundary conditions and its discretization based on Hermite cubic spline spaces and collocation at the Gauss points. Using an interpolatory basis with support on the Gauss points one obtains the matrix A{sub N} (h = 1/N).

  1. Estimating the board foot to cubic foot ratio

    Science.gov (United States)

    Steve P. Verrill; Victoria L. Herian; Henry N. Spelter

    2004-01-01

    Certain issues in recent softwood lumber trade negotiations have centered on the method for converting estimates of timber volumes reported in cubic meters to board feet. Such conversions depend on many factors; three of the most important of these are log length, diameter, and taper. Average log diameters vary by region and have declined in the western United States...

  2. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    Science.gov (United States)

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  3. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  4. Application of Cubic Box Spline Wavelets in the Analysis of Signal Singularities

    Directory of Open Access Journals (Sweden)

    Rakowski Waldemar

    2015-12-01

    Full Text Available In the subject literature, wavelets such as the Mexican hat (the second derivative of a Gaussian or the quadratic box spline are commonly used for the task of singularity detection. The disadvantage of the Mexican hat, however, is its unlimited support; the disadvantage of the quadratic box spline is a phase shift introduced by the wavelet, making it difficult to locate singular points. The paper deals with the construction and properties of wavelets in the form of cubic box splines which have compact and short support and which do not introduce a phase shift. The digital filters associated with cubic box wavelets that are applied in implementing the discrete dyadic wavelet transform are defined. The filters and the algorithme à trous of the discrete dyadic wavelet transform are used in detecting signal singularities and in calculating the measures of signal singularities in the form of a Lipschitz exponent. The article presents examples illustrating the use of cubic box spline wavelets in the analysis of signal singularities.

  5. Initial post dynamic buckling of a quadratic-cubic column ...

    African Journals Online (AJOL)

    In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...

  6. Exact solutions for the cubic-quintic nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Zhu Jiamin; Ma Zhengyi

    2007-01-01

    In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions

  7. Electrical transport and capacitance characteristics of metal-insulator-metal structures using hexagonal and cubic boron nitride films as dielectrics

    Science.gov (United States)

    Teii, Kungen; Kawamoto, Shinsuke; Fukui, Shingo; Matsumoto, Seiichiro

    2018-04-01

    Metal-insulator-metal capacitor structures using thick hexagonal and cubic boron nitride (hBN and cBN) films as dielectrics are produced by plasma jet-enhanced chemical vapor deposition, and their electrical transport and capacitance characteristics are studied in a temperature range of 298 to 473 K. The resistivity of the cBN film is of the order of 107 Ω cm at 298 K, which is lower than that of the hBN film by two orders of magnitude, while it becomes the same order as the hBN film above ˜423 K. The dominant current transport mechanism at high fields (≥1 × 104 V cm-1) is described by the Frenkel-Poole emission and thermionic emission models for the hBN and cBN films, respectively. The capacitance of the hBN film remains stable for a change in alternating-current frequency and temperature, while that of the cBN film has variations of at most 18%. The dissipation factor as a measure of energy loss is satisfactorily low (≤5%) for both films. The origin of leakage current and capacitance variation is attributed to a high defect density in the film and a transition interlayer between the substrate and the film, respectively. This suggests that cBN films with higher crystallinity, stoichiometry, and phase purity are potentially applicable for dielectrics like hBN films.

  8. Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa

    Science.gov (United States)

    Kuriakose, Maju; Raetz, Samuel; Hu, Qing Miao; Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Lomonosov, Alexey; Djemia, Philippe; Gusev, Vitalyi E.; Zerr, Andreas

    2017-10-01

    Water ice is a molecular solid whose behavior under compression reveals the interplay of covalent bonding in molecules and forces acting between them. This interplay determines high-pressure phase transitions, the elastic and plastic behavior of H2O ice, which are the properties needed for modeling the convection and internal structure of the giant planets and moons of the solar system as well as H2O -rich exoplanets. We investigated experimentally and theoretically elastic properties and phase transitions of cubic H2O ice at room temperature and high pressures between 10 and 82 GPa. The time-domain Brillouin scattering (TDBS) technique was used to measure longitudinal sound velocities (VL) in polycrystalline ice samples compressed in a diamond anvil cell. The high spatial resolution of the TDBS technique revealed variations of VL caused by elastic anisotropy, allowing us to reliably determine the fastest and the slowest sound velocity in a single crystal of cubic H2O ice and thus to evaluate existing equations of state. Pressure dependencies of the single-crystal elastic moduli Ci j(P ) of cubic H2O ice to 82 GPa have been obtained which indicate its hardness and brittleness. These results were compared with ab initio calculations. It is suggested that the transition from molecular ice VII to ionic ice X occurs at much higher pressures than proposed earlier, probably above 80 GPa.

  9. Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH 2CH=NH 2SnI 3and Related Systems

    Science.gov (United States)

    Mitzi, D. B.; Liang, K.

    1997-12-01

    Combining concentrated hydriodic acid solutions of tin(II) iodide and formamidine acetate in an inert atmosphere results in the precipitation of a new conducting organic-inorganic compound, NH 2CH=NH 2SnI 3, which at room temperature adopts a cubic perovskite structure. The lattice constant for NH 2CH=NH 2SnI 3is found to be a=6.316(1) Å, which is approximately 1.2% larger than that for the isostructural compound CH 3NH 3SnI 3. The electrical resistivity of a pressed pellet of the new compound exhibits semimetallic temperature dependence from 10 to 300 K, with evidence of a structural transition at approximately 75 K. NH 2CH=NH 2SnI 3begins to slowly decompose in an inert atmosphere at temperatures as low as 200°C, with bulk decomposition/melting occurring above 300°C. The properties of the formamidinium-based perovskite are compared with those of the related cubic (at room temperature) perovskite CH 3NH 3SnI 3and the mixed-cation system (CH 3NH 3) 1- x(NH 2CH=NH 2) xSnI 3.

  10. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin

    DEFF Research Database (Denmark)

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS: Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process...

  11. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    International Nuclear Information System (INIS)

    Kostela, J.; Elmgren, M.; Almgren, M.

    2005-01-01

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E 0 -values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase

  12. Electrochemical properties and diffusion of a redox active surfactant incorporated in bicontinuous cubic and lamellar phase

    Energy Technology Data Exchange (ETDEWEB)

    Kostela, J. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)]. E-mail: johan.kostela@fki.uu.se; Elmgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden); Almgren, M. [Uppsala University, Department of Physical Chemistry, Box 579, S-75123 Uppsala (Sweden)

    2005-05-30

    The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E {sup 0}-values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase.

  13. Polarized infrared reflectance study of free standing cubic GaN grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lee, S.C.; Ng, S.S.; Hassan, H. Abu; Hassan, Z.; Zainal, N.; Novikov, S.V.; Foxon, C.T.; Kent, A.J.

    2014-01-01

    Optical properties of free standing cubic gallium nitride grown by molecular beam epitaxy system are investigated by a polarized infrared (IR) reflectance technique. A strong reststrahlen band, which reveals the bulk-like optical phonon frequencies, is observed. Meanwhile, continuous oscillation fringes, which indicate the sample consists of two homogeneous layers with different dielectric constants, are observed in the non-reststrahlen region. By obtaining the first derivative of polarized IR reflectance spectra measured at higher angles of incidence, extra phonon resonances are identified at the edges of the reststrahlen band. The observations are verified with the theoretical results simulated based on a multi-oscillator model. - Highlights: • First time experimental studies of IR optical phonons in bulk like, cubic GaN layer. • Detection of extra phonon modes of cubic GaN by polarized IR reflectance technique. • Revelation of IR multiphonon modes of cubic GaN by first derivative numerical method. • Observation of multiphonon modes requires very high angle of incidence. • Resonance splitting effect induced by third phonon mode is a qualitative indicator

  14. Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe2

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaonan; Lin, Kun; Gao, Qilong; Zhu, He; Li, Qiang; Cao, Yili; Liu, Zhanning; You, Li; Chen, Jun; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Huang, Rongjin [Key Laboratory; Lapidus, Saul H. [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Xing, Xianran

    2017-10-13

    As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe2, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe2 has been identified as a cubic Fd$ \\overline{3}\\ $m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111]cubic direction. Here we studied the crystal structure of SmFe2 by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe2 is found to adopt a centrosymmetric trigonal R$ \\overline{3}\\ $m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111]cubic to [110]cubic direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe2 could be useful to understand the magnetostriction and related physical properties of other RM2-type pseudo-cubic Laves-phase intermetallic compounds.

  15. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seetha, M., E-mail: seetha.phy@gmail.com [Department of Physics, SRM University, Kattankulathur, Kancheepuram Dt 603 203 (India); Meena, P. [Department of Physics, PSGR Krishnammal College for Women, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore (India); Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 014 (India); Masuda, Yoshitake [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K. [School of Advanced Materials Science and Engineering, Sungkyunkwan University (Suwon Campus), Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer For the first time HMT is used in the preparation of indium oxide. Black-Right-Pointing-Pointer HMT itself acts as base for the precursor and results in cubic indium hydroxide. Black-Right-Pointing-Pointer Modified hydrothermal route used for the preparation of cubic indium oxide crystals. Black-Right-Pointing-Pointer As a new approach a composite film synthesized with prepared indium oxide. Black-Right-Pointing-Pointer Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  16. Investigation of the validity of radiosity for sound-field prediction in cubic rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-12-01

    This paper explores acoustical (or time-dependent) radiosity using predictions made in four cubic enclosures. The methods and algorithms used are those presented in a previous paper by the same authors [Nosal, Hodgson, and Ashdown, J. Acoust. Soc. Am. 116(2), 970-980 (2004)]. First, the algorithm, methods, and conditions for convergence are investigated by comparison of numerous predictions for the four cubic enclosures. Here, variables and parameters used in the predictions are varied to explore the effect of absorption distribution, the necessary conditions for convergence of the numerical solution to the analytical solution, form-factor prediction methods, and the computational requirements. The predictions are also used to investigate the effect of absorption distribution on sound fields in cubic enclosures with diffusely reflecting boundaries. Acoustical radiosity is then compared to predictions made in the four enclosures by a ray-tracing model that can account for diffuse reflection. Comparisons are made of echograms, room-acoustical parameters, and discretized echograms. .

  17. Synthesis and characterization of gold cubic nanoshells using water-soluble GeO₂templates.

    Science.gov (United States)

    Wang, Cen; Tang, Peisong; Ge, Mingyuan; Xu, Xiaobin; Cao, Feng; Jiang, J Z

    2011-04-15

    Size-tunable GeO₂ nanocubes were initially prepared by a modified sono-assisted reverse micelle method and then functionalized with an amino-terminated silanizing agent. Subsequently, gold decorated GeO₂ nanocomposites were prepared at pH ≈ 7 and 80 °C. It was found that well-dispersed gold nanoparticles on GeO₂ nanocubes could be obtained only if gold salt is abundant to favor simultaneous, homogeneous nucleation of gold particles. Additional gold ions were reduced onto these attached 'seed' particles accompanied by synchronous dissolution of water-soluble GeO₂ cores, resulting in gold hollow cubic shells. The GeO₂ nanocubes and Au/GeO₂ nanocomposites as well as gold hollow cubic shells were characterized by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and UV-visible spectroscopy. In particular, gold hollow cubic shells feature a plasmon resonance peak at above 900 nm, which renders it quite promising in biochemical applications.

  18. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  19. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    Science.gov (United States)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space

  20. Alignment of large image series using cubic B-splines tessellation: application to transmission electron microscopy data.

    Science.gov (United States)

    Dauguet, Julien; Bock, Davi; Reid, R Clay; Warfield, Simon K

    2007-01-01

    3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.

  1. Plasma simulation with the Differential Algebraic Cubic Interpolated Propagation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Utsumi, Takayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    A computer code based on the Differential Algebraic Cubic Interpolated Propagation scheme has been developed for the numerical solution of the Boltzmann equation for a one-dimensional plasma with immobile ions. The scheme advects the distribution function and its first derivatives in the phase space for one time step by using a numerical integration method for ordinary differential equations, and reconstructs the profile in phase space by using a cubic polynomial within a grid cell. The method gives stable and accurate results, and is efficient. It is successfully applied to a number of equations; the Vlasov equation, the Boltzmann equation with the Fokker-Planck or the Bhatnagar-Gross-Krook (BGK) collision term and the relativistic Vlasov equation. The method can be generalized in a straightforward way to treat cases such as problems with nonperiodic boundary conditions and higher dimensional problems. (author)

  2. Perfect 3-colorings of the cubic graphs of order 10

    Directory of Open Access Journals (Sweden)

    Mehdi Alaeiyan

    2017-10-01

    Full Text Available Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect m-coloring of a graph G with m colors is a partition of the vertex set of G into m parts A_1, A_2, ..., A_m such that, for all $ i,j \\in \\lbrace 1, ... , m \\rbrace $, every vertex of A_i is adjacent to the same number of vertices, namely, a_{ij} vertices, of A_j. The matrix $A=(a_{ij}_{i,j\\in \\lbrace 1,... ,m\\rbrace }$, is called the parameter matrix. We study the perfect 3-colorings (also known as the equitable partitions into three parts of the cubic graphs of order 10. In particular, we classify all the realizable parameter matrices of perfect 3-colorings for the cubic graphs of order 10.

  3. Structural characterization of M(IV)1-xLn(III)xO2-x/2 (M = Ce, Th) mixed-oxides prepared from oxalate precursors. Multi-parametric study of dissolution and microstructural evolution

    International Nuclear Information System (INIS)

    Horlait, D.

    2011-01-01

    In the framework of Gen IV program development, several physico-chemical properties of some foreseen fuels, including the chemical durability, have to be evaluated. In this aim, a study was undertaken on M(IV) 1-x Ln(III) x O 2 (M=Ce,Th) model compounds prepared from oxalate precursors. The fluorite-type structure of CeO 2 and ThO 2 remains stable up to x ≅ 0.4, the substitution of M(IV) by Ln(III) occurring simultaneously to the formation of oxygen vacancies. For higher x values, a cubic superstructure is formed as a result of oxygen vacancies ordering. The normalized dissolution rates of such solids were found to be strongly enhanced by the Ln(III) fraction. On the contrary, the nature of the M(IV) and Ln(III) elements did not modify significantly the normalized dissolution rates. The effect of temperature and acid concentration suggested the existence of surface-controlling dissolution reactions. Simultaneously, the microstructural evolution of both powdered and sintered samples revealed some important changes in the reactive surface during dissolution tests. ESEM images allowed observing the existence of preferential dissolution sites located at grains boundaries and around crystalline defects, leading to the formation of corrosion pits. In addition, the formation of gelatinous phases, acting as diffusion barriers (thus slowing down the dissolution process) was also evidenced. (author) [fr

  4. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  5. Microscopic insight into properties and electronic instabilities of impurities in cubic and lower symmetry insulators: the influence of pressure

    International Nuclear Information System (INIS)

    Moreno, M; Barriuso, M T; Aramburu, J A; GarcIa-Fernandez, P; GarcIa-Lastra, J M

    2006-01-01

    This article reviews the microscopic origin of properties due to transition-metal (TM) impurities, M, in insulator materials. Particular attention is paid to the influence of pressure upon impurity properties. Basic concepts such as the electronic localization in an MX N complex, the electrostatic potential, V R , arising from the rest of the lattice ions or the elastic coupling of the complex to the host lattice are initially exposed. The dependence of optical and magnetic parameters on the impurity-ligand distance, R, in cubic lattices is discussed in a first step. Emphasis is put on the actual origin of the R dependence of 10Dq. Examples revealing that laws for strict cubic symmetry cannot in general be transferred to lower symmetries are later given. This relevant fact is shown to come from allowed hybridizations like nd-(n+1)s as well as the influence of V R . As a salient feature the different colour in ruby and emerald is stressed to arise from distinct V R potentials in Al 2 O 3 and Be 3 Si 6 Al 2 O 18 . The last part of this review deals with electronic instabilities. The phenomena associated with the Jahn-Teller (JT) effect in cubic lattices, the origin of the energy barrier among equivalent minima and the existence of coherent tunnelling in systems like MgO:Cu 2+ are discussed. An increase of elastic coupling is pointed out to favour a transition from an elongated to a compressed equilibrium conformation. Interestingly the equilibrium geometry of JT ions in non-cubic lattices is shown to be controlled by mechanisms different to those in cubic systems, V R playing again a key role. The relevance of first principles calculations for clarifying the subtle mechanisms behind off-centre instabilities is also pointed out. Examples concern monovalent and divalent TM impurities in lattices with the CaF 2 structure. The instability due to the transition from the ground to an excited state is finally considered. For complexes with significant elastic coupling

  6. Microscopic insight into properties and electronic instabilities of impurities in cubic and lower symmetry insulators: the influence of pressure.

    Science.gov (United States)

    Moreno, M; Barriuso, M T; Aramburu, J A; García-Fernández, P; García-Lastra, J M

    2006-05-03

    This article reviews the microscopic origin of properties due to transition-metal (TM) impurities, M, in insulator materials. Particular attention is paid to the influence of pressure upon impurity properties. Basic concepts such as the electronic localization in an MX(N) complex, the electrostatic potential, V(R), arising from the rest of the lattice ions or the elastic coupling of the complex to the host lattice are initially exposed. The dependence of optical and magnetic parameters on the impurity-ligand distance, R, in cubic lattices is discussed in a first step. Emphasis is put on the actual origin of the R dependence of 10Dq. Examples revealing that laws for strict cubic symmetry cannot in general be transferred to lower symmetries are later given. This relevant fact is shown to come from allowed hybridizations like nd-(n+1)s as well as the influence of V(R). As a salient feature the different colour in ruby and emerald is stressed to arise from distinct V(R) potentials in Al(2)O(3) and Be(3)Si(6)Al(2)O(18). The last part of this review deals with electronic instabilities. The phenomena associated with the Jahn-Teller (JT) effect in cubic lattices, the origin of the energy barrier among equivalent minima and the existence of coherent tunnelling in systems like MgO:Cu(2+) are discussed. An increase of elastic coupling is pointed out to favour a transition from an elongated to a compressed equilibrium conformation. Interestingly the equilibrium geometry of JT ions in non-cubic lattices is shown to be controlled by mechanisms different to those in cubic systems, V(R) playing again a key role. The relevance of first principles calculations for clarifying the subtle mechanisms behind off-centre instabilities is also pointed out. Examples concern monovalent and divalent TM impurities in lattices with the CaF(2) structure. The instability due to the transition from the ground to an excited state is finally considered. For complexes with significant elastic coupling

  7. Effects of Fetch on Turbulent Flow and Pollutant Dispersion Within a Cubical Canopy

    Science.gov (United States)

    Michioka, Takenobu; Takimoto, Hiroshi; Ono, Hiroki; Sato, Ayumu

    2018-03-01

    The effects of fetch on turbulent flow and pollutant dispersion within a canopy formed by regularly-spaced cubical objects is investigated using large-eddy simulation. Six tracer gases are simultaneously released from a ground-level continuous pollutant line source placed parallel to the spanwise axis at the first, second, third, fifth, seventh and tenth rows. Beyond the seventh row, the standard deviations of the fluctuations in the velocity components and the Reynolds shear stresses reach nearly equivalent states. Low-frequency turbulent flow is generated near the bottom surface around the first row and develops as the fetch increases. The turbulent flow eventually passes through the canopy at a near-constant interval. The mean concentration within the canopy reaches a near-constant value beyond the seventh row. In the first and second rows, narrow coherent structures frequently affect the pollutant escape from the top of the canopy. These structures increase in width as the fetch increases, and they mainly affect the removal of pollutants from the canopy.

  8. Origin of the pressure-dependent Tc valley in superconducting simple cubic phosphorus

    Science.gov (United States)

    Wu, Xianxin; Jeschke, Harald O.; Di Sante, Domenico; von Rohr, Fabian O.; Cava, Robert J.; Thomale, Ronny

    2018-03-01

    Motivated by recent experiments, we investigate the pressure-dependent electronic structure and electron-phonon (e-ph) coupling for simple cubic phosphorus by performing first-principles calculations within the full potential linearized augmented plane-wave method. As a function of increasing pressure, our calculations show a valley feature in Tc, followed by an eventual decrease for higher pressures. We demonstrate that this Tc valley at low pressures is due to two nearby Lifshitz transitions, as we analyze the band-resolved contributions to the e-ph coupling. Below the first Lifshitz transition, the phonon hardening and shrinking of the γ Fermi surface with s -orbital character results in a decreased Tc with increasing pressure. After the second Lifshitz transition, the appearance of δ Fermi surfaces with 3 d -orbital character generate strong e-ph interband couplings in α δ and β δ channels, and hence lead to an increase of Tc. For higher pressures, the phonon hardening finally dominates, and Tc decreases again. Our study reveals that the intriguing Tc valley discovered in experiment can be attributed to Lifshitz transitions, while the plateau of Tc detected at intermediate pressures appears to be beyond the scope of our analysis. This strongly suggests that aside from e-ph coupling, electronic correlations along with plasmonic contributions may be relevant for simple cubic phosphorus. Our findings hint at the notion that increasing pressure can shift the low-energy orbital weight towards d character, and as such even trigger an enhanced importance of orbital-selective electronic correlations despite an increase of the overall bandwidth.

  9. Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range.

    Science.gov (United States)

    Hu, Lei; Chen, Jun; Fan, Longlong; Ren, Yang; Rong, Yangchun; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2014-10-01

    The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc1-xMx)F3 (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), αl = 2.34 × 10(-7) K(-1), 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc0.85Ga0.05Fe0.1)F3 adheres to the cubic system (Pm3̅m) according to the results of X-ray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation X-ray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc1-xMx)F3 can be functionalized to exhibit high-Tc ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work.

  10. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    Science.gov (United States)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to

  11. Unusual behavior of uranium dioxide at high magnetic fields. Part I

    Science.gov (United States)

    Gofryk, K.; Jaime, M.; Zapf, V.; Harrison, N.; Saul, A.; Radtke, G.; Lashley, J. C.; Salamon, M.; Andersson, A. D.; Stanek, C.; Durakiewicz, T.; Smith, J. L.

    UO2 is a Mott-Hubbard insulator with well-localized 5 f-electrons and its crystal structure is the face-centered-cubic fluorite. It experiences a first-order antiferromagnetic phase transition at 30.8 K to a non-collinear antiferromagnetic structure that remains a topic of debate. It is believed that the first order nature of the transition results from the competition between the exchange interaction and the Jahn-Teller distortion of oxygen atoms. Despite extensive experimental and theoretical efforts the nature of the competing degrees of freedom and their couplings (such as spin-phonon coupling) are still unclear. Here we present results of our extensive thermodynamic investigations, on well-characterized and oriented single crystals of UO2, focusing on magnetization M(T,H) measurements in DC and pulsed magnetic fields to up 65 T at the NHMFL. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division. The NHMFL Pulsed Field Facility is supported by the NSF, the U.S. D.O.E., and the State of Florida through NSF cooperative Grant DMR.

  12. Study of the crystallographic and magnetic properties of cubic manganite spinels NiMn2O4

    International Nuclear Information System (INIS)

    Boucher, B.

    1969-01-01

    We study the variation of the crystallographic properties (inversion degree, position parameters and short range order) of the cubic spinel Mn ν Ni 1-ν [Mn 2ν Ni ν ]O 4 , as a function of the thermal treatment applied to the sample. ν lies between 0. 74 and 0. 93; the slower the sample is cooled the more inverse it is. We show, in a molecular field theory, that a system of three magnetic sublattices can afford a 'star' configuration. We establish the conditions of stability of such a structure and its evolution as a function of temperature is foreseen. Neutron diffraction measurements show that the magnetic structure of NiMn 2 O 4 at 4.2 K is a 'star' configuration and that with increasing temperature it becomes a collinear structure in agreement with the theory. Furthermore, we find an anomaly in the value of specific heat at the transition temperature between 'star' and collinear structures. (author) [fr

  13. Forbidden transitions in the EPR spectrum of the ferric ion cubic symmetry in magesium oxide

    Energy Technology Data Exchange (ETDEWEB)

    de Biasi, R S [Instituto Militar de Engenharia, Rio de Janeiro (Brazil). Secao de Engenharia e Ciencia dos Materiais

    1979-03-01

    The spectrum of the ..delta..m /sub s/=2 transitions of Fe/sup 3 +/ in cubic symmetry sites in MgO has been measured at 9.25GHz. The orientation dependence of the transitions is found to be consistent with a spin Hamiltonian of cubic symmetry with g=2.0037(isotropic), a=0.0205/sup +/-0.00005 cm/sup -1/.

  14. Structure and mechanical properties of swift heavy ion irradiated tungsten-bearing delta-phase oxides Y{sub 6}W{sub 1}O{sub 12} and Yb{sub 6}W{sub 1}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M., E-mail: mtang@lanl.gov [Materials Science and Technology Division, Mail-Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wynn, T.A. [Materials Physics and Application Division, Mail-Stop K771, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Patel, M.K.; Won, J. [Materials Science and Technology Division, Mail-Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Monnet, I. [CIMAP, CEA-CNRS-ENSICAEN-Universite de Caen Normandie, Bd Henri Becquerel, BP 5133, F-14070, Caen Cedex 5 (France); Pivin, J.C. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris Sud, UMR 8609, Bat. 108, 91405 Orsay (France); Mara, N.A. [Materials Physics and Application Division, Mail-Stop K771, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sickafus, K.E. [Materials Science and Technology Division, Mail-Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-06-15

    We report on the relationship between structure and mechanical properties of complex oxides whose structures are derivatives of fluorite, following irradiation with swift heavy ion (92 MeV Xe) which approximately simulates fission product irradiation, where the electronic energy loss dominates. The two compounds of interest in this paper are Y{sub 6}W{sub 1}O{sub 12} and Yb{sub 6}W{sub 1}O{sub 12}. These compounds possess an ordered, fluorite derivative crystal structure known as the delta ({delta}) phase, a rhombohedral structure belonging to space group R3{sup Macron}. Structural changes induced by irradiation were examined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD investigations indicated an irradiation-induced amorphization in these compounds. This result is consistent with our previous study on Y{sub 6}W{sub 1}O{sub 12} under displacive radiation environment in which the nuclear energy loss is dominant. High resolution TEM also revealed that individual ion tracks was amorphized. The mechanical properties of both irradiated compounds, were determined by cross-sectional nano-indentation measurements as a function of ion penetration depth. The decreases in Young's modulus, E, and hardness, H (both by about 40% at the irradiated surface) suggest amorphization beyond simple defect accumulation occurs under this irradiation condition.

  15. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  16. Cubic phase control of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Mecseki, K.; Erdelyi, M.; Kovacs, A.P.; Szabo, G.

    2006-01-01

    Complete test of publication follows. The temporal shape of an ultrashort laser pulse may change upon propagating through a linear dispersive medium having a phase shift ψω. The change can be characterized by the Taylor-coefficients of the phase shift which are calculated around the central frequency ω 0 of the pulse. Measurements and independent control of the group delay dispersion (GDD, ψ'(ω 0 )) and the third order dispersion (TOD, ψ'(ω 0 )) are important in several research fields, particularly in the generation of ultrashort laser pulses by chirped pulse amplification (CPA) and pulse shaping for molecular control. The GDD and the TOD of an ideal pulse compressor are equal to the negative of the corresponding dispersion coefficients of the medium. However, in the case of prism-pair and grating-pair compressor is different from the ratio of the coefficients of the medium to be compensated for. Therefore it is necessary to develop so-called cubic compressors that are able to control the TOD of the pulse, yet, do not affect the GDD. In this paper a new cubic compressor setup is investigated theoretically and experimentally, which resembles the set-up proposed by White, however, we control the GDD and the TOD by the position of a birefringent, semi-cylinder crystal place around the focal point of an achromatic lens. For the evaluation of the phase shift introduced by the proposed cubic compressor, a ray tracing program was written. The program allows optimizing the compressor parameters, such as the radius of the crystal, magnification of the lens etc. Calcite was applied because it is a strong birefringent material. Calculations showed that there is a trajectory, along which shifting the crystal the TOD can be tuned independently of the GDD. The value of the TOD changed in a relatively wide range between -3.15 x 10 5 fs 3 and -1.67 x 10 5 fs 3 . Although the defocus also affects the angular dispersion of the pulse leaving the compressor, if does not exceed

  17. Limit cycles from a cubic reversible system via the third-order averaging method

    Directory of Open Access Journals (Sweden)

    Linping Peng

    2015-04-01

    Full Text Available This article concerns the bifurcation of limit cycles from a cubic integrable and non-Hamiltonian system. By using the averaging theory of the first and second orders, we show that under any small cubic homogeneous perturbation, at most two limit cycles bifurcate from the period annulus of the unperturbed system, and this upper bound is sharp. By using the averaging theory of the third order, we show that two is also the maximal number of limit cycles emerging from the period annulus of the unperturbed system.

  18. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa

    International Nuclear Information System (INIS)

    Brown, P J; Crangle, J; Kanomata, T; Matsumoto, M; Neumann, K-U; Ouladdiaf, B; Ziebeck, K R A

    2002-01-01

    High resolution neutron powder diffraction and single crystal measurements on the ferromagnetic shape memory compound Ni 2 MnGa have been carried out. They enabled the sequence of transformations which take place when the unstressed, stoichiometric compound is cooled from 400 to 20 K to be established. For the first time the crystallographic structure of each of the phases which occur has been determined. At 400 K the compound has the cubic L2 1 structure, and orders ferromagnetically at T C ∼ 365 K. On cooling below ∼ 260 K a super-structure, characterized by tripling of the repeat in one of the (110) cubic directions, forms. This phase, known as the pre-martensitic phase, persists down to the structural phase transition at T M ∼ 200 K and can be described by an orthorhombic unit cell with lattice parameters a ortho = 1/√2a cubic , b ortho = 3/√2a cubic , c ortho = a cubic and space group Pnnm. Below T M the compound has a related orthorhombic super-cell with b ortho ∼ 7/√2a cubic , which can be described within the same space group. The new modulation appears abruptly at T M and remains stable down to at least 20 K

  19. Lattice vibrations and cubic to tetragonal phase transition in ZrO2

    International Nuclear Information System (INIS)

    Negita, K.

    1989-01-01

    On the basis of analyses of phonon modes in ZrO 2 , it is suggested that condensation of a phonon X 2 - at the cubic Brillouin zone boundary X point, (0, 0, 2 π/a), is associated with the cubic to tetragonal phase transition in ZrO 2 . Free energy consideration shows that spontaneous volume and shear strains, e Alg = (e 1 +e 2 +e 3 ) and e Eg = (2e 3 - e 1 - e 2 )/ Λ3, are induced in the tetragonal phase as a result of indirect couplings of the X 2 - mode to homogeneous elastic strains; the tetragonal phase is improper ferroelastic

  20. Cubic-spline interpolation to estimate effects of inbreeding on milk yield in first lactation Holstein cows

    Directory of Open Access Journals (Sweden)

    Makram J. Geha

    2011-01-01

    Full Text Available Milk yield records (305d, 2X, actual milk yield of 123,639 registered first lactation Holstein cows were used to compare linear regression (y = β0 + β1X + e ,quadratic regression, (y = β0 + β1X + β2X2 + e cubic regression (y = β0 + β1X + β2X2 + β3X3 + e and fixed factor models, with cubic-spline interpolation models, for estimating the effects of inbreeding on milk yield. Ten animal models, all with herd-year-season of calving as fixed effect, were compared using the Akaike corrected-Information Criterion (AICc. The cubic-spline interpolation model with seven knots had the lowest AICc, whereas for all those labeled as "traditional", AICc was higher than the best model. Results from fitting inbreeding using a cubic-spline with seven knots were compared to results from fitting inbreeding as a linear covariate or as a fixed factor with seven levels. Estimates of inbreeding effects were not significantly different between the cubic-spline model and the fixed factor model, but were significantly different from the linear regression model. Milk yield decreased significantly at inbreeding levels greater than 9%. Variance component estimates were similar for the three models. Ranking of the top 100 sires with daughter records remained unaffected by the model used.

  1. Analytic cubic and quartic force fields using density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Jonsson, Dan [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); High Performance Computing Group, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm, Sweden and PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Ekström, Ulf; Helgaker, Trygve [Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo (Norway)

    2014-01-21

    We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.

  2. 3D Medical Image Interpolation Based on Parametric Cubic Convolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the process of display, manipulation and analysis of biomedical image data, they usually need to be converted to data of isotropic discretization through the process of interpolation, while the cubic convolution interpolation is widely used due to its good tradeoff between computational cost and accuracy. In this paper, we present a whole concept for the 3D medical image interpolation based on cubic convolution, and the six methods, with the different sharp control parameter, which are formulated in details. Furthermore, we also give an objective comparison for these methods using data sets with the different slice spacing. Each slice in these data sets is estimated by each interpolation method and compared with the original slice using three measures: mean-squared difference, number of sites of disagreement, and largest difference. According to the experimental results, we present a recommendation for 3D medical images under the different situations in the end.

  3. Transmutation of americium and curium incorporated in zirconia-based host materials

    International Nuclear Information System (INIS)

    Raison, P.E.

    2001-01-01

    Presented are studies involving the incorporation of americium and curium in zirconia-based materials. First explored was the pseudo ternary system AmO 2 -ZrO 2 -Y 2 O 3 . It was determined that selected Y-CSZ materials can incorporate significant quantities of americium oxide and remain cubic single-phase. The cell parameters of these fluorite-type products were established to be linear with the AmO 2 content. The Cm 2 O 3 -ZrO 2 system was also investigated. It was found that at 25 mol% of CmO 1.5 , the Cm(III) stabilized zirconia in its cubic form (a = 5.21 ±0.01 Angstrom). At higher and lower concentrations, diphasic materials were encountered. At 50 mol% of CmO 1.5 , a pyrochlore oxide - Cm 2 Zr 2 O 7 - is formed (a = 10.63 ±0.02 Angstrom). (author)

  4. Structural characterization of indium oxide nanostructures: a Raman analysis

    International Nuclear Information System (INIS)

    Berengue, Olivia M; Rodrigues, Ariano D; Chiquito, Adenilson J; Dalmaschio, Cleocir J; Leite, Edson R; Lanfredi, Alexandre J C

    2010-01-01

    In this work we report on structural and Raman spectroscopy measurements of pure and Sn-doped In 2 O 3 nanowires. Both samples were found to be cubic and high quality single crystals. Raman analysis was performed to obtain the phonon modes of the nanowires and to confirm the compositional and structural information given by structural characterization. Cubic-like phonon modes were detected in both samples and their distinct phase was evidenced by the presence of tin doping. As a consequence, disorder effects were detected evidenced by the break of the Raman selection rules.

  5. Global Well-Posedness for Cubic NLS with Nonlinear Damping

    KAUST Repository

    Antonelli, Paolo

    2010-11-04

    We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.

  6. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    Science.gov (United States)

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  7. Formation of metastable cubic phase in Ce{sub 100−x}Al{sub x} (x=45, 50) alloys and their thermal and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Idzikowski, Bogdan, E-mail: idzi@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Puźniak, Roman [Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa (Poland); Kaczorowski, Dariusz [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław (Poland); Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2017-01-01

    Ce{sub 100−x}Al{sub x} (x=45 and 50) alloys were synthesized by rapid quenching technique in the form of ribbons composed of nanocrystalline phase of CeAl with the ClCs-type structure (Pm-3m space group) embedded in an amorphous matrix. The cubic CeAl phase is known as metastable with random distribution of Ce and Al atoms in the unit cell. The crystalline volume fraction is about 7.5% in Ce{sub 55}Al{sub 45} and 3% in Ce{sub 50}Al{sub 50}. The alloy Ce{sub 55}Al{sub 45} shows better thermal stability than Ce{sub 50}Al{sub 50}, indicated by higher effective activation energy and higher crystallization temperature. Small off-stoichiometry in Ce{sub 55}Al{sub 45} results in degrading the glass forming ability and promotes formation of the cubic CeAl phase, as confirmed by magnetic measurements. In both alloys, the Ce ions are in stable trivalent state and order magnetically near 20 K. Another magnetic phase transition close to 10 K was found for Ce{sub 50}Al{sub 50} and was attributed to the presence of the well-known stable orthorhombic CeAl phase. To the best of our knowledge, the magnetic behavior of the CeAl cubic phase is reported here for the first time. - Highlights: • Synthesis of metastable cubic CeAl phase by rapid quenching. • The Ce ions in Ce{sub 55}Al{sub 45} and Ce{sub 50}Al{sub 50} are in stable trivalent state. • Magnetic transition near 10 K connected with the orthorhombic CeAl phase. • Phase transition at about 20 K originates from the cubic CeAl phase.

  8. Analysis of RIA standard curve by log-logistic and cubic log-logit models

    International Nuclear Information System (INIS)

    Yamada, Hideo; Kuroda, Akira; Yatabe, Tami; Inaba, Taeko; Chiba, Kazuo

    1981-01-01

    In order to improve goodness-of-fit in RIA standard analysis, programs for computing log-logistic and cubic log-logit were written in BASIC using personal computer P-6060 (Olivetti). Iterative least square method of Taylor series was applied for non-linear estimation of logistic and log-logistic. Hear ''log-logistic'' represents Y = (a - d)/(1 + (log(X)/c)sup(b)) + d As weights either 1, 1/var(Y) or 1/σ 2 were used in logistic or log-logistic and either Y 2 (1 - Y) 2 , Y 2 (1 - Y) 2 /var(Y), or Y 2 (1 - Y) 2 /σ 2 were used in quadratic or cubic log-logit. The term var(Y) represents squares of pure error and σ 2 represents estimated variance calculated using a following equation log(σ 2 + 1) = log(A) + J log(y). As indicators for goodness-of-fit, MSL/S sub(e)sup(2), CMD% and WRV (see text) were used. Better regression was obtained in case of alpha-fetoprotein by log-logistic than by logistic. Cortisol standard curve was much better fitted with cubic log-logit than quadratic log-logit. Predicted precision of AFP standard curve was below 5% in log-logistic in stead of 8% in logistic analysis. Predicted precision obtained using cubic log-logit was about five times lower than that with quadratic log-logit. Importance of selecting good models in RIA data processing was stressed in conjunction with intrinsic precision of radioimmunoassay system indicated by predicted precision. (author)

  9. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Directory of Open Access Journals (Sweden)

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  10. Control of crystal structure, morphology and optical properties of ceria films by post deposition annealing treatments

    International Nuclear Information System (INIS)

    Eltayeb, Asmaa; Vijayaraghavan, Rajani K.; McCoy, Anthony P.; Cullen, Joseph; Daniels, Stephen; McGlynn, Enda

    2016-01-01

    In this paper, the effects of post-deposition annealing temperature and atmosphere on the properties of pulsed DC magnetron sputtered ceria (CeO_2) thin films, including crystalline structure, grain size and shape and optical properties were investigated. Experimental results, obtained from X-ray diffraction (XRD), showed that the prepared films crystallised predominantly in the CeO_2 cubic fluorite structure, although evidence of Ce_2O_3 was also seen and this was quantified by a Rietveld refinement. The anneal temperature and oxygen content of the Ar/O_2 annealing atmosphere both played important roles on the size and shape of the nanocrystals as determined by atomic force microscopy (AFM). The average grain size (determined by an AFM) as well as the out of plane coherence length (obtained from XRD) varied with increasing oxygen flow rate (OFR) in the annealing chamber. In addition, the shape of the grains seen in the AFM studies transformed from circular to triangular as the OFR was raised from 20 sccm to 30 sccm during an 800 °C thermal anneal. X-ray photoelectron spectroscopy was used to measure near-surface oxidation states of the thin-films with varying OFR in the annealing chamber. The bandgap energies were estimated from the ultra-violet and visible absorption spectra and low-temperature photoluminescence. An extracted bandgap value of 3.04 eV was determined for as-deposited CeO_2 films and this value increased with increasing annealing temperatures. However, no difference was observed in bandgap energies with variation of annealing atmosphere. - Highlights: • Deposition of ceria thin films by pulsed DC magnetron sputtering • Effect of annealing temperature and gas ambient on film crystalline structure • Evidence for control of the film roughness and grain size and shape is achieved. • Investigation of the effect of post-deposition annealing on the film stoichiometry • Films showed blue shifts in bandgap energies with increasing annealing

  11. Properties of ceria doped with gadolinia via microwave-assisted hydrothermal synthesis

    International Nuclear Information System (INIS)

    Carregosa, J.D.C.; Oliveira, R.M.P.B.; Macedo, D.A.; Nascimento, R.M.

    2016-01-01

    The solid solution of CeO_2 doped with Gd"3"+ (CGO) is a promising candidate for electrolyte in Solid Oxide Full Cells (SOFCs) operating in intermediate and low temperatures. The reduction of the working temperature of these energy conversion devices is the great technological challenge to its marketing. In this work, nanocrystalline powders of Ce_1_-_xGd_xO_2_-_x_/_2 with x=0, x=0.1 e x=0.2 were obtained via microwave-hydrothermal synthesis at low temperature and times of synthesis (10 and 20 min at 120° C). The powders were analyzed by TG-DTA, DRX and dilatometry. The results showed characteristic peaks of the cubic fluorite-type structure, referring to the cerium oxide (CeO_2), without the presence of secondary peaks. It was also observed that the samples processed at levels of 10 and 20 minutes showed distinct behaviors in contrast to the concentrations of Gd"3"+. (author)

  12. Effect of oxygen partial pressure on the microstructural, optical and gas sensing characterization of nanostructured Gd doped ceria thin films deposited by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Nagaraju P.

    2017-12-01

    Full Text Available Microstructural properties of 10 mol% gadolinium doped ceria (CeO2 thin films that were deposited on quartz substrate at substrate temperature of 1023 K by using pulsed laser deposition with different oxygen partial pressures in the range of 50–200 mTorr. The influence of oxygen partial pressure on microstructural, morphological, optical and gas sensing characterization of the thin films was systematically studied. The microstructure of the thin films was investigated using X-ray diffraction, atomic force microscopy and Raman spectroscopy. Morphological studies have been carried out using scanning electron microscope. The experimental results confirmed that the films were polycrystalline in nature with cubic fluorite structure. Optical properties of the thin films were examined using UV–vis spectrophotometer. The optical band gap calculated from Tauc’s relation. Gas sensing characterization has been carried at different operating temperatures (room temperature to 523 K for acetone gas. Response and recovery times of the sensor were calculated using transient response plot.

  13. Properties of ceria doped with gadolinia via microwave-assisted hydrothermal synthesis; Propriedades de ceria dopada com gadolinia via sintese hidrotermal assistida por micro-ondas

    Energy Technology Data Exchange (ETDEWEB)

    Carregosa, J.D.C.; Oliveira, R.M.P.B. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Macedo, D.A. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Nascimento, R.M., E-mail: jdcovello@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    The solid solution of CeO{sub 2} doped with Gd{sup 3+} (CGO) is a promising candidate for electrolyte in Solid Oxide Full Cells (SOFCs) operating in intermediate and low temperatures. The reduction of the working temperature of these energy conversion devices is the great technological challenge to its marketing. In this work, nanocrystalline powders of Ce{sub 1-x}Gd{sub x}O{sub 2-x/2} with x=0, x=0.1 e x=0.2 were obtained via microwave-hydrothermal synthesis at low temperature and times of synthesis (10 and 20 min at 120° C). The powders were analyzed by TG-DTA, DRX and dilatometry. The results showed characteristic peaks of the cubic fluorite-type structure, referring to the cerium oxide (CeO{sub 2}), without the presence of secondary peaks. It was also observed that the samples processed at levels of 10 and 20 minutes showed distinct behaviors in contrast to the concentrations of Gd{sup 3+}. (author)

  14. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    Science.gov (United States)

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  15. Efficient Algorithms for gcd and Cubic Residuosity in the Ring of Eisenstein Integers

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg

    2003-01-01

    We present simple and efficient algorithms for computing gcd and cubic residuosity in the ring of Eisenstein integers, bf Z[ ]i.e. the integers extended with , a complex primitive third root of unity. The algorithms are similar and may be seen as generalisations of the binary integer gcd and deri......We present simple and efficient algorithms for computing gcd and cubic residuosity in the ring of Eisenstein integers, bf Z[ ]i.e. the integers extended with , a complex primitive third root of unity. The algorithms are similar and may be seen as generalisations of the binary integer gcd...

  16. Synthesis and characterization of gold cubic nanoshells using water-soluble GeO2 templates

    Science.gov (United States)

    Wang, Cen; Tang, Peisong; Ge, Mingyuan; Xu, Xiaobin; Cao, Feng; Jiang, J. Z.

    2011-04-01

    Size-tunable GeO2 nanocubes were initially prepared by a modified sono-assisted reverse micelle method and then functionalized with an amino-terminated silanizing agent. Subsequently, gold decorated GeO2 nanocomposites were prepared at pH ≈ 7 and 80 °C. It was found that well-dispersed gold nanoparticles on GeO2 nanocubes could be obtained only if gold salt is abundant to favor simultaneous, homogeneous nucleation of gold particles. Additional gold ions were reduced onto these attached 'seed' particles accompanied by synchronous dissolution of water-soluble GeO2 cores, resulting in gold hollow cubic shells. The GeO2 nanocubes and Au/GeO2 nanocomposites as well as gold hollow cubic shells were characterized by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and UV-visible spectroscopy. In particular, gold hollow cubic shells feature a plasmon resonance peak at above 900 nm, which renders it quite promising in biochemical applications.

  17. Synthesis and characterization of gold cubic nanoshells using water-soluble GeO2 templates

    International Nuclear Information System (INIS)

    Wang Cen; Ge Mingyuan; Xu Xiaobin; Jiang, J Z; Tang Peisong; Cao Feng

    2011-01-01

    Size-tunable GeO 2 nanocubes were initially prepared by a modified sono-assisted reverse micelle method and then functionalized with an amino-terminated silanizing agent. Subsequently, gold decorated GeO 2 nanocomposites were prepared at pH ∼ 7 and 80 deg. C. It was found that well-dispersed gold nanoparticles on GeO 2 nanocubes could be obtained only if gold salt is abundant to favor simultaneous, homogeneous nucleation of gold particles. Additional gold ions were reduced onto these attached 'seed' particles accompanied by synchronous dissolution of water-soluble GeO 2 cores, resulting in gold hollow cubic shells. The GeO 2 nanocubes and Au/GeO 2 nanocomposites as well as gold hollow cubic shells were characterized by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and UV-visible spectroscopy. In particular, gold hollow cubic shells feature a plasmon resonance peak at above 900 nm, which renders it quite promising in biochemical applications.

  18. Robust synthesis of gold cubic nanoframes through a combination of galvanic replacement, gold deposition, and silver dealloying.

    Science.gov (United States)

    Wan, Dehui; Xia, Xiaohu; Wang, Yucai; Xia, Younan

    2013-09-23

    A facile, robust approach to the synthesis of Au cubic nanoframes is described. The synthesis involves three major steps: 1) preparation of Au-Ag alloyed nanocages using a galvanic replacement reaction between Ag nanocubes and HAuCl4 ; 2) deposition of thin layers of pure Au onto the surfaces of the nanocages by reducing HAuCl4 with ascorbic acid, and; 3) formation of Au cubic nanoframes through a dealloying process with HAuCl4 . The key to the formation of Au cubic nanoframes is to coat the surfaces of the Au-Ag nanocages with sufficiently thick layers of Au before they are dealloyed. The Au layer could prevent the skeleton of a nanocage from being fragmented during the dealloying step. The as-prepared Au cubic nanoframes exhibit tunable localized surface plasmon resonance peaks in the near-infrared region, but with much lower Ag content as compared with the initial Au-Ag nanocages. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2012-01-01

    Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.

  20. Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities

    Directory of Open Access Journals (Sweden)

    Idris Addou

    2000-01-01

    Full Text Available We consider the boundary-value problem $$displaylines{ -(varphi_p (u'' =lambda f(u mbox{ in }(0,1 cr u(0 = u(1 =0,, }$$ where $p>1$, $lambda >0$ and $varphi_p (x =| x|^{p-2}x$. The nonlinearity $f$ is cubic-like with three distinct roots 0=a less than b less than c. By means of a quadrature method, we provide the exact number of solutions for all $lambda >0$. This way we extend a recent result, for $p=2$, by Korman et al. cite{KormanLiOuyang} to the general case $p>1$. We shall prove that when 1less than $pleq 2$ the structure of the solution set is exactly the same as that studied in the case $p=2$ by Korman et al. cite{KormanLiOuyang}, and strictly different in the case $p>2$.