WorldWideScience

Sample records for cubic crystal structure

  1. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    Science.gov (United States)

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  2. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  3. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  4. Crystal structure of (Al,V)4(P4O12)3, archetype of double cubic ring tetraphosphate

    International Nuclear Information System (INIS)

    Yakubovich, O. V.; Biralo, G. V.; Dimitrova, O. V.

    2012-01-01

    The crystal structure of the (Al,V) 4 (P 4 O 12 ) 3 solid solution, obtained in the single-crystal form by hydrothermal synthesis in the Al(OH) 3 -VO 2 -NaCl-H 3 PO 4 -H 2 O system, has been solved by X-ray diffraction analysis (Xcalibur-S-CCD diffractometer, R = 0.0257): a = 13.7477(2) Å, sp. gr. I 4 bar 3d, Z = 4, and ρ calcd = 2.736 g/cm 3 . It is shown that the crystal structure of the parent cubic Al 4 (P 4 O 12 ) 3 modification can formally be considered an archetype for the formation of double isosymmetric tetraphosphates on its basis.

  5. Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2−x)TiO5 series

    International Nuclear Information System (INIS)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Reyes, Massey de los; Sharma, Neeraj; Ling, Christopher D.; Gault, Baptiste; Smith, Katherine L.; Avdeev, Maxim; Cairney, Julie M.

    2014-01-01

    A series of single phase compounds with nominal stoichiometry Sm (x) Yb (2−x) TiO 5 (x=2, 1.4, 1, 0.6, and 0) have been successfully fabricated to generate a range of crystal structures covering the most common polymorphs previously discovered in the Ln 2 TiO 5 series (Ln=lanthanides and yttrium). Four of the five samples have not been previously fabricated in bulk, single phase form so their crystal structures are refined and detailed using powder synchrotron and single crystal x-ray diffraction, neutron diffraction and transmission electron microscopy. Based on the phase information from diffraction data, there are four crystal structure types in this series; orthorhombic Pnma, hexagonal P6 3 /mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The cubic materials show modulated structures with variation between long and short range ordering and the variety of diffraction techniques were used to describe these complex crystal structure types. - Graphical abstract: A high resolution image of the compound Sm 0.6 Yb 1.4 TiO 5 showing contrast from lattice fringes and the corresponding fast Fourier transform (FFT) of the HREM image with pyrochlore related diffraction spots marked “P” and fluorite marked “F”. The crystal is oriented down the [1 1 0] zone axis based on the Fd-3m structure. The ideal crystal structure (no vacancies) of the cubic, pyrochlore-like (Sm 0.6 Yb 1.4 TiO 5 ). - Highlights: • First fabrication of bulk single-phase material with stoichiometry Sm 2 TiO 5 . • Systematic study of crystal structure types within Ln 2 TiO 5 series (Ln=lanthanides). • A novel technique using IFFT of HREM images to study cubic structures

  6. THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE

    Directory of Open Access Journals (Sweden)

    T. O. Parashchuk

    2016-07-01

    Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.

  7. Steps and dislocations in cubic lyotropic crystals

    International Nuclear Information System (INIS)

    Leroy, S; Pieranski, P

    2006-01-01

    It has been shown recently that lyotropic systems are convenient for studies of faceting, growth or anisotropic surface melting of crystals. All these phenomena imply the active contribution of surface steps and bulk dislocations. We show here that steps can be observed in situ and in real time by means of a new method combining hygroscopy with phase contrast. First results raise interesting issues about the consequences of bicontinuous topology on the structure and dynamical behaviour of steps and dislocations

  8. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  9. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    Science.gov (United States)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  10. Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Closest-Packed Structure

    Science.gov (United States)

    Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.

    2008-01-01

    One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…

  11. Principal spectra describing magnetooptic permittivity tensor in cubic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamrlová, Jana [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Veis, Martin [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Pištora, Jaromír [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Hamrle, Jaroslav, E-mail: jaroslav.hamrle@vsb.cz [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Department of Physics, VSB – Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic)

    2016-12-15

    We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.

  12. Structural study on cubic-tetragonal transition of CH3NH3PbI3

    International Nuclear Information System (INIS)

    Kawamura, Yukihiko; Mashiyama, Hiroyuki; Hasebe, Katsuhiko

    2002-01-01

    The cubic-tetragonal phase transition of CH 3 NH 3 PbI 3 was investigated by single crystal X-ray diffractometry. The crystal structure was refined at five temperatures in the tetragonal phase. The PbI 6 octahedron rotates around the c-axis alternatively to construct the SrTiO 3 -type tetragonal structure. A methylammonium ion is partially ordered; 24 disordered states in the cubic phase are reduced to 8. With decreasing temperature, the rotation angle of the octahedron increases monotonically, which indicates it is an order parameter of the cubic-tetragonal transition. (author)

  13. Plastic deformation of cubic zirconia single crystals at 1400 C

    International Nuclear Information System (INIS)

    Baufeld, B.; Baither, D.; Bartsch, M.; Messerschmidt, U.

    1998-01-01

    Cubic zirconia single crystals stabilized with 11 mol% yttria were deformed in air at 1400 C and around 1200 C at different strain rates along [1 anti 12] and [100] compression directions. The strain rate sensitivity of the flow stress was determined by strain rate cycling and stress relaxation tests. The microstructure of the deformed specimens was investigated by transmission high-voltage electron microscopy, including contrast extinction analysis for determining the Burgers vectors as well as stereo pairs and wide-angle tilting experiments to find the active slip planes. At deformation along [1 anti 12], the primary and secondary slip planes are of {100} type. Previous experiments had shown that the dislocations move easily on these planes in an athermal way. During deformation along [100], mainly dislocations on {100} planes are activated, which move in a viscous way by the aid of thermal activation. The discussion of the different deformation behaviours during deformation along [1 anti 12] and [100] is based on the different dynamic properties of dislocations and the fact that recovery is an essential feature of the deformation of cubic zirconia at 1400 C. The results on the shape of the deformation curve and the strain rate sensitivity of the flow stress are partly at variance with those of previous authors. (orig.)

  14. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Directory of Open Access Journals (Sweden)

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  15. Changing the cubic ferrimagnetic domain structure in temperature region of spin flip transition

    International Nuclear Information System (INIS)

    Djuraev, D.R.; Niyazov, L.N.; Saidov, K.S.; Sokolov, B.Yu.

    2011-01-01

    The transformation of cubic ferrimagnetic Tb 0.2 Y 2.8 Fe 5 O 12 domain structure has been studied by magneto optic method in the temperature region of spontaneous spin flip phase transition (SPT). It has been found that SPT occurs in a finite temperature interval where the coexistence of low- and high- temperature magnetic phase domains has observed. A character of domain structure evolution in temperature region of spin flip essentially depends on the presence of mechanical stresses in crystal. Interpretation of experimental results has been carried out within the framework of SPT theory for a cubic crystal. (authors)

  16. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  17. Topological Oxide Insulator in Cubic Perovskite Structure

    Science.gov (United States)

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  18. Mathemimetics II. Demonstratio Mirabilis of FLT by infinitely ascending cubical crystal growth

    Science.gov (United States)

    Trell, Erik

    2012-09-01

    Emulating Nature by observation and ground-up application of its patterns, structures and processes is a classical scientific practice which under the designation of Biomimetics has now been brought to the Nanotechnology scale where even highly complex systems can be realized by continuous or cyclically reiterated assembly of the respective self-similar eigen-elements, modules and algorithms right from their infinitesimal origin. This is actually quite akin to the genuine mathematical art and can find valuable renewed use as here exemplified by the tentatively original Demonstratio Mirabilis of FLT (Fermat's Last Theorem, or, in that case, Triumph) by infinitely ascending sheet-wise cubical crystal growth leading to the binomial `magic triangle' of his close fellow Blaise Pascal.

  19. Deformed lattice states in a Zn{sub 0.9}V{sub 0.1}Se cubic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Maksimov, V. I., E-mail: kokailo@rambler.ru; Dubinin, S. F.; Surkova, T. P.; Parkhomenko, V. D. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-01-15

    Neutron scattering patterns have been recorded for a bulk Zn{sub 0.9}V{sub 0.1}Se cubic crystal at room temperature; they are indicative of macroscopic deformation in the material and its significant inhomogeneity. Specific features of the previously found state, preceding the fcc ↔ hcp structural transformation of the sphalerite lattice upon strong destabilization induced by vanadium ions in the doped ZnSe matrix, are discussed taking into account the data obtained.

  20. Spectral intensities in cubic systems. II. The MoCl63- system in cubic elpasolite crystals

    International Nuclear Information System (INIS)

    Acevedo, R.; Meruane, T.; Poblete, V.

    1998-01-01

    The visible and near infrared luminescence spectra of MoCl 6 3- in Cs 2 NaMCl 6 (M=Sc, Y, In) and MoBr 6 3- in Cs 2 NaYBr 6 have been reported between 15000 cm -1 and 3000 cm -1 at liquid helium temperatures. It has been observed that each electronic transition shows an extensive and rich vibronic structure, which can be analysed to yield the vibrational frequencies of the MoX 6 3- ion in each electronic state. A through analysis of the spectra for these systems, show that the vibrational frequencies associated with each of the electronic transition is almost identical. This is an evidence of a weak or rather negligible Jahn-Teller distortions. The spectra though are strongly influenced by resonant interactions among the MoX 6 3- ion and the internal and lattice modes of the host lattices and there is also a noticeable variation of the relative vibronic distributions of parity forbidden transitions assisted by the odd parity normal modes of vibrations. This present work deals with the most likely intensity mechanisms and a strategy is put forward to carry out explicit calculations for both, the electronic and vibrational factors of transitions of the kind Γ 1 ↔ Γ 2 + v k for k=3, 4, and 6. Extension of this work to include the ion-phonon interaction is currently in progress in our laboratory. (Author)

  1. SURVEY OF THE SPECTRA OF THE DIVALENT RARE EARTH IONS IN CUBIC CRYSTALS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Donald S. [Univ. of Chicago, IL (United States); Kiss, Zoltan J. [RCA Laboratories, Princeton, NJ (United States)

    1963-04-15

    The rare earth ions may exist in the divalent state in suitable host crystals such as CaF/sub 2/. All of the trivalent ions from La to Yb are reduced in situ to the divalent state in CaF/sub 2/ by gamma irradiation. The spectra of most of these ions show that the ground and first few excited states derive from f/sup n/ configurations, but the wesk absorption due to these is masked at higher energies by strong broad bands of the parity permitted f/sup n/ yields f/sup n-1/ d transitions. The excitation energy of these spectra have been calculated in a first approximation as the energy difference between the Hund Rule'' single determinant states of the configurations f/sup n -1/d and f/sup n/. This procedure satisfactorily accounts for the remarkable variations in the excitation energy in passing from one ion to the next in the series with the exception of Ge/ sup 2+/ Ce/sup 2+/, and Tb/sup 2+/, Ge/sup 2+/ probably has f/sup 7/d for its ground con figuration, while Ce/sup 2+/ and Tb/sup 2+/ are borderline cases. The spectral structure probably arises chiefly from the crystal field splitting of the d-orbital, since each ion in CaF/sub 2/ has a similar spectrum, and the spectra change drastically in sites of other than cubic symmetry. (auth)

  2. Cationic Phospholipids Forming Cubic Phases: Lipoplex Structure and Transfection Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C. (NWU)

    2008-10-29

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl-sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl-sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  3. Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; Macdonald, Robert C

    2008-01-01

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  4. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    Science.gov (United States)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  5. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    Science.gov (United States)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  6. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    Science.gov (United States)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space

  7. Optical Characterization of Light-Bending Mechanisms in Photonic Crystals with Simple Cubic Symmetry

    Science.gov (United States)

    Frey, Brian James

    For much of Earth's history, light was reputed to be an intangible, intractable, and transient quantity, but our understanding of light has since been revolutionized. The flow of electromagnetic energy through space can today be manipulated with a degree of precision and control once only dreamed of; rapidly developing technologies can create, guide, bend, and detect light to produce useful energy and information. One field where these technologies are most relevant is the field of light trapping, which concerns the harvesting of incident photons within a limited space by scattering, slowing, or otherwise prolonging and enhancing their interaction with matter. Over the past few decades, a class of materials, called photonic crystals (PCs), has emerged that is ideally suited for this task. This is because their wavelength-scale periodicity in one, two, or three dimensions can be designed to alter the dispersion relation and photonic density-of-states in a controllable manner. In this work, a TiO2 simple cubic PC with high dielectric contrast ( > 4:1) is fabricated with a lattice constant of 450 nm, and a newly discovered light-trapping mechanism is demonstrated, which bends light by 90 degrees and enhances optical absorption by one to two orders-of-magnitude over that in a reference film of the same thickness. It is shown that, for wavelengths from 450-950 nm, the achievable enhancement factor for this structure surpasses the theoretical limit of 4n2 derived under the assumption of ergodic system by multiple times. These results derive directly from the symmetry of the simple cubic lattice and are fundamental in nature, not depending on the material used or on the method of fabrication. The light trapping capability of these PCs has straight-forward applications that would be useful in a variety of areas where increased light-matter interaction is desirable, such as white-light generation, thin-film solar cells, photocatalytic pollutant degradation and hydrogen fuel

  8. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn

    2011-01-19

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  9. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    KAUST Repository

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2011-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.

  10. XPS analysis for cubic boron nitride crystal synthesized under high pressure and high temperature using Li3N as catalysis

    International Nuclear Information System (INIS)

    Guo, Xiaofei; Xu, Bin; Zhang, Wen; Cai, Zhichao; Wen, Zhenxing

    2014-01-01

    Highlights: • The cBN was synthesized by Li 3 N as catalyst under high pressure and high temperature (HPHT). • The film coated on the as-grown cBN crystals was studied by XPS. • The electronic structure variation in the film was investigated. • The growth mechanism of cubic boron nitride crystal was analyzed briefly. - Abstract: Cubic boron nitride (cBN) single crystals are synthesized with lithium nitride (Li3N) as catalyst under high pressure and high temperature. The variation of electronic structures from boron nitride of different layers in coating film on the cBN single crystal has been investigated by X-ray photoelectron spectroscopy. Combining the atomic concentration analysis, it was shown that from the film/cBN crystal interface to the inner, the sp 2 fractions are decreasing, and the sp 3 fractions are increasing in the film at the same time. Moreover, by transmission electron microscopy, a lot of cBN microparticles are found in the interface. For there is no Li 3 N in the film, it is possible that Li 3 N first reacts with hexagonal boron nitride to produce Li 3 BN 2 during cBN crystals synthesis under high pressure and high temperature (HPHT). Boron and nitrogen atoms, required for cBN crystals growth, could come from the direct conversion from hexagonal boron nitride with the catalysis of Li 3 BN 2 under high pressure and high temperature, but not directly from the decomposition of Li 3 BN 2

  11. Zr 2Ir 6B with an eightfold superstructure of the cubic perovskite-like boride ZrIr 3B 0.5: Synthesis, crystal structure and bonding analysis

    Science.gov (United States)

    Hermus, Martin; Fokwa, Boniface P. T.

    2010-04-01

    Single phase powder samples and single crystals of Zr 2Ir 6B were successfully synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. Superstructure reflections were observed both on powder and on single crystal diffraction data, leading to an eightfold superstructure of ZrIr 3B x phase. The new phase, which has a metallic luster, crystallizes in space group Fm3¯m (no. 225) with the lattice parameters a=7.9903(4) Å, V=510.14(4) Å 3. Its crystal structure was refined on the basis of powder as well as single crystal data. The single crystal refinement converged to R1=0.0239 and w R2=0.0624 for all 88 unique reflections and 6 parameters. Zr 2Ir 6B is isotypic to Ti 2Rh 6B and its structure can be described as a defect double perovskite, A2BB' O6, where the A site is occupied by zirconium, the B site by boron, the O site by iridium but the B' site is vacant, leading to the formation of empty and boron-filled octahedral Ir 6 clusters. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for the structural stability of the phase. According to COHP bonding analysis, the strongest bonding occurs for the Ir-B contacts, and the Ir-Ir bonding within the empty clusters is two times stronger than that in the BIr 6 octahedra.

  12. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seetha, M., E-mail: seetha.phy@gmail.com [Department of Physics, SRM University, Kattankulathur, Kancheepuram Dt 603 203 (India); Meena, P. [Department of Physics, PSGR Krishnammal College for Women, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore (India); Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 014 (India); Masuda, Yoshitake [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K. [School of Advanced Materials Science and Engineering, Sungkyunkwan University (Suwon Campus), Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer For the first time HMT is used in the preparation of indium oxide. Black-Right-Pointing-Pointer HMT itself acts as base for the precursor and results in cubic indium hydroxide. Black-Right-Pointing-Pointer Modified hydrothermal route used for the preparation of cubic indium oxide crystals. Black-Right-Pointing-Pointer As a new approach a composite film synthesized with prepared indium oxide. Black-Right-Pointing-Pointer Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  13. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    International Nuclear Information System (INIS)

    Seetha, M.; Meena, P.; Mangalaraj, D.; Masuda, Yoshitake; Senthil, K.

    2012-01-01

    Highlights: ► For the first time HMT is used in the preparation of indium oxide. ► HMT itself acts as base for the precursor and results in cubic indium hydroxide. ► Modified hydrothermal route used for the preparation of cubic indium oxide crystals. ► As a new approach a composite film synthesized with prepared indium oxide. ► Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  14. Complete three-dimensional photonic bandgap in a simple cubic structure

    International Nuclear Information System (INIS)

    Lin, Shawn-Yu; Fleming, J. G.; Lin, Robin; Sigalas, M. M.; Biswas, R.; Ho, K. M.

    2001-01-01

    The creation of a three-dimensional (3D) photonic crystal with simple cubic (sc) symmetry is important for applications in the signal routing and 3D waveguiding of light. With a simple stacking scheme and advanced silicon processing, a 3D sc structure was constructed from a 6-in. silicon wafer. The sc structure is experimentally shown to have a complete 3D photonic bandgap in the infrared wavelength. The finite size effect is also observed, accounting for a larger absolute photonic bandgap

  15. Size effect on deformation twinning in face-centred cubic single crystals: Experiments and modelling

    International Nuclear Information System (INIS)

    Liang, Z.Y.; De Hosson, J.T.M.; Huang, M.X.

    2017-01-01

    In addition to slip by dislocation glide, deformation twinning in small-sized metallic crystals also exhibits size effect, namely the twinning stress increases with decreasing sample size. In order to understand the underpinning mechanisms responsible for such effect, systematic experiments were carried out on the small-sized single-crystalline pillars of a twinning-induced plasticity steel with a face-centred cubic structure. The flow stress increases considerably with decreasing pillar diameter from 3 to 0.5 μm, demonstrating a substantial size effect with a power exponent of 0.43. Detailed microstructural characterization reveals that the plastic deformation of the present pillars is dominant by twinning, primarily via twin growth, indicating that the size effect should be related to deformation twinning instead of slip by dislocation glide. Subsequent modelling works indicate that twinning can be accomplished by the dissociation of the ion-radiation-induced vacancy Frank loops in the damaged subsurface layer of the pillars, and the size effect is attributed to the ion-radiation-induced compressive stress in the subsurface layer, which decreases with pillar diameter.

  16. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    International Nuclear Information System (INIS)

    Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-01-01

    A comparison of X-ray diffraction and radiographic techniques for the location and characterization of protein crystals is demonstrated on membrane protein crystals mounted within lipid cubic phase material. The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required

  17. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Anna J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Armour, Wes [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Oxford e-Research Centre, 7 Keble Road, Oxford OX1 3QG (United Kingdom); Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Horrell, Sam [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); University of Liverpool, Liverpool L69 3BX (United Kingdom); McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2013-07-01

    A comparison of X-ray diffraction and radiographic techniques for the location and characterization of protein crystals is demonstrated on membrane protein crystals mounted within lipid cubic phase material. The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.

  18. Unusual Features of Crystal Structures of Some Simple Copper Compounds

    Science.gov (United States)

    Douglas, Bodie

    2009-01-01

    Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

  19. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  20. pH-responsive lyotropic liquid crystals for the preparation of pure cubic zirconia nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei Yan; Liu, Jin Rong; He, Zhang; Cao, Zhen Zhu; Li, Cai Hong; Gao, Yan Fang [Inner Mongolia University of Technology, School of Chemical Engineering, Hohhot (China)

    2016-07-15

    We present a lyotropic liquid crystal system consisting of SDS/Triton X-100/water at 25 C. This system is respond to pH variations with a phase switch. When pH is altered from alkaline (pH 13) to acidic (pH 2) conditions, phase change occurs from a bicontinuous hexagonal phase to a partially hexagonal phase until it disappears. The hexagonal phase under alkaline conditions is stable. Thus, this system is an ideal candidate for the preparation of pure cubic ZrO{sub 2} nanoparticles. XRD results confirm that the as-synthesized powder is composed of pure cubic ZrO{sub 2}. These nanoparticles also exhibit a thermal stability of up to 800 C. The size and morphological characteristics of the nanoparticles are greatly affected by ZrOCl{sub 2} concentration. The mechanism of zirconia nanoparticle synthesis in a lyotropic hexagonal phase was proposed. (orig.)

  1. Structure and energetics of nanotwins in cubic boron nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shijian, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn; Ma, Xiuliang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Ruifeng, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn [School of Materials Science and Engineering, and International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191 (China); Huang, Rong [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062 (China); Taniguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ikuhara, Yuichi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656 (Japan); Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-08-22

    Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.

  2. On the magnetization process and the associated probability in anisotropic cubic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Khedr, D.M., E-mail: doaamohammed88@gmail.com [Department of Basic Science, Modern Academy of Engineering and Technology at Maadi, Cairo (Egypt); Aly, Samy H.; Shabara, Reham M. [Department of Physics, Faculty of Science at Damietta, University of Damietta, Damietta (Egypt); Yehia, Sherif [Department of Physics, Faculty of Science at Helwan, University of Helwan, Helwan (Egypt)

    2017-05-15

    We present a theoretical method to calculate specific magnetic properties, e.g. magnetization curves, magnetic susceptibility and probability landscapes along the [100], [110] and [111] crystallographic directions of a crystal of cubic symmetry. The probability landscape displays the evolution of the most probable angular orientation of the magnetization vector, for selected temperatures and magnetic fields. Our method is based on the premises of classical statistical mechanics. The energy density, used in the partition function, is the sum of magnetic anisotropy and Zeeman energies, however no other energies e.g. elastic or magnetoelastic terms are considered in the present work. Model cubic systems of diverse anisotropies are analyzed first, and subsequently material magnetic systems of cubic symmetry; namely iron, nickel and Co{sub x} Fe{sub 100−x} compounds, are discussed. We highlight a correlation between magnetization curves and the associated probability landscapes. In addition, determination of easiest axes of magnetization, using energy consideration, is done and compared with the results of the present method.

  3. Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kolegov, A A; Shandarov, S M; Simonova, G V; Kabanova, L A; Burimov, Nikolai I; Shmakov, S S; Bykov, V I; Kargin, Yu F

    2011-09-30

    The characteristics of a holographic interferometer, which is based on the interaction of counterpropagating light waves on reflective holograms in cubic photorefractive sillenite crystals of the (100) cut and designed for measuring surface vibration spectra from specularly reflecting objects, have been theoretically analysed and experimentally studied. The experiments showed that an interferometer of this type, based on an Bi{sub 12}TiO{sub 20} : Fe,Cu crystal, makes it possible to measure vibrations with an amplitude of 5 pm. An analysis performed with allowance for the shot and thermal noise of the photodetector showed that vibrations with an amplitude below 1 pm can be measured. A model is proposed to describe the experimentally found strong temperature dependence of the light interaction on reflection holograms in a Bi{sub 12}TiO{sub 20} : Ca crystal. This model takes into account the influence of temperature on the photoinduced charge redistribution over deep donor and shallow trap centres, as well as the drift of the interference pattern in the crystal due to the thermooptical effect and linear expansion of the crystal.

  4. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  5. New tetragonal derivatives of cubic NaZn13-type structure: RNi6Si6 compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    International Nuclear Information System (INIS)

    Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A.V.; Knotko, A.V.; Garshev, A.V.; Yapaskurt, V.O.; Isnard, O.

    2014-01-01

    Novel RNi 6 Si 6 compounds adopt the new CeNi 6 Si 6 -type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi 6 Si 6 -type structure for R=Y, Sm, Gd–Yb (tP52, space group P4 ¯ b2N 117) that are tetragonal derivative of NaZn 13 -type structure, like LaCo 9 Si 4 -type. The CeNi 6 Si 6 , GdNi 6 Si 6 , TbNi 6 Si 6 , DyNi 6 Si 6 and HoNi 6 Si 6 compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi 6 Si 6 does not follow Curie–Weiss law. The DyNi 6 Si 6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ B /f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi 6 Si 6 with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni 6 Si 6 compounds adopt the new CeNi 6 Si 6 -type structure and (Y, Sm, Gd–Yb) adopt the new YNi 6 Si 6 -type structure that are tetragonal derivative of NaZn 13 -type structure, like LaCo 9 Si 4 -type. The CeNi 6 Si 6 , GdNi 6 Si 6 , TbNi 6 Si 6 , DyNi 6 Si 6 and HoNi 6 Si 6 compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi 6 Si 6 with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni 6 Si 6 compounds adopt the new CeNi 6 Si 6 -type structure. • The new (Y, Sm, Gd–Yb)Ni 6 Si 6 compounds adopt the new YNi 6 Si 6 -type structure. • TbNi 6 Si 6 has square modulated c-collinear antiferromagnetic ordering below ∼10 K

  6. New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub 6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    Energy Technology Data Exchange (ETDEWEB)

    Pani, M.; Manfrinetti, P.; Provino, A. [INFM and Dipartimento di Chimica e Chimica Industriale, Universita‘ di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1 (Canada); Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V.; Garshev, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Isnard, O. [Université Grenoble Alpes, Inst NEEL, BP166, F-38042 Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, F-38042 Grenoble (France)

    2014-02-15

    Novel RNi{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi{sub 6}Si{sub 6}-type structure for R=Y, Sm, Gd–Yb (tP52, space group P4{sup ¯}b2N 117) that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi{sub 6}Si{sub 6} does not follow Curie–Weiss law. The DyNi{sub 6}Si{sub 6} shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ{sub B}/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure and (Y, Sm, Gd–Yb) adopt the new YNi{sub 6}Si{sub 6}-type structure that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure. • The new (Y, Sm, Gd–Yb)Ni{sub 6}Si{sub 6} compounds adopt the new YNi{sub 6}Si{sub 6}-type structure. • TbNi{sub 6}Si

  7. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    International Nuclear Information System (INIS)

    Caffrey, Martin

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  8. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College Dublin, Dublin (Ireland)

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  9. Three-dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    OpenAIRE

    Lucarini, Valerio

    2008-01-01

    We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable eve...

  10. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.

    Science.gov (United States)

    Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-07-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.

  11. Rotation-limited growth of three-dimensional body-centered-cubic crystals.

    Science.gov (United States)

    Tarp, Jens M; Mathiesen, Joachim

    2015-07-01

    According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.

  12. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.

    Science.gov (United States)

    Lee, Byoung-Sun; Seo, Jong-Hyun; Son, Seoung-Bum; Kim, Seul Cham; Choi, In-Suk; Ahn, Jae-Pyoung; Oh, Kyu Hwan; Lee, Se-Hee; Yu, Woong-Ryeol

    2013-07-23

    In the foreseeable future, there will be a sharp increase in the demand for flexible Li-ion batteries. One of the most important components of such batteries will be a freestanding electrode, because the traditional electrodes are easily damaged by repeated deformations. The mechanical sustainability of carbon-based freestanding electrodes subjected to repeated electrochemical reactions with Li ions is investigated via nanotensile tests of individual hollow carbon nanofibers (HCNFs). Surprisingly, the mechanical properties of such electrodes are improved by repeated electrochemical reactions with Li ions, which is contrary to the conventional wisdom that the mechanical sustainability of carbon-based electrodes should be degraded by repeated electrochemical reactions. Microscopic studies reveal a reinforcing mechanism behind this improvement, namely, that inserted Li ions form irreversible face-centered-cubic (FCC) crystals within HCNF cavities, which can reinforce the carbonaceous matrix as strong second-phase particles. These FCC Li crystals formed within the carbon matrix create tremendous potential for HCNFs as freestanding electrodes for flexible batteries, but they also contribute to the irreversible (and thus low) capacity of HCNFs.

  13. BDA: A novel method for identifying defects in body-centered cubic crystals.

    Science.gov (United States)

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  14. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  15. A new spectral framework for crystal plasticity modeling of cubic and hexagonal polycrystalline metals

    Science.gov (United States)

    Knezevic, Marko

    Crystal plasticity physics-based constitutive theories are used in understanding and predicting the evolution of the underlying microstructure and the concomitant anisotropic stress-strain response in polycrystalline metals subjected to finite plastic strains. A new scheme for efficient crystal plasticity computations for both cubic and hexagonal polycrystalline metals subjected to arbitrary deformation modes has been developed in this thesis. This new computational scheme involves building material databases comprised of spectral coefficients. These spectral coefficients are computed using discrete Fourier transforms (DFTs) and allow for compact representation and fast retrieval of crystal plasticity solutions for a crystal of any orientation subjected to any deformation mode. The novel approach is able to speed up the conventional crystal plasticity computations by two orders of magnitude. Furthermore, mathematical procedures for delineation of property closures that identify the complete set of theoretically feasible combinations of macroscale effective properties has been developed for a broad set of mechanical properties. Subsequently, these constructs were used in microstructure design for identifying an optimal microstructure for selected performance criteria. And finally, hybrid processing recipes that transform a given initial microstructure into a member of the set of optimal microstructures that exhibit superior properties or performance characteristics have been described. Insights and tremendous potential of these novel materials knowledge systems are discussed and demonstrated through specific case-studies. The anisotropic stress-strain response measured in simple compression and simple tension tests in different sample directions on an annealed, strongly textured, AZ31 sheet has been studied. New insights into the mechanical response of this material were obtained by correlating the changes in the measured strain-hardening rates in the different

  16. Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liang-Yu; Chen, Lien-Wen, E-mail: chenlw@mail.ncku.edu.t [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2011-02-02

    This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the {Gamma}-X and {Gamma}-X' directions are also presented. The calculated results are compared with the experimental results.

  17. Spectral intensities in cubic systems. II. The MoCl{sub 6} {sup 3-} system in cubic elpasolite crystals

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, R. [Department of Basic Chemistry, Faculty of Physical and Mathematical Sciences, University of Chile. Tupper 2069. Casilla 2777, Santiago, Chile (Chile); Meruane, T. [Department of Chemistry. Universidad Metropolitana de Ciencias de la Educacion. Av. J.P. Alessandri 774, Casilla 147, C. Santiago, Chile (Chile); Poblete, V. [Department of Nuclear Materials, Lo Aguirre, Comision Chilena de Energia Nuclear. Amunategui 95, Casilla 188-D, Santiago, Chile (Chile)

    1998-12-01

    The visible and near infrared luminescence spectra of MoCl{sub 6} {sup 3-} in Cs{sub 2}NaMCl{sub 6} (M=Sc, Y, In) and MoBr{sub 6} {sup 3-} in Cs{sub 2}NaYBr{sub 6} have been reported between 15000 cm {sup -1} and 3000 cm {sup -1} at liquid helium temperatures. It has been observed that each electronic transition shows an extensive and rich vibronic structure, which can be analysed to yield the vibrational frequencies of the MoX{sub 6} {sup 3-} ion in each electronic state. A through analysis of the spectra for these systems, show that the vibrational frequencies associated with each of the electronic transition is almost identical. This is an evidence of a weak or rather negligible Jahn-Teller distortions. The spectra though are strongly influenced by resonant interactions among the MoX{sub 6} {sup 3-} ion and the internal and lattice modes of the host lattices and there is also a noticeable variation of the relative vibronic distributions of parity forbidden transitions assisted by the odd parity normal modes of vibrations. This present work deals with the most likely intensity mechanisms and a strategy is put forward to carry out explicit calculations for both, the electronic and vibrational factors of transitions of the kind {Gamma}{sub 1}{r_reversible} {Gamma}{sub 2} + v{sub k} for k=3, 4, and 6. Extension of this work to include the ion-phonon interaction is currently in progress in our laboratory. (Author)

  18. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Bassou, M. [Tunis Univ. (Tunisia)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Rotter, M. [Karlova Univ., Prague (Czech Republic)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Bernier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Chapellier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France)

    1996-02-11

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.).

  19. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    International Nuclear Information System (INIS)

    Bassou, M.; Rotter, M.; Bernier, M.; Chapellier, M.

    1996-01-01

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.)

  20. Synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to hexapod structures and their surface properties.

    Science.gov (United States)

    Lyu, Lian-Ming; Wang, Wei-Ching; Huang, Michael H

    2010-12-17

    We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.

  1. On the dynamic Stability of a quadratic-cubic elastic model structure ...

    African Journals Online (AJOL)

    The main substance of this investigation is the determination of the dynamic buckling load of an imperfect quadratic-cubic elastic model structure , which ,in itself, is a Mathematical generalization of some of the many physical structures normally encountered in engineering practice and allied fields. The load function in ...

  2. Studying magnetic structure of Bi doped Co2MnO4 cubic spinel by neutron diffraction

    International Nuclear Information System (INIS)

    Rajeevan, N.E.; Kaushik, S.D.; Kumar, Ravi

    2016-01-01

    In present work, we studied effect of Bi doped spinel Bi x Co 2-x MnO 4 (x = 0, 0.05, 0.10, 0.15 and 0.20) samples on their crystal as well as magnetic structure by employing neutron diffraction of wavelength 1.48 A using focusing crystal diffractometer of UGC-DAECSR Mumbai Centre at Dhruva, Trombay, Mumbai, India. The analysis of the neutron diffraction using Fullprof program reveals that crystal structure due to Bi doping remains intact and all the samples have been formed in the cubic spinel structure with Fd3m (space group no. 227). The lattice parameter shows the positive thermal expansion upon Bi doping across the temperature range. In order to understand the implication on the spin structure and magnetism in the detail, temperature dependent neutron diffraction study is carried out on some of the samples (x = 0, 0.1) in the series. The ND pattern of x = 0.1 at 2.9K is shown. The experimental finding in terms of modified magnetic structure upon Bi doping are discussed which are understood in terms of variation in the ferroelectric properties, bond lengths and their effect on the CoO 6 polyhedra. Furthermore, Bi substitution in Co 2 MnO 4 spinel brings in the balance of structural distortion, which affects both ferrimagnetism and ferroelectricity

  3. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  4. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  5. Crystal structure of pure ZrO2 nanopowders

    International Nuclear Information System (INIS)

    Lamas, D.G.; Rosso, A.M.; Anzorena, M. Suarez; Fernandez, A.; Bellino, M.G.; Cabezas, M.D.; Walsoee de Reca, N.E.; Craievich, A.F.

    2006-01-01

    The crystal structure of pure (undoped) zirconia nanopowders synthesized by different wet-chemical routes has been investigated by synchrotron X-ray diffraction. Whereas some previous authors reported the retention of the cubic phase in similar materials, we demonstrate here that pure zirconia nanopowders with average crystallite sizes ranging from 5 to 10 nm exhibit the tetragonal phase. In addition, our results suggest that a tetragonal-to-cubic transition for decreasing crystallite size could eventually occur at a very small critical crystallite size

  6. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  7. On the structure of critical energy levels for the cubic focusing NLS on star graphs

    International Nuclear Information System (INIS)

    Adami, Riccardo; Noja, Diego; Cacciapuoti, Claudio; Finco, Domenico

    2012-01-01

    We provide information on a non-trivial structure of phase space of the cubic nonlinear Schrödinger (NLS) on a three-edge star graph. We prove that, in contrast to the case of the standard NLS on the line, the energy associated with the cubic focusing Schrödinger equation on the three-edge star graph with a free (Kirchhoff) vertex does not attain a minimum value on any sphere of constant L 2 -norm. We moreover show that the only stationary state with prescribed L 2 -norm is indeed a saddle point. (fast track communication)

  8. Influence of a hydrostatic pressure on the diffusion in metals having a cubic structure

    International Nuclear Information System (INIS)

    Beyeler, M.

    1969-01-01

    In view of obtaining informations on the structure of vacancies. We have determined, by diffusion experiments under high pressure, the activation volumes for self diffusion in different face centered cubic metals: silver, gold, copper, aluminium and in body centered cubic uranium (gamma phase). Activation volumes for noble metals diffusion in aluminium have also been investigated. The experimental results on gold, silver and copper are in good agreement with most of the theoretical models. The estimated activation volume for gamma uranium seems to indicate a vacancy mechanism.The results on aluminium for both self and impurity diffusion agree quite well with Friedel's theoretical predictions [fr

  9. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  10. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  11. Frustrated Heisenberg Antiferromagnets on Cubic Lattices: Magnetic Structures, Exchange Gaps, and Non-Conventional Critical Behaviour

    OpenAIRE

    Ignatenko, A. N.; Irkhin, V. Yu.

    2016-01-01

    We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...

  12. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  13. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  14. On the crystal structure of Z-phase Cr(V,Nb)N

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John; Grumsen, Flemming Bjerg

    2006-01-01

    The Z-phase Cr(YNb)N particles in various 9 to 12 pct Cr creep-resistant steels were investigated with electron diffraction, energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy(EELS). In addition to the well-known tetragonal crystal structure for Z phase, a cubic crystal s...

  15. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    OpenAIRE

    Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-01-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolec...

  16. Structural insights into the cubic-hexagonal phase transition kinetics of monoolein modulated by sucrose solutions.

    Science.gov (United States)

    Reese, Caleb W; Strango, Zachariah I; Dell, Zachary R; Tristram-Nagle, Stephanie; Harper, Paul E

    2015-04-14

    Using DSC (differential scanning calorimetry), we measure the kinetics of the cubic-HII phase transition of monoolein in bulk sucrose solutions. We find that the transition temperature is dramatically lowered, with each 1 mol kg(-1) of sucrose concentration dropping the transition by 20 °C. The kinetics of this transition also slow greatly with increasing sucrose concentration. For low sucrose concentrations, the kinetics are asymmetric, with the cooling (HII-cubic) transition taking twice as long as the heating (cubic-HII) transition. This asymmetry in transition times is reduced for higher sucrose concentrations. The cooling transition exhibits Avrami exponents in the range of 2 to 2.5 and the heating transition shows Avrami exponents ranging from 1 to 3. A classical Avrami interpretation would be that these processes occur via a one or two dimensional pathway with variable nucleation rates. A non-classical perspective would suggest that these exponents reflect the time dependence of pore formation (cooling) and destruction (heating). New density measurements of monoolein show that the currently accepted value is about 5% too low; this has substantial implications for electron density modeling. Structural calculations indicate that the head group area and lipid length in the cubic-HII transition shrink by about 12% and 4% respectively; this reduction is practically the same as that seen in a lipid with a very different molecular structure (rac-di-12:0 β-GlcDAG) that makes the same transition. Thermodynamic considerations suggest there is a hydration shell about one water molecule thick in front of the lipid head groups in both the cubic and HII phases.

  17. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    Science.gov (United States)

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  18. Crystal structure of cafenstrole

    Directory of Open Access Journals (Sweden)

    Gihaeng Kang

    2015-08-01

    Full Text Available The title compound (systematic name: N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide, C16H22N4O3S, is a triazole herbicide. The dihedral angle between the planes of the triazole and benzene ring planes is 88.14 (10°. In the crystal, C—H...O hydrogen bonds and weak C—H...π interactions link adjacent molecules, forming one-dimensional chains along the a axis.

  19. Crystal structure of pseudoguainolide

    Directory of Open Access Journals (Sweden)

    Noureddine Beghidja

    2015-03-01

    Full Text Available The lactone ring in the title molecule, C15H22O3 (systematic name: 3,4a,8-trimethyldodecahydroazuleno[6,5-b]furan-2,5-dione, assumes an envelope conformation with the methine C atom adjacent to the the methine C atom carrying the methyl substituent being the flap atom. The other five-membered ring adopts a twisted conformation with the twist being about the methine–methylene C—C bond. The seven-membered ring is based on a twisted boat conformation. No specific interactions are noted in the the crystal packing.

  20. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    Science.gov (United States)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  1. Acousto-optical phonon excitation in cubic piezoelectric slabs and crystal growth orientation effects

    DEFF Research Database (Denmark)

    Willatzen, Morten; Duggen, Lars

    2017-01-01

    In this paper we investigate theoretically the influence of piezoelectric coupling on phonon dispersion relations. Specifically we solve dispersion relations for a fully coupled zinc-blende freestanding quantum well for different orientations of the crystal unit cell. It is shown that the phonon...... mode density in GaAs can change by a factor of approximately 2–3 at qx a = 1 for different crystal-growth directions relative to the slab thickness direction. In particular, it is found that optical and acoustic phonon modes are always piezoelectrically coupled, independent of the crystal...... that the piezoelectric effect leads to a drastically enhanced coupling of acoustic and optical phonon modes and increase in the local phonon density of states near the plasma frequency where the permittivity approaches zero....

  2. Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature

    Science.gov (United States)

    Lv, Meizhe; Xu, Bin; Cai, Lichao; Guo, Xiaofei; Yuan, Xingdong

    2018-05-01

    After rapid cooling, cubic boron nitride (c-BN) single crystals synthesized under high pressure and high temperature (HPHT) are wrapped in the white film powders which are defined as growth interface. In order to make clear that the transition mechanism of c-BN single crystals, the variation of B and N atomic hybrid states in the growth interface is analyzed with the help of auger electron spectroscopy in the Li-based system. It is found that the sp2 fractions of B and N atoms decreases, and their sp3 fractions increases from the outer to the inner in the growth interface. In addition, Lithium nitride (Li3N) are not found in the growth interface by X-ray diffraction (XRD) experiment. It is suggested that lithium boron nitride (Li3BN2) is produced by the reaction of hexagonal boron nitride (h-BN) and Li3N at the first step, and then B and N atoms transform from sp2 into sp3 state with the catalysis of Li3BN2 in c-BN single crystals synthesis process.

  3. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  4. Crystal structure of pymetrozine

    Directory of Open Access Journals (Sweden)

    Youngeun Jeon

    2015-07-01

    Full Text Available The title compound, C10H11N5O {systematic name: 6-methyl-4-[(E-(pyridin-3-ylmethylideneamino]-4,5-dihydro-1,2,4-triazin-3(2H-one}, C10H11N5O, is used as an antifeedant in pest control. The asymmetric unit comprises two independent molecules, A and B, in which the dihedral angles between the pyridinyl and triazinyl ring planes [r.m.s. deviations = 0.0132 and 0.0255 ] are 11.60 (6 and 18.06 (4°, respectively. In the crystal, N—H...O, N—H...N, C—H...N and C—H...O hydrogen bonds, together with weak π–π interactions [ring-centroid separations = 3.5456 (9 and 3.9142 (9 Å], link the pyridinyl and triazinyl rings of A molecules, generating a three-dimensional network.

  5. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  6. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  7. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  8. Cubic AlGaN/GaN structures for device application

    Energy Technology Data Exchange (ETDEWEB)

    Schoermann, Joerg

    2007-05-15

    The aim of this work was the growth and the characterization of cubic GaN, cubic AlGaN/GaN heterostructures and cubic AlN/GaN superlattice structures. Reduction of the surface and interface roughness was the key issue to show the potential for the use of cubic nitrides in futur devices. All structures were grown by plasma assisted molecular beam epitaxy on free standing 3C-SiC (001) substrates. In situ reflection high energy electron diffraction was first investigated to determine the Ga coverage of c-GaN during growth. Using the intensity of the electron beam as a probe, optimum growth conditions were found when a 1 monolayer coverage is formed at the surface. GaN samples grown under these conditions reveal excellent structural properties. On top of the c-GaN buffer c-AlGaN/GaN single and multiple quantum wells were deposited. The well widths ranged from 2.5 to 7.5 nm. During growth of Al{sub 0.15}Ga{sub 0.85}N/GaN quantum wells clear reflection high energy electron diffraction oscillations were observed indicating a two dimensional growth mode. We observed strong room-temperature, ultraviolet photoluminescence at about 3.3 eV with a minimum linewidth of 90 meV. The peak energy of the emission versus well width is reproduced by a square-well Poisson- Schroedinger model calculation. We found that piezoelectric effects are absent in c-III nitrides with a (001) growth direction. Intersubband transition in the wavelength range from 1.6 {mu}m to 2.1 {mu}m was systematically investigated in AlN/GaN superlattices (SL), grown on 100 nm thick c-GaN buffer layers. The SLs consisted of 20 periods of GaN wells with a thickness between 1.5 nm and 2.1 nm and AlN barriers with a thickness of 1.35 nm. The first intersubband transitions were observed in metastable cubic III nitride structures in the range between 1.6 {mu}m and 2.1 {mu}m. (orig.)

  9. Structures of glide-set 90 deg. partial dislocation cores in diamond cubic semiconductors

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chrzan, D.C.

    2003-01-01

    Two core reconstructions of the 90 deg. partial dislocations in diamond cubic semiconductors, the so-called single- and double-period structures, are often found to be nearly degenerate in energy. This near degeneracy suggests the possibility that both core reconstructions may be present simultaneously along the same dislocation core, with the domain sizes of the competing reconstructions dependent on temperature and the local stress state. To explore this dependence, a simple statistical mechanics-based model of the dislocation core reconstructions is developed and analyzed. Predictions for the temperature-dependent structure of the dislocation core are presented

  10. Structural and magnetic behavior of the cubic oxyfluoride SrFeO{sub 2}F studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Corey M., E-mail: thompco@mcmaster.ca [Department of Chemistry, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Blakely, Colin K. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Flacau, Roxana [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0 (Canada); Greedan, John E. [Department of Chemistry, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Poltavets, Viktor V. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)

    2014-11-15

    The oxyfluoride SrFeO{sub 2}F has been prepared via a low temperature route involving the infinite-layer SrFeO{sub 2} and XeF{sub 2}. SrFeO{sub 2}F crystallizes in the cubic space group Pm-3m with disordered oxygen and fluorine atoms on the anion site. Recent reports demonstrated that SrFeO{sub 2}F is antiferromagnetic at room temperature and the zero field cooled and field cooled curves diverge at ∼150 K and ∼60 K, suggesting that the material has a spin glassy magnetic state at low temperatures. In this article, variable-temperature neutron diffraction (4–723 K) was performed to clarify the magnetic behavior observed in this material. Neutron powder diffraction measurements confirmed the antiferromagnetic (AFM) ordering of the system at room temperature. Below 710(1) K, the magnetic structure is a G-type AFM structure characterized by a propagation vector k=(1/2 , 1/2 , 1/2 ). The ordered moments on Fe{sup 3+} are 4.35(6)µ{sub B} at 4 K and 4.04(5)µ{sub B} at 290 K. Our results indicate that the cubic structure is retained all the way to base temperature (4 K) in contrast to PbFeO{sub 2}F. These results are compared with those of Pb and Ba analogs which exhibit very similar magnetic behavior. Furthermore, the observation of magnetic reflections at 4 K in the diffraction pattern shows the absence of the previously proposed spin glassy behavior at low temperatures. Previous proposals to explain the ZFC/FC divergences are examined. - Graphical abstract: Variable temperature powder neutron diffraction was employed to follow the evolution of the long range antiferromagnetic state in SrFeO{sub 2}F. - Highlights: • SrFeO{sub 2}F prepared via low temperature route involving SrFeO{sub 2} and XeF{sub 2}. • The cubic structure, Pm-3m, is retained at low temperatures, 4 K. • The magnetic structure is G-type AFM with T{sub N}=710 K and Fe{sup 3+} moment of 4.35µ{sub B}. • A small volume, bulk decoupled, spin glassy domain/cluster mechanism is proposed.

  11. Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound.

    Science.gov (United States)

    Zelený, Martin; Straka, Ladislav; Sozinov, Alexei; Heczko, Oleg

    2018-05-08

    In order to explain the formation of low-temperature phases in stoichiometric Ni 2 MnGa magnetic shape memory alloy, we investigate the phase transformation paths from cubic austenite with Heusler structure to low-symmetry martensitic structures. We used ab initio calculations combined with the generalized solid state nudged elastic band method to determine the minimum energy path and corresponding changes in crystal lattice. The four-, five-, and seven-layered modulated phases of martensite (4O, 10M, and 14M) are built as the relaxed nanotwinned non-modulated (NM) phase. Despite having a total energy larger than the other martensitic phases, the 10M phase will spontaneously form at 0 K, because there is no energy barrier on the path and the energy decreases with a large negative slope. Moreover, a similar negative slope in the beginning of path is found also for the transformation to the 6M premartensite, which appears as a local minimum on the path leading further to 10M martensite. Transformation paths to other structures exhibit more or less significant barriers in the beginning hindering such a transformation from austenite. These findings correspond to experiment and demonstrates that the kinetics of the transformation is decisive for the selection of the particular low-symmetry structure.

  12. Complex cubic metallides AM{sub ∝6} (A=Ca, Sr; M=Zn, Cd, Hg). Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Michael; Wendorff, Marco; Roehr, Caroline [Freiburg Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-09-01

    In a systematic synthetic, crystallographic and bond theoretical study, the stability ranges as well as the distribution of the isoelectronic late d-block elements Zn, Cd and Hg (M) in the polyanions of the YCd{sub 6}-type phases (Ca/Sr)Cd{sub 6} have been investigated. Starting from Ca(Cd/Hg){sub 6}, 12-30% of the M atoms can be substituted by Zn, which gradually occupies the center of the empty cubes. In all ternary compounds, smaller/less electronegative Zn/Cd atoms occupy the disordered tetrahedra explaining the lack of the YCd{sub 6}-type for pure mercurides. Along the section SrCd{sub 6}-SrHg{sub 6}, the ordered Eu{sub 4}Cd{sub 25}-type is formed (Sr{sub 4}Cd{sub 16.1}Hg{sub 8.9}: cF1392, Fd anti 3, a=3191.93(5) pm, R1=0.0404). Besides, two new complex cubic Ca phases appear at increased Zn proportion: Ca{sub 2}Zn{sub 5.1}Cd{sub 5.8}, which exhibits a nearly complete site preference of Zn and Cd, crystallizes in the rare cubic Mg{sub 2}Zn{sub 11}-type structure (cP39-δ, Pm anti 3, a=918.1(1) pm, R1=0.0349). In the Ca-Hg system, an increased Zn proportion yielded the new compound CaZn{sub 1.31}Hg{sub 3.69} (cF480, F anti 43m, a=2145.43(9) pm, R1=0.0572), with a complex cubic structure closely related to Ba{sub 20}Hg{sub 103}. All structures, which are commonly described using nested polyhedra around high-symmetric sites, are alternatively described in accordance with the calculated electron densities and charge distribution: building blocks are face-sharing [M{sub 4}] tetrahedra (star polyhedra such as TS, IS, OS), each with a cage-critical point in its center, and [M{sub 8}] cubes (deformed TS), which are either empty, distorted or filled. The M element distribution in the anion is determined by size criteria and the difference in electronegativity, which induces a preferred formation of heteroatomic polar bonds.

  13. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    International Nuclear Information System (INIS)

    Song, T.; Ma, Q.; Sun, X.W.; Liu, Z.J.; Fu, Z.J.; Wei, X.P.; Wang, T.; Tian, J.H.

    2016-01-01

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.

  14. Polarization singularities of optical fields caused by structural dislocations in crystals

    International Nuclear Information System (INIS)

    Savaryn, V; Vasylkiv, Yu; Krupych, O; Skab, I; Vlokh, R

    2013-01-01

    We analyze polarization singularities of optical beams that propagate through crystals possessing structural dislocations. We show that screw dislocations of crystalline structure can lead to the appearance of purely screw-type dislocations of light wavefronts. This can happen only in crystals that belong to trigonal and cubic systems. These polarization singularities will give rise to optical vortices with the topological charge equal to ±1, whenever a crystal sample is placed between crossed circular polarizers. We have also found that edge dislocations present in the cubic and trigonal crystals, with the Burgers vector perpendicular to the three-fold symmetry axes, can impose mixed screw-edge dislocations in the wavefronts of optical beams and generate singly charged optical vortices. The results of our analysis can be applied for detecting and identifying dislocations of different types available in crystals. (paper)

  15. Response to reply on “Structural and magnetic behavior of the cubic oxyfluoride SrFeO2F studied by neutron diffraction”

    International Nuclear Information System (INIS)

    Thompson, Corey M.; Blakely, Colin K.; Flacau, Roxana; Greedan, John E.; Poltavets, Viktor V.

    2015-01-01

    Clemens et al. reported on the results published by us (Thompson et al. J. Solid State Chem. 219 (2014) 173–178) on the crystal structure of SrFeO 2 F, which they suggest to actually crystallize in the orthorhombic space group Imma rather than the cubic Pm-3m structure at lower temperatures (Clemens et al. J. Solid State Chem. (2015), (http://dx.doi.org/10.1016/j.jssc.2015.02.022)). In this report, we provide evidence to support their claim that at lower temperatures (<523 K) the structure is evidently Imma. Furthermore, we will highlight the significance of our previous report and comment on the proposed explanations of the magnetic behavior of SrFeO 2 F reported by both groups

  16. Response to reply on “Structural and magnetic behavior of the cubic oxyfluoride SrFeO{sub 2}F studied by neutron diffraction”

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Corey M., E-mail: thompco@mcmaster.ca [Department of Chemistry and Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Blakely, Colin K. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Flacau, Roxana [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratories, Chalk River, ON, Canada K0J 1J0 (Canada); Greedan, John E. [Department of Chemistry and Brockhouse Institute of Materials Research, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Poltavets, Viktor V. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)

    2015-03-15

    Clemens et al. reported on the results published by us (Thompson et al. J. Solid State Chem. 219 (2014) 173–178) on the crystal structure of SrFeO{sub 2}F, which they suggest to actually crystallize in the orthorhombic space group Imma rather than the cubic Pm-3m structure at lower temperatures (Clemens et al. J. Solid State Chem. (2015), (http://dx.doi.org/10.1016/j.jssc.2015.02.022)). In this report, we provide evidence to support their claim that at lower temperatures (<523 K) the structure is evidently Imma. Furthermore, we will highlight the significance of our previous report and comment on the proposed explanations of the magnetic behavior of SrFeO{sub 2}F reported by both groups.

  17. RhCd{sub 9+δ} (-1.18 ≤δ≤0.29) a γ-brass related cubic giant cell structure

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Partha Pratim [Indian Institute of Technology, Kharagpur (India). Dept. of Chemistry

    2017-09-01

    The compound RhCd{sub 9+δ} (-1.18 ≤δ≤0.29) has been synthesized and the average structure has been analyzed by single crystal X-ray diffraction. The average structure crystallizes in the face centered cubic space group F43m (216) and contains ∝405 atoms/unit cell. It represents a (2a{sub γ}){sup 3}-superstructure of cubic γ-brass and is isostructural to Rh{sub 7-x}Mg{sub 44+x}. The comparison between the structures of RhCd{sub 9+δ} and Rh{sub 7-x}Mg{sub 44+x} has been presented using a layer description. The structure of the title phase has also been described by a ''cluster'' concept. The electronic structure of RhCd{sub 9+δ} (-1.18 ≤δ≤0.29) shows that the phase is stabilized by a Hume-Rothery mechanism.

  18. Effect of pressure on the global and local properties of cubic perovskite crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Tarik; Merad-Boudia, I; Bentalha, Z [Laboratoire de Physique Theorique, Departement de Physique. Ecole Preparatoire Sciences et Techniques, BP 230, 13000 Tlemcen (Algeria); Baltache, H; Khenata, R, E-mail: tarik_ouahrani@yahoo.fr [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Universite de Mascara, 29000 Mascara (Algeria)

    2011-08-01

    The influence of pressure on the structural, elastic, thermal and bonding properties of four perovskite-type oxides AMO{sub 3} is studied from the point of view of the quantum theory of atoms in molecules. Ab initio investigations are performed by means of the full-potential linear augmented plane-wave method as implemented in the wien2k code. The integrated basin charges resulting from the topological analysis of electronic density provide a partition of the bulk modulus and compressibility into atomic contributions. Special attention is paid to the nonlinear behaviour of the local bonding properties.

  19. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  20. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    Science.gov (United States)

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  1. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  2. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  3. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  4. Crystallographic relations between face- and body-centred cubic crystals formed under near-equilibrium conditions: Observations from the Gibeon meteorite

    International Nuclear Information System (INIS)

    He Youliang; Godet, Stephane; Jacques, Pascal J.; Jonas, John J.

    2006-01-01

    The orientations of the kamacite lamellae formed from a single prior-taenite grain were measured by analysing the electron backscatter diffraction patterns obtained using scanning electron microscopy. These are shown to be close to the Kurdjumov-Sachs and Nishiyama-Wassermann relations and their intermediate, i.e., the Greninger-Troiano relation. The orientations of the α grains in the plessite regions were also measured and these were found to be continuously distributed around the Bain circles formed by the variants of the common correspondence relationships, including the Pitsch one in this case. The local misorientations between individual face- and body-centred cubic crystals along their common interfaces were measured. These can be characterized by the orientation relationships mentioned above as long as a certain amount of tolerance is allowed. Orientation variations within individual kamacite lamellae were also analysed. The crystallographic data support the view that somewhat different mechanisms are involved in the formation of Widmanstaetten structures and of the plessite in meteorites

  5. The crystal structure and stability of molybdenum at ultrahigh pressures

    International Nuclear Information System (INIS)

    Jona, F; Marcus, P M

    2005-01-01

    Crystal structures and their stabilities for molybdenum under increasing hydrostatic pressures are investigated by first-principles calculations of the Gibbs free energy. Three structures are considered: body-centred cubic (bcc, the ground state at zero pressure), hexagonal close-packed (hcp) and face-centred cubic (fcc). For each structure and each pressure (up to 8 Mbar) the equilibrium states are found from minima of the Gibbs free energy at zero temperature. The stability is tested by calculating the elastic constants and checking whether they satisfy the appropriate stability conditions. The bcc structure is confirmed to be stable at zero pressure and at 6 Mbar. At and above 6.2 M-bar the ground-state structure changes to hcp, which is found to be stable at 7 M-bar. At 7.7 Mbar another transition occurs, and the ground-state structure changes from hcp to fcc. The fcc structure, which is unstable at zero pressure, becomes metastable over the range from 3 to 7.7 M-bar and becomes the ground state at higher pressures (at least up to 8 Mbar). Direct confirmation of these calculated transition pressures with experiment is not now possible, as the maximum static pressure currently reached experimentally is 5.6 Mbar, where Mo is found to be still in the bcc phase

  6. Jubilite: A 4-,8-connected Cubic Structural Pattern in Space Group Pm3

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2005-05-01

    Full Text Available Abstract: In the course of investigating structural modifications of the 3-,4-connected net known as the Pt3O4 structure-type (waserite, a novel 4-,8-connected structure-type was discovered. This lattice is generated by replacing the 3-connected trigonal planar vertices of the Pt3O4 structure-type with 4-connected tetrahedral vertices, to achieve a structure which possesses a generic empirical formula of JK6L8. In such a topological modification, the four 3-fold axes of the parent cubic, Pm3n, Pt3O4 structure-type are retained. Thus the 4-connected tetrahedral vertices are oriented so as to preserve cubic symmetry in the resulting Pm3, JK6L8 (jubilite lattice. The unit cell contains a single 8-connected cubecentered vertex, six 4-connected distorted square planar vertices and eight 4-connected distorted tetrahedral vertices. It is a Wellsean structure with a Wells point symbol given by (4166484(42826(43838 and a Schläfli symbol of (53/4, 4.2667. This latter index reveals a decrease in the lattice’s polygonality and concomitant increase in the connectivity through the transformation from waserite to jubilite. The topology of the parent waserite lattice (Pt3O4 corresponds to that of the Catalan structures with the Wells point symbol (843(834, which has the Schläfli symbol (8, 3.4285. Finally, it can be seen that a sequence of structure-types starting with waserite (Pt3O4 and moving to jubilite (JK6L8 and finally to fluorite (CaF2 represents a continuous crystallographic structural transformation in which the symmetry and topology undergo concomitant changes from one structure-type (waserite to the other structure-types. The topology of the fluorite lattice, represented by the Wells point symbol (424(462, and the Schläfli symbol (4, 51/3, indicates a discontinuous topological transformation from the intermediate jubilite lattice; like the discontinuous topological transformation from Pt3O4 to JK6L8; in which the

  7. Influence of nonstoichiometry and ordering on basic structure parameter of cubic titanium carbide

    International Nuclear Information System (INIS)

    Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of nonstoichiometry and phase transformations of the disorder-order type on the basis (B1 type) structure period of TiC y (0.5 y titanium carbide with formation of the Ti 2 C and Ti 3 C 2 superstructures leads to growth of the basic crystal lattice period as compared to disordered carbide. The problem on trends in static atomic displacement near vacancy is discussed with an account of the lattice period change [ru

  8. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    Science.gov (United States)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  9. AACSD: An atomistic analyzer for crystal structure and defects

    Science.gov (United States)

    Liu, Z. R.; Zhang, R. F.

    2018-01-01

    We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.

  10. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    International Nuclear Information System (INIS)

    Peterman, D.J.

    1980-01-01

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH 2 and YH 2 were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH 2 cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 2 lattice. These experimental results also suggest that, in contrast to recent calculations, LaH 3 is a small-band-gap semiconductor

  11. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  12. Effect of superconductivity on the cubic to tetragonal structural transition due to a two-fold degenerate electronic band

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Khanra, B.C.; Ray, D.K.

    1978-01-01

    The effect of the BCS superconductivity on the cubic to tetragonal structural transition arising from a two-fold degenerate electronic band is investigated within the mean field approximation. The phase diagram of the two transitions is given for a half filled esub(g)-band. Modification of the two transitions when they are close together is also discussed. (author)

  13. Tailoring band structure and band filling in a simple cubic (IV, III)-VI superconductor

    Science.gov (United States)

    Kriener, M.; Kamitani, M.; Koretsune, T.; Arita, R.; Taguchi, Y.; Tokura, Y.

    2018-04-01

    Superconductivity and its underlying mechanisms are one of the most active research fields in condensed-matter physics. An important question is how to enhance the transition temperature Tc of a superconductor. In this respect, the possibly positive role of valence-skipping elements in the pairing mechanism has been attracting considerable interest. Here we follow this pathway and successfully enhance Tc up to almost 6 K in the simple chalcogenide SnTe known as a topological crystalline insulator by doping the valence-skipping element In substitutionally for the Sn site and codoping Se for the Te site. A high-pressure synthesis method enabled us to form single-phase solid solutions Sn1 -xInxTe1 -ySey over a wide composition range while keeping the cubic structure necessary for the superconductivity. Our experimental results are supported by density-functional theory calculations which suggest that even higher Tc values would be possible if the required doping range was experimentally accessible.

  14. What makes a crystal structure report valid?

    NARCIS (Netherlands)

    Spek, Anthony L.|info:eu-repo/dai/nl/156517566

    2018-01-01

    Single crystal X-ray crystallography has developed into a unique, highly automated and accessible tool to obtain detailed information on molecular structures. Proper archival makes that referees, readers and users of the results of reported crystal structures no longer need to depend solely on the

  15. Crystal structure of prethrombin-1

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiwei; Pelc, Leslie A.; Di Cera, Enrico (St. Louis-MED)

    2010-11-15

    Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-{angstrom} resolution shows an overall conformation significantly different (rmsd = 3.6 {angstrom}) from that of its active form meizothrombin desF1 carrying a cleavage at R320. Fragment 2 is rotated around the y axis by 29{sup o} and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na{sup +} binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 {angstrom} apart in meizothrombin desF1, to come within 3.3 {angstrom} of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen {yields} protease conversion in trypsin-like proteases.

  16. Eu3+-doped (Y0.5La0.5)2O3: new nanophosphor with the bixbyite cubic structure

    Science.gov (United States)

    Đorđević, Vesna; Nikolić, Marko G.; Bartova, Barbora; Krsmanović, Radenka M.; Antić, Željka; Dramićanin, Miroslav D.

    2013-01-01

    New red sesquioxide phosphor, Eu3+-doped (Y0.5La0.5)2O3, was synthesized in the form of nanocrystalline powder with excellent structural ordering in cubic bixbyite-type, and with nanoparticle sizes ranging between 10 and 20 nm. Photoluminescence measurements show strong, Eu3+ characteristic, red emission ( x = 0.66 and y = 0.34 CIE color coordinates) with an average 5D0 emission lifetime of about 1.3 ms. Maximum splitting of the 7F1 manifold of the Eu3+ ion emission behaves in a way directly proportional to the crystal field strength parameter, and experimental results show perfect agreement with theoretical values for pure cubic sesquioxides. This could be used as an indicator of complete dissolution of Y2O3 and La2O3, showing that (Y0.5La0.5)2O3:Eu3+ behaves as a new bixbyite structure oxide, M2O3, where M acts as an ion having average ionic radius of constituting Y3+ and La3+. Emission properties of this new phosphor were documented with detailed assignments of Eu3+ energy levels at 10 K and at room temperature. Second order crystal field parameters were found to be B 20 = -66 cm-1 and B 22 = -665 cm-1 at 10 K and B 20 = -78 cm-1 and B 22 = -602 cm-1 at room temperature, while for the crystal field strength the value of 1495 cm-1 was calculated at 10 K and 1355 cm-1 at room temperature.

  17. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  18. Martensitic cubic → tetragonal transition

    International Nuclear Information System (INIS)

    Schumann, H.

    1983-01-01

    Indium-thallium alloys containing 14 to 30% At. Tl have a cubic face-centred beta phase wich changes into a tetragonal face-centred alpha martensite during solidification. The martensite contains twin crystals that are large enough to be seen by means of a light microscope. The phenomenological crystallographic martensite theory was used to calculate Miller's index of the habit plane, the formation of the surface relief, the orientation relations and the critical thickness ratio of the twins. In a beta monocrystal frequently only one of the 24 crystallographic possible habit planes are formed at one end of the sample and migrate through the whole crystal when the temperature drops. Externally applied tension and compression influence in different ways the direction in which the habit plane moves and can even destroy the twinned structure, i.e. they can modify the substructure of the martensite crystal. This induces superelasticity, an effect that has also been described quantitatively. (author)

  19. Crystal structure of 2-pentyloxybenzamide

    Directory of Open Access Journals (Sweden)

    Bernhard Bugenhagen

    2014-10-01

    Full Text Available In the title molecule, C12H17NO2, the amide NH2 group is oriented toward the pentyloxy substituent and an intramolecular N—H...O hydrogen bond is formed with the pentyloxy O atom. The benzene ring forms dihedral angles of 2.93 (2 and 5.60 (2° with the amide group and the pentyloxy group mean planes, respectively. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with their molecular planes parallel, but at an offset of 0.45 (1 Å to each other. These dimers are ordered into two types of symmetry-related columns extended along the a axis, with the mean plane of one set of dimers in a column approximately parallel to (121 and the other in a column approximately parallel to (1-21. The two planes form a dihedral angle of 85.31 (2°, and are linked via C—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional framework structure.

  20. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  1. Fortuitous structure determination of ‘as-isolated’ Escherichia coli bacterioferritin in a novel crystal form

    International Nuclear Information System (INIS)

    Eerde, André van; Wolterink-van Loo, Suzanne; Oost, John van der; Dijkstra, Bauke W.

    2006-01-01

    E. coli bacterioferritin was crystallized in a novel crystal form from different conditions and the structure was solved. The crystals belonged to space group P2 1 3 and diffracted to a resolution of 2.5 Å. Escherichia coli bacterioferritin was serendipitously crystallized in a novel cubic crystal form and its structure could be determined to 2.5 Å resolution despite a high degree of merohedral twinning. This is the first report of crystallographic data on ‘as-isolated’ E. coli bacterioferritin. The ferroxidase active site contains positive difference density consistent with two metal ions that had co-purified with the protein. X-ray fluorescence studies suggest that the metal composition is different from that of previous structures and is a mix of zinc and native iron ions. The ferroxidase-centre configuration displays a similar flexibility as previously noted for other bacterioferritins

  2. First-principles prediction of structural, elastic, electronic and thermodynamic properties of the cubic SrUO{sub 3}-Perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, B. [Laboratoire de Génie Physique, Université Ibn Khaldoun, Tiaret, 14000 (Algeria); Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria); Bouafia, H., E-mail: hamza.tssm@gmail.com [Laboratoire de Génie Physique, Université Ibn Khaldoun, Tiaret, 14000 (Algeria); Abidri, B.; Abdellaoui, A. [Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria); Hiadsi, S.; Akriche, A. [Laboratoire de Microscope Electronique et Sciences des Matériaux, Université des Sciences et de la Technologie Mohamed Boudiaf, département de Génie Physique, BP1505 El m’naouar, Oran (Algeria); Benkhettou, N.; Rached, D. [Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes 22000 (Algeria)

    2015-06-25

    Highlights: • The ground state properties of SrUO{sub 3}-Perovskite were investigated. • Elastic constants and their related parameters were calculated. • Electronic properties are treated using GGA-PBEsol + U approach. - Abstract: In this paper, we investigate bulk properties of the cubic SrUO{sub 3}-Perovskite in their nonmagnetic (NM), antiferromagnetic (AFM) and ferromagnetic (FM) states using all-electron self consistent Full Potential Augmented Plane Waves plus local orbital (FP-(L)APW + lo) method within PBEsol Generalized Gradiant density approximations. Our calculation allowed us to predict that the more stable magnetic state of the cubic SrUO{sub 3}-Perovskite is that of the ferromagnetic (FM). This work is the first prediction of elastic constants and their related parameters (Young modulus, shear modulus, Poisson ratio, Zener anisotropy and the Debye temperature) for this cubic compound using Mehl method. We have employed the GGA(PBEsol) and GGA(PBEsol) + U to investigate the electronic band structure, density of states and electronic charge density of SrUO{sub 3}-Perovskite. The electronic band structure calculations revealed that SrUO{sub 3} exhibits metallic behavior. On the other hand the charge density plots for [1 1 0] direction indicates a strong ionic character along the Sr–O bond while the U–O bond has strong covalent character. Finally, we have analyzed the thermodynamic properties using the quasi-harmonic Debye model to complete the fundamental characterization of cubic SrUO{sub 3}-Perovskite.

  3. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  4. First-principle calculations of the structural, elastic and bonding properties of Cs{sub 2}NaLnCl{sub 6} (Ln=La–Lu) cubic elpasolites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.G.; Liu, D.X.; Feng, B.; Tian, Y.; Li, L. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland)

    2016-01-15

    For the first time the structural, elastic and bonding properties of 15 elpasolite crystals Cs{sub 2}NaLnCl{sub 6} (Ln denotes all lanthanides from La to Lu) were calculated systematically using the CRYSTAL09 program. Several trends in the variation of these properties in relation to the atomic number Z of the Ln ions were found; in particular, the lattice parameter of these compounds decreases with Z (which can lead to the increased crystal field splittings of the 5d states for the heavier Ln ions), whereas the elastic constants and Debye temperature increase. The degree of covalency of the Ln–Cl chemical bonds is increased toward the end of the lanthanide series. - Highlights: • Structural, elastic and bonding properties of 15 cubic elpasolites Cs{sub 2}NaLnCl{sub 6} (Ln=La,…,Lu) are calculated. • Relations between these quantities and Ln atomic number were found. • Possible correlation between the elastic properties and Stokes shift is proposed.

  5. Variable-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases.

    Science.gov (United States)

    Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi

    2016-02-01

    A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.

  6. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  7. Effects of precursors on the crystal structure and photoluminescence of CdS nanocrystalline

    International Nuclear Information System (INIS)

    Fu Zuoling; Zhou Shihong; Shi Jinsheng; Zhang Siyuan

    2005-01-01

    A series of cadmium sulfide (CdS) nanocrystalline were synthesized by precipitation from a mixture of aqueous solutions of cadmium salts and sulfur salts without adding any surface-termination agent. Their crystal structures and particle sizes were determined by X-ray diffraction (XRD). The CdS nanocrystalline precipitated from different precursors exhibited three cases: cubic phase, hexagonal phase and a hybrid of cubic and hexagonal phases. The photoluminescence (PL) of cadmium salt precursors and CdS nanocrystalline is also analyzed. Similar spectral band structure of cadmium salt precursors and CdS nanocrystalline is found. The PL of 3.4, 2.4 and 2.0 nm sized CdS nanocrystalline with the same crystal structure indicated quantum confinement effect

  8. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    Science.gov (United States)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  9. Effect of Hydrostatic Pressure on the Structural, Electronic and Optical Properties of SnS2 with a Cubic Structure: The DFT Approach

    Science.gov (United States)

    Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.

    2018-02-01

    Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.

  10. Structure and phase transition of BiFeO{sub 3} cubic micro-particles prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Ping, E-mail: zhoujp@snnu.edu.cn [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Deng, Chao-Yong [Department of Electronic Science, Guizhou University, Guizhou Guiyang 550025 (China)

    2012-11-15

    Graphical abstract: Bismuth ferrite (BiFeO{sub 3}) cubic micro-particles with smooth surfaces were synthesized. BiFeO{sub 3} has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe{sub 2}O{sub 3} above 939 °C. Highlights: ► BiFeO{sub 3} micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO{sub 3} enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO{sub 3} transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO{sub 3}) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO{sub 3} cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi{sup 3+}, Fe{sup 3+} and O{sup 2−}). The high temperature XRD and differential scanning calorimetry show that BiFeO{sub 3} powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO{sub 3} undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe{sub 2}O{sub 3} above 939 °C.

  11. Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Zhou, Jian-Ping; Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming; Deng, Chao-Yong

    2012-01-01

    Graphical abstract: Bismuth ferrite (BiFeO 3 ) cubic micro-particles with smooth surfaces were synthesized. BiFeO 3 has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe 2 O 3 above 939 °C. Highlights: ► BiFeO 3 micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO 3 enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO 3 transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO 3 ) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO 3 cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi 3+ , Fe 3+ and O 2− ). The high temperature XRD and differential scanning calorimetry show that BiFeO 3 powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO 3 undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe 2 O 3 above 939 °C.

  12. Fine structure and energy spectrum of exciton in direct band gap cubic semiconductors with degenerate valence bands

    International Nuclear Information System (INIS)

    Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Que Huong

    1987-06-01

    The influence of the cubic structure on the energy spectrum of direct exciton is investigated, using the new method suggested by Nguyen Van Hieu and co-workers. Explicit expressions of the exciton energy levels 1S, 2S and 2P are derived. A comparison with the experiments and the other theory is done for ZnSe. (author). 10 refs, 1 fig., 2 tabs

  13. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    The design and construction of ... dination polymers. It is difficult to design coordination .... The first endotherm at about 180 ... graphic data for coordination polymer 1. ... Sheldrick G M 1997 SHELXS-97: Program for solution of crystal structures ...

  14. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    methyl imidazolium methylidene bis(trifluoromethanesulfonyl)imide, crystal structure, thermal and dielectric studies. BOUMEDIENE HADDAD1,2,3,∗, TAQIYEDDINE MOUMENE2, DIDIER VILLEMIN1,. JEAN-FRANÇOIS LOHIER1 and EL-HABIB ...

  15. SYNTHESIS, CRYSTAL STRUCTURE AND MAGNETIC ...

    African Journals Online (AJOL)

    Preferred Customer

    Much of the current effort on such extended hybrid metal organic complexes is ... In this paper, we report the synthesis, single crystal X-ray diffraction analysis and ..... with g = 2.0 (0.37 cm3 mol−1 K), and smoothly increases to a value of 0.45 ...

  16. Crystal structure and phase transitions of sodium potassium niobate perovskites

    Science.gov (United States)

    Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.

    2009-02-01

    This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.

  17. New orientation formation and growth during primary recrystallization in stable single crystals of three face-centred cubic metals

    International Nuclear Information System (INIS)

    Miszczyk, M.; Paul, H.; Driver, J.H.; Maurice, C.

    2015-01-01

    Graphical abstract: For Ni, Cu and Cu-2%Al and (1 1 0)[0 0 −1] and (1 1 0)[1 −1 −2] initial orientations at the initial stages of recrystallization, the appearance of a specific number of new orientation groups of new grains has been demonstrated. The orientation relations across the recrystallization front are characterized by a high proportion of angles in the range 25–35° and 45–55° around axes mostly grouped about the 〈1 2 2〉, 〈1 1 1〉, 〈1 2 3〉 and 〈1 1 2〉 directions. A local minimum was noted for the disorientation angle densities close to 40° in all cases. For a single isolated nucleus of uniform orientation, the rotation axes are usually grouped around one of the normals of all four {1 1 1} planes but do not (or only rarely) coincide with them. The orientation of the growing new grain quickly transforms through the formation of a first generation twins. The most frequent situation occurs when the normal of the twinning face plane is situated near the rotation axis, around which the crystal lattice of the ‘primary nuclei’ rotates. Based on the anisotropy of grain growth a possible mechanism of orientation generation and grain growth by thermally activation movement of dislocation families, on {1 1 1} planes is proposed. - Abstract: The early stages of recrystallization have been systematically characterized in single crystal metals of medium and low stacking fault energy. Goss {1 1 0}〈0 0 1〉 and brass {1 1 0}〈1 1 2〉 oriented samples of Ni, Cu and Cu–2 wt.% Al alloy were deformed in a channel die to a logarithmic strain of 0.51 to develop a homogeneous structure composed of two sets of symmetrical primary microbands and then lightly annealed. Scanning electron microscopy/electron backscattered diffraction analyses demonstrate a strong relation between as-deformed orientations and the limited number of recrystallized grain orientations. The disorientation angles across the recrystallization front are mostly grouped in

  18. Facile synthesis of gold nanomaterials with unusual crystal structures.

    Science.gov (United States)

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  19. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    Science.gov (United States)

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  20. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  1. The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD.

    Science.gov (United States)

    Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander

    2016-12-01

    The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn 2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn 2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.

  2. Orbital hybridization, crystal structure and anomalous resistivity of ultrathin CrZrx alloy films on polymeric substrates

    International Nuclear Information System (INIS)

    Evans, Drew; Zuber, Kamil; Merkens, Kerstin; Murphy, Peter

    2012-01-01

    The orbital hybridization and crystal structure are experimentally explored for ultrathin chrome zirconium (CrZr x ) alloy films co-sputtered on precoated polymeric substrates. We determine the level of orbital hybridization and crystal structure using X-ray photoelectron spectroscopy and electron diffraction. Body-centred cubic and Ω-hexagonally close-packed phases are observed to coexist in the sputtered Cr-based films. Experiments reveal the orbital hybridization and crystal structure combine to produce anomalous resistivity for these ultrathin films.

  3. Spectral element method for band-structure calculations of 3D phononic crystals

    International Nuclear Information System (INIS)

    Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Liu, Qing Huo

    2016-01-01

    The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss–Lobatto–Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals. (paper)

  4. Raman effect in ferroelectric Cd2Nb2O7 and in other crystals with pyrochlorine-type structure

    International Nuclear Information System (INIS)

    Pisarev, R.V.; Sinij, I.G.; Kuz'minov, E.G.; Myl'nikova, I.E.

    1976-01-01

    Vibrational structure of cadmium and lead pyroniobates and a number of other crystals with a pyrochlore structure has been investigated by Raman scattering. The scattering has been studied using a double monochromator, HeNe laser, and a photons counter. In the Raman spectrum of cadmium and lead pyroniobates three frequency band1 can be distinguished. In the spectrum of rhombohedral lead pyroniobate the band structure in resolved much better than in the spectrum of cubic cadmium pyroniobate. The spectrum of lead pyroniobate crystals doped with magnesium and zinc ions has a medium (in the sense of complexity) structure, because big lead ions deteriorate the pyrochlore structure but doping of lead pyroniobate with Mg 2+ and Zn 2+ ions improves it. More than six bands in the Raman spectrum is associated with the presence of impurities in cubic cadmium pyroniobate that deteriorate its cubic structure. The decrease of temperature leads to a big change of the Cd 2 Nb 2 O 7 spectrum. However, the spectrum of Pb 2 Nb 2 O 7 -Zn cubic crystal measured ar temperatures below 100 deg K remais unchanged. The chages of the Cd 2 Nb 2 O 7 spectrum are associated with phase transitions at 200 and 85 K and also with ferroelectric transition at 185 K

  5. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  6. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  7. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  8. Crystal structure of levomepromazine maleate

    Directory of Open Access Journals (Sweden)

    Gyula Tamás Gál

    2016-05-01

    Full Text Available The asymmetric unit of the title salt, C19H25N2OS+·C4H3O4− [systematic name: (S-3-(2-methoxyphenothiazin-10-yl-N,N,2-trimethylpropanaminium hydrogen maleate], comprises two (S-levomepromazine cations and two hydrogen maleate anions. The conformations of the two cations are similar. The major difference relates to the orientation of the methoxy substituent at the phenothiazine ring system. The crystal components form a three-dimensional supramolecular network via N—H...O, C—H...O and C—H...π interactions. A comparison of the conformations of the levomepromazine cations with those of the neutral molecule and similar protonated molecules reveals significant conformational flexibility of the phenothiazine ring system and the substituent at the phenothiazine N atom.

  9. Electrical properties of MBE grown Si{sub 3}N{sub 4}-cubic GaN MIS structures

    Energy Technology Data Exchange (ETDEWEB)

    Zado, A.; Lischka, K.; As, D.J. [University of Paderborn, Faculty of Science, Department of Physics, Warburger Str. 100, 33098 Paderborn (Germany)

    2012-03-15

    In this work we report on the electrical characterization of non-polar cubic GaN metal-insulator-semiconductor (MIS) structures. Si{sub 3}N{sub 4} layers were deposited in-situ on top of cubic GaN grown on 3C-SiC (001) substrates. The electric characteristics of the MIS structures are measured by capacitance and admittance spectroscopy techniques. From the hysteresis in the capacitance-voltage curves and the peak height of the conductance G{sub p} -{omega} frequency curves the interface state densities are calculated. We find interface traps about 0.3 eV below the conduction band. The density of these traps is D{sub it} = 2.5x10{sup 11} cm{sup -2}eV{sup -1}. This is one order of magnitude lower than in MIS structures with a Si{sub 3}N{sub 4} insulator produced by plasma enhanced vapour deposition and two orders of magnitude lower than in MIS structures on c-GaN with SiO{sub 2} as insulator (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa

    International Nuclear Information System (INIS)

    Brown, P J; Crangle, J; Kanomata, T; Matsumoto, M; Neumann, K-U; Ouladdiaf, B; Ziebeck, K R A

    2002-01-01

    High resolution neutron powder diffraction and single crystal measurements on the ferromagnetic shape memory compound Ni 2 MnGa have been carried out. They enabled the sequence of transformations which take place when the unstressed, stoichiometric compound is cooled from 400 to 20 K to be established. For the first time the crystallographic structure of each of the phases which occur has been determined. At 400 K the compound has the cubic L2 1 structure, and orders ferromagnetically at T C ∼ 365 K. On cooling below ∼ 260 K a super-structure, characterized by tripling of the repeat in one of the (110) cubic directions, forms. This phase, known as the pre-martensitic phase, persists down to the structural phase transition at T M ∼ 200 K and can be described by an orthorhombic unit cell with lattice parameters a ortho = 1/√2a cubic , b ortho = 3/√2a cubic , c ortho = a cubic and space group Pnnm. Below T M the compound has a related orthorhombic super-cell with b ortho ∼ 7/√2a cubic , which can be described within the same space group. The new modulation appears abruptly at T M and remains stable down to at least 20 K

  11. Crystal structure of rubidium methyldiazotate

    Directory of Open Access Journals (Sweden)

    Tobias Grassl

    2017-02-01

    Full Text Available The title compound, Rb+·H3CN2O−, has been crystallized in liquid ammonia as a reaction product of the reductive ammonolysis of the natural compound streptozocin. Elemental rubidium was used as reduction agent as it is soluble in liquid ammonia, forming a blue solution. Reductive bond cleavage in biogenic materials under kinetically controlled conditions offers a new approach to gain access to sustainably produced raw materials. The anion is nearly planar [dihedral angle O—N—N—C = −0.4 (2°]. The Rb+ cation has a coordination number of seven, and coordinates to five anions. One anion is bound via both its N atoms, one by both O and N, two anions are bound by only their O atoms, and the last is bound via the N atom adjacent to the methyl group. The diazotate anions are bridged by cations and do not exhibit any direct contacts with each other. The cations form corrugated layers that propagate in the (-101 plane.

  12. Bifurcation of cubic nonlinear parallel plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2005-01-01

    The Hopf bifurcation of plate-type beams with cubic nonlinear stiffness in axial flow was studied. By assuming that all the plates have the same deflections at any instant, the nonlinear model of plate-type beam in axial flow was established. The partial differential equation was turned into an ordinary differential equation by using Galerkin method. A new algebraic criterion of Hopf bifurcation was utilized to in our analysis. The results show that there's no Hopf bifurcation for simply supported plate-type beams while the cantilevered plate-type beams has. At last, the analytic expression of critical flow velocity of cantilevered plate-type beams in axial flow and the purely imaginary eigenvalues of the corresponding linear system were gotten. (authors)

  13. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  14. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  15. Crystal structure of a Zn-doped derivative of the Li17Ge4 compound

    International Nuclear Information System (INIS)

    Lacroix-Orio, L.; Tillard, M.; Belin, C.

    2008-01-01

    The compound Li 17-ε Zn ε Ge 4 has been obtained as a side product during the preparation of the intermetallic compound Li 8 Zn 2 Ge 3 from the elements. Its structure has been determined from single crystal X-ray diffraction intensities measured at 173 K. It crystallizes in the cubic system, F4-bar3m space group, a = 18.842(1) A, Z = 20. Its crystal structure is slightly different from those so far reported in the literature for the Zn-free phase Li 17 Ge 4 , particularly concerned are the positions and the site occupations of Li atoms. Most likely, these structural variations result from the presence of a small Zn concentration in the compound. The Zn doping atom has been found only at the specific Li 4d site (about 3 at.% Zn)

  16. Crystal structures and phase transformation of deuterated lithium imide, Li2ND

    International Nuclear Information System (INIS)

    Balogh, Michael P.; Jones, Camille Y.; Herbst, J.F.; Hector, Louis G.; Kundrat, Matthew

    2006-01-01

    We have investigated the crystal structure of deuterated lithium imide, Li 2 ND, by means of neutron and X-ray diffraction. An order-disorder transition occurs near 360K. Below that temperature Li 2 ND can be described to the same level of accuracy as a disordered cubic (Fd3-bar m) structure with partially occupied Li 32e sites or as a fully occupied orthorhombic (Ima2 or Imm2) structure. The high temperature phase is best characterized as disordered cubic (Fm3-bar m) with D atoms randomized over the 192l sites. Density functional theory calculations complement and support the diffraction analyses. We compare our findings in detail with previous studies

  17. Information and crystal structure estimation

    International Nuclear Information System (INIS)

    Wilkins, S.W.; Commonwealth Scientific and Industrial Research Organization, Clayton; Varghese, J.N.; Steenstrup, S.

    1984-01-01

    The conceptual foundations of a general information-theoretic based approach to X-ray structure estimation are reexamined with a view to clarifying some of the subtleties inherent in the approach and to enhancing the scope of the method. More particularly, general reasons for choosing the minimum of the Shannon-Kullback measure for information as the criterion for inference are discussed and it is shown that the minimum information (or maximum entropy) principle enters the present treatment of the structure estimation problem in at least to quite separate ways, and that three formally similar but conceptually quite different expressions for relative information appear at different points in the theory. One of these is the general Shannon-Kullback expression, while the second is a derived form pertaining only under the restrictive assumptions of the present stochastic model for allowed structures, and the third is a measure of the additional information involved in accepting a fluctuation relative to an arbitrary mean structure. (orig.)

  18. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R., E-mail: zhang@mosfet.t.u-tokyo.ac.jp [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S. [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x} interfacial layer.

  19. Low temperature formation of higher-k cubic phase HfO2 by atomic layer deposition on GeOx/Ge structures fabricated by in-situ thermal oxidation

    International Nuclear Information System (INIS)

    Zhang, R.; Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S.

    2016-01-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO 2 using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO x interfacial layer. It is found that the cubic phase is dominant in the HfO 2 film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO 2 film on a 1-nm-thick GeO x form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO 2 can be induced by the formation of six-fold crystalline GeO x structures in the underlying GeO x interfacial layer

  20. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  1. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  2. Synthesis, characterization and crystal structure of a ...

    African Journals Online (AJOL)

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414. DOI: http://dx.doi.org/10.4314/bcse.v28i3.10 ...

  3. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    [13] Perry C H and Lowdes R P 1969 J. Chem. Phys. 51 3648. [14] Sheldrick G M 1997 SHELXS9, Program for the Refinement of Crystal Structures (Germany: University of Gottingen). [15] Loukil M, Kabadou A, Salles Ph and Ben Salah A 2004 Chem. Phys. 300 247. [16] Rolies M M and De Ranter C J 1978 Acta Crystallogr.

  4. Crystal Structure of Human Enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  5. Modular crystals as modulated structures

    DEFF Research Database (Denmark)

    Elcoro, L.; Perez-Mato, J.M.; Friese, K.

    2008-01-01

    The use of the superspace formalism is extended to the description and refinement of the homologous series of modular structures with two symmetry-related modules with different orientations. The lillianite homologous series has been taken as a study case. Starting from a commensurate modulated...... composite description with two basic subsystems corresponding to the two different modules, it is shown how a more efficient description can be achieved using so-called zigzag modulation functions. These linear zigzag modulations, newly implemented in the program JANA2006, have very large fixed amplitudes...... and introduce in the starting model the two orientations of the underlying module sublattices. We show that a composite approach with this type of function, which treats the cations and anions as two separate subsystems forming a misfit compound, is the most appropriate and robust method for the refinements....

  6. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  7. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  8. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  9. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  10. Electronic structure and metallization of cubic GdH{sub 3} under pressure: Ab initio many-body GW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [School of Physics and Electronic Sciences, Guizhou Education University, Guiyang 550018 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China); Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China)

    2016-07-07

    The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.

  11. Solving crystal structures from neutron diffraction data

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1987-07-01

    In order to pursue crystal structure determination using neutron diffraction data, and given the wide experience available of solving structures using X-ray data, the codes used in X-ray structural analysis should be adapted to the different requirements of a neutron experiment. Modifications have been made to a direct methods program MITHRIL and to a Patterson methods program PATMET to incorporate into these the features of neutron rather than X-ray diffraction. While to date these modifications have been fairly straightforward and many sophistications remain to be exploited, results obtained from the neutron versions of both programs are promising. (author)

  12. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  13. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  14. Structure of cleaved (001) USb2 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shao-ping [Los Alamos National Laboratory; Hawley, Marilyn [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Stockum, Phil B [STANFORD UNIV.; Manoharan, Hari C [STANFORD UNIV

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants

  15. Single crystal growth and characterization of the intermetallic cubic cage system YCo1.82Mn0.18Zn20

    Science.gov (United States)

    Cabrera-Baez, M.; Finatti, B. F.; Rettori, C.; Avila, M. A.

    2018-05-01

    We report on the growth of YCo2-xMnxZn20 cubic single crystals (0 ≤ x ≤ 0.18) and their characterization through elemental analysis, x-ray diffraction, magnetization and heat capacity. Mn intermediate and/or mixed-valence-like behavior was observed in the magnetic response of YCo1.82Mn0.18Zn20 (and all other samples) at temperatures between 100 K and 200 K, and a spin-glass state is established at low temperatures. Specific heat results for x = 0.18 show an increased Sommerfeld coefficient of γ ≈ 100 mJ / mol .K2 compared to that of the undoped compound (18 mJ / mol .K2) suggesting an enhancement of the quasiparticle effective mass ignoring spin-glass effects at very low temperatures. The combination of different experimental data provides a better understanding of the Mn2+ effects in the weakly correlated electron compound of YCo2Zn20, the first case in this family of compounds where local magnetic moments come exclusively from the transition metal.

  16. Co2+-doped diopside: crystal structure and optical properties

    Science.gov (United States)

    Gori, C.; Tribaudino, M.; Mezzadri, F.; Skogby, H.; Hålenius, U.

    2018-05-01

    Synthetic clinopyroxenes along the CaMgSi2O6-CaCoSi2O6 join were investigated by a combined chemical-structural-spectroscopic approach. Single crystals were synthesized by flux growth methods, both from Ca-saturated and Ca-deficient starting compositions. Single crystal structure refinements show that the incorporation of Co2+ at the octahedrally coordinated cation sites of diopside, increases the unit-cell as well as the M1 and the M2 polyhedral volumes. Spectroscopic investigations (UV-VIS-NIR) of the Ca-rich samples reveal three main optical absorption bands, i.e. 4 T 1g → 4 T 2g( F), 4 T 1g → 4 A 2g( F) and 4 T 1g → 4 T 1g( P) as expected for Co2+ at a six-coordinated site. The bands arising from the 4 T 1g → 4 T 2g( F) and the 4 T 1g → 4 T 1g( P) electronic transitions, are each split into two components, due to the distortions of the M1 polyhedron from ideal Oh-symmetry. In spectra of both types, a band in the NIR range at ca 5000 cm-1 is caused by the 4 A 2g → 4 T 1g( F) electronic transition in Co2+ in a cubic field in the M2 site. Furthermore, an additional component to a band system at 14,000 cm-1, due to electronic transitions in Co2+ at the M2 site, is recorded in absorption spectra of Ca-deficient samples. No variations in Dq and Racah B parameters for Co2+ at the M1 site in response to compositional changes, were demonstrated, suggesting complete relaxation of the M1 polyhedron within the CaMgSi2O6-CaCoSi2O6 solid solution.

  17. Structural, electronic and elastic properties of the cubic CaTiO{sub 3} under pressure: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, Saad, E-mail: saadigi@hotmail.com; Ahmed, Afaq; Tariq, Samar [Centre of Excellence in Solid State Physics, University of Punjab, Lahore, 54000 (Pakistan); Saad, Saher [Centre for High Energy Physics, University of the Punjab, Lahore (Pakistan)

    2015-07-15

    Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO{sub 3} have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS’s plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results.

  18. Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: A DFT study

    Directory of Open Access Journals (Sweden)

    Saad Tariq

    2015-07-01

    Full Text Available Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO3 have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS’s plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results.

  19. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  20. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    Science.gov (United States)

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  1. Fermi surfaces properties of AuAl2, AuGa2, and AuIn2 with the CaF2-type cubic structure

    Science.gov (United States)

    Nishimura, K.; Kakihana, M.; Suzuki, F.; Yara, T.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2018-05-01

    We grew high-quality single crystals of AuAl2, AuGa2, and AuIn2 with the fluorite (CaF2)-type cubic structure and determined the Fermi surface properties by the de Haas-van Alphen (dHvA) experiments using full-potential LAPW bad calculations. The Fermi surface and optical properties for three compounds were once studied from an interest of colors because AuAl2 has a striking bright reddish-purple color, whereas AuGa2 and AuIn2 are, respectively, neutral and bluish. The detected dHvA frequencies in the present study are found to be in a wide range of (0.1-13)×107 Oe. The main dHvA branches for three compounds are in excellent agreement with the theoretical ones, but some dHvA branches with small dHvA frequencies are slightly deviated from the theoretical ones, especially in AuGa2 and AuIn2.

  2. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Zhang, Jianxin [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Jiang, Ying [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shen, Zhenju; Li, Jixue; Zhang, Ze [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiaodong [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-01-05

    Highlights: • Innovative kink structures generate at the γ/γ′ interfaces in the crept superalloy. • Clusters of heavy elements congregate at the apex of the kinks. • Dislocation core absorbs hexagonal structural high-Z elements. - Abstract: Here, we investigate a new type of kink structure that is found at γ/γ′ interfaces in nickel-based single crystal superalloys. We studied these structures at the atomic and elemental level using aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The core of the dislocation absorbs high-Z elements (i.e., Co and Re) that adopt hexagonal arrangements, and it extrudes elements (i.e., Ni and Al) that adopt face centered cubic (fcc) structures. High-Z elements (i.e., Ta and W) and Cr, which is a low-Z element, are stabilized in body centered cubic (bcc) arrangements; Cr tends to behave like Re. High-Z elements, which migrate and adopt a hexagonal structure, induce kink formation at γ/γ′ interfaces. This process must be analyzed to fully understand the kinetics and dynamics of creep in nickel-based single crystal superalloys.

  3. Crystal structure of natural phaeosphaeride A

    Directory of Open Access Journals (Sweden)

    Victoria V. Abzianidze

    2015-08-01

    Full Text Available The asymmetric unit of the title compound, C15H23NO5, contains two independent molecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the molecules form layered structures. Nearly planar sheets, parallel to the (001 plane, form bilayers of two-dimensional hydrogen-bonded networks with the hydroxy groups located on the interior of the bilayer sheets. The network is constructed primarily of four O—H...O hydrogen bonds, which form a zigzag pattern in the (001 plane. The butyl chains interdigitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6:0.282 (6.

  4. Three-dimensional fluid-structure interaction case study on cubical fluid cavity with flexible bottom

    Science.gov (United States)

    Ghelardi, Stefano; Rizzo, Cesare; Villa, Diego

    2017-12-01

    In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al. (2001) in two dimensions and later studied in three dimensions by Valdés Vazquez (2007), Lombardi (2012), and Trimarchi (2012). We focus on a 3D test case in which we evaluated the sensitivity of several input parameters on the fluid and structural results. In particular, this analysis provides a starting point from which we can look deeper into specific aspects of these simulations and analyze more realistic cases, e.g., in sails design. In this study, using the commercial software ADINA™, we addressed a well-known unsteadiness problem comprising a square box representing the fluid domain with a flexible bottom modeled with structural shell elements. We compared data from previously published work whose authors used the same numerical approach, i.e., a partitioned approach coupling a finite volume solver (for the fluid domain) and a finite element solver (for the solid domain). Specifically, we established several benchmarks and made comparisons with respect to fluid and solid meshes, structural element types, and structural damping, as well as solution algorithms. Moreover, we compared our method with a monolithic finite element solution method. Our comparisons of new and old results provide an outline of best practices for such simulations.

  5. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals

    Science.gov (United States)

    Wang, J.; Anderoglu, O.; Hirth, J. P.; Misra, A.; Zhang, X.

    2009-07-01

    High resolution transmission electron microscopy of nanotwinned Cu films revealed Σ3 {112} incoherent twin boundaries (ITBs), with a repeatable pattern involving units of three {111} atomic planes. Topological analysis shows that Σ3 {112} ITBs adopt two types of atomic structure with differing arrangements of Shockley partial dislocations. Atomistic simulations were performed for Cu and Al. These studies revealed the structure of the two types of ITBs, the formation mechanism and stability of the associated 9R phase, and the influence of stacking fault energies on them. The results suggest that Σ3 {112} ITBs may migrate through the collective glide of partial dislocations.

  6. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  7. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  8. Self-focusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities

    DEFF Research Database (Denmark)

    Bergé, L.; Bang, O.; Juul Rasmussen, J.

    1997-01-01

    , mutually trapped waves can self-focus until collapse whenever their respective powers exceed some thresholds. On the contrary, coupled waves diffracting in a one-dimensional plane never collapse and may evolve towards stable solitonlike structures. For higher transverse dimension numbers, we investigate...

  9. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  10. Sintering of Spherical Particles of Equal and Different Size Arranged in a Body Centered Cubic Structure

    DEFF Research Database (Denmark)

    Redanz, Pia; McMeeking, R. M.

    2003-01-01

    Solid-state sintering of a bcc structure of spherical particles has been studied numerically by use of simple shape parameters to describe the state of the unit cell. Both free and pressure-assisted sintering of particles of equal and different sizes for various ratios of boundary and surface dif......, different dihedral angles and the evolution of relative density and sintering stresses are studied....

  11. Accuracy of crystal structure error estimates

    International Nuclear Information System (INIS)

    Taylor, R.; Kennard, O.

    1986-01-01

    A statistical analysis of 100 crystal structures retrieved from the Cambridge Structural Database is reported. Each structure has been determined independently by two different research groups. Comparison of the independent results leads to the following conclusions: (a) The e.s.d.'s of non-hydrogen-atom positional parameters are almost invariably too small. Typically, they are underestimated by a factor of 1.4-1.45. (b) The extent to which e.s.d.'s are underestimated varies significantly from structure to structure and from atom to atom within a structure. (c) Errors in the positional parameters of atoms belonging to the same chemical residue tend to be positively correlated. (d) The e.s.d.'s of heavy-atom positions are less reliable than those of light-atom positions. (e) Experimental errors in atomic positional parameters are normally, or approximately normally, distributed. (f) The e.s.d.'s of cell parameters are grossly underestimated, by an average factor of about 5 for cell lengths and 2.5 for cell angles. There is marginal evidence that the accuracy of atomic-coordinate e.s.d.'s also depends on diffractometer geometry, refinement procedure, whether or not the structure has a centre of symmetry, and the degree of precision attained in the structure determination. (orig.)

  12. The Crystal Structures of Potentially Tautomeric Compounds

    Science.gov (United States)

    Furmanova, Nina G.

    1981-08-01

    Data on the structures of potentially proto-, metallo-, and carbono-tropic compounds, obtained mainly by X-ray diffraction, are surveyed. The results of neutron and electron diffraction studies have also been partly used. It is shown that a characteristic feature of all the systems considered is the formation of hydrogen or secondary bonds ensuring the contribution of both possible tautomeric forms to the structure. Systematic consideration of the experimental data leads to the conclusion that there is a close relation between the crystal structure and the dynamic behaviour of the molecules in solution and that secondary and hydrogen bonds play a significant role in the tautomeric transition. The bibliography includes 152 references.

  13. Novel Crystal Structure C60 Nanowire

    Science.gov (United States)

    Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex

    2003-03-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.

  14. Crystal structure of MboIIA methyltransferase

    OpenAIRE

    Osipiuk, Jerzy; Walsh, Martin A.; Joachimiak, Andrzej

    2003-01-01

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-l-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 Å resolution the crystal structure of a β-class DNA MTase MboIIA (M·MboIIA) from the bacterium Moraxella bovis,...

  15. Structural and Optoelectronic Properties of Cubic CsPbF3 for Novel Applications

    International Nuclear Information System (INIS)

    Murtaza, G.; Ahmad, Iftikhar; Maqbool, M.; Rahnamaye Aliabad, H. A.; Afaq, A.

    2011-01-01

    Chemical bonding as well as structural, electronic and optical properties of CsPbF 3 are calculated using the highly accurate full potential linearized augmented plane-wave method within the framework of density functional theory (DFT). The calculated lattice constant is found to be in good agreement with the experimental results. The electron density plots reveal strong ionic bonding in Cs-F and strong covalent bonding in Pb-F. The calculations show that the material is a direct and wide bandgap semiconductor with a fundamental gap at the R-symmetry point. Optical properties such as the real and imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, optical conductivity and absorption coefficient are also calculated. Based on the calculated wide and direct bandgap, as well as other optical properties of the compound, it is predicted that CsPbF 3 is suitable for optoelectronic devices and anti-reflecting coatings. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Study of the tunneling effect within lattices with cubic structure on varying temperature

    International Nuclear Information System (INIS)

    Frisone, F.

    2008-01-01

    In this theoretical study, it is underlined that the presence of micro-cracks in the lattice structure increases the probability of tunneling effect between two deuterons by some orders of magnitude with respect to non-deformed lattices. We have derived an expression to compute the tunneling probability within a micro-crack, and hypothesized a D + 2 -D + 2 binding mechanism. Finally, the overall indications provided by these theoretical simulations appear to suggest that the deformation of the crystalline lattice, at varying temperature, seems able to influence the process of tunneling between the deuterons in the metal, while the forced loading with D 2 has, in general, no evident positive effects in pure metals, but in some cases could, on the contrary, condition the phenomenon negatively. (authors)

  17. Structure and stability of nonstoichiometric cubic phase δ-NbN1.2(O,C)

    International Nuclear Information System (INIS)

    Shalaeva, E.V.; Mitrofanov, B.V.; Shveikin, G.P.

    1996-01-01

    The nonstoichiometric δ-niobium nitride with surplus content of nitrogen atoms and the NaCl-type structure (a=0.439 nm), i.e. δ-NbN 1.2 (O, C), is stabilized in epitaxial deposited films. The diffraction patterns of these films display intensive diffuse scattering with regular intensity vanishings in the form of plane regions in the vicinity of structural and superstructural reciprocal space points of the δ-phase and in the form of spherical surfaces in the neighbourhood of structural points. The analysis performed shows that this scattering can be associated with the presence of mixed-nature short-range order regions in the nonstoichiometric δ-NbN 1.2 (O, C) phase which are characterized by longitudinal uncorrelated atomic displacement waves, as well as by concentration-type waves. The ordered oxycarbonitride phase (X-phase) described in the first approximation by the cubic lattice with parameter a=0.392 nm is found to precipitate when annealing the films at T=873 K. It has been established that the diffuse scattering occurring in δ-NbN 1.2 (O, C) and the structure of short-range order regions exhibit certain correlation with the structure of the precipitated ordered phase - G 100 x ∼1.1G 100 δ = K 1 ; G 010 x ∼1.1G 010 δ = K 2 (where K 1 and K 2 are wave vectors of longitudinal atomic displacement waves characterizing short-range order). (orig.)

  18. Crystal and molecular structure of 2-thiouridine

    Energy Technology Data Exchange (ETDEWEB)

    Hawkinson, S W

    1977-01-01

    The ''minor'' nucleoside 2-thiouridine, C/sub 9/H/sub 12/O/sub 5/N/sub 2/S, crystallizes in a monoclinic cell, space group P2/sub 1/ with a = 5.049 (2), b = 7.526 (2), c = 14.050 (3) A, ..beta.. = 90.17 (2)/sup 0/, and d = 1.619 g cm/sup -3/ (for Z = 2) at 22 +- 2/sup 0/C. The structure was derived from 1334 unique intensities measured with an Oak Ridge computer-controlled diffractometer to a limit of sin theta/lambda = 0.65 A/sup -1/ with Nb-filtered Mo K..cap alpha.. radiation. Atomic parameters were obtained by a combination of Patterson and Fourier techniques and refined by full-matrix least squares to a final R(F) value of 0.023 for all data. The bond lengths and angles in the molecule agree well with those of other thiopyrimidines (C(2) - S = 1.677 A). The conformation of the sugar ring relative to the base is anti with a torsion angle chi(O(1')--C(1') ..-->.. N(1)--C(6)) of 17/sup 0/. The sugar exists in the 3'-endo conformation. The O(5')--C(5') bond is gauche to C(4) - O(1') and trans to C(4')--C(3') (torsion angles of 74 and -169/sup 0/ respectively). The molecules are linked together in the crystal by hydrogen bonds in an intricate network which is identical to that inferred by Kojic-Prodic, Liminga, Sljukic and Ruzic-Toros (Acta Cryst. (1974), B30, 1550-1555) for the crystal structure of 5,6-dihydro-2-thiouridine. 2 figures; 6 tables.

  19. Syntheses and Crystal Structures of Ferrocenoindenes

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2013-02-01

    Full Text Available Ferrocenoindenes display planar chirality and thus represent valuable ligands for asymmetric catalysis. Here, we report on the synthesis of novel 3-(1,1-dibromomethyleneferroceno[1,2-a]indene, (Z-3-(1-bromomethylene-6-iodoferroceno[1,2-a]indene, and benzo[5,6-f]ferroceno[2,3,a]inden-1-one. Any application-oriented design of chiral catalysts requires fundamental knowledge about the ligands involved, not only in terms of atom-connectivity, but also in terms of their three-dimensional structure and steric demand. Therefore, the crystal structures of 2-ferrocenylbenzoic acid, ferroceno[1,2-a]indene, and (Z-3-(1-bromomethylene-6-iodoferroceno[1,2-a]indene have been determined. The bond-lengths that can be retrieved therefrom also allow for an estimation of the reactivity of the aryl-iodo, bromo-methylidene and dibromomethylidene moieties.

  20. The crystal structure of scandium dyhydrate triglycolate

    International Nuclear Information System (INIS)

    Dukareva, L.M.; Antishkina, A.S.; Porai-Koshits, M.A.; Ostrikova, V.N.; Arkhangel'skij, I.V.; Amanov, A.Z.

    1978-01-01

    The structure of colorless crystals of scandium glycolate dehydrate Sc(CH 2 OHCOO) 3 x2H 2 O, synthesized at the chemical department of MSU has been investigated. Parameters of the monoclinic lattice are determined according to roentgenograms of swing and Kforograms and are specified using the DRON-1 diffractor: a=14.624-+0.005 A; b=13.052-+0.003 A; c=5.730+-0.003 A; γ=96.26 deg+-0.01 deg; rhosub(exper.)=1.09 g/cm 3 ; Z=4; Sp.=P 2/b. Experimental photographic data are obtained using the KFOR chamber. Scannings of the layer lines h anti Ko-h anti K4, containing 742 independent reflexes are taken. Deciphering of the structure is carried out by means of analysis of the Paterson functions distribution and conventional and differential electron densities. Description of the system is presented

  1. Structure, thermodynamics, and crystallization of amorphous hafnia

    International Nuclear Information System (INIS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-01-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO 2 . The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia

  2. The Crystal Structures of Two Novel Cadmium-Picolinic Acid ...

    African Journals Online (AJOL)

    The crystal structures of two novel cadmium-picolinic acid complexes grown in aqueous solutions at selected pH values are reported. The structures are compared to expected solution species under the same conditions. The crystal structure of complex 1 exhibits a seven coordinate structure which contains a protonated ...

  3. Electrical transport and capacitance characteristics of metal-insulator-metal structures using hexagonal and cubic boron nitride films as dielectrics

    Science.gov (United States)

    Teii, Kungen; Kawamoto, Shinsuke; Fukui, Shingo; Matsumoto, Seiichiro

    2018-04-01

    Metal-insulator-metal capacitor structures using thick hexagonal and cubic boron nitride (hBN and cBN) films as dielectrics are produced by plasma jet-enhanced chemical vapor deposition, and their electrical transport and capacitance characteristics are studied in a temperature range of 298 to 473 K. The resistivity of the cBN film is of the order of 107 Ω cm at 298 K, which is lower than that of the hBN film by two orders of magnitude, while it becomes the same order as the hBN film above ˜423 K. The dominant current transport mechanism at high fields (≥1 × 104 V cm-1) is described by the Frenkel-Poole emission and thermionic emission models for the hBN and cBN films, respectively. The capacitance of the hBN film remains stable for a change in alternating-current frequency and temperature, while that of the cBN film has variations of at most 18%. The dissipation factor as a measure of energy loss is satisfactorily low (≤5%) for both films. The origin of leakage current and capacitance variation is attributed to a high defect density in the film and a transition interlayer between the substrate and the film, respectively. This suggests that cBN films with higher crystallinity, stoichiometry, and phase purity are potentially applicable for dielectrics like hBN films.

  4. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  5. Subsurface defects structural evolution in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Sun, Yazhou; Guo, Yongbo; Liang, Yingchun

    2015-01-01

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated

  6. Subsurface defects structural evolution in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Yazhou [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liang, Yingchun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-30

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated.

  7. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E. [Research Group of Solid State Chemistry & Catalysis, Department of Chemistry, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta (Indonesia); Soepriyanto, S. [Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% mol Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.

  8. On the elusive crystal structure of expanded austenite

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2017-01-01

    No consistent structural description exists for expanded austenite that accurately accounts for the hkl-dependent peak shifts and broadening observed in diffraction experiments. The best available description for homogeneous samples is a face-centered cubic lattice with stacking faults. Here Deby...

  9. Crystal structure of strontium dinickel iron orthophosphate

    Directory of Open Access Journals (Sweden)

    Said Ouaatta

    2015-10-01

    Full Text Available The title compound, SrNi2Fe(PO43, synthesized by solid-state reaction, crystallizes in an ordered variant of the α-CrPO4 structure. In the asymmetric unit, two O atoms are in general positions, whereas all others atoms are in special positions of the space group Imma: the Sr cation and one P atom occupy the Wyckoff position 4e (mm2, Fe is on 4b (2/m, Ni and the other P atom are on 8g (2, one O atom is on 8h (m and the other on 8i (m. The three-dimensional framework of the crystal structure is built up by [PO4] tetrahedra, [FeO6] octahedra and [Ni2O10] dimers of edge-sharing octahedra, linked through common corners or edges. This structure comprises two types of layers stacked alternately along the [100] direction. The first layer is formed by edge-sharing octahedra ([Ni2O10] dimer linked to [PO4] tetrahedra via common edges while the second layer is built up from a strontium row followed by infinite chains of alternating [PO4] tetrahedra and FeO6 octahedra sharing apices. The layers are held together through vertices of [PO4] tetrahedra and [FeO6] octahedra, leading to the appearance of two types of tunnels parallel to the a- and b-axis directions in which the Sr cations are located. Each Sr cation is surrounded by eight O atoms.

  10. Crystal structure of beryllium amide, Be(NH2)2

    International Nuclear Information System (INIS)

    Jacobs, H.

    1976-01-01

    The x-ray investigation of single crystals of beryllium amide led to the following results. The compound crystallizes tetragonally a = 10.170 +- 0.005 A, c = 16.137 +- 0.008 A, and c/a = 1.587. The space group is I4 1 /acd. The lattice contains 32 formula units. The positions of all atoms including hydrogen were determined. The structure of Be(NH 2 ) 2 can be described by a strongly deformed cubic closepacking of anions. The cations occupy tetrahedral interstices so that 4 Be 2+ ions form a regular tetrahedron with the shortest Be-Be distances. This causes units, which can be described by Be 4 (NH 2 ) 6 (NH 2 ) 4 / 2 whereas the outer 4 amide ions serve as bridging anions to give a threedimensional arrangement. The orientation of the amide ions is given and compared with earlier results on similar metal amides. (author)

  11. Crystal structure of a snake venom cardiotoxin

    International Nuclear Information System (INIS)

    Rees, B.; Samama, J.P.; Thierry, J.C.; Gilibert, M.; Fischer, J.; Schweitz, H.; Lazdunski, M.; Moras, D.

    1987-01-01

    Cardiotoxin V/sup II/4 from Naja mossambica crystallizes in space group P6 1 (a = b = 73.9 A; c = 59.0 A) with two molecules of toxin (molecular mass = 6715 Da) in the asymmetric unit. The structure was solved by using a combination of multiple isomorphous replacement and density modification methods. Model building and least-squares refinement led to an agreement factor of 27% for a data set to 3-A resolution prior to any inclusion of solvent molecules. The topology of the molecule is similar to that found in short and long snake neurotoxins, which block the nicotinic acetylcholine receptor. Major differences occur in the conformation of the central loop, resulting in a change in the concavity of the molecule. Hydrophobic residues are clustered in two distinct areas. The existence of stable dimeric entities in the crystalline state, with the formation of a six-stranded antiparallel β sheet, may be functionally relevant

  12. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  13. Semiconducting cubic titanium nitride in the Th3P4 structure

    Energy Technology Data Exchange (ETDEWEB)

    Bhadram, Venkata S.; Liu, Hanyu; Xu, Enshi; Li, Tianshu; Prakapenka, Vitali B.; Hrubiak, Rostislav; Lany, Stephan; Strobel, Timothy A.

    2018-01-01

    We report the discovery of a long-sought-after phase of titanium nitride with stoichiometry Ti 3 N 4 using diamond anvil cell experiments combined with in situ high-resolution x-ray diffraction and Raman spectroscopy techniques, supported by ab initio calculations. Ti 3 N 4 crystallizes in the cubic Th 3 P 4 structure [space group I ¯ 4 3 d (220)] from a mixture of TiN and N 2 above ≈ 75 GPa and ≈ 2400 K. The density ( ≈ 5.22 g/cc) and bulk modulus ( K 0 = 290 GPa) of cubic- Ti 3 N 4 ( c - Ti 3 N 4 ) at 1 atm, estimated from the pressure-volume equation of state, are comparable to rocksalt TiN. Ab initio calculations based on the GW approximation and using hybrid functionals indicate that c - Ti 3 N 4 is a semiconductor with a direct band gap between 0.8 and 0.9 eV, which is larger than the previously predicted values. The c - Ti 3 N 4 phase is not recoverable to ambient pressure due to dynamic instabilities, but recovery of Ti 3 N 4 in the defect rocksalt (or related) structure may be feasible.

  14. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  15. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  16. Crystal Structure of AgBi2I7 Thin Films.

    Science.gov (United States)

    Xiao, Zewen; Meng, Weiwei; Mitzi, David B; Yan, Yanfa

    2016-10-06

    Synthesis of cubic-phase AgBi 2 I 7 iodobismuthate thin films and fabrication of air-stable Pb-free solar cells using the AgBi 2 I 7 absorber have recently been reported. On the basis of X-ray diffraction (XRD) analysis and nominal composition, it was suggested that the synthesized films have a cubic ThZr 2 H 7 crystal structure with AgBi 2 I 7 stoichiometry. Through careful examination of the proposed structure and computational evaluation of the phase stability and bandgap, we find that the reported "AgBi 2 I 7 " films cannot be forming with the ThZr 2 H 7 -type structure, but rather more likely adopt an Ag-deficient AgBiI 4 type. Both the experimental X-ray diffraction pattern and bandgap can be better explained by the AgBiI 4 structure. Additionally, the proposed AgBiI 4 structure, with octahedral bismuth coordination, removes unphysically short Bi-I bonding within the [BiI 8 ] hexahedra of the ThZr 2 I 7 model. Our results provide critical insights for assessing the photovoltaic properties of AgBi 2 I 7 iodobismuthate materials.

  17. Low-temperature synthesis of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} with cubic garnet-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui [Texas Materials Institute, ETC 9.184, University of Texas at Austin, Austin, TX 78712 (United States); Li, Yutao [Texas Materials Institute, ETC 9.184, University of Texas at Austin, Austin, TX 78712 (United States); State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Goodenough, John B., E-mail: jgoodenough@mail.utexas.edu [Texas Materials Institute, ETC 9.184, University of Texas at Austin, Austin, TX 78712 (United States)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer One-step synthesis and its optimization of cubic garnet Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} at 750 Degree-Sign C. Black-Right-Pointing-Pointer Instability above 800 Degree-Sign C of the Al-free cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}. Black-Right-Pointing-Pointer Li{sup +}-ion conductivity without adventitious Al{sup 3+}. -- Abstract: In this paper, we report the direct synthesis of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} with the cubic garnet-type structure at low temperature with a lattice constant of 13.0035 Angstrom-Sign . The synthesis condition is optimized to be at 750 Degree-Sign C for 8 h with 30 wt% excess lithium salt. No intermediate grinding was involved in this straightforward route. Without the adventitious of Al{sup 3+}, the cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} is unstable above 800 Degree-Sign C and has an ionic conductivity of the order of 10{sup -6} S cm{sup -1}.

  18. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    Science.gov (United States)

    Yavuz, G.; Zille, A.; Seventekin, N.; Souto, A. P.

    2017-10-01

    In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fabric provided cationic groups on the fiber surface promoting electrostatic interaction with photonic crystals. SEM images of the washed samples indicate that the PCs are firmly coated on the cotton surface only in the chitosan treated sample. The photonic nanospheres show an average diameter of 280 nm and display a face-centered cubic closepacking structure with an average thickness of 10 μm. A further chitosan post-treatment enhances color yield of the samples due to the chitosan transparent covering layer that induce bright reflections where the angles of incidence and reflection are the same. After washing, no photonic crystal can be detected on control fabric surface. However, the sample that received a chitosan post-treatment showed a good washing fastness maintaining a reasonable degree of iridescence. Chitosan fills the spaces between the polymer spheres in the matrix stabilizing the photonic structure. Sizeable variations in lattice spacing will allow color variations using more flexible non-close-packed photonic crystal arrays in chitosan hydrogels matrices.

  19. Polymorphism of a lipid extract from Pseudomonas fluorescens: Structure analysis of a hexagonal phase and of a novel cubic phase of extinction symbol Fd--

    International Nuclear Information System (INIS)

    Mariani, P.; Rivas, E.; Delacroix, H.; Luzzati, V.

    1990-01-01

    The phase diagram of the Pseudomonas fluorescens lipid extract is unusual, in the sense that it displays a cubic phase straddled by a hexagonal phase. The hexagonal phase was studied over an extended concentration range, and the reflections were phased on the assumption that the structure contains circular cylinders of known radius. The cubic phase, whose extinction symbol is Fd--, was analyzed by reference to space group No. 227 (Fd3m). The phases of the reflections were determined by using a novel pattern recognition approach, based upon the notion that the average fourth power of the electron density contrast 4 > is dependent on chemical composition but not on physical structure, provided that the function Δr(r) satisfies the constraints = 0 and 2 > = 1. The authors analyzed two cubic samples of different composition: for each of them they generated all the phase combinations compatible with the X-ray scattering data and they searched for those whose 4 > best agrees with the hexagonal phase. They concluded that the chemical composition of the phases being compared must be identical, that the X-ray scattering data should not be truncated artificially, and that the apodization must be mild so that the curvature takes a value intermediate between those corresponding to the raw data of the two phases. The structure may be visualized as a 3D generalization of the lipid monolayer. The structure, moreover, does not belong to the class of the infinite periodic surfaces without intersections

  20. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  2. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  3. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  4. Crystal structure of Clostridium difficile toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-11

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.

  5. Polarization Change in Face-Centered Cubic Opal Films

    Science.gov (United States)

    Wolff, Christian; Romanov, Sergei; Küchenmeister, Jens; Peschel, Ulf; Busch, Kurt

    2011-10-01

    Artificial opals are a popular platform for investigating fundamental properties of Photonic Crystals (PhC). In this work, we provide a theoretical analysis of polarization-resolved transmission experiments through thin opal films. Despite the full cubic symmetry of the PhC, this system provides a very efficient mechanism for manipulating the polarization state of light. Based on band structure calculations and Bloch mode analysis, we find that this effect closely resembles classical birefringence. Due to the cubic symmetry, however, a description using tensorial quantities is not possible. This indicates fundamental limitations of effective material models for Photonic Crystals and demonstrates the importance of accurately modelling the microscopic geometry of such systems.

  6. First principles study of the structural and electronic properties of double perovskite Ba{sub 2}YTaO{sub 6} in cubic and tetragonal phases

    Energy Technology Data Exchange (ETDEWEB)

    Deluque Toro, C.E., E-mail: deluquetoro@gmail.com [Grupo de Nuevos Materiales, Universidad Popular del Cesar, Valledupar (Colombia); Rodríguez M, Jairo Arbey [Grupo de Estudios de Materiales—GEMA, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Landínez Téllez, D.A. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia); Moreno Salazar, N.O. [Departamento de Física, Universidade Federal de Sergipe (Brazil); Roa-Rojas, J. [Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, AA 5997 Bogotá DC (Colombia)

    2014-12-15

    The Ba{sub 2}YTaO{sub 6} double perovskite presents a transition from cubic (Fm−3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba{sub 2}YTaO{sub 6} in space group Fm−3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba{sub 2}YTaO{sub 6} (I4/m) phase is the most stable one. {sup ©} 2013 Elsevier Science. All rights reserved.

  7. First principles study of the structural and electronic properties of double perovskite Ba2YTaO6 in cubic and tetragonal phases

    International Nuclear Information System (INIS)

    Deluque Toro, C.E.; Rodríguez M, Jairo Arbey; Landínez Téllez, D.A.; Moreno Salazar, N.O.; Roa-Rojas, J.

    2014-01-01

    The Ba 2 YTaO 6 double perovskite presents a transition from cubic (Fm−3m) to tetragonal structure (I4/m) at high temperature. In this work, we present a detailed study of the structural and electronic properties of the double perovskite Ba 2 YTaO 6 in space group Fm−3m and I4/m. Calculations were made with the Full-Potential Linear Augmented Plane Wave method (FP-LAPW) within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient (GGA) and Local Density (LDA) approximations. From the minimization of energy as a function of volume and the fitting of the Murnaghan equation some structural characteristics were determined as, for example, total energy, lattice parameter (a=8.50 Å in cubic phase and a=5.985 Å and c=8.576 Å in tetragonal), bulk modulus (135.6 GPa in cubic phase and 134.1 GPa in tetragonal phase) and its derivative. The study of the electronic characteristics was performed from the analysis of the electronic density of states (DOS). We find a non-metallic behavior for this with a direct band gap of approximately 3.5 eV and we found that the Ba 2 YTaO 6 (I4/m) phase is the most stable one. © 2013 Elsevier Science. All rights reserved

  8. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  9. Crystal structure of the binder phase in a model HfC-TiC-Ni material

    International Nuclear Information System (INIS)

    Heiligers, Christiane; Neethling, Johannes H.

    2008-01-01

    The crystal structure of the binder phase in a model HfC-TiC-Ni sample produced by hot pressing is investigated. The nature of the binder depends on the amount of Hf and Ti that remains in solution with Ni after cooling. Four different crystal structures are identified by analysis of electron diffraction patterns obtained using transmission electron microscopy techniques and the composition of the phases determined by energy dispersive X-ray spectrometry. Three of the phases are cubic; Ni, Ni 3 (Ti,Hf) and Ni 23 (Ti,Hf) 6 with lattice parameters of 3.52 ± 0.05, 3.52 ± 0.03 and 10.70 ± 0.40 A, respectively. The hexagonal phase is an intermetallic Ni 3 Ti phase, with lattice parameters of a = b = 5.00 ± 0.20 A and c = 8.16 ± 0.20 A. The crystal structures are confirmed by simulations of the electron diffraction patterns using JEMS software

  10. Crystallographic Orientation Determination of Hexagonal Structure Crystals by Laser Ultrasonic Technique

    International Nuclear Information System (INIS)

    Li, W; Coulson, J; Marrow, P; Smith, R J; Clark, M; Sharples, S D; Lainé, S J

    2016-01-01

    Spatially resolved acoustic spectroscopy (SRAS) is a laser ultrasonic technique that shows qualitative contrast between grains of different orientation, illustrating the sensitivity of acoustic waves to the material structure. The technique has been improved significantly on determining the full orientation of multigrain cubic metals, by comparing the measured surface acoustic wave (SAW) velocity to a pre-calculated model. In this paper we demonstrate the ability of this technique to determine the orientation of hexagonal structure crystals, such as magnesium and titanium based alloys. Because of the isotropy of the SAW velocity on the basal plane (0001) of hexagonal crystals, the slowness surface is shown as a circle. As the plane moves from (0001) towards (112-bar0) or towards (101-bar0), the slowness surface gradually turns into an oval. These acoustic properties increase the difficulty in orientation determination. The orientation results of a grade 1 commercially pure titanium by SRAS is presented, with comparison with electron backscattered diffraction (EBSD) results. Due to the nature of SAWs on hexagonal structure crystals, only the results of Euler angles 1 and 2 are discussed. The error between SRAS and EBSD is also investigated. (paper)

  11. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  12. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  13. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  14. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.

  15. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  16. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  17. First-principles investigation on the mechanism of photocatalytic properties for cubic and orthorhombic KNbO3

    Science.gov (United States)

    Xu, Yong-Qiang; Wu, Shao-Yi; Ding, Chang-Chun; Wu, Li-Na; Zhang, Gao-Jun

    2018-03-01

    The geometric structures, band structures, density of states and optical absorption spectra are studied for cubic and orthorhombic KNbO3 (C- and O-KNO) crystals by using first-principles calculations. Based on the above calculation results, the mechanisms of photocatalytic properties for both crystals are further theoretically investigated to deepen the understandings of their photocatalytic activity from the electronic level. Calculations for the effective masses of electron and hole are carried out to make comparison in photocatalytic performance between cubic and orthorhombic phases. Optical absorption in cubic phase is found to be stronger than that in orthorhombic phase. C-KNO has smaller electron effective mass, higher mobility of photogenerated electrons, lower electron-hole recombination rate and better light absorption capacity than O-KNO. So, the photocatalytic activity of cubic phase can be higher than orthorhombic one. The present work may be beneficial to explore the series of perovskite photocatalysts.

  18. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Science.gov (United States)

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  19. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  20. Spatiotemporal structure of pulsating solitons in the cubic-quintic Ginzburg-Landau equation: A novel variational formulation

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364 (United States)], E-mail: smancas@mail.ucf.edu; Roy Choudhury, S. [Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364 (United States)], E-mail: choudhur@longwood.cs.ucf.edu

    2009-04-15

    Comprehensive numerical simulations (reviewed in Dissipative Solitons, Akhmediev and Ankiewicz (Eds.), Springer, Berlin, 2005) of pulse solutions of the cubic-quintic Ginzburg-Landau Equation (CGLE), a canonical equation governing the weakly nonlinear behavior of dissipative systems in a wide variety of disciplines, reveal various intriguing and entirely novel classes of solutions. In particular, there are five new classes of pulse or solitary waves solutions, viz. pulsating, creeping, snake, erupting, and chaotic solitons. In contrast to the regular solitary waves investigated in numerous integrable and non-integrable systems over the last three decades, these dissipative solitons are not stationary in time. Rather, they are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. The numerical simulations also reveal very interesting bifurcations sequences of these pulses as the parameters of the CGLE are varied. In this paper, we address the issues of central interest in the area, i.e., the conditions for the occurrence of the five categories of dissipative solitons, as well the dependence of both their shape and their stability on the various parameters of the CGLE, viz. the nonlinearity, dispersion, linear and nonlinear gain, loss and spectral filtering parameters. Our predictions on the variation of the soliton amplitudes, widths and periods with the CGLE parameters agree with simulation results. First, we elucidate the Hopf bifurcation mechanism responsible for the various pulsating solitary waves, as well as its absence in Hamiltonian and integrable systems where such structures are absent. Next, we develop and discuss a variational formalism within which to explore the various classes of dissipative solitons. Given the complex dynamics of the various dissipative solutions, this formulation is, of necessity, significantly generalized over all earlier approaches in several crucial ways. Firstly, the starting formulation

  1. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  2. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2014-01-01

    We use density functional theory calculations to investigate the stability of cubic perovskites for photo-electrochemical water splitting taking both materials in their bulk crystal structure and dissolved phases into account. The method is validated through a detailed comparison of the calculated...

  3. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  4. Preparation and crystal structure of Ca4Sb2O

    International Nuclear Information System (INIS)

    Eisenmann, B.; Limartha, H.; Schaefer, H.

    1980-01-01

    The formerly described compound Ca 2 Sb is to be corrected to Ca 4 Sb 2 O as shown by X-ray diffractometer data of single crystals and neutron diffraction diagrams of powders. The compound crystallizes in the K 2 NiF 4 structure type. (orig.)

  5. Crystal structure of vanadite: Refinement of anisotropic displacement parameters

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Skála, Roman; Haloda, J.; Císařová, I.

    2006-01-01

    Roč. 51, 3-4 (2006), s. 271-275 ISSN 1210-8197 Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotropic displacement parameter * crystal structure * single-crystal X-ray refinement * vanadinite Subject RIV: DB - Geology ; Mineralogy

  6. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.

    2011-01-01

    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  7. Metal-loaded pollucite-like aluminophosphates: dissymmetrisation of crystal structures and physical properties

    Science.gov (United States)

    Shvanskaya, L. V.; Yakubovich, O. V.; Koshelev, A. V.; Vasiliev, A. N.

    2018-02-01

    Two aluminophosphate analogues of the mineral pollucite with the general formula Cs2(M,Al)3P3O12 (where M = Cu or Mn) have been synthesized by high-temperature flux and structurally characterized using the single-crystal X-ray diffraction. Both samples crystallize in cubic I4132 space group, Z = 8, with a = 13.5911(5) and a = 13.8544(7) for Cu- and Mn-loaded phases, respectively. Their framework structures are based on the ANA-type topology and exhibit the partial ordering of the metal (M/Al) and phosphorus (P) cations over the tetrahedral sites. The regular changes in cell dimensions and volumes in the row Cs2(Cu,Al)3P3O12→Cs2(Mn,Al)3P3O12 obviously correspond to increasing radii of the transition metal. The crystal chemical analysis of both pollucite-like phases show correlations between the difference in the radii size of tetrahedral cations and the degree of distortion of flexible ANA-type framework due to decreasing of the intertetrahedral angles (T-O-T). Magnetic susceptibility measurements indicate that both compounds are paramagnets in the temperature range of 2-300 K.

  8. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  9. Synthesis, crystal structure and Thermogravimetry of ortho-phthalic ...

    Indian Academy of Sciences (India)

    satisfied by two chelated carboxylates while fifth and sixth co-ordination positions are satisfied by monodentate ... Keywords. o-Phthalic acid; coordination polymer; X-ray crystal structure; Copper(II); EPR; TGA. 1. .... Absorption coefficient.

  10. Crystal structure and pair potentials: A molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1980-10-06

    With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.

  11. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  12. Crystal structure investigations on cation-substituted alums by X-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Abdeen, A.M.

    1980-04-01

    The crystal structures of the three alums: NH 4 Al(SO 4 ) 2 .12H 2 O, (NH 3 CH 3 )Al(SO 4 ) 2 .12H 2 O and (NH 3 OH)Al(SO 4 ) 2 .12H 2 O have been determined from three-dimensional neutron diffraction data enhanced by X-ray diffraction when necessary. These compounds crystallize cubic in space group Pa3. The structures of the three alums exhibit partial occupancies of crystallographic sites for the NH 4 , (NH 3 CH 3 ) and (NH 3 OH) group atoms. This can be explained by a quantized rotation of the three groups around an axis perpendicular to the [111] direction. Some of the (SO 4 ) 2- groups in the NH 4 -alum are disordered with about 17% of the sulfate tetrahedra being in a reversed orientation around the sulfur atom. The disorder in (NH 3 CH 3 ) and (NH 3 OH)-alums is only 4,3% and 3.0% respectively. The atoms in the alum structures are held together by a system of hydrogen bonds between the water molecules and between the water molecules and the sulfate oxygen atoms. In these three structures there is a strong indication that shorter hydrogen bonds tend to be nearly linear. (orig.)

  13. Crystal structure, thermal behavior, vibrational spectroscopy and ...

    Indian Academy of Sciences (India)

    64

    A single crystal was carefully selected under polarizing microscope and .... properties of our compound using infrared absorption and Raman scattering. ... pics in Raman at 1762 and 1782 cm-1 are assigned to the δ(HOH) mode of the water ...

  14. Formation of structured nanophases in halide crystals

    Czech Academy of Sciences Publication Activity Database

    Kulveit, Jan; Demo, Pavel; Polák, Karel; Sveshnikov, Alexey; Kožíšek, Zdeněk

    2013-01-01

    Roč. 5, č. 6 (2013), s. 561-564 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0891 Institutional support: RVO:68378271 Keywords : halide crystals * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.aspbs.com/asem.html#v5n6

  15. Solvothermal syntheses, crystal structures, optical and thermal ...

    Indian Academy of Sciences (India)

    compounds 1–3 exhibit optical band gaps between 2.06 and 2.35 eV. Keywords. .... under a nitrogen stream of 100 mL min. −1 . 2.3 X-ray diffraction. Single-crystal ..... Liu G N, Guo G C, Wang M S, Cai L Z and Huang J S. 2010 Five dimeric ...

  16. The crystal structure of tRNA

    Indian Academy of Sciences (India)

    Madhu

    of yeast alanine tRNA by Robert Holley's group at Cornell. University ... decode nonsense codons) with John Smith and Brenner. However, my ... tRNA from 10 g of unfractionated tRNA. ... tRNA crystals were, in fact, protein (Hendrikson et al.

  17. Hydrothermal syntheses and single crystal structural ...

    Indian Academy of Sciences (India)

    Unknown

    Colourless. 84 lined stainless steel bomb. After heating in a pro- grammable oven at the respective temperatures and autogenous pressures for the notified time scale, cooling was carried out on a ramp of 10°C/h to room temperature. The crystals were collected by filtration, washed with, deionized water followed by diethyl-.

  18. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  19. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  20. Ternary systems Sr-{Ni,Cu}-Si: Phase equilibria and crystal structure of ternary phases

    International Nuclear Information System (INIS)

    Nasir, Navida; Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Giester, Gerald; Wosik, Jaroslaw; Nauer, Gerhard E.

    2010-01-01

    Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 deg. C) and Sr-Cu-Si (800 deg. C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi 3 (BaNiSn 3 -type) and SrNi 9-x Si 4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(Ni x Si 1-x ) 2 (AlB 2 -type). The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi 5.5 Si 6.5 □ 1.0 . Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu 2-x Si 2+x (ThCr 2 Si 2 -type), Sr(Cu x Si 1-x ) 2 (AlB 2 -type), SrCu 9-x Si 4+x (0≤x≤1.0; CeNi 8.5 Si 4.5 -type) and SrCu 13-x Si x (4≤x≤1.8; NaZn 13 -type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems. Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba. - Graphical abstract: The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type and is related to CeNi 8.5 Si 4.5 -type.

  1. Nano and micro reoriented domains and their relation with the crystal structure in the new ferroelectric boracite Zn3B7O13Br

    International Nuclear Information System (INIS)

    Campa-Molina, J; Ulloa-Godinez, S; Barrera, A; Bucio, L; Mata, J

    2006-01-01

    A new zinc brome boracite Zn 3 B 7 O 13 Br has been grown by a chemical transport reaction in closed quartz ampoules at 920 K. The crystal structure was characterized by Rietveld refinement. Ferroelectric nano and micro reorientable domains were found in this material using polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical analysis was performed with x-ray energy dispersive spectroscopy (EDX). In the crystal, a new structure transition at 586 K from orthorhombic (Pca 2 1 ) to cubic cell (F4-bar3c) has been found. This transition was corroborated by differential scanning calorimetry (DSC)

  2. Nano and micro reoriented domains and their relation with the crystal structure in the new ferroelectric boracite Zn3B7O13Br

    Science.gov (United States)

    Campa-Molina, J.; Ulloa-Godínez, S.; Barrera, A.; Bucio, L.; Mata, J.

    2006-05-01

    A new zinc brome boracite Zn3B7O13Br has been grown by a chemical transport reaction in closed quartz ampoules at 920 K. The crystal structure was characterized by Rietveld refinement. Ferroelectric nano and micro reorientable domains were found in this material using polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical analysis was performed with x-ray energy dispersive spectroscopy (EDX). In the crystal, a new structure transition at 586 K from orthorhombic (Pca 21) to cubic cell (F\\overline 4 3c ) has been found. This transition was corroborated by differential scanning calorimetry (DSC).

  3. Crystal structure and ion conducting properties of La5NbMo2O16

    KAUST Repository

    Vu, T.D.

    2016-01-29

    The new compound La5NbMo2O16 with high ionic conduction has been discovered during the study of the ternary phase diagram of La2O3-MoO3-Nb2O5. The material crystallizes in the cubic space group Pn 3n (no 222) with the unit cell parameter a=11.2250(1) Å. La5NbMo2O16 is a new analogue of the R5Mo3O16 series (R=Pr, Nd). The structure was refined from a combined data X-ray and neutron powder diffraction. The ionic conductivity of the compound is then measured on sintered pellets, by means of complex impedance spectroscopy. © 2016 Elsevier Inc. All rights reserved.

  4. Crystal structure and electrical resistivity studies of Gd(Fe1-x Cox)2 intermetallics

    International Nuclear Information System (INIS)

    Onak, M.; Guzdek, P.; Stoch, P.; Chmist, J.; Bednarski, M.; Panta, A.; Pszczola, J.

    2007-01-01

    From X-ray analysis (295 K) it was found that the cubic, MgCu 2 -type, Fd3m crystal structure appears across the Gd(Fe 1-x Co x ) 2 series. Electrical resistivity measurements for the Gd(Fe 1-x Co x ) 2 intermetallics were performed in a wide temperature region and the parameters characterizing the resistivity dependence on temperature and composition were determined. The differential of the electrical resistivity against temperature was used to estimate Curie temperatures. The Curie temperature versus x, high and moderately increasing in the iron-rich area, rapidly drops in the cobalt-rich region. The obtained results are compared with the data known for the Dy(Fe 1-x Co x ) 2 series. The Curie temperature is related to both the number of 3d electrons and the de Gennes factor

  5. Enhanced lithium-ion storage performance by structural phase transition from two-dimensional rhombohedral Fe_2O_3 to cubic Fe_3O_4

    International Nuclear Information System (INIS)

    Ren, Yurong; Wang, Jiawei; Huang, Xiaobing; Ding, Jianning

    2016-01-01

    Highlights: • The rhombohedral Fe_2O_3 transforms to the cubic Fe_3O_4 via a calcination treatment. • Phase structure of anodes has great influences on their electrochemical performances. • Fe_3O_4/reduced graphene oxide shows a high capacity of 825.3 mAh g"−"1 at 50 mA g"−"1. - Abstract: The electrochemical performance of a material varies with its structural phase transition. It is found that the rhombohedral Fe_2O_3 can transform to the cubic Fe_3O_4 via a calcination treatment in a nitrogen atmosphere, and lithium-ion storage performances of Fe_3O_4 get an obvious improvement due to its structural advantages. On the basis of data calculated by X-ray diffraction, the larger unit cell volume as well as the higher void fraction of cubic Fe_3O_4 provides lithium-ions with more transport channels for Li ions diffusion and storage without serious volume change, and thus the cubic Fe_3O_4 delivers an excellent reversible capacity of 921.1 mAh g"−"1 after 15 cycles at the current density of 50 mA g"−"1, which is much higher than 328.3 mAh g"−"1 for the rhombohedral Fe_2O_3. To further enhance the structural stability of electrodes, reduced graphene oxide is introduced. The Fe_3O_4/reduced graphene oxide show an excellent specific capacity of 825.3 mAh g"−"1 after 40 cycles and impressive rate performance of 600 mAh g"−"1 at the current density of 400 mA g"−"1, which are much higher than that of Fe_3O_4 (417 and 300 mAh g"−"1), Fe_2O_3 (137.4 and 95 mAh g"−"1) and Fe_2O_3/reduced graphene oxide (390.1 and 480 mAh g"−"1). These results demonstrate that the structural phase transition and reduced graphene oxide of Fe_3O_4/reduced graphene oxide composites offer unique characteristics suitable for high-performance energy storage application.

  6. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, M.J.; Stutz, C.E.

    1997-07-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was {approximately}1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in {ge}1 GPa tensile increase in film stress.

  7. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    International Nuclear Information System (INIS)

    O'Keefe, M.J.; Stutz, C.E.

    1997-01-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was approximately1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in ge1 GPa tensile increase in film stress

  8. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  9. The crystal structure of the phosphatidylinositol 4-kinase IIalpha

    Czech Academy of Sciences Publication Activity Database

    Bäumlová, Adriana; Chalupská, Dominika; Rozycki, B.; Jovic, M.; Wisniewski, E.; Klíma, Martin; Dubánková, Anna; Kloer, D. P.; Nencka, Radim; Balla, T.; Bouřa, Evžen

    2015-01-01

    Roč. 22, č. 1 (2015), s. 5 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : PI4K IIalpha * crystal structure Subject RIV: CE - Biochemistry

  10. Crystallite size effect on the monoclinic deformation of the bcc crystal structure of chromium

    Science.gov (United States)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.; Wardecki, D.; Sławiński, W. A.; Playford, H. Y.; Hempelmann, R.; Bukowski, M.

    2018-02-01

    The modulated spin density wave magnetic orderings observed in chromium suggests that the crystal structure of chromium cannot be described by the cubic space group Im 3 bar m. Our experimental studies of polycrystalline and nanocrystalline chromium by synchrotron radiation (SR) and neutron powder diffraction show a hkl-dependent Bragg peak broadening which can be interpreted by the low-symmetry monoclinic space group P21 / n instead of the high symmetry cubic space group Im 3 bar m. The monoclinic angle is βm = 90.05(1)° and 90.29(1)° for polycrystalline Cr and nanocrystalline Cr, respectively. The relative monoclinic distortion observed in chromium is 5 times larger than those reported for several oxides: BiFeO3, α-Fe2O3, Cr2O3 and calcite. The symmetry of the magnetic transverse spin density wave (TSDW) and the longitudinal spin density wave (LSDW) observed in Cr are described by using the superspace groups P21 / n(0 β 0) 00 and P 21‧ /n‧(0 β 0) 00, respectively. These superspace groups describe both the magnetic modulations and the atomic position modulations reported in the literature. The monoclinic symmetry of chromium is a robust effect which is observed in the paramagnetic as well as in the TSDW and LSDW phases.

  11. Single-crystal structure refinement of YbF{sub 2} with a remark about YbH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Dept. of Chemistry and Chemical Biology

    2017-07-01

    Transparent-yellow single crystals of YbF{sub 2} were obtained as only crystalline product from the solid-state reaction of Yb and teflon designed to yield 'Yb{sub 3}C{sub 3}F{sub 2}' in addition to some amorphous black material. The first single-crystal structure determination of YbF{sub 2} (cubic space group Fm anti 3m, CaF{sub 2}-type structure, a = 559.46(16) pm; R1 = 1.2%, wR2 = 3.2%) was the starting point to compare isostructural binary fluorides MF{sub 2} and hydrides MH{sub 2} (M = Ca, Yb, Eu, Sr and Ba) exhibiting an as-yet unexplained small volume per formula unit for YbH{sub 2}.

  12. The influence of the coexistence of ferroelectric and antiferroelectric states on the lead lanthanum zirconate titanate crystal structure

    International Nuclear Information System (INIS)

    Ishchuk, V M; Baumer, V N; Sobolev, V L

    2005-01-01

    We present results of detailed investigation of the crystal structure of Pb 1-3x/2 La x (Zr 1-y Ti y )O 3 solid solutions. In this letter our attention is concentrated on the series of solid solutions with x = 6% usually referred to as relaxor ferroelectrics. We have established the reasons for the non-cubic crystal structure of these solid solutions at the temperatures below T C . It is demonstrated that the peculiarities of the properties of Pb 1-3x/2 La x (Zr 1-y Ti y )O 3 depend on the position of a particular solid solution with respect to the hysteresis ferroelectric-antiferroelectric region in the 'Ti-content-temperature' phase diagram. (letter to the editor)

  13. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  14. Effect of Eu{sup 3+} doping on the structural and photoluminescence properties of cubic CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yan; Sun, Yidi; Zou, Haifeng; Sheng, Ye; Zhou, Xiuqing; Zhang, Bowen; Zhou, Bing, E-mail: zhoubing@jlu.edu.cn

    2016-01-15

    Graphical abstract: - Highlights: • The doping of Eu{sup 3+} ions decreased the size of CaCO{sub 3} nanoparticles. • The doping of Eu{sup 3+} ions brought about the change of CaCO{sub 3}'s optical bandgap. • Multiple sites of Eu{sup 3+} in CaCO{sub 3} nanocrystals have been identified. - Abstract: CaCO{sub 3}:xEu{sup 3+} (x = 0, 0.010, 0.015, 0.020, and 0.025) cubic nanoparticles were synthesized by carbonation method. The powder XRD patterns and SEM images of the CaCO{sub 3}:xEu{sup 3+} nanoparticles demonstrate that both the crystalline sizes and average particle sizes of synthesized samples decreased with the increase of Eu{sup 3+} content until x = 0.020. Kubelka–Munk plots and bandgap energy estimation indicate that the doping of Eu{sup 3+} ions changed optical bandgap of CaCO{sub 3}. Photoluminescence (PL) spectra show that the PL intensity of the CaCO{sub 3}:xEu{sup 3+} nanoparticles was enhanced with the increase of Eu{sup 3+} content in cubic CaCO{sub 3}:xEu{sup 3+}, and concentration quenching occurred when Eu{sup 3+} concentration exceeded 2.0 mol%. In addition, the doped sites of Eu{sup 3+} in CaCO{sub 3} crystalline were identified by the site-selective spectroscopy and decay curves.

  15. Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: a first-principles investigation

    International Nuclear Information System (INIS)

    Liu, Z T Y; Khare, S V; Zhou, X; Gall, D

    2014-01-01

    We report systematic results from ab initio calculations with density functional theory on three cubic structures, zincblende (zb), rocksalt (rs) and cesium chloride (cc), of the ten 3d transition metal nitrides. We computed lattice constants, elastic constants, their derived moduli and ratios that characterize mechanical properties. Experimental measurements exist in the literature of lattice constants for rs-ScN, rs-TiN and rs-VN and of elastic constants for rs-TiN and rs-VN, all of which are in good agreement with our computational results. Similarly, computed Vickers hardness (H V ) values for rs-TiN and rs-VN are consistent with earlier experimental results. Several trends were observed in our rich data set of 30 compounds. All nitrides, except for zb-CrN, rs-MnN, rs-FeN, cc-ScN, cc-CrN, cc-NiN and cc-ZnN, were found to be mechanically stable. A clear correlation in the atomic density with the bulk modulus (B) was observed with maximum values of B around FeN, MnN and CrN. The shear modulus, Young’s modulus, H V and indicators of brittleness showed similar trends and all showed maxima for cc-VN. The calculated value of H V for cc-VN was about 30 GPa, while the next highest values were for rs-ScN and rs-TiN, about 24 GPa. A relation (H V ∝θ D 2 ) between H V and Debye temperature (θ D ) was investigated and verified for each structure type. A tendency for anti-correlation of the elastic constant C 44 , which strongly influences stability and hardness, with the number of electronic states around the Fermi energy was observed. (paper)

  16. Crystal structure and optical properties of silver nanorings

    Science.gov (United States)

    Zhou, Li; Fu, Xiao-Feng; Yu, Liao; Zhang, Xian; Yu, Xue-Feng; Hao, Zhong-Hua

    2009-04-01

    We report the polyol synthesis and crystal structure characterization of silver nanorings, which have perfect circular shape, smooth surface, and elliptical wire cross-section. The characterization results show that the silver nanorings have well-defined crystal of singly twinned along the whole ring. The spatial distribution of the scattering of a silver nanoring with slanted incidence reveals the unique focus effect of the nanoring, and the focus scattering varies with the incident wavelength. The silver nanorings with perfect geometry and well-defined crystal have potential applications in nanoscaled photonics, plasmonic devices, and optical manipulation.

  17. Crystal structures of two thiacalix[4]arene derivatives anchoring four ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The crystal structures of two thiacalixarene derivatives anchoring thiadiazole functional groups at lower rim, C60H72O4S12N8 (1), C64H80O4S12N8 (2), have been determined by single crystal X-ray diffraction. The thiacalix[4]arene framework in both 1 and 2 adopts the 1,3-alternate conformation. Com- pound 1 ...

  18. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera

    2015-12-01

    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.

  19. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  20. Mechanical properties and electronic structure of anti-ReO3 structured cubic nitrides, M3N, of d block transition metals M: An ab initio study

    International Nuclear Information System (INIS)

    Zhou, Xiuquan; Gall, Daniel; Khare, Sanjay V.

    2014-01-01

    Highlights: • We use DFT to model the anti-ReO 3 structured transition metal nitrides M 3 N. • We predict their lattice constants, electronic structures and mechanical properties. • We correlate the metal d and nitrogen 2p orbitals with stability and hardness. • We established a high-throughput database for materials design. - Abstract: We report a systematic study of the anti-ReO 3 structured transition metal nitrides, M 3 N, using ab initio density functional theory computations in the local density approximation. Here M denotes all the 3d, 4d and 5d transition metals. Our calculations indicate that all M 3 N compounds except V 3 N of group 5 and Zn 3 N and Hg 3 N of group 12 are mechanically stable. For the stable M 3 N compounds, we report a database of predictions for their lattice constants, electronic properties and mechanical properties including bulk modulus, Young’s modulus, shear modulus, ductility, hardness and Debye temperature. It is found that most M 3 N compounds exhibit ductility with Vickers hardness between 0.4 GPa and 11.2 GPa. Our computed lattice constant for Cu 3 N, the only M 3 N compound where experiments exist, agrees well with the experimentally reported values. We report ratios of the melting points of all M 3 N compounds to that of Cu 3 N. The local density of states for all M 3 N compounds are obtained, and electronic band gaps are observed only for M of group 11 (Cu, Ag and Au) while the remaining M 3 N compounds are metallic without band gaps. Valence electron density along with the hybridization of the metal d and nitrogen 2p orbitals play an important role in determining the stability and hardness of different compounds. Our high-throughput databases for the cubic anti-ReO 3 structured transition metal nitrides should motivate future experimental work and shorten the time to their discovery

  1. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  2. First observations of stimulated emission and of stimulated Raman scattering in acentric cubic Nd3+:Bi12SiO20 crystals

    International Nuclear Information System (INIS)

    Kaminskii, Alexandr A; Bagayev, S N; Garsia, Sole J; Jaque, D; Eichler, H J; Findeisen, J; Fernandez, J; Balda, R; Agullo, Rueda F

    1999-01-01

    Laser action (in the 4 F 3/2 - 4 I 11/2 channel) and stimulated Raman scattering were excited for the first time in an Nd 3+ :Bi 12 SiO 20 single crystal at room temperature. All the observed stimulated emission and multiple Stokes and anti-Stokes lines were identified. (letters to the editor)

  3. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  4. Crystal structure of 4-methylsulfanyl-2-phenylquinazoline

    Directory of Open Access Journals (Sweden)

    Mohammed B. Alshammari

    2014-08-01

    Full Text Available In the title compound, C15H12N2S, the methylthioquinazoline group is planar with the methyl C displaced by only 0.116 (3 Å from the plane of the quinazoline moiety. The dihedral angle between the phenyl ring and the quinazoline ring system is 13.95 (5°. In the crystal, each molecule is linked by π–π stacking between to two adjacent inversion-related molecules. On one side, the inverted quinazoline groups interact with a centroid–centroid distance of 3.7105 (9 Å. On the other side, the quinazoline group interacts with the pyrimidine and phenyl rings of the second neighbour with centroid–centroid distances of 3.5287 (8 and 3.8601 (9 Å, respectively.

  5. Crystal structure of rubidium peroxide ammonia disolvate

    Directory of Open Access Journals (Sweden)

    Tobias Grassl

    2017-02-01

    Full Text Available The title compound, Rb2O2·2NH3, has been obtained as a reaction product of rubidium metal dissolved in liquid ammonia and glucuronic acid. As a result of the low-temperature crystallization, a disolvate was formed. To our knowledge, only one other solvate of an alkali metal peroxide is known: Na2O2·8H2O has been reported by Grehl et al. [Acta Cryst. (1995, C51, 1038–1040]. We determined the peroxide bond length to be 1.530 (11 Å, which is in accordance with the length reported by Bremm & Jansen [Z. Anorg. Allg. Chem. (1992, 610, 64–66]. One of the ammonia solvate molecules is disordered relative to a mirror plane, with 0.5 occupancy for the corresponding nitrogen atom.

  6. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  7. The crystal structure of urea nitrate

    NARCIS (Netherlands)

    Harkema, Sybolt; Feil, D.

    1969-01-01

    The structure of urea nitrate has been solved, by the use of three-dimensional X-ray data. Data were collected using Cu Ke and Mo K0~ radiations. The structure consists of layers with urea and nitrate groups held together by hydrogen bonds. The positions of all hydrogen atoms were found. The final R

  8. A crystal structure prediction enigma solved

    DEFF Research Database (Denmark)

    Hoser, Anna Agnieszka; Sovago, Ioana; Lanzac, A.

    2017-01-01

    The seemingly unpredictable structure of gallic acid monohydrate form IV has been investigated using accurate X-ray diffraction measurements at temperatures of 10 and 123 K. The measurements demonstrate that the structure is commensurately modulated at 10 K and disordered at higher temperatures...

  9. Solving Crystal Structures from Powder Diffraction Data

    DEFF Research Database (Denmark)

    Christensen, A. Nørlund; Lehmann, M. S.; Nielsen, Mogens

    1985-01-01

    High resolution powder data from both neutron and X-ray (synchrotron) sources have been used to estimate the possibility of direct structure determination from powder data. Two known structures were resolved by direct methods with neutron and X-ray data. With synchrotron X-ray data, the measured ...

  10. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  11. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  12. The Ag2Se-HgSe-GeSe2 system and crystal structures of the compounds

    International Nuclear Information System (INIS)

    Parasyuk, O.V.; Gulay, L.D.; Romanyuk, Ya.E.; Olekseyuk, I.D.; Piskach, L.V.

    2003-01-01

    The phase diagram of the quasi-ternary Ag 2 Se-HgSe-GeSe 2 system at 298 K was investigated using X-ray phase analysis and metallography. The formation of five intermediate quaternary phases β (Ag ∼7.12-∼6.32 Hg ∼0.44-∼0.82 GeSe 6 ), γ (Ag ∼6.08-∼4.00 Hg ∼0.96-∼2.00 GeSe 6 ), δ (Ag 3.4 Hg 2.3 GeSe 6 ), ε (Ag ∼2.24-∼2.00 Hg ∼2.88-∼3.00 GeSe 6 ) and ∼Ag 1.4 Hg 1.3 GeSe 6 was established. The crystal structure of the β-phase (for the Ag 6.504 Hg 0.912 GeSe 6 composition) was determined using X-ray single crystal diffraction. It crystallizes in a cubic structure (space group F4-bar 3m) with the lattice parameter a=1.09026(4) nm. The crystal structure of the δ-phase (Ag 3.4 Hg 2.3 GeSe 6 ) was determined using X-ray powder diffraction (space group F4-bar 3m, a=1.07767(8) nm). The crystal structure determination of the γ-phase (space group Pmn2 1 ) was performed for the compositions Ag 5.6 Hg 1.2 GeSe 6 , Ag 4.8 Hg 1.6 GeSe 6 and Ag 4 Hg 2 GeSe 6 using X-ray powder diffraction. The crystal structure of the LT-Hg 2 GeSe 4 compound (space group I4-bar , a=0.56786(2), c=1.12579(5) nm) was confirmed by powder diffraction also.

  13. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  14. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    International Nuclear Information System (INIS)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan

    2012-01-01

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, 1 H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  15. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  16. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  17. On structure of some laminated crystals with organic molecules

    International Nuclear Information System (INIS)

    Volodina, G.F.; Ivanova, V.Ya.; Malinovskij, T.I.

    1982-01-01

    A survey is made of papers dealing with intercalation of organic molecules into crystals of dihalcogenides of some transition metals (TaS 2 , TiS 2 , NbS 2 , ZrS 2 , TaSe 2 ), variation of their structure and physical properties. Among the used intercalates ammonia, pyridine, aniline and other aromatic amines proved to be most satisfactory from the viewpoint of reaction rate and product stability. A possibility is discussed of intercalation into PbI 2 and CdI 2 crystals that are of the same structural type as dihalcogenides

  18. Systematic analysis of crystal and molecular structures

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich; Dohnálek, Jan

    2012-01-01

    Roč. 19, č. 2 (2012), s. 86-87 ISSN 1211-5894. [Struktura 2012. Kolokvium Krystalografické společnosti. 11.06.2012-14.06.2012, Klatovy] R&D Projects: GA ČR GA310/09/1407 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : structure databases * structure-function relations * organic and inorganic materials Subject RIV: EE - Microbiology, Virology

  19. Optical properties and crystal structure of Eu3+ -doped Y2O3 crystals prepared under different conditions and with different methods

    International Nuclear Information System (INIS)

    Chung, Yong Hwa; Jang, Ki Wan; Kim, Il Gon; Kim Sang Su; Lee, Yong Ill; Park, Seong Tae; Seo, Hyo Jin

    2003-01-01

    The optical properties and the crystal structure of 6-mol% Eu 3+ -doped Y 2 O 3 powders prepared under different conditions and with different methods were studied through emission spectroscopy and X-ray powder diffraction. All samples exhibited the normal fluorescence spectrum of Eu 3+ -doped cubic Y 2 O 3 powders. The peak positions of the 5 D 0 → 7 F 0 transitions of Eu 3+ ions were shifted to the short-wavelength direction as the sintering temperature was lowered or the size of the host particle itself was decreased. The dynamic properties, such as the rise or the decay time of the 5 D 0 → 7 F 2 transition, depended on other factors than the size of the grain contained in each particle and the size of host particle itself. The morphologies of the studied samples were also observed by using a scanning electron microscope

  20. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  1. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  2. Solving crystal structures with the symmetry minimum function

    International Nuclear Information System (INIS)

    Estermann, M.A.

    1995-01-01

    Unravelling the Patterson function (the auto-correlation function of the crystal structure) (A.L. Patterson, Phys. Rev. 46 (1934) 372) can be the only way of solving crystal structures from neutron and incomplete diffraction data (e.g. powder data) when direct methods for phase determination fail. The negative scattering lengths of certain isotopes and the systematic loss of information caused by incomplete diffraction data invalidate the underlying statistical assumptions made in direct methods. In contrast, the Patterson function depends solely on the quality of the available diffraction data. Simpson et al. (P.G. Simpson et al., Acta Crystallogr. 18 (1965) 169) showed that solving a crystal structure with a particular superposition of origin-shifted Patterson functions, the symmetry minimum function, is advantageous over using the Patterson function alone, for single-crystal X-ray data.This paper describes the extension of the Patterson superposition approach to neutron data and powder data by (a) actively using the negative regions in the Patterson map caused by negative scattering lengths and (b) using maximum entropy Patterson maps (W.I.F. David, Nature 346 (1990) 731). Furthermore, prior chemical knowledge such as bond lengths and angles from known fragments have been included. Two successful structure solutions of a known and a previously unknown structure (M. Hofmann, J. Solid State Chem., in press) illustrate the potential of this new development. ((orig.))

  3. PAK4 crystal structures suggest unusual kinase conformational movements.

    Science.gov (United States)

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  4. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  5. Simulation and design of the photonic crystal microwave accelerating structure

    International Nuclear Information System (INIS)

    Song Ruiying; Wu Congfeng; He Xiaodong; Dong Sai

    2007-01-01

    The authors have derived the global band gaps for general two-dimensional (2D) photonic crystal microwave accelerating structures formed by square or triangular arrays of metal posts. A coordinate-space, finite-difference code was used to calculate the complete dispersion curves for the lattices. The fundamental and higher frequency global photonic band gaps were determined numerically. The structure formed by triangular arrays of metal posts with a missing rod at the center has advantages of higher-order-modes (HOM) suppression and main mode restriction under the condition of a/b<0.2. The relationship between the RF properties and the geometrical parameters have been studied for the 9.37 GHz photonic crystal accelerating structure. The Rs, Q, Rs/Q of the new structure may be comparable to the disk-loaded accelerating structure. (authors)

  6. Synthesis and crystal structures of three new benzotriazolylpropanamides

    Directory of Open Access Journals (Sweden)

    Donna S. Amenta

    2017-06-01

    Full Text Available The base-catalyzed Michael addition of 2-methylacrylamide to benzotriazole afforded 3-(1H-benzotriazol-1-yl-2-methylpropanamide, C10H12N4O (1, in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl-2-methylpropanamide, C10H12N4O (2. In a similar manner, 3-(1H-benzotriazol-1-yl-N,N-dimethylpropanamide, C11H14N4O (3, was prepared from benzotriazole and N,N-dimethylacrylamide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H...O and N—H...N bridges, as well as π–π interactions, while the molecules of 3 are aggregated to simple π-dimers in the crystal.

  7. Synthesis, Crystal Structure, Density Function Theory, Molecular ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research ... Purpose: To determine the exact structure and antimicrobial activity of 2-(3-(4 phenylpiperazin-1-yl) ... Besides HOMO– LUMO energy gap was performed at B3LYP/6-31G (d,p) level of theory.

  8. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  9. Diffusion pathway of mobile ions and crystal structure of ionic and mixed conductors. A brief review

    International Nuclear Information System (INIS)

    Yashima, Masatomo

    2009-01-01

    A brief review on the field of Solid State Ionics, including the diffusion pathway of mobile ions, crystal structure and materials, is presented. In the fluorite-structured ionic conductors such as ceria solid solution Ce 0.93 Y 0.07 O 1.96 , bismuth oxide solid solution δ-Bi 1.4 Yb 0.6 O 3 and copper iodide CuI, a similar curved diffusion pathway along the directions is observed. In the ionic and mixed conductors with the cubic ABO 3 perovskite-type structure such as lanthanum gallate and lanthanum cobaltite solid solutions, the mobile ions diffuse along a curved line keeping the interatomic distance between the B cation and O 2- anion to some degree. The structure and diffusion path of double-perovskite-type La 0.64 Ti 0.92 Nb 0.08 O 2.99 , K 2 NiF 4 -type (Pr 0.9 La 0.1 ) 2 (Ni 0.74 Cu 0.21 Ga 0.05 )O 4+δ , and apatite-type La 9.69 (Si 5.70 Mg 0.30 )O 26.24 are described. The diffusion paths of Li + ions in La 0.62 Li 0.16 TiO 3 and Li 0.6 FePO 4 are two- and one-dimensional, respectively. (author)

  10. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  11. Superconductivity in U-T alloys (T = Mo, Pt, Pd, Nb, Zr stabilized in the cubic γ-U structure by splat-cooling technique

    Directory of Open Access Journals (Sweden)

    N.-T.H. Kim-Ngan

    2016-06-01

    Full Text Available We succeed to retain the high-temperature (cubic γ-U phase down to low temperatures in U-T alloys with less required T alloying concentration (T = Mo, Pt, Pd, Nb, Zr by means of splat-cooling technique with a cooling rate better than 106 K/s. All splat-cooled U-T alloys become superconducting with the critical temperature Tc in the range of 0.61 K–2.11 K. U-15 at.% Mo splat consisting of the γ-U phase with an ideal bcc A2 structure is a BCS superconductor having the highest critical temperature (2.11 K.

  12. Nuclear spin relaxation due to motion on inequivalent sites: H diffusion on O and T sites in the face-centred cubic structure

    International Nuclear Information System (INIS)

    Luo Xinjun; Sholl, C A

    2003-01-01

    Magnetization recoveries for nuclear spin relaxation of like spins due to magnetic dipolar coupling and diffusion on inequivalent sites involve a sum of exponentials. The theory is applied to diffusion on octahedral and tetrahedral interstitial sites in the face-centred cubic structure. Monte Carlo simulations have been used to generate relaxation data for parameters typical for H in metals. It is found that only a single exponential would be observable in the high- and low-temperature limits, but that two-exponential recoveries could be observable in the vicinity of the maximum in the relaxation rate as a function of temperature. The Monte Carlo relaxation data has been fitted using a Bloembergen-Pound-Purcell (BPP) model to assess the accuracy of the BPP model

  13. Fermi surfaces of the pyrite-type cubic AuSb2 compared with split Fermi surfaces of the ullmannite-type cubic chiral NiSbS and PdBiSe

    Science.gov (United States)

    Nishimura, K.; Kakihana, M.; Nakamura, A.; Aoki, D.; Harima, H.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    We grew high-quality single crystals of AuSb2 with the pyrite (FeS2)-type cubic structure by the Bridgman method and studied the Fermi surface properties by the de Haas-van Alphen (dHvA) experiment and the full potential LAPW band calculation. The Fermi surfaces of AuSb2 are found to be similar to those of NiSbS and PdBiSe with the ullmannite (NiSbS)-type cubic chiral structure because the crystal structures are similar each other and the number of valence electrons is the same between two different compounds. Note that each Fermi surface splits into two Fermi surfaces in NiSbS and PdBiSe, reflecting the non-centrosymmetric crystal structure.

  14. Crystal structure and lithium ion conductivity of A-site deficient perovskites La1/3-xLi3xTaO3

    International Nuclear Information System (INIS)

    Mizumoto, Katsuyoshi; Hayashi, Shinsuke

    1997-01-01

    The crystal structure and lithium ion conductivity of La 1/3-x Li 3x TaO 3 solid solutions with the A-site deficient perovskite structure have been studied. Single phase solid solutions were obtained in the range of x=0 to 1/6. Change from tetragonal to cubic structure and decrease in the lattice volume were observed with increasing the x value. The maximum conductivity obtained was 7 x 10 -3 S·m -1 at x=0.06. The composition-dependence on the carrier concentration was calculated and compared with conductivity data. (author)

  15. Re-examination of the crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 by X-ray and convergent-beam electron diffraction analyses

    Science.gov (United States)

    Yamaura, Jun-Ichi; Hiroi, Zenji; Tsuda, Kenji; Izawa, Koichi; Ohishi, Yasuo; Tsutsui, Satoshi

    2009-01-01

    The crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 is re-examined. A single-crystal X-ray diffraction (XRD) analysis at room temperature first revealed that the compound crystallizes in a cubic structure with the centrosymmetric space group Fd3¯m, as in conventional pyrochlore oxides. Later, however, Schuck et al. claimed a different non-centrosymmetric F4¯3m structure based on their single-crystal XRD analysis. To unambiguously determine the true crystal structure of KOs 2O 6, we carried out high-resolution synchrotron powder X-ray and convergent-beam electron diffraction measurements at room temperature. The space group was determined with high reliability to be centrosymmetric Fd3¯m, not F4¯3m. This confirms the importance of the K atom location in a high-symmetry site, which causes unusually large rattling of the K atom.

  16. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  17. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    Science.gov (United States)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  18. Structural science using single crystal and pulse neutron scattering

    International Nuclear Information System (INIS)

    Noda, Yukio; Kimura, Hiroyuki; Watanabe, Masashi; Ishikawa, Yoshihisa; Tamura, Itaru; Arai, Masatoshi; Takahashi, Miwako; Ohshima, Ken-ichi; Abe, Hiroshi; Kamiyama, Takashi

    2008-01-01

    The application to single crystal neutron structural analysis is overviewed. Special attention is paid to the pulse neutron method, which will be available soon under J-PARC project in Japan. New proposal and preliminary experiment using Sirius at KENS are described. (author)

  19. Crystal structure, characterization and magnetic properties of a 1D ...

    Indian Academy of Sciences (India)

    Crystal structure, characterization and magnetic properties of a 1D copper(II) polymer incorporating a Schiff base with carboxylate side arm. SHYAMAPADA SHIT MADHUSUDAN NANDY CORRADO RIZZOLI CÉDRIC DESPLANCHES SAMIRAN MITRA. Regular Article Volume 128 Issue 6 June 2016 pp 913-920 ...

  20. BiFeO3 Crystal Structure at Low Temperatures

    International Nuclear Information System (INIS)

    Palewicz, A.; Sosnowska, I.; Przenioslo, R.; Hewat, A.W.

    2010-01-01

    The crystal and magnetic structure of BiFeO 3 have been studied with the use of high resolution neutron diffraction between 5 K and 300 K. The atomic coordinates in BiFeO 3 are almost unchanged between 5 K and 300 K. (authors)

  1. Effect of domains configuration on crystal structure in ferroelectric ...

    Indian Academy of Sciences (India)

    2017-09-09

    Sep 9, 2017 ... It is well known that domains and crystal structure control the physical properties of ferroelectrics. ... The as-prepared ceramics were crushed to fine pow- ders. ..... [1] Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H et al 2011.

  2. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  3. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  4. Isomorph invariance of the structure and dynamics of classical crystals

    DEFF Research Database (Denmark)

    Albrechtsen, Dan; Olsen, Andreas Elmerdahl; Pedersen, Ulf Rørbæk

    2014-01-01

    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework...

  5. short communication synthesis and crystal structure of a polymeric

    African Journals Online (AJOL)

    Preferred Customer

    A new polymeric zinc(II) complex, [ZnL2(PDA)]n, has been prepared by the reaction of zinc sulfate ... complex has been characterized by single-crystal X-ray diffraction. .... Molecular structure of the complex at 30% probability displacement.

  6. Characterization and crystal structures of new Schiff base macrocyclic compounds

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Ghoran, S.H.; Pojarová, Michaela; Dušek, Michal

    2015-01-01

    Roč. 56, č. 7 (2015), s. 1410-1414 ISSN 0022-4766 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : synthesis * macrocyclic Schiff base * single crystal structure analysis * spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.536, year: 2015

  7. Synthesis and structural characterization of CsNiP crystal

    Indian Academy of Sciences (India)

    Unknown

    The crystals obtained by this method were of good quality exhibiting ... type framework structure having Cs atoms inside it (figures. 3 and 4). This helps for .... Gopalakrishna G S, Prasad J S and Lokanath N K 2001 Proc. joint 4th and 6th ICSTR ...

  8. Variational cellular model of the molecular and crystal electronic structure

    International Nuclear Information System (INIS)

    Ferreira, L.G.; Leite, J.R.

    1977-12-01

    A variational version of the cellular method is developed to calculate the electronic structure of molecules and crystals. Due to the simplicity of the secular equation, the method is easy to be implemented. Preliminary calculations on the hydrogen molecular ion suggest that it is also accurate and of fast convergence [pt

  9. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  10. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  11. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  12. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  13. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  14. Crystal structure of non-stoichiometric copper selenides studied by neutron scattering and X-ray diffraction

    International Nuclear Information System (INIS)

    Bikkulova, N.N.; Yagafarova, Z.A.; Asylguzhina, G.N.; Danilkin, S.A.; Fuess, H.; Skomorokhov, A.N.; Yadrovskii, E.L.; Beskrovnyi, A.I.

    2003-01-01

    Structural characteristics of non-stoichiometric copper selenides were studied by the elastic neutron and X-ray scattering techniques. Rietveld analysis was used to refine the structure of the high-temperature β-phase of the Cu 1.75 Se, Cu 1.78 Se, and Cu 1.83 Se samples. The homogeneity ranges of the cubic phase were determined. The modification of the crystal structure accompanying the β-α phase transition was studied for Cu 1.75 Se and Cu 1.98 Se compounds within the 443-10 K temperature range. It was shown that the phase transition is accompanied by distortions of the fcc lattice and the ordering of copper ions

  15. Crystal modifications and dissolution rate of piroxicam.

    Science.gov (United States)

    Lyn, Lim Yee; Sze, Huan Wen; Rajendran, Adhiyaman; Adinarayana, Gorajana; Dua, Kamal; Garg, Sanjay

    2011-12-01

    Piroxicam is a nonsteroidal anti-inflammatory drug with low aqueous solubility which exhibits polymorphism. The present study was carried out to develop polymorphs of piroxicam with enhanced solubility and dissolution rate by the crystal modification technique using different solvent mixtures prepared with PEG 4000 and PVP K30. Physicochemical characteristics of the modified crystal forms of piroxicam were investigated by X-ray powder diffractometry, FT-IR spectrophotometry and differential scanning calorimetry. Dissolution and solubility profiles of each modified crystal form were studied and compared with pure piroxicam. Solvent evaporation method (method I) produced both needle and cubic shaped crystals. Slow crystallization from ethanol with addition of PEG 4000 or PVP K30 at room temperature (method II) produced cubic crystal forms. Needle forms produced by method I improved dissolution but not solubility. Cubic crystals produced by method I had a dissolution profile similar to that of untreated piroxicam but showed better solubility than untreated piroxicam. Cubic shaped crystals produced by method II showed improved dissolution, without a significant change in solubility. Based on the XRPD results, modified piroxicam crystals obtained by method I from acetone/benzene were cube shaped, which correlates well with the FTIR spectrum; modified needle forms obtained from ethanol/methanol and ethanol/acetone showed a slight shift of FTIR peak that may be attributed to differences in the internal structure or conformation.

  16. Protein crystal structure analysis using synchrotron radiation at atomic resolution

    International Nuclear Information System (INIS)

    Nonaka, Takamasa

    1999-01-01

    We can now obtain a detailed picture of protein, allowing the identification of individual atoms, by interpreting the diffraction of X-rays from a protein crystal at atomic resolution, 1.2 A or better. As of this writing, about 45 unique protein structures beyond 1.2 A resolution have been deposited in the Protein Data Bank. This review provides a simplified overview of how protein crystallographers use such diffraction data to solve, refine, and validate protein structures. (author)

  17. Crystal structure of new AsS2 compound

    International Nuclear Information System (INIS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS 2 single crystals have been obtained for the first time from an As 2 S 3 melt at pressures above 6 GPa and temperatures above 800 K in the As 2 S 3 → AsS + AsS 2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  18. Spatially periodic structures, under femtosecond pulsed excitation of crystals

    International Nuclear Information System (INIS)

    Martynovitch, Evgueni F.; Petite, Guillaume; Dresvianski, Vladimir P.; Starchenko, Anton A.

    2004-01-01

    Measuring the luminescence intensity of specially prepared irradiation defects induced in crystals, we observe that the longitudinal structure of quasi-interferences induced by two orthogonally polarized femtosecond pulses propagating together with different velocities is insensitive to the spatial broadening due to velocity dispersion in the crystals. On the contrary, it does depend on the pulse duration when it is changed by varying the spectral width of the radiation. It thus allows a direct measurement of the coherence time of such pulses. Stability of the axial selectivity is a good sign, taking away a number of serious limitations concerning possible applications

  19. Crystal structure representations for machine learning models of formation energies

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  20. Crystal structure and magnetism of UOsAl

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V., E-mail: andreev@fzu.cz [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Daniš, S. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Šebek, J.; Henriques, M.S.; Vejpravová, J. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Gorbunov, D.I. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum, Dresden-Rossendorf, D-01314 Dresden (Germany); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic)

    2017-04-15

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn{sub 2} type, space group P6{sub 3}/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10{sup −8} m{sup 3} mol{sup −1} (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol{sup −1} K{sup −2}. - Highlights: • Crystal structure and magnetic properties were studied on single crystal of UOsAl with hexagonal structure of MgZn{sub 2} type. • Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). • UOsAl has paramagnetic ground state as the compounds with T=Fe and Ru, i.e. 3d and 4d analogues of Os.

  1. Icosahedral symmetry described by an incommensurately modulated crystal structure model

    DEFF Research Database (Denmark)

    Wolny, Janusz; Lebech, Bente

    1986-01-01

    A crystal structure model of an incommensurately modulated structure is presented. Although six different reciprocal vectors are used to describe the model, all calculations are done in three dimensions making calculation of the real-space structure trivial. Using this model, it is shown that both...... the positions of the bragg reflections and information about the relative intensities of these reflections are in full accordance with the diffraction patterns reported for microcrystals of the rapidly quenched Al86Mn14 alloy. It is also shown that at least the local structure possesses full icosahedral...

  2. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  3. Crystal structure of N-(quinolin-6-ylhydroxylamine

    Directory of Open Access Journals (Sweden)

    Anuruddha Rajapakse

    2014-11-01

    Full Text Available The title compound, C9H8N2O, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked via one O—H...N and two N—H...N hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by O—H...N and N—H...O hydrogen bonds forming layers parallel to (001. These layers are linked via C—H...O hydrogen bonds and a number of weak C—H...π interactions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

  4. Production, purification, crystallization and structure determination of H-1 Parvovirus

    International Nuclear Information System (INIS)

    Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert; Agbandje-McKenna, Mavis

    2012-01-01

    The production, purification, crystallization and crystallographic analysis of H-1 Parvovirus, a gene-therapy vector, are reported. Crystals of H-1 Parvovirus (H-1PV), an antitumor gene-delivery vector, were obtained for DNA-containing capsids and diffracted X-rays to 2.7 Å resolution using synchrotron radiation. The crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 255.4, b = 350.4, c = 271.6 Å, β = 90.34°. The unit cell contained two capsids, with one capsid per crystallographic asymmetric unit. The H-1PV structure has been determined by molecular replacement and is currently being refined

  5. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin

    2005-01-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  6. First principles investigation of the structure of a bacteriochlorophyll crystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)]|[Centre d`Etudes Saclay, Gif-sur-Yvette (France); Hutter, J.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1996-08-21

    In this communication we present an ab initio study of the crystal of methyl bacteriophorbide (MeBPheo) a, a bacteriochlorophyll derivative, and high-precision structure of which is available. Our main purpose has been to investigate the viability of the technique toward complex molecular systems relevant to biologically important phenomena, in this particular case photosynthesis. Here we present the following results: First, we show that DFT is capable of calculating nuclear positions in excellent agreement with the experimental X-ray structure. Second, the calculated electronic density of the HOMO orbital reveals a {pi} type bond between rings I and III, consistent with the one-dimensional chain structure of the MeBPheo a molecules in the crystal. Finally, after performing the optimization of the molecular geometry with one electron in the LUMO state, we find localized bond length changes near the ring II of the MeBPheo a. 19 refs., 3 figs.

  7. High-brightness tapered laser diodes with photonic crystal structures

    Science.gov (United States)

    Li, Yi; Du, Weichuan; Kun, Zhou; Gao, Songxin; Ma, Yi; Tang, Chun

    2018-02-01

    Beam quality of tapered laser diodes is limited by higher order lateral mode. On purpose of optimizing the brightness of tapered laser diodes, we developed a novel design of tapered diodes. This devices based on InGaAs/AlGaAs asymmetry epitaxial structure, containing higher order lateral mode filtering schemes especially photonic crystal structures, which fabricated cost effectively by using standard photolithography and dry etch processes. Meanwhile, the effects of photonic crystal structures on mode control are also investigated theoretically by FDBPM (Finite-Difference Beam Propagation Method) calculation. We achieved a CW optical output power of 6.9W at 940nm for a single emitter with 4 mm cavity length. A nearly diffraction limited beam of M2 ≍1.9 @ 0.5W has been demonstrated, and a highest brightness of β =75MW/(cm2 ·sr) was reached.

  8. Crystal structure and thermal behavior of KB3O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Fundamenskij, V.S.; Filatov, S.K.; Polyakova, I.G.

    2004-01-01

    The structure of potassium triborate prepared in metastable state by crystallization from melt at ∼ 800 deg C was studied by the method of X-ray diffraction analysis. It was ascertained that KB 3 O 6 belongs to monoclinic crystal system, space group P2 1 /c, a = 9.319(1), b = 6.648(1), c = 21.094(2) A, β = 94.38(1) deg, Z = 12. The compound is referred to a new structural type. Anion of the structure is a single boron-oxygen frame formed by three independent rigid triborate rings of [B 3 O 5 ] - , each of them consisting of two BO 3 triangles and BO 4 tetrahedron. Phase transformations during KB 3 O 6 heating up to 800 deg C, as well as thermal expansion in the range of 20-650 deg C, were studied [ru

  9. Molecular Complex of Lumiflavin and 2-Aminobenzoic Acid : Crystal Structure, Crystal Spectra, and Solution Properties

    OpenAIRE

    Shieh, Huey-Sheng; Ghisla, Sandro; Hanson, Louise Karle; Ludwig, Martha L.; Nordman, Christer E.

    1981-01-01

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N402●C7H7N02●H2O)crystallizes from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 Å, c = 7.045 Å, α = 95.44°, β = 95.86°, and γ = 105.66°. The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating l...

  10. A novel high-temperature commensurate superstructure in a natural bariopyrochlore: A structural study by means of a multiphase crystal structure refinement

    International Nuclear Information System (INIS)

    Bindi, L.; Petricek, V.; Withers, R.L.; Zoppi, M.; Bonazzi, P.

    2006-01-01

    Additional X-ray diffraction effects yielding an eightfold commensurate superstructure [a=20.974(5)A] of the ideal pyrochlore structure were observed after annealing at 873K of a thallium-doped bariopyrochlore single crystal. Electron diffraction indicated the coexistence of two cubic phases, the pyrochlore structure and a new F-centred, cubic phase. The superstructure was solved and refined in the space group F4-bar 3m. The two phases were combined together and refined as independently diffracting to R=0.0628. The resulting unit-cell content is (A,-bar ) 20 Nb 16 Ti 2 O 53 (Z=8), with A=Ba, Tl, Ce, Th. For some atomic positions of the superstructure, third- and fourth-order anharmonic ADP's were used to account for the specific density shape having a continuous character as typical for ionic conductors. There are three distinct clusters in the superstructure, leading to a new structure type no longer strictly of pyrochlore-structure type

  11. Study of helium behaviour in body-centered cubic structures for new nuclear reactor generations: experimental approach in well characterized materials

    International Nuclear Information System (INIS)

    Gorondy-Novak, Sofia Maria

    2017-01-01

    The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions "4He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr

  12. Calcium Sulfoaluminate Sodalite (Ca 4 Al 6 O 12 SO 4 ) Crystal Structure Evaluation and Bulk Modulus Determination

    KAUST Repository

    Hargis, Craig W.

    2013-12-12

    The predominant phase of calcium sulfoaluminate cement, Ca 4(Al6O12)SO4, was investigated using high-pressure synchrotron X-ray diffraction from ambient pressure to 4.75 GPa. A critical review of the crystal structure of Ca4(Al 6O12)SO4 is presented. Rietveld refinements showed the orthorhombic crystal structure to best match the observed peak intensities and positions for pure Ca4(Al6O 12)SO4. The compressibility of Ca4(Al 6O12)SO4 was studied using cubic, orthorhombic, and tetragonal crystal structures due to the lack of consensus on the actual space group, and all three models provided similar results of 69(6) GPa. With its divalent cage ions, the bulk modulus of Ca4(Al6O 12)SO4 is higher than other sodalites with monovalent cage ions, such as Na8(AlSiO4)6Cl2 or Na8(AlSiO4)6(OH)2·H 2O. Likewise, comparing this study to previous ones shows the lattice compressibility of aluminate sodalites decreases with increasing size of the caged ions. Ca4(Al6O12)SO4 is more compressible than other cement clinker phases such as tricalcium aluminate and less compressible than hydrated cement phases such as ettringite and hemicarboaluminate. © 2013 The American Ceramic Society.

  13. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  14. The structural and electronic properties of cubic AgMO{sub 3} (M=Nb, Ta) by first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket [Department of Physics, Indian Institute of Technology Hyderabad, India, 502205 (India)

    2016-05-06

    We report the electronic structure of the AgMO{sub 3}(M=Nb, Ta) within the frame work of density functional theory and calculations are performed within the generalized gradient approximation (GGA) by using ultrasoft pseudopotentials. The calculated equilibrium lattice parameters and volumes are extracted from fitting of Birch third order equation of state and which are reasonable agreement with the available experimental results. The density of states,band structure of Ag(Nb,Ta)O{sub 3} reveals that the valance bands mostly occupied with O-2p and O-2s states and whereas conduction band occupied with Nb (Ta) 4d(5d) states including less contribution from Ag 5s states.

  15. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  16. Crystal structure optimisation using an auxiliary equation of state

    Science.gov (United States)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  17. Crystal structure optimisation using an auxiliary equation of state

    International Nuclear Information System (INIS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" data-affiliation=" (Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of))" >Walsh, Aron

    2015-01-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu 2 ZnSnS 4 and the magnetic metal-organic framework HKUST-1

  18. Crystal structure optimisation using an auxiliary equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  19. Crystal structure and ion-diffusion pathway of inorganic materials through neutron diffraction

    International Nuclear Information System (INIS)

    Yashima, Masatomo

    2012-01-01

    The present brief review describes the application of neutron powder diffractometry and maximum-entropy method to the studies of crystal structure and diffusional pathways of mobile ions in ionic conducting ceramic materials. La 0.62 Li 0.16 TiO 3 and L i0.6 FePO 4 exhibit two- and one-dimensional networks of Li cation diffusional pathways, respectively. In the fluorite-structure ionic conductors such as celia solid solution Ce 0.93 Y 0.07 O 1.96 , bismuth oxide solid solution δ-Bi 1.4 Yb 0.6 O 3 and copper iodide CuI, a similar curved diffusion pathway along the directions is observed. In the cubic ABO 3 perovskite-type ionic conductor, lanthanum gallate solid solution, the mobile ions diffuse along a curved line keeping the interatomic distance between the B cation and O 2- anion. We have experimentally confirmed that the anisotropic thermal motions of the apex O2 atom and the interstitial O3 atoms are essential for the high oxygen permeability of the K 2 NiF 4 -type mixed conductor. Diffusion paths of proton are visualized along c axis in hexagonal hydroxyapatite. (author)

  20. Interrelationship of crystal structure, infrared spectra and physicochemical properties of perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Bazuev, G V; Shveikin, G P [AN SSSR, Sverdlovsk. Inst. Khimii

    1975-12-01

    In the range 400-800 cm/sup -1/ a study has been made of infrared absorption spectra of perowskites ABO/sub 3/, where A is a rare-earth element or yttrium, B is Ti or V. A common feature of the infrared absorption spectra of perowskites ABO/sub 3/ is the presence of two intensive wide bands in the range 400-700 cm/sup -1/ one of which (low-frequency) is splitted into two or three components. The spectrum of LaTiO/sub 3/ is distinguished from spectra of other compounds. In the range measured this compound is non-transparent for electromagnetic radiation. On the basis of determination of temperature dependences of the electric resistance it is found that LaTiO/sub 3/ has metallic conductivity unlike other perowskites studied which are semiconductors. The spectrum of EuTiO/sub 3/ also differs from other spectra. It is close in its structure and position of bands to the spectrum of cubic perowskite, SrTiO/sub 3/. The splitting of the low-frequency band into two and in the case of TbVO/sub 3/ into three components is caused by deformation of crystal structures of these compounds. A direct dependence between the value of splitting and the deformation degree is observed.

  1. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting.

    Science.gov (United States)

    Dallago, M; Fontanari, V; Torresani, E; Leoni, M; Pederzolli, C; Potrich, C; Benedetti, M

    2018-02-01

    Traditional implants made of bulk titanium are much stiffer than human bone and this mismatch can induce stress shielding. Although more complex to produce and with less predictable properties compared to bulk implants, implants with a highly porous structure can be produced to match the bone stiffness and at the same time favor bone ingrowth and regeneration. This paper presents the results of the mechanical and dimensional characterization of different regular cubic open-cell cellular structures produced by Selective Laser Melting (SLM) of Ti6Al4V alloy, all with the same nominal elastic modulus of 3GPa that matches that of human trabecular bone. The main objective of this research was to determine which structure has the best fatigue resistance through fully reversed fatigue tests on cellular specimens. The quality of the manufacturing process and the discrepancy between the actual measured cell parameters and the nominal CAD values were assessed through an extensive metrological analysis. The results of the metrological assessment allowed us to discuss the effect of manufacturing defects (porosity, surface roughness and geometrical inaccuracies) on the mechanical properties. Half of the specimens was subjected to a stress relief thermal treatment while the other half to Hot Isostatic Pressing (HIP), and we compared the effect of the treatments on porosity and on the mechanical properties. Fatigue strength seems to be highly dependent on the surface irregularities and notches introduced during the manufacturing process. In fully reversed fatigue tests, the high performances of stretching dominated structures compared to bending dominated structures are not found. In fact, with thicker struts, such structures proved to be more resistant, even if bending actions were present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Synthesis of single-crystal PbS nanorods via a simple hydrothermal process using PEO-PPO-PEO triblock copolymer as a structure-directing agent

    International Nuclear Information System (INIS)

    Bu Junfu; Nie Chageng; Liang Jinxia; Sun Lan; Xie Zhaoxiong; Wu Qi; Lin Changjian

    2011-01-01

    Single-crystal PbS nanorods were successfully synthesized through a simple hydrothermal route using PEO-PPO-PEO triblock copolymer (P123) as a structure-directing agent. The XRD pattern indicates that the crystal structure of the nanorods is face-centre-cubic rocksalt. A SEM image shows that the nanorods have a diameter of 40-70 nm and a length of 200-600 nm, and both tips exhibit taper-like structures. HRTEM and SAED images reveal the single-crystalline nature of the nanorods with the growth along the (111) direction. The experimental results indicated that the P123 concentration and reaction temperature played important roles in controlling the morphology of the PbS nanostructures. The optical property of PbS nanorods was investigated by UV-Vis absorption spectroscopy and the band structure was calculated by the B3LYP hybrid density functional theory.

  3. CRYSTAL AND MOLECULAR STRUCTURE OF 5-NITROPIRIDINE PIPERIDINE-SULFENAMIDE

    OpenAIRE

    Brito, Iván; León, Yasna; Arias, Mauricio; Vargas, Danitza; Carmona, Francisco; Ramírez, Eduardo; Restovic, Ambrosio; Cárdenas, Alejandro; Wittke, Oscar; López-Rodríguez, Matías

    2002-01-01

    The crystal and molecular structure of 5-nitropiridine piperidine-sulfenamide, C10H13N3O2 S is described and compared with other sulfenamides and with other similar compounds. This structure belongs to a type of divalent sulphur compound and crystallizes in the orthorhombic space group Pnma with a= 27.810(4), b=6.797(1), c=6.110(1)Å, and Dx =1.376 g cm-3 with Z=4. The S-N bond distance of 1.699(4) Å is shorter than a single S-N bond [1.74 Å]. The NO2-(C6H3N)-S-N(C 5H10) molecule lies on a cry...

  4. Parallelization for X-ray crystal structural analysis program

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Minami, Masayuki; Yamamoto, Akiji

    1997-10-01

    In this report we study vectorization and parallelization for X-ray crystal structural analysis program. The target machine is NEC SX-4 which is a distributed/shared memory type vector parallel supercomputer. X-ray crystal structural analysis is surveyed, and a new multi-dimensional discrete Fourier transform method is proposed. The new method is designed to have a very long vector length, so that it enables to obtain the 12.0 times higher performance result that the original code. Besides the above-mentioned vectorization, the parallelization by micro-task functions on SX-4 reaches 13.7 times acceleration in the part of multi-dimensional discrete Fourier transform with 14 CPUs, and 3.0 times acceleration in the whole program. Totally 35.9 times acceleration to the original 1CPU scalar version is achieved with vectorization and parallelization on SX-4. (author)

  5. Band structure and optical properties of opal photonic crystals

    Science.gov (United States)

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-07-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.

  6. An arc detector for neutron crystal structure investigations

    Energy Technology Data Exchange (ETDEWEB)

    Habib, N [Reactor and Neutron Physics Dept., Nuclear Research Center. AEA, Cairo (Egypt)

    1997-12-31

    An arc detector for neutron structure investigations of powder crystals using time-of-flight technique is described. In order to enable the measurement of integral intensity from about 1/4 of the Debye-Scherrer ring and for simplicity reasons, the scattering angle 20-90 degree was chosen and a special arc collimator was built. The arc collimator-detector had a divergency of about 20 minutes of arc, and the distance between detector-sample was 64 cm. Four {sup 3} He detectors were fixed on the arc of the collimator. Both efficiency and space sensitivity of the detector were determined using a point neutron source. Results of measurements show that parameters of the arc detector are acceptable for high resolution crystal structure investigations. 6 figs.

  7. Crystal structure of N′-hydroxypyrimidine-2-carboximidamide

    Directory of Open Access Journals (Sweden)

    Nithianantham Jeeva Jasmine

    2014-10-01

    Full Text Available The title compound, C5H6N4O, is approximately planar, with an angle of 11.04 (15° between the planes of the pyrimidine ring and the non-H atoms of the carboximidamide unit. The molecule adopts an E configuration about the C=N double bond. In the crystal, adjacent molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(10 ring motif. The dimers are further linked via N—H...N and O—H...N hydrogen bonds into a sheet structure parallel to the ac plane. The crystal structure also features N—H...O and weak C—H...O hydrogen bonds and offset π–π stacking interactions between adjacent pyrimidine rings [centroid–centroid distance = 3.622 (1 Å].

  8. Transfiguring structural, optical and dielectric properties of cadmium thiourea acetate crystal by the addition of L-threonine for laser assisted device applications

    Science.gov (United States)

    Kulkarni, Rupali B.; Anis, Mohd; Hussaini, S. S.; Shirsat, Mahendra D.

    2018-03-01

    Present investigation reports the growth of pure and L-threonine (LT) doped cadmium thiourea acetate (CTA) crystals by slow solution evaporation technique followed by structural, optical and dielectric characterization studies. A bulk single crystal of LT-CTA has been grown at temperature 38 °C. The single crystal x-ray diffraction technique has been employed to confirm the structural parameters of pure and LT doped CTA crystals. The increase in optical transparency of LT-CTA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The widened optical band gap of the LT-CTA crystal is found to be 4.7 eV. Pure and doped crystals are subjected to FT-IR analysis to indicate the presence of functional groups quantitatively. Appreciable enhancement in second harmonic generation (SHG) efficiency of LT-CTA crystal with reference to parent CTA was confirmed from Kurtz-Perry SHG test (1.31 times of CTA crystal). The assertive influence of LT on electrical properties of grown crystals has been investigated in the temperature range 35 °C-120 °C. Electronic purity and the color centered photoluminescence emission nature of pure and IA-CTA crystals were justified by luminescence analysis. With the aid of single beam Z-scan analysis, the Kerr lensing nonlinearity was identified and the magnitude of TONLO parameters has been determined. The cubic susceptibility (χ3) and figure of merit (FOM) was found to be 4.81 × 10-4esu and 978.35. Results vitalize LT-CTA for laser stabilization systems.

  9. CCDC 1515632: Experimental Crystal Structure Determination : hexakis(dimethyl sulfoxide)-manganese(ii) tetraiodide

    KAUST Repository

    Haque, M.A.; Davaasuren, Bambar; Rothenberger, Alexander; Wu, Tao

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  10. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  11. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  12. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  13. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  14. Potassium and magnesium succinatouranilates – Synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, S.A., E-mail: serg.alex.novikov@gmail.com [Samara National Research University, 443086 Samara (Russian Federation); Grigoriev, M.S. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow (Russian Federation); Serezhkina, L.B.; Serezhkin, V.N. [Samara National Research University, 443086 Samara (Russian Federation)

    2017-04-15

    Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}] [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), where C{sub 4}H{sub 4}O{sub 4}{sup 2-} is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} with the same A{sub 2}Q{sup 02}{sub 3} crystallochemical formula (A=UO{sub 2}{sup 2+}, Q{sup 02}=C{sub 4}O{sub 4}H{sub 4}{sup 2-}), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ions is one of the factors, which affects the structure of [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A{sub 2}Q{sup 02}{sub 3} crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality. - Graphical abstract: Crystal structures of two new uranium(VI) coordination polymers with succinate linkers, namely K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}][(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), were determined by single-crystal XRD. Crystals of studied compounds are based on 2D or 1D structural units with the same composition and crystallochemical formula. Topological isomerism in A{sub 2}Q{sup 02}{sub 3} crystallochemical group and conformations of succinate anions in uranyl complexes are under discussion. - Highlights: • Two new uranium coordination polymers were synthesized. • Their structural units have the same composition and crystallochemical formula. • In spite the same composition and CCF dimensionality of units is different. • Structural features of uranyl CPs

  15. Crystal Structure of the Human Laminin Receptor Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  16. Incommensurate composite crystal structure of scandium-II

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki

    2005-01-01

    The long-unknown crystal structure of the high pressure phase scandium-II was solved by powder x-ray diffraction and was found to have tetragonal host channels along the c axis and guest chains that are incommensurate with the host, as well as the high pressure phases of Ba, Sr, Bi, and Sb. The pressure dependences of the lattice constants, the incommensurability, the atomic distances, and the atomic volume were investigated

  17. Band structure and optical properties of opal photonic crystals

    OpenAIRE

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-01-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order...

  18. Crystal structures of unsymmetrically mixed β-pyrrole substituted ...

    Indian Academy of Sciences (India)

    NiTPP(Ph)3(CN)5, 3 complex was synthesized and its solvated structure was examined by crystallography. ... sive interactions among the peripheral substituents.28,29 ... 1H NMR spectra of porphyrins were. 1047 ... Single crystals of MTPP(Ph)3Cl5 (M = 2H and Ni(II)) .... by ∼0.3–0.6ppm but β-pyrrole phenyls do not show.

  19. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution......-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Udgivelsesdato: 2007-Dec-13...

  20. Crystal structure studies on plate/shelf like disodium ditungstate

    Indian Academy of Sciences (India)

    Inorganic materials; disodium ditungstate; crystal structure; scanning electron microscopy; X-ray ... generation, and horizontal electric furnace with quartz tube ... Unit cell dimensions: a = 7·22192(11) Е, b = 11·91559(17) Е, c = 14·74755(23) Е. Cell content: 8 Na2W2O7). Atom. Position. X(σ(X)). Y(σ(Y)). Z(σ(Z)). B(σ(B)). W (1).

  1. Crystal structure of the uranyl-oxide mineral rameauite

    Czech Academy of Sciences Publication Activity Database

    Plášil, Jakub; Škoda, R.; Čejka, J.; Bourgoin, V.; Boulliard, J.C.

    2016-01-01

    Roč. 28, č. 5 (2016), s. 959-967 ISSN 0935-1221 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : rameauite * uranyl-oxide hydroxy-hydrate * crystal structure * Raman spectrum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.362, year: 2016

  2. The influence of crystal structure on ion-irradiation tolerance in the Sm{sub (x)}Yb{sub (2-x)}TiO{sub 5} series

    Energy Technology Data Exchange (ETDEWEB)

    Aughterson, R.D., E-mail: roa@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Lumpkin, G.R.; Reyes, M. de los [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia); Gault, B. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Baldo, P.; Ryan, E. [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Whittle, K.R. [Centre for Materials and Structures, School of Engineering, The University of Liverpool, Liverpool L69 3GH UK (United Kingdom); Smith, K.L. [Government International and External Relations, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia); Cairney, J.M. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2016-04-01

    This ion-irradiation study covers the four major crystal structure types in the Ln{sub 2}TiO{sub 5} series (Ln = lanthanide), namely orthorhombic Pnma, hexagonal P6{sub 3}/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. This is the first systematic examination of the complete Ln{sub 2}TiO{sub 5} crystal system and the first reported examination of the hexagonal structure. A series of samples, based on the stoichiometry Sm{sub (x)}Yb{sub (2-x)}TiO{sub 5} (where x = 2, 1.4, 1, 0.6, and 0) have been irradiated using 1 MeV Kr{sup 2+} ions and characterised in-situ using a transmission electron microscope. Two quantities are used to define ion-irradiation tolerance: critical dose of amorphisation (D{sub c}), which is the irradiating ion dose required for a crystalline to amorphous transition, and the critical temperature (T{sub c}), above which the sample cannot be rendered amorphous by ion irradiation. The structure type plus elements of bonding are correlated to ion-irradiation tolerance. The cubic phases, Yb{sub 2}TiO{sub 5} and Sm{sub 0.6}Yb{sub 1.4}TiO{sub 5}, were found to be the most radiation tolerant, with T{sub c} values of 479 and 697 K respectively. The improved radiation tolerance with a change in symmetry to cubic is consistent with previous studies of similar compounds.

  3. Growth and structural, optical, and electrical properties of zincite crystals

    Science.gov (United States)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  4. The Synthesis and Crystal Structure of Two New Hydrazone Compounds

    Directory of Open Access Journals (Sweden)

    Li-Hua Wang

    2016-05-01

    Full Text Available Two new hydrazone compounds, 4-formylimidazole-4-hydroxybenzhydrazone dihydrate (1 and 2-nitrobenzaldehyde-2-furan formylhydrazone (2, were synthesized via the classical synthesis method. Their structure was determined via elemental analysis and X-ray single crystal diffraction analysis. Compound 1 crystallizes in triclinic, space group P-1 with a = 7.0321(14 Å, b = 7.3723(15 Å, c = 13.008(3 Å, α = 98.66(3°, β = 101.69(3°, γ = 92.25(3°, V = 651.2(2 Å3, Z = 2, Dc = 1.358 g·cm−3, μ = 0.106 mm−1, F(000 = 280, and final R1 = 0.0564, wR2 = 0.1420. Compound 2 crystallizes in monoclinic, space group P21/c with a = 17.3618(9 Å, b = 9.1506(4 Å, c = 15.5801(7 Å, β = 104.532(5°, V = 2396.05(19 Å3, Z = 8, Dc = 1.437 g·cm−3, μ = 0.111 mm−1, F(000 = 1072, and final R1 = 0.0633, wR2 = 0.1649. Compound 1 forms a 2D-layered structure via the interactions of 1D chains and Compound 2 forms a 3D network structure via the interactions of 1D chains.

  5. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M.; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  6. Structural, electronic, optical and thermodynamic properties of cubic REGa{sub 3} (RE = Sc or Lu) compounds: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Laboratory, Department of Physics, Islamia College Peshawar (Pakistan); Gupta, S.K. [Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States); Seddik, T. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Alahmed, Z.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Khachai, H. [Physics Department, Djillali Liabes University of Sidi Bel-Abbes (Algeria); Jha, P.K. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2014-06-01

    Highlights: • REGa{sub 3} (RE = Sc or Lu) compounds are mechanical stabile. • Both ScGa{sub 3} and LuGa{sub 3} exhibit metallic behavior just like other REGa{sub 3} compounds. • Melting temperature T{sub m} (K) for ScGa{sub 3} and LuGa{sub 3} are 1244.2 and 1143.8. • High absorption observed in the visible energy region. • The present study would be helpful for future experimental/theoretical explorations. - Abstract: Structural, elastic, optoelectronic and thermodynamic properties of REGa{sub 3} (RE = Sc and Lu) compounds have been studied self consistently by employing state of the art full potential (FP) linearized (L) approach of augmented plane wave (APW) plus local orbitals method. Calculations were executed at the level of Perdew–Burke and Ernzerhof (PBE) parameterized generalized gradient approximation (GGA) for exchange correlation functional in addition to modified Becke–Johnson (mBJ) potential. Our obtained results of lattice parameters show reasonable agreement to the previously reported experimental and other theoretical studies. Analysis of the calculated band structure of ScGa{sub 3} and LuGa{sub 3} compounds demonstrates their metallic character. Moreover, a positive value of calculated Cauchy pressure, in addition to reflecting their ductile nature, endorses their metallic character as well. To understand optical behavior calculations related to the important optical parameters; real and imaginary parts of the dielectric function, reflectivity R(ω), refractive index n(ω) and electron energy-loss function L(ω) have also been performed. In the present work, thermodynamically properties are also investigated by employing lattice vibrations integrated in quasi harmonic Debye model. Obtained results of volume, heat capacity and Debye temperature as a function of temperature for both compounds, at different values of pressure, are found to be consistent. The calculated value of melting temperature for both compounds (ScGa{sub 3} and Lu

  7. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  8. Molecular complex of lumiflavin and 2-aminobenzoic acid: crystal structure, crystal spectra, and solution properties.

    Science.gov (United States)

    Shieh, H S; Ghisla, S; Hanson, L K; Ludwig, M L; Nordman, C E

    1981-08-04

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N4O2.C7H7NO2.H2O) crystallizes from from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 A, c = 7.045 A, alpha = 95.44 degrees , beta = 95.86 degrees, and gamma = 105.66 degrees . The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating lumiflavin adn un-ionized (neutral) 2-aminobenzoic acid molecules. Two different modes of stacking interaction are observed. In one, 2-aminobenzoic acid overlaps all three of the isoalloxazine rings, at a mean distance of 3.36 A; in the other, 2-aminobenzoic acid interacts distance of 3.36 A; in the other, 2-aminobenzoic acid interacts with the pyrazine and dimethylbenzene moieties, at a distance of 3.42 A. Perpendicular to the stacking direction, the molecules form a continuous sheet. Each flavin is hydrogen bonded via O(2) and NH(3) to two symmetrically related aminobenzoates; the water of crystallization forms three hydrogen bonds, bridging two flavins, via O(4) and N(5), and one aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid molecules. Measurements of the polarized optical absorption spectra of crystals show that the transition moment direction for the long wavelength absorbance (beyond 530 nm) contains an out-of-plane component which can only arise from a charge-transfer interaction. Since the amino N does not make exceptionally close interactions with isoalloxazine atoms in either stacking mode (minimum interatomic distance 3.52 A), the charge transfer is presumed to involve pi orbitals of the 2-aminobenzoic acid donor.

  9. Preparation and Crystal Structures of Some AIVB2IIO4 Compounds: Powder X-Ray Diffraction and Rietveld Analysis

    Directory of Open Access Journals (Sweden)

    K. Jeyadheepan

    2014-01-01

    Full Text Available The AIVB2IIO4 compounds such as cadmium tin oxide (Cd2SnO4 or CTO and zinc tin oxide (Zn2SnO4 or ZTO are synthesized by solid state reaction of the subsequent binary oxides. The synthesized powders were analyzed through the powder X-ray diffraction (PXRD. Cell search done on the PXRD patterns shows that the Cd2SnO4 crystallizes in orthorhombic structure with space group Pbam and the cell parameters as a=5.568(2 Å, b=9.894(3 Å, and c=3.193(1 Å and the Zn2SnO4 crystallizes as cubic with the space group Fd3 -m and with the cell parameter a=8.660(2 Å. Rietveld refinement was done on the PXRD patterns to get the crystal structure of the Cd2SnO4 and Zn2SnO4 and to define the site deficiency of atoms which causes the electrical properties of the materials.

  10. Crystal structure of inactive form of Rab3B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China); Shen, Yang [Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario, Canada M5G 1L7 (Canada); Jiao, Ronghong [Department of Function Inspection, Hebei Provincial People' s Hospital, Shijiazhuang 050051 (China); Liu, Yanli; Deng, Lingfu [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China); Qi, Chao, E-mail: qichao@mail.ccnu.edu.cn [Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079 (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer This is the first structural information of human Rab3B. Black-Right-Pointing-Pointer To provides a structural basis for the GDP/GTP switch in controlling the activity of Rab3. Black-Right-Pointing-Pointer The charge distribution of Rab3B indicates its unique roles in vesicular trafficking. -- Abstract: Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 A resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  11. Crystal structure of inactive form of Rab3B

    International Nuclear Information System (INIS)

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao

    2012-01-01

    Highlights: ► This is the first structural information of human Rab3B. ► To provides a structural basis for the GDP/GTP switch in controlling the activity of Rab3. ► The charge distribution of Rab3B indicates its unique roles in vesicular trafficking. -- Abstract: Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 Å resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  12. Temperature dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3

    International Nuclear Information System (INIS)

    Arenholz, Elke; Mannella, N.; Booth, C.H.; Rosenhahn, A.; Sell, B.C.; Nambu, A.; Marchesini, S.; Mun, B. S.; Yang, S.-H.; Watanabe, M.; Ibrahim, K.; Arenholz, E.; Young, A.; Guo, J.; Tomioka, Y.; Fadley, C.S.

    2007-01-01

    We have studied the temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La 1-x Sr x MnO 3 (x= 0.3-0.4) with core and valence level photoemission (PE), x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), resonant inelastic x-ray scattering (RIXS), extended x-ray absorption fine structure (EXAFS) spectroscopy and magnetometry. As the temperature is varied across the Curie temperature T c , our PE experiments reveal a dramatic change of the electronic structure involving an increase in the Mn spin moment from ∼ 3 (micro)B to ∼ 4 (micro)B, and a modification of the local chemical environment of the other constituent atoms indicative of electron localization on the Mn atom. These effects are reversible and exhibit a slow-timescale ∼200 K-wide hysteresis centered at T c . Based upon the probing depths accessed in our PE measurements, these effects seem to survive for at least 35-50 (angstrom) inward from the surface, while other consistent signatures for this modification of the electronic structure are revealed by more bulk sensitive spectroscopies like XAS and XES/RIXS. We interpret these effects as spectroscopic fingerprints for polaron formation, consistent with the presence of local Jahn-Teller distortions of the MnO 6 octahedra around the Mn atom, as revealed by the EXAFS data. Magnetic susceptibility measurements in addition show typical signatures of ferro-magnetic clusters formation well above the Curie temperature

  13. Crystal Structure of the Yeast Nicotinamidase Pnc1p

    OpenAIRE

    Hu, Gang; Taylor, Alexander B.; McAlister-Henn, Lee; Hart, P. John

    2007-01-01

    The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9 Å resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni2+-coupled chro...

  14. Band structures in the nematic elastomers phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuai [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); School of Civil Engineering and Architecture, Anyang Normal University, Anyang 455000 (China); Liu, Ying, E-mail: yliu5@bjtu.edu.cn [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liang, Tianshu [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  15. Band structures in the nematic elastomers phononic crystals

    International Nuclear Information System (INIS)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-01-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  16. Synthesis and Single Crystal X-Ray Structure Determination of 3,3',5 ...

    African Journals Online (AJOL)

    Single crystal structure determination at 100 K revealed needle-like crystals in an orthorhombic crystal system. The asymmetric unit of the cell consists of an isolated chloride ion, one half of a tetrahedral [MnCl4]2- anion, a [H2Me4bpz]2+ dication and one half of a molecule of water. Keywords: Crystal Engineering, Hydrogen ...

  17. Tailoring the Crystal Structure of Nanoclusters Unveiled High Photoluminescence via Ion Pairing

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2018-03-26

    The lack of structurally distinct nanoclusters (NCs) of identical size and composition prevented the mechanistic understanding of their structural effects on ion pairing and concomitant optical properties. To produce such highly sought NCs, we designed a new monothiolate-for-dithiolate exchange strategy that enabled the selective transformation of the structure of a NC without affecting its metal atomicity or composition. Through this method, a bimetallic [PtAg28(BDT)12(PPh3)4]4– NC (1) was successfully synthesized from [PtAg28(S-Adm)18(PPh3)4]2+ NC (2) (S-Adm, 1-adamantanethiolate; BDT, 1,3-benzenedithiolate; PPh3, triphenylphosphine). The determined X-ray crystal structure of 1 showed a PtAg12 icosahedron core and a partially exposed surface, which are distinct from a face-centered cubic PtAg12 core and a fully covered surface of 2. We reveal through mass spectrometry (MS) that 1 forms ion pairs with counterions attracted by the core charge of the cluster, which is in line with density functional simulations. The MS data for 1, 2, and other NCs suggested that such attraction is facilitated by the exposed surface of 1. The formation of ion pairs increases the photoluminescence (PL) quantum yield of 1 up to 17.6% depending on the bulkiness of the counterion. Unlike small counterions, larger ones are calculated to occupy ≤90% of the volume near the exposed cluster surface and to make the ligand shell of 1 more rigid, which is observed to increase the PL. Thus, the developed synthesis strategy for structurally different NCs of the same size and composition allows us to probe the structure–property relationship for ion pairing and concomitant PL enhancement.

  18. Natural Cr3+-rich ettringite: occurrence, properties, and crystal structure

    Science.gov (United States)

    Seryotkin, Yurii V.; Sokol, Ella V.; Kokh, Svetlana N.; Murashko, Mikhail N.

    2017-08-01

    Cr3+-rich ettringite with Cr3+→Al substitution and Cr/(Cr + Al) ratios up to 0.40-0.50 was found in mineral assemblages of the Ma'aleh Adumim area of Mottled Zone (Judean Desert). The Cr3+-rich compositions were the latest in the thaumasite → ettringite-thaumasite solid solution → ettringite → ettringite-bentorite solid solution series. The mineral-forming solution was enriched in Cr3+ and had a pH buffered by afwillite at 11-12. Chromium was inherited from larnite rocks produced by high-temperature combustion metamorphic alteration of bioproductive calcareous sediments. The Cr/(Cr + Al) ratios are within 0.10-0.15 in most of the analysed crystals. This degree of substitution imparts pink colouration to the crystals, but does not affect their habit (a combination of monohedra and a prism). The habit changes to pyramid faces in coarse and later Cr3+-bearing crystals as Cr/(Cr + Al) ratios increase abruptly to 0.40-0.50. Single-crystal XRD analysis of one Cr-free and two Cr3+-rich samples and their structure determination and refinement indicate that the Cr-rich crystals (with Cr/(Cr + Al) to 0.3) preserve the symmetry and metrics of ettringite. The Ca-O bonding network undergoes differentiation with increase of Cr3+ concentration at octahedral M sites. The compression of Ca2 and expansion of Ca1 polyhedra sub-networks correlates with the degree of Cr3+→Al substitution.

  19. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    RNA serves a number of functions in the cell: mRNAs are the carriers of information between gene and protein, tRNAs and rRNAs are involved in the synthesis of proteins, whereas a number of additional RNA species are responsible for other functions in the cell. The quality of the different RNAs...... RNAs. We have solved the structures of two nucleases involved in 3'-5' degradation of RNA; the S. pombe Pop2p and the S. cerevisiae Rrp6p. Pop2p is part of the main cytoplasmatic deadenylation complex in yeast, which also contains the nuclease Ccr4p. Deadenylation, where the poly(A)-tail is removed...... specific transcripts. Here, we present the crystal structure of the S. pombe Pop2p protein to 1.4 Å resolution. The high resolution structure provides a clear picture of the active site architecture. Structural alignment of single nucleotides and poly(A)-oligonucleotides from earlier co-crystal structures...

  20. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  1. Magnetic activity at infrared frequencies in structured metallic photonic crystals

    International Nuclear Information System (INIS)

    O'Brien, S.; Pendry, J.P.

    2002-01-01

    We derive the effective permeability and permittivity of a nanostructured metallic photonic crystal by analysing the complex reflection and transmission coefficients for slabs of various thicknesses. These quantities were calculated using the transfer matrix method. Our results indicate that these structures could be used to realize a negative effective permeability, at least up to infrared frequencies. The origin of the negative permeability is a resonance due to the internal inductance and capacitance of the structure. We also present an analytic model for the effective permeability of the crystal. The model reveals the importance of the inertial inductance due to the finite mass of the electrons in the metal. We find that this contribution to the inductance has implications for the design of metallic magnetic structures in the optical region of the spectrum. We show that the magnetic activity in the structure is accompanied by the concentration of the incident field energy into very small volumes within the structure. This property will allow us to considerably enhance non-linear effects with minute quantities of material. (author)

  2. Synthesis, crystal structure and luminescent properties of a new pyrochlore type tungstate CsGa0.333W1.667O6

    Science.gov (United States)

    Zhao, Dan; Zhao, Ji; Fan, Yun-Chang; Ma, Zhao; Zhang, Rui-Juan; Liu, Bao-Zhong

    2018-06-01

    High temperature solution reaction leads to a new tungstate compound CsGa0.333W1.667O6, whose structure was determined by single-crystal X-ray diffraction analysis. The results show that it crystallizes in pyrochlore structure with cubic space group Fd-3m and a = 10.2529 (13) Å. In this structure, Ga and W atoms are in a statistical disorder manner. The self-activated luminescent properties CsGa0.333W1.667O6 were studied. Under the excitation of 323 nm, the emission spectrum exhibits a blue emission centered at 466 nm with the chromaticity coordinates (0.1838, 0.1814).

  3. Relation between photochromic properties and molecular structures in salicylideneaniline crystals.

    Science.gov (United States)

    Johmoto, Kohei; Ishida, Takashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2012-06-01

    The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.

  4. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    Science.gov (United States)

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.

  5. Crystal structure and thermal behaviour of boro-pollucite CsBSi2O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Stepanov, N.K.; Filatov, S.K.; Levin, A.A.; Paufler, P.; Meyer, D.C.

    2004-01-01

    The crystal structure of Cs 0.82 B 1.09 Si 1.98 O 6 boro-pollucite at room temperature was determined by direct methods and refined in the l a 3-bar d space group using an anisotropic approximation of atomic thermal displacements (a = 13.009 (1) angstrom, Z = 16, R w = 0.027, R F = 0.037 for 141 independent observed (IFI ≥4σ F ) reflections). The occupancy factors have been refined for Cs and tetrahedral positions assuming the oxygen sites being fully occupied. The compound is isostructural to leucite pollucite high-temperature modification. Thermal behaviour of CsBSi 2 O 6 was investigated by DTA and TG, annealing at different temperatures with following wet chemical analysis and high-temperature X-ray powder diffraction methods. The CsBSi 2 O 6 cubic phase loses mass before melting and decomposes to form a new crystalline phase with close to CsBSi 3 O 8 stoichiometry in the temperature range of 1303 353 K. Thermal expansion of two boro-pollucite samples, which differed in the number of Cs + and/or B 3+ ions of a nominal composition CsBSi 2 O 6 was investigated in air as well as in vacuum. Temperature ranges of negative thermal expansion were found. (authors)

  6. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE OF BIS-(2-HYDROXYBENZALDEHYDEDIAMINOGUANIZONE

    Directory of Open Access Journals (Sweden)

    Diana Dragancea, Vladimir B. Arion, Sergiu Shova

    2008-12-01

    Full Text Available The new ligand, bis(2-hydroxybenzaldehydediaminoguanizone (1 has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopies. The crystal structure of the compound was determined by X-ray diffraction. The ligand C15H15N5O2·C2H5OH crystallizes in the monoclinic space group P21/c with unit cell parameters a = 8.9102(3, b = 10.0357(3, c = 19.7618(6 Å, β = 98.385(2°, Z = 4, V = 1748.21(9 Å3, R1 = 0.040. The amino form of the ligand adopts a planar conformation stabilized by two intramolecular hydrogen bonds of the type O–H···N, in which the H atoms of the central amino group are directed to the lone-pair regions of the azomethine nitrogen atoms.

  7. Crystal structures and conformers of CyMe4-BTBP

    Directory of Open Access Journals (Sweden)

    Lyczko Krzysztof

    2015-12-01

    Full Text Available The crystal structure of new conformation of the CyMe4-BTBP ligand (ttc has been presented. The ttt conformer of this compound in a form of THF solvate has been also crystallized. The geometries of six possible conformations (ttt, ttc, tct, tcc, ctc and ccc of the CyMe4-BTBP ligand have been modeled in the gas phase and in solutions (MeOH and H2O by DFT calculations using B3LYP/6-31G(d,p method. According to the calculations, in the three different media the conformers with trans orientation of the N atoms in the bipyridyl moiety are the most stable.

  8. Crystal structure of dichloridobis(dimethyl N-cyanodithioiminocarbonatecobalt(II

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2016-01-01

    Full Text Available The structure of the mononuclear title complex, [{(H3CS2C=NC[triple-bond] N}2CoCl2], consists of a CoII atom coordinated in a distorted tetrahedral manner by two Cl− ligands and the terminal N atoms of two dimethyl N-cyanodithioiminocarbonate ligands. The two organic ligands are almost coplanar, with a dihedral angle of 5.99 (6° between their least-squares planes. The crystal packing features pairs of inversion-related complexes that are held together through C—H...Cl and C—H...S interactions and π–π stacking [centroid-to-centroid distance = 3.515 (su? Å]. Additional C—H...Cl and C—H...S interactions, as well as Cl...S contacts < 3.6 Å, consolidate the crystal packing.

  9. Crystal Structure of Na3MoCl6

    Directory of Open Access Journals (Sweden)

    Martin Beran

    2011-07-01

    Full Text Available The ternary chloride Na3MoCl6 is obtained as red crystals from a disproportionation reaction of molybdenum dichloride, {Mo6}Cl12, in an acidic NaCl/AlCl3 melt at 350 °C. The crystal structure (trigonal, P-31c, a = 687.1(1, c = 1225.3(2 pm, Z = 2, V = 501,0(1 106 pm3 is that of Na3CrCl6: within a hexagonal closest-packing of chloride ions two thirds of the octahedral voids are filled between the AB double layers with Na+/Mo3+, and between the BA layers with Na+.

  10. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...

  11. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...

  12. Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans

    International Nuclear Information System (INIS)

    Wang Mingzhu; Liu Lin; Wang Yanli; Wei Zhiyi; Zhang Ping; Li Yikun; Jiang Xiaohua; Xu Hang; Gong Weimin

    2007-01-01

    Homoserine O-acetyltransferase (HTA, EC 2.3.1.31) initiates methionine biosynthesis pathway by catalyzing the transfer of acetyl group from acetyl-CoA to homoserine. This study reports the crystal structure of HTA from Leptospira interrogans determined at 2.2 A resolution using selenomethionyl single-wavelength anomalous diffraction method. HTA is modular and consists of two structurally distinct domains-a core α/β domain containing the catalytic site and a helical bundle called the lid domain. Overall, the structure fold belongs to α/β hydrolase superfamily with the characteristic 'catalytic triad' residues in the active site. Detailed structure analysis showed that the catalytic histidine and serine are both present in two conformations, which may be involved in the catalytic mechanism for acetyl transfer

  13. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  14. Crystal structure and thin film morphology of BBL ladder polymer

    Energy Technology Data Exchange (ETDEWEB)

    Song, H H [Department of Macromolecular Science, Han Nam University, Taejon (Korea, Republic of); Fratini, A V [Department of Chemistry, University of Dayton, Dayton, OH (United States); Chabinyc, M [Department of Chemistry, University of Dayton, Dayton, OH (United States); Price, G E [University of Dayton Research, Dayton, OH (United States); Agrawal, A K [Systran Corporation, Dayton, OH (United States); Wang, C S [University of Dayton Research, Dayton, OH (United States); Burkette, J [University of Dayton Research, Dayton, OH (United States); Dudis, D S [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States); Arnold, F E [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States)

    1995-03-01

    Crystal structure and morphology of poly[7-oxo-7H-benz(d,e)imidazo(4`,5`:5,6)-benzimidazo(2,1-a)isoquinoline-3,4:10,11-tetrayl-10-carbonyl] (BBL) ladder-like polymer were studied. The polymer forms a two-dimensional lattice of nematic liquid crystalline structure. An orthorhombic unit cell with cell parameters of a=7.87 b=3.37 c=11.97A was determined from the fiber diffraction pattern. In thin films, the rigid chains spontaneously form a layered structure across the film thickness, but in a very unusual manner, i.e. the very large molecular plane is standing perpendicularly to the film surface plane. The results are identical to our recent results of poly(p-phenylene benzobisthiazole) (PBT) film [7]. The polymer, however, lost its anisotropic order upon extrusion into a film and resulted in a fiber-like structure. (orig.)

  15. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  16. Crystal structure of the Japanese encephalitis virus envelope protein.

    Science.gov (United States)

    Luca, Vincent C; AbiMansour, Jad; Nelson, Christopher A; Fremont, Daved H

    2012-02-01

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-Å resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.

  17. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  18. Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite

    Science.gov (United States)

    Sirotkina, E. A.; Bindi, L.; Bobrov, A. V.; Aksenov, S. M.; Irifune, T.

    2018-04-01

    A chromium-bearing wadsleyite (Cr- Wad) was synthesized in the model system Mg2SiO4-MgCr2O4 at 14 GPa and 1600 °C and studied from the chemical and structural point of views. Microprobe data gave the formula Mg1.930Cr0.120Si0.945O4, on the basis of 4 oxygen atoms. The crystal structure has been studied by single-crystal X-ray diffraction. The orthorhombic unit-cell parameters are: a = 5.6909(5) Å, b = 11.4640(10) Å, c = 8.2406(9) Å, V = 537.62(9) Å3, Z = 8. The structure, space group Imma, was refined to R 1 = 5.99% in anisotropic approximation using 1135 reflections with F o > 4σ( F o) and 43 parameters. Chromium was found to substitute for both Mg at the octahedral sites and Si at the tetrahedral site, according to the reaction VIMg2+ + IVSi4+ = VICr3+ + IVCr3+. On the whole, the structural topology is nearly identical to that of pure wadsleyite. The successful synthesis of Cr- Wad may be important for the thermobarometry of mantle phase associations.

  19. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    Science.gov (United States)

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic

  20. Crystal Structure of Faradaurate-279: Au279(SPh-tBu)84 Plasmonic Nanocrystal Molecules.

    Science.gov (United States)

    Sakthivel, Naga Arjun; Theivendran, Shevanuja; Ganeshraj, Vigneshraja; Oliver, Allen G; Dass, Amala

    2017-11-01

    We report the discovery of an unprecedentedly large, 2.2 nm diameter, thiolate protected gold nanocrystal characterized by single crystal X-ray crystallography (sc-XRD), Au 279 (SPh-tBu) 84 named Faradaurate-279 (F-279) in honor of Michael Faraday's (1857) pioneering work on nanoparticles. F-279 nanocrystal has a core-shell structure containing a truncated octahedral core with bulk face-centered cubic-like arrangement, yet a nanomolecule with a precise number of metal atoms and thiolate ligands. The Au 279 S 84 geometry was established from a low-temperature 120 K sc-XRD study at 0.90 Å resolution. The atom counts in core-shell structure of Au 279 follows the mathematical formula for magic number shells: Au@Au 12 @Au 42 @Au 92 @Au 54 , which is further protected by a final shell of Au 48 . Au 249 core is protected by three types of staple motifs, namely: 30 bridging, 18 monomeric, and 6 dimeric staple motifs. Despite the presence of such diverse staple motifs, Au 279 S 84 structure has a chiral pseudo-D 3 symmetry. The core-shell structure can be viewed as nested, concentric polyhedra, containing a total of five forms of Archimedean solids. A comparison between the Au 279 and Au 309 cuboctahedral superatom model in shell-wise growth is illustrated. F-279 can be synthesized and isolated in high purity in milligram quantities using size exclusion chromatography, as evidenced by mass spectrometry. Electrospray ionization-mass spectrometry independently verifies the X-ray diffraction study based heavy atoms formula, Au 279 S 84 , and establishes the molecular formula with the complete ligands, namely, Au 279 (SPh-tBu) 84 . It is also the smallest gold nanocrystal to exhibit metallic behavior, with a surface plasmon resonance band around 510 nm.

  1. Diamond cubic phase of monoolein and water as an amphiphilic matrix for electrophoresis of oligonucleotides.

    Science.gov (United States)

    Carlsson, Nils; Winge, Ann-Sofie; Engström, Sven; Akerman, Björn

    2005-10-06

    We used a cubic liquid crystal formed by the nonionic monoglyceride monoolein and water as a porous matrix for the electrophoresis of oligonucleotides. The diamond cubic phase is thermodynamically stable when in contact with a water-rich phase, which we exploit to run the electrophoresis in the useful submarine mode. Oligonucleotides are separated according to size and secondary structure by migration through the space-filling aqueous nanometer pores of the regular liquid crystal, but the comparatively slow migration means the cubic phase will not be a replacement for the conventional DNA gels. However, our demonstration that the cubic phase can be used in submarine electrophoresis opens up the possibility for a new matrix for electrophoresis of amphiphilic molecules. From this perspective, the results on the oligonucleotides show that water-soluble particles of nanometer size, typical for the hydrophilic parts of membrane-bound proteins, may be a useful separation motif. A charged contamination in the commercial sample of monoolein, most likely oleic acid that arises from its hydrolysis, restricts useful buffer conditions to a pH below 5.6.

  2. Unusually large unit cell of lipid bicontinuous cubic phase: towards nature's length scales

    Science.gov (United States)

    Kim, Hojun; Leal, Cecilia

    Lipid bicontinuous cubic phases are of great interest for drug delivery, protein crystallization, biosensing, and templates for directing hard material assembly. Structural modulations of lipid mesophases regarding phase identity and unit cell size are often necessary to augment loading and gain pore size control. One important example is the need for unit cells large enough to guide the crystallization of bigger proteins without distortion of the templating phase. In nature, bicontinuous cubic constructs achieve unit cell dimensions as high as 300 nm. However, the largest unit cell of lipid mesophases synthesized in the lab is an order of magnitude lower. In fact, it has been predicted theoretically that lipid bicontinuous cubic phases of unit cell dimensions exceeding 30 nm could not exist, as high membrane fluctuations would damp liquid crystalline order. Here we report non-equilibrium assembly methods of synthesizing metastable bicontinuous cubic phases with unit cell dimensions as high as 70 nm. The phases are stable for very long periods and become increasingly ordered as time goes by without changes to unit cell dimensions. We acknowledge the funding source as a NIH.

  3. Direct observation of the crystal structure changes in the Mg{sub x}Zn{sub 1−x}O alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Jo; Lee, Ji-Hyun; Kim, Chang-Yeon [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Chang Hoi [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Shin, Jae Won [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Kim, Hong Seung, E-mail: hongseung@hhu.ac.kr [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Kim, Jin-Gyu, E-mail: jjintta@kbsi.re.kr [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2015-08-03

    We directly observed the crystal structure changes of the Mg{sub x}Zn{sub 1−x}O alloy thin film deposited on Si (111) substrates. Through the in situ heating transmission electron microscopy study, it was determined that the crystal structure changes did not occur up to at 400 °C, whereas the disappearance of the hexagonal structure was observed at 500 °C in the layer of nanosized grains. Additionally, the decreased intensity of the Zn L-edge was analyzed in the comparison of the core loss electron energy loss spectroscopy spectra of the Zn L-edge and the Mg K-edge obtained at room temperature and 500 °C. Based on these experimental results, the process of crystal structure changes could be explained by the evaporation of Zn atoms in the Mg{sub x}Zn{sub 1−x}O alloy system. This phenomenon is prominent in the improvement of the microstructure of the Mg{sub x}Zn{sub 1−x}O alloy thin film by controlling the thermal annealing temperature. - Highlights: • Mg{sub x}Zn{sub 1−x}O thin films coexisting with cubic and hexagonal structures were deposited. • Crystal structure changes of the thin films were directly observed at 500 °C. • The process of microstructure changes could be caused by the evaporation of Zn atoms.

  4. Synthesis, crystal structure, physicochemical properties of hydrogen bonded supramolecular assembly of N,N-diethylanilinium-3, 5-dinitrosalicylate crystal

    Science.gov (United States)

    Rajkumar, M.; Chandramohan, A.

    2017-12-01

    An organic salt, N,N-diethylanilinium 3,5-dinitrosalicylate was synthesized and single crystals grown by employing the slow solvent evaporation solution growth technique in methanol-acetone (1:1) mixture. The electronic transitions of the salt crystal were studied by UV-Visible spectrum. The optical transmittance window and lower wavelength cut-off of grown crystal have been identified by UV-Vis-NIR studies. The FT-IR spectrum was recorded to confirm the presence of various functional groups in the grown crystal. 1H and 13C NMR spectrum were recorded to establish the molecular structure of the title crystal. Single crystal X-ray diffraction data indicated that the crystal belongs to monoclinic crystal system with P21/n space group. The thermal stability of the crystal was established by TG/DTA studies. The mechanical properties of the grown crystal were studied by Vickers' microhardness technique. The dielectric studies indicated that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures.

  5. Neutron diffraction study of cubic titanium carbohydride at the homogeneity lower limit

    International Nuclear Information System (INIS)

    Khidirov, I.; Mirzaev, B.B.; Mukhtarova, N.N.

    2004-01-01

    Cubic carbohydride TiC 0.47H0.22 was prepared by means of quenching from 1200 deg.C followed by the heat treatment using special regime for preventing the hydrogen yield out the lattice. It is shown that at the lower limit of homogeneity range of the cubic carbohydride, hydrogen atoms occupy the tetrahedral interstices 8(c) of the disordered cubic structure with space group of Fm3m. It is found that carbon and hydrogen atoms are partially ordered by annealing at 900-700 deg.C. The ordered structure is face-centred cubic lattice with the parameter a ≅2a 0 , where a 0 is the lattice parameter in disordered structure. The crystal structure of the disordered phase is described within the framework of space group Fd3m, where the carbon atoms occupy mainly (70%) octahedral interstices 16(c) and another ones of carbon and all hydrogen atoms occupy the octahedral interstices 16(d). (author)

  6. Synthesis and crystal structure of MgB12

    International Nuclear Information System (INIS)

    Adasch, Volker; Hess, Kai-Uwe; Ludwig, Thilo; Vojteer, Natascha; Hillebrecht, Harald

    2006-01-01

    Single crystals of MgB 12 were synthesized from the elements in a Mg/Cu melt at 1600deg. C. MgB 12 crystallizes orthorhombic in space group Pnma with a=16.632(3)A, b=17.803(4)A and c=10.396(2)A. The crystal structure (Z=30, 5796 reflections, 510 variables, R 1 (F)=0.049, wR 2 (I)=0.134) consists of a three dimensional net of B 12 icosahedra and B 21 units in a ratio 2:1. The B 21 units are observed for the first time in a solid compound. Mg is on positions with partial occupation. The summation reveals the composition MgB 12.35 or Mg 0.97 B 12 , respectively. This is in good agreement with the value of MgB 11.25 as expected by electronic reasons to stabilize the boron polyhedra B 12 2- and B 21 4-

  7. A Layered Solution Crystal Growth Technique and the Crystal Structure of (C 6H 5C 2H 4NH 3) 2PbCl 4

    Science.gov (United States)

    Mitzi, D. B.

    1999-07-01

    Single crystals of the organic-inorganic perovskite (C6H5C2H4NH3)2PbCl4 have been grown at room temperature using a layered solution approach. The bottom solution layer, contained within a long straight tube, consists of PbCl2 dissolved in concentrated aqueous HCl. A less dense layer of methanol is carefully placed on top of the HCl/PbCl2 solution using a syringe. Finally, a stoichiometric quantity of C6H5C2H4NH2 (relative to the PbCl2) is added to the top of the column. As the layers slowly diffuse together, well-formed crystals of (C6H5C2H4NH3)2PbCl4 appear near the interface between the HCl/PbCl2 and C6H5C2H4NH2 solutions. The thick, plate-like crystals are well suited for X-ray crystallography studies. Room temperature intensity data were refined using a triclinic (Poverline1) cell (a=11.1463(3) Å, b=11.2181(3) Å, c=17.6966(5) Å, α= 99.173(1)°, β=104.634(1)°, γ=89.999(1)°, V=2111.8(1) Å3, Z=4, Rf/Rw=0.031/0.044). The organic-inorganic layered perovskite structure features well-ordered sheets of corner-sharing distorted PbCl6 octahedra separated by bilayers of phenethylammonium cations. Tilting and rotation of the PbCl6 octahedra within the perovskite sheets, coupled with organic cation ordering, leads to the unusual in-sheet 2ap×2ap superstructure, where ap is the lattice constant for the ideal cubic perovskite.

  8. Structure and Chemical Durability of Lead Crystal Glass.

    Science.gov (United States)

    Angeli, Frédéric; Jollivet, Patrick; Charpentier, Thibault; Fournier, Maxime; Gin, Stéphane

    2016-11-01

    Silicate glasses containing lead, also called lead crystal glasses, are commonly used as food product containers, in particular for alcoholic beverages. Lead's health hazards require major attention, which can first be investigated through the understanding of Pb release mechanisms in solution. The behavior of a commercial crystal glass containing 10.6 mol % of PbO (28.3 wt %) was studied in a reference solution of 4% acetic acid at 22, 40, and 70 °C at early and advanced stages of reaction. High-resolution solid-state 17 O and 29 Si NMR was used to probe the local structure of the pristine and, for the first time, of the altered lead crystal glass. Inserted into the vitreous structure between the network formers as Si-O-Pb bonds, Pb does not form Pb-O-Pb clusters which are expected to be more easily leached. A part of K is located near Pb, forming mixed Si-O-(Pb,K) near the nonbridging oxygens. Pb is always released into the solution following a diffusion-controlled dissolution over various periods of time, at a rate between 1 and 2 orders of magnitude lower than the alkalis (K and Na). The preferential release of alkalis is followed by an in situ repolymerization of the silicate network. Pb is only depleted in the outermost part of the alteration layer. In the remaining part, it stays mainly surrounded by Si in a stable structural configuration similar to that of the pristine glass. A simple model is proposed to estimate the Pb concentration as a function of glass surface, solution volume, temperature, and contact time.

  9. Multi-structure docking analysis of BACE1 crystal structures and non-peptidic ligands.

    Science.gov (United States)

    Haghighijoo, Zahra; Hemmateenejad, Bahram; Edraki, Najmeh; Miri, Ramin; Emami, Saeed

    2017-09-01

    In order to design novel non-peptidic inhibitors of BACE1, many research groups have attempted using computational studies including docking analyses. Since there are too many 3D structures for BACE1 in the protein database, the selection of suitable crystal structures is a key prerequisite for the successful application of molecular docking. We employed a multi-structure docking protocol. In which 615 ligands' structures were docked into 150 BACE1 structures. The large number of the resultant docking scores were post-processed by different data analysis methods including exploratory data analysis, regression analysis and discriminant analysis. It was found that using one crystal structure for docking did not result in high accuracy for predicting activity of the BACE1 inhibitors. Instead, using of the multi-structural docking scores, post-processed by chemometrics methods arrived to highly accurate predictive models. In this regards, the PDB accession codes of 4B70, 4DVF and 2WEZ could discriminate between active and inactive compounds, with higher accuracy. Clustering of the BACE1 structures based on principal component analysis of the crystallographic structures the revealed that the discriminant structures are in the center of the clusters. Thus, these structures can be selected as predominant crystal structures for docking studies of non-peptidic BACE1 inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Crystal structure and solid-state properties of discrete hexa cationic ...

    Indian Academy of Sciences (India)

    Subsequently, weight loss of 33% in two stages from 242 to 691◦C can be assigned to the decomposition of triazole ligands. 3.3 Description of the crystal structure. The solid-state structure of ZnT was unambiguously determined by the single crystal X-ray diffraction tech- nique (figures 2 and 3). Compound ZnT crystallizes in.

  11. Crystal structure of Homo sapiens protein LOC79017

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Euiyoung; Bingman, Craig A.; Aceti, David J.; Phillips, Jr., George N. (UW)

    2010-02-08

    LOC79017 (MW 21.0 kDa, residues 1-188) was annotated as a hypothetical protein encoded by Homo sapiens chromosome 7 open reading frame 24. It was selected as a target by the Center for Eukaryotic Structural Genomics (CESG) because it did not share more than 30% sequence identity with any protein for which the three-dimensional structure is known. The biological function of the protein has not been established yet. Parts of LOC79017 were identified as members of uncharacterized Pfam families (residues 1-95 as PB006073 and residues 104-180 as PB031696). BLAST searches revealed homologues of LOC79017 in many eukaryotes, but none of them have been functionally characterized. Here, we report the crystal structure of H. sapiens protein LOC79017 (UniGene code Hs.530024, UniProt code O75223, CESG target number go.35223).

  12. Crystal Structure of a Lipid G Protein-Coupled Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Michael A; Roth, Christopher B; Jo, Euijung; Griffith, Mark T; Scott, Fiona L; Reinhart, Greg; Desale, Hans; Clemons, Bryan; Cahalan, Stuart M; Schuerer, Stephan C; Sanna, M Germana; Han, Gye Won; Kuhn, Peter; Rosen, Hugh; Stevens, Raymond C [Scripps; (Receptos)

    2012-03-01

    The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P1, resulting in the modulation of immune and stromal cell responses.

  13. Syntheses, Crystal Structures and Bioactivities of Two Novel Isatin Derivatives

    Institute of Scientific and Technical Information of China (English)

    SHANG Jian-li; LI Hui-dong; SHANG Jun; SONG Hai-bin; LI Zheng-ming; WANG Jian-guo

    2011-01-01

    Two novel compoundsl-(4-fluorobenzyl)-4-chloro-(Z)-3-benzoylhydrazono-2-indolinone(1) and 1-(4-methoxybenzyl)-(Z)-3-benzoylhydrazono-2-indolinone(2) were synthesized and their crystal structures were determined by single-crystal X-ray diffraction.Compound 1(C22H15ClFN3O2) crystallized in the triclinic system,space group P1- with a=0.94198(19) nm,b=1.4339(3) nm,c=1.5018(3) nm,a=101.58(3)°,β=102.96(3)°,γ=102.73°,V=1.8602(6) nm3,Mr=407.82,Dc=1.456 g/cm3,μ=0.240 mm-1,F(000)=840,Z=4,R1=0.0442 and wR2=0.1064.Compound 2(C23H19N3O3) crystallized in the triclinic system,space group P1- with a=1.0022(2) nm,b=1.0192(2) nm,c=1.0461(2) nm,a=99.86(3)°,β=117.30(3)°,γ=94.13(3)°,V=0.9215(3) nm3,Mr=385.41,Dc=1.389 g/cm3,μ=0.094mm-1,F(000)=404,Z=2,R1=0.0403 and wR2=0.1142.The preliminary herbicidal activities of the two compounds were also evaluated.

  14. Crystal structure of the yeast nicotinamidase Pnc1p.

    Science.gov (United States)

    Hu, Gang; Taylor, Alexander B; McAlister-Henn, Lee; Hart, P John

    2007-05-01

    The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9A resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni(2+)-coupled chromatography resins. Researchers expressing histidine-tagged proteins in yeast should be aware of the propensity of Pnc1p to crystallize, even when overwhelmed in concentration by the protein of interest. The protein assembles into extended helical arrays interwoven to form an unusually robust, yet porous superstructure. Comparison of the Pnc1p structure with those of three homologous bacterial proteins reveals a common core fold punctuated by amino acid insertions unique to each protein. These insertions mediate the self-interactions that define the distinct higher order oligomeric states attained by these molecules. Pnc1p also acts on pyrazinamide, a substrate analog converted by the nicotinamidase from Mycobacterium tuberculosis into a product toxic to that organism. However, we find no evidence for detrimental effects of the drug on yeast cell growth.

  15. GPCR crystal structures: Medicinal chemistry in the pocket.

    Science.gov (United States)

    Shonberg, Jeremy; Kling, Ralf C; Gmeiner, Peter; Löber, Stefan

    2015-07-15

    Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Redetermination of the Crystal Structure of Al2Br6

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Poulsen, Finn W.; Nielsen, Kurt

    1997-01-01

    . In accordance with previous results, the structure belongs to the monoclinic space group P2(1)/a, no. 14, C-2h(5), with a = 10.301(4), b = 7.095(2), c = 7.525(3) Angstrom, and beta = 96.44(3)degrees, and with two Al2Br6 molecules per unit cell. The single crystal was refined to R = 0.0746. Rather similar......The structure of aluminium bromide has been reinvestigated by X-ray diffraction in three different ways: (a) on a single crystal grown in a glass capillary, (b) on powder in a Debye-Scherrer glass capillary and (c) on an area of powder placed in a protective container for Bragg-Brentano geometry...... structural results were obtained from full-profile Rietveld refinements of powder data [goodness of fit = 1.38 and 2.54 for (b) and (c), respectively]. The Al2Br6 molecule consists of two edge-sharing, almost regular AlBr4 tetrahedra. The Al-Br bond distances are in the range 2.21-2.42 Angstrom...

  17. New halides of neodymium and their crystal structures

    International Nuclear Information System (INIS)

    Loechner, U.

    1980-01-01

    The crystal structures of the peritectic phases NdClsub(2.27) (t-phase) and NdClsub(2.37) (rh-phase) were determined. The structure of the rh-phase was solved, from the t-phase only the elementary cell could be determined because no single crystals of sufficient quality were obtained. Jutting out feature of the rh-phase which has to be formulated as Nd 14 Cl 32 O is a polyeder cluster of 6 quadratic antiprisms the inner cubo octahedric cavity of which is occupied by an oxygen atom. The linkage of these polyeder cluster ensues only under each other along the triple axis of the rhomboedric system over 3 upper and 3 lower common borders each. Therewith for the first time a superlattice of the fluorite-type was found in which this unit exclusively occurs. The type of linkage of polyeder clusters causes the occurrence of an exceptional polyeder around the twovalent Nd ions which can be looked at as a zwitter polyeder of icosahedron and cube and therefore coordinates tenfold the twovalent neodymium. The strict order of chemically and crystallografically clearly differentiated cations is expressed by a hexagonal-rhomboedric superstructure of the fluorite-aristotyp with a doubled c-axis. The phase diagram of the system Nd-NdBr 3 was determined and a structure proposition was worked out for the first Vernier phase in there with n=4 of the series Lnsub(n)Xsub(2n+1). (SPI)

  18. Analysis of the crystal structure of an active MCM hexamer.

    Science.gov (United States)

    Miller, Justin M; Arachea, Buenafe T; Epling, Leslie B; Enemark, Eric J

    2014-09-29

    In a previous Research article (Froelich et al., 2014), we suggested an MCM helicase activation mechanism, but were limited in discussing the ATPase domain because it was absent from the crystal structure. Here we present the crystal structure of a nearly full-length MCM hexamer that is helicase-active and thus has all features essential for unwinding DNA. The structure is a chimera of Sulfolobus solfataricus N-terminal domain and Pyrococcus furiosus ATPase domain. We discuss three major findings: 1) a novel conformation for the A-subdomain that could play a role in MCM regulation; 2) interaction of a universally conserved glutamine in the N-terminal Allosteric Communication Loop with the AAA+ domain helix-2-insert (h2i); and 3) a recessed binding pocket for the MCM ssDNA-binding motif influenced by the h2i. We suggest that during helicase activation, the h2i clamps down on the leading strand to facilitate strand retention and regulate ATP hydrolysis.

  19. Models of protein-ligand crystal structures: trust, but verify.

    Science.gov (United States)

    Deller, Marc C; Rupp, Bernhard

    2015-09-01

    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  20. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  1. Crystal structure of 2-cyano-1-methylpyridinium perchlorate

    Directory of Open Access Journals (Sweden)

    Vu D. Nguyen

    2015-11-01

    Full Text Available The asymmetric unit of the title salt, C7H7N2+·ClO4−, comprises two independent formula units. The solid-state structure comprises corrugated layers of cations and of anions, approximately parallel to (010. The supramolecular layers are stabilized and connected by C—H...O hydrogen bonding to consolidate a three-dimensional architecture. A close pyridinium–perchlorate N...O contact [2.867 (5 Å] is noted. The crystal was refined as an inversion twin.

  2. Electrical and Structural Characterization of Web Dendrite Crystals

    Science.gov (United States)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  3. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure.

    Science.gov (United States)

    Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2012-07-21

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.

  4. Phase boundary between cubic B1 and rhombohedral structures in (Mg,Fe)O magnesiowüstite determined by in situ X-ray diffraction measurements

    Science.gov (United States)

    Dymshits, Anna M.; Litasov, Konstantin D.; Shatskiy, Anton; Chanyshev, Artem D.; Podborodnikov, Ivan V.; Higo, Yuji

    2018-01-01

    The phase relations and equation of state of (Mg0.08Fe0.92)O magnesiowüstite (Mw92) have been studied using the Kawai-type high-pressure apparatus coupled with synchrotron radiation. To determine the phase boundary between the NaCl-type cubic (B1) and rhombohedral ( rB1) structures in Mw92, in situ X-ray observations were carried out at pressures of 0-35 GPa and temperatures of 300-1473 K. Au and MgO were used as the internal pressure markers and metallic Fe as oxygen fugacity buffer. The phase boundary between B1 and rB1 structures was described by a linear equation P (GPa) = 1.6 + 0.033 × T (K). The Clapeyron slope (d P/d T) determined in this study is close to that obtained at pressures above 70 GPa but steeper than that obtained for FeO. An addition of MgO to FeO structure expands the stability field of the rB1 phase to lower pressures and higher temperatures. Thus, the rB1 phase may be stabilized with respect to the B1 phase at a lower pressures. The pressure-volume-temperature equation of state of B1-Mw92 was determined up to 30 GPa and 1473 K. Fitting the hydrostatic compression data up to 30 GPa with the Birch-Murnaghan equation of state (EoS) yielded: unit cell volume ( V 0, T0), 79.23 ± 4 Å3; bulk modulus ( K 0, T0), 183 ± 4 GPa; its pressure derivative ( K' T ), 4.1 ± 0.4; (∂ K 0, T /∂ T) = -0.029 ± 0.005 GPa K‒1; a = 3.70 ± 0.27 × 10-5 K-1 and b = 0.47 ± 0.49 × 10-8 K-2, where α0, T = a + bT is the volumetric thermal expansion coefficient. The obtained bulk modulus of Mw92 is very close to the value expected for stoichiometric iron-rich (Mg,Fe)O. This result confirms the idea that the bulk modulus of (Mg,Fe)O is greatly affected by the actual defect structure, caused by either Mg2+ or vacancies.

  5. Magnetic and Crystal Structure of α-RuCl3

    Science.gov (United States)

    Sears, Jennifer

    The layered honeycomb material α-RuCl3 has been proposed as a candidate material to show significant bond-dependent Kitaev type interactions. This has prompted several recent studies of magnetism in this material that have found evidence for multiple magnetic transitions in the temperature range of 8-14 K. We will present elastic neutron scattering measurements collected using a co-aligned array of α-RuCl3 crystals, identifying zigzag magnetic order within the honeycomb planes with an ordering temperature of ~8 K. It has been reported that the ordering temperature depends on the c axis periodicity of the layered structure, with ordering temperatures of 8 and 14 K for three and two-layer periodicity respectively. While the in-plane magnetic order has been identified, it is clear that a complete understanding of magnetic ordering and interactions will depend on the three dimensional structure of the crystal. Evidence of a structural transition at ~150 K has been reported and questions remain about the structural details, in particular the stacking of the honeycomb layers. We will present x-ray diffraction measurements investigating the low and high temperature structures and stacking disorder in α-RuCl3. Finally, we will present inelastic neutron scattering measurements of magnetic excitations in this material. Work done in collaboration with K. W. Plumb (Johns Hopkins University), J. P. Clancy, Young-June Kim (University of Toronto), J. Britten (McMaster University), Yu-Sheng Chen (Argonne National Laboratory), Y. Qiu, Y. Zhao, D. Parshall, and J. W. Lynn (NCNR).

  6. 1. The determination of crystal and magnetic structures

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    A theoretical foundation of the technique of thermal neutron scattering by powders is outlined. A description of the experimental set-up is given. A beam of themalized neutrons emerges from the reactor (HFR at Petten) through a slit system. It is diffracted by a manochromator crystal with a finite mosaic structure, a Cu (111) crystal being used. After passing through 10 cm pyrolytic graphite with a ''window'' from 0.23 to 0.29 nm as a lambda/2 filter, resulting in a wave length of 0.257 nm, the neutrons are taken off at a predetermined angle defined by a second slit system, resulting in a beam in which the sample is bathed. The neutrons scattered by the sample are detected by a counter moving in an arc with the position of the sample as center. The standard measurement time for a 10 cm 3 sample was two days. A discussion of the mathematical procedures for deriving the magnetic structure from the observed counts is given

  7. Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals

    Science.gov (United States)

    Lee, Jiann-Shing; Liu, Hao-Chuan; Peng, Gao-De; Tseng, Yawteng

    2017-05-01

    A facile molten-salt route was used to synthesize hexagonal Cs0.33WO3, Rb0.33WO3 and K0.30WO3 crystals. The three isostructural compounds were successfully prepared from the reaction of MxWO3 powders (M = Cs, Rb, K) in the CsCl/NaCl, RbCl/NaCl and KCl/NaCl fluxes, respectively. The structure determination and refinement, based on single-crystal X-ray diffraction data, are in agreement with previous works, possessing space group P63/mcm. The a and c parameters vary non-linearly with increasing radii of the M+ cations (rM) that is coordinated to twelve oxygen atoms. Both the volumes of unit-cell and WO6 octahedra vary linearly with rM, which become smaller from Cs0.33WO3 to K0.30WO3. The distortion of WO6 octahedra as well as isotropic displacement parameters increases from Cs0.33WO3 to K0.30WO3. The geometry of the WO6 octahedron becomes more regular with increasing rM. These structural trends arise from the effective size of the M+ cation.

  8. Crystal and molecular structure of neodymium (3) p-aminobenzoaate

    International Nuclear Information System (INIS)

    Khiyalov, M.S.; Amiraslanov, I.R.; Mamedov, Kh.S.; Movsumov, Eh.M.

    1981-01-01

    X-ray structural study (lambda MoKsub(α), automatic diffractometer, the method of heavy atom, anisotropic specification) of neodymium (3) n-aminobenzoate has been carried out. The crystals are monoclinic: a=9.882 (5), b=22.810 (12), c=9.851 (8)A, β=100.02 (5)deg, v=2186.59 A 3 , Z=4, sp. gr. P2 1 /n, R=0.046. The crystal structure of Nd(OOCC 6 H 4 NH 2 ) 3 xH 2 O consists of dimer-periodic layers alternating along the b axis. Surrounding of Nd atom in the chain is formed with four oxygen atoms of four carboxyl groups of bidentate-bridge and one carboxyl bidentate-cyclic ligands, one water molecule and N atom of ligand aminogroup from the neigbouring chain. The atom simultaneously bonds the neighbouring chains into continuous layer. The mean distances Nd-O, and Nd-N are equal to 2.45 and 2.74 A. An attempt to determine hydrogen atom coordinates has failed [ru

  9. Crystal structures of superconducting sodium intercalates of hafnium nitride chloride

    International Nuclear Information System (INIS)

    Oro-Sole, J.; Frontera, C.; Beltran-Porter, D.; Lebedev, O.I.; Van Tendeloo, G.; Fuertes, A.

    2006-01-01

    Sodium intercalation compounds of HfNCl have been prepared at room temperature in naphtyl sodium solutions in tetrahydrofuran and their crystal structure has been investigated by Rietveld refinement using X-ray powder diffraction data and high-resolution electron microscopy. The structure of two intercalates with space group R3-bar m and lattice parameters a=3.58131(6)A, c=57.752(6)A, and a=3.58791(8)A, c=29.6785(17)A is reported, corresponding to the stages 2 and 1, respectively, of Na x HfNCl. For the stage 2 phase an ordered model is presented, showing two crystallographically independent [HfNCl] units with an alternation of the Hf-Hf interlayer distance along the c-axis, according with the occupation by sodium atoms of one out of two van der Waals gaps. Both stages 1 and 2 phases are superconducting with critical temperatures between 20 and 24K, they coexist in different samples with proportions depending on the synthesis conditions, and show a variation in c spacing that can be correlated with the sodium stoichiometry. High-resolution electron microscopy images of the host and intercalated samples show bending of the HfNCl bilayers as well as stacking faults in some regions, which coexist in the same crystal with ordered domains

  10. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Predicted crystal structures of molybdenum under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Zhang, Guang Biao [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang 550018 (China)

    2013-04-15

    Highlights: ► A double-hexagonal close-packed (dhcp) structure of molybdenum is predicted. ► Calculated acoustic velocity confirms the bcc–dhcp phase transition at 660 GPa. ► The valence electrons of dhcp Mo are mostly localized in the interstitial sites. -- Abstract: The high-pressure structures of molybdenum (Mo) at zero temperature have been extensively explored through the newly developed particle swarm optimization (PSO) algorithm on crystal structural prediction. All the experimental and earlier theoretical structures were successfully reproduced in certain pressure ranges, validating our methodology in application to Mo. A double-hexagonal close-packed (dhcp) structure found by Mikhaylushkin et al. (2008) [12] is confirmed by the present PSO calculations. The lattice parameters and physical properties of the dhcp phase were investigated based on first principles calculations. The phase transition occurs only from bcc phase to dhcp phase at 660 GPa and at zero temperature. The calculated acoustic velocities also indicate a transition from the bcc to dhcp phases for Mo. More intriguingly, the calculated density of states (DOS) shows that the dhcp structure remains metallic. The calculated electron density difference (EDD) reveals that its valence electrons are localized in the interstitial regions.

  12. Synthesis and crystal structure of new K and Rb selenido/tellurido ferrate cluster compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stueble, Pirmin; Berroth, Angela; Roehr, Caroline [Freiburg Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2016-08-01

    arrangements of cluster-centered cubes, a relation of the packing of K/Rb cations and cluster anions with the simple cubic packing can be established applying the crystallographic group-subgroup formalism. Attempts to synthesize the corresponding selenium compound K{sub 7}[Fe{sub 4}Se{sub 8}] resulted in the formation of the likewise mixed-valent compound K{sub 6}[Fe{sub 4}Se{sub 8}]. Despite the modified composition, the new orthorhombic structure (space group Pbcn, a = 1632.62(6), b = 821.10(3), c = 1592.75(6) pm, Z = 4, R1 = 0.0540) is almost isotypic to the l.t. form of K{sub 7}[Fe{sub 4}Te{sub 8}], the only difference being a missing K site. K{sub 5}Fe{sub 2}Te{sub 5} crystallizes in a new structure type (cubic, space group Pa anti 3, a = 1709.02(5) pm, Z = 4, R1 = 0.0594). According to K{sub 5}Fe{sub 2}Te{sub 5}=K{sub 15}[Fe{sub 3}Te{sub 7}]{sub 2}(Te), its structure contains mixed-valent cuboidal trimers [Fe{sub 3}Te{sub 7}]{sup (6/7)-} and isolated telluride ions, which are coordinated by cubes of K{sup +} cations.

  13. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K. (Stanford-MED); (ConfometRx); (UCB Pharma)

    2017-02-06

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.

  14. Crystal structure of Fe2TiO5

    International Nuclear Information System (INIS)

    Shiojiri, M.; Sekimoto, S.; Maeda, T.; Ikeda, Y.; Iwauchi, K.

    1984-01-01

    The crystal structure of metal pseudobrookite, Fe 2 TiO 5 , is determined from high-resolution electron microscopy images observed and their computer simulated images, with the aid of electron diffraction and X-ray powder diffraction. The new structure has a monoclinic unit, containing eight molecules, with a = 2.223, b = 0.373, c = 0.980 nm, and β = 116.2 0 . The Fe, Ti, and O atoms occupy the positions (4c), +-(u, 0, w; 1/2 + u, 1/2, w), of C 2 3 (C2). The most probable parameters u and w, of Fe(1 to 4), Ti(1, 2), and O(1 to 10) are given. (author)

  15. Crystal chemistry of nephelines from ijolites and nepheline-rich pegmatites: influence of composition and genesis on the crystal structure investigated by X-ray diffraction

    DEFF Research Database (Denmark)

    Vulić, Predrag; Balić-Žunić, Tonči; Belmonte, Louise Josefine

    2011-01-01

    Ten nepheline single crystals from five different localities representing rocks from nepheline-syenite pegmatites to urtite, ijolite and cancrinite-ijolite were investigated chemically and structurally. The chemical compositions were determined by electron microprobe, whereas the crystal structur...

  16. submitter Light Extraction From Scintillating Crystals Enhanced by Photonic Crystal Structures Patterned by Focused Ion Beam

    CERN Document Server

    Modrzynski, Pawel; Knapitsch, Arno; Kunicki, Piotr; Lecoq, Paul; Moczala, Magdalena; Papakonstantinou, Ioannis; Auffray, Etiennette

    2016-01-01

    “Photonic Crystals (PhC)” have been used in a variety of fields as a structure for improving the light extraction efficiency from materials with high index of refraction. In previous work we already showed the light extraction improvement of several PhC covered LYSO crystals in computer simulations and practical measurements. In this work, new samples are made using different materials and techniques which allows further efficiency improvements. For rapid prototyping of PhC patterns on scintillators we tested a new method using “Focused Ion Beam (FIB)” patterning. The FIB machine is a device similar to a “Scanning Electron Microscope (SEM)”, but it uses ions (mainly gallium) instead of electrons for the imaging of the samples' surface. The additional feature of FIB devices is the option of surface patterning in nano-scale which was exploited for our samples. Three samples using FIB patterning have been produced. One of them is a direct patterning of the extraction face of a 0.8×0.8×10 $mm^3$ LYS...

  17. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  18. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    Science.gov (United States)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  19. Visualization of Hyperconjugation and Subsequent Structural Distortions through 3D Printing of Crystal Structures.

    Science.gov (United States)

    Mithila, Farha J; Oyola-Reynoso, Stephanie; Thuo, Martin M; Atkinson, Manza Bj

    2016-01-01

    Structural distortions due to hyperconjugation in organic molecules, like norbornenes, are well captured through X-ray crystallographic data, but are sometimes difficult to visualize especially for those applying chemical knowledge and are not chemists. Crystal structure from the Cambridge database were downloaded and converted to .stl format. The structures were then printed at the desired scale using a 3D printer. Replicas of the crystal structures were accurately reproduced in scale and any resulting distortions were clearly visible from the macroscale models. Through space interactions or effect of through space hyperconjugation was illustrated through loss of symmetry or distortions thereof. The norbornene structures exhibits distortion that cannot be observed through conventional ball and stick modelling kits. We show that 3D printed models derived from crystallographic data capture even subtle distortions in molecules. We translate such crystallographic data into scaled-up models through 3D printing.

  20. Crystal and molecular structures of thorium and uranium tetrakis(hexafluoroacetonylpyrazolide) complexes

    International Nuclear Information System (INIS)

    Volz, K.; Zalkin, A.; Templeton, D.H.

    1976-01-01

    Triclinic crystals of thorium(IV) and uranium(IV) tetrakis(hexafluoroacetonylpyrazolide) are isostructural, with space group P1 and Z = 2. At 23 0 C for Th(C 6 H 3 ON 2 F 6 ) 4 α = 11.282 (5) A, b = 16.245 (7) A, c = 10.836 (5) A, α = 90.14 (5) 0 , β = 108.75 (5) 0 , and γ = 107.07 (5) 0 . For the uranium compound a = 11.302 (5) A, b = 16.377 (8) A, c = 11.000 (5) A, α = 87.85 (5) 0 , β = 111.02 (5) 0 , and γ = 109.95 (5) 0 . X-ray diffraction data were measured with a scintillation counter, theta-2theta scans, and Mo Kα radiation. For thorium the conventional R value is 0.026 for 2966 unique data with I greater than sigma(I), and for uranium it is 0.027 for 4125 unique data with I greater than sigma(I). The full-matrix least-squares refinement of the 598 parameters of each structure included anisotropic thermal parameters for the 61 nonhydrogen atoms and isotropic ones for the 12 hydrogen atoms. The actinide ion is at the center of an irregular polyhedron of four oxygen and four nitrogen atoms. The average Th-O, Th-N, U-O, and U-N distances are 2.291 (4), 2.637 (5), 2.237 (3), and 2.574 (5) A. The molecules are packed in a manner which resembles cubic closest packing but which is more nearly analogous to the body-centered tetragonal structure of protactinium metal

  1. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  2. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  3. Colloidal Photonic Crystals Containing Silver Nanoparticles with Tunable Structural Colors

    Directory of Open Access Journals (Sweden)

    Chun-Feng Lai

    2016-05-01

    Full Text Available Polystyrene (PS colloidal photonic crystals (CPhCs containing silver nanoparticles (AgNPs present tunable structural colors. PS CPhC color films containing a high concentration of AgNPs were prepared using self-assembly process through gravitational sedimentation method. High-concentration AgNPs were deposited on the bottom of the substrate and acted as black materials to absorb background and scattering light. Brilliant structural colors were enhanced because of the absorption of incoherent scattering light, and color saturation was increased by the distribution AgNPs on the PS CPhC surfaces. The vivid iridescent structural colors of AgNPs/PS hybrid CPhC films were based on Bragg diffraction and backward scattering absorption using AgNPs. The photonic stop band of PS CPhCs and AgNPs/PS hybrid CPhCs were measured by UV–visible reflection spectrometry and calculated based on the Bragg–Snell law. In addition, the tunable structural colors of AgNPs/PS hybrid CPhC films were evaluated using color measurements according to the Commission International d’Eclairage standard colorimetric system. This paper presents a simple and inexpensive method to produce tunable structural colors for numerous applications, such as textile fabrics, bionic colors, catalysis, and paints.

  4. Water polygons in high-resolution protein crystal structures.

    Science.gov (United States)

    Lee, Jonas; Kim, Sung-Hou

    2009-07-01

    We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 A resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of "stable" water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.

  5. Local structural ordering in surface-confined liquid crystals

    Science.gov (United States)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  6. Nano-crystals of cerium–hafnium binary oxide: Their size-dependent structure

    Energy Technology Data Exchange (ETDEWEB)

    Raitano, Joan M. [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, NY 10027 (United States); Khalid, Syed [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Marinkovic, Nebojsa [Chemical Engineering Department, Columbia University, 500 W 120th St, Mudd 801, New York, NY 10027 (United States); Chan, Siu-Wai, E-mail: sc174@columbia.edu [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, NY 10027 (United States)

    2015-09-25

    Highlights: • (1 − x)CeO{sub 2}–xHfO{sub 2} was precipitated (0 < x < 1) and calcined in air. • For x ⩽ 0.14, crystallites ⩽140 nm in size exhibit only the fluorite structure. • This low hafnia solubility is attributable to no auto-reduction (Ce{sup 3+} = 0). • The low solubility is also due to the high temperature required for homogenization. • Coarsening is lessened as Hf{sup 4+} ions slow cation diffusion in these crystallites. - Abstract: Cerium oxide (CeO{sub 2}, “ceria”) and hafnium oxide (HfO{sub 2}, “hafnia”) were aqueously co-precipitated and subsequently calcined to allow for homogenization. The size of the (1−x)CeO{sub 2}–xHfO{sub 2} crystallites, determined by the Scherrer equation, varied from 140 nm for x = 0 to 15 nm for x = 0.73. For x ⩽ 0.14, only cubic structures are visible in X-ray diffractograms, and the lattice parameters are consistent with the values expected for structurally cubic solid solutions of hafnia in ceria. At x = 0.26, tetragonal and monoclinic phases nucleated with the former not being observed in the bulk phase diagram for ceria–hafnia. Therefore, the solubility limit of the cubic structure is between x = 0.14 and x = 0.26 for 40–61 nm crystallites, the sizes of these respective compositions. More specifically, for the 40 nm crystallites of x = 0.26 (1 − x)CeO{sub 2}–xHfO{sub 2}, 15% of the hafnia remains in a structurally cubic solid solution with ceria based on the observed cubic lattice parameter. The compositional domain for the cubic fluorite structure in this study is narrower than other nanostructured (1 − x)CeO{sub 2}–xHfO{sub 2} studies, especially studies with crystallite sizes less than 10 nm, but wider than observed in the bulk and helps to expand the size regime over which the relationship between crystallite size and phase stability is known. The extent of this cubic-structure domain is mainly attributable to the intermediate crystallite size and the roughly zero Ce{sup 3

  7. Models of protein–ligand crystal structures: trust, but verify

    Science.gov (United States)

    Deller, Marc C.

    2015-01-01

    X-ray crystallography provides the most accurate models of protein–ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein–ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein–ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein–ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein–ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein–ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein–ligand models for their computational and biological studies, and we provide an overview of how this can be achieved. PMID:25665575

  8. Structures of the OmpF porin crystallized in the presence of foscholine-12.

    Science.gov (United States)

    Kefala, Georgia; Ahn, Chihoon; Krupa, Martin; Esquivies, Luis; Maslennikov, Innokentiy; Kwiatkowski, Witek; Choe, Senyon

    2010-05-01

    The endogenous Escherichia coli porin OmpF was crystallized as an accidental by-product of our efforts to express, purify, and crystallize the E. coli integral membrane protein KdpD in the presence of foscholine-12 (FC12). FC12 is widely used in membrane protein studies, but no crystal structure of a protein that was both purified and crystallized with this detergent has been reported in the Protein Data Bank. Crystallization screening for KdpD yielded two different crystals of contaminating protein OmpF. Here, we report two OmpF structures, the first membrane protein crystal structures for which extraction, purification, and crystallization were done exclusively with FC12. The first structure was refined in space group P21 with cell parameters a = 136.7 A, b = 210.5 A, c = 137 A, and beta = 100.5 degrees , and the resolution of 3.8 A. The second structure was solved at the resolution of 4.4 A and was refined in the P321 space group, with unit cell parameters a = 215.5 A, b = 215.5 A, c = 137.5 A, and gamma = 120 degrees . Both crystal forms show novel crystal packing, in which the building block is a tetrahedral arrangement of four trimers. Additionally, we discuss the use of FC12 for membrane protein crystallization and structure determination, as well as the problem of the OmpF contamination for membrane proteins overexpressed in E. coli.

  9. Crystal structure of a photobiologically active furanocoumarin from Artemisia reticulata

    Directory of Open Access Journals (Sweden)

    A. K. Bauri

    2016-04-01

    Full Text Available The title furanocoumarin, C14H12O4 [systematic name: 9-hydroxy-2-(prop-1-en-2-yl-2,3-dihydro-7H-furo[3,2-g]chromen-7-one], crystallizes with two independent molecules (A and B in the asymmetric unit. The two molecules differ essentially in the orientation of the propenyl group with respect to the mean plane of the furanocoumarin moiety; the O—C(H—C=C torsion angle is 122.2 (7° in molecule A and −10.8 (11° in molecule B. In the crystal, the A and B molecules are linked via O—H...O hydrogen bonds, forming zigzag –A–B–A–B– chains propagating along [001]. The chains are reinforced by bifurcated C—H...(O,O hydrogen bonds, forming ribbons which are linked via C—H...π and π–π interactions [intercentroid distance = 3.602 (2 Å], forming a three-dimensional structure.

  10. Crystal structures of sol-gel deposited zirconia thin films

    International Nuclear Information System (INIS)

    Bell, J.M.; Cheary, R.W.; Rice, M.; Ben-Nissan, B.; Cocking, J.L.; Johnstone, G.R.

    1992-01-01

    The authors reports on the crystal structure of zirconia thin films by high temperature x-ray diffraction. The films were deposited by sol-gel processing onto polished stainless steel substrates, and dried at 200 deg C. X-ray diffraction at temperatures between 400 deg C and 800 deg C was carried out using an APEX diffractometer with a position sensitive detector. Previous results indicated that there was a transformation between the tetragonal phase and the monoclinic phase at approximately 770 deg C. Two experiments have been carried out: temperature runs, where the structure evolution is studied as a function of temperature; and time evolution of the structure at fixed temperatures. The results for both experiments, including structural analysis of the different phases found in the thin zirconia films and an analysis of the kinetics of the phase transformation(s) from the time evolution work are presented. This will include a comparison with theories of nucleation and crystallisation in single element films. Impurity phases introduced by interaction of the zirconia with the substrate have been observed, and the effect of increasing annealing time on the substrate-film interaction will also be discussed. 17 refs., 1 tab., 3 figs

  11. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  12. The hydroxynitrile lyase from almond: crystal structure and mechanistical studies

    International Nuclear Information System (INIS)

    Dreveny, Ingrid

    2001-09-01

    Cyanogenesis is a defense process of several thousand plant species. Hydroxynitrile lyase (HNL), a key enzyme of this process, cleaves a cyanohydrin precursor into hydrocyanic acid and the corresponding aldehyde or ketone. The reverse reaction constitutes an important tool in industrial biocatalysis. Different classes of hydroxynitrile lyases have convergently evolved from FAD-dependent oxidoreductases, α/β hydrolases and alcohol dehydrogenases. The FAD-dependent hydroxynitrile lyases (FAD-HNLs) carry a flavin cofactor whose redox properties appear to be unimportant for catalysis. The high resolution crystal structure of the hydroxynitrile lyase from almond (Prunus amygdalus), PaHNL1, has been determined and constitutes the first 3D structure of an FAD-HNL. The overall fold and the architecture of the active site region showed that PaHNL1 belongs to the glucose-methanol-choline-oxidoreductase family, with closest structural similarity to glucose oxidase. There is strong evidence from the sequence and the reaction product that FAD-dependent hydroxynitrile lyases have evolved from an aryl alcohol oxidizing precursor. Structures of PaHNL1 in complex with its natural substrate mandelonitrile and the competitive inhibitor benzyl alcohol provided insight into the residues involved in catalysis and a mechanism without participation of the cofactor could be suggested. Although the catalytic residues differ between the α/β-hydrolase-type HNLs and PaHNL1, common general features relevant for hydroxynitrile lyase activity could be proposed. (author)

  13. Crystal Structure of the Marburg Virus VP35 Oligomerization Domain

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Jessica F.; Kirchdoerfer, Robert N.; Urata, Sarah M.; Li, Sheng; Tickle, Ian J.; Bricogne, Gérard; Saphire, Erica Ollmann (Scripps); (Globel Phasing); (UCSD)

    2016-11-09

    ABSTRACT

    Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (generaMarburgvirusandEbolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOV VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV.

    IMPORTANCEMarburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the

  14. Welcome to Crystals: A New Open-Access, Multidisciplinary Forum for Growth, Structures and Properties of Crystals

    Directory of Open Access Journals (Sweden)

    Gerd Meyer

    2010-12-01

    Full Text Available The majority of the earth’s crust is made up of crystalline material. The research areas of mineralogy, petrology, chimie minerále (inorganic chemistry and, of course, crystallography outgrew from the fascination of mankind with the color and symmetry of crystals. Crystals have translational symmetry in two or three dimensions, quasicrystals have translational symmetry in higher spaces. Further symmetries may be observed by the eye, by microscopic techniques or by the diffraction of X-ray, electron, or neutron beams. Diffraction techniques are also used, due to Max von Laue’s eminent discovery a century ago, to determine crystal structures. [...

  15. NMR structure of the protein NP-247299.1: comparison with the crystal structure

    International Nuclear Information System (INIS)

    Jaudzems, Kristaps; Geralt, Michael; Serrano, Pedro; Mohanty, Biswaranjan; Horst, Reto; Pedrini, Bill; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Comparison of the NMR and crystal structures of a protein determined using largely automated methods has enabled the interpretation of local differences in the highly similar structures. These differences are found in segments of higher B values in the crystal and correlate with dynamic processes on the NMR chemical shift timescale observed in solution. The NMR structure of the protein NP-247299.1 in solution at 313 K has been determined and is compared with the X-ray crystal structure, which was also solved in the Joint Center for Structural Genomics (JCSG) at 100 K and at 1.7 Å resolution. Both structures were obtained using the current largely automated crystallographic and solution NMR methods used by the JCSG. This paper assesses the accuracy and precision of the results from these recently established automated approaches, aiming for quantitative statements about the location of structure variations that may arise from either one of the methods used or from the different environments in solution and in the crystal. To evaluate the possible impact of the different software used for the crystallographic and the NMR structure determinations and analysis, the concept is introduced of reference structures, which are computed using the NMR software with input of upper-limit distance constraints derived from the molecular models representing the results of the two structure determinations. The use of this new approach is explored to quantify global differences that arise from the different methods of structure determination and analysis versus those that represent interesting local variations or dynamics. The near-identity of the protein core in the NMR and crystal structures thus provided a basis for the identification of complementary information from the two different methods. It was thus observed that locally increased crystallographic B values correlate with dynamic structural polymorphisms in solution, including that the solution state of the protein involves

  16. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  17. Mechanosynthesis, crystal structure and magnetic characterization of neodymium orthoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Serna, Pedro Vera; Campos, Cecilio Garcia [Division de Ingenierias, Universidad Politecnica de Tecamac (UPTECAMAC), Tecamac de Felipe Villanueva, Estado de Mexico (Mexico); De Jesus, Felix Sanchez; Miro, Ana Maria Bolarin [Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo (UAEH), Mineral de la Reforma, Hidalgo (Mexico); Loran, Jose Antonio Juanico [Division de Ingenieria Industrial Nanotecnologia, Universidad Politecnica del Valle de Mexico (UPVM), Tultitlan, Estado de Mexico (Mexico); Longwell, Jeffrey, E-mail: pedrovera.upt@gmail.com [Department of Languages and Linguistics, New Mexico State University (NMSU), Las Cruces, NM (United States)

    2016-03-15

    Neodymium orthoferrite NdFeO{sub 3} was obtained at room temperature by mechanosynthesis with a stoichiometric ratio of Nd2O{sub 3} and Fe{sub 2}O{sub 3} powders, whereas the traditional synthesis requires a temperature of approximately 1000 °C. The crystal structure was analyzed by X-ray diffraction analysis using Cu radiation and a LynxEye XE detector, whose strong fluorescence filtering enabled a high signal intensity. The analysis indicated that the obtained crystallites were nano-sized. The particle morphology was observed by scanning electron microscopy, and the magnetic saturation was tested by vibrating sample magnetometry. The synthesis of NdFeO{sub 3} was detected after a few hours of milling, indicating that the milling imparted mechanical energy to the system. (author)

  18. The crystal structure of γ-AlD3

    International Nuclear Information System (INIS)

    Brinks, H.W.; Brown, C.; Jensen, C.M.; Graetz, J.; Reilly, J.J.; Hauback, B.C.

    2007-01-01

    γ-AlD 3 was synthesized from LiAlD 4 and AlCl 3 via thermal decomposition of aluminum hydride etherate in presence of excess LiAlD 4 . γ-AlD 3 was determined by powder neutron diffraction and synchrotron X-ray diffraction to crystallize in the space group Pnnm. The orthorhombic structure has unit-cell dimensions a = 7.3360(3) A, b = 5.3672(2) A and c = 5.7562(1) A, and it consists of both corner- and edge-sharing AlD 6 octahedra where each hydrogen is shared between two octahedra. The average Al-D distances in octahedra with edge-sharing is 1.706 A and in the octahedra with only corner-sharing 1.719 A

  19. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wu, Ying, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  20. Crystal structure of 4-methoxy-N-(piperidine-1-carbonothioylbenzamide

    Directory of Open Access Journals (Sweden)

    Khairi Suhud

    2017-10-01

    Full Text Available In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-methoxybenzoyl ring, with a dihedral angle of 63.0 (3°. The central N—C(=S—N(H—C(=O bridge is twisted with an N—C—N—C torsion angle of 74.8 (6°. In the crystal, molecules are linked by N—H...O and C—H...O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C—H...π interactions, forming layers parallel to the ac plane. The layers are linked by offset π–π interactions [intercentroid distance = 3.927 (3 Å], forming a supramolecular three-dimensional structure.

  1. Crystal and molecular structure of dysprosium (3) n-aminobenzoate

    International Nuclear Information System (INIS)

    Khiyalov, M.S.; Amiraslanov, I.R.; Mamedov, Kh.S.; Movsumov, Eh.M.

    1981-01-01

    The X ray diffraction investigation of the Dy(NH 2 C 6 H 4 COO) 3 x3H 2 O complex is carried out. Triclinic crystals have lattice parameters α=11.095(15), b=9.099(17), c=12.780 (15)A, α=108.051(12), β=89.072(10); γ=104.954(12) 0 , space group P anti 1, Z=2. The structure consists of dimer molecules. The third water molecule in the formula is an outer spherical one. The average lengths of Dy-O and Dy-OH 2 are 2.39 and 2.40 A respectively, the average value of Dy-O in bridge carboxylates (2.26A) is remarkably shorter. Hydrogen bonds between amine ligand ends, carboxylic groups oxygen and water molecules bind complex molecules into the three-dimensional frame [ru

  2. Crystal structure of 5-hydroxy-5-propylbarbituric acid

    Directory of Open Access Journals (Sweden)

    Thomas Gelbrich

    2015-11-01

    Full Text Available Molecules of the title compound, C7H10N2O4, systematic name 5-hydroxy-5-propylpyrimidine-2,4,6(1H,3H,5H-trione, form a hydrogen-bonded framework which is based on three independent hydrogen bonds, N—H...O(carbonyl, N—H...O(hydroxy and O—H...O(carbonyl. This framework has the topology of the 5-connected nov net. Each molecule is linked to five other molecules via six hydrogen bonds, and the descriptor of the hydrogen-bonded structure is F65[44.66-nov]. The crystal packing is isostructural with that of the previously reported 5-hydroxy-5-ethyl analogue.

  3. 1-Hydroxyethyl-2-Substituted Phenoxymethyl Benzimidazoles: Synthesis and Crystal Structures

    International Nuclear Information System (INIS)

    Wu, J.; Wang, Z.; Gu, H.; Chen, W.; Zhao, L.; Zhao, C.

    2016-01-01

    Five novel 1-hydroxyethyl-2-substituted phenoxymethyl benzimidazoles c1-c5 were successfully synthesized by a three-step route. Firstly, five substituted phenoxymethyl acids a1-a5 were prepared by the O-carboxymethylation reaction of the starting substituted phenols under microwave irradiation. Then, these compounds reacted with o-phenylendiamine to get the key intermediates 2-substituted phenoxymethyl benzimidazoles b1-b5. At last, the target compounds were synthesized by the N-hydroxyethylation reaction of b1-b5 with 2-chloroethyl alcohol through the solid-liquid phase transfer catalysis method, where tetrabutyl ammonium bromide (TBAB) was used as the catalyst. The structures of the target compounds were well characterized and verified by elemental analysis, MS, IR, 1H NMR, 13C NMR and single crystal X-ray diffraction analysis. (author)

  4. Crystal structure of 2,5-dimethylanilinium salicylate

    Directory of Open Access Journals (Sweden)

    A. Mani

    2015-09-01

    Full Text Available The title molecular salt, C8H12N+·C7H5O3− arose from the proton-transfer reaction between 2,5-xylidine and salicylic acid. In the anion, the dihedral angle between the planes of the aromatic ring and the –CO2− group is 11.08 (8°; this near planarity is consolidated by an intramolecular O—H...O hydrogen bond. In the crystal, the components are connected by N—H...O hydrogen bonds, with all three O atoms in the anion acting as acceptors; the result is a [100] chain. The structure also features weak C—H...O bonds and aromatic π–π stacking [centroid-to-centroid distance = 3.7416 (10 Å] interactions, which lead to a three-dimensional network.

  5. Diffusion in Coulomb crystals.

    Science.gov (United States)

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  6. Some elements go cubic under pressure

    Czech Academy of Sciences Publication Activity Database

    Legut, Dominik

    2007-01-01

    Roč. 60, č. 10 (2007), s. 17-17 ISSN 0031-9228 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio * polonium * cubic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.133, year: 2007

  7. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  8. Two modifications of Y2Piv6(HPiv)6 crystals: synthesis and structures

    International Nuclear Information System (INIS)

    Kiseleva, E.A.; Troyanov, S.I.; Korenev, Yu.M.

    2006-01-01

    Crystal structure of solvate of yttrium pivalate YPiv 3 ·3HPiv is studied. Existing of two polymorphous modifications of the compound is detected. It is shown that α- and β-modifications of yttrium pivalate solvate have molecular crystal structures and are built of Y 2 Piv 6 (HPiv) 6 dimers. Difference of these two modifications is in package of dimer molecules and in center-symmetricity of dimers in α-modification structure. Molecular and crystal structure, crystal lattice parameters are determined [ru

  9. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  10. Crystal structure of the epithelial calcium channel TRPV6.

    Science.gov (United States)

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  11. Crystal structure of bis(4-acetylanilinium tetrachloridocobaltate(II

    Directory of Open Access Journals (Sweden)

    Manickam Thairiyaraja

    2015-12-01

    Full Text Available The structure of the title salt, (C8H10NO2[CoCl4], is isotypic with the analogous cuprate(II structure. The asymmetric unit contains one 4-acetylanilinium cation and one half of a tetrachloridocobaltate(II anion for which the CoII atom and two Cl− ligands lie on a mirror plane. The Co—Cl distances in the distorted tetrahedral anion range from 2.2519 (6 to 2.2954 (9 Å and the Cl—Co—Cl angles range from 106.53 (2 to 110.81 (4°. In the crystal, cations are self-assembled by intermolecular N—H...O hydrogen-bonding interactions, leading to a C(8 chain motif with the chains running parallel to the b axis. π–π stacking interactions between benzene rings, with a centroid-to-centroid distance of 3.709 Å, are also observed along this direction. The CoCl42− anions are sandwiched between the cationic chains and interact with each other through intermolecular N—H...Cl hydrogen-bonding interactions, forming a three-dimensional network structure.

  12. Phase transformation of Ca4[Al6O12]SO4 and its disordered crystal structure at 1073 K

    International Nuclear Information System (INIS)

    Kurokawa, Daisuke; Takeda, Seiya; Colas, Maggy; Asaka, Toru; Thomas, Philippe; Fukuda, Koichiro

    2014-01-01

    The phase transformation of Ca 4 [Al 6 O 12 ]SO 4 and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα 1 ). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4 ¯ 3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm 3 (Z=2) at 1073 K. The initial structural model was derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO 4 tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO 4 internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO 4 tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO 4 tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca 4 [Al 6 O 12 ]SO 4 at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split-atom model. • The MPF method is used to confirm the validity of the model.

  13. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2010-01-01

    The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect

  14. Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127

    DEFF Research Database (Denmark)

    Mortensen, Kell; Pedersen, Walther Batsberg; Hvidt, S.

    2008-01-01

    We report on structural properties of PEO-PPO-PEO type of triblock block copolymers (Pluronics F127) with special emphasis on the effect of diblock PEO-PPO impurities on the ordered gel phase. Commercial F127 polymers contain as received roughly 20% PEO-PPO diblock and 80% PEO-PPO-PEO triblock...... copolymers. Aqueous solutions of F127 copolymers used as received form fee ordered micellar structure. Copolymers depleted with respect to the diblock impurity, resulting in a pure PEO-PPO-PEO triblock copolymer system, form bcc ordered micelles within the major parts of the gel phase. However, close...

  15. Crystal structure of ammonium and rubidium octacyanomolybdates (4)

    Energy Technology Data Exchange (ETDEWEB)

    Semenishin, D.I.; Glovyak, T.; Mys' kiv, M.G.

    1985-01-01

    By the method of monocrystal at the automatic diffractometer ''Syntex P2/sub 1/'' the crystal structure of ammonium and rubidium octacyanomolybdates (4)-(NH/sub 4/)/sub 4/(Mo(CN)/sub 8/)x0.5H/sub 2/O (1) (sp.gr. Pma5 2, a=15.50(3), b=14.118 (3), c=7.438 (1)A, Z=4, R=0.062 and Rb/sub 4/(Mo(CN)/sub 8/):3H/sub 2/O (2) (sp.gr. P4/sub 1/2/sub 1/2, a=9.300 (1), c=21.807 (3) A, Z=4, R=0.065) is determined. Mo atoms in the structure 1 occupy two 2(b) and 2(c) particular positions and are surrounded, each of them, by light CN-ligands. The mean values of Mo-C distances for Mo(1) are equal 2.216, for Mo(2)-2.235 A. Mo-N mean values, practically are identical in both molybdenum anions and are equal 3.353 A. MoCN angles are varied from 175.0 to 178.4. The dodecahedron with the only symmetry axis 2 corresponds to the Mo(1) coordination sphere whereas the Mo(2) atoms coordination polyhedron (CP) is the symmetry in antiprism. In the structure 2 Mo-C distances are in the limits of 2.130-2.160 and Mo-N 3.290-3.307 A. MoCN angles are varied from 176.0 to 179.3 deg, the (MoC/sub 8/) CP represents a symmetry 2 dodecahedron. The existence of two Mo coordination forms in the structure 1 is up to now the only example among structurally studied octacyanomolybdates (4).

  16. Experimental evidence of body centered cubic iron in Earth's core

    Science.gov (United States)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  17. Defect ordering in aliovalently doped cubic zirconia from first principles

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.; Crosbie, G.M.; Stechel, E.B.

    2001-01-01

    Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δ-Zr 3 Y 4 O 12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y 2 O 3 - and Sc 2 O 3 -stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In 2 O 3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations

  18. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  19. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    Science.gov (United States)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  20. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.