WorldWideScience

Sample records for cubic crystal field

  1. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  2. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  3. Steps and dislocations in cubic lyotropic crystals

    International Nuclear Information System (INIS)

    Leroy, S; Pieranski, P

    2006-01-01

    It has been shown recently that lyotropic systems are convenient for studies of faceting, growth or anisotropic surface melting of crystals. All these phenomena imply the active contribution of surface steps and bulk dislocations. We show here that steps can be observed in situ and in real time by means of a new method combining hygroscopy with phase contrast. First results raise interesting issues about the consequences of bicontinuous topology on the structure and dynamical behaviour of steps and dislocations

  4. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    Science.gov (United States)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  5. THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE

    Directory of Open Access Journals (Sweden)

    T. O. Parashchuk

    2016-07-01

    Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.

  6. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    Science.gov (United States)

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  7. Principal spectra describing magnetooptic permittivity tensor in cubic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamrlová, Jana [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Veis, Martin [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Pištora, Jaromír [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Hamrle, Jaroslav, E-mail: jaroslav.hamrle@vsb.cz [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Department of Physics, VSB – Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic)

    2016-12-15

    We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.

  8. d and f electrons in a qp-quantized cubical field

    International Nuclear Information System (INIS)

    Kibler, M.; Sztucki, J.

    1993-03-01

    A procedure for qp-quantizing a crystal-field potential V with an arbitrary symmetry G is developed. Such a procedure is applied to the case where V involves cubic components (G=0) of the degrees 4 and 6. This case corresponds to d and f electrons in a qp-quantized cubical potential. It is shown that the qp-quantization of the considered cubical potential is equivalent to a symmetry breaking of type O→D 4 . A general conjecture about this symmetry breaking phenomenon is given. (author) 21 refs

  9. Plastic deformation of cubic zirconia single crystals at 1400 C

    International Nuclear Information System (INIS)

    Baufeld, B.; Baither, D.; Bartsch, M.; Messerschmidt, U.

    1998-01-01

    Cubic zirconia single crystals stabilized with 11 mol% yttria were deformed in air at 1400 C and around 1200 C at different strain rates along [1 anti 12] and [100] compression directions. The strain rate sensitivity of the flow stress was determined by strain rate cycling and stress relaxation tests. The microstructure of the deformed specimens was investigated by transmission high-voltage electron microscopy, including contrast extinction analysis for determining the Burgers vectors as well as stereo pairs and wide-angle tilting experiments to find the active slip planes. At deformation along [1 anti 12], the primary and secondary slip planes are of {100} type. Previous experiments had shown that the dislocations move easily on these planes in an athermal way. During deformation along [100], mainly dislocations on {100} planes are activated, which move in a viscous way by the aid of thermal activation. The discussion of the different deformation behaviours during deformation along [1 anti 12] and [100] is based on the different dynamic properties of dislocations and the fact that recovery is an essential feature of the deformation of cubic zirconia at 1400 C. The results on the shape of the deformation curve and the strain rate sensitivity of the flow stress are partly at variance with those of previous authors. (orig.)

  10. Regularizing cubic open Neveu-Schwarz string field theory

    International Nuclear Information System (INIS)

    Berkovits, Nathan; Siegel, Warren

    2009-01-01

    After introducing non-minimal variables, the midpoint insertion of Y Y-bar in cubic open Neveu-Schwarz string field theory can be replaced with an operator N ρ depending on a constant parameter ρ. As in cubic open superstring field theory using the pure spinor formalism, the operator N ρ is invertible and is equal to 1 up to a BRST-trivial quantity. So unlike the linearized equation of motion Y Y-bar QV = 0 which requires truncation of the Hilbert space in order to imply QV = 0, the linearized equation N ρ QV = 0 directly implies QV = 0.

  11. Deformation of the cubic open string field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin, E-mail: taejin@kangwon.ac.kr

    2017-05-10

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  12. Deformation of the cubic open string field theory

    Directory of Open Access Journals (Sweden)

    Taejin Lee

    2017-05-01

    Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  13. Deformation of the cubic open string field theory

    International Nuclear Information System (INIS)

    Lee, Taejin

    2017-01-01

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  14. On the magnetization process and the associated probability in anisotropic cubic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Khedr, D.M., E-mail: doaamohammed88@gmail.com [Department of Basic Science, Modern Academy of Engineering and Technology at Maadi, Cairo (Egypt); Aly, Samy H.; Shabara, Reham M. [Department of Physics, Faculty of Science at Damietta, University of Damietta, Damietta (Egypt); Yehia, Sherif [Department of Physics, Faculty of Science at Helwan, University of Helwan, Helwan (Egypt)

    2017-05-15

    We present a theoretical method to calculate specific magnetic properties, e.g. magnetization curves, magnetic susceptibility and probability landscapes along the [100], [110] and [111] crystallographic directions of a crystal of cubic symmetry. The probability landscape displays the evolution of the most probable angular orientation of the magnetization vector, for selected temperatures and magnetic fields. Our method is based on the premises of classical statistical mechanics. The energy density, used in the partition function, is the sum of magnetic anisotropy and Zeeman energies, however no other energies e.g. elastic or magnetoelastic terms are considered in the present work. Model cubic systems of diverse anisotropies are analyzed first, and subsequently material magnetic systems of cubic symmetry; namely iron, nickel and Co{sub x} Fe{sub 100−x} compounds, are discussed. We highlight a correlation between magnetization curves and the associated probability landscapes. In addition, determination of easiest axes of magnetization, using energy consideration, is done and compared with the results of the present method.

  15. Rotation-limited growth of three-dimensional body-centered-cubic crystals.

    Science.gov (United States)

    Tarp, Jens M; Mathiesen, Joachim

    2015-07-01

    According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.

  16. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  17. SURVEY OF THE SPECTRA OF THE DIVALENT RARE EARTH IONS IN CUBIC CRYSTALS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Donald S. [Univ. of Chicago, IL (United States); Kiss, Zoltan J. [RCA Laboratories, Princeton, NJ (United States)

    1963-04-15

    The rare earth ions may exist in the divalent state in suitable host crystals such as CaF/sub 2/. All of the trivalent ions from La to Yb are reduced in situ to the divalent state in CaF/sub 2/ by gamma irradiation. The spectra of most of these ions show that the ground and first few excited states derive from f/sup n/ configurations, but the wesk absorption due to these is masked at higher energies by strong broad bands of the parity permitted f/sup n/ yields f/sup n-1/ d transitions. The excitation energy of these spectra have been calculated in a first approximation as the energy difference between the Hund Rule'' single determinant states of the configurations f/sup n -1/d and f/sup n/. This procedure satisfactorily accounts for the remarkable variations in the excitation energy in passing from one ion to the next in the series with the exception of Ge/ sup 2+/ Ce/sup 2+/, and Tb/sup 2+/, Ge/sup 2+/ probably has f/sup 7/d for its ground con figuration, while Ce/sup 2+/ and Tb/sup 2+/ are borderline cases. The spectral structure probably arises chiefly from the crystal field splitting of the d-orbital, since each ion in CaF/sub 2/ has a similar spectrum, and the spectra change drastically in sites of other than cubic symmetry. (auth)

  18. Optical Characterization of Light-Bending Mechanisms in Photonic Crystals with Simple Cubic Symmetry

    Science.gov (United States)

    Frey, Brian James

    For much of Earth's history, light was reputed to be an intangible, intractable, and transient quantity, but our understanding of light has since been revolutionized. The flow of electromagnetic energy through space can today be manipulated with a degree of precision and control once only dreamed of; rapidly developing technologies can create, guide, bend, and detect light to produce useful energy and information. One field where these technologies are most relevant is the field of light trapping, which concerns the harvesting of incident photons within a limited space by scattering, slowing, or otherwise prolonging and enhancing their interaction with matter. Over the past few decades, a class of materials, called photonic crystals (PCs), has emerged that is ideally suited for this task. This is because their wavelength-scale periodicity in one, two, or three dimensions can be designed to alter the dispersion relation and photonic density-of-states in a controllable manner. In this work, a TiO2 simple cubic PC with high dielectric contrast ( > 4:1) is fabricated with a lattice constant of 450 nm, and a newly discovered light-trapping mechanism is demonstrated, which bends light by 90 degrees and enhances optical absorption by one to two orders-of-magnitude over that in a reference film of the same thickness. It is shown that, for wavelengths from 450-950 nm, the achievable enhancement factor for this structure surpasses the theoretical limit of 4n2 derived under the assumption of ergodic system by multiple times. These results derive directly from the symmetry of the simple cubic lattice and are fundamental in nature, not depending on the material used or on the method of fabrication. The light trapping capability of these PCs has straight-forward applications that would be useful in a variety of areas where increased light-matter interaction is desirable, such as white-light generation, thin-film solar cells, photocatalytic pollutant degradation and hydrogen fuel

  19. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    Science.gov (United States)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  20. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    Science.gov (United States)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  1. Cubic Interactions of Massless Bosonic Fields in Three Dimensions

    Science.gov (United States)

    Mkrtchyan, Karapet

    2018-06-01

    In this Letter, we take the first step towards construction of nontrivial Lagrangian theories of higher-spin gravity in a metriclike formulation in three dimensions. The crucial feature of a metriclike formulation is that it is known how to incorporate matter interactions into the description. We derive a complete classification of cubic interactions for arbitrary triples s1 , s2 , s3 of massless fields, which are the building blocks of any interacting theory with massless higher spins. We find that there is, at most, one vertex for any given triple of spins in 3D (with one exception, s1=s2=s3=1 , which allows for two vertices). Remarkably, there are no vertices for spin values that do not respect strict triangle inequalities and contain at least two spins greater than one. This translates into selection rules for three-point functions of higher-spin conserved currents in two dimensional conformal field theory. Furthermore, universal coupling to gravity for any spin is derived. Last, we argue that this classification persists in arbitrary Einstein backgrounds.

  2. A new spectral framework for crystal plasticity modeling of cubic and hexagonal polycrystalline metals

    Science.gov (United States)

    Knezevic, Marko

    Crystal plasticity physics-based constitutive theories are used in understanding and predicting the evolution of the underlying microstructure and the concomitant anisotropic stress-strain response in polycrystalline metals subjected to finite plastic strains. A new scheme for efficient crystal plasticity computations for both cubic and hexagonal polycrystalline metals subjected to arbitrary deformation modes has been developed in this thesis. This new computational scheme involves building material databases comprised of spectral coefficients. These spectral coefficients are computed using discrete Fourier transforms (DFTs) and allow for compact representation and fast retrieval of crystal plasticity solutions for a crystal of any orientation subjected to any deformation mode. The novel approach is able to speed up the conventional crystal plasticity computations by two orders of magnitude. Furthermore, mathematical procedures for delineation of property closures that identify the complete set of theoretically feasible combinations of macroscale effective properties has been developed for a broad set of mechanical properties. Subsequently, these constructs were used in microstructure design for identifying an optimal microstructure for selected performance criteria. And finally, hybrid processing recipes that transform a given initial microstructure into a member of the set of optimal microstructures that exhibit superior properties or performance characteristics have been described. Insights and tremendous potential of these novel materials knowledge systems are discussed and demonstrated through specific case-studies. The anisotropic stress-strain response measured in simple compression and simple tension tests in different sample directions on an annealed, strongly textured, AZ31 sheet has been studied. New insights into the mechanical response of this material were obtained by correlating the changes in the measured strain-hardening rates in the different

  3. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Directory of Open Access Journals (Sweden)

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  4. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    International Nuclear Information System (INIS)

    Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-01-01

    A comparison of X-ray diffraction and radiographic techniques for the location and characterization of protein crystals is demonstrated on membrane protein crystals mounted within lipid cubic phase material. The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required

  5. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Anna J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Armour, Wes [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Oxford e-Research Centre, 7 Keble Road, Oxford OX1 3QG (United Kingdom); Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Horrell, Sam [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); University of Liverpool, Liverpool L69 3BX (United Kingdom); McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2013-07-01

    A comparison of X-ray diffraction and radiographic techniques for the location and characterization of protein crystals is demonstrated on membrane protein crystals mounted within lipid cubic phase material. The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.

  6. pH-responsive lyotropic liquid crystals for the preparation of pure cubic zirconia nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei Yan; Liu, Jin Rong; He, Zhang; Cao, Zhen Zhu; Li, Cai Hong; Gao, Yan Fang [Inner Mongolia University of Technology, School of Chemical Engineering, Hohhot (China)

    2016-07-15

    We present a lyotropic liquid crystal system consisting of SDS/Triton X-100/water at 25 C. This system is respond to pH variations with a phase switch. When pH is altered from alkaline (pH 13) to acidic (pH 2) conditions, phase change occurs from a bicontinuous hexagonal phase to a partially hexagonal phase until it disappears. The hexagonal phase under alkaline conditions is stable. Thus, this system is an ideal candidate for the preparation of pure cubic ZrO{sub 2} nanoparticles. XRD results confirm that the as-synthesized powder is composed of pure cubic ZrO{sub 2}. These nanoparticles also exhibit a thermal stability of up to 800 C. The size and morphological characteristics of the nanoparticles are greatly affected by ZrOCl{sub 2} concentration. The mechanism of zirconia nanoparticle synthesis in a lyotropic hexagonal phase was proposed. (orig.)

  7. Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kolegov, A A; Shandarov, S M; Simonova, G V; Kabanova, L A; Burimov, Nikolai I; Shmakov, S S; Bykov, V I; Kargin, Yu F

    2011-09-30

    The characteristics of a holographic interferometer, which is based on the interaction of counterpropagating light waves on reflective holograms in cubic photorefractive sillenite crystals of the (100) cut and designed for measuring surface vibration spectra from specularly reflecting objects, have been theoretically analysed and experimentally studied. The experiments showed that an interferometer of this type, based on an Bi{sub 12}TiO{sub 20} : Fe,Cu crystal, makes it possible to measure vibrations with an amplitude of 5 pm. An analysis performed with allowance for the shot and thermal noise of the photodetector showed that vibrations with an amplitude below 1 pm can be measured. A model is proposed to describe the experimentally found strong temperature dependence of the light interaction on reflection holograms in a Bi{sub 12}TiO{sub 20} : Ca crystal. This model takes into account the influence of temperature on the photoinduced charge redistribution over deep donor and shallow trap centres, as well as the drift of the interference pattern in the crystal due to the thermooptical effect and linear expansion of the crystal.

  8. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.

    Science.gov (United States)

    Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-07-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.

  9. Mathemimetics II. Demonstratio Mirabilis of FLT by infinitely ascending cubical crystal growth

    Science.gov (United States)

    Trell, Erik

    2012-09-01

    Emulating Nature by observation and ground-up application of its patterns, structures and processes is a classical scientific practice which under the designation of Biomimetics has now been brought to the Nanotechnology scale where even highly complex systems can be realized by continuous or cyclically reiterated assembly of the respective self-similar eigen-elements, modules and algorithms right from their infinitesimal origin. This is actually quite akin to the genuine mathematical art and can find valuable renewed use as here exemplified by the tentatively original Demonstratio Mirabilis of FLT (Fermat's Last Theorem, or, in that case, Triumph) by infinitely ascending sheet-wise cubical crystal growth leading to the binomial `magic triangle' of his close fellow Blaise Pascal.

  10. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.

    Science.gov (United States)

    Lee, Byoung-Sun; Seo, Jong-Hyun; Son, Seoung-Bum; Kim, Seul Cham; Choi, In-Suk; Ahn, Jae-Pyoung; Oh, Kyu Hwan; Lee, Se-Hee; Yu, Woong-Ryeol

    2013-07-23

    In the foreseeable future, there will be a sharp increase in the demand for flexible Li-ion batteries. One of the most important components of such batteries will be a freestanding electrode, because the traditional electrodes are easily damaged by repeated deformations. The mechanical sustainability of carbon-based freestanding electrodes subjected to repeated electrochemical reactions with Li ions is investigated via nanotensile tests of individual hollow carbon nanofibers (HCNFs). Surprisingly, the mechanical properties of such electrodes are improved by repeated electrochemical reactions with Li ions, which is contrary to the conventional wisdom that the mechanical sustainability of carbon-based electrodes should be degraded by repeated electrochemical reactions. Microscopic studies reveal a reinforcing mechanism behind this improvement, namely, that inserted Li ions form irreversible face-centered-cubic (FCC) crystals within HCNF cavities, which can reinforce the carbonaceous matrix as strong second-phase particles. These FCC Li crystals formed within the carbon matrix create tremendous potential for HCNFs as freestanding electrodes for flexible batteries, but they also contribute to the irreversible (and thus low) capacity of HCNFs.

  11. Cubic to hexagonal phase transition induced by electric field

    Czech Academy of Sciences Publication Activity Database

    Giacomelli, F. C.; Silveira, N.; Nallet, F.; Černoch, Peter; Steinhart, Miloš; Štěpánek, Petr

    2010-01-01

    Roč. 43, č. 9 (2010), s. 4261-4267 ISSN 0024-9297 R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : order to order transition (OOT) * electric field * block copolymers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.838, year: 2010

  12. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    Science.gov (United States)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space

  13. Cubic interaction in extended theories of massless higher-spin fields

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A

    1987-08-17

    A cubic interaction of all massless higher-spin fields with s greater than or equal to 1 is constructed, based on the extended higher-spin superalgebras suggested previously by one of us (M.V.). This interaction incorporates gravitational and Yang-Mills interactions of massless higher-spin fields, which turn out to be consistent in the cubic order. An essential novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. An explicit form is found for deformed higher-spin gauge transformations leaving the action invariant.

  14. Analytic regularization of uniform cubic B-spline deformation fields.

    Science.gov (United States)

    Shackleford, James A; Yang, Qi; Lourenço, Ana M; Shusharina, Nadya; Kandasamy, Nagarajan; Sharp, Gregory C

    2012-01-01

    Image registration is inherently ill-posed, and lacks a unique solution. In the context of medical applications, it is desirable to avoid solutions that describe physically unsound deformations within the patient anatomy. Among the accepted methods of regularizing non-rigid image registration to provide solutions applicable to medical practice is the penalty of thin-plate bending energy. In this paper, we develop an exact, analytic method for computing the bending energy of a three-dimensional B-spline deformation field as a quadratic matrix operation on the spline coefficient values. Results presented on ten thoracic case studies indicate the analytic solution is between 61-1371x faster than a numerical central differencing solution.

  15. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  16. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  17. Size effect on deformation twinning in face-centred cubic single crystals: Experiments and modelling

    International Nuclear Information System (INIS)

    Liang, Z.Y.; De Hosson, J.T.M.; Huang, M.X.

    2017-01-01

    In addition to slip by dislocation glide, deformation twinning in small-sized metallic crystals also exhibits size effect, namely the twinning stress increases with decreasing sample size. In order to understand the underpinning mechanisms responsible for such effect, systematic experiments were carried out on the small-sized single-crystalline pillars of a twinning-induced plasticity steel with a face-centred cubic structure. The flow stress increases considerably with decreasing pillar diameter from 3 to 0.5 μm, demonstrating a substantial size effect with a power exponent of 0.43. Detailed microstructural characterization reveals that the plastic deformation of the present pillars is dominant by twinning, primarily via twin growth, indicating that the size effect should be related to deformation twinning instead of slip by dislocation glide. Subsequent modelling works indicate that twinning can be accomplished by the dissociation of the ion-radiation-induced vacancy Frank loops in the damaged subsurface layer of the pillars, and the size effect is attributed to the ion-radiation-induced compressive stress in the subsurface layer, which decreases with pillar diameter.

  18. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  19. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Bassou, M. [Tunis Univ. (Tunisia)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Rotter, M. [Karlova Univ., Prague (Czech Republic)]|[CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Bernier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France); Chapellier, M. [CEA/DSM/DRECAM/SPEC, Gif-wur-Yvette (France)

    1996-02-11

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.).

  20. Quadrupolar interactions in non-cubic crystal and related extra heat capacities. Possible effects on a sapphire bolometer

    International Nuclear Information System (INIS)

    Bassou, M.; Rotter, M.; Bernier, M.; Chapellier, M.

    1996-01-01

    It is shown that in a non-cubic crystal, the extra heat capacity due to quadrupolar interaction of nuclear spins >1/2 could be much bigger than the phonon heat capacity when the temperature decreases. The possible coupling between quadrupolar and phonon heat reservoir via paramagnetic impurities is stressed. A NMR experiment done on sapphire is presented with an evaluation of the coupling between the two reservoirs and its consequence on the performance of the bolometer. (orig.)

  1. Deformed lattice states in a Zn{sub 0.9}V{sub 0.1}Se cubic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Maksimov, V. I., E-mail: kokailo@rambler.ru; Dubinin, S. F.; Surkova, T. P.; Parkhomenko, V. D. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-01-15

    Neutron scattering patterns have been recorded for a bulk Zn{sub 0.9}V{sub 0.1}Se cubic crystal at room temperature; they are indicative of macroscopic deformation in the material and its significant inhomogeneity. Specific features of the previously found state, preceding the fcc ↔ hcp structural transformation of the sphalerite lattice upon strong destabilization induced by vanadium ions in the doped ZnSe matrix, are discussed taking into account the data obtained.

  2. Crystal field and magnetocrystalline anisotropy in various crystalline systems

    International Nuclear Information System (INIS)

    Adam, S.A.

    1983-01-01

    Systematic derivation of the one-perticle crystal field Hamiltonians is given for all possible site symmetries in crystals. Distinct parametrizations are found to occur for the eleven Laue-symmetry groups. The functional dependence of the Hamiltonian on the choice of the coordinate axes is also investigated. A general method is developed for the derivation of the one-particle crYstal field potential characteristic of a given crystallographic symmetry, for arbitrary effective interatomic forces. Calculations performed for cubic and hexagonal structures lead to the standard representations in spherical harmonics with the coefficients given, however, by power series of rsup(n) rather than by simgle rsup(n) terms as obtained within the usual hypothesis of Coulombian interatomic forces. This result has implications on the interpretation of some theoretical and experimental data. Theoretical results are obtained for the crystal field coefficients which enable us to develop an approach to the use of the crystal field data for the derivation of information on the effective interatomic forces in crystals. The method is applied to the magnetic Sm 3+ ion in SmCo 5 , and it is shown to provide valuable results both for the effective interatomic potential and for the consistency of various sets of crystal field parameters previously proposed in the literature. Maqnetocrystalline anisotropy of the rare-earth intermetallic compounds are discussed. Single-ion anisotropy model is used for SmCo 5 and the theoreticalpr predictions are compared with the experimental data. (author)

  3. Local fields in ionic crystals

    International Nuclear Information System (INIS)

    Claro, F.

    1981-08-01

    Local fields arising from the electronic distortion in perfect ionic crystals are described in terms of multipolar excitations. Field factors for the alkali halides and chalcogenide ions are found to differ significantly from the Lorentz value of 4π/3, the correction size following an exponential dependence on the difference in ionic radii. Local fields are only slightly modified by these corrections however, and together with the Clausius-Mossotti relation may be regarded as accurate to within 2% if the Lorentz value is adopted. (author)

  4. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  5. XPS analysis for cubic boron nitride crystal synthesized under high pressure and high temperature using Li3N as catalysis

    International Nuclear Information System (INIS)

    Guo, Xiaofei; Xu, Bin; Zhang, Wen; Cai, Zhichao; Wen, Zhenxing

    2014-01-01

    Highlights: • The cBN was synthesized by Li 3 N as catalyst under high pressure and high temperature (HPHT). • The film coated on the as-grown cBN crystals was studied by XPS. • The electronic structure variation in the film was investigated. • The growth mechanism of cubic boron nitride crystal was analyzed briefly. - Abstract: Cubic boron nitride (cBN) single crystals are synthesized with lithium nitride (Li3N) as catalyst under high pressure and high temperature. The variation of electronic structures from boron nitride of different layers in coating film on the cBN single crystal has been investigated by X-ray photoelectron spectroscopy. Combining the atomic concentration analysis, it was shown that from the film/cBN crystal interface to the inner, the sp 2 fractions are decreasing, and the sp 3 fractions are increasing in the film at the same time. Moreover, by transmission electron microscopy, a lot of cBN microparticles are found in the interface. For there is no Li 3 N in the film, it is possible that Li 3 N first reacts with hexagonal boron nitride to produce Li 3 BN 2 during cBN crystals synthesis under high pressure and high temperature (HPHT). Boron and nitrogen atoms, required for cBN crystals growth, could come from the direct conversion from hexagonal boron nitride with the catalysis of Li 3 BN 2 under high pressure and high temperature, but not directly from the decomposition of Li 3 BN 2

  6. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seetha, M., E-mail: seetha.phy@gmail.com [Department of Physics, SRM University, Kattankulathur, Kancheepuram Dt 603 203 (India); Meena, P. [Department of Physics, PSGR Krishnammal College for Women, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore (India); Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 014 (India); Masuda, Yoshitake [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K. [School of Advanced Materials Science and Engineering, Sungkyunkwan University (Suwon Campus), Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer For the first time HMT is used in the preparation of indium oxide. Black-Right-Pointing-Pointer HMT itself acts as base for the precursor and results in cubic indium hydroxide. Black-Right-Pointing-Pointer Modified hydrothermal route used for the preparation of cubic indium oxide crystals. Black-Right-Pointing-Pointer As a new approach a composite film synthesized with prepared indium oxide. Black-Right-Pointing-Pointer Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  7. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    International Nuclear Information System (INIS)

    Seetha, M.; Meena, P.; Mangalaraj, D.; Masuda, Yoshitake; Senthil, K.

    2012-01-01

    Highlights: ► For the first time HMT is used in the preparation of indium oxide. ► HMT itself acts as base for the precursor and results in cubic indium hydroxide. ► Modified hydrothermal route used for the preparation of cubic indium oxide crystals. ► As a new approach a composite film synthesized with prepared indium oxide. ► Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  8. Crystal structure of (Al,V)4(P4O12)3, archetype of double cubic ring tetraphosphate

    International Nuclear Information System (INIS)

    Yakubovich, O. V.; Biralo, G. V.; Dimitrova, O. V.

    2012-01-01

    The crystal structure of the (Al,V) 4 (P 4 O 12 ) 3 solid solution, obtained in the single-crystal form by hydrothermal synthesis in the Al(OH) 3 -VO 2 -NaCl-H 3 PO 4 -H 2 O system, has been solved by X-ray diffraction analysis (Xcalibur-S-CCD diffractometer, R = 0.0257): a = 13.7477(2) Å, sp. gr. I 4 bar 3d, Z = 4, and ρ calcd = 2.736 g/cm 3 . It is shown that the crystal structure of the parent cubic Al 4 (P 4 O 12 ) 3 modification can formally be considered an archetype for the formation of double isosymmetric tetraphosphates on its basis.

  9. Investigation of the validity of radiosity for sound-field prediction in cubic rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-12-01

    This paper explores acoustical (or time-dependent) radiosity using predictions made in four cubic enclosures. The methods and algorithms used are those presented in a previous paper by the same authors [Nosal, Hodgson, and Ashdown, J. Acoust. Soc. Am. 116(2), 970-980 (2004)]. First, the algorithm, methods, and conditions for convergence are investigated by comparison of numerous predictions for the four cubic enclosures. Here, variables and parameters used in the predictions are varied to explore the effect of absorption distribution, the necessary conditions for convergence of the numerical solution to the analytical solution, form-factor prediction methods, and the computational requirements. The predictions are also used to investigate the effect of absorption distribution on sound fields in cubic enclosures with diffusely reflecting boundaries. Acoustical radiosity is then compared to predictions made in the four enclosures by a ray-tracing model that can account for diffuse reflection. Comparisons are made of echograms, room-acoustical parameters, and discretized echograms. .

  10. Three-dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    OpenAIRE

    Lucarini, Valerio

    2008-01-01

    We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable eve...

  11. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    International Nuclear Information System (INIS)

    Caffrey, Martin

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  12. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College Dublin, Dublin (Ireland)

    2015-01-01

    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  13. BDA: A novel method for identifying defects in body-centered cubic crystals.

    Science.gov (United States)

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  14. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    OpenAIRE

    Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-01-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolec...

  15. Crystal-field effect in UO2

    International Nuclear Information System (INIS)

    Gajek, Z.; Lahalle, M.P.; Krupa, J.C.; Mulak, J.

    1988-01-01

    Simple ab initio model perturbation calculations of the crystal-field parameters for the U 4+ ion in UO 2 crystals are reported. The crystal-field parameters obtained, B 0 4 = -7130 cm -1 and B 0 6 = 2890 cm -1 , turn out to be much lower in value, particularly the first one, than those usually assumed for this compound. They are found, however, to agree with new spectroscopic data and recent inelastic neutron scattering measurements. (orig.)

  16. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    Science.gov (United States)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  17. Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2−x)TiO5 series

    International Nuclear Information System (INIS)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Reyes, Massey de los; Sharma, Neeraj; Ling, Christopher D.; Gault, Baptiste; Smith, Katherine L.; Avdeev, Maxim; Cairney, Julie M.

    2014-01-01

    A series of single phase compounds with nominal stoichiometry Sm (x) Yb (2−x) TiO 5 (x=2, 1.4, 1, 0.6, and 0) have been successfully fabricated to generate a range of crystal structures covering the most common polymorphs previously discovered in the Ln 2 TiO 5 series (Ln=lanthanides and yttrium). Four of the five samples have not been previously fabricated in bulk, single phase form so their crystal structures are refined and detailed using powder synchrotron and single crystal x-ray diffraction, neutron diffraction and transmission electron microscopy. Based on the phase information from diffraction data, there are four crystal structure types in this series; orthorhombic Pnma, hexagonal P6 3 /mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The cubic materials show modulated structures with variation between long and short range ordering and the variety of diffraction techniques were used to describe these complex crystal structure types. - Graphical abstract: A high resolution image of the compound Sm 0.6 Yb 1.4 TiO 5 showing contrast from lattice fringes and the corresponding fast Fourier transform (FFT) of the HREM image with pyrochlore related diffraction spots marked “P” and fluorite marked “F”. The crystal is oriented down the [1 1 0] zone axis based on the Fd-3m structure. The ideal crystal structure (no vacancies) of the cubic, pyrochlore-like (Sm 0.6 Yb 1.4 TiO 5 ). - Highlights: • First fabrication of bulk single-phase material with stoichiometry Sm 2 TiO 5 . • Systematic study of crystal structure types within Ln 2 TiO 5 series (Ln=lanthanides). • A novel technique using IFFT of HREM images to study cubic structures

  18. Acousto-optical phonon excitation in cubic piezoelectric slabs and crystal growth orientation effects

    DEFF Research Database (Denmark)

    Willatzen, Morten; Duggen, Lars

    2017-01-01

    In this paper we investigate theoretically the influence of piezoelectric coupling on phonon dispersion relations. Specifically we solve dispersion relations for a fully coupled zinc-blende freestanding quantum well for different orientations of the crystal unit cell. It is shown that the phonon...... mode density in GaAs can change by a factor of approximately 2–3 at qx a = 1 for different crystal-growth directions relative to the slab thickness direction. In particular, it is found that optical and acoustic phonon modes are always piezoelectrically coupled, independent of the crystal...... that the piezoelectric effect leads to a drastically enhanced coupling of acoustic and optical phonon modes and increase in the local phonon density of states near the plasma frequency where the permittivity approaches zero....

  19. Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature

    Science.gov (United States)

    Lv, Meizhe; Xu, Bin; Cai, Lichao; Guo, Xiaofei; Yuan, Xingdong

    2018-05-01

    After rapid cooling, cubic boron nitride (c-BN) single crystals synthesized under high pressure and high temperature (HPHT) are wrapped in the white film powders which are defined as growth interface. In order to make clear that the transition mechanism of c-BN single crystals, the variation of B and N atomic hybrid states in the growth interface is analyzed with the help of auger electron spectroscopy in the Li-based system. It is found that the sp2 fractions of B and N atoms decreases, and their sp3 fractions increases from the outer to the inner in the growth interface. In addition, Lithium nitride (Li3N) are not found in the growth interface by X-ray diffraction (XRD) experiment. It is suggested that lithium boron nitride (Li3BN2) is produced by the reaction of hexagonal boron nitride (h-BN) and Li3N at the first step, and then B and N atoms transform from sp2 into sp3 state with the catalysis of Li3BN2 in c-BN single crystals synthesis process.

  20. Magnetostriction of some cubic rare earth-Co2 compounds in high magnetic fields

    International Nuclear Information System (INIS)

    Moral, A. del; Melville, D.

    1975-01-01

    Magnetostriction measurements have been carried out in the cubic Laves phase compounds DyCo 2 , HoCo 2 and ErCo 2 from 10 K to well above their respective Neel temperatures Tsub(N). Pulsed magnetic fields up to 15 T (150kOe) were applied. The observed magnetostrictions are very large (approximately 10 -3 ) being similar to those found in the RFe 2 compounds. The measurements confirm the extremely high anisotropy of these materials. At the highest fields the polycrystalline samples are still undergoing rotational magnetization processes. The expected values of the saturation magnetostriction at O K are similar in sign and magnitude to those found in the corresponding rare earth metals. This fact and the scaling of magnetostriction with rare earth sublattice magnetization indicates that the rare earth ion is the main source of the magnetostriction. The metamagnetic transition above Tsub(N) has been studied, the relation between critical field and temperature being nonlinear for HoCo 2 and ErCo 2 . The compounds are highly anisotropic above Tsub(N) and all the features indicate that the field-induced phases are likely to be ferrimagnetic. (author)

  1. Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2

    International Nuclear Information System (INIS)

    Cairo, Laurent; Llibre, Jaume

    2007-01-01

    We classify all the global phase portraits of the cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2. For such vector fields there are exactly 28 different global phase portraits in the Poincare disc up to a reversal of sense of all orbits

  2. Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liang-Yu; Chen, Lien-Wen, E-mail: chenlw@mail.ncku.edu.t [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2011-02-02

    This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the {Gamma}-X and {Gamma}-X' directions are also presented. The calculated results are compared with the experimental results.

  3. Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Kinjal Gandha

    2017-05-01

    Full Text Available Ferromagnetic Co-doped α-Fe2O3 cubic shaped nanocrystal assemblies (NAs with a high coercivity of 5.5 kOe have been synthesized via a magnetic field (2 kOe assisted hydrothermal process. The X-ray diffraction pattern and Raman spectra of α-Fe2O3 and Co-doped α-Fe2O3 NAs confirms the formation of single-phase α-Fe2O3 with a rhombohedral crystal structure. Electron microscopy analysis depict that the Co-doped α-Fe2O3 NAs synthesized under the influence of the magnetic field are consist of aggregated nanocrystals (∼30 nm and of average assembly size 2 μm. In contrast to the NAs synthesized with no magnetic field, the average NAs size and coercivity of the Co-doped α-Fe2O3 NAs prepared with magnetic field is increased by 1 μm and 1.4 kOe, respectively. The enhanced coercivity could be related to the well-known spin–orbit coupling strength of Co2+ cations and the redistribution of the cations. The size increment indicates that the small ferromagnetic nanocrystals assemble into cubic NAs with increased size in the magnetic field that also lead to the enhanced coercivity.

  4. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  5. Crystal growth under external electric fields

    International Nuclear Information System (INIS)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-01-01

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal

  6. Crystal growth under external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  7. Cubic Dresselhaus interaction parameter from quantum corrections to the conductivity in the presence of an in-plane magnetic field

    Science.gov (United States)

    Marinescu, D. C.

    2017-09-01

    We evaluate the quantum corrections to the conductivity of a two-dimensional electron system with competing Rashba (R) and linear and cubic Dresselhaus (D) spin-orbit interactions in the presence of an in-plane magnetic field B . Within a perturbative approximation, we investigate the interplay between the spin-orbit coupling and the magnetic field in determining the transport regime in two different limiting scenarios: when only one of the linear terms, either Rashba or Dresselhaus, dominates, and at equal linear couplings, when the cubic Dresselhaus breaks the spin symmetry. In each instance, we find that for B higher than a critical value, the antilocalization correction is suppressed and the effective dephasing time saturates to a constant value determined only by the spin-orbit interaction. At equal R-D linear couplings, this value is directly proportional with the cubic Dresselhaus contribution. In the same regime, the magnetoconductivity is expressed as a simple logarithmic function dependent only on the cubic Dresselhaus constant.

  8. Phase-field crystal simulation facet and branch crystal growth

    Science.gov (United States)

    Chen, Zhi; Wang, Zhaoyang; Gu, Xinrui; Chen, Yufei; Hao, Limei; de Wit, Jos; Jin, Kexin

    2018-05-01

    Phase-field crystal model with one mode is introduced to describe morphological transition. The relationship between growth morphology and smooth density distribution was investigated. The results indicate that the pattern selection of dendrite growth is caused by the competition between interface energy anisotropy and interface kinetic anisotropy based on the 2D phase diagram. When the calculation time increases, the crystal grows to secondary dendrite at the dimensionless undercooling equal to - 0.4. Moreover, when noise is introduced in the growth progress, the symmetry is broken in the growth mode, and there becomes irregular fractal-like growth morphology. Furthermore, the single crystal shape develops into polycrystalline when the noise amplitude is large enough. When the dimensionless undercooling is less than - 0.3, the noise has a significant effect on the growth shape. In addition, the growth velocity of crystal near to liquid phase line is slow, while the shape far away from the liquid adapts to fast growth. Based on the simulation results, the method was proved to be effective, and it can easily obtain different crystal shapes by choosing the different points in 2D phase diagram.

  9. Study of the evolution of the boundary of the elastic field with strain hardening, and elastic-plastic behaviour relationships of cubic metals

    International Nuclear Information System (INIS)

    Bui, Huy Duong

    1969-01-01

    In this research thesis on metal strain hardening, the author first discusses the issue of passing from microscopic values to corresponding macroscopic values. If there is generally a correspondence between them, it is not the case for plastic strain. Thus, the author studies the general properties of the boundary of the macroscopic plastic field with respect to single-crystal elastic boundaries. In the second part, the author reports an experimental study of the evolution of the elastic field boundary. In the third part, he develops elastic-plastic behaviour laws for an aggregate of cubic crystals. The objectives are to report experimental results in a more satisfying way than previous studies, and to obtain acceptable physical laws while keeping some properties of conventional laws in order to ensure the solution uniqueness, and to establish minimum principles similar to those of Nodge-Prager and of Greenberg. In order to do so, he introduces a new hypothesis: there is a statistic scattering in initial thresholds of crystals

  10. Internal bias field in glycine phosphite crystal

    International Nuclear Information System (INIS)

    Nayeem, Jannatul; Wakabayashi, Hiroshi; Kikuta, Toshio; Yamazaki, Toshinari; Nakatani, Noriyuki

    2003-01-01

    The distributions of internal bias field E b have been investigated under the carbon-powder pattern and mercury electrode techniques in GPI ferroelectric crystals. Polarity and intensity of E b are distributed depending on crystal growth sectors. Crystal symmetry 2/m is observed obviously in the distribution of E b . The polarities of E b are head-to-head manner in those growth sectors where a surface is growing parallel to the crystallographic a-axis and tail-to-tail manner in the other growth sectors in the crystal. The maximum intensity of E b is found in the sectors (010) where the growing surfaces are perpendicular to the ferroelectric b-axis

  11. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    International Nuclear Information System (INIS)

    Yang Tao; Chen Zheng; Zhang Jing; Wang Yongxin; Lu Yanli

    2016-01-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. (paper)

  12. Variable valence ion spectra in a crystal field

    International Nuclear Information System (INIS)

    Ghiordanescu, V.

    1979-01-01

    Using the Cadmium chloride as a host lattice, the optical spectra and RES of Mnsup(2+) were studied and the following results were obtained: a) By controlled dopings, the absorbtion and excitation spectra of ion Mnsup(2+) in CdCl 2 within the concentration range between 0.01 M and 25 M were plotted. Thus, the band structure for small concentrations was pointed out to differ from the structure observed for high concentrations. In the literature, this effect has not been observed on similar compounds, due to the small intensity values of the absorbtion spectra. b) Considering that for CdCl 2 :Mnsup(2+) 0.1 M, the optical spectra correspond to the isolated ion in the lattice, the energy levels were evaluated using electrostatic and spin-orbit terms in a perturbation calculation of the crystal field approximation. c) The calculation of parameter a which represents the effect of the cubic field in the spjn Hamiltonian of Mnsup(2+), is closer to the experjmental value -0.5.10 -4 cm -1 of the crystal field Dq and zeta parameters are used, respectively, parameters of the spin-orbit interaction obtained under b). d) The coupling effects of spins into more concentrated crystals with Mn 2+ are a function of temperature. The emjssion yield was given a quasi-cantitative evaluation in thjs paper as a function of temperature and concentratjon on the basis of which the isolated centers of Mn 2+ were found to display ectra whose intensity vary with temperature according to the Laporte forbidden transitions and spin rule theory, and the clusters including Mn 2+ - Mn 2+ pairs provide spectra whose intensity vary with the strength of the spin-spin coupling. (author)

  13. Crystal field effects in the ESR spectra of Dysup(3+), Ersup(3+) and Ybsup(3+) in YPd3

    International Nuclear Information System (INIS)

    Rettori, C.; Weber, E.; Donoso, J.P.; Gandra, F.C.G.; Barberis, G.E.

    1981-01-01

    Low temperature ESR experiments of diluted Dy, Er and Yb in YPd 3 are reported. The host cubic crystal field leaves a GAMMA 7 ground state in the case of Yb 3+ , a GAMMA 7 excited state for Er 3+ and a broad and undefined resonance for Dy 3+ . A comparison with Inelastic Neutron Scattering and Magnetic Susceptibility data is given. (orig.)

  14. Crystal field in ErGa3 - a neutron spectroscopy study

    International Nuclear Information System (INIS)

    Murasik, A.; Czopnik, A.; Clementyev, E.; Schefer, J.

    2000-01-01

    The splitting of the J = 15/2 multiplet of Er in a cubic crystal field has been determined by inelastic scattering from a polycrystalline sample of ErGa 3 . On the base of observed intensities and their temperature variation we have been able to determine two crystal electric fields (CEF) parameters required for cubic symmetry. Least-squares fits of calculated crystal field transitions of the observed neutron inelastic scattering spectra taken at 12, 24, 32, 40, 50 and 80 K, gave the crystal field parameters: B 4 (7.15±0.05) x 10 -5 and B 6 = (1.28±0.05) x 1- -6 MeV yielding the Γ 7 doublet as a ground level with the overall splitting of 10.92 MeV. The results are used to calculate the temperature-depended zero field magnetization and the Schottky anomaly of the heat capacity of the ErGa 3 which yield reasonable agreement with experimental data obtained earlier. (author)

  15. Analytic cubic and quartic force fields using density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Jonsson, Dan [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); High Performance Computing Group, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm, Sweden and PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Ekström, Ulf; Helgaker, Trygve [Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo (Norway)

    2014-01-21

    We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.

  16. On standardization of low symmetry crystal fields

    Science.gov (United States)

    Gajek, Zbigniew

    2015-07-01

    Standardization methods of low symmetry - orthorhombic, monoclinic and triclinic - crystal fields are formulated and discussed. Two alternative approaches are presented, the conventional one, based on the second-rank parameters and the standardization based on the fourth-rank parameters. Mainly f-electron systems are considered but some guidelines for d-electron systems and the spin Hamiltonian describing the zero-field splitting are given. The discussion focuses on premises for choosing the most suitable method, in particular on inadequacy of the conventional one. Few examples from the literature illustrate this situation.

  17. Variable-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases.

    Science.gov (United States)

    Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi

    2016-02-01

    A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.

  18. Temperature fields in a growing solar silicon crystal

    Directory of Open Access Journals (Sweden)

    Kondrik A. I.

    2012-06-01

    Full Text Available The optimal thermal terms for growing by Czochralski method Si single-crystals, suitable for making photoelectric energy converters, has been defined by the computer simulation method. Dependences of temperature fields character and crystallization front form on the diameter of the crystal, stage and speed of growing, and also on correlation between diameter and height of the crystal has been studied.

  19. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    Science.gov (United States)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  20. Theory of electrolyte crystallization in magnetic field

    DEFF Research Database (Denmark)

    Madsen, Hans Erik Lundager

    2007-01-01

    phenomena. The basis of the theory is a crystal model of a sparingly soluble salt with NaCl structure, where the ions are divalent, and the anion is a base. It is assumed that almost all the anions in the surface layer are protonized, and that an approaching metal ion pushes the proton away...... enter an excited state due to its momentum. Spin relaxation in magnetic field may remove hindrances to proton transfer. The theory is supported by numerical results from model calculations....

  1. Oxidation and crystal field effects in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  2. Liquid crystal blue phases: stability, field effects and alignment

    OpenAIRE

    Gleeson, HF; Miller, RJ; Tian, L; Görtz, V; Goodby, JW

    2015-01-01

    The blue phases are fascinating structures in liquid crystals, fluids that exhibit cubic structures that have true crystalline order. The blue phases were discovered in the 1970s and were the subject of extensive research in the 1980s, when a deep understanding of many of their properties was established. The discovery that the blue phases could be stabilised to exist over wide temperature ranges meant that they became more than scientific curiosities and led to a recent resurgence in researc...

  3. Magnetic Order and Crystal Field Excitations in Er2Ru2O7: A Neutron Scattering Study

    International Nuclear Information System (INIS)

    Ehlers, Georg; Gardner, Jason

    2009-01-01

    The magnetic pyrochlore Er 2 Ru 2 O 7 has been studied with neutron scattering and susceptibility measurements down to a base temperature of 270 mK. For the low temperature phase in which the Er sublattice orders, new magnetic Bragg peaks are reported which can be indexed with integer (hkl) for a face centered cubic cell. Inelastic measurements reveal a wealth of crystal field levels of the Er ion and a copious amount of magnetic scattering below 15 meV. The three lowest groups of crystal field levels are at 6.7, 9.1 and 18.5 meV.

  4. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    International Nuclear Information System (INIS)

    Yang Xuefeng; Wang Zhengxiong

    2012-01-01

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  5. Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction

    International Nuclear Information System (INIS)

    Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.

    2004-01-01

    It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory

  6. A singular one-parameter family of solutions in cubic superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, E. Aldo [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-170 São Paulo, SP (Brazil)

    2016-05-03

    Performing a gauge transformation of a simple identity-like solution of superstring field theory, we construct a one-parameter family of solutions, and by evaluating the energy associated to this family, we show that for most of the values of the parameter the solution represents the tachyon vacuum, except for two isolated singular points where the solution becomes the perturbative vacuum and the half brane solution.

  7. Ferromagnetism and Crystalline Electric Field Effects in Cubic UX2Zn20 (X=Co, Rh, Ir)

    Science.gov (United States)

    Bauer, E. D.; Ronning, F.; Silhanek, A.; Harrison, N.; Thompson, J. D.; Sarrao, J. L.; Movshovich, R.; Hundley, M. F.; Jaime, M.; Daniel, E.; Booth, C. H.

    2006-03-01

    The properties of a new class of cubic UX2Zn20 (X=Co, Rh, Ir) heavy fermion compounds have been investigated by means of magnetic susceptibility, specific heat, electrical resistivity, and x-ray absorption spectroscopy. Both UCo2Zn20 and URh2Zn20 show peaks in C(T) and χ(T) at ˜5-10 K suggesting the presence of crystalline electric field (CEF) effects in these materials, i.e., a localized 5f^2 configuration of uranium. In addition, measurements in high magnetic fields up to 40 T are consistent with a CEF model of a nonmagnetic ground state and a magnetic first excited state separated by ˜ 20 K. In contrast, UIr2Zn20 exhibits a first-order ferromagnetic transition at Tc=2.75 K with a saturation moment μsat=0.5 μB in the ferromagnetic state. All compounds in this series are heavy fermion materials with enhanced electronic specific heat coefficients γ˜ 150-300 mJ/molK^2. The physical properties of UX2Zn20 (X=Co, Rh, Ir) will be discussed.

  8. Rotation of dust plasma crystals in an axial magnetic field

    International Nuclear Information System (INIS)

    Cheung, F.; Prior, N.; Mitchell, L.

    2000-01-01

    Full text: Micron-sized melamine formaldehyde particles were introduced into argon plasma. As a result, the particles were negatively charged due to collision with the electrons within the plasma. With the right conditions, these particles formed a stable macroscopic crystal lattice, known as dust plasma crystal. In our experiment we conduct at Flinders University, we apply an external axial magnetic field to various configurations of dust plasma crystal. These configurations include small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The magnetic field strength ranged from 0-32G and was uniform over the extent of the crystal. The crystals were observed to be rotating collectively in the left-handed direction under the influence of the axial magnetic field. In the case of the large crystals, the angular velocity was about 2 complete rotations per minute and was proportional to the applied magnetic field. The angular velocity changes only slightly depending on the plasma conditions. Neither radial variance in the angular velocity nor shear velocity in the vertical direction was observed in the crystal's rotational motion. In the case of the small crystals, we managed to rotate 2-6 particles (whether they are planar, 2 layers or tetrahedral). We discovered that the ease and the uniformity of the rotation of the different crystals increase as its rotational symmetry increases. Also an increase in the magnetic field strength will correspond to an increase in the angular velocity. Crystals in the shape of an annulus were also tested for theoretical reasons. The poster presentation will contain the experimental procedures, a detailed analysis and an explanation for such dust plasma crystal rotational motion

  9. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  10. Exchange and crystal field effects in the ESR spectra of Eu2+ in LaB6

    Science.gov (United States)

    Duque, J. G. S.; Urbano, R. R.; Venegas, P. A.; Pagliuso, P. G.; Rettori, C.; Fisk, Z.; Oseroff, S. B.

    2007-09-01

    Electron spin resonance of Eu2+ ( 4f7 , S=7/2 ) in a La hexaboride (LaB6) single crystal shows a single anisotropic Dysonian resonance. From the observed negative g shift of the resonance, it is inferred that the Eu2+ ions are covalent exchange coupled to the B2p -like host conduction electrons. From the anisotropy of the spectra (linewidth and field for resonance), we found that the S ground state of Eu2+ ions experience a cubic crystal field of a negative fourth order crystal field parameter (CFP), b4=-11.5(2.0)Oe , in agreement with the negative fourth order CFP, A4 , found for the non- S ground state R hexaborides. These results support covalency as the dominant contribution to the fourth order CFP for the whole R hexaboride family.

  11. Complex cubic metallides AM{sub ∝6} (A=Ca, Sr; M=Zn, Cd, Hg). Synthesis, crystal chemistry and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Michael; Wendorff, Marco; Roehr, Caroline [Freiburg Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-09-01

    In a systematic synthetic, crystallographic and bond theoretical study, the stability ranges as well as the distribution of the isoelectronic late d-block elements Zn, Cd and Hg (M) in the polyanions of the YCd{sub 6}-type phases (Ca/Sr)Cd{sub 6} have been investigated. Starting from Ca(Cd/Hg){sub 6}, 12-30% of the M atoms can be substituted by Zn, which gradually occupies the center of the empty cubes. In all ternary compounds, smaller/less electronegative Zn/Cd atoms occupy the disordered tetrahedra explaining the lack of the YCd{sub 6}-type for pure mercurides. Along the section SrCd{sub 6}-SrHg{sub 6}, the ordered Eu{sub 4}Cd{sub 25}-type is formed (Sr{sub 4}Cd{sub 16.1}Hg{sub 8.9}: cF1392, Fd anti 3, a=3191.93(5) pm, R1=0.0404). Besides, two new complex cubic Ca phases appear at increased Zn proportion: Ca{sub 2}Zn{sub 5.1}Cd{sub 5.8}, which exhibits a nearly complete site preference of Zn and Cd, crystallizes in the rare cubic Mg{sub 2}Zn{sub 11}-type structure (cP39-δ, Pm anti 3, a=918.1(1) pm, R1=0.0349). In the Ca-Hg system, an increased Zn proportion yielded the new compound CaZn{sub 1.31}Hg{sub 3.69} (cF480, F anti 43m, a=2145.43(9) pm, R1=0.0572), with a complex cubic structure closely related to Ba{sub 20}Hg{sub 103}. All structures, which are commonly described using nested polyhedra around high-symmetric sites, are alternatively described in accordance with the calculated electron densities and charge distribution: building blocks are face-sharing [M{sub 4}] tetrahedra (star polyhedra such as TS, IS, OS), each with a cage-critical point in its center, and [M{sub 8}] cubes (deformed TS), which are either empty, distorted or filled. The M element distribution in the anion is determined by size criteria and the difference in electronegativity, which induces a preferred formation of heteroatomic polar bonds.

  12. New orientation formation and growth during primary recrystallization in stable single crystals of three face-centred cubic metals

    International Nuclear Information System (INIS)

    Miszczyk, M.; Paul, H.; Driver, J.H.; Maurice, C.

    2015-01-01

    Graphical abstract: For Ni, Cu and Cu-2%Al and (1 1 0)[0 0 −1] and (1 1 0)[1 −1 −2] initial orientations at the initial stages of recrystallization, the appearance of a specific number of new orientation groups of new grains has been demonstrated. The orientation relations across the recrystallization front are characterized by a high proportion of angles in the range 25–35° and 45–55° around axes mostly grouped about the 〈1 2 2〉, 〈1 1 1〉, 〈1 2 3〉 and 〈1 1 2〉 directions. A local minimum was noted for the disorientation angle densities close to 40° in all cases. For a single isolated nucleus of uniform orientation, the rotation axes are usually grouped around one of the normals of all four {1 1 1} planes but do not (or only rarely) coincide with them. The orientation of the growing new grain quickly transforms through the formation of a first generation twins. The most frequent situation occurs when the normal of the twinning face plane is situated near the rotation axis, around which the crystal lattice of the ‘primary nuclei’ rotates. Based on the anisotropy of grain growth a possible mechanism of orientation generation and grain growth by thermally activation movement of dislocation families, on {1 1 1} planes is proposed. - Abstract: The early stages of recrystallization have been systematically characterized in single crystal metals of medium and low stacking fault energy. Goss {1 1 0}〈0 0 1〉 and brass {1 1 0}〈1 1 2〉 oriented samples of Ni, Cu and Cu–2 wt.% Al alloy were deformed in a channel die to a logarithmic strain of 0.51 to develop a homogeneous structure composed of two sets of symmetrical primary microbands and then lightly annealed. Scanning electron microscopy/electron backscattered diffraction analyses demonstrate a strong relation between as-deformed orientations and the limited number of recrystallized grain orientations. The disorientation angles across the recrystallization front are mostly grouped in

  13. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  14. Magnetic-field-induced martensitic transformation of off-stoichiometric single-crystal Ni2MnGa

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Yamaguchi, Yasuo; Shishido, Toetsu; Ishii, Yoshinobu; Yamauchi, Hiroki

    2009-01-01

    The effect of a magnetic field on the martensitic transformation of an off-stoichiometric Heusler type Ni 2.16 Mn 0.78 Ga 1.06 single crystal has been revealed by neutron diffraction. The alloy undergoes a martensitic transformation at room temperature, which is nearly coincident with its Curie temperature. Splitting of the cubic (020) peak on the reciprocal lattice cubic c * -plane was traced at 293 K by a triple-axis neutron spectrometer under an increasing magnetic field of up to 10 T. It was found that the magnetic field causes the martensitic transformation from the cubic structure to the orthorhombic structure, which is the same as that caused by decreasing the temperature without a magnetic field. The increase in the magnetic field to 10 T appears to correspond to a decrease in temperature of nearly 12 K, i.e., from 293 to 281 K. The present experiment suggests the possibility of realizing a magnetic-field-induced shape memory alloy. (author)

  15. Crystallographic relations between face- and body-centred cubic crystals formed under near-equilibrium conditions: Observations from the Gibeon meteorite

    International Nuclear Information System (INIS)

    He Youliang; Godet, Stephane; Jacques, Pascal J.; Jonas, John J.

    2006-01-01

    The orientations of the kamacite lamellae formed from a single prior-taenite grain were measured by analysing the electron backscatter diffraction patterns obtained using scanning electron microscopy. These are shown to be close to the Kurdjumov-Sachs and Nishiyama-Wassermann relations and their intermediate, i.e., the Greninger-Troiano relation. The orientations of the α grains in the plessite regions were also measured and these were found to be continuously distributed around the Bain circles formed by the variants of the common correspondence relationships, including the Pitsch one in this case. The local misorientations between individual face- and body-centred cubic crystals along their common interfaces were measured. These can be characterized by the orientation relationships mentioned above as long as a certain amount of tolerance is allowed. Orientation variations within individual kamacite lamellae were also analysed. The crystallographic data support the view that somewhat different mechanisms are involved in the formation of Widmanstaetten structures and of the plessite in meteorites

  16. Single crystal growth and characterization of the intermetallic cubic cage system YCo1.82Mn0.18Zn20

    Science.gov (United States)

    Cabrera-Baez, M.; Finatti, B. F.; Rettori, C.; Avila, M. A.

    2018-05-01

    We report on the growth of YCo2-xMnxZn20 cubic single crystals (0 ≤ x ≤ 0.18) and their characterization through elemental analysis, x-ray diffraction, magnetization and heat capacity. Mn intermediate and/or mixed-valence-like behavior was observed in the magnetic response of YCo1.82Mn0.18Zn20 (and all other samples) at temperatures between 100 K and 200 K, and a spin-glass state is established at low temperatures. Specific heat results for x = 0.18 show an increased Sommerfeld coefficient of γ ≈ 100 mJ / mol .K2 compared to that of the undoped compound (18 mJ / mol .K2) suggesting an enhancement of the quasiparticle effective mass ignoring spin-glass effects at very low temperatures. The combination of different experimental data provides a better understanding of the Mn2+ effects in the weakly correlated electron compound of YCo2Zn20, the first case in this family of compounds where local magnetic moments come exclusively from the transition metal.

  17. Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities

    NARCIS (Netherlands)

    Vignolini, S.; Intonti, F.; Riboli, F.; Wiersma, D.S.; Balet, L.P.; Li, L.H.; Francardi, M.; Gerardino, A.; Fiore, A.; Gurioli, M.

    2012-01-01

    The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity

  18. Mapping the absolute electromagnetic field strength of individual field components inside a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; Reijnders, B.; Lee, J.H.H.; Vos, Willem L.; Boller, Klaus J.; van der Slot, Petrus J.M.

    2013-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We demonstrate our method by applying it to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to create a

  19. Integral parameters of crystal field for RE spectra

    International Nuclear Information System (INIS)

    Kustov, E.F.; Maketov, T.K.; Prgevudsky, A.K.; Steczko, G.

    1980-01-01

    The integral parameters of the crystal field are introduced for the interpretation of the spectra of RE ions in various crystals. The main formula of the method, the expression of the parameters for various states of Ce, Pr, Nd, Eu, Tb, Er, Tu, and Yb are determined. Integral parameters of A 2 , A 4 , A 6 and parameter of the spin-orbit interaction xi are calculated for 40 laser crystals with Nd, Er. An interpretation of the symmetry of the Eu 3+ centres of the NaBaZn silicate glass is given using integral parameters A 2 , A 4 . (author)

  20. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    Hamiltonian including isotropic exchange interactions, effective single-ion anisotropy and magnetoelastic contributions. The parameters of this Hamiltonian were determined by fitting the theoretical results for the spin wave dispersion and energy gap as a function of temperature and magnetic field to existing...... data on Tb. The conduction-electron polarization at zero field and temperature is (0.33+or-0.05) mu B/ion, and the susceptibility is greater than the Pauli susceptibility calculated from the band-structure....

  1. On the laws of disordering of the Ln3+ -ion crystal field in insulating crystals

    International Nuclear Information System (INIS)

    Kaminskij, A.A.

    1988-01-01

    Results of the study of fundamental regularities, which cause crystal field (CF) disordering on Ln 3+ ions in dielectric crystals are summed up. Analysis and systematization of the investigation results of atomic structure of disordered laser crystals and conducted investigations on spectroscopic properties and induced radiation (IR) permitted to come to the conclusion that the nature of disordering on CF is related to two fundamental regularities. The first regularity- the structural-dynamic one- is pronounced in numerous nonstoichiometric phases; the second one - determines spectroscopic properties and IR character

  2. Polarization singularities of optical fields caused by structural dislocations in crystals

    International Nuclear Information System (INIS)

    Savaryn, V; Vasylkiv, Yu; Krupych, O; Skab, I; Vlokh, R

    2013-01-01

    We analyze polarization singularities of optical beams that propagate through crystals possessing structural dislocations. We show that screw dislocations of crystalline structure can lead to the appearance of purely screw-type dislocations of light wavefronts. This can happen only in crystals that belong to trigonal and cubic systems. These polarization singularities will give rise to optical vortices with the topological charge equal to ±1, whenever a crystal sample is placed between crossed circular polarizers. We have also found that edge dislocations present in the cubic and trigonal crystals, with the Burgers vector perpendicular to the three-fold symmetry axes, can impose mixed screw-edge dislocations in the wavefronts of optical beams and generate singly charged optical vortices. The results of our analysis can be applied for detecting and identifying dislocations of different types available in crystals. (paper)

  3. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations...... propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate....

  4. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    Science.gov (United States)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  5. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...

  6. Thermal conductivity of niobium single crystals in a magnetic field

    International Nuclear Information System (INIS)

    Gladun, C.; Vinzelberg, H.

    1980-01-01

    The thermal conductivity in longitudinal magnetic fields up to 5 T and in the temperature range 3.5 to 15 K is measured in two high purity niobium single crystals having residual resistivity ratios of 22700 and 19200 and orientations of the rod axis [110] and [100]. The investigations show that by means of the longitudinal magnetic field the thermal conductivity may decrease only to a limiting value. In the crystal directions [110] and [100] for the ratio of the thermal conductivity in zero field and the thermal conductivity in the saturation field the temperature-independent factors 1.92 and 1.27, respectively, are determined. With the aid of these factors the thermal conductivity in the normal state is evaluated from the measured values of thermal conductivity below Tsub(c) in the magnetic field. The different conduction and scattering mechanisms are discussed. (author)

  7. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  8. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  9. Phase field simulations of ice crystal growth in sugar solutions

    NARCIS (Netherlands)

    Sman, Van Der R.G.M.

    2016-01-01

    We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theories on the thermodynamics and (diffusion) kinetics of this food system. We have to make

  10. Near-field characterization of photonic crystal Y-splitters

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2005-01-01

    A scanning near-field optical microscope (SNOM) is used to directly map the propagation of light in a specially designed 50/50 photonic crystal (PC) Y-splitter fabricated on silicon-on-insulator (SOI) wafers. SNOM images are obtained for TE- and TM-polarized light in the wavelength range 1425...

  11. Method for fitting crystal field parameters and the energy level fitting for Yb3+ in crystal SC2O3

    International Nuclear Information System (INIS)

    Qing-Li, Zhang; Kai-Jie, Ning; Jin, Xiao; Li-Hua, Ding; Wen-Long, Zhou; Wen-Peng, Liu; Shao-Tang, Yin; Hai-He, Jiang

    2010-01-01

    A method to compute the numerical derivative of eigenvalues of parameterized crystal field Hamiltonian matrix is given, based on the numerical derivatives the general iteration methods such as Levenberg–Marquardt, Newton method, and so on, can be used to solve crystal field parameters by fitting to experimental energy levels. With the numerical eigenvalue derivative, a detailed iteration algorithm to compute crystal field parameters by fitting experimental energy levels has also been described. This method is used to compute the crystal parameters of Yb 3+ in Sc 2 O 3 crystal, which is prepared by a co-precipitation method and whose structure was refined by Rietveld method. By fitting on the parameters of a simple overlap model of crystal field, the results show that the new method can fit the crystal field energy splitting with fast convergence and good stability. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Crystal-field-modulated magnon squeezing states in a ferromagnet

    International Nuclear Information System (INIS)

    Peng Feng

    2003-01-01

    The magnon squeezing states in some magnetic crystals allow a reduction in the quantum fluctuations of the spin component to below the zero-point quantum noise level of the coherent magnon states. It is known that there are the magnon squeezing states in an antiferromagnet. However, their generating mechanism is not suitable for the ferromagnet. In this paper, we discuss the possibility of generating the magnon squeezing states in a ferromagnet, and discuss the effect of the crystal field on the magnon squeezing states

  13. Organic field-effect transistors using single crystals

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. (topical review)

  14. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  15. Crystal orientation effects on wurtzite quantum well electromechanical fields

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten

    2010-01-01

    in the literature for semiconductors, is inaccurate for ZnO/MgZnO heterostructures where shear-strain components play an important role. An interesting observation is that a growth direction apart from [1̅ 21̅ 0] exists for which the electric field in the quantum well region becomes zero. This is important for, e......A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings...... of spontaneous polarization, strain, and electric field. Significant differences between fully coupled and semicoupled models are found for the longitudinal and shear-strain components as a function of the crystal-growth direction. In particular, we find that the semicoupled model, typically used...

  16. Far-field coupling in nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas [Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-05-16

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out of GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.

  17. Crystal field and site deformation in spinels and pentavalent uranium compounds

    International Nuclear Information System (INIS)

    Drifford, M.; Soulie, E.

    1976-01-01

    Magnesium aluminates with different alumina contents have the spinel structure. The optical absorption spectra of doped spinel compounds (Cr 3+ , Ni 2+ , Co 2+ ) or E.S.R. spectra (Cr 3+ , Mn 2+ ) are used for the investigation of the position of the doping materials and the deformation of the crystal sites, and give information on the structural disorders. The local structural information given by the doping materials are compared with the mean structure parameters obtained from X-ray diffraction. The optical absorption spectrum and the principal components of the g tensor for UF 6 Cs and the thermal variation in the magnetic susceptibility for UF 8 Cs 3 and UF 8 (NH 4 ) are used for determining the parameters of the electron Hamiltonian for the f 1 configuration. A rather significant covalent aspect is evidenced for UF 6 Cs, in the framework of the model of Eisenstein and Pryce, this property being weaker for the other two complex compounds. The three parameters giving the crystal field at a deformed cubic site with Dsub(3d) symmetry in the Newman superposition model are noticeably weaker for the 8-coordination than for the 6-coordination. As for UF 8 Cs 3 and UF 8 (NH 4 ) 3 a calculation predicts an electronic levels with a very low excitation, at about 110 and 70cm -1 respectively [fr

  18. Near-field probing of photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2006-01-01

    We report the design, fabrication and characterization of a photonic crystal directional with a size of ~20 x 20 mm2 fabricated in silicon-on-insulator material. Using a scanning near-field optical microscope we demonstrate a high coupling efficiency for TM polarized light at telecom wavelengths....... By comparing the near-field optical images recorded in and after the directional coupler area, the features of light distribution are analyzed. Finally, the scanning near-field optical microscope observations are found to be in agreement with the transmission measurements conducted with the same sample....

  19. Low-frequency electromagnetic field in a Wigner crystal

    OpenAIRE

    Stupka, Anton

    2016-01-01

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  20. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  1. Crystal-field magnetic anisotropy of dilute dysprosium or erbium in yttrium single crystals

    DEFF Research Database (Denmark)

    Høg, J.; Touborg, P.

    1974-01-01

    Magnetization measurements have been performed between 1.3 and 300 K in fields up to 50 × 105 A/m in the a, b, and c directions of hcp crystals of pure Y and Y doped with 0.14-at.% Dy or 0.14-at.% Er, using the Faraday method and a vibrating-sample method. The characteristic behavior of both...

  2. Strong crystal field effect in ? - optical absorption study

    Science.gov (United States)

    Gajek, Z.; Krupa, J. C.

    1998-12-01

    =-1 Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a 0953-8984/10/50/021/img6 single crystal are reported. The recorded spectra are complex, pointing to the presence of an 0953-8984/10/50/021/img7 impurity. The electronic transitions assigned to the 0953-8984/10/50/021/img8 ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 0953-8984/10/50/021/img9 have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host.

  3. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  4. Martensitic cubic → tetragonal transition

    International Nuclear Information System (INIS)

    Schumann, H.

    1983-01-01

    Indium-thallium alloys containing 14 to 30% At. Tl have a cubic face-centred beta phase wich changes into a tetragonal face-centred alpha martensite during solidification. The martensite contains twin crystals that are large enough to be seen by means of a light microscope. The phenomenological crystallographic martensite theory was used to calculate Miller's index of the habit plane, the formation of the surface relief, the orientation relations and the critical thickness ratio of the twins. In a beta monocrystal frequently only one of the 24 crystallographic possible habit planes are formed at one end of the sample and migrate through the whole crystal when the temperature drops. Externally applied tension and compression influence in different ways the direction in which the habit plane moves and can even destroy the twinned structure, i.e. they can modify the substructure of the martensite crystal. This induces superelasticity, an effect that has also been described quantitatively. (author)

  5. Crystal field parameters in UCl4: Experiment versus theory

    International Nuclear Information System (INIS)

    Zolnierek, Z.; Gajek, Z.; Khan Malek, C.

    1984-01-01

    Crystal field effect on U 4+ ion with the 3 H 4 ground term in tetragonal ligand field of UCl 4 has been studied in detail. Crystal field parameters determined experimentally from optical spectroscopy and magnetic susceptibility are in good agreement with CEP sets derived from the modified point charge model and the ab initio method. Theoretical calculations lead to overestimating the A 4 4 4 > and lowering the A 2 0 2 > values in comparison to those found in the experiments. The discrepancies are, however, within an accuracy of calculations. A large reduction of expectation values of the magnetic moment operator for the eigenvectors of lowest CF levels (17.8%), determined from magnetic susceptibility, cannot be attributed to the overlap and covalency effects only. The detailed calculations have shown that the latter effects provide about 4.6% reduction of respective matrix elements, and the applied J-J mixing procedure increases this factor up to 6.5%. Since similar, as in UCl 4 , reduction factor (proportional15%) has already been observed in a number of different uranium compounds, it seems to be likely that this feature is involved in the intrinsic properties of the U 4+ ion. We endeavor to explain this effect in terms of configuration interaction mechanisms. (orig.)

  6. Crystal field parameters in UCI 4: Experiment versus theory

    Science.gov (United States)

    Zolnierek, Z.; Gajek, Z.; Malek, Ch. Khan

    1984-08-01

    Crystal field effect on U 4+ ion with the 3H 4 ground term in tetragonal ligand field of UCl 4 has been studied in detail. Crystal field parameters determined experimentally from optical spectroscopy and magnetic susceptibility are in good agreement with CFP sets derived from the modified point charge model and the ab initio method. Theoretical calculations lead to overestimating the A44 and lowering the A02 values in comparison to those found in the experiments. The discrepancies are, however, within an accuracy of calculations. A large reduction of expectation values of the magnetic moment operator for the eigenvectors of lowest CF levels (17.8%), determined from magnetic susceptibility, cannot be attributed to the overlap and covalency effects only. The detailed calculations have shown that the latter effects provide about 4.6% reduction of respective matrix elements, and the applied J-J mixing procedure increases this factor up to 6.5%. Since similar, as in UCl 4, reduction factor(≈15%) has already been observed in a number of different uranium compounds, it seems likely that this feature is involved in the intrinsic properties of the U 4+ ion. We endeavor to explain this effect in terms of configuration interaction mechanisms.

  7. Magnetic islands modelled by a phase-field-crystal approach

    Science.gov (United States)

    Faghihi, Niloufar; Mkhonta, Simiso; Elder, Ken R.; Grant, Martin

    2018-03-01

    Using a minimal model based on the phase-field-crystal formalism, we study the coupling between the density and magnetization in ferromagnetic solids. Analytical calculations for the square phase in two dimensions are presented and the small deformation properties of the system are examined. Furthermore, numerical simulations are conducted to study the influence of an external magnetic field on various phase transitions, the anisotropic properties of the free energy functional, and the scaling behaviour of the growth of the magnetic domains in a crystalline solid. It is shown that the energy of the system can depend on the direction of the magnetic moments, with respect to the crystalline direction. Furthermore, the growth of the magnetic domains in a crystalline solid is studied and is shown that the growth of domains is in agreement with expected behaviour.

  8. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  9. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  10. First observations of stimulated emission and of stimulated Raman scattering in acentric cubic Nd3+:Bi12SiO20 crystals

    International Nuclear Information System (INIS)

    Kaminskii, Alexandr A; Bagayev, S N; Garsia, Sole J; Jaque, D; Eichler, H J; Findeisen, J; Fernandez, J; Balda, R; Agullo, Rueda F

    1999-01-01

    Laser action (in the 4 F 3/2 - 4 I 11/2 channel) and stimulated Raman scattering were excited for the first time in an Nd 3+ :Bi 12 SiO 20 single crystal at room temperature. All the observed stimulated emission and multiple Stokes and anti-Stokes lines were identified. (letters to the editor)

  11. Influence of magnetic field on the morphology of the andrographolide crystal from supercritical carbon dioxide extraction crystallization

    Science.gov (United States)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Zhang, Wencheng; Yong, Ji; Yin, Wenhong

    2003-10-01

    In this paper, a supercritical fluid extraction-crystallization of andrographolide, a kind of Chinese traditional medicine, was investigated. We have studied the extraction-crystallization process with or without magnet in the extractor, respectively. It was found that the presence of magnetic field is an important factor influencing the quality of the products. SEM images showed that the crystal was slice-like in shape, and many slices reunited together in the absence of magnet. Further research showed that pressure had a certain effect on the morphology of the crystal.

  12. Optical spectroscopy and crystal-field analysis of U3+: Ba2YCl7

    International Nuclear Information System (INIS)

    Karbowiak, M.; Mech, A.; Drozdzyndki, J.; Gajek, Z.; Edelstein, N.M.

    2002-01-01

    High resolution absorption spectra of a U 3+ (0.3%): Ba 2 YCl 7 single crystal were recorded in the 4000-50 000 cm -1 range at 7 K. The observed crystal-field levels were assigned and fit to the parameters of the simplified angular overlap model (AOM) as well as a semi-empirical Hamiltonian representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra allowed the assignment of 65 crystal-field levels with a relatively small rms deviation of 25 cm -1 and has shown that the AOM approach can predict quite well the B q k crystal-field parameters. The value determined for the crystal-field strength parameter, N v , corresponds well with those determined for U 3+ in other chloride single crystals. (authors)

  13. Experimental investigation and crystal-field modeling of Er{sup 3+} energy levels in GSGG crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J.Y., E-mail: jygao1985@sina.com [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, D.L.; Zhang, Q.L. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, X.F. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, W.P.; Luo, J.Q.; Sun, G.H.; Yin, S.T. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-06-25

    The Er{sup 3+}-doped Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Er{sup 3+}:GSGG) single crystal, a excellent medium of the mid-infrared and anti-radiation solid state laser pumped by laser diode, was grown by Czochralski method successfully. The absorption spectra were measured and analyzed in a wider spectral wavelength range of 350–1700 nm at different temperatures of 7.6, 77, 200 and 300 K. The free-ions and crystal-field parameters were fitted to the experimental energy levels with the root mean square deviation of 9.86 cm{sup −1}. According to the crystal-field calculations, 124 degenerate energy levels of Er{sup 3+} in GSGG host crystals were assigned. The fitting results of free-ions and crystal-field parameters were compared with those already reported of Er{sup 3+}:YSGG. The results indicated that the free-ions parameters for Er{sup 3+} in GSGG host are similar to those in YSGG host crystals, and the crystal-field interaction of GSGG is weaker than that of YSGG, which may result in the better laser characterization of Er{sup 3+}:GSGG crystal. - Highlights: • The efficient diode-end-pumped laser crystal Er:GSGG has been grown successfully. • The absorption spectra of Er:GSGG have been measured in range of 350–1700 nm. • The fitting result is very well for the root mean square deviation is 9.86 cm{sup −1}. • The 124 levels of Er:GSGG have been assigned from the crystal-field calculations.

  14. Phase field modeling of twinning in indentation of transparent crystals

    International Nuclear Information System (INIS)

    Clayton, J D; Knap, J

    2011-01-01

    Continuum phase field theory is applied to study elastic twinning in calcite and sapphire single crystals subjected to indentation loading by wedge-shaped indenters. An order parameter is associated with the magnitude of stress-free twinning shear. Geometrically linear and nonlinear theories are implemented and compared, the latter incorporating neo-Hookean elasticity. Equilibrium configurations of deformed and twinned crystals are attained numerically via direct energy minimization. Results are in qualitative agreement with experimental observations: a long thin twin forms asymmetrically under one side of the indenter, the tip of the twin is sharp and the length of the twin increases with increasing load. Qualitatively similar results are obtained using isotropic and anisotropic elastic constants, though the difference between isotropic and anisotropic results is greater in sapphire than in calcite. Similar results are also obtained for nanometer-scale specimens and millimeter-scale specimens. Indentation forces are greater in the nonlinear model than the linear model because of the increasing tangent bulk modulus with increasing pressure in the former. Normalized relationships between twin length and indentation force are similar for linear and nonlinear theories at both nanometer and millimeter scales. Twin morphologies are similar for linear and nonlinear theories for indentation with a 90° wedge. However, in the nonlinear model, indentation with a 120° wedge produces a lamellar twin structure between the indenter and the long sharp primary twin. This complex microstructure is not predicted by the linear theory

  15. Cubic phase control of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Mecseki, K.; Erdelyi, M.; Kovacs, A.P.; Szabo, G.

    2006-01-01

    Complete test of publication follows. The temporal shape of an ultrashort laser pulse may change upon propagating through a linear dispersive medium having a phase shift ψω. The change can be characterized by the Taylor-coefficients of the phase shift which are calculated around the central frequency ω 0 of the pulse. Measurements and independent control of the group delay dispersion (GDD, ψ'(ω 0 )) and the third order dispersion (TOD, ψ'(ω 0 )) are important in several research fields, particularly in the generation of ultrashort laser pulses by chirped pulse amplification (CPA) and pulse shaping for molecular control. The GDD and the TOD of an ideal pulse compressor are equal to the negative of the corresponding dispersion coefficients of the medium. However, in the case of prism-pair and grating-pair compressor is different from the ratio of the coefficients of the medium to be compensated for. Therefore it is necessary to develop so-called cubic compressors that are able to control the TOD of the pulse, yet, do not affect the GDD. In this paper a new cubic compressor setup is investigated theoretically and experimentally, which resembles the set-up proposed by White, however, we control the GDD and the TOD by the position of a birefringent, semi-cylinder crystal place around the focal point of an achromatic lens. For the evaluation of the phase shift introduced by the proposed cubic compressor, a ray tracing program was written. The program allows optimizing the compressor parameters, such as the radius of the crystal, magnification of the lens etc. Calcite was applied because it is a strong birefringent material. Calculations showed that there is a trajectory, along which shifting the crystal the TOD can be tuned independently of the GDD. The value of the TOD changed in a relatively wide range between -3.15 x 10 5 fs 3 and -1.67 x 10 5 fs 3 . Although the defocus also affects the angular dispersion of the pulse leaving the compressor, if does not exceed

  16. Flood field uniformity testing - effects of crystal hydration

    International Nuclear Information System (INIS)

    Dimcheva, M.; Sergieva, S.; Doldurova, M.; Jovanovska, A.

    2012-01-01

    The most basic and sensitive routine quality control (QC) of gamma camera is that of intrinsic flood-field uniformity. The routine QC test must be assessed daily and any nonuniformity must be eliminated before patient testing to eliminate artifacts and false positive or false-negative patient results. The purpose of this study was to compare uniformity analysis results for scintillation crystal hydration with symmetric and asymmetric energy window on the Siemens Symbia T2 SPECTCT camera. Integral and differential uniformity analysis was performed by placing a point source 99m Tc in front of the detector with removed collimator to measure the effect of correction matrix, a count rate and activity volume on intrinsic uniformity. A 15% energy window set symmetrically over the 99m Tc photo peak is equivalent to 140±10% keV or a window spanning 126-154 keV. The results, received from Detector 2 gave the following uniformity parameter values: Both asymmetric energy window images show clearly multiple focal spots due to crystal hydration: discrete hot spots in the asymmetric low window image and discrete cold spots in the asymmetric high window image. The above results are not seen yet on the symmetric window image. We had replaced Detector 2 in order to avoid spots become visible in flood images obtained with the clinical energy window. The uniformity of a gamma camera is maybe the most important parameter that expresses the quality of the camera's performance. Non uniform areas in the field of view can result in misdiagnosed patients and low quality of clinical services. (authors)

  17. The use of single-crystal iron frames in transient field measurements

    International Nuclear Information System (INIS)

    Zalm, P.C.; Laan, J. van der; Middelkoop, G. van

    1979-01-01

    Single-crystal Fe frames have been investigated for use as a ferromagnetic backing in transient magnetic field experiments. For this purpose the surface magnetization as a function of applied magnetic field has been determined with the magneto-optical Kerr effect. The frames, which have two sides parallel to the crystal axis, can be fully magnetized at low external fields such that fringing fields are negligibly small. These single-crystal Fe backings have been used in several transient magnetic field experiments. Comparison of the measured precession angles with previous results, obtained in polycrystalline Fe foils at high external magnetic fields, shows that the single-crystal backings are satisfactory. After extended periods of heavy-ion bombardment the crystals exhibited no radiation damage effects. The absence of fringing fields leads to a reduction of a factor of four in the measuring time for transient field experiments. (Auth.)

  18. Moessbauer radiation dynamical diffraction in crystals being subjected to the action of external variable fields

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Skadorov, V.V.

    1986-01-01

    A dynamical theory is developed of the Moessbauer radiation diffraction by crystals being subjected to an variable external field action. Equations describing the dynamical diffraction by nonstationary crystals are obtained. It is shown that the resonant interaction between Moessbauer radiation and shift field induced in the crystal by a variable external field giving rise to an effective conversion of the incident wave into a wave with changed frequency. (author)

  19. Crystal-fields at rare-earth sites in R2Fe14B compounds

    International Nuclear Information System (INIS)

    Adam, S.; Adam, G.; Burzo, E.

    1985-12-01

    Crystal-field effects are expected to be important in R 2 Fe 14 B compounds. Within a model-independent approach, it is proved that four distinct rare-earth sites exist with respect to the crystalline electric fields, namely, R(4f; z=0), R(4f; z=0.5 c), R(4g; z=0), and R(4g; z=0.5 c), and relationships are established between the corresponding crystal-fields coefficients. Further, generalized Stevens parametrizations of the crystal field coefficients are derived at three levels of approximation for the interatomic forces inside the crystal. A crystal lattice dressing effect upon the radial electronic integrals is found to occur, the magnitude of which depends on the deviation of the interatomic forces from Coulombian. Finally, computation of crystal-field coefficients in Nd 2 Fe 14 B leads to results which raise questions about the validity of the simple Coulomb point-charge model. (author)

  20. Classical nucleation theory in the phase-field crystal model.

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  1. Classical nucleation theory in the phase-field crystal model

    Science.gov (United States)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  2. An Overview of Hardware for Protein Crystallization in a Magnetic Field

    Directory of Open Access Journals (Sweden)

    Er-Kai Yan

    2016-11-01

    Full Text Available Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction, research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field and progress in this area. Future prospects in this field will also be discussed.

  3. Generalized Vaidya spacetime for cubic gravity

    Science.gov (United States)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  4. Crystallographic cut that maximizes of the birefringence in photorefractive crystals

    OpenAIRE

    Rueda-Parada, Jorge Enrique

    2017-01-01

    The electro-optical birefringence effect depends on the crystal type, cut crystal, applied electric field and the incidence direction of light on the principal crystal faces. It is presented a study of maximizing the birefringence in photorefractive crystals of cubic crystallographic symmetry, in terms of these three parameters. General analytical expressions for the birefringence were obtained, from which birefringence can be established for any type of cut. A new crystallographic cut was en...

  5. Crystal Fields in Dilute Rare-Earth Metals Obtained from Magnetization Measurements on Dilute Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.

    1974-01-01

    Crystal field parameters of Tb, Dy, and Er in Sc, Y, and Lu are summarized. These parameters are obtained from magnetization measurements on dilute single crystals, and successfully checked by a number of different methods. The crystal field parameters vary unpredictably with the rare-earth solute....... B40, B60, and B66 are similar in Y and Lu. Crystal field parameters for the pure metals Tb, Dy, and Er are estimated from the crystal fields in Y and Lu....

  6. Effect of pressure on the crystal field splitting in rare earth pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.

    1978-01-01

    The experimental situation for the pressure dependence of the crystal field of praseodymium pnictides and chalcogenides is reviewed and compared with the predictions of the point charge model. The problem of separating exchange and crystal field contributions from the measured NMR frequency shift or susceptibility measurements is discussed as well as problems explaining these effects with conduction electron related models

  7. Magnetic response of localized spins coupled to itinerant electrons in an inhomogeneous crystal field

    International Nuclear Information System (INIS)

    Iannarella, L.; Guimaraes, A.P.; Silva, X.A. da.

    1990-01-01

    The magnetic behavior at T = O K of a system consisting of conduction electrons coupled to localized electrons, the latter submitted to an inhomogeneous crystal field distribution, is studied. The study implies that the inhomogeneity of the crystal field attenuates the quenching effects. The model is interesting to the study of disordered rare-earth intermetallic compounds. (A.C.A.S.) [pt

  8. Crystal fields at light rare-earth ions in Y and Lu

    DEFF Research Database (Denmark)

    Touborg, P.; Nevald, Rolf; Johansson, Torben

    1978-01-01

    Crystal-field parameters have been deduced for the light rare-earth solutes Ce, Pr, and Nd in Y or Lu hosts from measurements of the paramagnetic susceptibilities. In the analysis all multiplets in the lowest LS term were included. For a given host, crystal-field parameters divided by Stevens fac...

  9. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

    NARCIS (Netherlands)

    Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R.

    2010-01-01

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R2Ti2O7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the

  10. Method to map individual electromagnetic field components inside a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; Reijnders, B.; Lee, J.H.H.; van der Slot, Petrus J.M.; Vos, Willem L.; Boller, Klaus J.

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the dominant electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing

  11. The Exact Limit of Some Cubic Towers

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Beelen, Peter; Nguyen, Nhut

    2017-01-01

    Recently, a new explicit tower of function fields was introduced by Bassa, Beelen, Garcia and Stichtenoth (BBGS). This resulted in currently the best known lower bound for Ihara’s constant in the case of non-prime finite fields. In particular over cubic fields, the tower’s limit is at least as go...

  12. The anisotropic Ising superantiferromagnet on a simple cubic lattice in the presence of a magnetic field: Effective-field theory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo de Sousa, J. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A., E-mail: minos@pq.cnpq.br [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Padilha, Igor T.; Salmon, Octavio D.R.; Viana, J. Roberto [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil)

    2013-12-15

    We have studied the anisotropic three-dimensional nearest-neighbor Ising model with competitive interactions in an uniform longitudinal magnetic field H. The model consists of ferromagnetic interactions J{sub z}=λ{sub 2}J{sub x} in the x(z) direction and antiferromagnetic interactions J{sub y}=λ{sub 1}J{sub x} in the y direction (Ising superantiferromagnet). For the particular case λ{sub 1}=λ{sub 2}=1 we obtain the phase diagram in the H−T plane, using the framework of the differential operator technique in the effective-field theory with finite cluster of N=4 spins (EFT-4). It was observed first- and second-order transitions in the low and high temperature limits, respectively, with the presence of a tricritical point and a reentrant behavior is observed at low temperature. The critical curve in the classical approach is also obtained and the results are compared.

  13. Crystal-field analysis of U3+ ions in K2LaX5 (X=Cl, Br or I) single crystals

    Science.gov (United States)

    Karbowiak, M.; Edelstein, N.; Gajek, Z.; Drożdżyński, J.

    1998-11-01

    An analysis of low temperature absorption spectra of U3+ ions doped in K2LaX5 (X=Cl, Br or I) single crystals is reported. The energy levels of the U3+ ion in the single crystals were assigned and fitted to a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions at the Cs symmetry site. An analysis of the nephelauxetic effect and crystal-field splittings in the series of compounds is also reported.

  14. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  15. The effect of magnetic field on the shape of etch pits of paracetamol crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V.E. [Kemerovo State University, Novosibirsk (Russian Federation); Research and Educational Center, Novosibirsk State University (Russian Federation); Boldyrev, V.V.; Shakhtshneider, T.P. [Institute of Solid State Chemistry and Mechanochemistry, RAS, Novosibirsk (Russian Federation); Zakharov, Yu.A.; Krasheninin, V.I. [Kemerovo State University, Novosibirsk (Russian Federation); Ermakov, A.E. [Institute of Physics of Metals, Ural Branch of RAS, Ekaterinburg (Russian Federation)

    2002-04-01

    In the present study we investigate the effect of magnetic field on the shape of etch pits of the crystals of p-hydroxyacetanilide (paracetamol), which is widely used in pharmacy as antipyretic, antiphlogistic medicine. It was discovered that the magnetic field (H=0.5 T, {tau}=15 min) changes the morphology of etch pits and shifts dislocations in paracetamol crystal. Activation energy of the changes induced by the action of the magnetic field was determined to be 63 kJ/mol, which is comparable with the energy of hydrogen bonds in crystal lattice. (orig.)

  16. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    Science.gov (United States)

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  17. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    Science.gov (United States)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  18. Crystal fields of dilute Tb, Dy, Ho, or Er in Lu obtained by magnetization measurements

    International Nuclear Information System (INIS)

    Touborg, P.; Hog, J.

    1975-01-01

    Magnetization measurements are reported on single crystals of dilute Tb, Dy, Ho, or Er in Lu. These measurements were performed in the temperature range 1.5--100 K and field range 0--6 T and include measurements of initial susceptibility, isothermal and isofield magnetization, and basal-plane anisotropy. The results show features similar to the corresponding Y-R alloys, where R is a rare earth. Crystal-field and molecular-field parameters could be unabiguously deduced from the experimental data. The effects of crystal-field level broadening were investigated and demonstrated for Ho. Comparison of the Y-R and Lu-R results makes possible an estimate of the crystal-field parameters in the pure-rare-earth metals

  19. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    Science.gov (United States)

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  20. Ground and excited state absorption of Ni{sup 2+} ions in MgAl{sub 2}O{sub 4}: Crystal field analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G. [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103 (Japan) and Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)]. E-mail: brik@fukui.kyoto-u.ac.jp; Avram, N.M. [Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Avram, C.N. [Department of Physics, West University of Timisoara, Bd. V. Parvan No. 4, 300223 Timisoara (Romania); Rudowicz, C. [Institute of Physics, Szczecin University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland); Yeung, Y.Y. [Department of Mathematics, Science, Social Sciences and Technology, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, New Territories (Hong Kong); Gnutek, P. [Institute of Physics, Szczecin University of Technology, Al. Piastow 17, 70-310 Szczecin (Poland)

    2007-04-25

    The exchange charge model (ECM) of crystal field is utilized to provide the theoretical explanation of the ground state absorption and the excited state absorption observed for the octahedrally coordinated Ni{sup 2+} ions in the spinel MgAl{sub 2}O{sub 4}. The ECM enables modeling of the crystal field parameters (CFPs) for the impurity ions based on the crystal structure data of the host lattice. To ensure the reliability of the CFPs, the convergence of the CFP values with the increasing number of the coordination spheres taken into account in the ECM calculations is considered. The trigonal CFPs B{sub 2}{sup 0},B{sub 4}{sup 0}andB{sub 4}{sup -3} determined by the ECM, together with the appropriate Racah parameters B and C, serve as input to two crystal field analysis computer packages, which compute the energy level schemes within the whole 3d{sup 8} configuration. The cubic approximation utilizing only one CFP Dq is also discussed. Basic features of the ground and excited state absorption spectra observed for MgAl{sub 2}O{sub 4}:Ni{sup 2+} are satisfactorily explained by our crystal field analysis. In order to model the pressure dependence of the CFPs (and thus of the absorption spectra when relevant experimental data become available), the variation of the CFPs induced by possible distortions of the lattice due to, e.g. overall relaxation of the ions or accommodation of the impurity ions in the lattice, is studied. Analysis of the experimental absorption spectra enables us to evaluate also the Huang-Rhys parameter, the effective phonon energy, and the zero-phonon line position.

  1. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...

  2. Guarded Cubical Type Theory

    DEFF Research Database (Denmark)

    Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald

    2016-01-01

    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...

  3. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N., E-mail: trushin@phys.unn.ru; Chuprunov, E. V. [Nizhni Novgorod State University (Russian Federation)

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  4. Absorption measurement s in InSe single crystal under an applied electric field

    International Nuclear Information System (INIS)

    Ates, A.; Guerbulak, B.; Guer, E.; Yildirim, T.; Yildirim, M.

    2002-01-01

    InSe single crystal was grown by Bridgman-Stockberger method. Electric field effect on the absorption measurements have been investigated as a function of temperature in InSe single crystal. The absorption edge shifted towards longer wavelengths and decreased of intensity in absorption spectra under an electric field. Using absorption measurements, Urbach energy was calculated under an electric field. Applied electric field caused a increasing in the Urbach energy. At 10 K and 320 K, the first exciton energies were calculated as 1.350 and 1.311 eV for zero voltage and 1.334 and 1.301 eV for electric field respectively

  5. Transverse magnetic field impact on waveguide modes of photonic crystals.

    Science.gov (United States)

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features.

  6. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  7. Mixed spin Ising model with four-spin interaction and random crystal field

    International Nuclear Information System (INIS)

    Benayad, N.; Ghliyem, M.

    2012-01-01

    The effects of fluctuations of the crystal field on the phase diagram of the mixed spin-1/2 and spin-1 Ising model with four-spin interactions are investigated within the finite cluster approximation based on a single-site cluster theory. The state equations are derived for the two-dimensional square lattice. It has been found that the system exhibits a variety of interesting features resulting from the fluctuation of the crystal field interactions. In particular, for low mean value D of the crystal field, the critical temperature is not very sensitive to fluctuations and all transitions are of second order for any value of the four-spin interactions. But for relatively high D, the transition temperature depends on the fluctuation of the crystal field, and the system undergoes tricritical behaviour for any strength of the four-spin interactions. We have also found that the model may exhibit reentrance for appropriate values of the system parameters.

  8. Monoclinic MB phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals

    Science.gov (United States)

    Yao, Jianjun; Cao, Hu; Ge, Wenwei; Li, Jiefang; Viehland, D.

    2009-08-01

    We report the finding of a monoclinic MB phase in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. High precision x-ray diffraction investigations of [110] field cooled crystals have shown a transformation sequence of cubic(C)→tetragonal(T)→orthorhombic(O)→monoclinic(MB), which is different from that previously reported [A.-E. Renault et al., J. Appl. Phys. 97, 044105 (2005)]. Beginning in the zero-field-cooled condition at 383 K, a rhombohedral (R)→MB→O sequence was observed with increasing field. Coexisting MB and O phases were then found upon removal of field, which fully transformed to MB on cooling to room temperature.

  9. AOM reconciling of crystal field parameters for UCl 3, UBr 3, UI 3 series

    Science.gov (United States)

    Gajek, Z.; Mulak, J.

    1990-07-01

    Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra.

  10. AOM reconciling of crystal field parameters for UCl3, UBr3, Ul3 series

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1990-01-01

    Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl 3 a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr 3 and UI 3 were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra

  11. The diluted tri-dimensional spin-one Ising model with crystal field interactions

    International Nuclear Information System (INIS)

    Saber, M.

    1988-09-01

    3D spin-one Ising models with nearest-neighbour ferromagnetic interactions with crystal-field exhibit tricritical behaviour. A new method that applies to a wide class of random systems is used to study the influence of site and bond dilution on this behaviour. We have calculated temperature-crystal-field-concentration phase diagrams and determined, in particular, the influence of dilution on the zero temperature tricritical temperature. (author). 10 refs, 8 figs

  12. Tricritical behavior in the diluted transverse spin-1 Ising model with a longitudinal crystal field

    International Nuclear Information System (INIS)

    Htoutou, K.; Oubelkacem, A.; Ainane, A.; Saber, M.

    2005-01-01

    The transverse spin-1 Ising model with a longitudinal crystal field exhibits a tricritical behavior. Within the effective field theory with a probability distribution technique that accounts for the self-spin correlations, we have studied the influence of site dilution on this behavior and have calculated the temperature-transverse field-longitudinal crystal field-concentration phase diagrams and determined, in particular, the influence of the concentration of magnetic atoms c on the tricritical behavior. We have found that the tricritical point appears for large values of the concentration c of magnetic atoms and disappears with the increase in dilution (small values of c). Results for square lattice are calculated numerically and some interesting results are obtained. In certain ranges of values of the strength of the longitudinal crystal field D/J when it becomes sufficiently negative, we found re-entrant phenomenon, which disappears with increase in the value of the strength of the transverse field

  13. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    Science.gov (United States)

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  14. Reliability of conventional crystal field models in f-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. [Polska Akademia Nauk, Wroclaw (Poland). Inst. Niskich Temperatur i Badan Strukturalnych

    1995-03-15

    Crystal field models commonly applied to explain the electronic properties of solid f-electron compounds are discussed from the point of view of their inherent limitations and the false conclusions they may lead to. Both phenomenological and ab initio approximate models are considered. The discussion is based on generalized perturbation model calculations of the crystal field parameters for europium, uranium, plutonium and neptunium ions in various crystals. The results reveal the inadequacy of various electrostatic approaches and the correctness of models based on renormalization terms. ((orig.))

  15. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  16. A thermal model for czochralski silicon crystal growth with an axial magnetic field

    Science.gov (United States)

    Hjellming, L. N.

    1990-07-01

    This paper presents a thermal model for molten silicon in a Czochralski crystal puller system with an applied uniform axial magnetic field. The melt depth is treated as continually decreasing, which affects the thermal environment of the melt and crystal. The radiative heat loss and the input heat flux are treated as functions of time, with a constraint placed on the heat lost to the crystal from the melt. As the melt motion reaches a steady state rapidly, the temperature and flow fields are treated as instantaneously steady at each melt depth. The heat transport is a mixture of conduction and convection, and by considering the crystal and crucible to be rotating with the same angular velocity, the flows driven by buoyancy and thermocapillarity are isolated and provide the convective heat transport in the melt for the range of magnetic field strengths 0.2 ≤ B ≤ 1.0T.

  17. Stroboscopic topographies on iron borate crystal in 9.6 MHz rf magnetic field

    International Nuclear Information System (INIS)

    Mitsui, Takaya; Imai, Yasuhiko; Kikuta, Seishi

    2003-01-01

    The influence of magnetoacoustic wave on the crystal deformation was studied by stroboscopic double crystal X-ray topography. The acoustic wave was excited by the rf magnetic field, which was synchronized with synchrotron radiation X-ray pulse. In measured rocking curves of FeBO 3 (4 4 4) reflection, we observed, for the first time, that the application of rf magnetic field (|H rf | max >8.4 Oe) brought about the extreme narrowing of full width at half maximum (FWHM). Recorded topographs showed that the narrowing of FWHM was due to the magnetoacoustic standing wave which is excited in FeBO 3 crystal. In our experiments, the influence of additional static magnetic field on the magnetoacoustic standing wave of FeBO 3 crystal was investigated too

  18. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    International Nuclear Information System (INIS)

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    An empirically parameterized intermolecular force field is developed for crystal structure modelling and prediction. The model is optimized for use with an atomic multipole description of electrostatic interactions. We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%

  19. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    International Nuclear Information System (INIS)

    Mokhtari, F.; Bouabdallah, A.; Merah, A.; Oualli, H.

    2012-01-01

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Universite Mouloud Mammeri de Tizi Ouzou (Algeria); LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Bouabdallah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Merah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); M' hamed Bougara University, Boumerdes (Algeria); Oualli, H. [EMP, Bordj ElBahri, Algiers (Algeria)

    2012-12-15

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach

    Science.gov (United States)

    Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid

    2017-10-01

    We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.

  2. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    Directory of Open Access Journals (Sweden)

    Amanda García-García

    2016-06-01

    Full Text Available Single-wall carbon nanotubes (SWCNT are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  3. Crystallization of inorganic salts from aqueous solutions in a microwave field

    International Nuclear Information System (INIS)

    Kochetkov, S. E.; Kuznetsov, V. A.; Lyashenko, A. V.; Bakshutov, V. S.

    2006-01-01

    The crystallization of some inorganic salts (KH 2 PO 4 , NaCl, Sr(NO 3 ) 2 , KNO 2 , Ca(OH) 2 ) by the thermal-gradient (with decreasing temperature) and solvent-evaporation methods using microwave heating of solutions is investigated. It is established that the growth rates of single crystals in a microwave field are an order of magnitude higher than obtained in other known techniques at comparable crystallization temperatures and supersaturations. For example, the growth rate of prismatic faces {100} of KH 2 PO 4 crystals is as high as 11 mm/day at supersaturations of ∼1.2%. The results obtained are discussed in the context of the effect of microwave radiation on the adsorption surface layers of crystals. Fine-grained phases of the salts under study are obtained by evaporation of the solvent

  4. High-field magnetization of UCuGe single crystal

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Mushnikov, N. V.; Gozo, T.; Honda, F.; Sechovský, V.; Prokeš, K.

    346-347, - (2004), s. 132-136 ISSN 0921-4526 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : uranium intermetallics * UCuGe * high fields * magnetic anisotropy * field-induced phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004

  5. A simple localized-itinerant model for PrAl3: crystal field and exchange effects

    International Nuclear Information System (INIS)

    Ranke, P.J. von; Palermo, L.

    1990-01-01

    We present a simple magnetic model for PrAl sub(3). The effects of crystal field are treated using a reduced set of levels and the corresponding wave functions are extracted from the actual crystal field levels of Pr sup(+3) in a hexagonal symmetry. The exchange between 4f- and conduction electrons are dealt within a molecular field approximation. An analytical magnetic state equation is derived and the magnetic behaviour discussed. The parameters of the model are estimated from a fitting of the inverse susceptibility of PrAl sub(3) given in the literature. (author)

  6. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    Science.gov (United States)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  7. Relative work function of clean molybdenum single-crystal planes determined by field emission microscopy

    International Nuclear Information System (INIS)

    Bergeret, G.; Abon, M.; Tardy, B.; Teichner, S.J.

    1974-01-01

    A probe-hole field emission microscope was used to determine the work function of clean molybdenum single crystal planes relative to the average work function of the field emitter, assumed to be 4.20 eV. Results are compared with other available data

  8. Dislocation motion in InSb crystals under a magnetic field

    CERN Document Server

    Darinskaya, E V; Erofeeva, S A

    2002-01-01

    Dislocation displacements under the action of a permanent magnetic field without mechanical loading in differently doped InSb crystals are investigated. The dependences of the mean dislocation path length and the relative number of divergence and tightening half-loops on the magnetic induction and preliminary load are obtained. Experiments on n-InSb crystals with Te impurities and on p-InSb crystals with Ge impurities have shown a sensitivity of the magnetoplasticity to the conductivity type and the dopant content. Study of the magnetoplastic effect in the initial deformed InSb crystals shows that internal stresses decrease the lengths of divergence dislocation paths and simultaneously increase the threshold magnetic field above which the magnetoplastic effect exists. Possible reasons for the observed phenomena are discussed.

  9. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  10. Influence of Superconductivity on Crystal Electric Field Transitions in La1-xTbxAl2

    DEFF Research Database (Denmark)

    Feile, R.; Loewenhaupt, M.; Kjems, Jørgen

    1981-01-01

    Inelastic neutron scattering from the crystal electric field transitions in La1-xTbxAl2 single crystals has revealed an abrupt increase in the lifetimes of these transitions when the system becomes superconducting. An increase in the integrated intensities is also observed. The lifetime effects...... are quantitatively reproduced by existing theories, which take into account the reduced scattering of the conduction electrons by the magnetic ions due to the creation of the superconducting energy gap 2Δ(T)....

  11. Eu/RG absorption and excitation spectroscopy in the solid rare gases: state dependence of crystal field splitting and Jahn-Teller coupling.

    Science.gov (United States)

    Byrne, Owen; McCaffrey, John G

    2011-03-28

    Absorption spectroscopy recorded for annealed samples of matrix-isolated atomic europium reveals a pair of thermally stable sites in Ar and Kr while a single site exists in Xe. Plots of the matrix shifts of the visible s → p bands versus host polarizability, allowed the association of the single site in Xe and the blue sites in Ar and Kr. On the basis of the similar ground state bond lengths expected for the Eu-rare gas (RG) diatomics and the known Na-RG molecules, the blue sites are attributed to Eu occupancy in the smaller tetra-vacancy while the red sites are proposed to arise from hexa-vacancy sites. Both sites are of cubic symmetry, consistent with the pronounced Jahn-Teller structure present on the y(8)P ← a(8)S(7/2) transition for these bands in the three hosts studied. Site-selective excitation spectroscopy has been used to reanalyze complex absorption spectra previously published by Jakob et al. [Phys. Lett. A 57, 67 (1976)] for the near-UV f → d transitions. On the basis that a pair of thermally stable sites exist in solid argon, the occurrence of crystal field splitting has been identified to occur for the J ≥ 5/2 level of the (8)P state when isolated in these two sites with cubic symmetry. From a detailed lineshape analysis, the magnitude of the crystal field splittings on the J = 5/2 level in Ar is found to be 105 and 123 cm(-1) for the red and blue sites, respectively.

  12. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    Science.gov (United States)

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  13. Magnetic properties of Ce{sup 3+} in Pb{sub 1{minus}x}Ce{sub x}Se: Kondo and crystal-field effect

    Energy Technology Data Exchange (ETDEWEB)

    Gratens, X.; Charar, S.; Averous, M. [Groupe dEtude des Semiconducteurs URA 357, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Isber, S. [Department of Physic, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec, H3G 1M8 (CANADA); Deportes, J. [Laboratoire Louis Neel, Avenue des Martyres, BP 166X, 38042 Grenoble Cedex 9 (France); Golacki, Z. [Institute of Physics, Polish Academy of Sciences, Pl. 02-668, Warsaw (Poland)

    1997-10-01

    Electron paramagnetic resonance (EPR) experiments were performed on a Pb{sub 1{minus}x}Ce{sub x}Se crystal at liquid-helium temperatures and show very clearly that the doublet {Gamma}{sub 7} is the ground state for cerium ions. The cubic symmetry is shown and the effective Land{acute e} factor for the Ce{sup 3+} is determined to be 1.354{plus_minus}0.003. An orbital reduction factor is introduced to explain the g experimental value. High-field magnetization results are in good agreement with the EPR results. The nominal Ce composition in PbSe deduced from saturation of the magnetization, x=0.0405{plus_minus}0.0003, is very closed to the value determined by microprobe analysis (x=0.04). At 1.5 K, an antiferromagnetic interaction between the nearest-neighbor cerium atoms is found, J{sub ex}/k{sub B}={minus}0.715thinspK. The low-field magnetic-susceptibility results show that the magnetic moment of cerium impurities is strongly temperature dependent, explained by the presence of the crystal-field effect and the Kondo effect. {copyright} {ital 1997} {ital The American Physical Society}

  14. On the neutron diffraction in a crystal in the field of a standing laser wave

    International Nuclear Information System (INIS)

    Grigoryan, K.K.; Hayrapetyan, A.G.; Petrosyan, R.G.

    2010-01-01

    The possibility of high-energy neutron diffraction in a crystal is shown by applying the solution of time-dependent Schroedinger equation for a neutron in the field of a standing laser wave. The scattering picture is examined within the framework of non-stationary S-matrix theory, where the neutron-laser field interaction is considered exactly and the neutron-crystal interaction is considered as a perturbation described by Fermi pseudopotential (Farri representation). The neutron-crystal interaction is elastic, and the neutron-laser field interaction has both inelastic and elastic behaviors which results in the observation of an analogous to the Kapitza-Dirac effect for neutrons. The neutron scattering probability is calculated and the analysis of the results are adduced. Both inelastic and elastic diffraction conditions are obtained and the formation of a 'sublattice' is illustrated in the process of neutron-photon-phonon elastic interaction.

  15. Crystal field of Dy in non-magnetic metals

    NARCIS (Netherlands)

    Kikkert, Pieter Jan Willem

    1980-01-01

    Many investigations carried out during the last 15 years have demonstrated that the crystalline electric field (CEF) has a great influence on the low temperature magnetic behaviour of rare earth ions in metallic systems (see e.g. /1/) . It is therefore important to understand the origin of the CEF

  16. Neutron Crystal-Field Spectroscopy and Susceptibility in ErcY1-cA1

    DEFF Research Database (Denmark)

    Heer, H.; Furrer, A.; Walker, E.

    1974-01-01

    Inelastic neutron scattering experiments and susceptibility measurements have been carried out on polycrystalline ErcY1-cAl2. A least-squares fitting procedure has been applied to the neutron data which favours four sets of crystal-field parameters. The results are compared with the measured...... susceptibility and other bulk magnetic properties. From this it is concluded that the crystal-field parameters x=-0.54 and W=-0.018 meV are the most probable ones....

  17. Evanescent Field Enhancement in Liquid Crystal Optical Fibers: A Field Characteristics Based Analysis

    Directory of Open Access Journals (Sweden)

    P. K. Choudhury

    2013-01-01

    Full Text Available The paper presents the analysis of the electromagnetic wave propagation through liquid crystal optical fibers (LCOFs of two different types—conventional guides loaded with liquid crystals (addressed as LCOFs and those with additional twists due to conducting helical windings (addressed as HCLCOFs. More precisely, the three-layer optical waveguide structures are considered along with its outermost region being loaded with radially anisotropic liquid crystal material and the inner regions being made of usual silica, as used in conventional optical fibers. In addition to that, LCOF with twists introduced in the form of conducting helical windings at the interface of the silica core and the liquid crystal clad is also taken into account. Emphasis has been put on the power confinements by the lower-order TE modes sustained in the different sections of the LCOF structure. The results demonstrate useful applications of these guides in integrated optics as the power sustained in the liquid crystal section by the excited TE modes remains very high. In the case of twisted clad liquid crystal guides, descriptions are limited to the nature of dispersion relation only under the TE mode excitation, and corresponding to the cases of helix orientations being parallel and perpendicular to the optical axis.

  18. A simple model for localized-itinerant magnetic systems: crystal field effects

    International Nuclear Information System (INIS)

    Iannarella, L.; Silva, X.A. da; Guimarares, A.P.

    1989-01-01

    The magnetic behavior of a system consisting of localized electrons coupled to conduction electrons and submitted to an axial crystral field at T=0 K is ivestigated within the framework of the molecular field approximation. An analytical ionic magnetic state equation is deduced; it shows how the magnetization depends on the model parameters (exchange, crystal field, band occupation) and external magnetic field. A condition for the onset of spontaneous magnetic order is obtained and the ferro - and paramagnetic phases are studied. This study displays several features of real magnetic systems, including quenching or total suppression of the magnetic moments (depending on the relative value of the crystal field parameter) and exchange enhacement. The relevance of such model for the description of rare-earth intermetallic compounds is discussed. (author) [pt

  19. Interpolation of natural cubic spline

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    1992-01-01

    Full Text Available From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.

  20. Improving NASICON Sinterability through Crystallization under High-Frequency Electrical Fields

    Energy Technology Data Exchange (ETDEWEB)

    Lisenker, Ilya; Stoldt, Conrad R., E-mail: stoldt@colorado.edu [Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO (United States)

    2016-03-31

    The effect of high-frequency (HF) electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP) ion conducting ceramic was investigated. LAGP with the nominal composition Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300 V/cm at 1 MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using X-ray diffraction, scanning electron microscope, TEM, and electrochemical impedance spectroscopy to compare conventionally and field-sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 h of sintering were minor with measured sintering strains of 31 vs. 26% with and without field, respectively. Ionic conductivity of the sintered pellets was evaluated, and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  1. Field-induced optically isotropic state in bent core nematic liquid crystals: unambiguous proof of field-induced optical biaxiality

    International Nuclear Information System (INIS)

    Elamain, Omaima; Komitov, Lachezar; Hegde, Gurumurthy; Fodor-Csorba, Katalin

    2013-01-01

    The behaviour of bent core (BC) nematic liquid crystals was investigated under dc applied electric field. The optically isotropic state of a sample containing BC nematic was observed under application of low dc electric fields. The quality of the dark state when the sample was inserted between two crossed polarizers was found to be superb and it did not change when rotating the sample between the polarizers. The coupling between the net molecular dipole moment and the applied dc electric field was considered as the origin of the out-of-plane switching of the BC molecules resulting in switching from the field-off bright state to the field-on dark state. The field-induced optically isotropic state is an unambiguous proof of the field-induced biaxiality in the BC nematic liquid crystal. A simple model explaining the appearance of the isotropic optical state in BC nematics and the switching of the sample slow axis between three mutually orthogonal directions under dc applied electric field is proposed. (paper)

  2. Electric quadrupole interaction in cubic BCC α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Błachowski, A.; Komędera, K. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Cios, G.; Żukrowski, J. [AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Górnicki, R. [RENON, ul. Gliniana 15/15, PL-30-732 Kraków (Poland)

    2016-07-15

    Mössbauer transmission spectra for the 14.41-keV resonant line in {sup 57}Fe have been collected at room temperature by using {sup 57}Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V{sub zz} = +1.61(4) × 10{sup 19} Vm{sup −2} for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the {sup 57}Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the {sup 57}Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V{sub zz} = +1.92(4) × 10{sup 19} Vm{sup −2}. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge

  3. Electric quadrupole interaction in cubic BCC α-Fe

    International Nuclear Information System (INIS)

    Błachowski, A.; Komędera, K.; Ruebenbauer, K.; Cios, G.; Żukrowski, J.; Górnicki, R.

    2016-01-01

    Mössbauer transmission spectra for the 14.41-keV resonant line in "5"7Fe have been collected at room temperature by using "5"7Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V_z_z = +1.61(4) × 10"1"9 Vm"−"2 for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the "5"7Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the "5"7Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V_z_z = +1.92(4) × 10"1"9 Vm"−"2. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge for ab initio calculations

  4. Analyses of crystal field and exchange interaction of Dy3Ga5O12 under extreme conditions

    International Nuclear Information System (INIS)

    Wang Wei; Qi Xin; Yue Yuan

    2011-01-01

    This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory, an effective exchange field associated with the Dy—Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Crystal-field tuning of photoluminescence in two-dimensional materials with embedded lanthanide ions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ding; Chen, Weiyin; Zeng, Mengqi; Xue, Haifeng; Chen, Yunxu; Xiao, Yao; Zhang, Tao; Fu, Lei [College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan (China); Sang, Xiahan; Unocic, Raymond R.; Xiao, Kai [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2018-01-15

    Lanthanide (Ln) group elements have been attracting considerable attention owing to the distinct optical properties. The crystal-field surroundings of Ln ions in the host materials can determine their energy level splitting, which is of vital importance to tailor their optical properties. 2D MoS{sub 2} single crystals were utilized as the host material to embed Eu{sup 3+} and energy-level splitting was achieved for tuning its photoluminescence (PL). The high anisotropy of the 2D host materials makes them distort the degenerate orbitals of the Ln ions more efficiently than the symmetrical bulk host materials. A significant red-shift of the PL peak for Eu{sup 3+} was observed. The strategy for tailoring the energy level splitting of Ln ions by the highly designable 2D material crystal field provides a new method to extend their optical properties. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Waveguide modes of 1D photonic crystals in a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sylgacheva, D. A., E-mail: sylgacheva.darjja@physics.msu.ru; Khokhlov, N. E.; Kalish, A. N.; Belotelov, V. I. [Moscow State University, Physics Department (Russian Federation)

    2016-11-15

    We analyze waveguide modes in 1D photonic crystals containing layers magnetized in the plane. It is shown that the magnetooptical nonreciprocity effect emerges in such structures during the propagation of waveguide modes along the layers and perpendicularly to the magnetization. This effect involves a change in the phase velocity of the mode upon reversal of the direction of magnetization. Comparison of the effects in a nonmagnetic photonic crystal with an additional magnetic layer and in a photonic crystal with magnetic layers shows that the magnitude of this effect is several times larger in the former case in spite of the fact that the electromagnetic field of the modes in the latter case is localized in magnetic regions more strongly. This is associated with asymmetry of the dielectric layers contacting with the magnetic layer in the former case. This effect is important for controlling waveguide structure modes with the help of an external magnetic field.

  7. Dual gauge field theory of quantum liquid crystals in three dimensions

    International Nuclear Information System (INIS)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan

    2017-01-01

    The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. Lastly, we also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.

  8. Dual gauge field theory of quantum liquid crystals in three dimensions

    Science.gov (United States)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Zaanen, Jan

    2017-10-01

    The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in space-time while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two, or three directions, leading to the quantum analogues of columnar, smectic, or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes, while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. We also consider the effective electromagnetic response of electrically charged quantum liquid crystals, and find among other things that as a hard principle only two out of the possible three rotational Goldstone modes are observable using propagating electromagnetic fields.

  9. Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Closest-Packed Structure

    Science.gov (United States)

    Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.

    2008-01-01

    One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…

  10. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  11. Crystal-field splitting in coadsorbate systems: c (2x2) CO/K/Ni (100)

    NARCIS (Netherlands)

    Hasselström, J.; Föhlisch, A.; Denecke, R.; Nilsson, A.; Groot, F.M.F. de

    2000-01-01

    It is demonstrated how the crystal field splitting (CFS) fine structure can be used to characterize a coadsor-bate system. We have applied K 2p x-ray absorption spectroscopy (XAS) to the c(2x2) CO/K/Ni(100) system. The CFS fine structure is shown to be sensitive to the the local atomic

  12. Crystal field effect in YbMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Diviš, M.; Hölsä, J.; Lastusaari, M.; Litvinchuk, A. P.; Nekvasil, Vladimír

    2008-01-01

    Roč. 451, 1-2 (2008), s. 662-665 ISSN 0925-8388 R&D Projects: GA AV ČR IAA100100627 Institutional research plan: CEZ:AV0Z10100521 Keywords : ytterbium * manganites * IR spectroscopy * crystal field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.510, year: 2008

  13. Crystal field and magnetism with Wannier functions: rare-earth dopedaluminum garnets

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Novák, Pavel; Laguta, Valentyn

    2015-01-01

    Roč. 33, č. 12 (2015), 1316-1323 ISSN 1002-0721 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal field * ab initio calculations * garnets * rare earths Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.188, year: 2015

  14. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Zaim, N.; Zaim, A., E-mail: ah_zaim@yahoo.fr; Kerouad, M., E-mail: kerouad@fs-umi.ac.ma

    2017-02-15

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction J{sub s} on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined. - Highlights: • Phase diagrams of a ferromagnetic nanowire are examined by the Monte Carlo simulation. • Different types of the phase diagrams are obtained. • The effect of the random crystal field on the hysteresis loops is studied. • Single, double and para hysteresis regions are explicitly determined.

  15. Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors

    NARCIS (Netherlands)

    De Boer, R.W.I.; Stassen, A.F.; Craciun, M.F.; Mulder, C.L.; Molinari, A.; Rogge, S.; Morpurgo, A.F.

    2005-01-01

    We report the observation of ambipolar transport in field-effect transistors fabricated on single crystals of copper- and iron-phthalocyanine, using gold as a high work-function metal for the fabrication of source and drain electrodes. In these devices, the room-temperature mobility of holes reaches

  16. Crystal field and magnetism with Wannier functions: Orthorhombic rare-earth manganites

    Czech Academy of Sciences Publication Activity Database

    Novák, Pavel; Nekvasil, Vladimír; Knížek, Karel

    358-359, MAY (2014), s. 228-232 ISSN 0304-8853 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : crystal field * rare- earth magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.970, year: 2014

  17. The optics of gyrotropic crystals in the field of two counter-propagating ultrasound waves

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Harutyunyan, E M; Hovhannisyan, M A; Matinyan, G K

    2014-01-01

    We consider oblique light propagation through a layer of a gyrotropic crystal in the field of two counter-propagating ultrasound waves. The problem is solved by Ambartsumyan's layer addition modified method. The results of the reflection spectra for different values of the problem parameters are presented. The possibilities of such system applications are discussed.

  18. Tellurium adsorption on single crystal faces of molybdenum and tungsten field emitters

    International Nuclear Information System (INIS)

    Collins, R.A.; Kiwanga, C.A.

    1978-01-01

    The purpose of this letter is to report the extension of previous studies of Te adsorption on Mo and W field emitters to measurements on single crystal planes. The adsorption of semiconductors on metallic emitters has been found to be characterized by simultaneous decreases in emission current and the Fowler-Nordheim work function for adsorbate coverages of less than a monolayer. (Auth.)

  19. Near-field imaging of out-of-plane light scattering in photonic crystal slabs

    DEFF Research Database (Denmark)

    Volkov, Valentyn; Bozhevolnyi, Sergey; Taillaert, Dirk

    2003-01-01

    A collection scanning near-field optical microscope (SNOM) is used to image the propagating of light at telecommunication wavelengths (1520-1570 nm) along photonic crystal (PC) slabs, which combine slab waveguides with in-plane PCs consisting of one- and two-dimensional gratings. The efficient out...

  20. Electrical resistance of flaky crystals in the longitudinal quantizing magnetic field

    International Nuclear Information System (INIS)

    Askerov, B.M.; Figarova, S.R.; Makhmudov, M.M.

    2005-01-01

    Specific resistance of the quasi-two-dimensional electrical gas in the longitudinal quantizing magnetic field is investigated in this work. Common expression for resistivity in the flaky crystals was received. In quantum limit was analyzed dependence of the resistivity from the size of magnetic field and parameters energetic spectra in case of strong degenerate gas. It was tagged that, the conduct of specific resistance is formed by the dependence of chemical potential from the size of magnetic field. At the defined value of the chemical potential and size of magnetic field obtains inflation of the specific resistance. (author)

  1. Redshift of A 1(longitudinal optical) mode for GaN crystals under strong electric field

    Science.gov (United States)

    Gu, Hong; Wu, Kaijie; Zheng, Shunan; Shi, Lin; Zhang, Min; Liu, Zhenghui; Liu, Xinke; Wang, Jianfeng; Zhou, Taofei; Xu, Ke

    2018-01-01

    We investigated the property of GaN crystals under a strong electric field. The Raman spectra of GaN were measured using an ultraviolet laser, and a remarkable redshift of the A 1(LO) mode was observed. The role of the surface depletion layer was discussed, and the interrelation between the electric field and phonons was revealed. First-principles calculations indicated that, in particular, the phonons that vibrate along the [0001] direction are strongly influenced by the electric field. This effect was confirmed by a surface photovoltage experiment. The results revealed the origin of the redshift and presented the phonon property of GaN under a strong electric field.

  2. Drift of nonequilibrium charge carriers in GaAs-crystals with traps in ultrasonic fields

    International Nuclear Information System (INIS)

    Zaveryukhina, N.N.; Zaveryukhin, B.N.; Zaveryukhina, E.B.

    2007-01-01

    Full text: The drift of nonequilibrium charge carriers in a semiconductor is one of the basic processes determining the efficiency of semiconductor photodetectors. Gallium arsenide possesses certain advantages to other semiconductors in this respect, which allow GaAs-photodetectors to be obtained which possess the maximum efficiency in comparison with all other systems. The purpose of this study was to deepen and expand our knowledge about the acoustic-drift processes in GaAs- crystals. As is known, the drift of nonequilibrium charge carriers in a semiconductor is determined either by external electric fields and/or by internal (built-in) electrostatic fields related to an impurity concentration gradient in the semiconductor. Gallium arsenide is a piezoelectric semiconductor with a structure possessing no center of symmetry. An electric field applied to such a crystal produces deformation of the crystal, and vice versa, any deformation of the crystal leads to the appearance of an induced electric field. Therefore, investigation of the effect of deformation on the drift of nonequilibrium charge carriers is a very important task. One of the possible straining factors is ultrasonic wave. Interaction of the charge carriers with ultrasonic waves in piezo-semiconductors is mediated by piezo exertion. Straining a semiconductor by an ultrasonic wave field gives rise to a force acting upon the charge carriers, which is proportional to the wave vector and the piezoelectric constant of the crystal. The physics of interaction between an ultrasonic wave and nonequilibrium charge carriers in GaAs, as well as in non-polar semiconductors (Si, Ge), consists in the energy and momentum exchange between the wave and the carriers. Besides the ultrasonic waves interact with the traps of carriers and devastate them. These both acoustic effects lead to rise of amplitude of signal of GaAs-photodetectors. (authors)

  3. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  4. Crystal field influence on vibration spectra: anhydrous uranyl chloride and dihydroxodiuranyl chloride tetrahydrate

    International Nuclear Information System (INIS)

    Perrin, Andre; Caillet, Paul

    1976-01-01

    Vibrational spectra of anhydrous uranyl chloride UO 2 Cl 2 and so called basic uranyl chloride: dihydroxodiuranyl chloride tetrahydrate /UO 2 (OH) 2 UO 2 /Cl 2 (H 2 O) 4 are reported. Factor group method analysis leads for the first time to complete and comprehensive interpretation of their spectra. Two extreme examples of crystal field influence on vibrational spectra are pointed out: for UO 2 Cl 2 , one is unable to explain spectra without taking into account all the elements of primitive crystalline cell, whilst for dihydroxodiuranyl dichloride tetrahydrate the crystal packing has very little effect on vibrational spectra [fr

  5. An energy-stable convex splitting for the phase-field crystal equation

    KAUST Repository

    Vignal, P.; Dalcin, L.; Brown, D. L.; Collier, N.; Calo, V. M.

    2015-01-01

    Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.

  6. Wave dispersion relation of two-dimensional plasma crystals in a magnetic field

    International Nuclear Information System (INIS)

    Uchida, G.; Konopka, U.; Morfill, G.

    2004-01-01

    The wave dispersion relation in a two-dimensional strongly coupled plasma crystal is studied by theoretical analysis and molecular dynamics simulation taking into account a constant magnetic field parallel to the crystal normal. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorenz force acting on the dust particles. The high-frequency and the low-frequency branches are found to belong to right-hand and left-hand polarized waves, respectively

  7. An energy-stable convex splitting for the phase-field crystal equation

    KAUST Repository

    Vignal, P.

    2015-10-01

    Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.

  8. Far-Field Focus and Dispersionless Anticrossing Bands in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Chen

    2007-01-01

    Full Text Available We review the simulation work for the far-field focus and dispersionless anticrossing bands in two-dimensional (2D photonic crystals. In a two-dimensional photonic-crystal-based concave lens, the far-field focus of a plane wave is given by the distance between the focusing point and the lens. Strong and good-quality far-field focusing of a transmitted wave, explicitly following the well-known wave-beam negative refraction law, can be achieved. The spatial frequency information of the Bloch mode in multiple Brillouin zones (BZs is investigated in order to indicate the wave propagation in two different regions. When considering the photonic transmission in a 2D photonic crystal composed of a negative phase-velocity medium (NPVM, it is shown that the dispersionless anticrossing bands are generated by the couplings among the localized surface polaritons of the NPVM rods. The photonic band structures of the NPVM photonic crystals are characterized by a topographical continuous dispersion relationship accompanied by many anticrossing bands.

  9. Lattice distortion under an electric field in BaTiO3 piezoelectric single crystal

    International Nuclear Information System (INIS)

    Tazaki, Ryoko; Fu Desheng; Daimon, Masahiro; Koshihara, Shin-ya; Itoh, Mitsuru

    2009-01-01

    Lattice distortions under an electric field in a mono-domain of BaTiO 3 ferroelectric crystal have been detected with synchrotron x-ray radiation. The variation of the lattice constant with an electric field observed with high angle diffraction shows a linear response nature of the piezoelectric effect. When an electric field is applied along the spontaneous polarization direction, the c-axis of the lattice elongates and the a-axis of the lattice shrinks at a rate of d 33 = 149 ± 54 pm V -1 and d 31 = -82 ± 61 pm V -1 ; these represent the longitudinal and transverse piezoelectric coefficients of BaTiO 3 crystal, respectively. These results give an insight into the intrinsic piezoelectric response on the lattice scale in BaTiO 3 that has been widely used to explore high performance lead-free piezoelectric alloys.

  10. A Cosserat crystal plasticity and phase field theory for grain boundary migration

    Science.gov (United States)

    Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut

    2018-06-01

    The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.

  11. Origin of gigantic magnetostriction and crystal field effects in terbium dititanate

    International Nuclear Information System (INIS)

    Aleksandrov, I.V.; Lidskij, B.V.; Mamsurova, L.G.

    1985-01-01

    The temperature and magnetic field dependences of the magnetostriction and magnetization and the temperature dependences of the magnetic susceptibility, specific heat and lattice parameter are investigated experimentally in a broad range of temperature and field strength for polycrystalline and single crystal Tb 2 Ti 2 O 7 . A conclusion is drawn regarding the structure of the energy levels of Tb 3+ in Tb 2 Ti 2 O 7 . A qualitative and quantitative explanation of all observed magnetic effects, and in particular of gigantic magnetostriction in Tb 2 Ti 2 O 7 , is presented which is based on the crystal field theory. It is shown that the huge magnitude of the magnetostriction in terbium dititanate is due to the specificity of the energy spectrum of Tb 3+ in Tb 2 Ti 2 O 7

  12. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  13. Theoretical innovation and technical progress will usher in a production period of gas fields with an annual capacity of ten billion cubic meters

    Directory of Open Access Journals (Sweden)

    Zhenwei Gan

    2017-01-01

    Full Text Available Challenged by the increasing complexity of targets and the tense situation of turning losses into profits during the 12th Five-Year Plan, by virtue of technological innovation, Sinopec Southwest Oil & Gas Company proposed the theories of gas exploration in continental clastic rock and marine carbonate rock, and developed the development technologies for reef, channel sandstone and tight sandstone reservoirs. Moreover, it innovatively formed a series of engineering technologies, including intelligent sliding sleeve staged fracturing, blasting–packing–fracturing stimulation, impulse fracturing, and drilling, completion and production technologies for ultra-deep horizontal wells with high sulfur contents. With these innovated theories and improved technologies, great discoveries have been made in the continental clastic rocks and marine carbonate rocks in West Sichuan Basin, the marine shale in South Sichuan Basin, and the marine carbonate rocks in Yuanba area of NE Sichuan Basin, and three 100 billion-m3 class commercial gas reserves zones were discovered. Moreover, two medium- and large-sized gas fields were proved, and three medium- and large-sized gas fields were completely constructed. Both reserves and production reached a new record in history. During the 13th Five-Year Plan, Sinopec Southwest Oil & Gas Company will focus on the exploration and development of deep marine carbonate reservoirs, commercial development of deep shale gas, safe development of gas fields with high sulfur, and enhancement of recovery in mature gas fields. By the end of the 13th Five-Year Plan, it is expected that the annual gas production of (10–12 × 109 m3 will be achieved.

  14. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  15. Orthogonal decomposition of a optical random field using a spatial modulator of light of liquid crystal

    International Nuclear Information System (INIS)

    Velez Juarez, Esteban; Rodriguez Garciapinna, Jorge L.; Ostrovsky, Andrey S.

    2016-01-01

    A technique for experimental determining the coherent-mode structure of electromagnetic field is proposed. This technique is based on the coherence measurements of the field in some reference basis and represents a nontrivial vector generalization of the dual-mode field correlation method recently reported by F. Ferreira and M. Belsley. The justifiability and efficiency of the proposed technique is illustrated by an example of determining the coherent-mode structure of some specially generated and experimentally characterized secondary electromagnetic source using a spatial modulator of light of liquid crystal (SLM-LC). (Author)

  16. Angular and magnetic field dependences of critical current in irradiated YBaCuO single crystals

    International Nuclear Information System (INIS)

    Petrusenko, Yu.

    2010-01-01

    The investigation of mechanisms responsible for the current-carrying capability of irradiated high-temperature superconductors (HTSC) was realized. For the purpose, experiments were made to investigate the effect of point defects generated by high-energy electron irradiation on the critical temperature and the critical current in high-Tc superconducting single crystals YBa 2 Cu 3 O 7-x . The transport current density measured in HTSC single crystals YBa 2 Cu 3 O 7-x by the dc-method was found to exceed 80000 A/cm 2 . The experiments have demonstrated a more than 30-fold increase in the critical current density in single crystals irradiated with 2.5 MeV electrons to a dose of 3·10 18 el/cm 2 . Detailed studies were made into the anisotropy of critical current and the dependence of critical current on the external magnetic field strength in irradiated single crystals. A high efficiency of point defects as centers of magnetic vortex pinning in HTSC single crystals was first demonstrated.

  17. Role of internal demagnetizing field for the dynamics of a surface-modulated magnonic crystal

    Science.gov (United States)

    Langer, M.; Röder, F.; Gallardo, R. A.; Schneider, T.; Stienen, S.; Gatel, C.; Hübner, R.; Bischoff, L.; Lenz, K.; Lindner, J.; Landeros, P.; Fassbender, J.

    2017-05-01

    This work aims to demonstrate and understand the key role of local demagnetizing fields in hybrid structures consisting of a continuous thin film with a stripe modulation on top. To understand the complex spin dynamics of these structures, the magnonic crystal was reconstructed in two different ways—performing micromagnetic simulations based on the structural shape as well as based on the internal demagnetizing field, which both are mapped on the nanoscale using electron holography. The simulations yield the frequency-field dependence as well as the angular dependence revealing the governing role of the internal field landscape around the backward-volume geometry. Simple rules for the propagation vector and the mode localization are formulated in order to explain the calculated mode profiles. Treating internal demagnetizing fields equivalent to anisotropies, the complex angle-dependent spin-wave behavior is described for an in-plane rotation of the external field.

  18. Phase field modeling of rapid crystallization in the phase-change material AIST

    Science.gov (United States)

    Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus

    2017-07-01

    We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.

  19. The use of single-crystal iron frames in transient field measurements, ch. 3

    International Nuclear Information System (INIS)

    Zalm, P.C.

    1977-01-01

    An experimental technique for measuring g-factors of short-lived states (tausub(m)=0.1-10 ps) is discussed. In this method, one uses the strong hyperfine interaction caused by the transient magnetic field. The transient field method dates from 1967. A gain in measuring time of at least a factor of four is shown to be obtained by the use of a single crystal iron frame as a ferromagnetic target backing in which the excited nuclei, formed in a nuclear reaction, recoil. Such frames can be fully magnetized with low external fields as shown by magneto-optical Kerr-effect measurements. The important improvement is that the associated magnetic fringing field near the target is negligible. This is in contrast to the conventional set-up in which strong external fields, with corresponding large disturbing fringing fields, were necessary. The single-crystal set-up is compared to the conventional set-up in several transient field experiments and proves to be successful

  20. Sensitized charge carrier injection into organic crystals studied by isotope effects in weak magnetic fields

    International Nuclear Information System (INIS)

    Bube, W.; Michel-Beyerle, M.E.; Haberkorn, R.; Steffens, E.

    1977-01-01

    The magnetic field (H approximately 50 Oe) dependence of the rhodamine sensitized triplet exciton density in anthracene crystals is influenced by isotopic substitution. This confirms the hyperfine interaction as mechanism explaining the change of the spin multiplicity in the initially formed singlet state of the radical pair. The isotope effect occurs in the sensitizing dye ( 14 N/ 15 N) rather than at the molecular site of the injected charge within the crystal. This can be understood in terms of the high hopping frequency of the charge carriers as compared to the time constant of the hyperfine induced singlet-triplet transition. Since the dye molecules adsorb in an oriented fashion, the angular dependence of the magnetic field modulation of the triplet exciton density can be interpreted without assuming any additional interactions. (Auth.)

  1. Random crystal field effects on the integer and half-integer mixed-spin system

    Science.gov (United States)

    Yigit, Ali; Albayrak, Erhan

    2018-05-01

    In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.

  2. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  3. Uniform angular overlap model interpretation of the crystal field effect in U(5+) fluoride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J. (W. Trzebiatowski Inst. of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland))

    1990-11-01

    The uniform interpretation of the crystal field effect in three different U(5+) fluoride compounds: CsUF{sub 6}, {alpha}-UF{sub 5} and {beta}-UF{sub 5} within the angular overlap model (AOM) is given. Some characteristic relations between the AOM parameters and their distance dependencies resulting from ab initio calculations are introduced and examined from a phenomenological point of view. The traditional simplest approach with only one independent parameter, i.e. e{sub {sigma}} with e{sub {pi}}:e{sub {sigma}} = 0.32 and e{sub {delta}} = 0, is shown to provide a consistent interpretation of the crystal field effect of the whole class of the compounds. The parameters obtained for one compound are easily and successfully extrapolated to others. The specificity and importance of the e{sub {delta}} parameter for 5f{sup 1} systems is discussed. (orig.).

  4. Anomalous jump of stress upon the variation of the rate of deformation of single crystals of the Ni3Ge alloys with L12 superstructure under the conditions of cubic slip

    International Nuclear Information System (INIS)

    Starenchenko, V.A.; Solov'eva, Yu.V.; Gettinger, M.V.; Kovalevskaya, T.A.

    2005-01-01

    Experimental results are given on variations of plastic strain rate for Ni 3 Ge alloy with L1 2 superstructure possessing anomalous temperature dependence of mechanical properties. For the first time an anomalous strain rate dependence of mechanical properties of the alloy is revealed under conditions of cubic slip. The mechanism is proposed to explain the observed form of stress jump. Using the mechanism proposed normal and anomalous constituents of stress jump are separated. Temperature dependences of stress jump, normal and anomalous constituents of stress jump are analyzed [ru

  5. Symmetry-adaptation and selection rules for effective crystal field Hamiltonians

    International Nuclear Information System (INIS)

    Tuszynski, J.A.

    1986-01-01

    The intention of this paper is to systematically derive an effective Hamiltonian in the presence of crystal fields in such a way as to incorporate relativistic effects and higher order perturbation corrections including configuration mixing. This Hamiltonian will then be conveniently represented as a symmetry-adapted series of one- and two-body double tensor operators whose matrix elements will be analyzed for selection rules. 16 references, 4 tables

  6. Crystal field parameters with Wannier functions: application to rare-earth aluminates

    Czech Academy of Sciences Publication Activity Database

    Novák, Pavel; Knížek, Karel; Kuneš, Jan

    2013-01-01

    Roč. 87, č. 20 (2013), "205139-1"-"205139-7" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/0713 Institutional support: RVO:68378271 Keywords : crystal-field * rare earths * Wannier functions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013 http://link.aps.org/doi/10.1103/PhysRevB.87.205139

  7. Molecular dynamics on diffusive time scales from the phase-field-crystal equation.

    Science.gov (United States)

    Chan, Pak Yuen; Goldenfeld, Nigel; Dantzig, Jon

    2009-03-01

    We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and describes the motion of each of them. By solving the dynamical equation of the model, which is a partial differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales. To illustrate this approach, we calculate the two-point correlation function of a fluid.

  8. Electric field influence on exciton absorption of Er doped and undoped InSe single crystals

    International Nuclear Information System (INIS)

    Guerbulak, B; Kundakci, M; Ates, A; Yildirim, M

    2007-01-01

    Undoped InSe and Er doped InSe (InSe:Er) single crystals were grown by using the Stockbarger method. Ingots had no cracks and voids on the surface. The absorption measurements were carried out in InSe and InSe:Er samples for U=0 and U=30 V in the temperature range 10-320 K with a step of 10 K. Electric field effects on excitons are observed in InSe and InSe:Er single crystals. The absorption edge shifted towards longer wavelengths and decreased intensity in absorption spectra under an electric field E≅5.9 kV cm -1 . The applied electric field caused a shifting and a decreasing of intensity in the absorption spectra. The shifting of the absorption edge can be explained on the basis of the Franz-Keldysh effect (FKE) or thermal heating of the sample under the electric field. At 10 and 320 K, the first exciton energies for InSe were calculated as 1.336 and 1.291 eV for zero voltage and 1.331 and 1.280 eV for electric field and InSe:Er as 1.329 and 1.251 eV for zero voltage and 1.318 and 1.248 eV for electric field, respectively

  9. Magnetic field effect on microplastic strain rate in C690 single crystals

    International Nuclear Information System (INIS)

    Smirnov, B.I.; Shpejzman, V.V.; Peschanskaya, N.N.; Nikolaev, R.K.

    2002-01-01

    Microplastic strain in magnetic field and beyond it, as well as, subsequent to preliminary exposure of C 60 crystals to magnetic field was investigated by means of laser interferometer enabling to measure rate of strain on the basis of 0.15 μm linear shifting. It is shown that introduction and removal of specimen from 0.2 T induction field immediately during deformation of specimen result in variation of its rate, and at reduction of rate one observes discontinuous interruption of deformation. Sign of effect depends on temperature: at room temperature magnetic field promotes deformation, at 100 K - shows it down. Effect of preliminary exposure within 0.2 and 2T induction field turned to be analogous one. One analyzed possible reasons of the observed manifestation of magnetoplastic effect in C 60 and relation of its sign with phase transition under 260 K temperature [ru

  10. Behaviour of nematic liquid crystals doped with ferroelectric nanoparticles in the presence of an electric field

    Science.gov (United States)

    Emdadi, M.; Poursamad, J. B.; Sahrai, M.; Moghaddas, F.

    2018-06-01

    A planar nematic liquid crystal cell (NLC) doped with spherical ferroelectric nanoparticles is considered. Polarisation of the nanoparticles are assumed to be along the NLC molecules parallel and antiparallel to the director with equal probability. The NLC molecules anchoring to the cell walls are considered to be strong, while soft anchoring at the nanoparticles surface is supposed. Behaviour of the NLC molecules and nanoparticles in the presence of a perpendicular electric field to the NLC cell is theoretically investigated. The electric field of the nanoparticles is taken into account in the calculations. Freedericksz transition (FT) threshold field in the presence of nanoparticles is found. Then, the director and particles reorientations for the electric fields larger than the threshold field are studied. Measuring the onset of the nanoparticles reorientation is proposed as a new method for the FT threshold measurement.

  11. Crystal Growth of High-Quality Protein Crystals under the Presence of an Alternant Electric Field in Pulse-Wave Mode, and a Strong Magnetic Field with Radio Frequency Pulses Characterized by X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Adela Rodríguez-Romero

    2017-06-01

    Full Text Available The first part of this research was devoted to investigating the effect of alternate current (AC using four different types of wave modes (pulse-wave at 2 Hz on the crystal growth of lysozyme in solution. The best results, in terms of size and crystal quality, were obtained when protein crystals were grown under the influence of electric fields in a very specific wave mode (“breathing” wave, giving the highest resolution up to 1.34 Å in X-ray diffraction analysis compared with controls and with those crystals grown in gel. In the second part, we evaluated the effect of a strong magnetic field of 16.5 Tesla combined with radiofrequency pulses of 0.43 μs on the crystal growth in gels of tetragonal hen egg white (HEW lysozyme. The lysozyme crystals grown, both in solution applying breathing-wave and in gel under the influence of this strong magnetic field with pulses of radio frequencies, produced the larger-in-size crystals and the highest resolution structures. Data processing and refinement statistics are very good in terms of the resolution, mosaicity and Wilson B factor obtained for each crystal. Besides, electron density maps show well-defined and distinctly separated atoms at several selected tryptophan residues for the crystal grown using the “breathing wave pulses”.

  12. Superconducting transition and low-field magnetoresistance of a niobium single crystal at 4.2 deg. K

    International Nuclear Information System (INIS)

    Perriot, G.

    1967-01-01

    We report the study of the electrical resistance of a niobium single crystal, at 4.2 deg. K, from the beginning of the superconductive transition to 80 kilo oersteds. Critical fieldsH c2 and H c3 have been determined. Influences on superconductive transition of current density, field-current angle, crystal orientation and magnetoresistance have been studied. Variation laws of low-field transverse and longitudinal magneto-resistances have been determined. (author) [fr

  13. Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM

    Science.gov (United States)

    Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric

    In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).

  14. High-field Transport in Low Symmetry β-Ga2O3 Crystal

    Science.gov (United States)

    Ghosh, Krishnendu; Singisetti, Uttam

    High-field carrier transport plays an important role in many disciplines of electronics. Conventional transport theories work well on high-symmetry materials but lacks insight as the crystal symmetry goes down. Newly emerging materials, many of which possess low symmetry, demand more rigorous treatment of charge transport. We will present a comprehensive study of high-field transport using ab initio electron-phonon interaction (EPI) elements in a full-band Monte Carlo (FBMC) algorithm. We use monoclinic β-Ga2O3 as a benchmark low-symmetry material which is also an emerging wide-bandgap semiconductor. β-Ga2O3 has a C2m space group and a 10 atom primitive cell. In this work the EPIs are calculated under density-functional perturbation theory framework. We will focus on the computational challenges arising from many phonon modes and low crystal symmetry. Significant insights will be presented on the details of energy relaxation by the hot electrons mediated by different phonon modes. We will also show the velocity-field curves of electrons in different crystal directions. The authors acknowledge the support from the National Science Foundation Grant (ECCS 1607833). The authors also acknowledge the computing support provided by the Center for Computational Research at the University at Buffalo.

  15. Actual and Idealized Crystal Field Parameterizations for the Uranium Ions in UF 4

    Science.gov (United States)

    Gajek, Z.; Mulak, J.; Krupa, J. C.

    1993-12-01

    The crystal field parameters for the actual coordination symmetries of the uranium ions in UF 4, C2 and C1, and for their idealizations to D2, C2 v , D4, D4 d , and the Archimedean antiprism point symmetries are given. They have been calculated by means of both the perturbative ab initio model and the angular overlap model and are referenced to the recent results fitted by Carnall's group. The equivalency of some different sets of parameters has been verified with the standardization procedure. The adequacy of several idealized approaches has been tested by comparison of the corresponding splitting patterns of the 3H 4 ground state. Our results support the parameterization given by Carnall. Furthermore, the parameterization of the crystal field potential and the splitting diagram for the symmetryless uranium ion U( C1) are given. Having at our disposal the crystal field splittings for the two kinds of uranium ions in UF 4, U( C2) and U( C1), we calculate the model plots of the paramagnetic susceptibility χ( T) and the magnetic entropy associated with the Schottky anomaly Δ S( T) for UF 4.

  16. Scanning near-field optical microscopy of quantum dots in photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, Matthias; Fiore, Andrea [COBRA Research Institute, Technical University Eindhoven, Den Dolech 2, 5600 MB Eindhoven (Netherlands); Prancardi, Marco; Gerardino, Annamaria [Institute of Photonics and Nanotechnology, CNR, via del Cineto Romano 42, 00156 Roma (Italy); Alloing, Blandine; Li Lianhe, E-mail: m.s.skacel@tue.n [Institute of Photonics and Quantum Electronics, EPFL, CH-1015 Lausanne (Switzerland)

    2010-09-01

    Nanophotonic devices are of major interest for research and future quantum communication applications. Due to their nanometer feature size the resolution limit of far-field microscopy poses a limitation on the characterization of their optical properties. A method to overcome the resolution limit is the Scanning Near-Field Optical Microscope (SNOM). By approaching a fiber tip into the close vicinity of the sample the optical emission in the near-field regime is collected. This way of collecting the light is not affected by the diffraction limit. We employ a low temperature SNOM to investigate the photoluminescence of InAs QDs emitting at 1300nm wavelength embedded in photonic crystal cavities. At each location of an image scan the tip is stopped and a spectrum is acquired. We then plot maps of the photoluminescence for each wavelength. With this instrument it is now possible to directly observe the coupling of QDs to photonic crystal cavities both spectrally and spatially. We show first results of photoluminescence mapping of InAs QDs in photonic crystal cavities.

  17. Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Volkov, V.S.; Søndergaard, Thomas

    2002-01-01

    We employ a collection scanning near-field optical microscope (SNOM) to image the propagation of light at telecommunication wavelengths along straight and bent regions of silicon-on-insulator photonic crystal waveguides (PCWs) formed by removing a single row of holes in the triangular 410-nm...... the interference between a quasihomogeneous background field and Bloch harmonics of the PCW mode, we account for spatial frequency spectra of the intensity variations and determine the propagation constant of the PCW mode at 1520 nm. The possibilities and limitations of SNOM imaging for the characterization...

  18. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  19. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Guzmán, Orlando [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, DF 09340, México (Mexico); Hernández-Ortiz, Juan P. [Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Medellín (Colombia); Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Pablo, Juan J. de, E-mail: depablo@uchicago.edu [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  20. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  1. Electric-field-induced flow-aligning state in a nematic liquid crystal.

    Science.gov (United States)

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2015-04-01

    The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.

  2. Properties of the localized field emitted from degenerate Λ-type atoms in photonic crystals

    International Nuclear Information System (INIS)

    Foroozani, N.; Golshan, M. M.; Mahjoei, M.

    2007-01-01

    The spontaneous emission from a degenerate Λ-type three-level atom, embedded in a photonic crystal, is studied. The emitted field, as a function of time and position, is calculated by solving the three coupled differential equations governing the amplitudes. We show that the spontaneously emitted field is characterized by three components (as in the case of two-level and V-type atoms): a localized part, a traveling part, and a t -3/2 decaying part. Our calculations indicate that under specific conditions the atoms do not emit propagating fields, while the localized field, having shorter localization length and time, is intensified. As a consequence, the population of the upper level, after a short period of oscillations, approaches a constant value. It is also shown that this steady value, under the same conditions, is much larger than its counterpart in V-type atoms

  3. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  4. Structural study on cubic-tetragonal transition of CH3NH3PbI3

    International Nuclear Information System (INIS)

    Kawamura, Yukihiko; Mashiyama, Hiroyuki; Hasebe, Katsuhiko

    2002-01-01

    The cubic-tetragonal phase transition of CH 3 NH 3 PbI 3 was investigated by single crystal X-ray diffractometry. The crystal structure was refined at five temperatures in the tetragonal phase. The PbI 6 octahedron rotates around the c-axis alternatively to construct the SrTiO 3 -type tetragonal structure. A methylammonium ion is partially ordered; 24 disordered states in the cubic phase are reduced to 8. With decreasing temperature, the rotation angle of the octahedron increases monotonically, which indicates it is an order parameter of the cubic-tetragonal transition. (author)

  5. Crystal field excitations of YbMn{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R.A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Hofmann, M. [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Adroja, D.T. [ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, OX11 OQX (United Kingdom); Moze, O. [Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Modena (Italy); Campbell, S.J., E-mail: stewart.campbell@adfa.edu.au [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia)

    2013-12-15

    The crystal field excitations of the rare earth intermetallic compound YbMn{sub 2}Si{sub 2} have been measured by inelastic neutron scattering over the temperature range 2.5–50 K. The YbMn{sub 2}Si{sub 2} spectra exhibit three low energy excitations (∼3–7 meV) in the antiferromagnetic AFil region above the magnetic phase transition at T{sub N2} = 30(5) K. The crystal field parameters have been determined for YbMn{sub 2}Si{sub 2} in the antiferromagnetic AFil region. A further two inelastic excitations (∼9 meV, 17 meV) are observed below T{sub N2}=30(5) K, the temperature at which the high temperature antiferromagnetic structure is reported to exhibit doubling of the magnetic cell. Energy level diagrams have been determined for Yb{sup 3+} ions in the different sites above (single site) and below the magnetic transition temperature (two sites). The excitation energies for both sites are shown to be temperature independent with the temperature dependences of the transition intensities for the two sites described well by a simple Boltzmann model. The spectra below T{sub N2} cannot be described fully in terms of molecular field models based on either a single Yb{sup 3+} site or two Yb{sup 3+} sites. This indicates that the magnetic behaviour of YbMn{sub 2}Si{sub 2} is more complicated than previously considered. The inability to account fully for excitations below the magnetic phase transition may be due to an, as yet, unresolved structural transition associated with the magnetic transition. - Highlights: • The inelastic neutron scattering from YbMn{sub 2}Si{sub 2} has been investigated over the temperature range 2.5–50 K. • The crystal field splitting has been monitored through the magnetic transition at 30(5) K. • We have determined the crystal field parameters for the antiferromagnetic AFil region. • The transition intensities are described well by Boltzmann occupancy models. • The spectra below the magnetic transition have been analysed by

  6. Electromagnetic-field amplification in finite one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Gorelik, V. S.; Kapaev, V. V.

    2016-01-01

    The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center of the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.

  7. Optical spectroscopy and crystal-field analysis of U{sup 3+}: Ba{sub 2}YCl{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Karbowiak, M.; Mech, A.; Drozdzyndki, J. [Wroclaw Univ., Faculty of Chemistry (Poland); Gajek, Z. [Polish Academy of Sciences, W. Trzebiatowski Institute of Low Temperature and Structure Research, Wroclaw (Poland); Edelstein, N.M. [Lawrence Berkeley National Lab., Chemical Sciences Div., CA (United States)

    2002-11-01

    High resolution absorption spectra of a U{sup 3+}(0.3%): Ba{sub 2}YCl{sub 7} single crystal were recorded in the 4000-50 000 cm{sup -1} range at 7 K. The observed crystal-field levels were assigned and fit to the parameters of the simplified angular overlap model (AOM) as well as a semi-empirical Hamiltonian representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra allowed the assignment of 65 crystal-field levels with a relatively small rms deviation of 25 cm{sup -1} and has shown that the AOM approach can predict quite well the B{sub q}{sup k} crystal-field parameters. The value determined for the crystal-field strength parameter, N{sub v}, corresponds well with those determined for U{sup 3+} in other chloride single crystals. (authors)

  8. The planar cubic Cayley graphs

    CERN Document Server

    Georgakopoulos, Agelos

    2018-01-01

    The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

  9. Zr 2Ir 6B with an eightfold superstructure of the cubic perovskite-like boride ZrIr 3B 0.5: Synthesis, crystal structure and bonding analysis

    Science.gov (United States)

    Hermus, Martin; Fokwa, Boniface P. T.

    2010-04-01

    Single phase powder samples and single crystals of Zr 2Ir 6B were successfully synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. Superstructure reflections were observed both on powder and on single crystal diffraction data, leading to an eightfold superstructure of ZrIr 3B x phase. The new phase, which has a metallic luster, crystallizes in space group Fm3¯m (no. 225) with the lattice parameters a=7.9903(4) Å, V=510.14(4) Å 3. Its crystal structure was refined on the basis of powder as well as single crystal data. The single crystal refinement converged to R1=0.0239 and w R2=0.0624 for all 88 unique reflections and 6 parameters. Zr 2Ir 6B is isotypic to Ti 2Rh 6B and its structure can be described as a defect double perovskite, A2BB' O6, where the A site is occupied by zirconium, the B site by boron, the O site by iridium but the B' site is vacant, leading to the formation of empty and boron-filled octahedral Ir 6 clusters. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for the structural stability of the phase. According to COHP bonding analysis, the strongest bonding occurs for the Ir-B contacts, and the Ir-Ir bonding within the empty clusters is two times stronger than that in the BIr 6 octahedra.

  10. Near-field-optical-microscopy studies of micro-modifications caused by femtosecond laser irradiation in lithium niobate crystals

    International Nuclear Information System (INIS)

    Lamela, J.; Jaque, D.; Rodenas, A.; Jaque, F.; Torchia, G.A.; Vazquez, J.R.; Mendez, C.; Roso, L.

    2008-01-01

    Near-field-optical-microscopy has been used to study the micro-modifications caused by femtosecond laser pulses focused at the surface and in the volume of lithium niobate crystals. We have found experimental evidence of the existence, close to femtosecond ablation craters, of periodic modifications in the surface reflectivity. In addition, the potential application of near-field-optical microscopy for the spatial location of permanent modifications caused by femtosecond pulses focused inside lithium niobate crystals has been also demonstrated. (orig.)

  11. Effect of an external magnetic field on polytypism of CdI2 crystals grown from solutions

    International Nuclear Information System (INIS)

    Palosz, B.; Przedmojski, J.

    1982-01-01

    The effect of growth conditions on the polytypic structure of crystals of CdI 2 was analyzed for crystallization from solutions. Three solvents were used: H 2 O, 3 H 2 O + 1 C 2 H 5 OH and 1 H 2 O + 1 C 2 H 5 OH. Crystals were grown at two temperatures: 5 and 25 0 C with low and high growth rates; an external magnetic field of about 0.25 tesla was used. The effect of the above three parameters on the formation of the basic polytypes 2H and 4H and on the ordering of faults in disordered structures and in polytype cells was studied by X-ray analysis of crystal surfaces. Some distinct relations between the polytypic structure of crystals of CdI 2 and the magnetic field were found. (author)

  12. Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review

    Science.gov (United States)

    Gránásy, László; Rátkai, László; Szállás, Attila; Korbuly, Bálint; Tóth, Gyula I.; Környei, László; Pusztai, Tamás

    2014-04-01

    Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.

  13. Bifurcation properties of nematic liquid crystals exposed to an electric field: Switchability, bistability, and multistability

    KAUST Repository

    Cummings, L. J.

    2013-07-01

    Bistable liquid crystal displays (LCDs) offer the potential for considerable power savings compared with conventional (monostable) LCDs. The existence of two (or more) stable field-free states that are optically distinct means that contrast can be maintained in a display without an externally applied electric field. An applied field is required only to switch the device from one state to the other, as needed. In this paper we examine the basic physical principles involved in generating multiple stable states and the switching between these states. We consider a two-dimensional geometry in which variable surface anchoring conditions are used to control the steady-state solutions and explore how different anchoring conditions can influence the number and type of solutions and whether or not switching is possible between the states. We find a wide range of possible behaviors, including bistability, tristability, and tetrastability, and investigate how the solution landscape changes as the boundary conditions are tuned. © 2013 American Physical Society.

  14. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    Science.gov (United States)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  15. Field analysis of TE and TM modes in photonic crystal Bragg fibers by transmission matrix method

    Directory of Open Access Journals (Sweden)

    M Hosseini Farzad

    2010-03-01

    Full Text Available In this article, we considered the field analysis in photonic crystal Bragg fibers. We apply the method of transmission matrix to calculater the dispersion curves, the longitudinal wave number over wave number versus incident wavelength, and the field distributions of TE and TM modes in the Bragg fiber. Our analysis shows that the field of guided modes is confined in the core and can exist only in particular wavelength bands corresponding to the band-gap of the periodic structure of the clad. From another point of view, light confinement is due to Bragg reflection from high-and low-refractive index layers of the clad. Also, the diagram of average angular frequency with respect to average longitudinal wave number is plotted so that the band gap regions of the clad are clearly observed.

  16. 40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction

    Science.gov (United States)

    Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.

    2018-05-01

    We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.

  17. AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal

    International Nuclear Information System (INIS)

    Sun Xiudong; Pei Yanbo; Yao Fengfeng; Zhang Jianlong; Hou Chunfeng

    2007-01-01

    Photorefractive gratings were produced in a C 60 -doped nematic liquid crystal cell under the application of two coherent beams and a nonbiased sinusoidal ac electric field. The beam coupling and diffraction of the ac electric field assisted gratings were studied systematically. A stable asymmetric energy transference was obtained. Diffraction was observed when the angle (between the normal of the cell and the bisector of the writing beams) was 0 0 , and the dependence of diffraction efficiency on the peak-to-peak value of the ac voltage was similar to that at an incidence angle of 45 0 , suggesting that the role of the ac field was to facilitate the charge separation, and the space-charge field (SCF) originated predominantly from the diffusion of the ac electric field assisted photo-induced carriers under the application of nonuniform illumination and an applied ac field. The grating was produced by director reorientation induced by the cooperation of the SCF and the applied ac electric field. A self-erasing phenomenon was observed in this cell. An explanation in terms of the movement of two kinds of carriers with opposite signs was proposed

  18. Low magnification differential phase contrast imaging of electric fields in crystals with fine electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Taplin, D.J. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2016-10-15

    To correlate atomistic structure with longer range electric field distribution within materials, it is necessary to use atomically fine electron probes and specimens in on-axis orientation. However, electric field mapping via low magnification differential phase contrast imaging under these conditions raises challenges: electron scattering tends to reduce the beam deflection due to the electric field strength from what simple models predict, and other effects, most notably crystal mistilt, can lead to asymmetric intensity redistribution in the diffraction pattern which is difficult to distinguish from that produced by long range electric fields. Using electron scattering simulations, we explore the effects of such factors on the reliable interpretation and measurement of electric field distributions. In addition to these limitations of principle, some limitations of practice when seeking to perform such measurements using segmented detector systems are also discussed. - Highlights: • Measuring electric fields by on-axis electron diffraction is explored by simulation. • Electron channelling reduces deflection predicted by the phase object approximation. • First moment measurements cannot distinguish electric fields from specimen mistilt. • Segmented detector estimates are fairly insensitive to camera length and orientation.

  19. Dipolar local field in homogeneously magnetized quasi-two-dimensional crystals

    International Nuclear Information System (INIS)

    Leon, H; Estevez-Rams, E

    2009-01-01

    A formalism to calculate the dipolar local field in homogeneously magnetized quasi-two-dimensional (Q2D) crystals is comprehensively presented. Two fundamental tests for this formalism are accomplished: the transition from the Q2D quantities to the corresponding 3D ones; and the recovering of the macroscopic quantities of the 3D continuum theory. The additive separation between lattice and shape contributions to the local field allows an unambiguous interpretation of the respective effects. Calculated demagnetization tensors for square and circular lateral geometries of dipole layers show that for a single crystal layer an extremely thin film, but still with a finite thickness, is a better physical representation than a strictly 2D plane. Distinct close-packed structures are simulated and calculations of the local field at the nodes of the stacked 2D lattices allow one to establish the number of significantly coupled dipole layers, depending on the ratio between the interlayer distance and the 2D lattice constant. The conclusions drawn are of interest for the study of the dipolar interaction in magnetic ultrathin films and other nanostructured materials, where magnetic nanoparticles are embedded in non-magnetic matrices.

  20. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    Science.gov (United States)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  1. Crystal field parameters in UCl/sub 4/: Experiment versus theory

    Energy Technology Data Exchange (ETDEWEB)

    Zolnierek, Z.; Gajek, Z. (Polska Akademia Nauk, Wroclaw. Inst. Niskich Temperatur i Badan Strukturalnych); Khan Malek, C. (Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire)

    1984-08-01

    Crystal field effect on U/sup 4 +/ ion with the /sup 3/H/sub 4/ ground term in tetragonal ligand field of UCl/sub 4/ has been studied in detail. Crystal field parameters determined experimentally from optical spectroscopy and magnetic susceptibility are in good agreement with CEP sets derived from the modified point charge model and the ab initio method. Theoretical calculations lead to overestimating the A/sub 4//sup 4/ and lowering the A/sub 2//sup 0/ values in comparison to those found in the experiments. The discrepancies are, however, within an accuracy of calculations. A large similar reduction of expectation values of the magnetic moment operator for the eigenvectors of lowest CF levels (17.8%), determined from magnetic susceptibility, cannot be attributed to the overlap and covalency effects only. The detailed calculations have shown that the latter effects provide about 4.6% reduction of respective matrix elements, and the applied J-J mixing procedure increases this factor up to 6.5%. Since similar reduction factor has already been observed in a number of different uranium compounds, as in UCl/sub 4/ it seems to be likely that this feature is involved in the intrinsic properties of the U/sup 4 +/ ion. The authors endeavor to explain this effect in terms of configuration interaction mechanisms.

  2. Polarization Change in Face-Centered Cubic Opal Films

    Science.gov (United States)

    Wolff, Christian; Romanov, Sergei; Küchenmeister, Jens; Peschel, Ulf; Busch, Kurt

    2011-10-01

    Artificial opals are a popular platform for investigating fundamental properties of Photonic Crystals (PhC). In this work, we provide a theoretical analysis of polarization-resolved transmission experiments through thin opal films. Despite the full cubic symmetry of the PhC, this system provides a very efficient mechanism for manipulating the polarization state of light. Based on band structure calculations and Bloch mode analysis, we find that this effect closely resembles classical birefringence. Due to the cubic symmetry, however, a description using tensorial quantities is not possible. This indicates fundamental limitations of effective material models for Photonic Crystals and demonstrates the importance of accurately modelling the microscopic geometry of such systems.

  3. On-fiber 3D printing of photonic crystal fiber tapers for mode field diameter conversion

    KAUST Repository

    Bertoncini, Andrea; Rajamanickam, Vijayakumar Palanisamy; Liberale, Carlo

    2017-01-01

    The large mismatch between the Mode Field Diameter (MFD) of conventional single-mode fibers (SMFs) and the MFD of highly nonlinear Photonic Crystal Fibers (PCFs), that can be down to 1.5 μm, or Large Mode Area PCF, that can be up to 25 μm, would require a substantial fiber mode size rescaling in order to allow an efficient direct coupling between PCFs and SMFs. Over the years different solutions have been proposed, as fiber splicing of SMF to PCF. However these procedures are not straightforward, as they involve developing special splicing recipes, and can affect PCF optical properties at the splice interface [1].

  4. Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids

    Science.gov (United States)

    Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko

    2013-09-01

    An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.

  5. Angular overlap model analysis of the D 2d crystal field effect in uranium (4+) compounds

    Science.gov (United States)

    Gajek, Z.; Hubert, S.; Krupa, J. C.

    1988-12-01

    Recent interpretations of the D 2d crystal field of U 4+ in β-ThCl 4, α, β-ThBr 4, ThSiO 4 and UCl 4 are discussed in terms of the simplified one-, two- and three-parameter versions of the Angular Overlap Model which are shown to be a handy tool in a trial interpretation of the effect. The variation of the CF parameters with a small D 2 distortion of the coordination is well reproduced by the model.

  6. Crystal-field and clustering effects in the specific heat of Dy in Pd

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Jacques, P.; Poirier, M.

    1975-01-01

    Recent results of specific-heat measurements on dilute alloys of Dy in Pd are reanalyzed. Assuming the ionic ground state found from paramagnetic-resonance measurements, the Schottky-anomaly and cluster contributions are segregated and the crystal-field splitting of the ground and first-excited states is found to be in reasonable agreement with theoretical predictions. The nature of the cluster contribution is discussed and an upper limit to the range of the Ruderman-Kittel-Kasuya-Yosida interaction deduced

  7. On-fiber 3D printing of photonic crystal fiber tapers for mode field diameter conversion

    KAUST Repository

    Bertoncini, Andrea

    2017-11-02

    The large mismatch between the Mode Field Diameter (MFD) of conventional single-mode fibers (SMFs) and the MFD of highly nonlinear Photonic Crystal Fibers (PCFs), that can be down to 1.5 μm, or Large Mode Area PCF, that can be up to 25 μm, would require a substantial fiber mode size rescaling in order to allow an efficient direct coupling between PCFs and SMFs. Over the years different solutions have been proposed, as fiber splicing of SMF to PCF. However these procedures are not straightforward, as they involve developing special splicing recipes, and can affect PCF optical properties at the splice interface [1].

  8. Black holes in a cubic Galileon universe

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr, E-mail: tetiana.moskalets@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.

  9. Hopper Growth of Salt Crystals.

    Science.gov (United States)

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2018-06-07

    The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 μm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

  10. An Abel type cubic system

    Directory of Open Access Journals (Sweden)

    Gary R. Nicklason

    2015-07-01

    Full Text Available We consider center conditions for plane polynomial systems of Abel type consisting of a linear center perturbed by the sum of 2 homogeneous polynomials of degrees n and 2n-1 where $n \\ge 2$. Using properties of Abel equations we obtain two general systems valid for arbitrary values on n. For the cubic n=2 systems we find several sets of new center conditions, some of which show that the results in a paper by Hill, Lloyd and Pearson which were conjectured to be complete are in fact not complete. We also present a particular system which appears to be a counterexample to a conjecture by Zoladek et al. regarding rational reversibility in cubic polynomial systems.

  11. Cubication of conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  12. radiation and electric field induced effects on the order-disorder phase in lithium sodium sulphate crystals

    Science.gov (United States)

    Hamed, A. E.; Kassem, M. E.; El-Wahidy, E. F.; El-Abshehy, M. A.

    1995-03-01

    The temperature dependence of specific heat at constant pressure, Cp(T), has been measured for lithium sodium sulphate, LiNaSo4 crystals, at different ?-radiation doses and external bias electric field (Eb), in the temperature range 300-900 K. A nonlinear dependence of transition temperature, T1 and a remarkable change in the thermodynamic parameters, were obtained as the effect of both electric field and ?-radiation. The effect of ?-radiation doses on the phase transition in LiNaSO4 crystals was explained as due to an internal bias field, Eb, originating from the interaction of polar defects with the order parameter of the host lattice. The internal bias field effect on the behaviour of Cp(T) in LiNaSO4 crystals was similar to that of the external electric field (E).

  13. Numbers for reducible cubic scrolls

    Directory of Open Access Journals (Sweden)

    Israel Vainsencher

    2004-12-01

    Full Text Available We show how to compute the number of reducible cubic scrolls of codimension 2 in (math blackboard symbol Pn incident to the appropriate number of linear spaces.Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em (math blackboard symbol Pn incidentes a espaços lineares apropriados.

  14. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita; Richtarik, Peter

    2018-01-01

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\cal O}(1/\\epsilon)$, ${\\cal O}(1/\\sqrt{\\epsilon})$ and ${\\cal O}(\\log (1/\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  15. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita

    2018-02-12

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\\\cal O}(1/\\\\epsilon)$, ${\\\\cal O}(1/\\\\sqrt{\\\\epsilon})$ and ${\\\\cal O}(\\\\log (1/\\\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  16. EMR-related problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians

    Directory of Open Access Journals (Sweden)

    Rudowicz Czesław

    2015-07-01

    Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.

  17. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository

    CUMMINGS, L. J.; LOW, J.; MYERS, T. G.

    2013-01-01

    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified 'Trouton ratio'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  18. Thermal field emission observation of single-crystal LaB6

    International Nuclear Information System (INIS)

    Nagata, H.; Harada, K.; Shimizu, R.

    1990-01-01

    TFE (thermal field emission) properties of LaB 6 left-angle 100 right-angle and left-angle 310 right-angle single crystals were investigated by emission pattern observation. It was found that field evaporation with the tip temperature held at ∼1500 degree C is very useful to get a clean pattern of fourfold symmetry. Each of four bright spots in the clean pattern was presumed to correspond to left-angle 310 right-angle emission. It is proposed, as the most appropriate operating condition, to use the left-angle 310 right-angle LaB 6 tip at a temperature ∼1000 degree C in vacuum of 10 -9 Torr region, promising a new TF emitter of high brightness and stability for practical use

  19. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository

    CUMMINGS, L. J.

    2013-10-17

    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified \\'Trouton ratio\\'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  20. EPR studies of excited state exchange and crystal-field effects in rare earth compounds

    International Nuclear Information System (INIS)

    Huang, C.Y.; Sugawara, K.; Cooper, B.R.

    1976-01-01

    EPR in excited crystal-field states of Tm 3+ , Pr 3+ , and Tb 3+ in singlet-ground-state systems and in the excited state of Ce 3+ in CeP are reviewed. Because one is looking at a crystal-field excited state resonance, the exchange, even if isotropic, does not act as a secular perturbation. This means that one obtains different effects and has access to more information about the dynamic effects of exchange than in conventional paramagnetic resonance experiments. The Tm and Pr monopnictides studied are paramagnetic at all temperatures. The most striking feature of the behavior of the GAMMA 5 /sup (2)/ EPR in the Tm compounds is the presence of an anomalous maximum in the temperature dependence of the g-factor. The relationship of this effect to anisotropic exchange is discussed. The results of the EPR of the excited GAMMA 5 /sup (2)/ level of Tb 3 + (g-factor becomes very large at T/sub N/ in antiferromagnetic TbX (X = P, As, Sb) and that of the excited GAMMA 8 level of Ce 3+ in antiferromagnetic CeP will also be reported. For sufficient dilution of the Tb 3+ in the terbium monopnictides, the systems become paramagnetic (Van Vleck paramagnets) down to 0 0 K. The Tb 3+ excited state resonance EPR in Tb/sub 0.1/ La/sub 0.9/P was studied as an example of behavior in such systems. 10 fig

  1. Large piezoelectricity in electric-field modified single crystals of SrTiO3

    Science.gov (United States)

    Khanbabaee, B.; Mehner, E.; Richter, C.; Hanzig, J.; Zschornak, M.; Pietsch, U.; Stöcker, H.; Leisegang, T.; Meyer, D. C.; Gorfman, S.

    2016-11-01

    Defect engineering is an effective and powerful tool to control the existing material properties and produce completely new ones, which are symmetry-forbidden in a defect-free crystal. For example, the application of a static electric field to a single crystal of SrTiO3 forms a strained near-surface layer through the migration of oxygen vacancies out of the area beneath the positively charged electrode. While it was previously shown that this near-surface phase holds pyroelectric properties, which are symmetry-forbidden in centrosymmetric bulk SrTiO3, this paper reports that the same phase is strongly piezoelectric. We demonstrate the piezoelectricity of this phase through stroboscopic time-resolved X-ray diffraction under alternating electric field and show that the effective piezoelectric coefficient d33 ranges between 60 and 100 pC/N. The possible atomistic origins of the piezoelectric activity are discussed as a coupling between the electrostrictive effect and spontaneous polarization of this near-surface phase.

  2. Effects of electric fields on the photonic crystal formation from block copolymers

    Science.gov (United States)

    Lee, Taekun; Ju, Jin-wook; Ryoo, Won

    2012-03-01

    Effects of electric fields on the self-assembly of block copolymers have been investigated for thin films of polystyrene-bpoly( 2-vinyl pyridine); PS-b-P2VP, 52 kg/mol-b-57 kg/mol and 133 kg/mol-b-132 kg/mol. Block copolymers of polystyrene and poly(2-vinyl pyridine) have been demonstrated to form photonic crystals of 1D lamellar structure with optical band gaps that correspond to UV-to-visible light. The formation of lamellar structure toward minimum freeenergy state needs increasing polymer chain mobility, and the self-assembly process is accelerated usually by annealing, that is exposing the thin film to solvent vapor such as chloroform and dichloromethane. In this study, thin films of block copolymers were spin-coated on substrates and placed between electrode arrays of various patterns including pin-points, crossing and parallel lines. As direct or alternating currents were applied to electrode arrays during annealing process, the final structure of thin films was altered from the typical 1D lamellae in the absence of electric fields. The formation of lamellar structure was spatially controlled depending on the shape of electrode arrays, and the photonic band gap also could be modulated by electric field strength. The spatial formation of lamellar structure was examined with simulated distribution of electrical potentials by finite difference method (FDM). P2VP layers in self-assembled film were quaternized with methyl iodide vapor, and the remaining lamellar structure was investigated by field emission scanning electron microscope (FESEM). The result of this work is expected to provide ways of fabricating functional structures for display devices utilizing photonic crystal array.

  3. Double hydrogen bonded ferroelectric liquid crystals: A study of field induced transition (FiT)

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2009-12-01

    A novel series of chiral hydrogen bonded liquid crystals have been isolated. Hydrogen bond was formed between chiral nonmesogen ingredient levo tartaric acid and mesogenic p-n-alkoxybenzoic acids. Phase diagram was constructed from the transition temperatures obtained by DSC and polarizing optical microscopic (POM) studies. Thermal and electrical properties exhibited by three complexes namely LTA+8BA, LTA+7BA and LTA+5BA were discussed. Salient feature of the present work was the observation of a reentrant smectic ordering in LTA+8BA complex designated as C r∗ phase. This reentrant phenomenon was confirmed by DSC thermograms, optical textures of POM and temperature variation of capacitance and dielectric loss studies. Tilt angle was measured in smectic C ∗ and reentrant smectic C r∗ phases. Another interesting feature of the present investigation was the observation of a field induced transition (FiT) in the LTA+ nBA homologous series. Three threshold field values were noticed which give rise to two new phases (E 1 and E 2) induced by electric field and on further enhancement of the applied field the mesogen behaves like an optical shutter. FiT is reversible in the sense that when applied field is removed the original texture was restored.

  4. Development of polarization magneto-optics of paramagnetic crystals

    International Nuclear Information System (INIS)

    Zapasskij, V.S.; Feofilov, P.P.

    1975-01-01

    The present status of the polarization magnetooptics of crystals containing paramagnetic ion impurities is reviewed. The paper discusses methods of measurement of circular magnetic anisotropy and results obtained in recent years in the field of conventional magnetooptical studies, e.g., magnetooptical activity in absorption spectra for intrinsic and impurity defects in crystals, luminescence magnetic circular polarization, anisotropy of magnetooptical activity in cubic crystals. The main emphasis is placed on new trends in polarization magnetooptics: studies of interactions of a spin system with a lattice, in particular, spin-lattice relaxation and spin memory effect, experiments in the double radiooptical resonance, studies of optical spin relaxation, nonlinear magnetooptical effects, etc

  5. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  6. Photonic crystal fiber injected with Fe{sub 3}O{sub 4} nanofluid for magnetic field detection

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Harneet V.; Nalawade, Sandipan M.; Gupta, Swati [Photonics Group, Department of Applied Physics, Defence Institute of Advanced Technology, Girinagar, Pune 411 025 (India); Kitture, Rohini [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Kale, S. N. [Nanotechnology Group, Department of Applied Physics, Defence Institute of Advanced Technology, Girinagar, Pune 411 025 (India)

    2011-10-17

    We report a magnetic field sensor having advantages of both photonic crystal fiber and optofluidics, combining them on a single platform by infiltrating small amount of Fe{sub 3}O{sub 4} magnetic optofluid/nanofluid in cladding holes of polarization-maintaining photonic crystal fiber. We demonstrated that magnetic field of few mT can be easily and very well detected with higher sensitivity of 242 pm/mT. The change in the birefringence values has been correlated to the response of nanofluid to applied field.

  7. Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls

    OpenAIRE

    Choi, Tae-Hoon; Oh, Seung-Won; Park, Young-Jin; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-01-01

    We report a simple method for reducing the response time of a fringe-field switching liquid crystal cell by using two-dimensional confinement of the liquid crystals. Through both numerical calculations and experiments, we show that the switching speed can be increased by several fold in a fringe-field switching cell by simply using a rubbing angle of zero, which causes virtual walls to be built when an electric field is applied between the interdigitated electrodes and the common electrode, w...

  8. Cubic interactions of Maxwell-like higher spins

    Energy Technology Data Exchange (ETDEWEB)

    Francia, Dario [Scuola Normale Superiore and INFN,Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Monaco, Gabriele Lo [Dipartimento di Fisica, Università di Pisa,Piazza Fibonacci, 3, I-56126, Pisa (Italy); Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Mkrtchyan, Karapet [Max Planck Institut für Gravitationsphysik,Am Mühlenberg 1, Potsdam 14476 (Germany)

    2017-04-12

    We study the cubic vertices for Maxwell-like higher-spins in flat and (A)dS background spaces of any dimension. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.

  9. Effect of cubic Dresselhaus interaction on the longitudinal optical conductivity of a spin-orbit coupled system

    Science.gov (United States)

    Cruz, Elmer; López-Bastidas, Catalina; Maytorena, Jesús A.

    2018-03-01

    We investigate the effect of the oft-neglected cubic terms of the Dresselhaus spin-orbit coupling on the longitudinal current response of a two-dimensional electron gas with both Rashba and linear Dresselhaus interactions. For a quantum well grown in the [001] direction, the changes caused by these nonlinear-in-momentum terms on the absorption spectrum become more notable under SU(2) symmetry conditions, when the Rashba and linear Dresselhaus coupling strengths are tuned to be equal. The longitudinal optical response no longer vanishes then and shows a strong dependence on the direction of the externally applied electric field, giving a signature of the relative size of several spin-orbit contributions. This anisotropic response arises from the nonisotropic splitting of the spin states induced by the interplay of Rashba and Dresselhaus couplings. However, the presence of cubic terms introduces characteristic spectral features and can modify the overall shape of the spectra for some values of the relative sizes of the spin-orbit parameters. We compare this behavior to the case of a sample with [110] crystal orientation which, under conditions of spin-preserving symmetry, has a collinear spin-orbit vector field that leads to vanishing conductivity, even in the presence of cubic terms. In addition to the control through the driven frequency or electrical gating, such a directional aspect of the current response suggests new ways of manipulation and supports the use of interband optics as a sensitive probe of spin-orbit mechanisms in semiconductor spintronics.

  10. Studies of synthetic single crystal diamonds as reliable dosimeters for electromagnetic ionizing radiation fields

    International Nuclear Information System (INIS)

    Pillon, Mario; Angelone, Maurizio; Almaviva, Salvatore; Marinelli, Marco; Milani, Enrico; Prestopino, Giuseppe; Tucciarone, Aldo; Verona, Claudio; Verona-Rinati, Gianluca; Baccaro, Stefania

    2008-01-01

    Full text: Spatial high resolution dosimetry is very important in all areas of radiation therapy and, in particular, whenever narrow photon beams are required for Stereotactic Radiotherapy (SRT) and small field segments are used for Intensity Modulated Radiotherapy (IMRT). The available detectors are often too large with respect to the beam size considered, which is characterized by high dose gradients and lack of charged particle equilibrium. An ideal solution is represented by single crystal diamond detectors, which are small solid state devices, radiation hard, tissue equivalent and capable of real time response. In the present work, synthetic CVD single crystal diamond dosimeters (SCD), fabricated at Rome 'Tor Vergata' University Laboratories, have been characterized. The devices consist of a p-type/intrinsic/metal layered structure. They have been analyzed in terms of reproducibility, linearity, depth dose distributions, energy, dose rate and field size dependence by using 6 and 10 MV Bremsstrahlung x-ray beams, produced by a CLINAC DHX Varian accelerator and the gamma irradiation facility CALLIOPE. The gamma Calliope plant is a pool-type irradiation facility equipped with the 60 Co γ-source in a high-volume (7 x 6 x 3.9m 3 ). Maximum dose rate is 9400 Gy/h. The measurements have been compared with a calibrated ionization chamber and a Fricke dosimeter. The SCD's response is shown to be linearly correlated with the ionization chamber output over the whole dose range explored. Reproducibility, energy and dose rate dependency lower than 1% were observed. A depth dose distribution and irradiation field dependence in agreement with those obtained by reference dosimeters within 2% of accuracy were demonstrated as well. The results of this study are very encouraging about the suitability of SCD for clinical dosimetry with photon beams. (author)

  11. Effect of electric and magnetic fields on current-voltage characteristics of a lyotropic liquid crystal

    International Nuclear Information System (INIS)

    Minasyants, M.Kh.; Badalyan, G. G.; Shahinian, A. A.

    1997-01-01

    The effect of electric and magnetic fields on current-voltage characteristics is studied for the lamellar phase in the lyotropic liquid-crystal sodium pentadecylsulfonate (SPDS)-water and lecithin-water systems. It has been found that the current-voltage characteristics of both systems have hysteresis. In the case of ionogenic SPDS, the hysteresis is formed due to ion current caused by the spatial reorientation of domains consisting of parallel lamellar fragments; in the case of lecithin, whose molecules contain dipoles, the hysteresis is formed due to the spatial reorientation of domains caused by the interaction of the resultant dipole moment of the domains with the electric field. It is shown that the introduction into lamellae of cetylpyridine bromide, which has an intrinsic magnetic moment, changes the resultant magnetic moment of domains and, thus, also the hysteresis loop of the current-voltage characteristic. The systems studied show the 'memory' effect with respect to both the electric and magnetic fields. Field-induced processes of domain reorientation were recorded by the method of small-angle x-ray scattering

  12. Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys

    Science.gov (United States)

    Balakrishna, Ananya Renuka; Carter, W. Craig

    2018-04-01

    Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.

  13. Quenching of light flickering in synthetic guanine crystals in aqueous solutions under strong static magnetic fields

    Science.gov (United States)

    Mootha, A.; Takanezawa, Y.; Iwasaka, M.

    2018-05-01

    The present study focused on the vibration of micro crystal particles of guanine due to Brownian motion. The organic particle has a refractive index of 1.83 and caused a flickering of light. To test the possibility of using magnetic properties under wet conditions, changes in the frequency of particle vibration by applying magnetic fields were investigated. At first, we found that the exposure at 5 T inhibited the flickering light intensities and the particle vibration slightly decreased. Next, we carried out a high speed camera measurement of the Brownian motion of the particle with a time resolution of 100 flame per second (fps) with and without magnetic field exposures. It was revealed that the vibrational speed of synthetic particles was enhanced at 500 mT. Detailed analyses of the particle vibration by changing the direction of magnetic fields versus the light source revealed that the Brownian motion's vibrational frequency was entrained under magnetic fields at 500 mT, and an increase in vibration speed to 20Hz was observed. Additional measurements of light scattering fluctuation using photo-detector and analyses on auto-correlation also confirmed this speculation. The studied Brownian vibration may be influenced by the change in mechanical interactions between the vibration particles and surrounding medium. The discovered phenomena can be applied for molecular and biological interactions in future studies.

  14. Terahertz probes of magnetic field induced spin reorientation in YFeO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xian; Jiang, Junjie; Ma, Guohong, E-mail: ghma@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China); Jin, Zuanming [Department of Physics, Shanghai University, Shanghai 200444 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Wang, Dongyang; Tian, Zhen; Han, Jiaguang [Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Cheng, Zhenxiang [Department of Physics, Shanghai University, Shanghai 200444 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522 (Australia)

    2015-03-02

    Using the terahertz time-domain spectroscopy, we demonstrate the spin reorientation of a canted antiferromagnetic YFeO{sub 3} single crystal, by evaluating the temperature and magnetic field dependence of resonant frequency and amplitude for the quasi-ferromagnetic (FM) and quasi-antiferromagnetic modes (AFM), a deeper insight into the dynamics of spin reorientation in rare-earth orthoferrites is established. Due to the absence of 4f-electrons in Y ion, the spin reorientation of Fe sublattices can only be induced by the applied magnetic field, rather than temperature. In agreement with the theoretical predication, the frequency of FM mode decreases with magnetic field. In addition, an obvious step of spin reorientation phase transition occurs with a relatively large applied magnetic field of 4 T. By comparison with the family members of RFeO{sub 3} (R = Y{sup 3+} or rare-earth ions), our results suggest that the chosen of R would tailor the dynamical rotation properties of Fe ions, leading to the designable spin switching in the orthoferrite antiferromagnetic systems.

  15. Field-controllable Spin-Hall Effect of Light in Optical Crystals: A Conoscopic Mueller Matrix Analysis.

    Science.gov (United States)

    Samlan, C T; Viswanathan, Nirmal K

    2018-01-31

    Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.

  16. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    Science.gov (United States)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  17. Cubic metaplectic forms and theta functions

    CERN Document Server

    Proskurin, Nikolai

    1998-01-01

    The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.

  18. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  19. Electric-field gradient characterization at 181Ta impurities in sapphire single crystals

    International Nuclear Information System (INIS)

    Renteria, M.; Darriba, G.N.; Errico, L.A.; Munoz, E.L.; Eversheim, P.D.

    2005-01-01

    We report Perturbed-Angular-Correlation (PAC) experiments on corundum Al 2 O 3 single crystals implanted with 181 Hf/ 181 Ta ions at the ISKP at Bonn and measured at La Plata with high efficiency and time-resolution. The magnitude, asymmetry, and orientation (with respect to the crystalline axes) of the electric-field gradient (EFG) tensor were determined measuring the spin-rotation curves as a function of different orientations of the single crystals relative to the detector system. These results are analyzed in the framework of point-charge model and ab initio Full-Potential Linearized-Augmented Plane Wave calculations, and compared with EFG results coming from PAC experiments with 111 In/ 111 Cd impurities. This combined study enables the determination of lattice relaxations induced by the presence of the impurity and the state of charge of a deep impurity donor level in the band gap of the semiconductor. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Electric-field gradient characterization at {sup 181}Ta impurities in sapphire single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, M.; Darriba, G.N.; Errico, L.A.; Munoz, E.L. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Eversheim, P.D. [Helmholtz-Institut fuer Strahlen-und Kernphysik (ISKP), Universitaet Bonn, Nussallee 14-16, 53115 Bonn (Germany)

    2005-07-01

    We report Perturbed-Angular-Correlation (PAC) experiments on corundum Al{sub 2}O{sub 3} single crystals implanted with {sup 181}Hf/{sup 181}Ta ions at the ISKP at Bonn and measured at La Plata with high efficiency and time-resolution. The magnitude, asymmetry, and orientation (with respect to the crystalline axes) of the electric-field gradient (EFG) tensor were determined measuring the spin-rotation curves as a function of different orientations of the single crystals relative to the detector system. These results are analyzed in the framework of point-charge model and ab initio Full-Potential Linearized-Augmented Plane Wave calculations, and compared with EFG results coming from PAC experiments with {sup 111}In/{sup 111}Cd impurities. This combined study enables the determination of lattice relaxations induced by the presence of the impurity and the state of charge of a deep impurity donor level in the band gap of the semiconductor. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.; Larson, Ben C.; Tischler, Jon Z.; El-Azab, Anter

    2015-01-01

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  2. The influence of magnetic fields on protein crystal growth and quality; Zum Einfluss magnetischer Felder auf das Wachstum und die Qualitaet von Proteinkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Meents, Alke

    2005-08-01

    Magnetic fields can affect protein crystal growth in several ways. In homogeneous magnetic fields molecules and crystallites line up themselves along the magnetic field direction due to their magnetic anisotropy. Inhomogeneous magnetic fields exert a force on diamagnetic and paramagnetic compounds towards regions of lower or higher field strength. This effect can be used to create a microgravity-like environment for diamagnetic proteins and an environment comparable to hypergravity for paramagnetic proteins. Crystallization in homogeneous magnetic fields and a microgravity-like environment are reported to have a positive effect on crystal quality. The aim of this work was to systematically investigate the effect of protein crystallization in magnetic fields on the crystal quality by comparing a large number of crystals grown under identical conditions with- and without magnetic fields. Crystal quality was determined by means of high resolution rocking-curve measurements. Furthermore in certain cases complete diffraction datasets were collected. Any possible influence of magnetic fields on the mosaicity and the quality of the diffraction data was evaluated statistically by applying Wilcoxon-Ranksum tests. To investigate the effect of protein crystallization in homogeneous magnetic fields the diamagnetic proteins Thaumatin, Trypsin, and Lysozyme and paramagnetic Myoglobin were crystallized in magnetic fields of 5 T, 8.8 T, and 15.8 T. The analysis of crystal mosaicity and quality of the diffraction data of the diamagnetic proteins did not reveal a significant influence on the crystal quality. In contrast the crystals of paramagnetic Myoglobin grew up to 14 times larger than the ones in the control experiment. In addition they had a significant lower mosaicity, and diffracted to a higher resolution than ever reported before. Special pole pieces for an existing magnet were designed and build to grow protein crystals in an inhomogeneous magnetic field The experimental

  3. First and second order operator splitting methods for the phase field crystal equation

    International Nuclear Information System (INIS)

    Lee, Hyun Geun; Shin, Jaemin; Lee, June-Yub

    2015-01-01

    In this paper, we present operator splitting methods for solving the phase field crystal equation which is a model for the microstructural evolution of two-phase systems on atomic length and diffusive time scales. A core idea of the methods is to decompose the original equation into linear and nonlinear subequations, in which the linear subequation has a closed-form solution in the Fourier space. We apply a nonlinear Newton-type iterative method to solve the nonlinear subequation at the implicit time level and thus a considerably large time step can be used. By combining these subequations, we achieve the first- and second-order accuracy in time. We present numerical experiments to show the accuracy and efficiency of the proposed methods

  4. An adaptive time-stepping strategy for solving the phase field crystal model

    International Nuclear Information System (INIS)

    Zhang, Zhengru; Ma, Yuan; Qiao, Zhonghua

    2013-01-01

    In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. The numerical experiments demonstrate that the CPU time is significantly saved for long time simulations

  5. Inductive crystal field control in layered metal oxides with correlated electrons

    International Nuclear Information System (INIS)

    Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M.; Nelson-Cheeseman, B. B.; Bhattacharya, A.

    2014-01-01

    We show that the NiO 6 crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO 4 Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO] 1+ and neutral [AO] 0 planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO 4 and LaBaNiO 4 with distortions favoring enhanced Ni e g orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides

  6. Inductive crystal field control in layered metal oxides with correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M., E-mail: jrondinelli@nortwestern.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Nelson-Cheeseman, B. B. [School of Engineering, University of St. Thomas, St. Paul, Minnesota 55105 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bhattacharya, A. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-01

    We show that the NiO{sub 6} crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO{sub 4} Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO]{sup 1+} and neutral [AO]{sup 0} planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO{sub 4} and LaBaNiO{sub 4} with distortions favoring enhanced Ni e{sub g} orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides.

  7. Crystal field effect in light actinide dioxides and oxychalcogenides - a unified phenomenological description

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. E-mail: gajek@int.pan.wroc.pl

    2004-05-01

    The electronic properties of the actinide ions in the series of semi-conducting, antiferromagnetic compounds: dioxides, AnO{sub 2} and oxychalcogenides, AnOY, where An=U, Np and Y=S, Se, are re-examined from the point of view of the consistency of the crystal field (CF) model. The discussion is based on the supposition that the effective metal-ligand interaction solely determines the net CF effect in non-metallic compounds. The main question we address here is, whether a reliable, consistent description of the CF effect in terms of the intrinsic parameters can be achieved for this particular family of compounds. Encouraging calculations reported previously for the AnO{sub 2} and UOY series serve as a reference data in the present estimation of electronic structure parameters for neptunium oxychalcogenides.

  8. Crystal field effect in light actinide dioxides and oxychalcogenides-a unified phenomenological description

    Science.gov (United States)

    Gajek, Z.

    2004-05-01

    The electronic properties of the actinide ions in the series of semi-conducting, antiferromagnetic compounds: dioxides, AnO2 and oxychalcogenides, AnOY, where An=U, Np and Y=S, Se, are re-examined from the point of view of the consistency of the crystal field (CF) model. The discussion is based on the supposition that the effective metal-ligand interaction solely determines the net CF effect in non-metallic compounds. The main question we address here is, whether a reliable, consistent description of the CF effect in terms of the intrinsic parameters can be achieved for this particular family of compounds. Encouraging calculations reported previously for the AnO2 and UOY series serve as a reference data in the present estimation of electronic structure parameters for neptunium oxychalcogenides.

  9. Crystal field effect in light actinide dioxides and oxychalcogenides - a unified phenomenological description

    International Nuclear Information System (INIS)

    Gajek, Z.

    2004-01-01

    The electronic properties of the actinide ions in the series of semi-conducting, antiferromagnetic compounds: dioxides, AnO 2 and oxychalcogenides, AnOY, where An=U, Np and Y=S, Se, are re-examined from the point of view of the consistency of the crystal field (CF) model. The discussion is based on the supposition that the effective metal-ligand interaction solely determines the net CF effect in non-metallic compounds. The main question we address here is, whether a reliable, consistent description of the CF effect in terms of the intrinsic parameters can be achieved for this particular family of compounds. Encouraging calculations reported previously for the AnO 2 and UOY series serve as a reference data in the present estimation of electronic structure parameters for neptunium oxychalcogenides

  10. Quasiparticle excitations in valence-fluctuation materials: effects of band structure and crystal fields

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1985-01-01

    Evidence is now quite strong that the elementary hybridization model is the correct way to understand the lattice-coherent Fermi liquid regime at very low temperatures. Many-body theory leads to significant renormalizations of the input parameters, and many of the band-theoretic channels for hybridization are suppressed by the combined effects of Hund's-rule coupling, crystal-field splitting, and the f-f Coulomb repulsion U. Some exploratory calculations based on this picture are described, and some inferences are drawn about the band structures of several heavy-fermion materials. These inferences can and should be tested by suitably modified band-theoretic calculations. We find evidence for a significant Baber-scattering contribution in the very-low-temperature resistivity. A new mechanism is proposed for crossover from the coherent Fermi-liquid regime to the incoherent dense-Kondo regime. 28 refs

  11. Vectorial near-field imaging of a GaN based photonic crystal cavity

    International Nuclear Information System (INIS)

    La China, F.; Intonti, F.; Caselli, N.; Lotti, F.; Vinattieri, A.; Gurioli, M.; Vico Triviño, N.; Carlin, J.-F.; Butté, R.; Grandjean, N.

    2015-01-01

    We report a full optical deep sub-wavelength imaging of the vectorial components of the electric local density of states for the confined modes of a modified GaN L3 photonic crystal nanocavity. The mode mapping is obtained with a scanning near-field optical microscope operating in a resonant forward scattering configuration, allowing the vectorial characterization of optical passive samples. The optical modes of the investigated cavity emerge as Fano resonances and can be probed without the need of embedded light emitters or evanescent light coupling into the nanocavity. The experimental maps, independently measured in the two in-plane polarizations, turn out to be in excellent agreement with numerical predictions

  12. Crystal field symmetry and magnetic interactions in rare earth-silver amorphous alloys

    International Nuclear Information System (INIS)

    Pappa, Catherine.

    1979-01-01

    A study has been made of the following rare earth based amorphous alloys: Ndsub(x)Agsub(100-x), Prsub(x)Agsub(100-x), Gdsub(x)Agsub(100-x), Tlsub(x)Agsub(100-x). In rare earth based amorphous alloys, the symmetrical distribution of the crystal field is very wide and hence not very sensitive to the content of the alloys. The existence of preponderant negative magnetic interactions leads to an upset magnetic order, the magnetization of a small volume not being nil. The magnetic behaviour of alloys with a small concentration of rare earths is governed by the existence of clusters of statistical origin, within which a rare earth ion has at least one other rare earth ion in the position of first neighbour. The presence of a high anisotropy at low temperatures make the magnetic interactions between clusters inoperative [fr

  13. Travelling-wave amplitudes as solutions of the phase-field crystal equation

    Science.gov (United States)

    Nizovtseva, I. G.; Galenko, P. K.

    2018-01-01

    The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the method (Malfliet & Hereman 1996 Phys. Scr. 15, 563-568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput. 154, 713-723 (doi:10.1016/S0096-3003(03)00745-8)). The general solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D 308, 1-10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  14. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    Science.gov (United States)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  15. Nanomechanical control of optical field and quality factor in photonic crystal structures

    Science.gov (United States)

    Cotrufo, Michele; Midolo, Leonardo; Zobenica, Žarko; Petruzzella, Maurangelo; van Otten, Frank W. M.; Fiore, Andrea

    2018-03-01

    Actively controlling the properties of localized optical modes is crucial for cavity quantum electrodynamics experiments. While several methods to tune the optical frequency have been demonstrated, the possibility of controlling the shape of the modes has scarcely been investigated. Yet an active manipulation of the mode pattern would allow direct control of the mode volume and the quality factor and therefore of the radiative processes. In this work, we propose and demonstrate a nano-optoelectromechanical device in which a mechanical displacement affects the spatial pattern of the electromagnetic field. The device is based on a double-membrane photonic crystal waveguide which, upon bending, creates a spatial modulation of the effective refractive index, resulting in an effective potential well or antiwell for the optical modes. The change in the field pattern drastically affects the optical losses: large modulations of the quality factors and dissipative coupling rates larger than 1 GHz/nm are predicted by calculations and confirmed by experiments. This concept opens new avenues in solid-state cavity quantum electrodynamics in which the field, instead of the frequency, is coupled to the mechanical motion.

  16. Elastic constants of stressed and unstressed materials in the phase-field crystal model

    Science.gov (United States)

    Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong

    2018-04-01

    A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.

  17. Liquid crystal designs for high-contrast field sequential color liquid crystal on silicon (LCoS) microdisplays (Invited Paper)

    Science.gov (United States)

    Anderson, James; Chen, Cheng; Bos, Philip J.

    2005-04-01

    Single or dual panel microdisplay systems are becoming more popular in the marketplace. Consequently, Liquid Crystal on Silicon (LCoS) microdisplays are constantly being pushed to achieve faster switching times as well as higher contrast, while becoming simpler and allowing simpler optics engine design. Currently, most products use a Twisted Nematic (TN) mode with a retardation film. The most promising solution in research now is the Vertically Aligned Nematic (VAN) mode, which does not require a retarder.

  18. Pressure-induced effects on the spectroscopic properties of Nd{sup 3+} in MgO:LiNbO{sub 3} single crystal. A crystal field approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz Santiuste, J.E., E-mail: jems@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28913 Leganés, Madrid (Spain); MALTA Consolider Team (Spain); Lavín, V.; Rodríguez-Mendoza, U.R. [MALTA Consolider Team (Spain); Departamento de Física, INM and IUdEA, Universidad de La Laguna, Apdo. 456. E-38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Tardio, M.M.; Ramírez-Jiménez, R. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28913 Leganés, Madrid (Spain)

    2017-04-15

    The effects of pressure on the Nd{sup 3+}-doped MgO:LiNbO{sub 3} single crystal have been studied by luminescence spectroscopy at low temperature and high pressures from ambient conditions up to 33 GPa. Specifically, the pressure-induced evolution of the emission spectra, corresponding to the {sup 4}F{sub 3/2}→{sup 4}I{sub 9/2},{sup 4}I{sub 11/2} transitions, and the excitation spectra, corresponding to the {sup 4}I{sub 9/2}→{sup 4}F{sub 5/2}+{sup 2}H{sub 9/2}, and {sup 4}I{sub 9/2}→{sup 4}F{sub 7/2}+{sup 4}S{sub 3/2} transitions, show a gradual red-shift that follows a linear pressure dependence and a decrease in the intensity of the spectra with increasing pressure. The initial effect of increasing pressure on the MgO:LiNbO{sub 3} crystal is the modification of the relative amount of the several centers in the sample. At pressures around 20 GPa the characteristic multicenter Nd{sup 3+} structure eventually disappears indicating that all the centers have very similar environments near this pressure. At higher pressures, observed changes seem to have a different origin. The evolution of Nd{sup 3+} luminescence is studied in the frame of crystal-field theory in order to evaluate its capability of monitoring the pressure-induced structural changes. Crystal-field analysis, under approximated C{sub 3v} symmetry, shows a smooth increase of the overall crystal-field strength on the luminescent ion, which can be related to the volume reduction as pressure increases. Crystal-field parameters also show a general monotonic behavior with pressure that indicates a structural modification of the local structure that, maintaining the trigonal symmetry around the impurity ion, evolves towards a lower axial character. No evidences of a phase transition have been observed in the studied pressure range.

  19. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua; Zhao, Lijuan

    2016-01-01

    Tm 3+ ions doped β-PbF 2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm 3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O h to D 4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm 3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field

  20. Spectral intensities in cubic systems. I. Progressions based upon parity vibrational modes

    International Nuclear Information System (INIS)

    Acevedo, R.; Vasquez, S.O.; Meruane, T.; Poblete, V.; Pozo, J.

    1998-01-01

    The well-resolved emission and absorption spectra of centrosymmetric coordination compounds of the transition metal ions have been used widely to provide the experimental data against which to test theoretical models of vibronic intensities. With reference to the 2 E g → 4 A 2g luminescence transition, at a perfect octahedral site in Cs 2 SiF 6 , over than one hundred vibronic lines are observed with line widths of a few wavenumber spread over some 3000 cm -1 . This paper reports a through examination of both the electronic and vibrational factors, which influences the observed vibronic intensities of the various assigned and identified lines in the spectra of the MnF 6 2- complex ion in the Cs 2 SiF 6 cubic lattice. The origin and nature of higher order vibronic interactions are analysed on the basis of a symmetrized vibronic crystal field-ligand polarization model. (Author)

  1. High pressure studies of configuration interaction and crystal field effects in Sm2+

    International Nuclear Information System (INIS)

    Shen, Y.; Bray, K.L.

    1998-01-01

    Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of

  2. Spectra and energy levels of Eu{sup 3+} in cubic phase Gd{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Eric R. [Kratos Defense and Security Solutions, Inc., 5030 Bradford Dr., Huntsville, AL 35805 (United States); Gruber, John B. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249-0697 (United States); Wellenius, Patrick; Muth, John F. [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States); Everitt, Henry O. [Department of Physics, Duke University, Durham, NC 27708 (United States); Army Aviation and Missile RD and E Center, Redstone Arsenal, AL 35898 (United States)

    2010-07-15

    In pulsed laser deposition of the sesquioxide semiconductor Gd{sub 2}O{sub 3}, adjusting the chamber oxygen pressure controls the crystalline structure of the host. This technique was used to deposit thin films of nominally 1.6% by weight europium-doped, cubic phase Gd{sub 2}O{sub 3} using 50 mTorr of oxygen. Structural measurements using high-resolution transmission electron microscopy and selected area electron diffraction confirm the films were polycrystalline, cubic phase Eu:Gd{sub 2}O{sub 3}. The spectroscopic assignment of emission lines to specific radiative transitions within the trivalent Eu ion is confirmed by theoretical analysis of the appropriate crystal field Hamiltonian. Detailed crystal-field splittings are presented for the {sup 5}D{sub J=0-2} and {sup 7}F{sub J=0-5} multiplet manifolds of Eu{sup 3+} in this host material. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Macromolecular crystallization in microgravity generated by a superconducting magnet.

    Science.gov (United States)

    Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y

    2006-09-01

    About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.

  4. Spin-glass polyamorphism induced by a magnetic field in LaMnO3 single crystal

    Science.gov (United States)

    Eremenko, V. V.; Sirenko, V. A.; Baran, A.; Čižmár, E.; Feher, A.

    2018-05-01

    We present experimental evidence of field-driven transition in spin-glass state, similar to pressure-induced transition between amorphous phases in structural and metallic glasses, attributed to the polyamorphism phenomena. Cusp in temperature dependences of ac magnetic susceptibility of weakly disordered LaMnO3 single crystal is registered below the temperature of magnetic ordering. Frequency dependence of the cusp temperature proves its spin-glass origin. The transition induced by a magnetic field in spin-glass state, is manifested by peculiarity in dependence of cusp temperature on applied magnetic field. Field dependent maximum of heat capacity is observed in the same magnetic field and temperature range.

  5. Rapid hydrothermal route to synthesize cubic-phase gadolinium oxide nanorods

    International Nuclear Information System (INIS)

    Hazarika, Samiran; Paul, Nibedita; Mohanta, Dambarudhar

    2014-01-01

    An inexpensive fabrication route and growth mechanism is being reported for obtaining quality gadolinium oxide ( Gd 2 O 3 ) nanoscale rods. The elongated nanoscale systems, as produced via a hydrothermal process, were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), optical absorption spectroscopy, photoluminescence (PL) spectroscopy, Raman spectroscopy and magnetic hysteresis measurements. XRD patterns of the nanorods, as-prepared from independent precursors of different pH, depict a cubic crystal phase and an average crystallite size of 5-6.5 nm. As revealed from HRTEM micrographs, diameter of the nanorods prepared at pH = 13.3 (∼7 nm) was much smaller than the rods prepared at pH = 10.8 (∼19 nm). However, the aspect ratio was more than double in the former case than the latter case. PL response was found to be dominated by defect mediated emissions, whereas Raman spectrum of a given specimen (pH = 10.8) has revealed characteristic F g + A g modes of cubic phase of Gd 2 O 3 nanorods, apart from other independent modes. Furthermore, M ∼ H plot of the nanorod system (pH = 10.8) exhibited slight departure from the ideal superparamagnetic behaviour, with low remanence and coercive field values. The exploitation of one-dimensional Gd 2 O 3 nanorods have immense potential in the production of advanced contrast agents, smart drives and also in making novel ferrofluids of technological relevance. (author)

  6. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  7. All-electron ab initio calculations of YBa2Cu3O7 with self-consistence crystal field

    Institute of Scientific and Technical Information of China (English)

    刘洪霖; 陈念贻

    1995-01-01

    The quantum chemical calculations of cluster YBa2Cu3O7 considering all electrons have been per-formed by using the ab initio HF method with self-consistence crystal field.A Hartree-Fork surface potentialis proposed to make an asymmetric duster model possess a relatively symmetric potential field and to obtaina relatively symmetric electronic structure,electronic distributions,frontier orbitals,and bond order,etc.Thesuggestions that there exists a covalent bonding complex,[CuO2-O-CuO-O-Cu2]6,8-,in the cell unit ofthe crystal,and the cell units are connected with each other by ionic bonds along the c direction of the crys-tal lattice are offered based on the chemical bonding characteristics from the calculated results.The importantcontribution of the apical oxygen to superconductivities is emphasized as well.

  8. Crystal orientation of monoclinic β-Ga2O3 thin films formed on cubic MgO substrates with a γ-Ga2O3 interfacial layer

    Science.gov (United States)

    Nakagomi, Shinji; Kokubun, Yoshihiro

    2017-12-01

    The crystal orientation relationship between β-Ga2O3 and MgO in β-Ga2O3 thin films prepared on (1 0 0), (1 1 1), and (1 1 0) MgO substrates was investigated by X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The γ-Ga2O3 interfacial layer was present between β-Ga2O3 and MgO acted as a buffer to connect β-Ga2O3 on MgO. The following conditions were satisfied under each case: β-Ga2O3 (1 0 0)||MgO (1 0 0) and β-Ga2O3 [0 0 1]||MgO 〈0 1 1〉 for the formation of β-Ga2O3 on (1 0 0) MgO, and β-Ga2O3 (2 bar 0 1)||MgO (1 1 1) for the formation of β-Ga2O3 on (1 1 1) MgO, as well as each condition of β-Ga2O3 [0 1 0] (1 0 0)||MgO [ 1 bar 1 0 ] (0 0 1), β-Ga2O3 [0 1 0] (1 0 0)||MgO [ 0 1 bar 1 ] (1 0 0), and β-Ga2O3 [0 1 0] (1 0 0)||MgO [ 1 0 1 bar ] (0 1 0). β-Ga2O3 (1 bar 0 2)||MgO(1 1 0) and β-Ga2O3 [0 1 0] ⊥ MgO [0 0 1] for β-Ga2O3 formed on (1 1 0) MgO. The β-Ga2O3 formed on (1 1 1) MgO at 800 °C exhibited a threefold structure. The β-Ga2O3 formed on (1 1 0) MgO had a twofold structure but different by 90° from the result reported previously.

  9. Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars

    Science.gov (United States)

    Gooding, James L.

    1988-01-01

    The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.

  10. Changing the cubic ferrimagnetic domain structure in temperature region of spin flip transition

    International Nuclear Information System (INIS)

    Djuraev, D.R.; Niyazov, L.N.; Saidov, K.S.; Sokolov, B.Yu.

    2011-01-01

    The transformation of cubic ferrimagnetic Tb 0.2 Y 2.8 Fe 5 O 12 domain structure has been studied by magneto optic method in the temperature region of spontaneous spin flip phase transition (SPT). It has been found that SPT occurs in a finite temperature interval where the coexistence of low- and high- temperature magnetic phase domains has observed. A character of domain structure evolution in temperature region of spin flip essentially depends on the presence of mechanical stresses in crystal. Interpretation of experimental results has been carried out within the framework of SPT theory for a cubic crystal. (authors)

  11. Spectral intensities in cubic systems. II. The MoCl63- system in cubic elpasolite crystals

    International Nuclear Information System (INIS)

    Acevedo, R.; Meruane, T.; Poblete, V.

    1998-01-01

    The visible and near infrared luminescence spectra of MoCl 6 3- in Cs 2 NaMCl 6 (M=Sc, Y, In) and MoBr 6 3- in Cs 2 NaYBr 6 have been reported between 15000 cm -1 and 3000 cm -1 at liquid helium temperatures. It has been observed that each electronic transition shows an extensive and rich vibronic structure, which can be analysed to yield the vibrational frequencies of the MoX 6 3- ion in each electronic state. A through analysis of the spectra for these systems, show that the vibrational frequencies associated with each of the electronic transition is almost identical. This is an evidence of a weak or rather negligible Jahn-Teller distortions. The spectra though are strongly influenced by resonant interactions among the MoX 6 3- ion and the internal and lattice modes of the host lattices and there is also a noticeable variation of the relative vibronic distributions of parity forbidden transitions assisted by the odd parity normal modes of vibrations. This present work deals with the most likely intensity mechanisms and a strategy is put forward to carry out explicit calculations for both, the electronic and vibrational factors of transitions of the kind Γ 1 ↔ Γ 2 + v k for k=3, 4, and 6. Extension of this work to include the ion-phonon interaction is currently in progress in our laboratory. (Author)

  12. On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface

    Science.gov (United States)

    Schmitt, Regina; Kuhn, Charlotte; Müller, Ralf

    2017-07-01

    A continuum phase field model for martensitic transformations is introduced, including crystal plasticity with different slip systems for the different phases. In a 2D setting, the transformation-induced eigenstrain is taken into account for two martensitic orientation variants. With aid of the model, the phase transition and its dependence on the volume change, crystal plastic material behavior, and the inheritance of plastic deformations from austenite to martensite are studied in detail. The numerical setup is motivated by the process of cryogenic turning. The resulting microstructure qualitatively coincides with an experimentally obtained martensite structure. For the numerical calculations, finite elements together with global and local implicit time integration scheme are employed.

  13. Topics in Cubic Special Geometry

    CERN Document Server

    Bellucci, Stefano; Roychowdhury, Raju

    2011-01-01

    We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...

  14. Collective classical and quantum fields in plasmas, superconductors, superfluid $^{3}$He, and liquid crystals

    CERN Document Server

    Hagen Kleinert

    2018-01-01

    This is an introductory book dealing with collective phenomena in many-body systems. A gas of bosons or fermions can show oscillations of various types of density. These are described by different combinations of field variables. Especially delicate is the competition of these variables. In superfluid 3He, for example, the atoms can be attracted to each other by molecular forces, whereas they are repelled from each other at short distance due to a hardcore repulsion. The attraction gives rise to Cooper pairs, and the repulsion is overcome by paramagnon oscillations. The combination is what finally led to the discovery of superfluidity in 3He. In general, the competition between various channels can most efficiently be studied by means of a classical version of the Hubbard-Stratonovich transformation. A gas of electrons is controlled by the interplay of plasma oscillations and pair formation. In a system of rod- or disc-like molecules, liquid crystals are observed with directional orientations that behave in ...

  15. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    International Nuclear Information System (INIS)

    Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi; Lee, Sooyong; Nam, Sungho; Kim, Youngkyoo; Kim, Hwajeong; Lee, Joon-Hyung; Park, Soo-Young; Kang, Inn-Kyu

    2014-01-01

    We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4 ′ -pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm 2 /Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (V D ) and gate (V G ) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of V D and V G . The best voltage combination was V D = −0.2 V and V G = −1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors

  16. Pressure dependence of crystal field splitting in Pr pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.; Ginley, D.S.

    1978-01-01

    We have measured the pressure dependence of the Pr nuclear magnetic resonance shift in PrN, PrP, PrSb, PrAs, PrS and PrSe. The shifts in all the pnictides increase while in the chalcogenides the shifts decrease with pressure. The rare earth frequency shift is inversely proportional to the crystal field splitting in the context of the point charge model (PCM) so a decrease would be expected for all of these materials at a rate of 5/3 the volume compressibility. Our values for the pnictides tend to be considerably larger than the PCM value as well as the wrong sign. The chalcogenide values are much nearer in magnitude and are of the right sign for the PCM. Contrary to the report of Guertin et al. we see no anomaly in the pressure dependence of the susceptibility of PrS. The fact that PrN which is reported to be non-metallic also shows the wrong sign for the PCM presents difficulties for various conduction electron explanations for this unexpected behavior of the pnictides

  17. Crystal field splitting in CePt{sub 5}. Magnetic analysis and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zinner, Martin; Praetorius, Christian; Fauth, Kai [Universitaet Wuerzburg, Experimentelle Physik II, 97074 Wuerzburg (Germany); Halbig, Benedikt; Bass, Utz; Geurts, Jean [Universitaet Wuerzburg, Experimentelle Physik III, 97074 Wuerzburg (Germany)

    2015-07-01

    The crystal electric field (CF) is an essential factor determining the paramagnetic response of rare earth ions in solids. In Ce intermetallics, Kondo screening can additionally modify the magnetic behavior and it may then prove difficult to disentangle the two. In the hexagonal surface intermetallic CePt{sub 5}, grown on Pt(111), we find two distinct sets of CF parameters which both account rather well for the anisotropic magnetic susceptibility and its temperature dependence. Different strengths of Kondo screening have to be assumed in the two cases in order to obtain quantitative agreement with experimental results. Discriminating between the two solutions requires an independent determination of the CF splitting. We shall report on our attempts to obtain this information from electronic Raman scattering. Raman signal is indeed even obtained from CePt{sub 5} specimens with a thickness of just two unit cells. We shall discuss the identification of electronic Raman losses by comparison with LaPt{sub 5} as well as the dependence of the Raman features on temperature and thickness of the intermetallic film.

  18. Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+-OI2- defect center in KTaO3 crystal

    International Nuclear Information System (INIS)

    Gnutek, P; Rudowicz, C; Yang, Z Y

    2009-01-01

    The local structure and the spin Hamiltonian (SH) parameters, including the zero-field-splitting (ZFS) parameters D and (a+2F/3), and the Zeeman g factors g || and g perpendicular , are theoretically investigated for the Fe K 3+ -O I 2- center in KTaO 3 crystal. The microscopic SH (MSH) parameters are modeled within the framework of the crystal field (CF) theory employing the CF analysis (CFA) package, which also incorporates the MSH modules. Our approach takes into account the spin-orbit interaction as well as the spin-spin and spin-other-orbit interactions omitted in previous studies. The superposition model (SPM) calculations are carried out to provide input CF parameters for the CFA/MSH package. The combined SPM-CFA/MSH approach is used to consider various structural models for the Fe K 3+ -O I 2- defect center in KTaO 3 . This modeling reveals that the off-center displacement of the Fe 3+ ions, Δ 1 (Fe 3+ ), combined with an inward relaxation of the nearest oxygen ligands, Δ 2 (O 2- ), and the existence of the interstitial oxygen O I 2- give rise to a strong tetragonal crystal field. This finding may explain the large ZFS experimentally observed for the Fe K 3+ -O I 2- center in KTaO 3 . Matching the theoretical MSH predictions with the available structural data as well as electron magnetic resonance (EMR) and optical spectroscopy data enables predicting reasonable ranges of values of Δ 1 (Fe 3+ ) and Δ 2 (O 2- ) as well as the possible location of O I 2- ligands around Fe 3+ ions in KTaO 3 . The defect structure model obtained using the SPM-CFA/MSH approach reproduces very well the ranges of the experimental SH parameters D, g || and g perpendicular and importantly yields not only the correct magnitude of D but also the sign, unlike previous studies. More reliable predictions may be achieved when experimental data on (a+2F/3) and/or crystal field energy levels become available. Comparison of our results with those arising from alternative models existing

  19. Interband coherence response to electric fields in crystals: Berry-phase contributions and disorder effects

    Science.gov (United States)

    Culcer, Dimitrie; Sekine, Akihiko; MacDonald, Allan H.

    2017-07-01

    by scattering that is sensitive to the presence of the Fermi surface. To demonstrate the rich physics captured by our theory, we explicitly solve for some electric-field response properties of simple model systems that are known to be dominated by interband coherence contributions. At the same time we discuss an extensive list of complicated problems that cannot be solved analytically. Our goal is to stimulate progress in computational transport theory for electrons in crystals.

  20. Cubical local partial orders on cubically subdivided spaces - existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes, such ...... that the underlying geometry of an HDA may be quite complicated....

  1. Cubical local partial orders on cubically subdivided spaces - Existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    2006-01-01

    The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...... that the underlying geometry of an HDA may be quite complicated....

  2. Thermal characterization, crystal field analysis and in-band pumped laser performance of Er doped NaY(WO(4(2 disordered laser crystals.

    Directory of Open Access Journals (Sweden)

    María Dolores Serrano

    Full Text Available Undoped and Er-doped NaY(WO42 disordered single crystals have been grown by the Czochralski technique. The specific heat and thermal conductivity (κ of these crystals have been characterized from T = 4 K to 700 K and 360 K, respectively. It is shown that κ exhibits anisotropy characteristic of single crystals as well as a κ(T behavior observed in glasses, with a saturation mean free phonon path of 3.6 Å and 4.5 Å for propagation along a and c crystal axes, respectively. The relative energy positions and irreducible representations of Stark Er(3+ levels up to (4G(7/2 multiplet have been determined by the combination of experimental low (<10 K temperature optical absorption and photoluminescence measurements and simulations with a single-electron Hamiltonian including both free-ion and crystal field interactions. Absorption, emission and gain cross sections of the (4I(13/2↔(4I(15/2 laser related transition have been determined at 77 K. The (4I(13/2 Er(3+ lifetime (τ was measured in the temperature range of 77-300 K, and was found to change from τ (77K ≈ 4.5 ms to τ (300K ≈ 3.5 ms. Laser operation is demonstrated at 77 K and 300 K by resonantly pumping the (4I(13/2 multiplet at λ≈1500 nm with a broadband (FWHM≈20 nm diode laser source perfectly matching the 77 K crystal (4I(15/2 → (4I(13/2 absorption profile. At 77 K as much as 5.5 W of output power were obtained in π-polarized configuration with a slope efficiency versus absorbed pump power of 57%, the free running laser wavelength in air was λ≈1611 nm with the laser output bandwidth of 3.5 nm. The laser emission was tunable over 30.7 nm, from 1590.7 nm to 1621.4 nm, for the same π-polarized configuration.

  3. Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects

    Science.gov (United States)

    Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.

    1999-04-01

    We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.

  4. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    Science.gov (United States)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  5. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duo, E-mail: zhangduo10@gmail.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Li, Jiahua, E-mail: huajia_li@163.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Chunling; Yang, Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-05-21

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  6. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-01-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  7. Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave.

    Science.gov (United States)

    Oh, Seung-Won; Park, Jun-Hee; Lee, Ji-Hoon; Yoon, Tae-Hoon

    2015-09-07

    Recently, low-frequency driving of liquid crystal display (LCD) panels to minimize power consumption has drawn much attention. In the case in which an LCD panel is driven by a fringe-field at a low frequency, the image flickering phenomenon occurs when the sign of the applied electric field is reversed. We investigated image flickering induced by the flexoelectric effect in a fringe-field switching (FFS) liquid crystal cell in terms of the transmittance difference between frames and the ripple phenomenon. Experimental results show that image flicker due to transmittance difference can be eliminated completely and that the ripple phenomena can be reduced significantly by applying a bipolar voltage wave to the FFS cell.

  8. Effect of elastic deformation and the magnetic field on the electrical conductivity of p-Si crystals

    Science.gov (United States)

    Lys, R.; Pavlyk, B.; Didyk, R.; Shykorjak, J.; Karbovnyk, I.

    2018-03-01

    It is shown that at a deformation rate of 0.41 kg/min, the characteristic feature of the dependence of the surface resistance of the p-Si sample on the magnitude of its elastic deformation (R(σ)) is the reduction of the resistance during compression and unclamping. With the increase in the number of "compression-unclamping" cycles, the difference between the positions of the compression and unclamping curves decreases. The transformation of two types of magnetically sensitive defects occurs under the impact of a magnetic field on p-Si crystals. The defects are interrelated with two factors that cause the mutually opposite influence on the conductivity of the crystal. The first factor is that the action of the magnetic field decreases the activation energy of the dislocation holders, which leads to an increase in the electrical conductivity of the sample. The second factor is that due to the decay of molecules of oxygen-containing impurities in the magnetic field, the stable chemisorption bonds appear in the crystal that leads to a decrease in its conductivity. If the sample stays in the magnetic field for a long time, the one or the other mechanism predominates, causing a slow growth or decrease in resistance around a certain (averaged) value. Moreover, the frequency of such changes is greater in the deformed sample. The value of the surface resistance of p-Si samples does not change for a long time without the influence of the magnetic field.

  9. New tetragonal derivatives of cubic NaZn13-type structure: RNi6Si6 compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    International Nuclear Information System (INIS)

    Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A.V.; Knotko, A.V.; Garshev, A.V.; Yapaskurt, V.O.; Isnard, O.

    2014-01-01

    Novel RNi 6 Si 6 compounds adopt the new CeNi 6 Si 6 -type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi 6 Si 6 -type structure for R=Y, Sm, Gd–Yb (tP52, space group P4 ¯ b2N 117) that are tetragonal derivative of NaZn 13 -type structure, like LaCo 9 Si 4 -type. The CeNi 6 Si 6 , GdNi 6 Si 6 , TbNi 6 Si 6 , DyNi 6 Si 6 and HoNi 6 Si 6 compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi 6 Si 6 does not follow Curie–Weiss law. The DyNi 6 Si 6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ B /f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi 6 Si 6 with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni 6 Si 6 compounds adopt the new CeNi 6 Si 6 -type structure and (Y, Sm, Gd–Yb) adopt the new YNi 6 Si 6 -type structure that are tetragonal derivative of NaZn 13 -type structure, like LaCo 9 Si 4 -type. The CeNi 6 Si 6 , GdNi 6 Si 6 , TbNi 6 Si 6 , DyNi 6 Si 6 and HoNi 6 Si 6 compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi 6 Si 6 with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni 6 Si 6 compounds adopt the new CeNi 6 Si 6 -type structure. • The new (Y, Sm, Gd–Yb)Ni 6 Si 6 compounds adopt the new YNi 6 Si 6 -type structure. • TbNi 6 Si 6 has square modulated c-collinear antiferromagnetic ordering below ∼10 K

  10. New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub 6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    Energy Technology Data Exchange (ETDEWEB)

    Pani, M.; Manfrinetti, P.; Provino, A. [INFM and Dipartimento di Chimica e Chimica Industriale, Universita‘ di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1 (Canada); Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V.; Garshev, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Isnard, O. [Université Grenoble Alpes, Inst NEEL, BP166, F-38042 Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, F-38042 Grenoble (France)

    2014-02-15

    Novel RNi{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi{sub 6}Si{sub 6}-type structure for R=Y, Sm, Gd–Yb (tP52, space group P4{sup ¯}b2N 117) that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi{sub 6}Si{sub 6} does not follow Curie–Weiss law. The DyNi{sub 6}Si{sub 6} shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ{sub B}/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure and (Y, Sm, Gd–Yb) adopt the new YNi{sub 6}Si{sub 6}-type structure that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure. • The new (Y, Sm, Gd–Yb)Ni{sub 6}Si{sub 6} compounds adopt the new YNi{sub 6}Si{sub 6}-type structure. • TbNi{sub 6}Si

  11. Measurement of Coherent Emission and Linear Polarization of Photons by Electrons in the Strong Fields of Aligned Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2004-01-01

    We present new results regarding the features of high energy photon emission by an electron beam of 178 GeV penetrating a 1.5 cm thick single Si crystal aligned at the Strings-Of-Strings (SOS) orientation. This concerns a special case of coherent bremsstrahlung where the electron interacts with the strong fields of successive atomic strings in a plane and for which the largest enhancement of the highest energy photons is expected. The polarization of the resulting photon beam was measured by the asymmetry of electron-positron pair production in an aligned diamond crystal analyzer. By the selection of a single pair the energy and the polarization of individual photons could be measured in an the environment of multiple photons produced in the radiator crystal. Photons in the high energy region show less than 20% linear polarization at the 90% confidence level.

  12. Dielectric properties of layered FeGaInS{sub 4} single crystals in an alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mammadov, F. M. [Azerbaijan National Academy of Sciences, Nagiyev Institute of Catalysis and Inorganic Chemistry (Azerbaijan); Niftiyev, N. N., E-mail: namiq7@bk.ru [Azerbaijan State Pedagogical University (Azerbaijan)

    2016-09-15

    The results of investigations of the frequency and temperature dependences of dielectric losses and the imaginary part of the dielectric permittivity in FeGaInS{sub 4} single crystals are presented. Their experimental values are determined. It is established that the loss tangent and the imaginary part of the permittivity of FeGaInS{sub 4} single crystals in a field with frequencies of 10{sup 4}–10{sup 6} Hz decrease inversely proportional to the frequency (tanδ ~ 1/ω), and the conductivity is characterized by the band–hopping mechanism. For FeGaInS{sub 4}, the relaxation time is calculated, and it is established that there is a mechanism of electron polarization caused by thermal motion in this crystal.

  13. Full 3D FDTD analysis of Electromagnetic Field in Photonic Crystal VCSEL

    International Nuclear Information System (INIS)

    Liu Fa; Xu Chen; Xie Yiyang; Zhao Zhenbo; Zhou Kang; Wang Baoqiang; Liu Yingming; Shen Guangdi

    2011-01-01

    The effect of etch damage to the mode characteristics of photonic crystal vertical cavity surface emitting lasers was simulated in this paper. The devices simulated in this paper are 850-nm GaAs-based VCSELs with photonic crystal. And the devices were simulated by using finite difference time domain (FDTD) method. Limited to the computer resource, the top DBR was simulated only, and the traverse size was smaller than the real size. In order to highlight the impact of the etch damage, several kinds of light sources and photonic crystal structures were simulated separately, and each situation is calculated in the condition of ideal photonic crystal and photonic crystal with etch damage respectively. All parameters of device and light feature are referred to the real condition.

  14. Full 3D FDTD analysis of Electromagnetic Field in Photonic Crystal VCSEL

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fa; Xu Chen; Xie Yiyang; Zhao Zhenbo; Zhou Kang; Wang Baoqiang; Liu Yingming; Shen Guangdi, E-mail: liufa20719@126.com [Key Laboratory of Opto-electronics Technology (Beijing University of Technology), Ministry of Education, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2011-02-01

    The effect of etch damage to the mode characteristics of photonic crystal vertical cavity surface emitting lasers was simulated in this paper. The devices simulated in this paper are 850-nm GaAs-based VCSELs with photonic crystal. And the devices were simulated by using finite difference time domain (FDTD) method. Limited to the computer resource, the top DBR was simulated only, and the traverse size was smaller than the real size. In order to highlight the impact of the etch damage, several kinds of light sources and photonic crystal structures were simulated separately, and each situation is calculated in the condition of ideal photonic crystal and photonic crystal with etch damage respectively. All parameters of device and light feature are referred to the real condition.

  15. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    International Nuclear Information System (INIS)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-01-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application

  16. Low field anisotropic properties of a single crystals of superconducting YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Hammann, J.; Ocio, M.; Vincent, E.; Bertinotti, A.; Luzet, D.

    1987-09-01

    Low field (0.4G≤H≤3G) magnetization measurements have been performed on small single crystals of superconducting YBa 2 Cu 3 O 7.δ using a SQUID magnetometer. They revealed anisotropic properties in the temperature dependences of the shielding and the Meissner effects. A sharp unique transition at 95 K is observed with the field parallel to c. In the perpendicular direction a second transition line seems to be crossed at T* = 84 K. This temperature T* remains constant in the range of fields investigated

  17. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.

    Science.gov (United States)

    Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe

    2016-04-01

    Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.

  18. Differentiation of organic and non-organic winter wheat cultivars from a controlled field trial by crystallization patterns.

    Science.gov (United States)

    Kahl, Johannes; Busscher, Nicolaas; Mergardt, Gaby; Mäder, Paul; Torp, Torfinn; Ploeger, Angelika

    2015-01-01

    There is a need for authentication tools in order to verify the existing certification system. Recently, markers for analytical authentication of organic products were evaluated. Herein, crystallization with additives was described as an interesting fingerprint approach which needs further evidence, based on a standardized method and well-documented sample origin. The fingerprint of wheat cultivars from a controlled field trial is generated from structure analysis variables of crystal patterns. Method performance was tested on factors such as crystallization chamber, day of experiment and region of interest of the patterns. Two different organic treatments and two different treatments of the non-organic regime can be grouped together in each of three consecutive seasons. When the k-nearest-neighbor classification method was applied, approximately 84% of Runal samples and 95% of Titlis samples were classified correctly into organic and non-organic origin using cross-validation. Crystallization with additive offers an interesting complementary fingerprint method for organic wheat samples. When the method is applied to winter wheat from the DOK trial, organic and non-organic treated samples can be differentiated significantly based on pattern recognition. Therefore crystallization with additives seems to be a promising tool in organic wheat authentication. © 2014 Society of Chemical Industry.

  19. Cubic forms algebra, geometry, arithmetic

    CERN Document Server

    Manin, Yu I

    1986-01-01

    Since this book was first published in English, there has been important progress in a number of related topics. The class of algebraic varieties close to the rational ones has crystallized as a natural domain for the methods developed and expounded in this volume. For this revised edition, the original text has been left intact (except for a few corrections) and has been brought up to date by the addition of an Appendix and recent references.The Appendix sketches some of the most essential new results, constructions and ideas, including the solutions of the Luroth and Zariski problems, the th

  20. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    Science.gov (United States)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  1. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  2. Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks.

    Science.gov (United States)

    Furukawa, Yuki; Ishiwata, Takumi; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2012-10-15

    Sweet cube o' mine: Bottom-up control of gel particles has been regarded as a great challenge. By employing internal cross-linking of cyclodextrin metal-organic frameworks, cubic sugar gels were formed with sharp edges that reflect the shape of the crystals. This enabled the fabrication of shape- and size-controlled polymer gels from porous crystals (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Three-dimensional study of the pressure field and advantages of hemispherical crucible in silicon Czochralski crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [LTSE Laboratory, University of Science and Technol., USTHB BP 32 Elalia, Babezzouar, Algiers (Algeria); University Mouloud Mammeri, Tizi Ouzou (Algeria); Merah, A. [University M' hammed Bougara, Boumerdes (Algeria); Zizi, M. [LTSE Laboratory, University of Science and Technol., USTHB BP 32 Elalia, Babezzouar, Algiers (Algeria); Hanchi, S. [UER Mecanique/ E.M.P B.P 17 Bordj El Bahri, Algiers (Algeria); Alemany, A. [Laboratoire EPM, CNRS, Grenoble (France); Bouabdallah, A.

    2010-06-15

    The effects of several growth parameters in cylindrical and spherical Czochralski crystal process are studied numerically and particularly, we focus on the influence of the pressure field. We present a set of three-dimensional computational simulations using the finite volume package Fluent in two different geometries, a new geometry as cylindro-spherical and the traditional configuration as cylindro-cylindrical. We found that the evolution of pressure which is has not been studied before; this important function is strongly related to the vorticity in the bulk flow, the free surface and the growth interface. It seems that the pressure is more sensitive to the breaking of symmetry than the other properties that characterize the crystal growth as temperature or velocity fields. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Cubical sets as a classifying topos

    DEFF Research Database (Denmark)

    Spitters, Bas

    Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De...... Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation...

  5. Electric-field responsive contrast agent based on liquid crystals and magnetic nanoparticles

    Science.gov (United States)

    Mair, Lamar O.; Martinez-Miranda, Luz J.; Kurihara, Lynn K.; Nacev, Aleksandar; Hilaman, Ryan; Chowdhury, Sagar; Jafari, Sahar; Ijanaten, Said; da Silva, Claudian; Baker-McKee, James; Stepanov, Pavel Y.; Weinberg, Irving N.

    2018-05-01

    The properties of liquid crystal-magnetic nanoparticle composites have potential for sensing in the body. We study the response of a liquid crystal-magnetic nanoparticle (LC-MNP) composite to applied potentials of hundreds of volts per meter. Measuring samples using X-ray diffraction (XRD) and imaging composites using magnetic resonance imaging (MRI), we demonstrate that electric potentials applied across centimeter scale LC-MNP composite samples can be detected using XRD and MRI techniques.

  6. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P.

    2008-03-20

    Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study.

  7. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2014-01-01

    We use density functional theory calculations to investigate the stability of cubic perovskites for photo-electrochemical water splitting taking both materials in their bulk crystal structure and dissolved phases into account. The method is validated through a detailed comparison of the calculated...

  8. Tunable photonic crystal for THz radiation in layered superconductors: Strong magnetic-field dependence of the transmission coefficient

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Rakhmanov, A.L.; Nori, Franco

    2006-01-01

    Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane magnetic-field H ab , of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying H ab , for the selective frequency-filtering of THz radiation

  9. Crystal field and magnetism of Pr.sup.3+./sup. and Nd.sup.3+./sup. ions in orthorhombic perovskites

    Czech Academy of Sciences Publication Activity Database

    Novák, Pavel; Knížek, Karel; Maryško, Miroslav; Jirák, Zdeněk; Kuneš, Jan

    2013-01-01

    Roč. 25, č. 44 (2013), s. 1-8 ISSN 0953-8984 R&D Projects: GA ČR GA13-25251S; GA ČR GAP204/10/0284; GA ČR(CZ) GAP204/11/0713 Institutional support: RVO:68378271 Keywords : crystal field * rare earth * ab initio method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.223, year: 2013

  10. Investigation of the neutron diffraction anomaly and electrical behaviour of α-LiIO3 single crystal under AC field

    International Nuclear Information System (INIS)

    Wang Guang; Yang Zhen

    1990-01-01

    A systematic study of the unique neutron diffraction and electric behaviour of α-LiIO 3 single crystal under AC field is reported. A frequency dependent rectification effect was observed and can be explained as the relaxation process in the ionic conduction. Theoretical treatment using Boltzmann equation gives satisfactory agreement with experimental results. The neutron diffraction anomaly can be attributed to the effect of the rectified DC current in the sample

  11. Influence of the magnetic and laser fields on the director structures of a ferrocholesteric liquid crystal in homeotropic cells

    International Nuclear Information System (INIS)

    Petrescu, Emil; Bena, Eleonora-Rodica

    2008-01-01

    We study the influence of the magnetic and laser fields on the director structures of a ferrocholesteric liquid crystal in homeotropic cells. Using the analytical method based on the Euler-Lagrange equations, we find a correlation between the fields intensities and the confinement ratio r=d/p, (d is the cell thickness and p is the cholesteric pitch) at the limit of the transition from the homeotropic alignment to the translationally invariant configuration (TIC) with uniform in plane twist. We discuss this correlation as a function of the sign of the magnetic and dielectric anisotropies. If both anisotropies are positive and the magnetic field and the laser beam are perpendicular to the cell walls, the magnetic field preserves the homeotropic alignment while the laser beam pushes the system towards the TIC. The control parameters of the transition are the laser beam intensity and the confinement ratio. If the magnetic anisotropy is negative and the dielectric one is positive both fields concur in driving the system towards the TIC. The spinodal surface separating the metastable homeotropic configuration from the instable TIC is an ellipsoid whose halfaxes are smaller that in the case of a pure liquid crystal by a factor depending on the material constants and the cell thickness. We find also the total twist angle across the sample witch can be varied between a lower and an upper limit by changing the light intensity or the magnetic field strength. Our results can be useful in designing magneto-optical devices

  12. Numerical modeling perspectives on zircon crystallization and magma reservoir growth at the Laguna del Maule volcanic field, central Chile

    Science.gov (United States)

    Andersen, N. L.; Dufek, J.; Singer, B. S.

    2017-12-01

    Magma reservoirs in the middle to upper crust are though to accumulate incrementally over 104 -105 years. Coupled crystallization ages and compositions of zircon are a potentially powerful tracer of reservoir growth and magma evolution. However, complex age distributions and disequilibrium trace element partitioning complicate the interpretation of the zircon record in terms of magmatic processes. In order to make quantitative predictions of the effects of magmatic processes that contribute reservoir growth and evolution—such as cooling and crystallization, magma recharge and mixing, and rejuvenation and remelting of cumulate-rich reservoir margins—we develop a model of zircon saturation and growth within a numerical framework of coupled thermal transfer, phase equilibrium, and magma dynamics. We apply this model to the Laguna del Maule volcanic field (LdM), located in central Chile. LdM has erupted at least 40 km3 of rhyolite from 36 vents distributed within a 250 km2 lake basin. Ongoing unrest demonstrates the large, silicic magma system beneath LdM remains active to this day. Zircon from rhyolite erupted between c. 23 and 1.8 ka produce a continuous distribution of 230Th-238U ages ranging from eruption to 40 ka, as well as less common crystal domains up to 165 ka and rare xenocrysts. Zircon trace element compositions fingerprint compositionally distinct reservoirs that grew within the larger magma system. Despite the dominantly continuous distributions of ages, many crystals are characterized by volumetrically substantial, trace element enriched domains consistent with rapid crystal growth. We utilize numerical simulations to assess the magmatic conditions required to catalyze these "blooms" of crystallization and the magma dynamics that contributed to the assembly of the LdM magma system.

  13. Magnetic properties and crystal field effects in TlLnX2 compounds (X=S, Se, Te)

    International Nuclear Information System (INIS)

    Duczmal, M.; Pawlak, L.

    1997-01-01

    Ternary thallium lanthanide chalcogenides TlLnX 2 (X=S, Se or Te) crystallize in the α-NaFeO 2 type of structure (R anti 3m). Each kind of the metal ions, surrounded by the distorted chalcogenide octahedra, forms separate layers. The TlX 6 octahedra are strongly elongated and the LnX 6 octahedra slightly shrunk along the threefold axis. The deformations of the coordination polyhedra and the cell volumes change regularly with the lanthanide ionic radii. The difference between the experimental and the calculated M-X distances increases on going from sulphides to tellurides, as a result of the growing covalent character of the bonds. The crystal field parameters were estimated from the high field magnetization (0-14 T) assuming trigonal distortion of the octahedral symmetry of LnX 6 polyhedra. The second-order crystal field parameters were found to correlate with the deformation of the lanthanide ions' environments. No magnetic transition was observed down to 4.2 K. (orig.)

  14. Cubic Pencils and Painlev\\'e Hamiltonians

    OpenAIRE

    Kajiwara, Kenji; Masuda, Tetsu; Noumi, Masatoshi; Ohta, Yasuhiro; Yamada, Yasuhiko

    2004-01-01

    We present a simple heuristic method to derive the Painlev\\'e differential equations from the corresponding geometry of rational surafces. We also give a direct relationship between the cubic pencils and Seiberg-Witten curves.

  15. A single-gap transflective fringe field switching display using a liquid crystal with positive dielectric anisotropy

    International Nuclear Information System (INIS)

    Lim, Young Jin; Lee, Myong-Hoon; Lee, Gi-Dong; Jang, Won-Gun; Lee, Seung Hee

    2007-01-01

    There is considerable difficulty in fabricating a reflector with embossing in an array substrate using a conventional single gap transflective fringe-field switching nematic liquid-crystal display. In order to solve this problem, we propose a new structure, which consists of a reflector on a colour filter substrate. The newly proposed structure with a complex field direction has problems such that the voltage-dependent transmittance and reflectance curves do not match each other, which necessitate a dual driving circuit. This paper reports the optimized electrode structure and calculated electro-optical results realizing a single gamma curve and high light efficiency

  16. Nanodefects in ultrahard crystalline cubic boron nitride

    International Nuclear Information System (INIS)

    Nistor, S. V.; Stefan, M.; Goovaerts, E.; Schoemaker, D.

    2002-01-01

    Cubic boron nitride (cBN), the second hardest known material after diamond, exhibits high thermal conductivity and an excellent ability to be n or p doped, which makes it a strong candidate for the next generation of high-temperature micro optical and micro electronic devices. According to recent studies, cBN exhibits a better resistance to radiation damage than diamond, which suggests potential applications in extreme radiation environments. Crystalline cBN powders of up to 0.5 mm linear size is obtained in a similar way as diamond, by catalytic conversion of hexagonal BN (hBN) to cBN at even higher pressures (> 5GPa) and temperatures (∼ 1900 K). Considering the essential role played by the nanodefects (point defects and impurities) in determining its physical properties, it is surprising how limited is the amount of published data concerning the properties of nanodefects in this material, especially by Electron Paramagnetic Resonance (EPR) spectroscopy, the most powerful method for identification and characterization of nanodefects in both insulators and semiconductors. This seems to be due mainly to the absence of natural cBN gems and the extreme difficulties in producing even mm 3 sized synthetic crystals. We shall present our recent EPR studies on cBN crystalline powders, performed in a broad temperature range from room temperature (RT) down to 1.2 K on several sorts of large size cBN powder grits of yellow and amber color for industrial applications. Previous multifrequency (9.3 GHz and 95 GHz) EPR studies of brown to black cBN crystallites prepared with excess of boron, resulted in the discovery of two new types of paramagnetic point defects with different spectral properties, called the D1 and D2 centers. Our X(9.3 GHz)-band EPR investigations resulted in the observation in amber cBN crystalline powders of a spectrum with a strong temperature dependence of the lineshape. It was found that for high and low temperatures, respectively, the numerical

  17. A Note on Cubic Convolution Interpolation

    OpenAIRE

    Meijering, E.; Unser, M.

    2003-01-01

    We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

  18. Cubical version of combinatorial differential forms

    DEFF Research Database (Denmark)

    Kock, Anders

    2010-01-01

    The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....

  19. X-ray diffraction from ideal mosaic crystals in external fields of certain types. I. Atomic displacements and the corresponding diffraction patterns

    International Nuclear Information System (INIS)

    Treushnikov, E.N.

    2000-01-01

    The problem of the theoretical description of X-ray diffraction from ideal mosaic crystals under the effect of various external fields has been formulated. Electric, magnetic, electromagnetic, and acoustic perturbations are considered. The atomic displacements in crystals under the effect of external fields and the types of the corresponding diffraction patterns are analyzed for various types of perturbations. The crystal classes are determined in which atomic displacements can be recorded experimentally. Diffraction patterns formed under the effect of various external factors are considered on the basis of the derived dependence of the structure factor on the characteristics of an applied force field

  20. Far-field and Fresnel Liquid Crystal Geometric Phase Holograms via Direct-Write Photo-Alignment

    Directory of Open Access Journals (Sweden)

    Xiao Xiang

    2017-12-01

    Full Text Available We study computer-generated geometric-phase holograms (GPHs realized by photo-aligned liquid crystals, in both simulation and experiment. We demonstrate both far-field and Fresnel holograms capable of producing far-field and near-field images with preserved fidelity for all wavelengths. The GPHs are fabricated by patterning a photo-alignment layer (PAL using a direct-write laser scanner and coating the surface with a polymerizable liquid crystal (i.e., a reactive mesogen. We study various recording pixel sizes, down to 3 μm, that are easily recorded in the PAL. We characterize the fabricated elements and find good agreement with theory and numerical simulation. Because of the wavelength independent geometric phase, the (phase fidelity of the replay images is preserved for all wavelengths, unlike conventional dynamic phase holograms. However, governed by the diffraction equation, the size and location of a reconstructed image depends on the replay wavelength for far-field and near-field GPHs, respectively. These offer interesting opportunities for white-light holography.

  1. Environment-dependent crystal-field tight-binding based on density-functional theory

    International Nuclear Information System (INIS)

    Urban, Alexander

    2012-01-01

    systematic derivation of Slater-Koster parameters from the results of DFT calculations. In our approach, the DFT wave functions (Kohn-Sham orbitals) in a numerically converged basis of atom-centered functions and plane waves are mapped onto a minimal basis of atomic orbitals (AOs) using a projection formalism. This allows the computation of the minimal basis representation of the converged DFT Hamiltonian. The quality of TB parameters obtained using the projection methodology crucially depends on the choice of the minimal AO basis. We have therefore developed several schemes for the optimization of AO basis sets, which are discussed in detail in this thesis. The projection formalism described above is not limited to the calculation of conventional TB parameters, i.e., to bond and overlap integrals over two orbitals that are located at two different atomic sites. It also can be used to analyze crystal field interactions. We introduce an extended crystal-field tight-binding (CF-TB) method, which includes an environment-dependent on-site parametrization. It is demonstrated that the CF-TB method is substantially more accurate for low-symmetry structures. A common potential energy reference is a necessary condition to be able to compare Hamilton matrices and eigenvalues from different structures. We point out that the structure-dependent on-site parameters of a CF-TB model are suitable to gauge eigenvalues and bond integrals of different atomic and molecular structures. Most importantly, with an appropriate choice of potential energy reference, the structure sensitivity of bond integrals can be significantly reduced, thus leading to a substantial increase of the transferability of the TB models. In addition to the Slater-Koster parametrization of the electronic structure, for the calculation of cohesion energies and atomic forces in TB, a description of the ionic core repulsion and the double-counting corrections is required. We have explored various options for the partitioning

  2. GW correlation effects on plutonium quasiparticle energies: Changes in crystal-field splitting

    DEFF Research Database (Denmark)

    Chantis, A.N.; Albers, R.C.; Svane, Axel

    2009-01-01

    We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent GW method (QSGW). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centred cubic (fcc) unit cell. We span unit-cell volumes...... ranging from 10% greater than the equilibrium volume of the δ phase to 90% of the equivalent for the α phase of Pu. The selfconsistent GW quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends...... in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localisation of the f orbitals. We show that correlation effects narrow the f bands in two significantly different ways. Besides the expected narrowing of individual f bands (flatter dispersion), we find...

  3. Engineering the near-field imaging of a rectangular-lattice photonic-crystal slab in the second band

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Imaging properties of a two-dimensional rectangular-lattice photonic crystal (PC) slab consisting of air holes immersed in a dielectric are studied in this work. The field patterns of electromagnetic waves radiated from a point source through the PC slab are calculated with the finite-difference time-domain method. Comparing the field patterns with the corresponding equifrequency-surface contours simulated by the plane-wave expansion method, we find that an excellent-quality near-field image may be formed through the PC slab by the mechanisms of the simultaneous action of the self-collimation effect and the negative-refraction effect. Near-field imaging may be obtained within two different frequency regions in two vertical directions of the PC slab.

  4. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    Science.gov (United States)

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  5. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China); College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China)

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  6. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Nitsch, Karel

    2015-01-01

    Roč. 427, Oct (2015), 7-15 ISSN 0022-0248 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : single crystal growth * temperature field measurements * crystal/melt interface * lead chloride * vertical Bridgman method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.462, year: 2015

  7. First-principles investigation on the mechanism of photocatalytic properties for cubic and orthorhombic KNbO3

    Science.gov (United States)

    Xu, Yong-Qiang; Wu, Shao-Yi; Ding, Chang-Chun; Wu, Li-Na; Zhang, Gao-Jun

    2018-03-01

    The geometric structures, band structures, density of states and optical absorption spectra are studied for cubic and orthorhombic KNbO3 (C- and O-KNO) crystals by using first-principles calculations. Based on the above calculation results, the mechanisms of photocatalytic properties for both crystals are further theoretically investigated to deepen the understandings of their photocatalytic activity from the electronic level. Calculations for the effective masses of electron and hole are carried out to make comparison in photocatalytic performance between cubic and orthorhombic phases. Optical absorption in cubic phase is found to be stronger than that in orthorhombic phase. C-KNO has smaller electron effective mass, higher mobility of photogenerated electrons, lower electron-hole recombination rate and better light absorption capacity than O-KNO. So, the photocatalytic activity of cubic phase can be higher than orthorhombic one. The present work may be beneficial to explore the series of perovskite photocatalysts.

  8. Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4

    Science.gov (United States)

    Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David

    2017-03-01

    We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.

  9. Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution

    Science.gov (United States)

    Huang, Ruoxiang; Cao, Shixun; Ren, Wei; Zhan, Sheng; Kang, Baojuan; Zhang, Jincang

    2013-10-01

    We report the rotating field entropy of ErFeO3 single-crystal in a temperature range of 3-40 K. The giant magnetic entropy change, ΔSM = -20.7 J/(kg K), and the refrigerant capacity, RC = 273.5 J/kg, are observed near T =6 K. The anisotropic constants at 6 K, K1 = 1.24× 103 J/kg, K2 = 0.74 × 103 J/kg, in the bc plane are obtained. By considering the magnetocrystalline anisotropy and Fermi-Dirac angular distribution along the orientation of spontaneous magnetization, the experimental results can be well simulated. Our present work demonstrates that ErFeO3 crystal may find practical use for low temperature anisotropic magnetic refrigeration.

  10. Strong crystal field effect in Np{sup 4+}:ThCl{sub 4} - optical absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. [Instytut Niskich Temperatur i Badan Strukturalnych, Polska Akademia Nauk, 50-950 Wroclaw 2, Skr. Poczt. 1410 (Poland); Krupa, J.C. [Laboratoire de Radiochimie, Institut de Physique Nucleaire, BP 1, 91406 Orsay Cedex (France)

    1998-12-21

    Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a ThCl{sub 4} single crystal are reported. The recorded spectra are complex, pointing to the presence of an Np{sup 3+} impurity. The electronic transitions assigned to the Np{sup 4+} ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 36 cm{sup -1} have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host. (author)

  11. Quasi-static crack tip fields in rate-sensitive FCC single crystals

    Indian Academy of Sciences (India)

    In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. ... Global General Motors R&D, India Science Lab, GM Technical Centre (India), Bangalore 560 066, India; Department of Mechanical Engineering, Indian Institute of Science, ...

  12. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Oo, M. K .K.; Han, Y.; Kaňka, Jiří; Sukhishvili, S.; Du, H.

    2010-01-01

    Roč. 35, č. 4 (2010), s. 466-468 ISSN 0146-9592 R&D Projects: GA ČR GA102/08/1719 Institutional research plan: CEZ:AV0Z20670512 Keywords : Photonic crystal fiber * Raman spectroscopy * Fiber-optic evanescent sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.316, year: 2010

  13. Electric-Field Effects in ESR Spectrum of Low-Spin Center Ni3+ in KTaO3 Crystals (Preprint)

    National Research Council Canada - National Science Library

    Sochava, L. S; Basun, S. A; Bursian, V. E; Razdobarin, A. G; Evans, Dean R

    2007-01-01

    ...+ was studied in KTaO3 single crystals. Orientation of the centers as well as splitting of the resonance lines was found resulting from the external E-field interaction with the electric dipole moment of the center...

  14. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    Science.gov (United States)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  15. Phase diagram of the Blume-Emery-Griffiths model on the simple cubic lattice calculated by the linear chain approximation

    International Nuclear Information System (INIS)

    Albayrak, Erhan; Keskin, Mustafa

    2000-01-01

    The linear chain approximation is used to study the temperature dependence of the order parameters and the phase diagrams of the Blume-Emery-Griffiths model on the simple cubic lattice with dipole-dipole, quadrupole-quadrupole coupling strengths and a crystal-field interaction. The problem is approached introducing first a trial one-dimensional Hamiltonian whose free energy can be calculated exactly by the transfer matrix method. Then using the Bogoliubov variational principle, the free energy of the model is determined. It is assumed that the dipolar and quadrupolar intrachain coupling constants are much stronger than the corresponding interchain constants and confined the attention to the case of nearest-neighbor interactions. The phase transitions are examined and the phase diagrams are obtained for several values of the coupling strengths in the three different planes. A comparison with other approximate techniques is also made

  16. Phase diagram of the Blume-Emery-Griffiths model on the simple cubic lattice calculated by the linear chain approximation

    CERN Document Server

    Albayrak, E

    2000-01-01

    The linear chain approximation is used to study the temperature dependence of the order parameters and the phase diagrams of the Blume-Emery-Griffiths model on the simple cubic lattice with dipole-dipole, quadrupole-quadrupole coupling strengths and a crystal-field interaction. The problem is approached introducing first a trial one-dimensional Hamiltonian whose free energy can be calculated exactly by the transfer matrix method. Then using the Bogoliubov variational principle, the free energy of the model is determined. It is assumed that the dipolar and quadrupolar intrachain coupling constants are much stronger than the corresponding interchain constants and confined the attention to the case of nearest-neighbor interactions. The phase transitions are examined and the phase diagrams are obtained for several values of the coupling strengths in the three different planes. A comparison with other approximate techniques is also made.

  17. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    Energy Technology Data Exchange (ETDEWEB)

    Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T. [Institute for Metal Physics, Kiev (Ukraine)

    1994-12-31

    The calculations in a majority of previous works for the fulleride (AqC{sub 60}) crystals were performed within the framework of the rigid-lattice model, neglecting the distoration relaxation of the host fullerene (C{sub 60}) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distoration field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. This paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of statistic concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the statistic inherent reorientation and/or displacements of the solvent molecules from the average-lattice sites as well as on the lattice parameter a of the elastically-anysotropic cubic C{sub 60} crystal are taken into account.

  18. Crystal field levels of tetravalent actinide ions in actinide dioxides UO sub 2 , NpO sub 2 and PuO sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, J.C. (Paris-11 Univ., 91 - Orsay (FR). Inst. de Physique Nucleaire); Gajek, Z. (Polska Akademia Nauk, Wroclaw (PL). Inst. Niskich Temperatur i Badan Strukturalnych)

    1991-01-01

    Crystal-field parameters resulting from analysis of optical spectroscopy and neutron diffraction data recorded on UO{sub 2} and NpO{sub 2} as well as ab-initio calculated parameters were used to calculate the crystal-field eigenfunctions and eigenvalues for the J ground-state manifold of U{sup 4+}, Np{sup 4+} and Pu{sup 4+} in UO{sub 2}, NpO{sub 2} and PuO{sub 2}.

  19. Crystal field levels of tetravalent actinide ions in actinide dioxides UO2, NpO2 and PuO2

    International Nuclear Information System (INIS)

    Krupa, J.C.; Gajek, Z.

    1991-01-01

    Crystal-field parameters resulting from analysis of optical spectroscopy and neutron diffraction data recorded on UO 2 and NpO 2 as well as ab-initio calculated parameters were used to calculate the crystal-field eigenfunctions and eigenvalues for the J ground-state manifold of U 4+ , Np 4+ and Pu 4+ in UO 2 , NpO 2 and PuO 2

  20. The influence of defect drift in external electric field on green luminescence of ZnO single crystals

    International Nuclear Information System (INIS)

    Korsunska, N.O.; Borkovska, L.V.; Bulakh, B.M.; Khomenkova, L.Yu.; Kushnirenko, V.I.; Markevich, I.V.

    2003-01-01

    In nominally undoped Zn O single crystals, the influence of electric field on photoluminescence in visible wavelength range was investigated. A well-known broad unstructured band consisting of green and orange ones was observed. It was found that the action of direct electric field of about 100 V/cm at 600-700 deg. C resulted in the increase of green band intensity near the cathode and its decrease near the anode, while orange band intensity was not influenced by this treatment. The redistribution of green band intensity along the sample under electric field is accounted for by drift of zinc interstitials from the anode to the cathode. It is supposed that emitting centres responsible for green luminescence are complex defects including zinc interstitials

  1. Optical characterisation of cubic silicon carbide

    International Nuclear Information System (INIS)

    Jackson, S.M.

    1998-09-01

    The varied properties of Silicon Carbide (SiC) are helping to launch the material into many new applications, particularly in the field of novel semiconductor devices. In this work, the cubic form of SiC is of interest as a basis for developing integrated optical components. Here, the formation of a suitable SiO 2 buried cladding layer has been achieved by high dose oxygen ion implantation. This layer is necessary for the optical confinement of propagating light, and hence optical waveguide fabrication. Results have shown that optical propagation losses of the order of 20 dB/cm are obtainable. Much of this loss can be attributed to mode leakage and volume scattering. Mode leakage is a function of the effective oxide thickness, and volume scattering related to the surface layer damage. These parameters have been shown to be controllable and so suggests that further reduction in the waveguide loss is feasible. Analysis of the layer growth mechanism by RBS, XTEM and XPS proves that SiO 2 is formed, and that the extent, of formation depends on implant dose and temperature. The excess carbon generated is believed to exit the oxide layer by a number of varying mechanisms. The result of this appears to be a number of stable Si-C-O intermediaries that, form regions to either depth extreme of the SiO 2 layer. Early furnace tests suggest a need to anneal at, temperatures approaching the melting point of the silicon substrate, and that the quality of the virgin material is crucial in controlling the resulting oxide growth. (author)

  2. Difference-frequency generation in the field of a few-cycle laser pulse propagating in a GaAs crystal with a domain structure

    International Nuclear Information System (INIS)

    Oganesyan, David L; Vardanyan, Aleksandr O; Oganesyan, G D

    2013-01-01

    Difference-frequency generation in a GaAs crystal with a periodic domain structure in the field of a few-cycle laser pulse is considered for the case of weakly pronounced material dispersion. The straight-line method is used to solve numerically the system of coupled nonlinear partial differential equations describing the evolution of the electric field of this laser pulse in GaAs crystals with periodic and chirped domain structures. It is shown that application of a GaAs crystal with a chirped domain structure makes it possible to control the frequency-modulation law for a broadband differencefrequency pulse. (nonlinear optical phenomena)

  3. On the Sensitivity of Peptide Nucleic Acid Duplex Formation and Crystal Dissolution to a Variation of Force-Field Parameters.

    Science.gov (United States)

    Bachmann, Stephan J; Lin, Zhixiong; Stafforst, Thorsten; van Gunsteren, Wilfred F; Dolenc, Jožica

    2014-01-14

    The technique of one-step perturbation to explore the relation between particular force-field parameters on the one hand and particular properties of a biomolecular system on the other hand from one or a few molecular dynamics simulations is applied to investigate the dependence of the free enthalpy of dimer formation and of crystal dissolution of a self-complementary fragment (H-CGTACG-NH2) of peptide nucleic acid, PNA, a mimic of DNA. The simulations show that PNA dimer formation in aqueous solution is favored by a decrease in the base charges with respect to values of the GROMOS 45A4 force field, while it is disfavored by a decrease in the backbone charges. In contrast, crystal dissolution of the PNA dimer is favored by a decrease in base charges, while a variation of backbone charges has a minor effect on this free enthalpy change. These opposite effects in a crystalline versus aqueous solution environment can be understood from the different water contents for these systems and have consequences for biomolecular force-field development.

  4. Study of crystal-field excitations and Raman active phonons in o-DyMnO3

    International Nuclear Information System (INIS)

    Jandl, S.; Mansouri, S.; Mukhin, A.A.; Yu Ivanov, V.; Balbashov, A.; Gospodino, M.M.; Nekvasil, V.; Orlita, M.

    2011-01-01

    In DyMnO 3 orthorhombic single crystals, the weak Raman active phonon softening below T=100 K is correlated with the study of infrared active Dy 3+ CF excitations as a function of temperature and under applied magnetic field. We detect five H 13/2 CF transitions that we predict with appropriate CF Hamiltonian and we confirm that the magnetic easy axis lies in the ab plane. While the CF energy level shifts below T=100 K reflect different displacements of the oxygen ions that contribute to the phonon softening, lifting of the ground state Kramers doublet degeneracy (∼30 cm -1 ) is observed below T N =39 K due to the anisotropic Mn 3+ -Dy 3+ interaction, which could be responsible for the stability of the bc-cycloid ferroelectric phase. - Research highlights: → Origin of Raman active phonon softening in the multiferroic o-DyMnO 3 . → A crystal-field study under magnetic field of Dy 3+ in o-DyMnO 3 . → Location of the magnetic easy axis in o-DyMnO 3 . → Lifting of Kramers doublet degeneracy in o-DyMnO 3 .

  5. X-Ray diffraction on rare earth-3d Laves phase compound ErCo2 in magnetic field

    International Nuclear Information System (INIS)

    Yagasaki, Katsuma; Notsu, Shiko; Takaesu, Yoshinao; Nakama, Takao; Sakai, Eijiro; Koyama, Keiichi; Watanabe, Kazuo; Burkov, Alexander T.

    2006-01-01

    X-Ray powder diffraction method is used to investigate the effect of magnetic ordering and external magnetic field on crystal structure of Laves phase intermetallic compound ErCo 2 . The diffraction patterns were recorded at temperatures from 300K down to 8.5K in magnetic field up to 5T. Distortion of the room-temperature cubic structure was found in magnetically ordered state below 32K. The symmetry at low temperature is rhombohedral in agreement with literature results, or lower symmetry than it. However the symmetry of the unit cell increases to cubic in external magnetic field of 5T

  6. A renormalization-group analysis of a spin-1 Ising ferromagnet with competing crystal-field and repulsive biquadratic interactions

    International Nuclear Information System (INIS)

    Snowman, Daniel P.

    2009-01-01

    Phase diagrams have been produced and critical exponents calculated for a Blume-Emery-Griffiths system with competing biquadratic and crystal-field interactions with uniform ferromagnetic bilinear interactions. This competition directly effects the clustering and density of nonmagnetic impurities. These results have been produced using renormalization-group methods with a hierarchical lattice. A series of planes of constant, repulsive biquadratic coupling have been probed while varying the temperature and concentration of annealed vacancies in the system. The sinks have been analyzed and interpreted, and critical exponents calculated for the higher order transitions.

  7. Determination of the spin orbit coupling and crystal field splitting in wurtzite InP by polarization resolved photoluminescence

    Science.gov (United States)

    Chauvin, Nicolas; Mavel, Amaury; Jaffal, Ali; Patriarche, Gilles; Gendry, Michel

    2018-02-01

    Excitation photoluminescence spectroscopy is usually used to extract the crystal field splitting (ΔCR) and spin orbit coupling (ΔSO) parameters of wurtzite (Wz) InP nanowires (NWs). However, the equations expressing the valence band splitting are symmetric with respect to these two parameters, and a choice ΔCR > ΔSO or ΔCR InP NWs grown on silicon. The experimental results combined with a theoretical model and finite difference time domain calculations allow us to conclude that ΔCR > ΔSO in Wz InP.

  8. Magnetic form factor of NpAs2: a crystal field wave function for 5f electrons

    International Nuclear Information System (INIS)

    Amoretti, G.; Blaise, A.; Bonnet, M.; Boucherle, J.X.; Delapalme, A.; Fournier, J.M.; Vigneron, F.

    1982-10-01

    Neptunium magnetic form factor measurements in the ferromagnetic phase of NpAs 2 (T = 4.2 K, H = 4.6 T) are analysed under different assumptions: Np 3 + , Np 4 + or Np 5 + , with a free ion wave-function (Russel-Saunders and intermediate coupling scheme) or with a Crystal Field Wave function for 5f electrons: sub(m)sup(μ)asub(m)asub(m)/J,m>. The experimental results are compatible with either a 3+ or 4+ state

  9. Infrared transmission study of Pr.sub.2./sub.CuO.sub.4./sub. crystal-field excitations

    Czech Academy of Sciences Publication Activity Database

    Riou, G.; Jandl, S.; Poirier, M.; Nekvasil, Vladimír; Diviš, M.; Fournier, P.; Greene, R. L.; Zhigunov, D. I.; Barilo, S. N.

    2001-01-01

    Roč. 23, - (2001), s. 179-182 ISSN 1434-6028 R&D Projects: GA ČR GA202/00/1602; GA ČR GA202/99/0184 Grant - others:GA UK(XC) 145/2000/B-FYZ; DMR(XX) 9732796 Institutional research plan: CEZ:AV0Z1010914 Keywords : optical properties * crystal and ligand fields * other cuprates Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.811, year: 2001

  10. Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Javadi, Alisa; Nielsen, Henri Thyrrestrup

    2013-01-01

    Residual disorder due to fabrication imperfections has important impact in nanophotonics where it may degrade device performance by increasing radiation loss or spontaneously trap light by Anderson localization. We propose and demonstrate experimentally a method of quantifying the intrinsic amount...... of disorder in state-of-the-art photonic-crystal waveguides from far-field measurements of the Anderson-localized modes. This is achieved by comparing the spectral range where Anderson localization is observed to numerical simulations, and the method offers sensitivity down to 1nm....

  11. Spinor bose gases in cubic optical lattice

    International Nuclear Information System (INIS)

    Mobarak, Mohamed Saidan Sayed Mohamed

    2014-01-01

    In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the

  12. Mechanical, electronic, chemical bonding and optical properties of cubic BaHfO3: First-principles calculations

    International Nuclear Information System (INIS)

    Liu Qijun; Liu Zhengtang; Feng Liping; Tian Hao

    2010-01-01

    We have performed ab-initio total energy calculations using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT) to study structural parameters, mechanical, electronic, chemical bonding and optical properties of cubic BaHfO 3 . The calculated lattice parameter and independent elastic constants are in good agreement with previous theoretical and experimental work. The bulk, shear and Young's modulus, Poisson coefficient, compressibility and Lame constants are obtained using Voigt-Reuss-Hill method and the Debye temperature is estimated using Debye-Grueneisen model, which are consistent with previous results. Electronic and chemical bonding properties have been studied from the calculations of band structure, density of states and charge densities. Furthermore, in order to clarify the mechanism of optical transitions of cubic BaHfO 3 , the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption efficient, loss function and complex conductivity function are calculated. Then, we have explained the origins of spectral peaks on the basis of the theory of crystal-field and molecular-orbital bonding.

  13. Experimental evidence of body centered cubic iron in Earth's core

    Science.gov (United States)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  14. Nonlinear dynamics of quadratically cubic systems

    International Nuclear Information System (INIS)

    Rudenko, O V

    2013-01-01

    We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

  15. Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, F.J., E-mail: fbonilla@cicenergigune.com; Lacroix, L.-M.; Blon, T., E-mail: thomas.blon@insa-toulouse.fr

    2017-04-15

    Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hard-axis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain/multidomain size range (10–50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis vortex states. Thus, to track experimentally these V<111> states, one should focused on (i) nanocuboids exhibiting a nearly perfect cubic shape (size distorsion <12%) made of (ii) a material which combines a zero or positive MCA and a high saturation magnetization, such as Fe or FeCo; and (iii) a low magnetic field environment, V<111> being only observed in virgin or remanent states. - Highlights: • The <111> vortex is numerically determined in nanocubes of cubic anisotropy. • It constitutes an intermediate state in the single-domain limit. • Such a vortex can only be stabilized in perfect or slightly deformed nanocuboids. • It exists in nanocuboids made of materials with zero or positive cubic anisotropy. • The associated magnetization reversal is described by a rotation of the vortex axis.

  16. Defect ordering in aliovalently doped cubic zirconia from first principles

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.; Crosbie, G.M.; Stechel, E.B.

    2001-01-01

    Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δ-Zr 3 Y 4 O 12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y 2 O 3 - and Sc 2 O 3 -stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In 2 O 3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations

  17. Revealing the consequences and errors of substance arising from the inverse confusion between the crystal (ligand) field quantities and the zero-field splitting ones

    Energy Technology Data Exchange (ETDEWEB)

    Rudowicz, Czesław, E-mail: crudowicz@zut.edu.pl [Institute of Physics, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin (Poland); Karbowiak, Mirosław [Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław (Poland)

    2015-01-01

    Survey of recent literature has revealed a doubly-worrying tendency concerning the treatment of the two distinct types of Hamiltonians, namely, the physical crystal field (CF), or equivalently ligand field (LF), Hamiltonians and the zero-field splitting (ZFS) Hamiltonians, which appear in the effective spin Hamiltonians (SH). The nature and properties of the CF (LF) Hamiltonians have been mixed up in various ways with those of the ZFS Hamiltonians. Such cases have been identified in a rapidly growing number of studies of the transition-ion based systems using electron magnetic resonance (EMR), optical spectroscopy, and magnetic measurements. These findings have far ranging implications since these Hamiltonians are cornerstones for interpretation of magnetic and spectroscopic properties of the single transition ions in various crystals or molecules as well as the exchange coupled systems (ECS) of transition ions, e.g. single molecule magnets (SMM) or single ion magnets (SIM). The seriousness of the consequences of such conceptual problems and related terminological confusions has reached a level that goes far beyond simple semantic issues or misleading keyword classifications of papers in journals and scientific databases. The prevailing confusion, denoted as the CF=ZFS confusion, pertains to the cases of labeling the true ZFS quantities as purportedly the CF (LF) quantities. Here we consider the inverse confusion between the CF (LF) quantities and the SH (ZFS) ones, denoted the ZFS=CF confusion, which consists in referring to the parameters (or Hamiltonians), which are the true CF (LF) quantities, as purportedly the ZFS (or SH) quantities. Specific cases of the ZFS=CF confusion identified in recent textbooks, reviews and papers, especially SMM- and SIM-related ones, are surveyed and the pertinent misconceptions are clarified. The serious consequences of the terminological confusions include misinterpretation of data from a wide range of experimental techniques and

  18. Evaluation of single crystal coefficients from mechanical and x-ray elastic constants of the polycrystal

    International Nuclear Information System (INIS)

    Hauk, V.; Kockelmann, H.

    1979-01-01

    Methods of calculation are developed for determination of single crystal elastic compliance or stiffness constants of cubic and hexagonal materials from mechanical and X-ray elastic constants of polycrystals. The calculations are applied to pure, cubic iron and hexagonal WC. There are no single crystal constants in the literature for WC, because no single crystals suitable for measurement are available. (orig.) [de

  19. Emergence of periodic order in electric-field-driven planar nematic liquid crystals: An exclusive ac effect absent in static fields

    Science.gov (United States)

    Krishnamurthy, K. S.; Kumar, Pramoda

    2007-11-01

    We report, for a nematic liquid crystal with a low conductivity anisotropy, an ac field generated transition from a uniformly planar to a periodically modulated director configuration with the wave vector parallel to the initial director. Significantly, with unblocked electrodes, this instability is not excited by dc fields. Additionally, in very low frequency square wave fields, it occurs transiently after each polarity reversal, vanishing completely during field constancy. The time of occurrence of maximum distortion after polarity reversal decreases exponentially with voltage. The time dependence of optical phase change during transient distortion is nearly Gaussian. The pattern threshold Vc is linear in f , f denoting the frequency; the critical wave number qc of the modulation scales nearly linearly as f to a peak at ˜50Hz before falling slightly thereafter. The observed Vc(f) and qc(f) characteristics differ from the predictions of the standard model (SM). The instability may be interpreted as a special case of the Carr-Helfrich distortion suppressed in static fields due to weak charge focusing and strong charge injection. Its transient nature in the low frequency regime is suggestive of the possible role of gradient flexoelectric effect in its occurrence. The study includes measurement of certain elastic and viscosity parameters relevant to the application of the SM.

  20. Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field.

    Science.gov (United States)

    Xiang, Ying; Zhou, Meng-jie; Xu, Ming-Ya; Salamon, Péter; Éber, Nándor; Buka, Ágnes

    2015-04-01

    Electric-field-induced patterns of diverse morphology have been observed over a wide frequency range in a recently synthesized bent-core nematic (BCN) liquid crystal. At low frequencies (up to ∼25 Hz), the BCN exhibited unusual polarity-dependent patterns. When the amplitude of the ac field was enhanced, these two time-asymmetrical patterns turned into time-symmetrical prewavylike stripes. At ac frequencies in the middle-frequency range (∼50-3000 Hz), zigzag patterns were detected whose obliqueness varied with the frequency. Finally, if the frequency was increased above 3 kHz, the zigzag pattern was replaced by another, prewavylike pattern, whose threshold voltage depended on the frequency; however, the wave vector did not. For a more complete characterization, material parameters such as elastic constants, dielectric permittivities, and the anisotropy of the diamagnetic susceptibility were also determined.

  1. Tracing crystal-field splittings in the rare-earth-based intermetallic CeIrIn5

    Science.gov (United States)

    Chen, Q. Y.; Wen, C. H. P.; Yao, Q.; Huang, K.; Ding, Z. F.; Shu, L.; Niu, X. H.; Zhang, Y.; Lai, X. C.; Huang, Y. B.; Zhang, G. B.; Kirchner, S.; Feng, D. L.

    2018-02-01

    Crystal electric field states in rare earth intermetallics show an intricate entanglement with the many-body physics that occurs in these systems and that is known to lead to a plethora of electronic phases. Here we attempt to trace different contributions to the crystal electric field (CEF) splittings in CeIrIn5, a heavy-fermion compound and member of the Ce M In5 (M = Co, Rh, Ir) family. To this end, we utilize high-resolution resonant angle-resolved photoemission spectroscopy (ARPES) and present a spectroscopic study of the electronic structure of this unconventional superconductor over a wide temperature range. As a result, we show how ARPES can be used in combination with thermodynamic measurements or neutron scattering to disentangle different contributions to the CEF splitting in rare earth intermetallics. We also find that the hybridization is stronger in CeIrIn5 than CeCoIn5 and the effects of the hybridization on the Fermi volume increase is much smaller than predicted. By providing experimental evidence for 4 f7/2 1 splittings which, in CeIrIn5, split the octet into four doublets, we clearly demonstrate the many-body origin of the so-called 4 f7/2 1 state.

  2. Electric-field-induced internal deformation in piezoelectric BiB{sub 3}O{sub 6} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, O.; Gorfman, S.; Pietsch, U. [Solid State Physics Department, University of Siegen (Germany)

    2008-11-15

    For the first time electric-field-induced atomic displacements (internal strains) in non-ferroelectric polar BiB{sub 3}O{sub 6} single crystal plates (point symmetry 2) were investigated using X-ray diffraction technique. The intensity variations of selected Bragg reflections were collected for three different orientations of the applied external electric field vector with respect to the crystal lattice and used for calculating the microscopic structural response of BiB{sub 3}O{sub 6}. Due to the limited number of the reflections providing measurable changes in Bragg intensities we restricted ourselves in analyzing the shift of the B{sub 3}O{sub 6} sublattice relative to the Bi one. In addition, we considered the deformation of the Bi-O, B(1)-O and B(2)-O bond lengths and identified the [B(2)O{sub 3}] group as the most sensitive structural unit to an external electric perturbation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Dipaths and dihomotopies in a cubical complex

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    2005-01-01

    In the geometric realization of a cubical complex without degeneracies, a $\\Box$-set, dipaths and dihomotopies may not be combinatorial, i.e., not geometric realizations of combinatorial dipaths and equivalences. When we want to use geometric/topological tools to classify dipaths on the 1-skeleton...

  4. Some elements go cubic under pressure

    Czech Academy of Sciences Publication Activity Database

    Legut, Dominik

    2007-01-01

    Roč. 60, č. 10 (2007), s. 17-17 ISSN 0031-9228 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio * polonium * cubic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.133, year: 2007

  5. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  6. X-ray diffraction study of lithium hydrazinium sulfate and lithium ammonium sulfate crystals under a static electric field

    International Nuclear Information System (INIS)

    Sebastian, M.T.; Becker, R.A.; Klapper, H.

    1991-01-01

    X-ray diffraction studies are made on proton-conducting polar lithium hydrazinium sulfate and ferroelectric lithium ammonium sulfate. The X-ray rocking curves recorded with in situ electric field along the polar b axis of lithium hydrazinium sulfate (direction of proton conductivity) show a strong enhancement of the 0k0 diffraction intensity. The corresponding 0k0 X-ray topographs reveal extinction contrast consisting of striations parallel to the polar axis. They disappear when the electric field is switched off. The effect is very strong in 0k0 but invisible in h0l reflections. It is present only if the electric field is parallel to the polar axis b. This unusual X-ray topographic contrast is correlated with the proton conduction. It is supposed that, under electric field, an inhomogeneous charge distribution develops, distorting the crystal lattice. Similar experiments on lithium ammonium sulfate also show contrast variations, but of quite different behaviour than before. In this case they result from changes of the ferroelectric domain configuration under electric field. (orig.)

  7. X-ray diffraction study of KTP (KTiOPO4) crystals under a static electric field

    International Nuclear Information System (INIS)

    Sebastian, M.T.; Klapper, H.; Bolt, R.J.

    1992-01-01

    X-ray diffraction studies are made on ion-conducting potassium titanyl phosphate (KTP) crystals with in situ DC electric field along different crystallographic directions. The X-ray rocking curves recorded with an electric field along the polar b axis (which is the direction of ion conduction) show a strong enhancement of the 040 reflection intensity (reflecting planes normal to the b axis) whereas the h0l reflections (reflecting planes parallel to the polar axis) do not show any intensity change. For an electric field normal to the polar axis no intensity change, either in 040 or in h0l reflections occurs. This observation is supplemented by X-ray topography. The 040 X-ray topographs recorded with in situ electric field along b exhibit strong extinction contrast in the form of striations parallel to the polar (ion-conduction) axis. The 040 intensity increase and the striation contrast are attributed to lattice deformation by the space-charge polarization due to the movement of the K + ions under the influence of the electric field. (orig.)

  8. Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7

    International Nuclear Information System (INIS)

    Alam, J.; Jana, Y.M.; Biswas, A. Ali

    2016-01-01

    The experimental results of temperature dependent dc magnetic susceptibility, field dependent isothermal magnetization, magnetic specific heat and entropy of the pyrochlore Pr 2 Zr 2 O 7 are simulated and analyzed using appropriate D 3d crystal-field (CF) and anisotropic molecular field tensors at Pr-sites in the self-consistent mean-field approach involving four magnetically non-equivalent rare-earth spins on the tetrahedral unit of the pyrochlore structure. CF level pattern and wave-functions of the ground 3 H 4 multiplet of the Pr 3+ ions are obtained considering intermediate coupling between different Russell-Saunders terms of the 4f 2 electronic configurations of Pr-ion and J-mixing effects. CF analysis shows that the CF ground-state of the Pr 3+ ion in Pr 2 Zr 2 O 7 is a well-isolated doublet, with significant admixtures of terms coming from |M J =±4〉 and |M J =±1〉, and the Pr-spins are effectively Ising-like along the local <111> axes. Magnetic specific heat in zero-field is simulated by considering a temperature dependence of the exchange splitting of the ground doublet. - Highlights: • Full CF diagonalization using intermediate coupling and J-mixing. • Pr-spins are Ising-like along local [111] axis. • Magnetic specific heat is due to temperature dependence exchange splitting of ground CF doublet.

  9. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    Science.gov (United States)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  10. Eu3+-doped (Y0.5La0.5)2O3: new nanophosphor with the bixbyite cubic structure

    Science.gov (United States)

    Đorđević, Vesna; Nikolić, Marko G.; Bartova, Barbora; Krsmanović, Radenka M.; Antić, Željka; Dramićanin, Miroslav D.

    2013-01-01

    New red sesquioxide phosphor, Eu3+-doped (Y0.5La0.5)2O3, was synthesized in the form of nanocrystalline powder with excellent structural ordering in cubic bixbyite-type, and with nanoparticle sizes ranging between 10 and 20 nm. Photoluminescence measurements show strong, Eu3+ characteristic, red emission ( x = 0.66 and y = 0.34 CIE color coordinates) with an average 5D0 emission lifetime of about 1.3 ms. Maximum splitting of the 7F1 manifold of the Eu3+ ion emission behaves in a way directly proportional to the crystal field strength parameter, and experimental results show perfect agreement with theoretical values for pure cubic sesquioxides. This could be used as an indicator of complete dissolution of Y2O3 and La2O3, showing that (Y0.5La0.5)2O3:Eu3+ behaves as a new bixbyite structure oxide, M2O3, where M acts as an ion having average ionic radius of constituting Y3+ and La3+. Emission properties of this new phosphor were documented with detailed assignments of Eu3+ energy levels at 10 K and at room temperature. Second order crystal field parameters were found to be B 20 = -66 cm-1 and B 22 = -665 cm-1 at 10 K and B 20 = -78 cm-1 and B 22 = -602 cm-1 at room temperature, while for the crystal field strength the value of 1495 cm-1 was calculated at 10 K and 1355 cm-1 at room temperature.

  11. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  12. X-Ray Elastic Constants for Cubic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malen, K

    1974-10-15

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  13. Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices

    International Nuclear Information System (INIS)

    Cramer, M.; Eisert, J.; Illuminati, F.

    2004-01-01

    We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices

  14. Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.

    Science.gov (United States)

    Cramer, M; Eisert, J; Illuminati, F

    2004-11-05

    We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.

  15. Universal centers in the cubic trigonometric Abel equation

    Directory of Open Access Journals (Sweden)

    Jaume Giné

    2014-02-01

    Full Text Available We study the center problem for the trigonometric Abel equation $d \\rho/ d \\theta= a_1 (\\theta \\rho^2 + a_2(\\theta \\rho^3,$ where $a_1(\\theta$ and $a_2(\\theta$ are cubic trigonometric polynomials in $\\theta$. This problem is closely connected with the classical Poincaré center problem for planar polynomial vector fields. A particular class of centers, the so-called universal centers or composition centers, is taken into account. An example of non-universal center and a characterization of all the universal centers for such equation are provided.

  16. X-Ray Elastic Constants for Cubic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malen, K.

    1974-10-15

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  17. X-Ray Elastic Constants for Cubic Materials

    International Nuclear Information System (INIS)

    Malen, K.

    1974-10-01

    The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account

  18. Near-field characterization of low-loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2005-01-01

    -nm-period lattices with different filling factors (0.76 and 0.82) and connected to access ridge waveguides. Using the near-field optical images we investigate the light propagation along PCWs for TM and TE polarization (the electric field is perpendicular/parallel to the sample surface). Efficient...

  19. Extended parametric gain range in photonic crystal fibers with strongly frequency-dependent field distributions

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin

    2014-01-01

    The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have...

  20. Bifurcation properties of nematic liquid crystals exposed to an electric field: Switchability, bistability, and multistability

    KAUST Repository

    Cummings, L. J.; Cai, C.; Kondic, L.

    2013-01-01

    be maintained in a display without an externally applied electric field. An applied field is required only to switch the device from one state to the other, as needed. In this paper we examine the basic physical principles involved in generating multiple stable

  1. Diamond cubic phase of monoolein and water as an amphiphilic matrix for electrophoresis of oligonucleotides.

    Science.gov (United States)

    Carlsson, Nils; Winge, Ann-Sofie; Engström, Sven; Akerman, Björn

    2005-10-06

    We used a cubic liquid crystal formed by the nonionic monoglyceride monoolein and water as a porous matrix for the electrophoresis of oligonucleotides. The diamond cubic phase is thermodynamically stable when in contact with a water-rich phase, which we exploit to run the electrophoresis in the useful submarine mode. Oligonucleotides are separated according to size and secondary structure by migration through the space-filling aqueous nanometer pores of the regular liquid crystal, but the comparatively slow migration means the cubic phase will not be a replacement for the conventional DNA gels. However, our demonstration that the cubic phase can be used in submarine electrophoresis opens up the possibility for a new matrix for electrophoresis of amphiphilic molecules. From this perspective, the results on the oligonucleotides show that water-soluble particles of nanometer size, typical for the hydrophilic parts of membrane-bound proteins, may be a useful separation motif. A charged contamination in the commercial sample of monoolein, most likely oleic acid that arises from its hydrolysis, restricts useful buffer conditions to a pH below 5.6.

  2. Unusually large unit cell of lipid bicontinuous cubic phase: towards nature's length scales

    Science.gov (United States)

    Kim, Hojun; Leal, Cecilia

    Lipid bicontinuous cubic phases are of great interest for drug delivery, protein crystallization, biosensing, and templates for directing hard material assembly. Structural modulations of lipid mesophases regarding phase identity and unit cell size are often necessary to augment loading and gain pore size control. One important example is the need for unit cells large enough to guide the crystallization of bigger proteins without distortion of the templating phase. In nature, bicontinuous cubic constructs achieve unit cell dimensions as high as 300 nm. However, the largest unit cell of lipid mesophases synthesized in the lab is an order of magnitude lower. In fact, it has been predicted theoretically that lipid bicontinuous cubic phases of unit cell dimensions exceeding 30 nm could not exist, as high membrane fluctuations would damp liquid crystalline order. Here we report non-equilibrium assembly methods of synthesizing metastable bicontinuous cubic phases with unit cell dimensions as high as 70 nm. The phases are stable for very long periods and become increasingly ordered as time goes by without changes to unit cell dimensions. We acknowledge the funding source as a NIH.

  3. High-field magnetic behavior and forced-ferromagnetic state in an ErFe.sub.11./sub.TiH single crystal

    Czech Academy of Sciences Publication Activity Database

    Kostyuchenko, N.V.; Zvezdin, A. K.; Tereshina, Evgeniya; Skourski, Y.; Doerr, M.; Drulis, H.; Pelevin, I.A.; Tereshina, I. S.

    2015-01-01

    Roč. 92, č. 10 (2015), "104423-1"-"104423-5" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : high field magnetization * crystal field effects * hamiltonian * rare- earth intermetallics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  4. Electrodisintegration of relativistic nuclei by a periodic crystal field in channeling

    International Nuclear Information System (INIS)

    Pivovarov, Yu.L.; Vorob'ev, S.A.

    1981-01-01

    Processes on channeled relativistic nuclei with transition into a continuous spectrum (electrodisintegration of nuclei with emission of neutron, proton, photon and etc.) are considered. A case of plane channeling is considered. The equivalent photon method is used for calculating the disintegration cross section. The beryllium disintegration cross section in the system of tungsten crystal (100) planes is calculated. At the γ=10 2 Lorentz factor the cross section value is 5.27 mb. The process considered is of interest from the viewpoint of production of monoenergy neutrons of high energies and γ quanta of excited nuclei. The channeling effect gives the possibility to study electromagnetic interactions of relativistic nuclei under suppre--ssion conditions of the nuclear interaction channel [ru

  5. Control of coercive field in lithium niobate crystals with repeated polarization reversal

    International Nuclear Information System (INIS)

    Ro, Jung Hoon; Jeong, Doun; Park, Taeyong; Kim, Chulhan; Kwon, Soon-Bok; Cha, Myoungsik; Choi, Byeong Cheol; Yu, Nanei; Kurimura, Sunao; Jeon, Gyerok

    2005-01-01

    In this study, the amount of decrease in coercive field of congruent lithium niobate during repeated poling and back-poling was measured. The polarization is reversed in 300 ms and then back-poled during the rest period. The coercive field can be decreased around 1 kV/mm with a repeated poling interval of 5 s. As the interval prolonged, the poling field decrease became smaller, and a stretched exponential function is suggested for the experimental fitting resulting in a set of meaningful parameters. These values are essential for the design of high quality domain engineering

  6. Narrowing the Zero-Field Tunneling Resonance by Decreasing the Crystal Symmetry of Mn12 Acetate.

    Science.gov (United States)

    Espín, Jordi; Zarzuela, Ricardo; Statuto, Nahuel; Juanhuix, Jordi; Maspoch, Daniel; Imaz, Inhar; Chudnovsky, Eugene; Tejada, Javier

    2016-07-27

    We report the discovery of a less symmetric crystalline phase of Mn12 acetate, a triclinic phase, resulting from recrystallizing the original tetragonal phase reported by Lis in acetonitrile and toluene. This new phase exhibits the same structure of Mn12 acetate clusters and the same positions of tunneling resonances on the magnetic field as the conventional tetragonal phase. However, the width of the zero-field resonance is at least 1 order of magnitude smaller-can be as low as 50 Oe-indicating very small inhomogeneous broadening due to dipolar and nuclear fields.

  7. Impact of incoherent pumping field and Er3+ ion concentration on group velocity and index of refraction in an Er3+-doped YAG crystal

    International Nuclear Information System (INIS)

    Jafarzadeh, Hossein; Asadpour, Seyyed Hossein; Soleimani, H Rahimpour

    2015-01-01

    The effect of Er 3+ ion concentration and incoherent pumping field on the refractive index and group index in an Er 3+ : YAG crystal is investigated. It is shown that under different concentrations of Er 3+ ion in the crystal, the index of refraction and absorption can be changed and a high index of refraction is accompanied by amplification in the medium. Also, it is shown that with the switching from subluminal to superluminal, or vice versa, light propagation can be obtained by different concentrations of Er 3+ ions in the crystal. (paper)

  8. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  9. Numerically simulated and experimentally obtained X-ray section topographs of a spherical strain field in a floating zone silicon crystal

    International Nuclear Information System (INIS)

    Okitsu, Kouhei; Iida, Satoshi; Sugita, Yoshimitsu; Takeno, Hiroshi; Yagou, Yasuyoshi; Kawata, Hiroshi.

    1992-01-01

    An undoped floating zone (FZ) silicon crystal has been investigated by synchrotron X-radiation section topography with high-order reflections up to 14 14 0. Numerically simulated topographs based on the Takagi-Taupin equations were in good agreement with experimental distorted patterns when a spherical strain field was assumed in the crystal. The volume change of the lattice caused by the strain center was estimated to correspond to a sphere with a radius of 10 μm. (author)

  10. Extended parametric gain range in photonic crystal fibers with strongly frequency-dependent field distributions.

    Science.gov (United States)

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2014-08-15

    The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range.

  11. Investigation of thermoluminescent response of K2YF5:Dy3+ crystals for gamma and X radiation fields

    International Nuclear Information System (INIS)

    Silva, E.C.; Nogueira, M.S.; Faria, L.O.; Khaidukov, N.M.

    2005-01-01

    K 2 YF 5 crystals doped with rare earths have been synthesized with 0 to 100% of Dy 3+ ions optically active ions and an investigation was conducted to test its thermoluminescent (TL) response due to function of Dy 3+ concentration and their response in energy. After being irradiated with gamma and X-rays, it was observed that crystals doped with 1.0% of Dy 3+ feature the best response TL. The main dosimetric peak can be decomposed into three secondary TL peaks, centered in 96.4, 104.9 and 130.7 deg C, respectively, showing a good linearity and reproducibility of the dose measurements. The sensitization process seems to improve response TL and TL peak sensitivity increase to 130, 7 deg C at the expense of TL peak to 104, 9 deg C. The linear coefficient sign TL for K 2 Y 0.09 Dy 0.01 F5 is comparable to that of the dosemeter CaSO 4 : Mn, irradiated with gamma radiation source ( 137 Cs) under the same conditions. Energy dependence measurements show that the answer for X-rays with energy of 41.1 keV is more than 30 times the response to Cs-137, when exposed to the same dose. Due to the main peak in low temperature and the TL high reply to low energy fields, the results reported indicate that the K 2 YF 5 crystals doped with Dy 3+ present great potential for radiation dosimetry in X-rays therapy, clinical dosimetry and also for applications in digital thermoluminescent images

  12. Crystal fields in Sc, Y, and the heavy-rare-earth metals Tb, Dy, Ho, Er, Tm, and Lu

    International Nuclear Information System (INIS)

    Touborg, P.

    1977-01-01

    Experimental investigations of the magnetic poperties of dilute alloys of the rare-earth solutes Tb, Dy, Ho, Er, and Tm in the nonmagnetic hosts Lu, Y, and Sc have been performed. These measurements, which include and supplement earlier published results, have been analyzed and crystal-field parameters for all these 15 alloy systems deduced. The consistency of the parameters was confirmed by a variety of magnetic measurements, including neutron spectroscopy. Crystal-field parameters have also been derived for the ions in pure magnetic rare-earth metals and their alloys using the results for the dilute alloys supplemented with paramagnetic measurements up to high temperatures on the concentrated systems. Mean values and standard deviations of the higher-order crystal-field parameters for all Y and Lu alloys are B 40 /β = 6.8 +- 0.9 K, B 60 /γ = 13.6 +- 0.7 K, and B 66 /γ = (9.7 +- 1.1) B 60 /γ. These values: with the inaccuracies somewhat increased: are expected to be representative also for the magnetic rare-earth metals. For rare-earth ions in the Sc host the values B 40 /β = 9.9 +- 1.9 K, B 60 /γ = 19.8 +- 1.5 K, and B 66 /γ = (9.4 +- 0.9) B 60 /γ were deduced. B 20 /α is a host-sensitive parameter which has the average values of -102.7, -53.4, and 29.5 K for rare-earth ions in Y, Lu, and Sc, respectively. There is also evidence that this parameter varies with the solute. B 20 /α for ions in the pure magnetic rare-earth metals and their alloys shows a linear variation with c/a ratio characteristic of each ion. The results indicate a contribution from anisotropic exchange to the high-temperature paramagnetic anisotropy of approximately 20% for Tb, Dy, Ho, and Er, and approximately 10% for Tm

  13. Spectral intensities in cubic systems. I. Progressions based upon parity vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, R.; Vasquez, S.O. [Department of Basic Chemistry, Faculty of Physical and Mathematical Sciences, University of Chile. Tupper 2069, Casilla 2777, Santiago, Chile (Chile); Meruane, T. [Department of Chemistry, Universidad Metropolitana de Ciencias de la Educacion. Av. J.P. Alessandri 774, Casilla 147, C. Santiago, Chile (Chile); Poblete, V. [Department of Nuclear Materials, Lo Aguirre, Comision Chilena de Energia Nuclear. Amunategui 95, Casilla 188-D, Santiago, Chile (Chile); Pozo, J. [Facultad de Ciencias de la Ingenieria. Universidad Diego Portales. Casilla 298-V, Santiago, Chile (Chile)

    1998-12-01

    The well-resolved emission and absorption spectra of centrosymmetric coordination compounds of the transition metal ions have been used widely to provide the experimental data against which to test theoretical models of vibronic intensities. With reference to the {sup 2} E{sub g} {yields} {sup 4} A{sub 2g} luminescence transition, at a perfect octahedral site in Cs{sub 2}SiF{sub 6}, over than one hundred vibronic lines are observed with line widths of a few wavenumber spread over some 3000 cm{sup -1}. This paper reports a through examination of both the electronic and vibrational factors, which influences the observed vibronic intensities of the various assigned and identified lines in the spectra of the MnF{sub 6} {sup 2-} complex ion in the Cs{sub 2}SiF{sub 6} cubic lattice. The origin and nature of higher order vibronic interactions are analysed on the basis of a symmetrized vibronic crystal field-ligand polarization model. (Author)

  14. Giant Hall Resistivity and Magnetoresistance in Cubic Chiral Antiferromagnet EuPtSi

    Science.gov (United States)

    Kakihana, Masashi; Aoki, Dai; Nakamura, Ai; Honda, Fuminori; Nakashima, Miho; Amako, Yasushi; Nakamura, Shota; Sakakibara, Toshiro; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2018-02-01

    EuPtSi crystallizes in the cubic chiral structure (P213, No. 198), which is the same as the non-centrosymmetric space group of MnSi with the skyrmion structure, and orders antiferromagnetically below a Néel temperature TN = 4.05 K. The magnetization at 2 K for the [111] direction indicates two metamagnetic transitions at the magnetic fields HA1 = 9.2 kOe and HA2 = 13.8 kOe and saturates above Hc = 26.6 kOe. The present magnetic phase between HA1 and HA2 is most likely closed in the (H,T) phase and is observed in a wide temperature range from 3.6 to 0.5 K. In this magnetic phase known as the A-phase, we found giant additional Hall resistivity ΔρH(H) and magnetoresistance Δρ(H), reaching ΔρH(H) = 0.12 µΩ·cm and Δρ(H) = 1.4 µΩ·cm, respectively. These findings are obtained for H || [111] and [100], but not for H || [110] and [112], revealing an anisotropic behavior in the new material EuPtSi.

  15. Numerical Investigation of the Effect of Bottom Shape on the Flow Field and Particle Suspension in a DTB Crystallizer

    Directory of Open Access Journals (Sweden)

    Hao Pan

    2016-01-01

    Full Text Available The influence of the bottom shape on the flow field distribution and particle suspension in a DTB crystallizer was investigated by Computational Fluid Dynamics (CFD coupled with Two-Fluid Model (Eulerian model. Volume fractions of three sections were monitored on time, and effect on particle suspension could be obtained by analyzing the variation tendency of volume fraction. The results showed that the protruding part of a W type bottom could make the eddies smaller, leading to the increase of velocity in the vortex. Modulating the detailed structure of the W type bottom to make the bottom surface conform to the streamlines can reduce the loss of the kinetic energy of the flow fluid and obtain a larger flow velocity, which made it possible for the particles in the bottom to reach a better suspension state. Suitable shape parameters were also obtained; the concave and protruding surface diameter are 0.32 and 0.373 times of the cylindrical shell diameter, respectively. It is helpful to provide a theoretical guidance for optimization of DTB crystallizer.

  16. Magnetic properties and electronic structure of neptunyl(VI) complexes: wavefunctions, orbitals, and crystal-field models

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, Frederic; Pritchard, Ben; Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY (United States); Paez-Hernandez, Dayan; Bolvin, Helene [Laboratoire de Physique et de Chimie Quantiques, Universite Toulouse 3 (France); Notter, Francois-Paul [Laboratoire de Chimie Quantique, Universite de Strasbourg (France)

    2014-06-23

    The electronic structure and magnetic properties of neptunyl(VI), NpO{sub 2}{sup 2+}, and two neptunyl complexes, [NpO{sub 2}(NO{sub 3}){sub 3}]{sup -} and [NpO{sub 2}Cl{sub 4}]{sup 2-}, were studied with a combination of theoretical methods: ab initio relativistic wavefunction methods and density functional theory (DFT), as well as crystal-field (CF) models with parameters extracted from the ab initio calculations. Natural orbitals for electron density and spin magnetization from wavefunctions including spin-orbit coupling were employed to analyze the connection between the electronic structure and magnetic properties, and to link the results from CF models to the ab initio data. Free complex ions and systems embedded in a crystal environment were studied. Of prime interest were the electron paramagnetic resonance g-factors and their relation to the complex geometry, ligand coordination, and nature of the nonbonding 5f orbitals. The g-factors were calculated for the ground and excited states. For [NpO{sub 2}Cl{sub 4}]{sup 2-}, a strong influence of the environment of the complex on its magnetic behavior was demonstrated. Kohn-Sham DFT with standard functionals can produce reasonable g-factors as long as the calculation converges to a solution resembling the electronic state of interest. However, this is not always straightforward. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Interaction of phonons with intraband electronic excitations and crystal field transitions in Raman spectra of (Nd,Eu,Gd)Ba.sub.2./sub.Cu.sub.3./sub.O.sub.y./sub. crystals

    Czech Academy of Sciences Publication Activity Database

    Rameš, Michal; Železný, Vladimír; Gregora, Ivan; Wolf, T.; Jirsa, Miloš

    2015-01-01

    Roč. 197, Jul (2015), 10-17 ISSN 0921-5107 R&D Projects: GA MŠk(CZ) ME10069 Institutional support: RVO:68378271 Keywords : cuprate superconductors * phonons * crystal field * vortex pinning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.331, year: 2015

  18. Integrable peakon equations with cubic nonlinearity

    International Nuclear Information System (INIS)

    Hone, Andrew N W; Wang, J P

    2008-01-01

    We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)

  19. Neutron-diffraction study of cubic ErC/sub 0.6/ in the temperature range 1.6--296 K

    International Nuclear Information System (INIS)

    Atoji, M.

    1981-01-01

    Neutron-diffraction measurements have shown that the form of ErC/sub 0.6/ that has a cubic, NaCl-type structure is paramagnetic above 90 K, exhibiting a free Er 3+ moment. Below 90 K, ErC/sub 0.6/ becomes a ferromagnet with a saturation moment of 2.5 Bohr magnetons (only 28% of the maximum free-ion moment), indicating a large crystal-field effect. By measuring the preferential crystallite orientation induced by the applied magnetic field, the direction of the ferromagnetically ordered moment was found to be parallel to the axis. A ferromagnetic, short-range ordering coexists with the ferromagnetic long-range ordering at temperatures down to 1.6 K

  20. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    Science.gov (United States)

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  1. HRTEM studies of dislocations in cubic BN

    International Nuclear Information System (INIS)

    Nistor, L.C.; Tendeloo, G. van; Dinca, G.

    2004-01-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. HRTEM studies of dislocations in cubic BN

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L.C. [National Institute for Materials Physics, P.O. Box MG-7 Magurele, 077125 Bucharest (Romania); Tendeloo, G. van [University of Antwerp, EMAT, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Dinca, G. [Dacia Synthetic Diamond Factory, Timisoara av. 5, P.O. Box 58-52, 077350 Bucharest (Romania)

    2004-09-01

    The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. The spin-3/2 Ising model AFM/AFM two-layer lattice with crystal field

    International Nuclear Information System (INIS)

    Yigit, A.; Albayrak, E.

    2010-01-01

    The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in a pairwise approach for given coordination numbers q=3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state (GS) phase diagrams are obtained on the different planes in detail and then the temperature dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It was also found that the system exhibits double-critical end points and isolated points. The model also presents two Neel temperatures, TN, and the existence of which leads to the reentrant behavior.

  4. Effect of electrode design on crosstalk between neighboring organic field-effect transistors based on one single crystal

    Science.gov (United States)

    Li, Mengjie; Tang, Qingxin; Tong, Yanhong; Zhao, Xiaoli; Zhou, Shujun; Liu, Yichun

    2018-03-01

    The design of high-integration organic circuits must be such that the interference between neighboring devices is eliminated. Here, rubrene crystals were used to study the effect of the electrode design on crosstalk between neighboring organic field-effect transistors (OFETs). Results show that a decreased source/drain interval and gate electrode width can decrease the diffraction distance of the current, and therefore can weaken the crosstalk. In addition, the inherent low carrier concentration in organic semiconductors can create a high-resistance barrier at the space between gate electrodes of neighboring devices, limiting or even eliminating the crosstalk as a result of the gate electrode width being smaller than the source/drain electrode width.

  5. Effect of noise-induced nucleation on grain size distribution studied via the phase-field crystal method

    International Nuclear Information System (INIS)

    Hubert, J; Cheng, M; Emmerich, H

    2009-01-01

    We contribute to the more detailed understanding of the phase-field crystal model recently developed by Elder et al (2002 Phys. Rev. Lett. 88 245701), by focusing on its noise term and examining its impact on the nucleation rate in a homogeneously solidifying system as well as on successively developing grain size distributions. In this context we show that principally the grain size decreases with increasing noise amplitude, resulting in both a smaller average grain size and a decreased maximum grain size. Despite this general tendency, which we interpret based on Panfilis and Filiponi (2000 J. Appl. Phys. 88 562), we can identify two different regimes in which nucleation and successive initial growth are governed by quite different mechanisms.

  6. Crystal field effect in the uranium compounds - model calculations for CsUF/sub 6/, Cs/sub 2/UCl/sub 6/ and UCl/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z.; Mulak, J.; Faucher, M.

    1987-01-01

    A practical crystal field model allowing one to estimate the crystal field parameters from first principles is presented and applied to the actinide compounds. The model results directly from the renormalization (and reduction) procedure of the true Schroedinger equation for an effective Hamiltonian acting on the 5f spin-orbitals only. In practice this approach becomes convergent with the ab initio model of Newman. Three ionic uranium compounds: CsUF/sub 6/, Cs/sub 2/UCl/sub 6/ and UCl/sub 4/ have served as examples of the application. The results obtained, particularly for the first two compounds, are in good agreement with the experimental data. The contributions of different mechanisms responsible for the crystal field effect are discussed.

  7. Crystal field effect in the uranium compounds - model calculations for CsUF6, Cs2UCl6 and UCl4

    International Nuclear Information System (INIS)

    Gajek, Z.; Mulak, J.

    1987-01-01

    A practical crystal field model allowing one to estimate the crystal field parameters from first principles is presented and applied to the actinide compounds. The model results directly from the renormalization (and reduction) procedure of the true Schroedinger equation for an effective Hamiltonian acting on the 5f spin-orbitals only. In practice this approach becomes convergent with the ab initio model of Newman. Three ionic uranium compounds: CsUF 6 , Cs 2 UCl 6 and UCl 4 have served as examples of the application. The results obtained, particularly for the first two compounds, are in good agreement with the experimental data. The contributions of different mechanisms responsible for the crystal field effect are discussed. (author)

  8. Minimal knotted polygons in cubic lattices

    International Nuclear Information System (INIS)

    Van Rensburg, E J Janse; Rechnitzer, A

    2011-01-01

    In this paper we examine numerically the properties of minimal length knotted lattice polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices by sieving minimal length polygons from a data stream of a Monte Carlo algorithm, implemented as described in Aragão de Carvalho and Caracciolo (1983 Phys. Rev. B 27 1635), Aragão de Carvalho et al (1983 Nucl. Phys. B 215 209) and Berg and Foester (1981 Phys. Lett. B 106 323). The entropy, mean writhe, and mean curvature of minimal length polygons are computed (in some cases exactly). While the minimal length and mean curvature are found to be lattice dependent, the mean writhe is found to be only weakly dependent on the lattice type. Comparison of our results to numerical results for the writhe obtained elsewhere (see Janse van Rensburg et al 1999 Contributed to Ideal Knots (Series on Knots and Everything vol 19) ed Stasiak, Katritch and Kauffman (Singapore: World Scientific), Portillo et al 2011 J. Phys. A: Math. Theor. 44 275004) shows that the mean writhe is also insensitive to the length of a knotted polygon. Thus, while these results for the mean writhe and mean absolute writhe at minimal length are not universal, our results demonstrate that these values are quite close the those of long polygons regardless of the underlying lattice and length

  9. New ultrasonic attenuation maxima for single crystal dysprosium in a magnetic field

    International Nuclear Information System (INIS)

    Treder, R.A.; Maekawa, S.; Levy, M.

    1976-01-01

    The temperatures and corresponding applied basal plane magnetic fields are reported for longitudinal ultrasonic attenuation maxima in a cylindrical Dy sample. Besides maxima at Tsub(N) and Tsub(C), two new maxima are observed and possible explanations for their existence are given. (Auth.)

  10. Magnetic structure of RPdSn (R=Tb, Ho) single crystal compounds under strong magnetic field

    International Nuclear Information System (INIS)

    Andoh, Y.; Kurisu, M.; Nakamoto, G.; Tsutaoka, T.; Kawano, S.

    2003-01-01

    Rare earth compounds RTX, where R stands for rare earth elements, T for Ni, Pd or Rh, and X for Sn or Ge, crystallize to a rhombic ε-TiNiSi structure. Only rare earth elements R contribute to magnetic properties since T and X atoms are nonmagnetic. The competition between RKKY indirect interaction and large magnetic anisotropy generates many complicated magnetic phases. At a low temperature phase, complicated magnetisms such as meta-magnetism were observed in magnetization curves with many steps. In previous experiments dealing with RPdSn where R means Tb or Ho, some characteristics of magnetic properties of these compounds were deduced from magnetization measurements and neutron diffraction without external magnetic field. In this report, the change of magnetic scattering of neutron diffraction was studied under external magnetic fields in order to reveal the mechanism of the phase transformations of the compounds. The difference between TbPdSn and HoPdSn compounds was observed in magnetic field dependence of the wave vectors of the magnetic scattering. Two independent wave vectors in magnetic scattering existed in HoPdSn compound. (Y. Kazumata)

  11. Polarity-sensitive transient patterned state in a twisted nematic liquid crystal driven by very low frequency fields.

    Science.gov (United States)

    Krishnamurthy, K S; Kumar, Pramoda; Kumar, M Vijay

    2013-02-01

    We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.

  12. Enantioselective Crystallization of Sodium Chlorate in the Presence of Racemic Hydrophobic Amino Acids and Static Magnetic Fields

    Directory of Open Access Journals (Sweden)

    María-Paz Zorzano

    2014-06-01

    Full Text Available We study the bias induced by a weak (200 mT external magnetic field on the preferred handedness of sodium chlorate crystals obtained by slow evaporation at ambient conditions of its saturated saline solution with 20 ppm of added racemic (dl hydrophobic amino acids. By applying the Fisher test to pairs of experiments with opposing magnetic field orientation we conclude, with a confidence level of 99.7%, that at the water-air interface of this saline solution there is an enantioselective magnetic interaction that acts upon racemic mixtures of hydrophobic chiral amino acids. This interaction has been observed with the three tested racemic hydrophobic amino acids: dl-Phe, dl-Try and dl-Trp, at ambient conditions and in spite of the ubiquitous chiral organic contamination. This enantioselective magnetic dependence is not observed when there is only one handedness of added chiral amino-acid, if the added amino acid is not chiral or if there is no additive. This effect has been confirmed with a double blind test. This novel experimental observation may have implications for our view of plausible initial prebiotic scenarios and of the roles of the geomagnetic field in homochirality in the biosphere.

  13. Neutrosophic Cubic MCGDM Method Based on Similarity Measure

    Directory of Open Access Journals (Sweden)

    Surapati Pramanik

    2017-06-01

    Full Text Available The notion of neutrosophic cubic set is originated from the hybridization of the concept of neutrosophic set and interval valued neutrosophic set. We define similarity measure for neutrosophic cubic sets and prove some of its basic properties.

  14. Spinning solitons in cubic-quintic nonlinear media

    Indian Academy of Sciences (India)

    Spinning solitons in cubic-quintic nonlinear media ... features of families of bright vortex solitons (doughnuts, or 'spinning' solitons) in both conservative and dissipative cubic-quintic nonlinear media. ... Pramana – Journal of Physics | News.

  15. AdS5/CFT4 four-point functions of chiral primary operators: Cubic vertices

    International Nuclear Information System (INIS)

    Lee, Sangmin

    1999-01-01

    We study the exchange diagrams in the computation of four-point functions of all chiral primary operators in D=4, N=4 super Yang-Mills using AdS/CFT correspondence. We identify all supergravity fields that can be exchanged and compute the cubic couplings. As a byproduct, we also rederive the normalization of the quadratic action of the exchanged fields. The cubic couplings computed in this paper and the propagators studied extensively in the literature can be used to compute almost all the exchange diagrams explicitly. Some issues in computing the complete four-point function in the 'massless sector' are discussed

  16. Liquidus temperature in the spinel primary phase field: A comparison between optical and crystal fraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Hrma, Pavel; Crum, Jarrod V.; Vienna, John D.; Schweiger, Michael J.; Rodriguez, Carmen P.; Peterson, Jacob A.

    2018-03-01

    Liquidus temperature (TL) was measured for simulated high-level waste borosilicate glasses covering a Hanford composition region, using an optical method and a crystal-fraction extrapolation method with X-ray diffraction data from isothermal heat treatments. The 38 glasses encompassed a one-component-at-a-time variation of a 16-component matrix. The TL values ranged from 1006°C to 1603°C. First-order polynomial models were fitted to data to obtain coefficients in terms of the effect of 1 mass% component addition on the TL: TL-increasing oxides Cr2O3 (264°C), “Others” (minor components, 163°C), oxides of noble metals (137°C), NiO (91°C), Al2O3 and Fe2O3 (~19–21°C); TL-decreasing oxides K2O (-26°C), Na2O (-41°C), and Li2O (-68°C); oxides of little effect MnO, P2O5, ZrO2, F, Bi2O3, SiO2, B2O3, and CaO (9 to -12°C). Also presented are temperatures (T1%) at which glasses contain 1 vol% of spinel as these values are considered relevant to the Hanford Tank Waste Treatment and Immobilization Plant. The measured and estimated values are compared and contrasted and the effect of TL and T1% on glass formulation is discussed.

  17. Porous shaped photonic crystal fiber with strong confinement field in sensing applications: Design and analysis

    Directory of Open Access Journals (Sweden)

    Sawrab Chowdhury

    2017-04-01

    Full Text Available In this article, porous core porous cladding photonic crystal fiber (P-PCF has been proposed for aqueous analytes sensing applications. Guiding properties of the proposed P-PCF has been numerically investigated by utilizing the full vectorial finite element method (FEM. The relative sensitivity and confinement loss are obtained by varying distinct geometrical parameters like the diameter of air holes, a pitch of the core and cladding region over a wider range of wavelength. The proposed P-PCF is organized with five rings air hole in the cladding and two rings air hole in a core territory which maximizes the relative sensitivity expressively and minimizes confinement loss depressively compare with the prior-PCF structures. After completing all investigations, it is also visualized that the relative sensitivity is increasing with the increment of the wavelength of communication band (O + E + S + C + L + U. Higher sensitivity is gained by using higher band for all applied liquids. Finally the investigating effects of different structural parameters of the proposed P-PCF are optimized which shows the sensitivity of 60.57%, 61.45% and 61.82%; the confinement loss of 8.71 × 10−08 dB/m, 1.41 × 10−10 dB/m and 6.51 × 10−10 dB/m for Water (n = 1.33, Ethanol (n = 1.354 and Benzene (n = 1.366 respectively at 1.33 μm wavelength. The optimized P-PCF with higher sensitivity and lower confinement loss has high impact in the area of the chemical as well as gas sensing purposes. Keywords: Porous shaped PCF, Sensitivity, Optical sensing, Liquid sensor, Confinement loss

  18. Crystal modifications and dissolution rate of piroxicam.

    Science.gov (United States)

    Lyn, Lim Yee; Sze, Huan Wen; Rajendran, Adhiyaman; Adinarayana, Gorajana; Dua, Kamal; Garg, Sanjay

    2011-12-01

    Piroxicam is a nonsteroidal anti-inflammatory drug with low aqueous solubility which exhibits polymorphism. The present study was carried out to develop polymorphs of piroxicam with enhanced solubility and dissolution rate by the crystal modification technique using different solvent mixtures prepared with PEG 4000 and PVP K30. Physicochemical characteristics of the modified crystal forms of piroxicam were investigated by X-ray powder diffractometry, FT-IR spectrophotometry and differential scanning calorimetry. Dissolution and solubility profiles of each modified crystal form were studied and compared with pure piroxicam. Solvent evaporation method (method I) produced both needle and cubic shaped crystals. Slow crystallization from ethanol with addition of PEG 4000 or PVP K30 at room temperature (method II) produced cubic crystal forms. Needle forms produced by method I improved dissolution but not solubility. Cubic crystals produced by method I had a dissolution profile similar to that of untreated piroxicam but showed better solubility than untreated piroxicam. Cubic shaped crystals produced by method II showed improved dissolution, without a significant change in solubility. Based on the XRPD results, modified piroxicam crystals obtained by method I from acetone/benzene were cube shaped, which correlates well with the FTIR spectrum; modified needle forms obtained from ethanol/methanol and ethanol/acetone showed a slight shift of FTIR peak that may be attributed to differences in the internal structure or conformation.

  19. Low-field multi-step magnetization of GaV4S8 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Kajinami, Y; Tabata, Y [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Ikeno, R; Motoyama, G; Kohara, T, E-mail: h.nakamura@ht8.ecs.kyoto-u.ac.j [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan)

    2009-01-01

    The magnetization process of single crystalline GaV4S8 including tetrahedral magnetic clusters was measured in the magnetically ordered state below T{sub C} {approx_equal} 13 K. Just below TC, steps were observed at very low fields of the order of 100 Oe, suggesting the competition of several intra- and inter-cluster interactions in a low energy range.

  20. Gigantic magnetoelectric effect caused by magnetic-field-induced canted antiferromagnetic-paramagnetic transition in quasi-two-dimensional Ca2CoSi2O7 crystal

    Science.gov (United States)

    Akaki, M.; Tozawa, J.; Akahoshi, D.; Kuwahara, H.

    2009-05-01

    We have investigated the magnetic and dielectric properties of Ca2CoSi2O7 crystal. The dielectricity and magnetism of Ca2CoSi2O7 are strongly coupled below a canted antiferromagnetic transition temperature (TN). Magnetic fields induce electric polarization below TN. Interestingly, the magnetic-field-induced electric polarization is detected even without poling electric fields. Below TN, a canted antiferromagnetic-paramagnetic transition is induced by magnetic fields. The large magnetocapacitance is observed around TN. The origin of the large magnetocapacitance is due to the magnetic-field-induced the canted antiferromagnetic-paramagnetic transition.