WorldWideScience

Sample records for cube corner sheeting

  1. Thales SESO's hollow and massive corner cube solutions

    Science.gov (United States)

    Fappani, Denis; Dahan, Déborah; Costes, Vincent; Luitot, Clément

    2017-11-01

    For Space Activities, more and more Corner Cubes, used as solution for retro reflection of light (telemetry and positioning), are emerging worldwide in different projects. Depending on the application, they can be massive or hollow Corner Cubes. For corners as well as for any kind of space optics, it usual that use of light/lightened components is always a baseline for purpose of mass reduction payloads. But other parameters, such as the system stability under severe environment, are also major issues, especially for the corner cube systems which require generally very tight angular accuracies. For the particular case of the hollow corner cube, an alternative solution to the usual cementing of the 3 reflective surfaces, has been developed with success in collaboration with CNES to guarantee a better stability and fulfill the weight requirements.. Another important parameter is the dihedral angles that have a great influence on the wavefront error. Two technologies can be considered, either a Corner Cubes array assembled in a very stable housing, or the irreversible adherence technology used for assembling the three parts of a cube. This latter technology enables in particular not having to use cement. The poster will point out the conceptual design, the manufacturing and control key-aspects of such corner cube assemblies as well as the technologies used for their assembling.

  2. Modelling the response of quasi-optical corner cube mixers

    International Nuclear Information System (INIS)

    Kelly, W.M.; Eivers, J.G.; Gans, M.J.

    1986-01-01

    A three-dimensional modeling technique is developed to analyze and predict the optical performance of Schottky-diode corner-cube/wire-antenna devices for submm-astronomy applications. The model determines the antenna efficiency for the case of Gaussian input beams, and simulations of performance in a variety of configurations can be used to optimize instrument designs. Corner-to-whisker spacing and antenna/beam orientation are found to be the most important coupling parameters. 12 references

  3. Centroid stabilization for laser alignment to corner cubes: designing a matched filter

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, Abdul A. S.; Bliss, Erlan; Brunton, Gordon; Kamm, Victoria Miller; Leach, Richard R.; Lowe-Webb, Roger; Roberts, Randy; Wilhelmsen, Karl

    2016-11-08

    Automation of image-based alignment of National Ignition Facility high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retroreflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guarantees stable position estimation.

  4. Geometrical optics analysis of the structural imperfection of retroreflection corner cubes with a nonlinear conjugate gradient method.

    Science.gov (United States)

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho

    2008-12-01

    Geometrical optics analysis of the structural imperfection of retroreflection corner cubes is described. In the analysis, a geometrical optics model of six-beam reflection patterns generated by an imperfect retroreflection corner cube is developed, and its structural error extraction is formulated as a nonlinear optimization problem. The nonlinear conjugate gradient method is employed for solving the nonlinear optimization problem, and its detailed implementation is described. The proposed method of analysis is a mathematical basis for the nondestructive optical inspection of imperfectly fabricated retroreflection corner cubes.

  5. Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism

    Science.gov (United States)

    Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui

    2000-10-01

    We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.

  6. Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities

    KAUST Repository

    Mi, Yang; Liu, Zhixiong; Shang, Qiuyu; Niu, Xinxiang; Shi, Jia; Zhang, Shuai; Chen, Jie; Du, Wenna; Wu, Zhiyong; Wang, Rui; Qiu, Xiaohui; Hu, Xiaoyong; Zhang, Qing; Wu, Tao; Liu, Xinfeng

    2018-01-01

    Recently, organometal halide perovskite-based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high-quality CH3 NH3 PbBr3 single crystals with a unique shape of cube-corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube-corner cavities, which are eminent candidates for small-sized resonators and retroreflectors. The as-grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry-Pérot (F-P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm-2 to 2.2 mJ cm-2 , yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm-2 , which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm-2 . This work advocates the prospect of shape-engineered perovskite crystals toward developing micro-sized optoelectronic devices and potentially investigating light-matter coupling in quantum optics.

  7. Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities

    KAUST Repository

    Mi, Yang

    2018-01-10

    Recently, organometal halide perovskite-based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high-quality CH3 NH3 PbBr3 single crystals with a unique shape of cube-corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube-corner cavities, which are eminent candidates for small-sized resonators and retroreflectors. The as-grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry-Pérot (F-P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm-2 to 2.2 mJ cm-2 , yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm-2 , which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm-2 . This work advocates the prospect of shape-engineered perovskite crystals toward developing micro-sized optoelectronic devices and potentially investigating light-matter coupling in quantum optics.

  8. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    Science.gov (United States)

    Grasso, Robert J.; Odhner, Jefferson E.; Stewart, Hamilton; McDaniel, Robert V.

    2004-12-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: 1) target identification; 2) target tracking; 3) target location; 4) identification friend-or-foe (IFF); 5) parcel tracking, and; 6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  9. Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology

    Science.gov (United States)

    Riahi, Mohammadreza

    2016-06-01

    In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.

  10. TEM in situ cube-corner indentation analysis using ViBe motion detection algorithm

    Science.gov (United States)

    Yano, K. H.; Thomas, S.; Swenson, M. J.; Lu, Y.; Wharry, J. P.

    2018-04-01

    Transmission electron microscopic (TEM) in situ mechanical testing is a promising method for understanding plasticity in shallow ion irradiated layers and other volume-limited materials. One of the simplest TEM in situ experiments is cube-corner indentation of a lamella, but the subsequent analysis and interpretation of the experiment is challenging, especially in engineering materials with complex microstructures. In this work, we: (a) develop MicroViBE, a motion detection and background subtraction-based post-processing approach, and (b) demonstrate the ability of MicroViBe, in combination with post-mortem TEM imaging, to carry out an unbiased qualitative interpretation of TEM indentation videos. We focus this work around a Fe-9%Cr oxide dispersion strengthened (ODS) alloy, irradiated with Fe2+ ions to 3 dpa at 500 °C. MicroViBe identifies changes in Laue contrast that are induced by the indentation; these changes accumulate throughout the mechanical loading to generate a "heatmap" of features in the original TEM video that change the most during the loading. Dislocation loops with b = ½ identified by post-mortem scanning TEM (STEM) imaging correspond to hotspots on the heatmap, whereas positions of dislocation loops with b = do not correspond to hotspots. Further, MicroViBe enables consistent, objective quantitative approximation of the b = ½ dislocation loop number density.

  11. Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam

    Science.gov (United States)

    Chen, Yu-Fan; Wang, Yen-Hung; Tsai, Jui-che

    2018-03-01

    This work has developed an approach to construct a corner cube retroreflector (CCR). A two-dimensional cutout pattern is first fabricated with wire electrical discharge machining process. It is then folded up into a three-dimensional CCR suspended on a cantilever beam. The folded-up CCR may be driven through external actuators for optical modulation; it can also mechanically respond to perturbation, acceleration, etc., to function as a sensor. Mechanical (static and dynamic modeling) and optical (ray tracing) analyses are also performed.

  12. A Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser

    Science.gov (United States)

    Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.

    2018-06-01

    We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.

  13. A study on the formation of the sharp corner on the cutting of Inconel 718 sheet using CW Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Dong Gyu; Byun, Kyung Won; Yoo, Young Tae [Chosun Univ., Gwangju (Korea, Republic of)

    2008-07-01

    The objective of this paper is to investigate into the formation of the sharp corner according to process parameters and corner angles in the cutting of Inconel 718 sheet using CW Nd:YAG laser. In order to examine the effects of corner angles and the size of loop on the melted area in the sharp corner, several angular and loop cutting experiments were performed using a six-axis controlled automatic robot cutting system. The results of angular cutting experiments showed that the melted area is minimized at 90 .deg. of the corner angle. In addition, the results of the loop cutting experiments showed that the melted area rapidly decreases to nearly zero when the corner angle is greater than 3 mm and the corner angle is 90 .deg.

  14. Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector.

    Science.gov (United States)

    Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu

    2017-09-10

    Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated

  15. Development Challenges of Utilizing a Corner Cube Mechanism Design with Successful IASI Flight Heritage for the Infrared Sounder (IRS) on MTG: Recurrent Mechanical Design not Correlated to Recurrent Development

    Science.gov (United States)

    Spanoudakis, Peter; Schwab, Philippe; Kiener, Lionel; Saudan, Herve; Perruchoud, Gerald

    2015-09-01

    The Corner Cube Mechanism (CCM) design for the Infra-Red Sounder (IRS) on MTG is based on the successful mechanism currently in orbit on the Infrared Atmospheric Sounding Interferometers (IASI) on the Metop satellites. The overall CCM performance is described with attention given to the specific design developments for the MTG project. A description is presented of the modifications introduced and challenges encountered to adapt the IASI space heritage design (which is only 15 years old) to meet the MTG specifications. A detailed account is provided regarding the tests performed on the adapted components for the new programme. The major issues encountered and solutions proposed are illustrated concerning the voice- coil actuator development, optical switch design, fatigue life of the flexure components and the adaptation of the launch locking device. Nevertheless, an Engineering Qualification Model was rapidly manufactured and now undergoing a qualification test campaign.

  16. CubeSub

    Science.gov (United States)

    Slettebo, Christian; Jonsson, Lars Jonas

    2016-01-01

    testbed, the CubeSub also holds the potential to become a useful tool for exploration and experimentation here on Earth. A highly standardized system utilizing well-known hardware can reduce the cost and required work load for researchers wishing to perform experiments and exploration. Users could design sensors and experiments to comply with the already well established CubeSat standard, which are then carried by the CubeSub to the region of interest. This in turn means that the end users can focus more on formulating the experiment itself and less about how to get it where they want it. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module will be powered individually and intermodular communication will be wireless, removing the need for wiring. The inside of the cylindrical hull will be flooded with ambient water to enhance the interaction between payloads and surrounding environment. The overall torpedo-like shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole or navigate in tight areas. To keep costs low and further accelerate development, rapid prototyping is utilized wherever possible. Full-scale prototypes are being constructed through 3D-printing and using COTS (Commercial Off-The-Shelf) components. 3D-printing is used both for the largest hull components and the relatively small and delicate propellers. Arduino boards are used for control and internal communication

  17. Core shroud corner joints

    Science.gov (United States)

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  18. Out of the Cube: Augmented Rubik's Cube

    Directory of Open Access Journals (Sweden)

    Oriel Bergig

    2011-01-01

    Full Text Available Computer gaming habits have a tendency to evolve with technology, the best being ones that immerse both our imagination and intellect. Here, we describe a new game platform, an Augmented Reality Rubik's cube. The cube acts simultaneously as both the controller and the game board. Gameplay is controlled by the cube, and game assets are rendered on top of it. Shuffling and tilting operations on the cube are mapped to game interaction. We discuss the game design decisions involved in developing a game for this platform, as well as the technological challenges in implementing it. Ultimately, we describe two games and discuss the conclusions of an informal user study based on those games.

  19. On middle cube graphs

    Directory of Open Access Journals (Sweden)

    C. Dalfo

    2015-10-01

    Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.

  20. Cube search, revisited

    Science.gov (United States)

    Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth

    2015-01-01

    Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with “equivalent” 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. PMID:25780063

  1. Apparatus for drying sugar cubes

    NARCIS (Netherlands)

    Derckx, H.A.J.; Torringa, H.M.

    1999-01-01

    Device for drying sugar cubes containing a heating apparatus for heating and dehumidifying the sugar cubes, a conditioning apparatus for cooling off and possibly further dehumidifying the sugar cubes and a conveying apparatus for conveying the sugar cubes through the heating apparatus and the

  2. Ombuds' Corner: Social exclusion

    CERN Document Server

    Vincent Vuillemin

    2012-01-01

    In this special video edition of the Ombuds' Corner, Vincent Vuillemin takes a look at a social exclusion at CERN. Please note that the characters and situations appearing in this work are fictitious, and any resemblance to real persons or events is purely coincidental.   Contact the Ombuds Early!

  3. Imaginary Cubes and Their Puzzles

    Directory of Open Access Journals (Sweden)

    Hideki Tsuiki

    2012-05-01

    Full Text Available Imaginary cubes are three dimensional objects which have square silhouette projections in three orthogonal ways just as a cube has. In this paper, we study imaginary cubes and present assembly puzzles based on them. We show that there are 16 equivalence classes of minimal convex imaginary cubes, among whose representatives are a hexagonal bipyramid imaginary cube and a triangular antiprism imaginary cube. Our main puzzle is to put three of the former and six of the latter pieces into a cube-box with an edge length of twice the size of the original cube. Solutions of this puzzle are based on remarkable properties of these two imaginary cubes, in particular, the possibility of tiling 3D Euclidean space.

  4. The Photogrammetry Cube

    Science.gov (United States)

    2008-01-01

    We can determine distances between objects and points of interest in 3-D space to a useful degree of accuracy from a set of camera images by using multiple camera views and reference targets in the camera s field of view (FOV). The core of the software processing is based on the previously developed foreign-object debris vision trajectory software (see KSC Research and Technology 2004 Annual Report, pp. 2 5). The current version of this photogrammetry software includes the ability to calculate distances between any specified point pairs, the ability to process any number of reference targets and any number of camera images, user-friendly editing features, including zoom in/out, translate, and load/unload, routines to help mark reference points with a Find function, while comparing them with the reference point database file, and a comprehensive output report in HTML format. In this system, scene reference targets are replaced by a photogrammetry cube whose exterior surface contains multiple predetermined precision 2-D targets. Precise measurement of the cube s 2-D targets during the fabrication phase eliminates the need for measuring 3-D coordinates of reference target positions in the camera's FOV, using for example a survey theodolite or a Faroarm. Placing the 2-D targets on the cube s surface required the development of precise machining methods. In response, 2-D targets were embedded into the surface of the cube and then painted black for high contrast. A 12-inch collapsible cube was developed for room-size scenes. A 3-inch, solid, stainless-steel photogrammetry cube was also fabricated for photogrammetry analysis of small objects.

  5. Ombud's Corner: holiday time!

    CERN Multimedia

    Sudeshna Datta-Cockerill

    2014-01-01

    In July and August, the Ombud’s Corner articles will be taking a holiday. They will resume in September. Meanwhile, the respect@CERN campaign continues so please keep on sending us your suggestions.   As announced in the last Bulletin, "We want these initiatives to belong to you. For this reason, we would like to ask you to suggest the messages you would like to see included in the posters. What does a “respectful workplace” mean for you? Send your suggestions to respect@cern.ch – and of course we will reward the authors with exclusively designed Respect@CERN-branded items. So, whether it's respect in relation to interpersonal interactions, noise, safety, the environment or anything else, we look forward to receiving your ideas. Do not hesitate – send that e-mail now!" As a reminder, all previous Ombud's Corners can be accessed in the Ombud's blog.

  6. Spacer grid corner gusset

    International Nuclear Information System (INIS)

    Larson, J.G.

    1984-01-01

    There is provided a spacer grid for a bundle of longitudinally extending rods in spaced generally parallel relationship comprising spacing means for holding the rods in spaced generally parallel relationship; the spacing means includes at least one exterior grid strip circumscribing the bundle of rods along the periphery thereof; with at least one exterior grid strip having a first edge defining the boundary of the strip in one longitudinal direction and a second edge defining the boundary of the strip in the other longitudinal direction; with at least one exterior grid strip having at least one band formed therein parallel to the longitudinal direction; a plurality of corner gussets truncating each of a plurality of corners formed by at least one band and the first edge and the second edge

  7. Charging induced emission of neutral atoms from NaCl nanocube corners

    International Nuclear Information System (INIS)

    Ceresoli, Davide; Zykova-Timan, Tatyana; Tosatti, Erio

    2008-01-01

    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero-energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct

  8. SpaceCube Core Software

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a flexible, modular and user friendly SpaceCube Core Software system that will dramatically simplify SpaceCube application development and enable any...

  9. Finiteness of corner vortices

    Science.gov (United States)

    Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu

    2018-04-01

    Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.

  10. Random sequential adsorption of cubes

    Science.gov (United States)

    Cieśla, Michał; Kubala, Piotr

    2018-01-01

    Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.

  11. CubeSub - A CubeSat Based Submersible Testbed for Space Technology

    Science.gov (United States)

    Slettebo, Christian

    2016-01-01

    This report is a Master's Thesis in Aerospace Engineering, performed at the NASA Ames Research Center. It describes the development of the CubeSub, a submersible testbed compatible with the CubeSat form factor. The CubeSub will be used to mature technology and operational procedures to be used in space exploration, and possibly also as a tool for exploration of Earthly environments. CubeSats are carried as payloads, either containing technology to be tested or experiments and sensors for scientific use. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module is powered individually and intermodular communication is wireless, reducing the need for wiring. The inside of the hull is flooded with ambient water to simplify the interaction between payloads and surrounding environment. The overall shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole. Rapid prototyping is utilized to a large extent, with full-scale prototypes being constructed through 3D-printing and with COTS (Commercial Off-The-Shelf) components. Arduino boards are used for control and internal communication. Modules required for basic operation have been designed, manufactured and tested. Each module is described with regards to its function, design and manufacturability. By performing tests in a pool it was found that the basic concept is sound and that future improvements include better controllability, course stability and waterproofing of electrical components. Further development is needed to make the CubeSub usable for its intended purposes. The largest gains are expected to be found by developing the software and improving controllability.

  12. First steps towards cube textured nickel profile wires for YBCO-coated conductors

    International Nuclear Information System (INIS)

    Eickemeyer, J.; Gueth, A.; Freudenberger, J.; Holzapfel, B.; Schultz, L.

    2011-01-01

    The cube texture as a typical sheet texture can also be formed by cold drawing and recrystallization in profile wires. Cube textured Ni profile wires containing up to 96.2% cube oriented grains in the central region were obtained. Forthcoming investigations are promising to get a textured substrate wire for YBCO-coated conductors. Cube textured nickel alloy tapes prepared by cold rolling and annealing (RABiTS method) represent a standard metallic substrate for superconductor coatings of the YBa 2 Cu 3 O 7-δ (YBCO) type. These tapes have a width to thickness ratio of about 30-100. However, a value of close to one is optimal concerning low energetic losses under alternating current applications. First experiments on micro-alloyed nickel prove that the cube texture as a typical sheet texture can also be formed in profile wires with a rectangular cross-section after cold drawing and recrystallization treatment.

  13. CubeSat Launch Initiative

    Science.gov (United States)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  14. External corners as heat bridges

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1984-08-01

    The maximum additional heat loss in vertical external corners depending on wall thickness is determined. In order to amire at a low k-value, a much smaller wall thickness is required in externally insulated walls than in monolithic constructions; the greater loss of heat bridge with external insulation stands in contrast to a higher loss in thick, monolithic walls. In relation to total losses, the additional losses through external corners are practically negligible.

  15. Corner diffraction coefficients for the quarter plane

    DEFF Research Database (Denmark)

    Hansen, Thorkild B.

    1991-01-01

    that the corner current for the right-angled corner, illuminated from a forward direction, consists mainly of two edge waves propagating along the edges forming the corner. Analytical expressions for these edge wave currents are constructed from the numerical results. A corner diffracted field is calculated...

  16. gCube Grid services

    CERN Document Server

    Andrade, Pedro

    2008-01-01

    gCube is a service-based framework for eScience applications requiring collaboratory, on-demand, and intensive information processing. It provides to these communities Virtual Research Environments (VREs) to support their activities. gCube is build on top of standard technologies for computational Grids, namely the gLite middleware. The software was produced by the DILIGENT project and will continue to be supported and further developed by the D4Science project. gCube reflects within its name a three-sided interpretation of the Grid vision of resource sharing: sharing of computational resources, sharing of structured data, and sharing of application services. As such, gCube embodies the defining characteristics of computational Grids, data Grids, and virtual data Grids. Precisely, it builds on gLite middleware for managing distributed computations and unstructured data, includes dedicated services for managing data and metadata, provides services for distributed information retrieval, allows the orchestration...

  17. Local heat transfer around a wall-mounted cube at 45 deg. to flow in a turbulent boundary layer

    International Nuclear Information System (INIS)

    Nakamura, Hajime; Igarashi, Tamotsu; Tsutsui, Takayuki

    2003-01-01

    The flow and local heat transfer around a wall-mounted cube oriented 45 deg. to the flow is investigated experimentally in the range of Reynolds number 4.2 x 10 3 -3.3 x 10 4 based on the cube height. The distribution of local heat transfer on the cube and its base wall are examined, and it is clarified that the heat transfer distribution under the angled condition differs markedly to that for cube oriented perpendicular to the flow, particularly on the top face of the cube. The surface pressure distribution is also investigated, revealing a well-formed pair of leading-edge vortices extending from the front corner of the top face downstream along both front edges for Re>(1-2)x10 4 . Regions of high heat transfer and low pressure are formed along the flow reattachment and separation lines caused by these vortices. In particular, near the front corner of the top face, pressure suction and heat transfer enhancement are pronounced. The average heat transfer on the top face is enhanced at Re>(1-2)x10 4 over that of a cube aligned perpendicular to the flow

  18. Corners in M-theory

    Science.gov (United States)

    Sati, Hisham

    2011-06-01

    M-theory can be defined on closed manifolds as well as on manifolds with boundary. As an extension, we show that manifolds with corners appear naturally in M-theory. We illustrate this with four situations: the lift to bounding 12 dimensions of M-theory on anti-de Sitter spaces, ten-dimensional heterotic string theory in relation to 12 dimensions, and the two M-branes within M-theory in the presence of a boundary. The M2-brane is taken with (or as) a boundary and the worldvolume of the M5-brane is viewed as a tubular neighborhood. We then concentrate on the (variant) of the heterotic theory as a corner and explore analytical and geometric consequences. In particular, we formulate and study the phase of the partition function in this setting and identify the corrections due to the corner(s). The analysis involves considering M-theory on disconnected manifolds and makes use of the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners and the b-calculus of Melrose.

  19. Corners in M-theory

    International Nuclear Information System (INIS)

    Sati, Hisham

    2011-01-01

    M-theory can be defined on closed manifolds as well as on manifolds with boundary. As an extension, we show that manifolds with corners appear naturally in M-theory. We illustrate this with four situations: the lift to bounding 12 dimensions of M-theory on anti-de Sitter spaces, ten-dimensional heterotic string theory in relation to 12 dimensions, and the two M-branes within M-theory in the presence of a boundary. The M2-brane is taken with (or as) a boundary and the worldvolume of the M5-brane is viewed as a tubular neighborhood. We then concentrate on the (variant) of the heterotic theory as a corner and explore analytical and geometric consequences. In particular, we formulate and study the phase of the partition function in this setting and identify the corrections due to the corner(s). The analysis involves considering M-theory on disconnected manifolds and makes use of the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners and the b-calculus of Melrose.

  20. PowerCube: Integrated Power, Propulsion, and Pointing for CubeSats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tethers Unlimited, Inc. proposes to develop the PowerCube, an integrated power, propulsion, and pointing solution for CubeSats. The PowerCube combines three...

  1. Propulsion for CubeSats

    Science.gov (United States)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  2. VT NAD27 Orthophoto Boundaries - corner points

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) RF 5000 scale orthophoto edge lines (4000 x 4000 meter grid cells) were generated automatically from the known corner locations. These corners...

  3. Local heat transfer around a wall-mounted cube. Case of the attack angle of 45 deg.; Rippotai tokki mawari no kyokusho netsu dentatsu. Katamukikaku 45 degrees no baai

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H.; Igarashi, T.; Tsutsui, T. [National Defense Academy, Kanagawa (Japan)

    1999-11-25

    An experimental study was performed to investigate the local heat transfer around a cube mounted on the wall. The cube lied in the turbulent boundary layer. The flow angle of attack to the cube was 15 degree. The Reynolds number ranged from 4.2 x 10{sup 3} to 3.3 x 10{sup 4}. The surface temperature distributions around time cube were measured with thermocouples tinder the condition of a constant heat flux. The local h eat transfer is very high near the front corner on the top face of the cube. This high heat transfer region extends from the front corner to downstream along both edges. This is caused by the formation of lamb horn vortex. The local heat transfer is also high in time region of horseshoe vortex formed a round the cube. On the wall behind the cube, there is a pair of minimum heat transfer region. The average Nusselt number on each face of the cube is given as a function of Reynolds number. The overall Nusselt number of time cube is expressed by Nu{sub m}=0.43Re{sup 0.58}. (author)

  4. Data Cube Visualization with Blender

    Science.gov (United States)

    Kent, Brian R.; Gárate, Matías

    2017-06-01

    With the increasing data acquisition rates from observational and computational astrophysics, new tools are needed to study and visualize data. We present a methodology for rendering 3D data cubes using the open-source 3D software Blender. By importing processed observations and numerical simulations through the Voxel Data format, we are able use the Blender interface and Python API to create high-resolution animated visualizations. We review the methods for data import, animation, and camera movement, and present examples of this methodology. The 3D rendering of data cubes gives scientists the ability to create appealing displays that can be used for both scientific presentations as well as public outreach.

  5. Transformation of the corner: A shield cloak and a planar retro-reflector

    Science.gov (United States)

    Yang, R.; Lei, Z. Y.; Fan, J.; Gao, D. X.; Wang, Z. X.; Xie, Y. J.

    2013-10-01

    A metallic sheet, coated with a few blocks of all-dielectric isotropic materials, is presented for creating an illusion or an image of a corner based on quasi-conformal transformation optics. On the one hand, our design is able to generate cloaking effects to conceal objects hiding inside a corner. On the other hand, we propose to use such a planar transformation device to represent a corner reflector that reflects light directly back to its source. The full wave simulation shows our device is capable of operating considerably well in a broad frequency range, and presents only the appearance of a bare corner functioning as a shield cloak or a planar retro-reflector.

  6. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  7. Nearest Neighbour Corner Points Matching Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Changlong

    2015-01-01

    Full Text Available Accurate detection towards the corners plays an important part in camera calibration. To deal with the instability and inaccuracies of present corner detection algorithm, the nearest neighbour corners match-ing detection algorithms was brought forward. First, it dilates the binary image of the photographed pictures, searches and reserves quadrilateral outline of the image. Second, the blocks which accord with chess-board-corners are classified into a class. If too many blocks in class, it will be deleted; if not, it will be added, and then let the midpoint of the two vertex coordinates be the rough position of corner. At last, it precisely locates the position of the corners. The Experimental results have shown that the algorithm has obvious advantages on accuracy and validity in corner detection, and it can give security for camera calibration in traffic accident measurement.

  8. Forming properties and springback evaluation of copper beryllium sheets

    International Nuclear Information System (INIS)

    Tseng, A.A.; Jen, K.P.; Chen, T.C.; Kondetimmamhalli, R.

    1995-01-01

    Copper beryllium (CuBe) alloys possess excellent strength and conductivity. They have become the most important materials used for producing high reliability connectors and interconnections for electrical and electronic applications. As demand for high connection density in electrical and electronic products grows, springback behaviors become increasingly critical in fabricating these miniaturized contact components from sheet base materials. In the present article, a study of the springback behavior of CuBe sheets under different heat treatments is presented, with the goal of providing reliable information needed for fabricating more intricate connection parts. Both experimental and analytical techniques were adopted. The tensile tester was first used to study the springback related tensile properties. The governing tensile parameters on springback were identified, and their variations for sheets with different heat treatments were studied. It was found that a bilinear constitutive relationship can be characterize the stress strain behavior of the CuBe alloy. A closed form solution based on this bilinear relationship was formulated to predict the springback for the CuBe sheets at bending conditions. A V-shaped bend tester having an interchangeable punch to accommodate multiple radii was designed and built to evaluate the springback properties of CuBe sheets. A good correlation was found between the analytical predictions and experimental data. A parametric study, as an example, was also performed to provide the springback information needed for designing complicated connectors

  9. Corner stores: the perspective of urban youth.

    Science.gov (United States)

    Sherman, Sandra; Grode, Gabrielle; McCoy, Tara; Vander Veur, Stephanie S; Wojtanowski, Alexis; Sandoval, Brianna Almaguer; Foster, Gary D

    2015-02-01

    We examined the perspectives of low-income, urban youth about the corner store experience to inform the development of corner store interventions. Focus groups were conducted to understand youth perceptions regarding their early shopping experiences, the process of store selection, reasons for shopping in a corner store, parental guidance about corner stores, and what their ideal, or "dream corner store" would look like. Thematic analysis was employed to identify themes using ATLAS.ti (version 6.1, 2010, ATLAS.ti GmbH) and Excel (version 2010, Microsoft Corp). Focus groups were conducted in nine kindergarten-through-grade 8 (K-8) public schools in low-income neighborhoods with 40 fourth- to sixth-graders with a mean age of 10.9±0.8 years. Youth report going to corner stores with family members at an early age. By second and third grades, a growing number of youth reported shopping unaccompanied by an older sibling or adult. Youth reported that the products sold in stores were the key reason they choose a specific store. A small number of youth said their parents offered guidance on their corner store purchases. When youth were asked what their dream corner store would look like, they mentioned wanting a combination of healthy and less-healthy foods. These data suggest that, among low-income, urban youth, corner store shopping starts at a very young age and that product, price, and location are key factors that affect corner store selection. The data also suggest that few parents offer guidance about corner store purchases, and youth are receptive to having healthier items in corner stores. Corner store intervention efforts should target young children and their parents/caregivers and aim to increase the availability of affordable, healthier products. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  10. Internal and external axial corner flows

    Science.gov (United States)

    Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.

    1975-01-01

    The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.

  11. Ring retroreflector system consisting of cube-corner reflectors with special coating

    International Nuclear Information System (INIS)

    Burmistrov, V B; Sadovnikov, M A; Sokolov, A L; Shargorodskiy, V D

    2013-01-01

    The ring retroreflector system (RS) consisting of cubecorner reflectors (CCRs) with a special coating of reflecting surfaces, intended for uniaxially Earth-oriented navigation satellites, is considered. The error of distance measurement caused by both the laser pulse delay in the CCR and its spatial position (CCR configuration) is studied. It is shown that the ring RS, formed by the CCR with a double-spot radiation pattern, allows the distance measurement error to be essentially reduced. (nanogradient dielectric coatings and metamaterials)

  12. CubeIndexer: Indexer for regions of interest in data cubes

    Science.gov (United States)

    Chilean Virtual Observatory; Araya, Mauricio; Candia, Gabriel; Gregorio, Rodrigo; Mendoza, Marcelo; Solar, Mauricio

    2015-12-01

    CubeIndexer indexes regions of interest (ROIs) in data cubes reducing the necessary storage space. The software can process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. The software forms part of the Chilean Virtual Observatory (ChiVO) and provides the capability of content-based searches on data cubes to the astronomical community.

  13. The IceCube Computing Infrastructure Model

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Besides the big LHC experiments a number of mid-size experiments is coming online which need to define new computing models to meet the demands on processing and storage requirements of those experiments. We present the hybrid computing model of IceCube which leverages GRID models with a more flexible direct user model as an example of a possible solution. In IceCube a central datacenter at UW-Madison servers as Tier-0 with a single Tier-1 datacenter at DESY Zeuthen. We describe the setup of the IceCube computing infrastructure and report on our experience in successfully provisioning the IceCube computing needs.

  14. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  15. PowerCube: Integrated Power, Propulsion, and Pointing for CubeSats, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The PowerCube is a 1U CubeSat module that provides integrated propulsion, power, and precision pointing to enable the low-cost CubeSat platform to be used to conduct...

  16. Detecting corner points from digital curves

    International Nuclear Information System (INIS)

    Sarfraz, M.

    2011-01-01

    Corners in digital images give important clues for shape representation, recognition, and analysis. Since dominant information regarding shape is usually available at the corners, they provide important features for various real life applications in the disciplines like computer vision, pattern recognition, computer graphics. Corners are the robust features in the sense that they provide important information regarding objects under translation, rotation and scale change. They are also important from the view point of understanding human perception of objects. They play crucial role in decomposing or describing the digital curves. They are also used in scale space theory, image representation, stereo vision, motion tracking, image matching, building mosaics and font designing systems. If the corner points are identified properly, a shape can be represented in an efficient and compact way with sufficient accuracy. Corner detection schemes, based on their applications, can be broadly divided into two categories: binary (suitable for binary images) and gray level (suitable for gray level images). Corner detection approaches for binary images usually involve segmenting the image into regions and extracting boundaries from those regions that contain them. The techniques for gray level images can be categorized into two classes: (a) Template based and (b) gradient based. The template based techniques utilize correlation between a sub-image and a template of a given angle. A corner point is selected by finding the maximum of the correlation output. Gradient based techniques require computing curvature of an edge that passes through a neighborhood in a gray level image. Many corner detection algorithms have been proposed in the literature which can be broadly divided into two parts. One is to detect corner points from grayscale images and other relates to boundary based corner detection. This contribution mainly deals with techniques adopted for later approach

  17. Sharp corners as sources of spiral pairs

    International Nuclear Information System (INIS)

    Biton, Y.; Rabinovitch, A.; Braunstein, D.; Friedman, M.; Aviram, I.

    2010-01-01

    It is demonstrated that using the FitzHugh-Nagumo model, stimulation of excitable media inside a region possessing sharp corners, can lead to the appearance of sources of spiral-pairs of sustained activity. The two conditions for such source creation are: The corners should be less than 120 deg. and the range of stimulating amplitudes should be small, occurring just above the threshold value and decreasing with the corner angle. The basic mechanisms driving the phenomenon are discussed. These include: A. If the corner angle is below 120 deg., the wave generated inside cannot emerge at the corner tip, resulting in the creation of two free edges which start spiraling towards each other. B. Spiraling must be strong enough; otherwise annihilation of the rotating arms would occur too soon to create a viable source. C. The intricacies of the different radii involved are elucidated. Possible applications in heart stimulation and in chemical reactions are considered.

  18. Tangible cubes as programming objects

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2006-11-01

    Full Text Available by the relative placement of physical cubes. The following six functionalities have been implemented: turn the body left/right, turn the head left/right, and move the body forward/backwards. The movements are all incremental. To achieve maximum body and head... the sequence started. Now, left and right have been “interchanged”. When programming, the child would not take this into consideration. In other words, the co-ordinates of the robot are different to the coordinates of the world, but the programming child...

  19. Collection of Recyclables from Cubes

    DEFF Research Database (Denmark)

    Wøhlk, Sanne; Bogh, Morten Bie; Mikkelsen, Hardy

    2014-01-01

    Collection of recyclable materials is a major part of reverse logistics and an important issue in sustainable logistics. In this paper we consider a case study where paper and glass are collected from recycling cubes and transported to a treatment facility where it is processed for reuse. We...... analyze how outsourcing the planning and transportation of the service can result in conflicts of interest and as a consequence cause unsustainable solutions. Finally, we suggest an alternative payment structure which can lead to a common goal, overall economic sustainability, and an improved financial...

  20. Groups acting on CAT(0) cube complexes

    OpenAIRE

    Niblo, Graham A.; Reeves, Lawrence

    1997-01-01

    We show that groups satisfying Kazhdan's property (T) have no unbounded actions on finite dimensional CAT(0) cube complexes, and deduce that there is a locally CAT(-1) Riemannian manifold which is not homotopy equivalent to any finite dimensional, locally CAT(0) cube complex.

  1. IceCube Gen2. The next-generation neutrino observatory for the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Santen, Jakob van [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic-kilometer Cherenkov telescope buried in the ice sheet at the South Pole that detects neutrinos of all flavors with energies from tens of GeV to several PeV. The instrument provided the first measurement of the flux of high-energy astrophysical neutrinos, opening a new window to the TeV universe. At the other end of its sensitivity range, IceCube has provided precision measurements of neutrino oscillation parameters that are competitive with dedicated accelerator-based experiments. Here we present design studies for IceCube Gen2, the next-generation neutrino observatory for the South Pole. Instrumenting a volume of more that 5 km{sup 3} with over 100 new strings, IceCube Gen2 will have substantially greater sensitivity to high-energy neutrinos than current-generation instruments. PINGU, a dense infill array, will lower the energy threshold of the inner detector region to 4 GeV, allowing a determination of the neutrino mass hierarchy. On the surface, a large air shower detector will veto high-energy atmospheric muons and neutrinos from the southern hemisphere, enhancing the reach of astrophysical neutrino searches. With its versatile instrumentation, the IceCube Gen2 facility will allow us to explore the neutrino sky with unprecedented sensitivity, providing new constraints on the sources of the highest-energy cosmic rays, and yield precision data on the mixing and mass ordering of neutrinos.

  2. 3Corners of the World / Joosep Sang

    Index Scriptorium Estoniae

    Sang, Joosep

    2009-01-01

    Arvustused : Robert Jürjendal, Petri Kuljuntausta, David Rothenberg. 3Corners of the World. [Tallinn] : Terra Nova Music, 2008. Nadia ja Fragile. Uhke ali. [Tallinn] : Nadia & Fragile, 2008. UMA. Civitas Soli. [Tallinn] : Elwood, 2008. Uutest heliplaatidest

  3. VT NAD83 Orthophoto Boundaries - corner points

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) RF 5000 NAD83 orthophoto edge lines (4000 x 4000 meter grid cells) were generated automatically from the known corner locations (generated by Gary...

  4. IceCube Results and PINGU Perspectives

    DEFF Research Database (Denmark)

    Koskinen, David Jason

    2015-01-01

    The last three years of IceCube operation with the completed detector have resulted in a plethora of results, including the first observation of high energy astrophysical neutrinos, tests of a possible neutrino flux from atmospheric charm meson decay, and competitive results of neutrino oscillation...... from atmospheric muon neutrino disappearance. Based on the success of IceCube, a new low energy in-fill, known as the Precision IceCube Next Generation Upgrade, is being proposed with the primary physics goal of resolving the ordering of the neutrino mass hierarchy....

  5. Intrinsic viscosity of a suspension of cubes

    KAUST Repository

    Mallavajula, Rajesh K.

    2013-11-06

    We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.

  6. A Shell Multi-dimensional Hierarchical Cubing Approach for High-Dimensional Cube

    Science.gov (United States)

    Zou, Shuzhi; Zhao, Li; Hu, Kongfa

    The pre-computation of data cubes is critical for improving the response time of OLAP systems and accelerating data mining tasks in large data warehouses. However, as the sizes of data warehouses grow, the time it takes to perform this pre-computation becomes a significant performance bottleneck. In a high dimensional data warehouse, it might not be practical to build all these cuboids and their indices. In this paper, we propose a shell multi-dimensional hierarchical cubing algorithm, based on an extension of the previous minimal cubing approach. This method partitions the high dimensional data cube into low multi-dimensional hierarchical cube. Experimental results show that the proposed method is significantly more efficient than other existing cubing methods.

  7. Chemistry Cube Game - Exploring Basic Principles of Chemistry by Turning Cubes.

    Science.gov (United States)

    Müller, Markus T

    2018-02-01

    The Chemistry Cube Game invites students at secondary school level 1 and 2 to explore basic concepts of chemistry in a playful way, either as individuals or in teams. It consists of 15 different cubes, 9 cubes for different acids, their corresponding bases and precursors, and 6 cubes for different reducing and oxidising agents. The cubes can be rotated in those directions indicated. Each 'allowed' vertical or horizontal rotation of 90° stands for a chemical reaction or a physical transition. Two different games and playing modes are presented here: First, redox chemistry is introduced for the formation of salts from elementary metals and non-metals. Second, the speciation of acids and bases at different pH-values is shown. The cubes can be also used for games about environmental chemistry such as the carbon and sulphur cycle, covering the topic of acid rain, or the nitrogen cycle including ammoniac synthesis, nitrification and de-nitrification.

  8. Stability of Roundheads Armoured with Cubes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Haagensen, Per; Macineira, Enrique

    2003-01-01

    The paper presents the results of a hydraulic model test study of the influence of concrete mass density and placement method on the stability of cube armour in a 1:2 slope cone shaped roundhead exposed to short ? crested seas. Location and development of armour displacements were studied...... for concrete cubes with mass density of 2.4 t/m 3 and 2.8 t/m 3 in random and regular placement. Significant increase in stability for the higher mass density cubes was found showing that the same dimension cubes can be used in roundhead and trunk, if for the top layer of the most exposed part of the roundhead...

  9. GALILEO NIMS SPECTRAL IMAGE CUBES: JUPITER OPERATIONS

    Data.gov (United States)

    National Aeronautics and Space Administration — The natural form of imaging spectrometer data is the spectral image cube. It is normally in band sequential format, but has a dual nature. It is a series of 'images'...

  10. CUBE (Computer Use By Engineers) symposium abstracts

    International Nuclear Information System (INIS)

    Ruminer, J.J.

    1978-07-01

    This report presents the abstracts for the CUBE (Computer Use by Engineers) Symposium, October 4, through 6, 1978. Contributors are from Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, and Sandia Laboratories

  11. NDE Evidence for the Damage Arrestment Performance of PRSEUS Composite Cube During High-Pressure Load Test

    Science.gov (United States)

    Johnston, Patrick H.; Parker, F. Raymond

    2013-01-01

    As an approach to light-weight, cost-effective and manufacturable structures required to enable the hybrid wing body aircraft, The Boeing Company, Inc. and NASA have developed the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. A PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept as part of a building block approach for technology development of the PRSEUS concept. The overall specimen strength exceeded the 18.4 psi load requirement as testing resulted in the cube reaching a final pressure load of around 48 psi prior to catastrophic failure. The cube pressure test verified that the joints and structure were capable of sustaining the required loads, and represented the first testing of joined PRSEUS structure. This paper will address the damage arrestment performance of the stitched PRSEUS structure. Following catastrophic failure of the cube, ultrasonic pulse-echo inspection found that the localized damage, surrounding a barely-visible impact damage site, did not change noticeably between just after impact and catastrophic failure of the cube, and did not play a role in the catastrophic failure event. Ultrasonic inspection of the remaining intact cube panels presented three basic types of indications: delaminations between laminae parallel to the face sheets, lying between face sheet and tear strap layers, or between tear strap and flange layers; delaminations above the noodles of stringers, frames or integral caps, lying within face sheet or tear strap layers; and delaminations between the laminae in the inner fillets of the integral caps, where pulloff stresses were expected to be highest. Delaminations of all three types were predominantly contained by the first row of stitches encountered. For the small fraction of delaminations extending beyond the first row of stitches, all were contained by the second stitch row.

  12. Nutrition environments in corner stores in Philadelphia.

    Science.gov (United States)

    Cavanaugh, Erica; Mallya, Giridhar; Brensinger, Colleen; Tierney, Ann; Glanz, Karen

    2013-02-01

    To examine the availability, quality, and price of key types of healthy and less-healthy foods found in corner stores in low-income urban neighborhoods and the associations between store characteristics and store food environments. A sample of 246 corner stores was selected from all corner stores participating in the Philadelphia Healthy Corner Store Initiative (HCSI). The Nutrition Environment Measures Survey for Corner Stores (NEMS-CS) was used to assess the availability, quality, and price of foods and beverages in 11 common categories between February and May, 2011. NEMS-CS measures were completed in 233 stores, 94.7% of the 246 stores approached. The healthier options were significantly less available in all food categories and often more expensive. Baked goods, bread, chips and cereals were sold at nearly all stores, with significantly fewer offering low-fat baked goods (5.7%, pbread (56.2%, pfood environment and dietary choices among low-income urban populations. Availability of certain healthier foods could be improved. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Heat transfer at a beam port corner

    International Nuclear Information System (INIS)

    Krinsky, S.

    Along the general run of the vacuum chamber synchrotron radiation strikes the wall at a glancing angle of about 5.6 0 . The heat source is well-approximated by a ribbon of uniform power density having a small vertical height and an infinite azimuthal length. The heat transfer problem reduces to one in two-dimensions and it has been considered in a previous note. At the corner of a beam port the angle of incidence becomes 90 0 , so the temperature rises much higher than elsewhere. Since the power density at the corner is not uniform in its azimuthal dependence, but is strongly peaked at the point of normal incidence, two-dimensional heat flow is not a good approximation. The rectangular 3d problem is considered. This is easily solved and yields a good first estimate of the temperature rise at the corner

  14. CubeSat Launch Initiative Overview and CubeSat 101

    Science.gov (United States)

    Higginbotham, Scott

    2017-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results. This presentation will also provide high level CubeSat 101 information for prospective CubeSat developers, describing the development process from concept through mission operations while highlighting key points that developers need to be mindful of.

  15. FNS Research Corner: Summary of Research

    Science.gov (United States)

    Gola, Alice Ann H.; Burdg, Jinee

    2018-01-01

    The FNS Research Corner provides a continuing series to summarize recently completed and current research conducted by the U.S. Department of Agriculture's Food and Nutrition Service (FNS) in the area of child nutrition. Summaries of recently completed research projects and in-progress research are provided in this article.

  16. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  17. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-06-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  18. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-02-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  19. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  20. Stability of Roundheads Armoured with Cubes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Haagensen, Per; Macineira, Enrique

    2003-01-01

    The paper presents the results of a hydraulic model test study of the influence of concrete mass density and placement method on the stability of cube armour in a 1:2 slope cone shaped roundhead exposed to short ? crested seas. Location and development of armour displacements were studied...... are used cubes with concrete mass density 2.8 t/m 3 instead of 2.4 t/m 3 . Significant smaller crane capacity is needed compared to the conventional solution of unchanged mass density which implies approximately a doubling the mass of the roundhead armour units....

  1. Ultracapacitor Based Power Supply for CubeSats, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditionally, the relatively small surface area and volume of a cube satellite has restricted the practical power limit of cube satellites. To the extent that the...

  2. NavCube: A fully realized modernized GPS receiver

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this IRAD project is to complete the technology development of the modernized Navigator-SpaceCube GPS receiver (named the NavCube), enabling a potential...

  3. The topoligical relations of corner buildings in the street fabric

    DEFF Research Database (Denmark)

    Herriott, Richard

    2016-01-01

    This paper considers the role of the corner and corner buildings in the architectural relations of the street. Referring to affordance, legibility and Weber´s (1995) psychological approach to perceived architectural space, the paper discusses the value of clearly articulated corner constructions...

  4. CubeSat Nighttime Earth Observations

    Science.gov (United States)

    Pack, D. W.; Hardy, B. S.; Longcore, T.

    2017-12-01

    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  5. First Results from IceCube

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2006-01-01

    IceCube is a 1 km 3 neutrino observatory being built to study neutrino production in active galactic nuclei, gamma-ray bursts, supernova remnants, and a host of other astrophysical sources. High-energy neutrinos may signal the sources of ultra-high energy cosmic rays. IceCube will also study many particle-physics topics: searches for WIMP annihilation in the Earth or the Sun, and for signatures of supersymmetry in neutrino interactions, studies of neutrino properties, including searches for extra dimensions, and searches for exotica such as magnetic monopoles or Q-balls. IceCube will also study the cosmic-ray composition. In January, 2005, 60 digital optical modules (DOMs) were deployed in the South Polar ice at depths ranging from 1450 to 2450 meters, and 8 ice-tanks, each containing 2 DOMs were deployed as part of a surface air-shower array. All 76 DOMs are collecting high-quality data. After discussing the IceCube physics program and hardware, I will present some initial results with the first DOMs

  6. Teaching Group Theory Using Rubik's Cubes

    Science.gov (United States)

    Cornock, Claire

    2015-01-01

    Being situated within a course at the applied end of the spectrum of maths degrees, the pure mathematics modules at Sheffield Hallam University have an applied spin. Pure topics are taught through consideration of practical examples such as knots, cryptography and automata. Rubik's cubes are used to teach group theory within a final year pure…

  7. Refining the Barendregt cube using parameters

    NARCIS (Netherlands)

    Kamareddine, F.; Laan, T.D.L.; Nederpelt, R.P.; Kuchen, H.; Ueda, K.

    2001-01-01

    The Barendregt Cube (introduced in [3]) is a framework in which eight important typed ¿-calculi are described in a uniform way. Moreover, many type systems (like Automath [18], LF [11], ML [17], and system F [10]) can be related to one of these eight systems. Further- more, via the

  8. Using OLAP Data Cubes in Business Intelligence

    Directory of Open Access Journals (Sweden)

    Cristescu Marian Pompiliu

    2016-12-01

    Full Text Available The purpose of this paper is to demonstrate that it is possible to develop business intelligence projects in big and medium-size organizations, only with Microsoft products, used in accordance with standard OLAP cube technology, and presented possible alternatives, in relation with the requested functions.

  9. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat s...... layers, Fracture mechanics, Crack closure, Steady state crack propagation.......An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place. Keywords: Delamination, Thin...

  10. Brilliant Corners: Approaches to Jazz and Comics

    Directory of Open Access Journals (Sweden)

    Nicolas Pillai

    2016-08-01

    Full Text Available The call for papers Brilliant Corners: Approaches to Jazz and Comics was published on 30 July 2015. In it, the editors made a public invitation for scholarship that proposed meeting points between the disciplines of jazz studies and comics studies. This editorial discusses the motivations for the collection, the editorial methodology, and the research articles included. Finally, the editors suggest some areas in which jazz studies and comics scholarship might address under-researched and fertile topics.

  11. Around the Corner to Better Health: A Milwaukee Corner Store Initiative.

    Science.gov (United States)

    Young, Staci; DeNomie, Melissa; Sabir, JoAnne; Gass, Eric; Tobin, Jessie

    2017-01-01

    To discuss successes and challenges of a collaborative pilot project to increase healthy food availability in corner stores in Milwaukee, Wisconsin. The Lindsay Heights Healthy Corner Store Initiative aimed to help corner stores sell high-quality produce by increasing supply of healthy foods and funding minor store upgrades to facilitate change. Evaluation research. Milwaukee, Wisconsin. Corner stores; youth and adult community members. (1) Supporting businesses in purchasing equipment to stock fresh produce, (2) connecting stores with produce sources, and (3) community outreach and marketing. Partnership capacity, youth engagement in food justice, and community members' usage of corner stores. Qualitative analysis; descriptive statistics. Storeowners reported more sold produce items per week and increased noticeable fresh produce upon entrance into the store. There was increased or improved store redesign, fresh produce signage, in-store cooking demonstrations, and small business development resources. Youth learned about new vegetables, increased kitchen skills and proper food storage, and the effects of obesity on overall health. Similar interventions must address infrastructure costs, cooperation with property owners, and local policies and regulations affecting business practices.

  12. The visual system prioritizes locations near corners of surfaces (not just locations near a corner).

    Science.gov (United States)

    Bertamini, Marco; Helmy, Mai; Bates, Daniel

    2013-11-01

    When a new visual object appears, attention is directed toward it. However, some locations along the outline of the new object may receive more resources, perhaps as a consequence of their relative importance in describing its shape. Evidence suggests that corners receive enhanced processing, relative to the straight edges of an outline (corner enhancement effect). Using a technique similar to that in an original study in which observers had to respond to a probe presented near a contour (Cole et al. in Journal of Experimental Psychology: Human Perception and Performance 27:1356-1368, 2001), we confirmed this effect. When figure-ground relations were manipulated using shaded surfaces (Exps. 1 and 2) and stereograms (Exps. 3 and 4), two novel aspects of the phenomenon emerged: We found no difference between corners perceived as being convex or concave, and we found that the enhancement was stronger when the probe was perceived as being a feature of the surface that the corner belonged to. Therefore, the enhancement is not based on spatial aspects of the regions in the image, but critically depends on figure-ground stratification, supporting the link between the prioritization of corners and the representation of surface layout.

  13. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions

    Science.gov (United States)

    Poghosyan, Armen; Golkar, Alessandro

    2017-01-01

    Traditionally, the space industry produced large and sophisticated spacecraft handcrafted by large teams of engineers and budgets within the reach of only a few large government-backed institutions. However, over the last decade, the space industry experienced an increased interest towards smaller missions and recent advances in commercial-off-the-shelf (COTS) technology miniaturization spurred the development of small spacecraft missions based on the CubeSat standard. CubeSats were initially envisioned primarily as educational tools or low cost technology demonstration platforms that could be developed and launched within one or two years. Recently, however, more advanced CubeSat missions have been developed and proposed, indicating that CubeSats clearly started to transition from being solely educational and technology demonstration platforms to offer opportunities for low-cost real science missions with potential high value in terms of science return and commercial revenue. Despite the significant progress made in CubeSat research and development over the last decade, some fundamental questions still habitually arise about the CubeSat capabilities, limitations, and ultimately about their scientific and commercial value. The main objective of this review is to evaluate the state of the art CubeSat capabilities with a special focus on advanced scientific missions and a goal of assessing the potential of CubeSat platforms as capable spacecraft. A total of over 1200 launched and proposed missions have been analyzed from various sources including peer-reviewed journal publications, conference proceedings, mission webpages as well as other publicly available satellite databases and about 130 relatively high performance missions were downselected and categorized into six groups based on the primary mission objectives including "Earth Science and Spaceborne Applications", "Deep Space Exploration", "Heliophysics: Space Weather", "Astrophysics", "Spaceborne In Situ

  14. Cosmic Ray Studies with IceCube

    Science.gov (United States)

    Gonzalez, Javier

    In this contribution we will give an overview of the cosmic ray studies conducted within the IceCube collaboration. The IceCube detector in the geographical south pole can be used to measure various characteristics of the extensive air showers induced by high energy cosmic rays. With IceTop, the surface component of the detector, we detect the electromagnetic and muon components of the air showers, while with the deep detector we detect the high energy muons. We have measured the energy spectrum of cosmic ray primaries in the range between 1.58PeV and 1.26 EeV. A combined analysis of the high energy muon bundles in the ice and the air shower footprint in IceTop provides a measure of primary composition. We will also discuss how the sensitivity to low energy muons in the air showers has the potential to produce additional measures of primary composition.

  15. EarthCubed: Community Convergence and Communication

    Science.gov (United States)

    Ryan, J. C.; Black, R.; Davis, R.; Dick, C.; Lee, T.; Allison, M. L.

    2015-12-01

    What drives engagement across a diverse community with the common goal of creating a robust cyberinfrastructure for the geosciences? Which applications, social media venues and outreach mechanisms solicit the most valuable feedback? Of the dizzying toolkit available for community-building, which tools should receive time, attention and dedication? Finally, how does it all relate to better geoscience research? Research projects in the geosciences are rapidly becoming more interdisciplinary, requiring use of broader data-sets and a multitude of data-types in an effort to explain questions important to both the scientific community and the general public. Effective use of the data and tools available requires excellent community communication and engagement across disciplines, as well as a manner to easily obtain and access those data and tools. For over two years, the EarthCube project has sought to create the most active and engaged community possible, bringing together experts from all across the NSF GEO directorate and its many-faceted disciplines. Initial efforts focused on collecting insight and opinions at in-person "end-user workshops," and informal organization of interest groups and teams. Today, efforts feature an organizational structure with dedicated internal communication and outreach groups. The EarthCube Office has been largely responsible for coordination of these groups and the social media and Internet presence of the project to date, through the creation and curation of the EarthCube.org website, social media channels, live-streaming of meetings, and newsletters. Measures of the effectiveness of these efforts will be presented, to serve as potential reference and guidance for other projects seeking to grow their own communities. In addition, we will discuss how the Office's role in outreach and engagement has changed over the past year with the creation of the Engagement and Liaison Teams, and what it signifies for the Office's role in EarthCube

  16. Composition: Around Corners (2006-08)

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2010-01-01

    Around Corners is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear...... at all. Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author(s) is (are) mentioned. Please...

  17. OLAP Cube Visualization of Hydrologic Data Catalogs

    Science.gov (United States)

    Zaslavsky, I.; Rodriguez, M.; Beran, B.; Valentine, D.; van Ingen, C.; Wallis, J. C.

    2007-12-01

    As part of the CUAHSI Hydrologic Information System project, we assemble comprehensive observations data catalogs that support CUAHSI data discovery services (WaterOneFlow services) and online mapping interfaces (e.g. the Data Access System for Hydrology, DASH). These catalogs describe several nation-wide data repositories that are important for hydrologists, including USGS NWIS and EPA STORET data collections. The catalogs contain a wealth of information reflecting the entire history and geography of hydrologic observations in the US. Managing such catalogs requires high performance analysis and visualization technologies. OLAP (Online Analytical Processing) cube, often called data cubes, is an approach to organizing and querying large multi-dimensional data collections. We have applied the OLAP techniques, as implemented in Microsoft SQL Server 2005, to the analysis of the catalogs from several agencies. In this initial report, we focus on the OLAP technology as applied to catalogs, and preliminary results of the analysis. Specifically, we describe the challenges of generating OLAP cube dimensions, and defining aggregations and views for data catalogs as opposed to observations data themselves. The initial results are related to hydrologic data availability from the observations data catalogs. The results reflect geography and history of available data totals from USGS NWIS and EPA STORET repositories, and spatial and temporal dynamics of available measurements for several key nutrient-related parameters.

  18. Observation of oscillations of atmospheric neutrinos with the IceCube Neutrino Observatory

    International Nuclear Information System (INIS)

    Euler, Sebastian

    2014-01-01

    Neutrino oscillations have become one of the most important research topics in particle physics since their discovery 15 years ago. In the past, the study of neutrino oscillations has been largely the domain of dedicated experiments, but in the last year also the large-volume neutrino telescopes ANTARES and IceCube reported their results on the oscillations of atmospheric muon neutrinos and thus joined the community of experiments studying neutrino oscillations. The precision of their results is not yet competitive, but their sheer size and the consequently enormous statistics give rise to the expectation of a competitive measurement in the future. This thesis describes an analysis that was done on IceCube data taken with the nearly complete detector in the years 2010/2011. IceCube is the world's largest neutrino detector, located at the geographic South Pole, where it uses the Antarctic ice sheet as its detection medium. It detects neutrinos interacting within or close to the instrumented volume by observing the Cherenkov light which is emitted by secondary particles produced in these interactions. An array of optical sensors deployed within a cubic kilometer of ice detects the Cherenkov light and makes it possible to reconstruct the energy and direction of the initial neutrino. Unfortunately, IceCube detects not only neutrinos: the desired neutrino signal is buried in a huge background of atmospheric muons, produced in air showers induced by cosmic rays. This background has to be rejected first. The analysis presented here employs an event selection that is based on the idea of using the outer layers of IceCube as an active veto against the background of atmospheric muons and achieves the necessary background rejection of more than 6 orders of magnitude while keeping a high-statistics sample of several thousands of muon neutrinos. In contrast to the earlier IceCube analysis, which used only the zenith angle, it then performs a 2-dimensional likelihood fit on

  19. Texture and mechanical properties of Al-0.5Mg-1.0Si-0.5Cu alloy sheets manufactured via a cross rolling method

    Science.gov (United States)

    Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin

    2012-04-01

    The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001} and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.

  20. Chlamydia - CDC Fact Sheet

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  1. Cluster analysis in systems of magnetic spheres and cubes

    Energy Technology Data Exchange (ETDEWEB)

    Pyanzina, E.S., E-mail: elena.pyanzina@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Gudkova, A.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Donaldson, J.G. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube. - Highlights: • A comparison of the degree of self-assembly in systems of magnetic spheres and cubes. • Spheres are more likely to form larger clusters than cubes. • Differences in microstructure will manifest in the magnetic response of each system.

  2. Modular Heat Dissipation Technique for a CubeSat

    Science.gov (United States)

    2015-07-28

    Research Overview Even though the interest in CubeSats has increased over the past decade, there is little publicly released research about thermal...understanding of the thermal design and analysis effort of CubeSats in the past decade, a research overview was provided. 25 III. Methodology The...CubeSats, because it leaves a considerable area for circuitry on the board and has a simple scheme [ Pumpkin , 2013]. Assuming there are high power

  3. GASN sheets

    International Nuclear Information System (INIS)

    2013-12-01

    This document gathers around 50 detailed sheets which describe and present various aspects, data and information related to the nuclear sector or, more generally to energy. The following items are addressed: natural and artificial radioactive environment, evolution of energy needs in the world, radioactive wastes, which energy for France tomorrow, the consequences in France of the Chernobyl accident, ammunitions containing depleted uranium, processing and recycling of used nuclear fuel, transport of radioactive materials, seismic risk for the basic nuclear installations, radon, the precautionary principle, the issue of low doses, the EPR, the greenhouse effect, the Oklo nuclear reactors, ITER on the way towards fusion reactors, simulation and nuclear deterrence, crisis management in the nuclear field, does nuclear research put a break on the development of renewable energies by monopolizing funding, nuclear safety and security, the plutonium, generation IV reactors, comparison of different modes of electricity production, medical exposure to ionizing radiations, the control of nuclear activities, food preservation by ionization, photovoltaic solar collectors, the Polonium 210, the dismantling of nuclear installations, wind energy, desalination and nuclear reactors, from non-communication to transparency about nuclear safety, the Jules Horowitz reactor, CO 2 capture and storage, hydrogen, solar energy, the radium, the subcontractors of maintenance of the nuclear fleet, biomass, internal radio-contamination, epidemiological studies, submarine nuclear propulsion, sea energy, the Three Mile Island accident, the Chernobyl accident, the Fukushima accident, the nuclear after Fukushima

  4. Instant Microsoft SQL Server Analysis Services 2012 dimensions and cube

    CERN Document Server

    Acharya, Anurag

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. Written in a practical, friendly manner this book will take you through the journey from installing SQL Server to developing your first cubes.""Microsoft SQL Server Analysis Service 2012 Dimensions"" and Cube Starter is targeted at anyone who wants to get started with cube development in Microsoft SQL Server Analysis Services. Regardless of whether you are a SQL Server developer who knows nothing about cube development or SSAS or even OLAP, you

  5. Getting started with SQL Server 2012 cube development

    CERN Document Server

    Lidberg, Simon

    2013-01-01

    As a practical tutorial for Analysis Services, get started with developing cubes. ""Getting Started with SQL Server 2012 Cube Development"" walks you through the basics, working with SSAS to build cubes and get them up and running.Written for SQL Server developers who have not previously worked with Analysis Services. It is assumed that you have experience with relational databases, but no prior knowledge of cube development is required. You need SQL Server 2012 in order to follow along with the exercises in this book.

  6. Cluster analysis in systems of magnetic spheres and cubes

    Science.gov (United States)

    Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.

    2017-06-01

    In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.

  7. IceCube: A Cubic Kilometer Radiation Detector

    International Nuclear Information System (INIS)

    IceCube Collaboration; Klein, Spencer R; Klein, S.R.

    2008-01-01

    IceCube is a 1 km 3 neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate ν μ , ν t , and ν τ interactions because of their different topologies. IceCube construction is currently 50% complete

  8. Evaluation of the Impact of an Additive Manufacturing Enhanced CubeSat Architecture on the CubeSat Development Process

    Science.gov (United States)

    2016-09-15

    thermoplastic PCB Printed Circuit Board PIC Programmable Intelligent Computer RAMPART RApidprototyped MEMS Propulsion and Radiation Test RF Radio Frequency S...V for printed propulsion systems of varying volumes ........... 66 Figure 23. Predicted radiation attenuation of aluminum and AM composite CubeSat...Delta V data and estimates for standard CubeSat propulsion systems ............... 42 Table 5. Delta V for RAMPART printed CubeSat propulsion

  9. Intervjuu James Corneriga = Interview with James Corner / James Corner ; interv. Andres Sevtshuk

    Index Scriptorium Estoniae

    Corner, James

    2006-01-01

    Büroo Field Operations maastikuarhitekt ning Pennsylvania Ülikooli maastikuarhitektuuri osakonna juhataja James Corner oma büroost, maastikust kui "instrumendist", postindustriaalsete aladega seotud projektidest (New Yorgi High Line'i muutmine pargiks ja promenaadiks), tööst suuremahuliste maastikega (Fresh Kills'i soo, endise prügila muutmine pargialaks), maastikuarhitektuurist ja linnakujundusest (maastiku urbanism), õpetamise tähtsusest oma töös ja maastikuarhitektuuri ideede arendamisel. Bibl. lk. 24

  10. CubeSat quantum communications mission

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Daniel K.L. [University of Strathclyde, SUPA Department of Physics, Glasgow (United Kingdom); University of Strathclyde, Strathclyde Space Institute, Glasgow (United Kingdom); Ling, Alex [National University of Singapore, Centre for Quantum Technologies, Singapore (Singapore); National University of Singapore, Dept. of Physics, Singapore (Singapore); Vallone, Giuseppe; Villoresi, Paolo [Universita degli Studi di Padova, Dipartimento di Ingegneria dell' Informazione, Padova (Italy); Greenland, Steve; Kerr, Emma [University of Strathclyde, Advanced Space Concepts Laboratory, Mechanical and Aerospace Engineering, Glasgow (United Kingdom); Macdonald, Malcolm [Technology and Innovation Centre, Scottish Centre of Excellence in Satellite Applications, Glasgow (United Kingdom); Weinfurter, Harald [Ludwig-Maximilians-Universitaet, Department fuer Physik, Munich (Germany); Kuiper, Hans [Delft University of Technology, Space Systems Engineering, Aerospace Engineering, Delft (Netherlands); Charbon, Edoardo [AQUA, EPFL, Lausanne (Switzerland); Delft University of Technology, Delft (Netherlands); Ursin, Rupert [Vienna Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information, Vienna (Austria)

    2017-12-15

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  11. On the IceCube spectral anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Palladino, Andrea; Vissani, Francesco [Gran Sasso Science Institute, L' Aquila (Italy); Spurio, Maurizio, E-mail: andrea.palladino@gssi.infn.it, E-mail: maurizio.spurio@bo.infn.it, E-mail: francesco.vissani@lngs.infn.it [Dipartimento di Fisica e Astronomia Università di Bologna and INFN Sezione di Bologna, Bologna (Italy)

    2016-12-01

    Recently it was noted that different IceCube datasets are not consistent with the same power law spectrum of the cosmic neutrinos: this is the IceCube spectral anomaly , that suggests that they observe a multicomponent spectrum. In this work, the main possibilities to enhance the description in terms of a single extragalactic neutrino component are examined. The hypothesis of a sizable contribution of Galactic high-energy neutrino events distributed as E {sup −2.7} [ Astrophys. J. 826 (2016) 185] is critically analyzed and its natural generalization is considered. The stability of the expectations is studied by introducing free parameters, motivated by theoretical considerations and observational facts. The upgraded model here examined has 1) a Galactic component with different normalization and shape E {sup −2.4}; 2) an extragalactic neutrino spectrum based on new data; 3) a non-zero prompt component of atmospheric neutrinos. The two key predictions of the model concern the 'high-energy starting events' collected from the Southern sky. The Galactic component produces a softer spectrum and a testable angular anisotropy. A second, radically different class of models, where the second component is instead isotropic, plausibly extragalactic and with a relatively soft spectrum, is disfavored instead by existing observations of muon neutrinos from the Northern sky and below few 100 TeV.

  12. CubeSat quantum communications mission

    International Nuclear Information System (INIS)

    Oi, Daniel K.L.; Ling, Alex; Vallone, Giuseppe; Villoresi, Paolo; Greenland, Steve; Kerr, Emma; Macdonald, Malcolm; Weinfurter, Harald; Kuiper, Hans; Charbon, Edoardo; Ursin, Rupert

    2017-01-01

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  13. Invited Article: miniTimeCube

    Energy Technology Data Exchange (ETDEWEB)

    Li, V. A., E-mail: vli2@hawaii.edu; Dorrill, R.; Duvall, M. J.; Koblanski, J.; Sakai, M.; Learned, J. G.; Macchiarulo, L.; Matsuno, S.; Murillo, J.; Rosen, M.; Varner, G. S. [Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Negrashov, S. [Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Wipperfurth, S. A.; Engel, K.; McDonough, W. F. [Department of Geology, University of Maryland, College Park, Maryland 20742 (United States); Jocher, G. R.; Nishimura, K. [Ultralytics LLC, Arlington, Virginia 22203 (United States); Mumm, H. P. [National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, Maryland 20899 (United States); Usman, S. M. [Exploratory Science and Technology Branch, National Geospatial-Intelligence Agency, Springfield, Virginia 22150 (United States); Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia 22030 (United States)

    2016-02-15

    We present the development of the miniTimeCube (mTC), a novel compact neutrino  detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% {sup 10}B–doped scintillator (13 cm){sup 3} cube surrounded by 24 Micro-Channel Plate (MCP) photon detectors, each with an 8 × 8 anode totaling 1536 individual channels/pixels viewing the scintillator. It uses custom-made electronics modules which mount on top of the MCPs, making our detector compact and able to both distinguish different types of events and reject noise in real time. The detector is currently deployed and being tested at the National Institute of Standards and Technology Center for Neutron Research nuclear reactor (20 MW{sub th}) in Gaithersburg MD. A shield for further tests is being constructed, and calibration and upgrades are ongoing. The mTC’s improved spatiotemporal resolution will allow for determination of incident particle directions beyond previous capabilities.

  14. Finite element model study of the effect of corner rounding on detectability of corner cracks using bolt hole eddy current

    Science.gov (United States)

    Underhill, P. R.; Krause, T. W.

    2017-02-01

    Recent work has shown that the detectability of corner cracks in bolt-holes is compromised when rounding of corners arises, as might occur during bolt-hole removal. Probability of Detection (POD) studies normally require a large number of samples of both fatigue cracks and electric discharge machined notches. In the particular instance of rounding of bolt-hole corners the generation of such a large set of samples representing the full spectrum of potential rounding would be prohibitive. In this paper, the application of Finite Element Method (FEM) modeling is used to supplement the study of detection of cracks forming at the rounded corners of bolt-holes. FEM models show that rounding of the corner of the bolt-hole reduces the size of the response to a corner crack to a greater extent than can be accounted for by loss of crack area. This reduced sensitivity can be ascribed to a lower concentration of eddy currents at the rounded corner surface and greater lift-off of pick-up coils relative to that of a straight-edge corner. A rounding with a radius of 0.4 mm (.016 inch) showed a 20% reduction in the strength of the crack signal. Assuming linearity of the crack signal with crack size, this would suggest an increase in the minimum detectable size by 25%.

  15. Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream

    Science.gov (United States)

    Qu, Aifang; Xiang, Wei

    2018-05-01

    In this paper, we study the stability of the three-dimensional jet created by a supersonic flow past a concave cornered wedge with the lower pressure at the downstream. The gas beyond the jet boundary is assumed to be static. It can be formulated as a nonlinear hyperbolic free boundary problem in a cornered domain with two characteristic free boundaries of different types: one is the rarefaction wave, while the other one is the contact discontinuity, which can be either a vortex sheet or an entropy wave. A more delicate argument is developed to establish the existence and stability of the square jet structure under the perturbation of the supersonic incoming flow and the pressure at the downstream. The methods and techniques developed here are also helpful for other problems involving similar difficulties.

  16. CubeSat Integration into the Space Situational Awareness Architecture

    Science.gov (United States)

    Morris, K.; Wolfson, M.; Brown, J.

    2013-09-01

    Lockheed Martin Space Systems Company has recently been involved in developing GEO Space Situational Awareness architectures, which allows insights into how cubesats can augment the current national systems. One hole that was identified in the current architecture is the need for timelier metric track observations to aid in the chain of custody. Obtaining observations of objects at GEO can be supported by CubeSats. These types of small satellites are increasing being built and flown by government agencies like NASA and SMDC. CubeSats are generally mass and power constrained allowing for only small payloads that cannot typically mimic traditional flight capability. CubeSats do not have a high reliability and care must be taken when choosing mission orbits to prevent creating more debris. However, due to the low costs, short development timelines, and available hardware, CubeSats can supply very valuable benefits to these complex missions, affordably. For example, utilizing CubeSats for advanced focal plane demonstrations to support technology insertion into the next generation situational awareness sensors can help to lower risks before the complex sensors are developed. CubeSats can augment the planned ground and space based assets by creating larger constellations with more access to areas of interest. To aid in maintaining custody of objects, a CubeSat constellation at 500 km above GEO would provide increased point of light tracking that can augment the ground SSA assets. Key features of the Cubesat include a small visible camera looking along the GEO belt, a small propulsion system that allows phasing between CubeSats, and an image processor to reduce the data sent to the ground. An elegant communications network will also be used to provide commands to and data from multiple CubeSats. Additional CubeSats can be deployed on GSO launches or through ride shares to GEO, replenishing or adding to the constellation with each launch. Each CubeSat would take images of

  17. Achieving Science with CubeSats: Thinking Inside the Box

    Science.gov (United States)

    Zurbuchen, Thomas H.; Lal, Bhavya

    2017-01-01

    We present the results of a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years.We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements.Finally, we will summarize our conclusions and recommendations from this study; especially those focused on nearterm investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities’ use of CubeSats.

  18. Massively Clustered CubeSats NCPS Demo Mission

    Science.gov (United States)

    Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike

    2013-01-01

    Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.

  19. Microwave Atmospheric Sounder on CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. E.; Kangaslahti, P.; Cofield, R.; Russell, D.; Stachnik, R. A.; Su, H.; Wu, L.; Tanelli, S.; Niamsuwan, N.

    2014-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation which

  20. Mines in the Four Corners anticipate growth

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, L.

    2008-02-15

    Productive mines in the southwest deplete reserves, while the government drags its heels on new power projects. Production in Arizona and New Mexico has fallen 18% over the last four years to 34.1 million tons. With Chevron Mining's McKinley mine rapidly depleting its reserves the industry will continue to contract. In the last three years at least three large mines in the Four Corners have terminated operations. Three others remain captive operations: BHP Billiton's San Juan Underground and Navajo Surface operations and Peabody Energy's Kayenta surface mine. In 2006 the Black Mesa mine stopped producing coal. These four mines are isolated from the national railways. Peabody's new El Segundo surface mine near Grants, NM is increasing production. If the planned $3 billion Desert Rock coal-fired power plant is built this will present a new market for the Navajo mine. The article gives details about the state of the aforementioned mines and of the new King II coal mine on the northern periphery of the San Juan basin and discusses the state of plans for the Desert Rock Energy Project. 5 photos.

  1. The Larger Bound on the Domination Number of Fibonacci Cubes and Lucas Cubes

    Directory of Open Access Journals (Sweden)

    Shengzhang Ren

    2014-01-01

    Full Text Available Let Γn and Λn be the n-dimensional Fibonacci cube and Lucas cube, respectively. Denote by Γ[un,k,z] the subgraph of Γn induced by the end-vertex un,k,z that has no up-neighbor. In this paper, the number of end-vertices and domination number γ of Γn and Λn are studied. The formula of calculating the number of end-vertices is given and it is proved that γ(Γ[un,k,z]≤2k-1+1. Using these results, the larger bound on the domination number γ of Γn and Λn is determined.

  2. Hiding Techniques for Dynamic Encryption Text based on Corner Point

    Science.gov (United States)

    Abdullatif, Firas A.; Abdullatif, Alaa A.; al-Saffar, Amna

    2018-05-01

    Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.

  3. Modified MIMO Cube for Enhanced Channel Capacity

    Directory of Open Access Journals (Sweden)

    Lajos Nagy

    2012-01-01

    Full Text Available This paper deals with the optimization of MIMO antenna elements' position in modified MIMO cube for getting maximal channel capacity in indoor environment. The dependence of the channel capacity on the antenna orientation was analyzed by simulations. We have also examined the effect of the frequency dependence of the antenna system (in case of conjugate matching and nonconjugate matching for the channel capacity. Based on the simulation results in the created and measured antenna system, the antennas were at a right angle to each other. At the two chosen different structures, we measured the antenna parameters and the channel capacity. In this paper, we present the results of the measurements which clearly confirm our simulations. We will point out the differences between the two antenna structures.

  4. An evaluation of space time cube representation of spatiotemporal patterns.

    Science.gov (United States)

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  5. Modeling Delamination of Interfacial Corner Cracks in Multilayered Structures

    DEFF Research Database (Denmark)

    Veluri, Badrinath (Badri); Jensen, Henrik Myhre

    2013-01-01

    Multilayered electronic components, typically of heterogeneous materials, delaminate under thermal and mechanical loading. A phenomenological model focused on modeling the shape of such interface cracks close to corners in layered interconnect structures for calculating the critical stress...

  6. Communities Putting Prevention to Work: The Healthy Corner Store Initiative

    Centers for Disease Control (CDC) Podcasts

    This podcast is an interview with Dr. Stephanie Jilcott Pitts, Associate Professor in the Department of Public Health at East Carolina University. Dr. Pitts answers questions about her study involving a healthy corner store initiative in North Carolina.

  7. Numerical study of damage evolution and failure in an electromagnetic corner fill operation

    International Nuclear Information System (INIS)

    Imbert, J.M.; Winkler, S.L.; Worswick, M.J.; Oliveira, D.A.; Golovashchenko, S.

    2004-01-01

    A numerical study of an electromagnetic corner fill operation using AA5754 aluminum alloy sheet was performed. Conical parts with side angles of 40 and 45 deg. (included angles of 100 and 90 deg.) were modeled. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Damage evolution was predicted using a damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. Experiments were performed to validate the numerical results. Damage measurements were made using optical microscopy to determine the actual damage produced by the forming operations. Predicted final shape, failure and damage levels are presented and compared with experimental results. The numerical models were able to accurately predict damage trends. Failure was predicted in general agreement with the experiments

  8. 3D Printing the Complete CubeSat

    Science.gov (United States)

    Kief, Craig

    2015-01-01

    The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.

  9. New Formula for Stability of Cube Armoured Roundheads

    DEFF Research Database (Denmark)

    Maciñeira, Enrique; Burcharth, Hans F.

    2009-01-01

    The paper presents a new formula for the stability of cube armoured roundheads. The formula is based on physical model tests in Aalborg University which both long crested and short crested waves of different wave steepness were used. The slope of the radius of the head were varied in order...... to explore the influence of the geometry on the armour stability. Besides cubes with mass density 2.4 t/m3, cubes with mass density 2.80 t/m3 were used in order to include the effect of mass density in the formula. The damage predictions given by the formula have been compared with prototype hand...

  10. Searching for the corner seismic moment in worldwide data

    International Nuclear Information System (INIS)

    Felgueiras, Miguel; Santos, Rui; Martins, João Paulo

    2015-01-01

    In this paper the existence of the corner frequency value for the seismic moment distribution is investigated, analysing worldwide data. Pareto based distributions, usually considered as the most suitable to this type of data, are fitted to the most recent data, available in a global earthquake catalog. Despite the undeniable finite nature of the seismic moment data, we conclude that no corner frequency can be established considering the available data set

  11. LunarCube for Deep Space Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co., Inc. and Morehead State University propose to develop a 6U CubeSat capable of reaching a lunar orbit from GEO. The primary objective is to demonstrate...

  12. Deep Space CubeSat Prototype Platform Design and Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — This IRAD will significantly advance a GSFC Deep Space CubeSat prototype effort in almost all subsystems.  Because it represents a “tall pole” for lunar orbiters, as...

  13. CubeSat Handling of Multisystem Precision Time Transfer (CHOMPTT)

    Data.gov (United States)

    National Aeronautics and Space Administration — The CubeSat Handling of Multisystem Precision Time Transfer (CHOMPTT) mission is a precision timing satellite equipped with atomic clocks synchronized with a ground...

  14. Optical Intersatellite Communications for CubeSat Swarms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The growing interest in CubeSat swarm and constellation systems by NASA, the Department of Defense and commercial ventures has created a need for self-managed...

  15. An Adaptive Langmuir Probe for CubeSats and Explorers

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build an Adaptive Langmuir Probe (ALP) for CubeSats designed to mitigate spacecraft charging unique to small platforms. This project builds a new...

  16. SQL Server Analysis Services 2012 cube development cookbook

    CERN Document Server

    Dewald, Baya; Hughes, Steve

    2013-01-01

    A practical cookbook packed with recipes to help developers produce data cubes as quickly as possible by following step by step instructions, rather than explaining data mining concepts with SSAS.If you are a BI or ETL developer using SQL Server Analysis services to build OLAP cubes, this book is ideal for you. Prior knowledge of relational databases and experience with Excel as well as SQL development is required.

  17. AURA-A radio frequency extension to IceCube

    International Nuclear Information System (INIS)

    Landsman, H.; Ruckman, L.; Varner, G.S.

    2009-01-01

    The excellent radio frequency (RF) transparency of cold polar ice, combined with the coherent Cherenkov emission produced by neutrino-induced showers when viewed at wavelengths longer than a few centimeters, has spurred considerable interest in a large-scale radio-wave neutrino detector array. The AURA (Askaryan Under-ice Radio Array) experimental effort, within the IceCube collaboration, seeks to take advantage of the opportunity presented by IceCube [A. Karle, Nucl. Instr. and Meth. A (2009), this issue, doi: (10.1016/j.nima.2009.03.180).; A. Achtenberg et al., The IceCube Collaboration, Astropart. Phys. 26 (2006) 155 ] drilling through 2010 to establish the RF technology needed to achieve 100-1000km 3 effective volumes. In the 2006-2007 Austral summer, three deep in-ice RF clusters were deployed at depths of ∼1300 and ∼300m on top of the IceCube strings. Additional three clusters will be deployed in the Austral summer of 2008-2009. Verification and calibration results from the current deployed clusters are presented, and the detector design and performances are discussed. Augmentation of IceCube with large-scale (1000km 3 sr) radio and acoustic arrays would extend the physics reach of IceCube into the EeV-ZeV regime and offer substantial technological redundancy.

  18. Hypervelocity impact of tungsten cubes on spaced armour

    International Nuclear Information System (INIS)

    Chandel, Pradeep S; Sood, Dharmanshu; Kumar, Rajeev; Sharma, Prince; Sewak, Bhupinder; Bhardwaj, Vikas; Athwal, Manoj; Mangla, Vikas; Biswas, Ipsita; Singh, Manjit

    2012-01-01

    The paper summarizes the experimental observations and simulation studies of damage potential of tungsten alloy cubes on relatively thin mild steel spaced armour target plates in the velocity regime 1300 – 4000 ms −1 using Two Stage Light Gas Gun technique. The cubes of size 9.5 mm and 12 mm having mass 15 g and 30 g respectively were made to impact normally on three target plates of size 300 mm × 300 mm of thickness 4, 4 and 10 mm at 100 mm distance apart. Flash radiography has been used to image the projectile-target interaction in the nitrogen environment at 300 mbar vacuum at room temperature. The results reveal clear perforation by 9.5 mm cube in all the three target plates up to impact velocity of about 2000 m/s. While 12 mm cube can perforate the spaced armour upto impact velocity of 4000 m/s. This shows that 9.5mm tungsten alloy cube is not effective beyond 2000 m/s while 12 mm tungsten alloy cube can defeat the spaced armour upto 4000 m/s. The simulation studies have been carried out using Autodyn 3D nonlinear code using Lagrange solver at velocities 1200 – 4000 m/s. The simulation results are in good agreement with the experimental findings.

  19. Miniature scientific-grade magnetic sensors for CubeSats

    Science.gov (United States)

    Pronenko, Vira; Belyayev, Serhiy

    2016-07-01

    Micro- and nanosatellites have become more attractive due to their low development and launch cost. A class of nanosatellites defined by the CubeSat standard allows standardizing CubeSat preparation and launch, thus making the projects more affordable. Because of the complexity of sensors miniaturization to install them onboard CubeSat, the majority of CubeSat launches are aimed the technology demonstration or education missions. The scientific success of CubeSat mission depends on the sensors quality. In spite that the sensitivity of the magnetic sensors strongly depends on their size, the recent development in this branch allows us to propose tiny but sensitive both AC and DC magnetometers. The goal of the present report is to introduce the new design of miniature three-component sensors for measurement of vector magnetic fields - for quasi-stationary and slowly fluctuating - flux-gate magnetometer (FGM) - and for alternative ones - search-coil magnetometer (SCM). In order to create magnetometers with the really highest possible level of parameters, a set of scientific and technological problems, mostly aimed at the sensor construction improvement, was solved. The most important parameter characterizing magnetometer quality is its own magnetic noise level (NL). The analysis of the NL influencing factors is made and the ways to decrease it are discussed in the report. Construction details and technical specifications of miniature but sensitive FGM and SCM for the CubeSat mission are presented. This work is supported by EC Framework 7 funded project 607197.

  20. The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part VI: IceCube-Gen2, the Next Generation Neutrino Observatory

    OpenAIRE

    Collaboration, IceCube-Gen2; :; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.

    2017-01-01

    Papers on research & development towards IceCube-Gen2, the next generation neutrino observatory at South Pole, submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube-Gen2 Collaboration.

  1. EarthCube: A Community Organization for Geoscience Cyberinfrastructure

    Science.gov (United States)

    Patten, K.; Allison, M. L.

    2014-12-01

    The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A

  2. Improvement of formability of high strength steel sheets in shrink flanging

    International Nuclear Information System (INIS)

    Hamedon, Z; Abe, Y; Mori, K

    2016-01-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging. (paper)

  3. CubeSat Material Limits for Design for Demise

    Science.gov (United States)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.

  4. Self-assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Yankun; Li, Dan; Liu, Yushan; Zhang, Jianmin

    2016-01-01

    Highlights: • 3D ZnSnO 3 hollow cubes@reducedgrapheneoxideaerogels(ZGAs) were fabricated. • The electrochemical properties of ZGAs were investigated for LIBs. • ZGAs demonstrated superior lithium storage performance. - Abstract: 3D ZnSnO 3 hollow cubes@reduced graphene oxide aerogels (ZGAs) were fabricated via a colloid electrostatic self-assembly method between the graphene oxide (GO) nanosheets and poly(diallyldimethylammonium chloride) (PDDA) modified ZnSnO 3 hollow cubes colloid, followed by hydrothermal and freeze-drying treatments. The unique porous architecture of ZnSnO 3 hollow cubes encapsulated by flexible reduced graphene oxide (rGO) sheets not only effectively retarded the huge volume expansion during repeated charge-discharge cycles, but also facilitated fast lithium ion and electron transport through 3D networks. The ZGAs exhibited significantly enhanced cycling stability (745.4 mAh g −1 after 100 cycles at a current of 100 mA g −1 ) and superior rate capability (as high as 552.6 mAh g −1 at 1200 mA g −1 ). The results indicate that the ZGAs are promising anode materials for high-performance lithium-ion batteries.

  5. Ballistic rectification of vortex domain wall chirality at nanowire corners

    Energy Technology Data Exchange (ETDEWEB)

    Omari, K.; Bradley, R. C.; Broomhall, T. J.; Hodges, M. P. P.; Hayward, T. J. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Rosamond, M. C.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Im, M.-Y. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Fischer, P. [Materials Sciences Division, Lawrence Berkley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Santa Cruz, California 94056 (United States)

    2015-11-30

    The interactions of vortex domain walls with corners in planar magnetic nanowires are probed using magnetic soft X-ray transmission microscopy. We show that when the domain walls are propagated into sharp corners using applied magnetic fields above a critical value, their chiralities are rectified to either clockwise or anticlockwise circulation depending on whether the corners turn left or right. Single-shot focused magneto-optic Kerr effect measurements are then used to demonstrate how, when combined with modes of domain propagation that conserve vortex chirality, this allows us to dramatically reduce the stochasticity of domain pinning at artificial defect sites. Our results provide a tool for controlling domain wall chirality and pinning behavior both in further experimental studies and in future domain wall-based memory, logic and sensor technologies.

  6. A Modified Harris Corner Detection for Breast IR Image

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2014-01-01

    Full Text Available Harris corner detectors, which depend on strong invariance and a local autocorrelation function, display poor detection performance for infrared (IR images with low contrast and nonobvious edges. In addition, feature points detected by Harris corner detectors are clustered due to the numerous nonlocal maxima. This paper proposes a modified Harris corner detector that includes two unique steps for processing IR images in order to overcome the aforementioned problems. Image contrast enhancement based on a generalized form of histogram equalization (HE combined with adjusting the intensity resolution causes false contours on IR images to acquire obvious edges. Adaptive nonmaximal suppression based on eliminating neighboring pixels avoids the clustered features. Preliminary results show that the proposed method can solve the clustering problem and successfully identify the representative feature points of IR breast images.

  7. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....

  8. Latest results from the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube Neutrino Observatory is the world's largest neutrino detector with a broad physics program covering the neutrino spectrum from several tens of GeV up to EeV energies. With its completion in 2010 it has reached its full sensitivity and analyses with unprecedented statistics are performed. One of the major research efforts is the search for extraterrestrial neutrino sources, which have not yet been discovered but would be a smoking gun for hadronic acceleration and could allow to identify the sources of high-energy cosmic rays. Such include steady galactic and extragalactic source candidates, e.g. Supernova Remnants and Active Galactic Nuclei, as well as transient phenomena like flaring objects and Gamma Ray Bursts. With its searches for diffuse neutrino fluxes in different energy ranges, IceCube is sensitive to fluxes of prompt atmospheric neutrinos, extragalactic neutrinos and cosmogenic neutrinos. In the low-energy range below 100 GeV, IceCube supplements classical neutrino oscillation experiments with its sensitivity to the deficit of atmospheric muon neutrinos at 25 GeV and searches for neutrinos from the annihilation of dark matter. The IceCube physics program is complemented by the surface array IceTop, which together with the detector part inside the ice serves for cosmic ray anisotropy, spectrum and composition measurements around the knee. The presentation summarizes ongoing IceCube physics analyses and recent results.

  9. On the verge of an astronomy CubeSat revolution

    Science.gov (United States)

    Shkolnik, Evgenya L.

    2018-05-01

    CubeSats are small satellites built in standard sizes and form factors, which have been growing in popularity but have thus far been largely ignored within the field of astronomy. When deployed as space-based telescopes, they enable science experiments not possible with existing or planned large space missions, filling several key gaps in astronomical research. Unlike expensive and highly sought after space telescopes such as the Hubble Space Telescope, whose time must be shared among many instruments and science programs, CubeSats can monitor sources for weeks or months at time, and at wavelengths not accessible from the ground such as the ultraviolet, far-infrared and low-frequency radio. Science cases for CubeSats being developed now include a wide variety of astrophysical experiments, including exoplanets, stars, black holes and radio transients. Achieving high-impact astronomical research with CubeSats is becoming increasingly feasible with advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. CubeSats may also pair with the large space- and ground-based telescopes to provide complementary data to better explain the physical processes observed.

  10. Plastic anisotropy of straight and cross rolled molybdenum sheets

    International Nuclear Information System (INIS)

    Oertel, C.-G.; Huensche, I.; Skrotzki, W.; Knabl, W.; Lorich, A.; Resch, J.

    2008-01-01

    The microstructure, texture and mechanical properties of molybdenum sheets produced by different rolling processes were investigated by orientation imaging in the scanning electron microscope, X-ray diffraction and tensile tests, respectively. For comparable recrystallization degree of the sheets investigated, straight rolling with low reduction ratio produces α-fiber textures with a maximum at {100} . At higher rolling degrees the maximum shifts to {112} . Cross rolling increases the rotated cube component {100} . The strong differences in the texture measured are reflected in the plastic anisotropy characterized by differences in the yield stress and Lankford parameter which were measured along directions in the rolling plane at angles of 0 deg., 45 deg. and 90 deg. with the rolling direction. The Taylor-Bishop-Hill theory is used successfully to qualitatively explain the plastic anisotropy

  11. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  12. Mobility Balance Sheet 2009

    International Nuclear Information System (INIS)

    Jorritsma, P.; Derriks, H.; Francke, J.; Gordijn, H.; Groot, W.; Harms, L.; Van der Loop, H.; Peer, S.; Savelberg, F.; Wouters, P.

    2009-06-01

    The Mobility Balance Sheet provides an overview of the state of the art of mobility in the Netherlands. In addition to describing the development of mobility this report also provides explanations for the growth of passenger and freight transport. Moreover, the Mobility Balance Sheet also focuses on a topical theme: the effects of economic crises on mobility. [nl

  13. Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles.

    Science.gov (United States)

    Park, Jeong-Eun; Kim, Sungi; Son, Jiwoong; Lee, Yeonhee; Nam, Jwa-Min

    2016-12-14

    The plasmonic properties of metal nanostructures have been heavily utilized for surface-enhanced Raman scattering (SERS) and metal-enhanced fluorescence (MEF), but the direct photoluminescence (PL) from plasmonic metal nanostructures, especially with plasmonic coupling, has not been widely used as much as SERS and MEF due to the lack of understanding of the PL mechanism, relatively weak signals, and the poor availability of the synthetic methods for the nanostructures with strong PL signals. The direct PL from metal nanostructures is beneficial if these issues can be addressed because it does not exhibit photoblinking or photobleaching, does not require dye-labeling, and can be employed as a highly reliable optical signal that directly depends on nanostructure morphology. Herein, we designed and synthesized plasmonic cube-in-cube (CiC) nanoparticles (NPs) with a controllable interior nanogap in a high yield from Au nanocubes (AuNCs). In synthesizing the CiC NPs, we developed a galvanic void formation (GVF) process, composed of replacement/reduction and void formation steps. We unraveled the super-radiant character of the plasmonic coupling-induced plasmon mode which can result in highly enhanced PL intensity and long-lasting PL, and the PL mechanisms of these structures were analyzed and matched with the plasmon hybridization model. Importantly, the PL intensity and quantum yield (QY) of CiC NPs are 31 times and 16 times higher than those of AuNCs, respectively, which have shown the highest PL intensity and QY reported for metallic nanostructures. Finally, we confirmed the long-term photostability of the PL signal, and the signal remained stable for at least 1 h under continuous illumination.

  14. Technology for production of shelf stable fruit cubes

    International Nuclear Information System (INIS)

    Mishra, B.B.; Jain, M.P.; Sharma, A.

    2009-01-01

    A technology has been developed for the production of intermediate moisture fruit cubes using a combination of osmotic dehydration and infrared drying. Fruits like pineapple, papaya, mango, banana and apple can be successfully converted into intermediate moisture products in the form of fruit cubes using this technology. The fruit cubes can blend very well as natural nutritious supplements with breakfast cereals and in certain food preparations like ice creams, milk shakes, jellies and custards. The product is microbiologically safe for consumption and can be stored at ambient storage condition for more than six months. This technology is an effective alternative for post harvest processing and preservation of ripened fruits. Fruit jam is an additional by-product generated by the process. This technology has been transferred to TT and CD, BARC

  15. Searches for astrophysical neutrinos with IceCube

    International Nuclear Information System (INIS)

    Williams, D.

    2014-01-01

    Powerful astrophysical objects such as active galactic nuclei (AGN), core collapse supernovae and gamma ray bursts (GRBs) are potential sources of the highest energy cosmic rays. Many models of cosmic ray proton acceleration predict a corresponding flux of neutrinos in the TeV-PeV energy range. The detection of astrophysical neutrinos requires the largest neutrino detector ever built: IceCube, a cubic-kilometer array located near the geographic South Pole. IceCube has been collecting data throughout its construction, which was complete in December 2010. Data from the partial IceCube detector have already set interesting limits on astrophysical neutrino fluxes, including stringent limits on neutrino production in GRBs. (authors)

  16. Four Corners Television History: Gallipoli and the Fall of Singapore

    Directory of Open Access Journals (Sweden)

    Kevin Blackburn

    2007-08-01

    Full Text Available This article analyses how the Australian current affairs programme, Four Corners, which follows a style modelled on the BBC programme Panorama, has represented Australian military history in two of its programmes, Gallipoli: The Fatal Shore and No Prisoners on Australian deserters at the fall of Singapore. Chris Masters was the reporter on both programmes. These historical documentaries claim to investigate Australian Anzac mythology. Four Corners is noted for its rigorous pursuit of issues in current affairs. Programmes construct argument that the journalists steadfastly pursue in order to ‘expose the truth’. Rather than neutrally representing both sides of a debate, the programmes tend to take the side that the journalists perceive to be in the public interest. Examining how Four Corners has applied its own style of investigative journalism to the Anzac mythology is explored by outlining whether the programmes follow Ken Burn’s ideas of documentary-makers as ‘tribal story-teller’ crafting stories that uphold national identity or Bill Nichols’ view that documentary is an argument that is representative of reality rather than reflects reality. Examining the history of Gallipoli and the fall of Singapore in the Four Corners programmes tends suggest that the journalists working on the programmes preferred to reaffirm the assumptions of the Anzac legend, but attack or ignore historians and evidence that questions it. The programmes appear to be a mixture of Burns’s and Nichols’ ideas of documentary making.

  17. Contour tracking and corner detection in a logic programming environment

    DEFF Research Database (Denmark)

    Bell, Benjamin; Pau, L. F.

    1990-01-01

    The added functionality such as contour tracking and corner detection which logic programming lends to standard image operators is described. An environment for implementing low-level imaging operations with Prolog predicates is considered. Within this environment, higher-level image predicates (...

  18. Comparison of test protocols for standard room/corner tests

    Science.gov (United States)

    R. H. White; M. A. Dietenberger; H. Tran; O. Grexa; L. Richardson; K. Sumathipala; M. Janssens

    1998-01-01

    As part of international efforts to evaluate alternative reaction-to-fire tests, several series of room/comer tests have been conducted. This paper reviews the overall results of related projects in which different test protocols for standard room/corner tests were used. Differences in the test protocols involved two options for the ignition burner scenario and whether...

  19. Silicon Nanowire Fabrication Using Edge and Corner Lithography

    NARCIS (Netherlands)

    Yagubizade, H.; Berenschot, Johan W.; Jansen, Henricus V.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    This paper presents a wafer scale fabrication method of single-crystalline silicon nanowires (SiNWs) bound by <111> planes using a combination of edge and corner lithography. These are methods of unconventional nanolithography for wafer scale nano-patterning which determine the size of nano-features

  20. The Four Corners timber harvest and forest products industry, 2012

    Science.gov (United States)

    Colin B. Sorenson; Steven W. Hayes; Todd A. Morgan; Eric A. Simmons; Micah G. Scudder; Chelsea P. McIver; Mike T. Thompson

    2016-01-01

    This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2012, describes the composition and operations of the region’s primary forest products industry, and quantifies volumes and uses of wood fiber. Recent changes in the wood products industry are discussed, as well as trends...

  1. The Four Corners timber harvest and forest products industry, 2007

    Science.gov (United States)

    Steven W. Hayes; Todd A. Morgan; Erik C. Berg; Jean M. Daniels; Mike Thompson

    2012-01-01

    This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2007, describes the composition and operations of the region's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as...

  2. Analytical expression for sheath edge around corner cathodes

    International Nuclear Information System (INIS)

    Sheridan, T E

    2009-01-01

    A simple analytical expression for the position of the sheath edge around a two-dimensional corner cathode with included angle θ c has been discovered. This expression is valid for weakly collisional sheaths in the Child-Langmuir regime φ c >> kT e /e, where -φ c e is the electron temperature. In polar coordinates (r, θ), the sheath edge is given by (r/s 0 )sin[πθ/(2π - θ c )] = [π/(2π - θ c )] where s 0 is the planar sheath width far from the vertex of the corner. This result is verified by comparison with previous numerical solutions (Watterson P A 1989 J. Phys. D: Appl. Phys. 22 1300) for the knife edge (θ c = 0) and convex square corner (θ c = π/2). The observed agreement suggests that this expression gives the sheath edge for all corner angles, both concave and convex. The utility of this result is demonstrated by computing the full sheath solution for a knife-edge cathode with φ c = 100kT e /e.

  3. SOSPEX, an interactive tool to explore SOFIA spectral cubes

    Science.gov (United States)

    Fadda, Dario; Chambers, Edward T.

    2018-01-01

    We present SOSPEX (SOFIA SPectral EXplorer), an interactive tool to visualize and analyze spectral cubes obtained with the FIFI-LS and GREAT instruments onboard the SOFIA Infrared Observatory. This software package is written in Python 3 and it is available either through Github or Anaconda.Through this GUI it is possible to explore directly the spectral cubes produced by the SOFIA pipeline and archived in the SOFIA Science Archive. Spectral cubes are visualized showing their spatial and spectral dimensions in two different windows. By selecting a part of the spectrum, the flux from the corresponding slice of the cube is visualized in the spatial window. On the other hand, it is possible to define apertures on the spatial window to show the corresponding spectral energy distribution in the spectral window.Flux isocontours can be overlapped to external images in the spatial window while line names, atmospheric transmission, or external spectra can be overplotted on the spectral window. Atmospheric models with specific parameters can be retrieved, compared to the spectra and applied to the uncorrected FIFI-LS cubes in the cases where the standard values give unsatisfactory results. Subcubes can be selected and saved as FITS files by cropping or cutting the original cubes. Lines and continuum can be fitted in the spectral window saving the results in Jyson files which can be reloaded later. Finally, in the case of spatially extended observations, it is possible to compute spectral momenta as a function of the position to obtain velocity dispersion maps or velocity diagrams.

  4. A Governance Roadmap and Framework for EarthCube

    Science.gov (United States)

    Allison, M. L.

    2012-12-01

    EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and

  5. Shelf stable intermediate moisture fruit cubes using radiation technology

    International Nuclear Information System (INIS)

    Mishra, Bibhuti B.; Saxena, Sudhanshu; Gautam, Satyendra; Chander, Ramesh; Sharma, Arun

    2009-01-01

    A process has been developed to prepare shelf stable ready-to-eat (RTE) intermediate moisture pineapple slices and papaya cubes using radiation technology. The combination of hurdles including osmotic dehydration, blanching, infrared drying, and gamma radiation dose of 1 kGy successfully reduced the microbial load to below detectable limit. The shelf life of the intermediate moisture pineapple slices and papaya cubes was found to be 40 days at ambient temperature (28 ± 2 deg C). The control samples spoiled within 6 days. The RTE intermediate moisture fruit products were found to have good texture, colour and sensory acceptability during this 40 days storage. (author)

  6. CubeSat constellations for disaster management in remote areas

    Science.gov (United States)

    Santilli, Giancarlo; Vendittozzi, Cristian; Cappelletti, Chantal; Battistini, Simone; Gessini, Paolo

    2018-04-01

    In recent years, CubeSats have considerably extended their range of possible applications, from a low cost means to train students and young researchers in space related activities up to possible complementary solutions to larger missions. Increasingly popular, whereas CubeSats are still not a solution for all types of missions, they offer the possibility of performing ambitious scientific experiments. Especially worth considering is the possibility of performing Distributed Space Missions, in which CubeSat systems can be used to increase observation sampling rates and resolutions, as well as to perform tasks that a single satellite is unable to handle. The cost of access to space for traditional Earth Observation (EO) missions is still quite high. Efficient architecture design would allow reducing mission costs by employing CubeSat systems, while maintaining a level of performance that, for some applications, could be close to that provided by larger platforms, and decreasing the time needed to design and deploy a fully functional constellation. For these reasons many countries, including developing nations, agencies and organizations are looking to CubeSat platforms to access space cheaply with, potentially, tens of remote sensing satellites. During disaster management, real-time, fast and continuous information broadcast is a fundamental requirement. In this sense, a constellation of small satellites can considerably decrease the revisit time (defined as the time elapsed between two consecutive observations of the same point on Earth by a satellite) over remote areas, by increasing the number of spacecraft properly distributed in orbit. This allows collecting as much data as possible for the use by Disaster Management Centers. This paper describes the characteristics of a constellation of CubeSats built to enable access over the most remote regions of Brazil, supporting an integrated system for mitigating environmental disasters in an attempt to prevent the

  7. Instant SQL Server Analysis Services 2012 Cube Security

    CERN Document Server

    Jayanty, Satya SK

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. Instant Microsoft SQL Server Analysis Services 2012 Cube Security is a practical, hands-on guide that provides a number of clear, step-by-step exercises for getting started with cube security.This book is aimed at Database Administrators, Data Architects, and Systems Administrators who are managing the SQL Server data platform. It is also beneficial for analysis services developers who already have some experience with the technology, but who want to go into more detail on advanced

  8. Searches for magnetic monopoles with IceCube

    Directory of Open Access Journals (Sweden)

    Pollmann Anna

    2018-01-01

    IceCube is a high energy neutrino detector using the clear ice at the South Pole as a detection medium. As monopoles pass through this ice they produce optical light by a variety of mechanisms. With increasing velocity, they produce light by catalysis of baryon decay, luminescence in the ice associated with electronic excitations, indirect and direct Cherenkov light from the monopole track, and Cherenkov light from cascades induced by pair creation and photonuclear reactions. By searching for this light, current best limits for the monopole flux over a broad range of velocities was achieved using the IceCube detector. A review of these magnetic monopole searches is presented.

  9. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  10. Integrated Solar-Panel Antenna Array for CubeSats (ISAAC)

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a new subsystem technology for CubeSats. Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) is an efficient, compact, high gain, low...

  11. Integrated CubeSat ADACS with Reaction Wheels and Star Tracker, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAI-400SS Space Sextant is a precision attitude determination and control system for CubeSats and Nanosats. The MAI-400SS enables future CubeSat missions with...

  12. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  13. Coexistence of Two Singularities in Dewetting Flows: Regularizing the Corner Tip

    NARCIS (Netherlands)

    Peters, I.R.; Snoeijer, Jacobus Hendrikus; Daerr, Adrian; Limat, Laurent

    2009-01-01

    Entrainment in wetting and dewetting flows often occurs through the formation of a corner with a very sharp tip. This corner singularity comes on top of the divergence of viscous stress near the contact line, which is only regularized at molecular scales. We investigate the fine structure of corners

  14. 40 CFR 81.121 - Four Corners Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Four Corners Interstate Air Quality Control Region. 81.121 Section 81.121 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Quality Control Regions § 81.121 Four Corners Interstate Air Quality Control Region. The Four Corners...

  15. Models, modules and abelian groups in memory of A.L.S.Corner

    CERN Document Server

    Goldsmith, Brendan

    2008-01-01

    This is a memorial volume dedicated to A. L. S. Corner, previously Professor in Oxford, who published important results on algebra, especially on the connections of modules with endomorphism algebras. The volume contains refereed contributions which are related to the work of Corner.It contains also an unpublished extended paper of Corner himself. A memorial volume with important contributions related to algebra.

  16. IMPROVED REAL-TIME SCAN MATCHING USING CORNER FEATURES

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2016-06-01

    Full Text Available The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. GPS are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to localize themselves in indoor environments. Typically, automatic real-time matching of the successive scans is performed either explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative Closest Point (ICP, Iterative Matching Range Point (IMRP, Iterative Dual Correspondence (IDC, and Polar Scan Matching (PSM handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the transformation parameters

  17. The IceCube Neutrino Observatory: instrumentation and online systems

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ansseau, I.; Ahlers, M.; Auer, R.; Baccus, J.; Barnet, S.; Ahrens, M.; Altmann, D.; Anton, G.; Andeen, K.; Anderson, T.; Archinger, M.; Argüelles, C.; Axani, S.; Auffenberg, J.; Bai, X.; Barwick, S.W.

    2017-01-01

    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.

  18. Cosmic-ray anisotropy studies with IceCube

    Science.gov (United States)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  19. New Formula for Stability of Cube Armoured Roundheads

    DEFF Research Database (Denmark)

    Maciñeira, Enrique; Burcharth, Hans F.

    2007-01-01

    Design of armour for rubble mound breakwater roundheads constitutes in many cases a problem due to the limitation of available data and guidelines. The objective of the paper is to present the results of a comprehensive model test study on the stability of cube armoured roundheads, resulting...... in a new stability formula...

  20. An Overview of Cube-Satellite Propulsion Technologies and Trends

    Directory of Open Access Journals (Sweden)

    Akshay Reddy Tummala

    2017-12-01

    Full Text Available CubeSats provide a cost effective means to perform scientific and technological studies in space. Due to their affordability, CubeSat technologies have been diversely studied and developed by educational institutions, companies and space organizations all over the world. The CubeSat technology that is surveyed in this paper is the propulsion system. A propulsion system is the primary mobility device of a spacecraft and helps with orbit modifications and attitude control. This paper provides an overview of micro-propulsion technologies that have been developed or are currently being developed for CubeSats. Some of the micro-propulsion technologies listed have also flown as secondary propulsion systems on larger spacecraft. Operating principles and key design considerations for each class of propulsion system are outlined. Finally, the performance factors of micro-propulsion systems have been summarized in terms of: first, a comparison of thrust and specific impulse for all propulsion systems; second, a comparison of power and specific impulse, as also thrust-to-power ratio and specific impulse for electric propulsion systems.

  1. Sublimation-Induced Shape Evolution of Silver Cubes

    KAUST Repository

    Ding, Yong

    2009-12-18

    The heat is on: Surface sublimation and shape transformation of silver cubes, enclosed by {100} surfaces and about 100nm in size, are examined by in situ transmission electron microscopy (see picture). High-index surfaces, such as {110}, of face-centered cubic metals are more stable when the temperature is close to the melting point.

  2. Optimizing RDF Data Cubes for Efficient Processing of Analytical Queries

    DEFF Research Database (Denmark)

    Jakobsen, Kim Ahlstrøm; Andersen, Alex B.; Hose, Katja

    2015-01-01

    data warehouses and data cubes. Today, external data sources are essential for analytics and, as the Semantic Web gains popularity, more and more external sources are available in native RDF. With the recent SPARQL 1.1 standard, performing analytical queries over RDF data sources has finally become...

  3. Root oxygen use determination of propagated cucumber on rockwool cubes

    NARCIS (Netherlands)

    Gérard, S.; Blok, C.

    2013-01-01

    Cucumbers were propagated in rockwool cubes in a climate cell for four weeks. The complete root system of each cucumber was enclosed in an airtight box. Each box was connected to an air bag, which acted as an air reservoir. A peristaltic pump ensured air circulation in the system. Treatments

  4. Performing High-Quality Science on CubeSats

    DEFF Research Database (Denmark)

    H. Zurbuchen, Thomas; von Steiger, Rudolf; Bartalev, Sergey

    2016-01-01

    in this area of research. Our discussions focused on four themes characteristic of CubeSats and their evolution: 1) identification of appropriate science in avariety of research disciplines, 2) technology development, 3) international vs. national approaches, and 4) educational benefits. These discussions...

  5. Sublimation-Induced Shape Evolution of Silver Cubes

    KAUST Repository

    Ding, Yong; Fan, Fengru; Tian, Zhongqun; Wang, Zhong Lin

    2009-01-01

    The heat is on: Surface sublimation and shape transformation of silver cubes, enclosed by {100} surfaces and about 100nm in size, are examined by in situ transmission electron microscopy (see picture). High-index surfaces, such as {110}, of face

  6. Mathematics Hiding in the Nets for a Cube

    Science.gov (United States)

    Jeon, Kyungsoon

    2009-01-01

    Whether they are third graders or teacher candidates, students can learn about perimeter and area while having fun manipulating two-dimensional figures into three-dimensional objects. In this article, the author describes a common mathematical activity for geometry students by creating nets for a cube. By making connections between nets in two…

  7. CubeSat Form Factor Thermal Control Louvers

    Science.gov (United States)

    Evans, Allison L. (Inventor)

    2018-01-01

    Thermal control louvers for CubeSats or small spacecraft may include a plurality of springs attached to a back panel of the thermal control louvers. The thermal control louvers may also include a front panel, which includes at least two end panels interlocked with one or more middle panels. The front panel may secure the springs, shafts, and flaps to the back panel.

  8. The listening cube: a three dimensional auditory training program

    NARCIS (Netherlands)

    De Raeve, L.; Anderson, I.; Bammens, M.; Jans, J.; Haesevoets, M.; Pans, R.; Vandistel, H.; Vrolix, Y.

    2012-01-01

    OBJECTIVES: Here we present the Listening Cube, an auditory training program for children and adults receiving cochlear implants, developed during the clinical practice at the KIDS Royal Institute for the Deaf in Belgium. We provide information on the content of the program as well as guidance as to

  9. The Software Invention Cube: A classification scheme for software inventions

    NARCIS (Netherlands)

    Bergstra, J.A.; Klint, P.

    2008-01-01

    The patent system protects inventions. The requirement that a software invention should make ‘a technical contribution’ turns out to be untenable in practice and this raises the question, what constitutes an invention in the realm of software. The authors developed the Software Invention Cube

  10. The Latest IceCube Results and the Implications

    Science.gov (United States)

    Mase, Keiichi

    IceCube was built at the South Pole and aims to detect high energy neutrinos from the universe mainly above 100 GeV. The transparent ice media allows us to build a 1 km3 large detection volume to detect the rarely interacting particles. Neutrinos are thought to be generated at astrophysical sources such as active galactic nuclei and gamma-ray bursts. Nature of the rare interaction with matters and little deflection by a magnetic field makes it possible to explore such sources located at the deep universe. Since the neutrinos are produced through collisions of hadronic particles, the observation can elucidate the origin of cosmic rays, which is still mystery after the discovery 100 years ago. The detector was completed at the end of 2010 and is running smoothly. Recently, IceCube has found the first evidence of extraterrestrial neutrinos with energies above approximately 60 TeV. IceCube also contributes to elementary particle physics by searching for neutrinos produced in self-annihilation of SUSY particles such as neutralinos and by investigating atmospheric neutrino oscillations. The latest IceCube results and the corresponding implications are presented.

  11. Anesthesia Fact Sheet

    Science.gov (United States)

    ... Education About NIGMS NIGMS Home > Science Education > Anesthesia Anesthesia Tagline (Optional) Middle/Main Content Area En español ... Version (464 KB) Other Fact Sheets What is anesthesia? Anesthesia is a medical treatment that prevents patients ...

  12. Structural Biology Fact Sheet

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  13. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  14. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  15. A Governance Roadmap and Framework for EarthCube

    Science.gov (United States)

    Governance Steering Committee, EarthCube

    2013-04-01

    EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and

  16. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  17. X-Band CubeSat Communication System Demonstration

    Science.gov (United States)

    Altunc, Serhat; Kegege, Obadiah; Bundick, Steve; Shaw, Harry; Schaire, Scott; Bussey, George; Crum, Gary; Burke, Jacob C.; Palo, Scott; O'Conor, Darren

    2015-01-01

    Today's CubeSats mostly operate their communications at UHF- and S-band frequencies. UHF band is presently crowded, thus downlink communications are at lower data rates due to bandwidth limitations and are unreliable due to interference. This research presents an end-to-end robust, innovative, compact, efficient and low cost S-band uplink and X-band downlink CubeSat communication system demonstration between a balloon and a Near Earth Network (NEN) ground system. Since communication systems serve as umbilical cords for space missions, demonstration of this X-band communication system is critical for successfully supporting current and future CubeSat communication needs. This research has three main objectives. The first objective is to design, simulate, and test a CubeSat S- and X-band communication system. Satellite Tool Kit (STK) dynamic link budget calculations and HFSS Simulations and modeling results have been used to trade the merit of various designs for small satellite applications. S- and X-band antennas have been tested in the compact antenna test range at Goddard Space Flight Center (GSFC) to gather radiation pattern data. The second objective is simulate and test a CubeSat compatible X-band communication system at 12.5Mbps including S-band antennas, X-band antennas, Laboratory for Atmospheric and Space Physics (LASP) /GSFC transmitter and an S-band receiver from TRL-5 to TRL-8 by the end of this effort. Different X-band communication system components (antennas, diplexers, etc.) from GSFC, other NASA centers, universities, and private companies have been investigated and traded, and a complete component list for the communication system baseline has been developed by performing analytical and numerical analysis. This objective also includes running simulations and performing trades between different X-band antenna systems to optimize communication system performance. The final objective is to perform an end-to-end X-band CubeSat communication system

  18. Radiography of Co-60 in the lead cube castings

    International Nuclear Information System (INIS)

    Djoli Soembogo; Harun Al Rasyid R; Namad Sianta

    2016-01-01

    Radiography Co-60 on Carbon steel or Stainless steel has been widely applied, but for metal Lead has not yet been applied and has not yet widely known. Lead has a greater density than Carbon steel or Stainless steel and could muffle gamma radiation so it takes a longer exposure time. The result of its film radiography are also not as good as compared to radiography applications on carbon steel or Stainless steel. The study also applied digital radiography using isotope Co-60 sources and used Epson V700 scanner positive film for digitization results of conventional radiographic films. These radiographs using film AGFA D7 to get the contrast medium, medium sensitivity and good image quality. The purpose of radiography Co-60 on the cube castings Lead is to find indications of defective castings cube Lead and digitizing the results using conventional radiographic film with a positive film media scanner to process the data transfer and storage of digital data. Radiographic testing has been carried out using the isotope Co-60 on metal castings Lead with a single thickness of a single shadow method using positive film scanner media and isotope Co-60 with disabilities observation parameter Lead metal castings on radiographic film. Co-60 radiation time exposure is 3,500 hours for the thickness of the metal cube castings Lead 100 mm with the activity of 29 Ci and perpendicular SFD of 840 mm. Radiographic testing on metal cube castings Lead by the method of a single thickness of single image defects produce a parameter indicative for a cube of metal castings Lead of porosity level 2. The density mean of radiographic film was 2.051 and 2.046 for 5 minutes in a developer solution. The result of scanning positive film is in the form of digital radiography which allows for the transfer of digital data or computerized storage of digital data. This status is still within limits acceptable under the standards referred. (author)

  19. Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets

    International Nuclear Information System (INIS)

    Shen, Fanghua; Yi, Danqing; Wang, Bin; Liu, Huiqun; Jiang, Yong; Tang, Cong; Jiang, Bo

    2016-01-01

    Decreasing the anisotropy of 2524 alloys is a key factor for their use in applications such as high-performance inertial components or space robots. Studying the interaction between sheet textures and anisotropy is a key factor to overcome this problem. In this study, the semi-quantitative approach to estimate the relation between texture and in-plane anisotropy (IPA) of yield strength has been developed. The intensity ratio between Cube and Brass texture components (F CGB ) was used as an effective variable for this purpose. This approach has been tested in 2524 T3 aluminum alloy sheets, which were investigated using X-Ray diffraction, scanning electron microscopy, optical microscopy and tensile tests. The results show that F CGB decreased with an increase in cold reduction. The 2524 T3 sheet, dominated by Cube texture grains, possesses the lowest in-plane anisotropy for the yield strength of all texture components investigated. The alloy sheet dominated by Brass texture exhibits the highest anisotropy, while the Goss texture-led sheets fall in between them. These results agree with the trends seen in the factor F CGB , suggesting that is suited to evaluate the anisotropy of yield strength in 2524 T3 alloy sheets semi-quantitatively.

  20. Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Fanghua [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yi, Danqing, E-mail: yioffice@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Light Alloy Research Institute, Central South University, Changsha, Hunan 410083 (China); National Collaborative Innovation Center of Advanced Nonferrous Structural Materials and Manufacturing, Central South University, Changsha 410083 (China); Wang, Bin; Liu, Huiqun; Jiang, Yong; Tang, Cong; Jiang, Bo [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Decreasing the anisotropy of 2524 alloys is a key factor for their use in applications such as high-performance inertial components or space robots. Studying the interaction between sheet textures and anisotropy is a key factor to overcome this problem. In this study, the semi-quantitative approach to estimate the relation between texture and in-plane anisotropy (IPA) of yield strength has been developed. The intensity ratio between Cube and Brass texture components (F{sub CGB}) was used as an effective variable for this purpose. This approach has been tested in 2524 T3 aluminum alloy sheets, which were investigated using X-Ray diffraction, scanning electron microscopy, optical microscopy and tensile tests. The results show that F{sub CGB} decreased with an increase in cold reduction. The 2524 T3 sheet, dominated by Cube texture grains, possesses the lowest in-plane anisotropy for the yield strength of all texture components investigated. The alloy sheet dominated by Brass texture exhibits the highest anisotropy, while the Goss texture-led sheets fall in between them. These results agree with the trends seen in the factor F{sub CGB}, suggesting that is suited to evaluate the anisotropy of yield strength in 2524 T3 alloy sheets semi-quantitatively.

  1. Cornering the Market: Lessons from Industry about Shaping Public Opinion

    Science.gov (United States)

    2008-03-24

    100 By 1984, Coke had barely a three percent market share advantage over Pepsi , even while outspending them in advertising by $100 million and having...increase market share over Pepsi . There was much more that went wrong, however. Most significant was that the company didn’t grasp the factors involved...position of the Department of the Army, Department of Defense, or the U.S. Government. CORNERING THE MARKET : LESSONS FROM INDUSTRY ABOUT SHAPING PUBLIC

  2. Communities Putting Prevention to Work: The Healthy Corner Store Initiative

    Centers for Disease Control (CDC) Podcasts

    2013-07-18

    This podcast is an interview with Dr. Stephanie Jilcott Pitts, Associate Professor in the Department of Public Health at East Carolina University. Dr. Pitts answers questions about her study involving a healthy corner store initiative in North Carolina.  Created: 7/18/2013 by Preventing Chronic Disease (PCD), National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 7/18/2013.

  3. Aluminium-rich corner in Al-Cu-La system

    International Nuclear Information System (INIS)

    Yunusov, I.; Ganiev, I.N.

    1990-01-01

    Aluminium corner of Al-Cu-La system are investigated by means of microstructural and differential thermal analysis. Existence of LaCu 2 Al 10 and LaCu 0.5 Al 3.5 ternary compounds in the system is confirmed and it is shown, as well, both compounds are in two-phase equilibrium with aluminium solid solution and form with it and between each other eutectic type state diagrams. State diagrams for quasibinary sections are plotted

  4. Wall and corner fire tests on selected wood products

    Science.gov (United States)

    H. C. Tran; M. L. Janssens

    1991-01-01

    As part of a fire growth program to develop and validate a compartment fire model, several bench-scale and full-scale tests were conducted. This paper reports the full-scale wall and corner test results of step 2 of this study. A room fire test following the ASTM proposed standard specifications was used for these full-scale tests. In step 1, we investigated the...

  5. Three-dimensional fluid flow phenomena in the blade end wall corner region

    Science.gov (United States)

    Hazarika, B. K.; Raj, R.; Boldman, D. R.

    1986-01-01

    Flow visualization, static and total pressure measurements, and mean velocity profile measurements with a single-sensor inclined hot wire probe, are used in a study of three-dimensional flow at a turbine blade end wall corner region for six critical axial stations along the blade chord. Three vortices are identified: (1) a horseshoe vortex near the leading edge; (2) a corner eddy between the horseshoe vortex and the corner; and (3) a vortex at the rear portion of the corner due to the corner eddy's secondary flow. Attention is given to the relative size and rate-of-spread of the vortices in the streamwise direction.

  6. Calibrating cellular automaton models for pedestrians walking through corners

    Science.gov (United States)

    Dias, Charitha; Lovreglio, Ruggiero

    2018-05-01

    Cellular Automata (CA) based pedestrian simulation models have gained remarkable popularity as they are simpler and easier to implement compared to other microscopic modeling approaches. However, incorporating traditional floor field representations in CA models to simulate pedestrian corner navigation behavior could result in unrealistic behaviors. Even though several previous studies have attempted to enhance CA models to realistically simulate pedestrian maneuvers around bends, such modifications have not been calibrated or validated against empirical data. In this study, two static floor field (SFF) representations, namely 'discrete representation' and 'continuous representation', are calibrated for CA-models to represent pedestrians' walking behavior around 90° bends. Trajectory data collected through a controlled experiment are used to calibrate these model representations. Calibration results indicate that although both floor field representations can represent pedestrians' corner navigation behavior, the 'continuous' representation fits the data better. Output of this study could be beneficial for enhancing the reliability of existing CA-based models by representing pedestrians' corner navigation behaviors more realistically.

  7. The Role of Figure-Ground in the Corner Enhancement Effect

    Directory of Open Access Journals (Sweden)

    Mai Mohamed Helmy

    2012-05-01

    Full Text Available The appearance of a new object in the visual field captures visual attention. Moreover, detection is faster for a probe presented in a region adjacent to the corner of a stimulus, compared to a probe adjacent to the straight edge. This corner enhancement effect is believed to show that probes near corners receive enhanced processing (Cole et al 2007, Attention, Perception and Psychophysics 69, 400–412. We tested the corner effect for convex and concave corners for surfaces arranged in depth. We used coloured regions with cast shadows to specify foreground and background and a square stimulus that could be perceived as either an object or a hole (a figure-ground reversal. The probe was a small red line that could appear near a corner or a straight edge 100 msec after the stimulus onset. We asked the participants to discriminate the orientation of the probe (horizontal or vertical. The corner effect was found for both convex (Experiment 1 and concave (Experiment 2 vertices but only when the probe was near the corner of the foreground surface (the pattern reversed for objects and holes. In Experiment 3 we tested a situation in which the probe was perceived as a small object not located on any surface—ie, a floating probe. The corner effect disappeared when the probe was not attached to any specific surface. In summary, the corner enhancement effect was present only when the probe was on the surface that owned the corner.

  8. Persepsi Pemustaka Terhadap Layanan America Corner di Perpustakaan Pusat Universitas Hasanuddin Makassar

    Directory of Open Access Journals (Sweden)

    Ayu Trysnawati

    2015-11-01

    Full Text Available American Corner merupakan salah satu bentuk layanan yang ada di Perpustakaan UNHAS. Penelitian ini bertujuan untuk mengetahui persepsi pemustaka terhadap layanan American Corner di Perpustakaan UNHAS. Jenis penelitian ini merupakan jenis penelitian deskriptif kualitatif. Sumber data dalam penelitian ini adalah pemustaka layanan American Corner. Teknik pengumpulan data dilakukan melalui: (1 wawancara, (2 observasi, (3 dokumentasi. Teknik analisis data dalam bentuk reduksi data, penyajian data (data display, dan menarik kesimpulan/verifikasi untuk memperoleh hasil akhir.Berdasarkan hasil penelitian menunjukkan bahwa: (1 Persepsi pemustaka terhadap pelayanan American Corner di Perpustakaan UNHAS  sangat baik, layanan yang terdapat pada American Corner membuat pemustaka nyaman berkunjung. (2 Persepsi pemustaka terhadap koleksi American Corner di Perpustakaan Pusat Universitas Hasanuddin Makassar ditanggapi baik oleh pemustaka. Segala hal yang berkaitan dengan koleksi American Corner membuat pemustaka senang berkunjung.

  9. Neutrino oscillation parameter sampling with MonteCUBES

    Science.gov (United States)

    Blennow, Mattias; Fernandez-Martinez, Enrique

    2010-01-01

    We present MonteCUBES ("Monte Carlo Utility Based Experiment Simulator"), a software package designed to sample the neutrino oscillation parameter space through Markov Chain Monte Carlo algorithms. MonteCUBES makes use of the GLoBES software so that the existing experiment definitions for GLoBES, describing long baseline and reactor experiments, can be used with MonteCUBES. MonteCUBES consists of two main parts: The first is a C library, written as a plug-in for GLoBES, implementing the Markov Chain Monte Carlo algorithm to sample the parameter space. The second part is a user-friendly graphical Matlab interface to easily read, analyze, plot and export the results of the parameter space sampling. Program summaryProgram title: MonteCUBES (Monte Carlo Utility Based Experiment Simulator) Catalogue identifier: AEFJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 69 634 No. of bytes in distributed program, including test data, etc.: 3 980 776 Distribution format: tar.gz Programming language: C Computer: MonteCUBES builds and installs on 32 bit and 64 bit Linux systems where GLoBES is installed Operating system: 32 bit and 64 bit Linux RAM: Typically a few MBs Classification: 11.1 External routines: GLoBES [1,2] and routines/libraries used by GLoBES Subprograms used:Cat Id ADZI_v1_0, Title GLoBES, Reference CPC 177 (2007) 439 Nature of problem: Since neutrino masses do not appear in the standard model of particle physics, many models of neutrino masses also induce other types of new physics, which could affect the outcome of neutrino oscillation experiments. In general, these new physics imply high-dimensional parameter spaces that are difficult to explore using classical methods such as multi-dimensional projections and minimizations, such as those

  10. Comparison of Corner-Butt 45 (Cb-45 and Corner-Lap (Cl joints in friction stir welding

    Directory of Open Access Journals (Sweden)

    Setiawan Widia

    2018-01-01

    Full Text Available The 10 mm thick Aluminum 6061 plates have been corner joined using varied design and those were 45° Corner Butt and Corner Lap Joints (CB-45 & CL. Friction tool was hardened EMS 45. True experimental method was used with independent parameters is feed rate which varied at 10 mm/min, 15 mm/min and 30 mm/min respectively. Other parameter such as rotating speed was kept constant. Experiment results show that, CB-45 yields better properties than CL. The tensile strength of CB-45 reaches 163.7 MPa for 10 mm/min feed rate. Whilst CL produces joint with tensile strength equal 120 MPa for equal parameters. Microstructure observation showed that CB-45 produces fine and homogenous appearance of MgO compared to CL. This phenomenon is caused by the pin of CB-45 joint which fully penetrates the nugget zone which is not found in CL design. This microstructure in turn promotes higher tensile strength of CB-45.

  11. Effect of contact angle on the orientation, stability, and assembly of dense floating cubes.

    Science.gov (United States)

    Daniello, Robert; Khan, Kashan; Donnell, Michael; Rothstein, Jonathan P

    2014-02-01

    In this paper, the effect of contact angle, density, and size on the orientation, stability, and assembly of floating cubes was investigated. All the cubes tested were more dense than water. Floatation occurred as a result of capillary stresses induced by deformation of the air-water interface. The advancing contact angle of the bare acrylic cubes was measured to be 85°. The contact angle of the cubes was increased by painting the cubes with a commercially available superhydrophobic paint to reach an advancing contact angle of 150°. Depending on their size, density, and contact angle, the cubes were observed to float in one of three primary orientations: edge up, vertex up, and face up. An experimental apparatus was built such that the sum of the gravitational force, buoyancy force, and capillary forces could be measured using a force transducer as a function of cube position as it was lowered through the air-water interface. Measurements showed that the maximum capillary forces were always experienced for the face up orientation. However, when floatation was possible in the vertex up orientation, it was found to be the most stable cube orientation because it had the lowest center of gravity. A series of theoretical predictions were performed for the cubes floating in each of the three primary orientations to calculate the net force on the cube. The theoretical predictions were found to match the experimental measurements well. A cube stability diagram of cube orientation as a function of cube contact angle and size was prepared from the predictions of theory and found to match the experimental observations quite well. The assembly of cubes floating face up and vertex up were also studied for assemblies of two, three, and many cubes. Cubes floating face up were found to assemble face-to-face and form regular square lattice patterns with no free interface between cubes. Cubes floating vertex up were found to assemble in a variety of different arrangements

  12. Disintegration of liquid sheets

    Science.gov (United States)

    Mansour, Adel; Chigier, Norman

    1990-01-01

    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

  13. Safety advice sheets

    CERN Multimedia

    HSE Unit

    2013-01-01

    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.

  14. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  15. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  16. S-Cube: Enabling the Next Generation of Software Services

    Science.gov (United States)

    Metzger, Andreas; Pohl, Klaus

    The Service Oriented Architecture (SOA) paradigm is increasingly adopted by industry for building distributed software systems. However, when designing, developing and operating innovative software services and servicebased systems, several challenges exist. Those challenges include how to manage the complexity of those systems, how to establish, monitor and enforce Quality of Service (QoS) and Service Level Agreements (SLAs), as well as how to build those systems such that they can proactively adapt to dynamically changing requirements and context conditions. Developing foundational solutions for those challenges requires joint efforts of different research communities such as Business Process Management, Grid Computing, Service Oriented Computing and Software Engineering. This paper provides an overview of S-Cube, the European Network of Excellence on Software Services and Systems. S-Cube brings together researchers from leading research institutions across Europe, who join their competences to develop foundations, theories as well as methods and tools for future service-based systems.

  17. Almost everywhere convergence over cubes of multiple trigonometric Fourier series

    International Nuclear Information System (INIS)

    Antonov, N Yu

    2004-01-01

    Under certain conditions on a function φ:[0,+∞)→[0,+∞) we prove a theorem asserting that the convergence almost everywhere of trigonometric Fourier series for all functions of class φ(L) [-π,π) implies the convergence over cubes of the multiple Fourier series and all its conjugates for an arbitrary function f element of φ(L)(log + L) d-1 ) [-π,π) d , d element of N. It follows from this and an earlier result of the author on the convergence almost everywhere of Fourier series of functions of one variable and class L(log + L)(log + log + log + L)) [-π,π) that if f element of L(log + L) d (log + log + log + L)) [-π,π) d , d element of N, then the Fourier series of f and all its conjugates converge over cubes almost everywhere

  18. Blazar origin of some IceCube events

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Luis Salvador; Leon, Alberto Rosales de; Sahu, Sarira [Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.U., Instituto de Ciencias Nucleares, Mexico, DF (Mexico)

    2016-07-15

    Recently the ANTARES collaboration presented a time dependent analysis of a selected number of flaring blazars to look for upward going muon events produced from the charge current interaction of the muon neutrinos. We use the same list of flaring blazars to look for a possible positional correlation with the IceCube neutrino events. In the context of the photohadronic model we propose that the neutrinos are produced within the nuclear region of the blazar where Fermi accelerated high energy protons interact with the background synchrotron/SSC photons. Although we found that some objects from the ANTARES list are within the error circles of a few IceCube events, the statistical analysis shows that none of these sources have a significant correlation. (orig.)

  19. Practical layer designs for polarizing beam-splitter cubes.

    Science.gov (United States)

    von Blanckenhagen, Bernhard

    2006-03-01

    Liquid-crystal-on-silicon- (LCoS-) based digital projection systems require high-performance polarizing beam splitters. The classical beam-splitter cube with an immersed interference coating can fulfill these requirements. Practical layer designs can be generated by computer optimization using the classic MacNeille polarizer layer design as the starting layer design. Multilayer structures with 100 nm bandwidth covering the blue, green, or red spectral region and one design covering the whole visible spectral region are designed. In a second step these designs are realized by using plasma-ion-assisted deposition. The performance of the practical beam-splitter cubes is compared with the theoretical performance of the layer designs.

  20. IceCube Constraints on the Fermi Bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Sherf, Nimrod; Keshet, Uri [Physics Department, Ben-Gurion University of the Negev, POB 653, Be’er-Sheva 84105 (Israel); Gurwich, Ilya, E-mail: sherfnim@post.bgu.ac.il, E-mail: ukeshet@bgu.ac.il, E-mail: gurwichphys@gmail.com [Department of Physics, NRCN, POB 9001, Beer-Sheva 84190 (Israel)

    2017-10-01

    We analyze the IceCube four-year neutrino data in search of a signal from the Fermi bubbles. No signal is found from the bubbles or from their dense shell, even when taking into account the softer background. This imposes a conservative ξ {sub i} < 8% upper limit on the cosmic-ray ion (CRI) acceleration efficiency, and an η ≡ ξ {sub e} / ξ {sub i} ≳ 0.006 lower limit on the electron-to-ion ratio of acceleration efficiencies (at the 2 σ confidence level). For typical ξ {sub i} , a signal should surface once the number of IceCube neutrinos increases by ∼an order of magnitude, unless there is a

  1. IceCube and the Development of Neutrino Astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Abstract: IceCube's discovery of a diffuse flux of astrophysical neutrinos started a new era of neutrino astronomy.I will review the multiple diffuse analyses in IceCube that observe the astrophysical flux, and what each can tell us. Then I will focus on spatial analyses that aim to identify the sources of such astrophysical neutrinos. This will be followed by an attempt to reconcile all results to draw a coherent picture that is the state of neutrino astronomy. Current plans for a streamlined real-time alert system to promote multi-messenger observations, and future plans of new detectors at the South Pole will be discussed to map out a path for discovering the first high-energy neutrino source in the sky.

  2. A spatio-temporal extension to the map cube operator

    Science.gov (United States)

    Alzate, Juan C.; Moreno, Francisco J.; Echeverri, Jaime

    2012-09-01

    OLAP (On Line Analytical Processing) is a set of techniques and operators to facilitate the data analysis usually stored in a data warehouse. In this paper, we extend the functionality of an OLAP operator known as Map Cube with the definition and incorporation of a function that allows the formulation of spatio-temporal queries. For example, consider a data warehouse about crimes that includes data about the places where the crimes were committed. Suppose we want to find and visualize the trajectory (a trajectory is just the path that an object follows through space as a function of time) of the crimes of a suspect beginning with his oldest crime and ending with his most recent one. In order to meet this requirement, we extend the Map Cube operator.

  3. Data Cubes Integration in Spatial OLAP for Agricultural Commodities

    Science.gov (United States)

    Putri, A. I.; Sitanggang, I. S.

    2017-03-01

    Ministry of Agriculture Indonesia collects data of agricultural commodities in Indonesia in the annual period. Agricultural commodities data include food crops, horticulture, plantations, and livestock. The data are available in the spreadsheet format. This study developed data cubes for food crops, plantations, and livestock using the galaxy schema of data warehouse and integrated the data cubes into the SOLAP Horticulture using SpagoBI. SOLAP is useful for data analysis and data visualization. The application displays agricultural commodities data in form of crosstab and chart. This study also developed the location intelligence module that visualizes agricultural commodities data on the map. The system was tested using the black box approach. The result showed that main functions including roll up, drill down, slice, dice, and pivot work properly. This application is expected to enable users to easily obtain data summaries of agricultural commodities.

  4. The effectiveness of snow cube throwing learning model based on exploration

    Science.gov (United States)

    Sari, Nenden Mutiara

    2017-08-01

    This study aimed to know the effectiveness of Snow Cube Throwing (SCT) and Cooperative Model in Exploration-Based Math Learning in terms of the time required to complete the teaching materials and student engagement. This study was quasi-experimental research was conducted at SMPN 5 Cimahi, Indonesia. All student in grade VIII SMPN 5 Cimahi which consists of 382 students is used as population. The sample consists of two classes which had been chosen randomly with purposive sampling. First experiment class consists of 38 students and the second experiment class consists of 38 students. Observation sheet was used to observe the time required to complete the teaching materials and record the number of students involved in each meeting. The data obtained was analyzed by independent sample-t test and used the chart. The results of this study: SCT learning model based on exploration are more effective than cooperative learning models based on exploration in terms of the time required to complete teaching materials based on exploration and student engagement.

  5. Landsat 8 Data Modeled as DGGS Data Cubes

    Science.gov (United States)

    Sherlock, M. J.; Tripathi, G.; Samavati, F.

    2016-12-01

    In the context of tracking recent global changes in the Earth's landscape, Landsat 8 provides high-resolution multi-wavelength data with a temporal resolution of sixteen days. Such a live dataset can benefit novel applications in environmental monitoring. However, a temporal analysis of this dataset in its native format is a challenging task mostly due to the huge volume of geospatial images and imperfect overlay of different day Landsat 8 images. We propose the creation of data cubes derived from Landsat 8 data, through the use of a Discrete Global Grid System (DGGS). DGGS referencing of Landsat 8 data provides a cell-based representation of the pixel values for a fixed area on earth, indexed by keys. Having the calibrated cell-based Landsat 8 images can speed up temporal analysis and facilitate parallel processing using distributed systems. In our method, the Landsat 8 dataset hosted on Amazon Web Services (AWS) is downloaded using a web crawler and stored on a filesystem. We apply the cell-based DGGS referencing (using Pyxis SDK) to Landsat 8 images which provide a rhombus based tessellation of equal area cells for our use-case. After this step, the cell-images which overlay perfectly on different days, are stacked in the temporal dimension and stored into data cube units. The depth of the cube represents the number of temporal images of the same cell and can be updated when new images are received each day. Harnessing the regular spatio-temporal structure of data cubes, we want to compress, query, transmit and visualize big Landsat 8 data in an efficient way for temporal analysis.

  6. Ho’ oponopono: A Radar Calibration CubeSat

    Science.gov (United States)

    2011-10-13

    frequency-hopping spread -spectrum radio. The MHX2420 operates in the 2.4–2.4835 GHz range, and outputs 1 W of RF power with a required supplied...Doc/S71327_04.pdf 45. http://www.cubesat.org/images/LaunchProviders/ mkIII/p-pod%20mk%20iii%20icd.pdf 46. Pumpkin CubeSat Kit website, http

  7. Cosmic Ray Physics with the IceCube Observatory

    International Nuclear Information System (INIS)

    Kolanoski, H

    2013-01-01

    The IceCube Neutrino Observatory with its 1-km 3 in-ice detector and the 1-km 2 surface detector (IceTop) constitutes a three-dimensional cosmic ray detector well suited for general cosmic ray physics. Various measurements of cosmic ray properties, such as energy spectra, mass composition and anisotropies, have been obtained from analyses of air showers at the surface and/or atmospheric muons in the ice.

  8. Thermal Effects on the "Ice-Cube Puzzle"

    Science.gov (United States)

    Lima, F. M. S.; Monteiro, F. F.

    2012-01-01

    When an ice cube floating on water in a container melts, it is said in some textbooks that the water level does not change. However, as pointed out by Lan in a recent work, when the buoyant force from a less dense fluid resting above the waterline is taken into account, one should expect a detectable "increase" in the volume of water. Here in this…

  9. Demonstration of a Data Distribution System for ALMA Data Cubes

    Science.gov (United States)

    Eguchi, S.; Kawasaki, W.; Shirasaki, Y.; Komiya, Y.; Kosugi, G.; Ohishi, M.; Mizumoto, Y.; Kobayashi, T.

    2014-05-01

    The Atacama Large Millimeter / submillimeter Array (ALMA) is the world's largest radio telescope in Chile. As a part of Japanese Virtual Observatory (JVO) system, we have been constructing a prototype of data service to distribute ALMA data, which are three or four dimensional cubes and expected to exceed 2 TB in total size, corresponding to 75 days at world-averaged Internet bandwidth of 2.6 Mbps, in the next three years. To utilize the limited bandwidth, our system adopts a higher dimensional version of so-called "deep zoom": the system generates and stores lower resolution FITS data cubes with various binning parameters in directions of both space and frequency. Users of our portal site can easily visualize and cut out those data cubes by using ALMAWebQL, which is a web application built on customized GWT. Once the FITS files are downloaded via ALMAWebQL, one can visualize them in more detail using Vissage, a Java-based FITS cube browser. We exhibited our web and desktop viewer “fresh from the oven” at the last ADASS conference (Shirasaki et al. 2013). Improvement of their performance and functionality after that made the system nearly to a practical level. The performance problem of ALMAWebQL reported last year (Eguchi et al. 2013) was overcome by optimizing the network topology and applying the just-in-time endian conversion algorithm; the latest ALMAWebQL can follow up any user actions almost in real time for files smaller than 5 GB. It also enables users to define either a sub-region or sub-frequency range and move it freely on the graphical user interface, providing more detailed information of the FITS file. In addition, the latest Vissage now supports data from other telescopes including HST, Subaru, Chandra, etc. and overlaying two images. In this paper, we introduce the latest version of our VO system.

  10. ASPECT CubeSat mission to a binary asteroid

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Näsilä, A.; Tikka, T.; Muinonen, K.; Penttilä, A.; Kestilä, A.; Kallio, E.

    2016-01-01

    Roč. 88, Special volume (2016), s. 283-283 ISSN 0367-5211. [ Nordic Geological Winter Meeting /32./. 13.01.2016-15.01.2016, Helsinki] Institutional support: RVO:67985831 Keywords : CubeSat * asteroid * AIDA * reflectance spectra ASPECT Subject RIV: DB - Geology ; Mineralogy http://www.geologinenseura.fi/bulletin/Special_Volume_1_2016/BGSF-NGWM2016_Abstract_Volume.pdf

  11. Interactions between two beta-sheets. Energetics of beta/beta packing in proteins.

    Science.gov (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A

    1986-04-20

    The analysis of the interactions between regularly folded segments of the polypeptide chain contributes to an understanding of the energetics of protein folding. Conformational energy-minimization calculations have been carried out to determine the favorable ways of packing two right-twisted beta-sheets. The packing of two five-stranded beta-sheets was investigated, with the strands having the composition CH3CO-(L-Ile)6-NHCH3 in one beta-sheet and CH3CO-(L-Val)6-NHCH3 in the other. Two distinct classes of low-energy packing arrangements were found. In the class with lowest energies, the strands of the two beta-sheets are aligned nearly parallel (or antiparallel) with each other, with a preference for a negative orientation angle, because this arrangement corresponds to the best complementary packing of the two twisted saddle-shaped beta-sheets. In the second class, with higher interaction energies, the strands of the two beta-sheets are oriented nearly perpendicular to each other. While the surfaces of the two beta-sheets are not complementary in this arrangement, there is good packing between the corner of one beta-sheet and the interior part of the surface of the other, resulting in a favorable energy of packing. Both classes correspond to frequently observed orientations of beta-sheets in proteins. In proteins, the second class of packing is usually observed when the two beta-sheets are covalently linked, i.e. when a polypeptide strand passes from one beta-sheet to the other, but we have shown here that a large contribution to the stabilization of this packing arrangement arises from noncovalent interactions.

  12. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    Science.gov (United States)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community

  13. Mutagenicity potential of commercial broth cubes at varying concentrations

    International Nuclear Information System (INIS)

    De Torres, Nelson Velasquez; Talain, Augusto Nicolas.

    1997-01-01

    Today, there has been a growing concern on the mutagenicity potential of environmental chemical systems. These environmental chemicals such as pesticides, food additives, synthetic drugs, water and atmospheric pollutants are possible causes of mutagenic activity. Meat products and some meat flavorings, were also reported to exhibit mutagenic activity. And since these products are normal part of the daily human diet, there is a need for extensive studies regarding the possible mutagenic activity associated with these products. This study aimed to evaluate the mutagenicity potential of commercial broth cubes at varying concentration. The researchers sought to answer the following questions: 1. Do beef, pork and chicken broth cubes exhibit mutagenic activity? 2. Are there significant differences in the mutagenic activity among the three samples? 3. Are these significant differences in the mutagenic activity exhibited by each of the samples compared to that of Mitomycin-C (positive control)? 4. Which of the sample of each specific concentration exhibit the greatest mutagenic activity? Three specific concentrations of beef, pork and chicken broth cubes were prepared and their mutagenicity potential was evaluated by using the Micronucleus test. The formation of micro nucleated polychromatic and micro nucleated normo chromatic erythrocytes in bone marrow cells of mice treated with these samples were detected using a Carl-Zeiss photo microscope. The statistical tool used to test the validity of the null hypothesis was analysis of variance using randomized complete block design and independent T- test. (author)

  14. Mutagenicity potential of commercial broth cubes at varying concentrations

    Energy Technology Data Exchange (ETDEWEB)

    De Torres, Nelson Velasquez; Talain, Augusto Nicolas

    1998-12-31

    Today, there has been a growing concern on the mutagenicity potential of environmental chemical systems. These environmental chemicals such as pesticides, food additives, synthetic drugs, water and atmospheric pollutants are possible causes of mutagenic activity. Meat products and some meat flavorings, were also reported to exhibit mutagenic activity. And since these products are normal part of the daily human diet, there is a need for extensive studies regarding the possible mutagenic activity associated with these products. This study aimed to evaluate the mutagenicity potential of commercial broth cubes at varying concentration. The researchers sought to answer the following questions: 1. Do beef, pork and chicken broth cubes exhibit mutagenic activity? 2. Are there significant differences in the mutagenic activity among the three samples? 3. Are these significant differences in the mutagenic activity exhibited by each of the samples compared to that of Mitomycin-C (positive control)? 4. Which of the sample of each specific concentration exhibit the greatest mutagenic activity? Three specific concentrations of beef, pork and chicken broth cubes were prepared and their mutagenicity potential was evaluated by using the Micronucleus test. The formation of micro nucleated polychromatic and micro nucleated normo chromatic erythrocytes in bone marrow cells of mice treated with these samples were detected using a Carl-Zeiss photo microscope. The statistical tool used to test the validity of the null hypothesis was analysis of variance using randomized complete block design and independent T- test. (author). 28 refs., 9 figs., 26 tabs.

  15. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  16. Moon and Sun shadow observation with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Fabian; Tenholt, Frederik; Becker-Tjus, Julia [Theoretische Physik, Ruhr-Universitaet, Bochum (Germany); Westerhoff, Stefan [University of Wisconsin, Madison (United States); Collaboration: IceCube-Collaboration

    2015-07-01

    The analysis of the Moon shadow is a standard method in IceCube to determine the angular resolution and absolute pointing capabilities of the IceCube detector at the geographic South Pole. The Sun has not been used as a calibrator thus far, as its shadow is expected to be influenced by the solar magnetic field, which deflects the cosmic rays near the solar surface. This, on the other hand, provides indirect pieces of information on the magnetic field structure of the Sun. This talk shows a first analysis of the Sun shadow with IceCube data. The analysis is based on the data of the detector configurations with 79 (IC79) and 86 strings (IC86) from 2010 through 2012. To examine the shadows, a binned method is used to compare all events from one on-source with two off-source windows. For the IC40 and IC59 configuration a deficit with a statistical significance of more than 6σ was observed.

  17. IceCube: An Instrument for Neutrino Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  18. Applying GRID Technologies to XML Based OLAP Cube Construction

    CERN Document Server

    Niemi, Tapio Petteri; Nummenmaa, J; Thanisch, P

    2002-01-01

    On-Line Analytical Processing (OLAP) is a powerful method for analysing large data warehouse data. Typically, the data for an OLAP database is collected from a set of data repositories such as e.g. operational databases. This data set is often huge, and it may not be known in advance what data is required and when to perform the desired data analysis tasks. Sometimes it may happen that some parts of the data are only needed occasionally. Therefore, storing all data to the OLAP database and keeping this database constantly up-to-date is not only a highly demanding task but it also may be overkill in practice. This suggests that in some applications it would be more feasible to form the OLAP cubes only when they are actually needed. However, the OLAP cube construction can be a slow process. Thus, we present a system that applies Grid technologies to distribute the computation. As the data sources may well be heterogeneous, we propose an XML language for data collection. The user's definition for a OLAP new cube...

  19. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  20. Cholera Fact Sheet

    Science.gov (United States)

    ... news-room/fact-sheets/detail/cholera","@context":"http://schema.org","@type":"Article"}; العربية 中文 français русский español ... that includes feedback at the local level and information-sharing at the global level. Cholera cases are ...

  1. Pseudomonas - Fact Sheet

    OpenAIRE

    Public Health Agency

    2012-01-01

    Fact sheet on Pseudomonas, including:What is Pseudomonas?What infections does it cause?Who is susceptible to pseudomonas infection?How will I know if I have pseudomonas infection?How can Pseudomonas be prevented from spreading?How can I protect myself from Pseudomonas?How is Pseudomonas infection treated?

  2. NTPR Fact Sheets

    Science.gov (United States)

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Support Center Contact Us FAQ Sheet Links Success Stories Contracts Business Opportunities Current

  3. Production (information sheets)

    NARCIS (Netherlands)

    2007-01-01

    Documentation sheets: Geo energy 2 Integrated System Approach Petroleum Production (ISAPP) The value of smartness 4 Reservoir permeability estimation from production data 6 Coupled modeling for reservoir application 8 Toward an integrated near-wellbore model 10 TNO conceptual framework for "E&P

  4. Hibernia fact sheet

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This fact sheet gives details of the Hibernia oil field including its location, discovery date, oil company's interests in the project, the recoverable reserves of the two reservoirs, the production system used, capital costs of the project, and overall targets for Canadian benefit. Significant dates for the Hibernia project are listed. (UK)

  5. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  6. Paraffin Phase Change Material for Maintaining Temperature Stability of IceCube Type of CubeSats in LEO

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The MLA and IFA of the instrument on the IceCube require a 20 C temperature and a thermal stability of +/-1 C. The thermal environment of the ISS orbit for the IceCube is very unstable due to solar beta angles in the -75deg to +75deg range. Additionally the instrument is powered off in every eclipse to conserve electrical power. These two factors cause thermal instability to the MLA and IFA. This paper presents a thermal design of using mini paraffin PCM packs to meet the thermal requirements of these instrument components. With a 31 g mass plus a 30% margin of n-hexadecane, the MLA and IFA are powered on for 32.3 minutes in sunlight at a 0deg beta angle to melt the paraffin. The powered-on time increases to 38 minutes at a 75deg (+/-) beta angle. When the MLA and IFA are powered off, the paraffin freezes.

  7. Technology Corner: Dating of Electronic Hardware for Prior Art Investigations

    Directory of Open Access Journals (Sweden)

    Sellam Ismail

    2012-03-01

    Full Text Available In many legal matters, specifically patent litigation, determining and authenticating the date of computer hardware or other electronic products or components is often key to establishing the item as legitimate evidence of prior art. Such evidence can be used to buttress claims of technologies available or of events transpiring by or at a particular date.In 1945, the Electronics Industry Association published a standard, EIA 476-A, standardized in the reference Source and Date Code Marking (Electronic Industries Association, 1988.(see PDF for full tech corner

  8. Constructing an optimal decision tree for FAST corner point detection

    KAUST Repository

    Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail

    2011-01-01

    In this paper, we consider a problem that is originated in computer vision: determining an optimal testing strategy for the corner point detection problem that is a part of FAST algorithm [11,12]. The problem can be formulated as building a decision tree with the minimum average depth for a decision table with all discrete attributes. We experimentally compare performance of an exact algorithm based on dynamic programming and several greedy algorithms that differ in the attribute selection criterion. © 2011 Springer-Verlag.

  9. A review of planetary and space science projects presented at iCubeSat, the Interplanetary CubeSat Workshop

    Science.gov (United States)

    Johnson, Michael

    2015-04-01

    iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.

  10. Rubella - Fact Sheet for Parents

    Science.gov (United States)

    ... and 4 through 6 years Fact Sheet for Parents Color [2 pages] Español: Rubéola The best way ... according to the recommended schedule. Fact Sheets for Parents Diseases and the Vaccines that Prevent Them Chickenpox ...

  11. In-gap corner states in core-shell polygonal quantum rings.

    Science.gov (United States)

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-10

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  12. In-gap corner states in core-shell polygonal quantum rings

    Science.gov (United States)

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-01

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  13. Substantial improvements not seen in health behaviors following corner store conversions in two Latino food swamps

    OpenAIRE

    Ortega, Alexander N.; Albert, Stephanie L.; Chan-Golston, Alec M.; Langellier, Brent A.; Glik, Deborah C.; Belin, Thomas R.; Garcia, Rosa Elena; Brookmeyer, Ron; Sharif, Mienah Z.; Prelip, Michael L.

    2016-01-01

    Background The effectiveness of food retail interventions is largely undetermined, yet substantial investments have been made to improve access to healthy foods in food deserts and swamps via grocery and corner store interventions. This study evaluated the effects of corner store conversions in East Los Angeles and Boyle Heights, California on perceived accessibility of healthy foods, perceptions of corner stores, store patronage, food purchasing, and eating behaviors. Methods Household data ...

  14. A family of mixed-metal cyanide cubes with alternating octahedral and tetrahedral corners exhibiting a variety of magnetic behaviors including single molecule magnetism.

    Science.gov (United States)

    Schelter, Eric J; Karadas, Ferdi; Avendano, Carolina; Prosvirin, Andrey V; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2007-07-04

    A series of structurally related pseudocubic metal cyanide clusters of Re(II) and 3d metal ions [{MX}4{Re(triphos)(CN)3}4] (M = Mn, Fe, Co, Ni, Zn; X = Cl, I, -OCH3) have been prepared, and their magnetic and electrochemical properties have been probed to evaluate the effect of changing the identity of the 3d metal ion. Electrochemistry of the clusters reveals several rhenium-based oxidation and reduction processes, some of which result in cluster fragmentation. The richest electrochemistry was observed for the iron congener, which exists as the Re(I)/Fe(III) cluster at the resting potential and exhibits six clear one-electron reversible redox couples and two, closely spaced one-electron quasi-reversible processes. The [{MnIICl}4{ReII(triphos)(CN)3}4] complex exhibits single molecule magnetism with a fast tunneling relaxation process observed at H = 0 determined by micro-SQUID magnetization measurements. A comparative evaluation of the magnetic properties across the series reveals that the compounds exhibit antiferromagnetic coupling between the metal ions, except for [{NiIICl}4{ReII(triphos)(CN)3}4] that shows ferromagnetic behavior. Despite the large ground-state spin value of [{NiIICl}4{ReII(triphos)(CN)3}4] (S = 6), only manganese congeners exhibit SMM behavior to 1.8 K.

  15. A quantized microwave quadrupole insulator with topologically protected corner states

    Science.gov (United States)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  16. Interface fracture in laminates at three-dimensional corners

    Energy Technology Data Exchange (ETDEWEB)

    Myhre Jensen, H.; Veluri, B. [Aarhus Univ.. Aarhus School of Engineering, Aarhus (Denmark)

    2012-07-01

    Interface failure close to corners has been observed in laminated layered structures. A fracture mechanics based approach focused on modelling the shape of such interface cracks and calculating the critical stress for steady-state propagation has been developed. The crack propagation is investigated by estimating the fracture mechanics parameters including the energy release rate and the three-dimensional mode-mixity along the crack front allowing determining the shape of the crack front profiles. A numerical approach is applied for coupling the far field solutions utilizing the capability of the Finite Element Method to the near field solutions at the crack front based on the J-integral. The developed two-dimensional numerical approach for the calculation of fracture mechanical properties has been validated with three-dimensional models for varying crack front shapes. In this study, a quantitative approach was formulated based on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stress as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses. (Author)

  17. Strength analysis of welded corners of PVC window profiles

    Science.gov (United States)

    Postawa, P.; Stachowiak, T.; Gnatowski, A.

    2017-08-01

    The article presents the results of researches which main purpose was to define the influence of welding parameters on strength of welded corners of PVC window profile. PVC profiles of a branded name GENEO® produced by Rehau Company were used for this research. The profiles were made by using a co-extrusion method. The surface of the profile was made of PVC mixture with no additives. Its main task was to get a smooth surface resistant to a smudge. The use of an unfilled polyester provides an aesthetic look and improves the resistance of extrudate to water getting into inner layers. The profile's inner layers have been filled up with glass fibre in order to improve its stiffness and mechanical properties. Window frames with cut corners used for this research, were produced on technological line of EUROCOLOR Company based in Pyskowice (Poland). The main goal of this analysis was to evaluate the influence of the main welding parameter (temperature upsetting) on hardness of welds we received in whole process. A universal testing machine was used for the research.

  18. Integrated study of basins in the Four Corners region

    Science.gov (United States)

    Fagbola, Olamide Olawumi

    2007-12-01

    This dissertation is an integrated study of basins in the four corners area of the central part of the Colorado Plateau. The Colorado Plateau is a structurally unique part of the Rocky Mountain region because it has only been moderately deformed when compared to the more intensely deformed areas around it. The Colorado Plateau covers a portion of Utah, Colorado, New Mexico and Arizona. The study area extends from latitude 34°N-40°N to longitude 106°W-111W° encompassing a series of major basins and uplifts: the San Juan, Black Mesa, Paradox, and the Blanding basins; and the Zuni, Defiance, Four Corners, Monument uplifts and the San Juan dome and volcanic field. An analysis of gravity anomalies, basement and crustal structure for basins in the four corners region was carried out. This involved using gravity, magnetic, well, outcrop, seismic estimates of crustal thickness, and geologic data in an integrated fashion. Six filtered gravity and three filtered magnetic maps were generated to aid in the interpretation of the gravity and magnetic anomalies in the study area. A detailed comparison of these maps was carried out. The results show a deep seated mafic structure in the basement acting as a crustal boundary separating the high gravity anomalies from the low. These maps also show that the sources of these anomalies are quite shallow resulting from the upper crust in the study area. The structures in the study area are characterized by northwest and northeast trends which correspond to the Precambrian and the Late Paleozoic structures, respectively. A crustal thickness map of the area was also constructed from seismic estimates of crustal thickness. A comparison was done between the crustal thickness map and the 45 km upward continuation Bouguer anomaly map. The result of this comparison shows that areas of thicker ix crust corresponded to low gravity while areas of thinner crust means mantle material is closer to the surface, thereby producing a high gravity

  19. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    OpenAIRE

    Collaboration, IceCube-Gen2; :; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Anton, G.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Axani, S.

    2014-01-01

    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the "first light" in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2,...

  20. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    OpenAIRE

    Aartsen, M. G.; Ackermann, M.; Arlen, T. C.; Gretskov, P.; Groh, J. C.; Gross, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Auffenberg, J.; Haugen, J.

    2014-01-01

    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the 'first light' in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2,...

  1. NPS-SCAT: A CubeSat Communications System Design, Test, and Integration

    Science.gov (United States)

    2009-06-01

    markets the system as a CubeSat Kit. Microhard Systems Inc. manufactures products that are complementary to the Pumpkin structure and the FM430 Flight...NPS CubeSats and leverage COTS technology during that process. With that philosophy in mind, the program chose the Pumpkin Inc. 1U CubeSat...Skeletonized Structure and the FM430 Flight Module that is already integrated within the Pumpkin structure ( Pumpkin Incorporated, 2005, p. 2). Pumpkin

  2. Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Chao, Bo-Kai; Lin, Shih-Che; Nien, Li-Wei; Hsueh, Chun-Hway; Li, Jia-Han

    2015-01-01

    Corner radius is a concept to approximate the fabrication limitation due to the effective beam broadening at the corner in using electron-beam lithography. The purpose of the present study is to investigate the effects of corner radius on the electromagnetic field enhancement and resonance wavelength for three periodic polygon dimers of bowtie, twin square, and twin pentagon. The enhancement factor of surface-enhanced Raman spectroscopy due to the localized surface plasmon resonances in fabricated gold bowtie nanostructures was investigated using both Raman spectroscopy and finite-difference time-domain simulations. The simulated enhancement factor versus corner radius relation was in agreement with measurements and it could be fitted by a power-law relation. In addition, the resonance wavelength showed blue shift with the increasing corner radius because of the distribution of concentrated charges in a larger area. For different polygons, the corner radius instead of the tip angle is the dominant factor of the electromagnetic field enhancement because the surface charges tend to localize at the corner. Greater enhancements can be obtained by having both the smaller gap and sharper corner although the corner radius effect on intensity enhancement is less than the gap size effect. (paper)

  3. The influence of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices

    International Nuclear Information System (INIS)

    Idris, A; Pullen, K

    2013-01-01

    The effects of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices are presented in this paper. Both experimental and CFD results show that chamfering and corner radiusing improve the discharge coefficient of rotating orifices. For non-inclined rotating orifices, the discharge coefficient reduces with increasing speed, but chamfered and radiused orifices manage to have higher discharge coefficient (C d ) than the straight edge orifices. Comparing between chamfering and corner radiusing, the radiused corner orifice has the highest C d at every rotational speed. This is because the inlet radius helps guiding the flow into the orifice and avoiding flow separation at the inlet.

  4. DRG-Based CubeSat Inertial Reference Unit (DCIRU), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CubeSats currently lack adequate inertial attitude knowledge and control required for future sophisticated science missions. Boeing's Disc Resonator Gyro (DRG)...

  5. Expert cube development with SQL server analysis services 2012 multidimensional models

    CERN Document Server

    Ferrari, Alberto; Russo, Marco

    2014-01-01

    An easy-to-follow guide full of hands on examples of real-world Analysis Services cube development tasks. Each topic is explained and placed in context, and for the more inquisitive reader, there also more in-depth details of the concepts used.If you are an Analysis Services cube designer wishing to learn more advanced topic and best practices for cube design, this book is for you.You are expected to have some prior experience with Analysis Services cube development.

  6. Film sheet cassette

    International Nuclear Information System (INIS)

    1981-01-01

    A novel film sheet cassette is described for handling CAT photographic films under daylight conditions and facilitating their imaging. A detailed description of the design and operation of the cassette is given together with appropriate illustrations. The resulting cassette is a low-cost unit which is easily constructed and yet provides a sure light-tight seal for the interior contents of the cassette. The individual resilient fingers on the light-trap permit the ready removal of the slide plate for taking pictures. The stippled, non-electrostatic surface of the pressure plate ensures an air layer and free slidability of the film for removal and withdrawal of the film sheet. The advantage of the daylight system is that a darkroom need not be used for inserting and removing the film in and out of the cassette resulting in a considerable time saving. (U.K.)

  7. Clean Cities Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  8. Information sheets on energy

    International Nuclear Information System (INIS)

    2004-01-01

    These sheets, presented by the Cea, bring some information, in the energy domain, on the following topics: the world energy demand and the energy policy in France and in Europe, the part of the nuclear power in the energy of the future, the greenhouse gases emissions and the fight against the greenhouse effect, the carbon dioxide storage cost and the hydrogen economy. (A.L.B.)

  9. Biomolecular Science (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  10. Sheet pinch devices

    International Nuclear Information System (INIS)

    Anderson, O.A.; Baker, W.R.; Ise, J. Jr.; Kunkel, W.B.; Pyle, R.V.; Stone, J.M.

    1958-01-01

    Three types of sheet-like discharges are being studied at Berkeley. The first of these, which has been given the name 'Triax', consists of a cylindrical plasma sleeve contained between two coaxial conducting cylinders A theoretical analysis of the stability of the cylindrical sheet plasma predicts the existence of a 'sausage-mode' instability which is, however, expected to grow more slowly than in the case of the unstabilized linear pinch (by the ratio of the radial dimensions). The second pinch device employs a disk shaped discharge with radial current guided between flat metal plates, this configuration being identical to that of the flat hydromagnetic capacitor without external magnetic field. A significant feature of these configurations is the absence of a plasma edge, i.e., there are no regions of sharply curved magnetic field lines anywhere in these discharges. The importance of this fact for stability is not yet fully investigated theoretically. As a third configuration a rectangular, flat pinch tube has been constructed, and the behaviour of a flat plasma sheet with edges is being studied experimentally

  11. Hydration of magnesia cubes: a helium ion microscopy study

    Directory of Open Access Journals (Sweden)

    Ruth Schwaiger

    2016-02-01

    Full Text Available Physisorbed water originating from exposure to the ambient can have a strong impact on the structure and chemistry of oxide nanomaterials. The effect can be particularly pronounced when these oxides are in physical contact with a solid substrate such as the ones used for immobilization to perform electron or ion microscopy imaging. We used helium ion microscopy (HIM and investigated morphological changes of vapor-phase-grown MgO cubes after vacuum annealing and pressing into foils of soft and high purity indium. The indium foils were either used as obtained or, for reference, subjected to vacuum drying. After four days of storage in the vacuum chamber of the microscope and at a base pressure of p −7 mbar, we observed on these cubic particles the attack of residual physisorbed water molecules from the indium substrate. As a result, thin magnesium hydroxide layers spontaneously grew, giving rise to characteristic volume expansion effects, which depended on the size of the particles. Rounding of the originally sharp cube edges leads to a significant loss of the morphological definition specific to the MgO cubes. Comparison of different regions within one sample before and after exposure to liquid water reveals different transformation processes, such as the formation of Mg(OH2 shells that act as diffusion barriers for MgO dissolution or the evolution of brucite nanosheets organized in characteristic flower-like microstructures. The findings underline the significant metastability of nanomaterials under both ambient and high-vacuum conditions and show the dramatic effect of ubiquitous water films during storage and characterization of oxide nanomaterials.

  12. Artificial neural network model of pork meat cubes osmotic dehydration

    OpenAIRE

    Pezo, Lato L.; Ćurčić, Biljana Lj.; Filipović, Vladimir S.; Nićetin, Milica R.; Koprivica, Gordana B.; Mišljenović, Nevena M.; Lević, Ljubinko B.

    2013-01-01

    Mass transfer of pork meat cubes (M. triceps brachii), shaped as 1x1x1 cm, during osmotic dehydration (OD) and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w), temperature (20-50ºC), and immersion time (1-5 h) in terms of water loss (WL), solid gain (SG), final dry matter content (DM), and water activity (aw), were investigated using experimental results. Five artificial neural net...

  13. A vision for, and progress towards EarthCube

    Science.gov (United States)

    Jacobs, C.

    2012-04-01

    The National Science Foundation (NSF), a US government agency, seeks to transform the conduct of research in geosciences by supporting innovative approaches to community-created cyberinfrastructure that integrates knowledge management across the Geosciences. Within the NSF organization, the Geosciences Directorate (GEO) and the Office of Cyberinfrastructure (OCI) are partnering to address the multifaceted challenges of modern, data-intensive science and education. NSF encourages the community to envision and create an environment where low adoption thresholds and new capabilities act together to greatly increase the productivity and capability of researchers and educators working at the frontiers of Earth system science. This initiative is EarthCube. NSF believes the geosciences community is well positioned to plan and prototype transformative approaches that use innovative technologies to integrate and make interoperable vast resources of heterogeneous data and knowledge within a knowledge management framework. This believe is founded on tsunami of technology development and application that has and continues to engulf science and investments geosciences has made in cyberinfrastructure (CI) to take advantage the technological developments. However, no master framework for geosciences was employed in the development of technology-enable capabilities required by various geosciences communities. It is time to develop an open, adaptable and sustainable framework (an "EarthCube") to enable transformative research and education of Earth system. This will involve, but limited to fostering common data models and data-focused methodologies; developing next generation search and data tools; and advancing application software to integrate data from various sources to expand the frontiers of knowledge. Also, NSF looks to the community to develop a robust and balanced paradigm to manage a collaborative effort and build community support. Such a paradigm must engage a diverse

  14. Development of EarthCube Governance: An Agile Approach

    Science.gov (United States)

    Pearthree, G.; Allison, M. L.; Patten, K.

    2013-12-01

    Governance of geosciences cyberinfrastructure is a complex and essential undertaking, critical in enabling distributed knowledge communities to collaborate and communicate across disciplines, distances, and cultures. Advancing science with respect to 'grand challenges," such as global climate change, weather prediction, and core fundamental science, depends not just on technical cyber systems, but also on social systems for strategic planning, decision-making, project management, learning, teaching, and building a community of practice. Simply put, a robust, agile technical system depends on an equally robust and agile social system. Cyberinfrastructure development is wrapped in social, organizational and governance challenges, which may significantly impede progress. An agile development process is underway for governance of transformative investments in geosciences cyberinfrastructure through the NSF EarthCube initiative. Agile development is iterative and incremental, and promotes adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness. A project Secretariat acts as the coordinating body, carrying out duties for planning, organizing, communicating, and reporting. A broad coalition of stakeholder groups comprises an Assembly (Mainstream Scientists, Cyberinfrastructure Institutions, Information Technology/Computer Sciences, NSF EarthCube Investigators, Science Communities, EarthCube End-User Workshop Organizers, Professional Societies) to serve as a preliminary venue for identifying, evaluating, and testing potential governance models. To offer opportunity for broader end-user input, a crowd-source approach will engage stakeholders not involved otherwise. An Advisory Committee from the Earth, ocean, atmosphere, social, computer and library sciences is guiding the process from a high-level policy point of view. Developmental

  15. Annotated trajectories and the Space-Time-Cube

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2012-01-01

    too, because these have not been adopted to the purpose. A suitable solution to display and study movements is the Space-Time-Cube (STC), the graphic representation of Hägerstrand’s Time Geography. This paper answers the question of how suitable the STC is to display the above describe combination...... of trajectories and annotations to avoid the visual clutter. Although the STC will be described here as a stand-alone solution it is part of a wider geovisual analytics environment and is used next to maps and other graphics to be able to answer user questions. As a case study data set the travel log data...

  16. Report and analysis of S-cube. Super science seminar

    International Nuclear Information System (INIS)

    Isogai, Kentaro; Yasuhara, Yuko

    2004-04-01

    At the ITBL Promotion Office, the science seminar (S-cube: Super Science Seminar) which was held for the first time on Wed., October 30, 2002 has been held more than 50 times. Lectures have been invited from many universities and research organizations. Seminars have been held which are of interest to junior high school students and high school students. In this article, in addition to introducing the seminars that have been held, attention is paid to the theme of the seminars, and what management considerations are necessary in order to increase participants in the future. (author)

  17. EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure

    Science.gov (United States)

    Allison, M. L.; Keane, C. M.; Robinson, E.

    2015-12-01

    The EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. There is ample justification to continue running a community-led governance framework that facilitates agreement on a system architecture, guides EarthCube activities, and plays an increasing role in making the EarthCube vision of cyberinfrastructure for the geosciences operational. There is widespread community expectation for support of a multiyear EarthCube governing effort to put into practice the science, technical, and organizational plans that have and are continuing to emerge.

  18. Posterolateral Corner of the Knee:Current Concepts

    Directory of Open Access Journals (Sweden)

    Jorge Chahla

    2016-04-01

    Full Text Available Injuries to the posterolateral corner (PLC comprise a significant portion of knee ligament injuries. A high index of suspicion is necessary when evaluating the injured knee to detect these sometimes occult injuries. Moreover, a thorough physical examination and a comprehensive review of radiographic studies are necessary to identify these injuries. In this sense, stress radiographs can help to objectively determine the extent of these lesions. Non-operative and operative treatment options have been reported depending on the extent of the injury. Complete PLC lesions rarely heal with non-operative treatment, and are therefore most often treated surgically. The purpose of this article was to review the anatomy and clinically relevant biomechanics, diagnosis algorithms, treatment and rehabilitation protocols for PLC injuries.

  19. Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil

    Science.gov (United States)

    Xia, X.; Mohseni, K.

    2017-11-01

    Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad-hoc implementation, the unsteady Kutta condition, the conservation of circulation, as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength, and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for airfoils in steady and unsteady background flows.

  20. What's New in the Children's Corner in OF (Oslo Fengsel [Prison])?

    Science.gov (United States)

    Haagensli, Anne Berte

    This paper examines two themes pertaining to children of incarcerated parents in Norway. The first is the visiting room of a Norwegian prison. The paper briefly describes conditions in and provides photographs of the children's corner of the visiting room at Norway's Oslo Fengsel Prison. The corner was established in 1998 with toys and fresh paint…

  1. Conformal coating by photoresist of sharp corners of anisotropically etched through-holes in silicon

    DEFF Research Database (Denmark)

    Heschel, Matthias; Bouwstra, Siebe

    1997-01-01

    The authors describe a photoresist treatment yielding conformal coating of three-dimensional silicon structures. This even includes the sharp corners of through-holes obtained by anisotropic etching in (100)-silicon. Resist reflow from these corners is avoided by replacing the common baking...

  2. The Science, Engineering and Technology Career Library Corner. Final report, February 1, 1995--January 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cole, P.R.

    1996-03-01

    A grant was made to install and pilot-test the Science, Engineering and Technology (SET) Career Library Corner at the New York Hall of Science. The SET Career Library Corner is located in a multi-media library setting where visitors can explore careers in a quiet, uninterrupted environment, in contrast to the original installation designed as a museum floor exhibit.

  3. Corner Store Inventories, Purchases, and Strategies for Intervention: A Review of the Literature.

    Science.gov (United States)

    Langellier, Brent A; Garza, Jeremiah R; Prelip, Michael L; Glik, Deborah; Brookmeyer, Ron; Ortega, Alexander N

    2013-01-01

    An increasingly popular strategy to improving the food retail environment and promoting healthy eating in low-income and minority communities is the corner store conversion. This approach involves partnering with small 'corner' food stores to expand access to high-quality fruits, vegetables, and other healthy foods. We conducted a structured review of the literature to assess inventories and sales in corner stores, as well as to identify intervention strategies employed by corner store conversions. Our review returned eight descriptive studies that discussed corner store inventories and sales, as well as ten intervention studies discussing six unique corner store conversion interventions in the United States, the Marshall Islands, and Canada. Common intervention strategies included: 1) partnering with an existing store, 2) stocking healthy foods, and 3) social marketing and nutrition education. We summarize each strategy and review the effectiveness of overall corner store conversions at changing peoples' food purchasing, preparation, and consumption behaviors. Consumption of fresh, healthy, affordable foods could be improved by supporting existing retailers to expand their selection of healthy foods and promoting healthy eating at the neighborhood level. Additional corner store conversions should be conducted to determine the effectiveness and importance of specific intervention strategies.

  4. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  5. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    International Nuclear Information System (INIS)

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  6. IceCube and GRB neutrinos propagating in quantum spacetime

    Directory of Open Access Journals (Sweden)

    Giovanni Amelino-Camelia

    2016-10-01

    Full Text Available Two recent publications have reported intriguing analyses, tentatively suggesting that some aspects of IceCube data might be manifestations of quantum-gravity-modified laws of propagation for neutrinos. We here propose a strategy of data analysis which has the advantage of being applicable to several alternative possibilities for the laws of propagation of neutrinos in a quantum spacetime. In all scenarios here of interest one should find a correlation between the energy of an observed neutrino and the difference between the time of observation of that neutrino and the trigger time of a GRB. We select accordingly some GRB-neutrino candidates among IceCube events, and our data analysis finds a rather strong such correlation. This sort of study naturally lends itself to the introduction of a “false alarm probability”, which for our analysis we estimate conservatively to be of 1%. We therefore argue that our findings should motivate a vigorous program of investigation following the strategy here advocated.

  7. Searches for magnetic monopoles with IceCube

    Science.gov (United States)

    Pollmann, Anna

    2018-01-01

    Particles that carry a magnetic monopole charge are proposed by various theories which go beyond the Standard Model of particle physics. The expected mass of magnetic monopoles varies depending on the theory describing its origin, generally the monopole mass far exceeds those which can be created at accelerators. Magnetic monopoles gain kinetic energy in large scale galactic magnetic fields and, depending on their mass, can obtain relativistic velocities. IceCube is a high energy neutrino detector using the clear ice at the South Pole as a detection medium. As monopoles pass through this ice they produce optical light by a variety of mechanisms. With increasing velocity, they produce light by catalysis of baryon decay, luminescence in the ice associated with electronic excitations, indirect and direct Cherenkov light from the monopole track, and Cherenkov light from cascades induced by pair creation and photonuclear reactions. By searching for this light, current best limits for the monopole flux over a broad range of velocities was achieved using the IceCube detector. A review of these magnetic monopole searches is presented.

  8. Artificial neural network model of pork meat cubes osmotic dehydratation

    Directory of Open Access Journals (Sweden)

    Pezo Lato L.

    2013-01-01

    Full Text Available Mass transfer of pork meat cubes (M. triceps brachii, shaped as 1x1x1 cm, during osmotic dehydration (OD and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w, temperature (20-50ºC, and immersion time (1-5 h in terms of water loss (WL, solid gain (SG, final dry matter content (DM, and water activity (aw, were investigated using experimental results. Five artificial neural network (ANN models were developed for the prediction of WL, SG, DM, and aw in OD of pork meat cubes. These models were able to predict process outputs with coefficient of determination, r2, of 0.990 for SG, 0.985 for WL, 0.986 for aw, and 0.992 for DM compared to experimental measurements. The wide range of processing variables considered for the formulation of these models, and their easy implementation in a spreadsheet calculus make it very useful and practical for process design and control.

  9. HydroCube: an entity-relationship hydrogeological data model

    Science.gov (United States)

    Wojda, Piotr; Brouyère, Serge; Derouane, Johan; Dassargues, Alain

    2010-12-01

    Managing, handling and accessing hydrogeological information depends heavily on the applied hydrogeological data models, which differ between institutions and countries. The effective dissemination of hydrogeological information requires the convergence of such models to make hydrogeological information accessible to multiple users such as universities, water suppliers, and administration and research organisations. Furthermore, because hydrogeological studies are complex, they require a wide variety of high-quality hydrogeological data with appropriate metadata in clearly designed and coherent structures. A need exists, therefore, to develop and implement hydrogeological data models that cover, as much as possible, the full hydrogeological domain. A new data model, called HydroCube, was developed for the Walloon Region in Belgium in 2005. The HydroCube model presents an innovative holistic project-based approach which covers a full set of hydrogeological concepts and features, allowing for effective hydrogeological project management. The model stores data relating to the project locality, hydrogeological equipment, and related observations and measurements. In particular, it focuses on specialized hydrogeological field experiments such as pumping and tracer tests. This logical data model uses entity-relationship diagrams and it has been implemented in the Microsoft Access environment. It has been enriched with a fully functional user interface.

  10. Percolation of overlapping squares or cubes on a lattice

    International Nuclear Information System (INIS)

    Koza, Zbigniew; Kondrat, Grzegorz; Suszczyński, Karol

    2014-01-01

    Porous media are often modeled as systems of overlapping obstacles, which leads to the problem of two percolation thresholds in such systems, one for the porous matrix and the other for the void space. Here we investigate these percolation thresholds in the model of overlapping squares or cubes of linear size k > 1 randomly distributed on a regular lattice. We find that the percolation threshold of obstacles is a nonmonotonic function of k, whereas the percolation threshold of the void space is well approximated by a function linear in 1/k. We propose a generalization of the excluded volume approximation to discrete systems and use it to investigate the transition between continuous and discrete percolation, finding a remarkable agreement between the theory and numerical results. We argue that the continuous percolation threshold of aligned squares on a plane is the same for the solid and void phases and estimate the continuous percolation threshold of the void space around aligned cubes in a 3D space as 0.036(1). We also discuss the connection of the model to the standard site percolation with complex neighborhood. (paper)

  11. Five schools visit CERN and IceCube virtually

    CERN Multimedia

    Abha Eli Phoboo

    2014-01-01

    The ATLAS and CMS experiments hosted a virtual visit together with the IceCube Experiment in the South Pole for students from five different European schools on 2 October. The visit allowed the students to interact with researchers from both the LHC experiments and the IceCube experiment. The virtual visit was the second event in the Open Discovery Space project’s “Bringing Frontier Science to Schools” series.   Angelos Alexopoulos and Steve Goldfarb connect with the schools. The 380 students and 14 teachers and education specialists who took part in the virtual visit were from the John Atanasoff Sofia Vocational High School of Electronics in Bulgaria, Ellinogermaniki Agogi school in Greece, Leo Baeck High School in Israel, Grigore Moisil National College in Romania and Svetozar Marković Grammar School in Serbia. “It was breathtaking and a great opportunity to have our questions answered by the researchers, also live via chat,” said Marco I...

  12. IceCube: Particle Astrophysics with High Energy Neutrinos

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Monday 7 May 2012 17h. - Ecole de Physique, Auditoire Stueckelberg IceCube: Particle Astrophysics with High Energy Neutrinos Prof. Francis Halzen / University of Wisconsin, Madison Construction and commissioning of the cubic-kilometer IceCube neutrino detector and its low energy extension DeepCore have been completed. The instrument detects neutrinos over a wide energy range: from 10 GeV atmospheric neutrinos to 1010 GeV cosmogenic neutrinos. We will discuss initial results based on a subsample of the ~100,000 neutrino events recorded during construction. We will emphasize the first measurement of the high-energy atmospheric neutrino spectrum, the search for the still enigmatic sources of the Galactic and extragalactic cosmic rays and for the particle nature of dark matter. Une ve...

  13. The IceProd (IceCube Production) Framework

    International Nuclear Information System (INIS)

    Díaz-Vélez, J C

    2014-01-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations and data. IceProd runs as a separate layer on top of middleware or cluster job schedulers and can take advantage of a variety of computing resources including grids such as EGI, OSG, and NorduGrid as well as local clusters running batch systems like HT Condor, PBS, and SGE. This is accomplished by a set of dedicated daemons which process job submission in a coordinated fashion through the use of middleware plug-ins that serve to abstract the details of job submission and job management. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. We describe several aspects of IceProd's design and it's applications in collaborative computing environments. We also briefly discuss design aspects of a second generation IceProd, currently being tested in IceCube.

  14. Elastic Cube Actuator with Six Degrees of Freedom Output

    Directory of Open Access Journals (Sweden)

    Pengchuan Wang

    2015-09-01

    Full Text Available Unlike conventional rigid actuators, soft robotic technologies possess inherent compliance, so they can stretch and twist along every axis without the need for articulated joints. This compliance is exploited here using dielectric elastomer membranes to develop a novel six degrees of freedom (6-DOF polymer actuator that unifies ordinarily separate components into a simple cubic structure. This cube actuator design incorporates elastic dielectric elastomer membranes on four faces which are coupled by a cross-shaped end effector. The inherent elasticity of each membrane greatly reduces kinematic constraint and enables a 6-DOF actuation output to be produced via the end effector. An electro-mechanical model of the cube actuator is presented that captures the non-linear hyperelastic behaviour of the active membranes. It is demonstrated that the model accurately predicts actuator displacement and blocking moment for a range of input voltages. Experimental testing of a prototype 60 mm device demonstrates 6-DOF operation. The prototype produces maximum linear and rotational displacements of ±2.6 mm (±4.3% and ±4.8° respectively and a maximum blocking moment of ±76 mNm. The capacity for full 6-DOF actuation from a compact, readily scalable and easily fabricated polymeric package enables implementation in a range of mechatronics and robotics applications.

  15. Perforation of metal sheets

    DEFF Research Database (Denmark)

    Steenstrup, Jens Erik

    simulation is focused on the sheet deformation. However, the effect on the tool and press is included. The process model is based on the upper bound analysis in order to predict the force progress and hole characteristics etc. Parameter analyses are divided into two groups, simulation and experimental tests......The main purposes of this project are:1. Development of a dynamic model for the piercing and performation process2. Analyses of the main parameters3. Establishing demands for process improvements4. Expansion of the existing parameter limitsThe literature survey describes the process influence...

  16. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    Science.gov (United States)

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  17. The corner rounding modeling technique in SPICE simulations for deeply scaled MOSFETs

    International Nuclear Information System (INIS)

    Sun Wei; Yang Dake

    2013-01-01

    This paper presents a novel poly (PC) and active (RX) corner rounding modeling approach to SPICE simulations. A set of specially designed structures was used for measurement data collection. PC and RX corner rounding equations have been derived based on an assumption that the corner rounding area is a fragment of a circle. The equations were modified to reflect the gouging effect of physical silicon wafers. The modified general equations were implemented in the SPICE model to enable the model to describe the corner rounding effect. The good fittings between the SPICE model simulation results and the silicon data demonstrated in this paper proved that the designed corner rounding model is practical and accurate. (semiconductor devices)

  18. Modelling elasticity in solids using active cubes - application to simulated operations

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1995-01-01

    The paper describes an approach to elastic modelling of human tissue based on the use of 3D solid active models-active cubes (M. Bro-Nielsen, 1994)-and a shape description based on the metric tensor in a solid. Active cubes are used because they provide a natural parameterization of the surface a...

  19. Analysis of temperature stresses in concrete breakwater elements : Hollow cubes and Tetrapods

    NARCIS (Netherlands)

    Nooru-Mohamed, M.B.

    1994-01-01

    In this report, the results of a numerical parameter study on temperature stresses caused by hydration of cement in concrete breakwater elements are shown. Two different geometries were analysed namely hollow cubes and tetrapods. The problem encountered in solid cube breakwaters is the undesirable

  20. InterCUBE: a study into merging action and interaction spaces

    NARCIS (Netherlands)

    Salem, B.I.; Peeters, H.; Baranauskas, C.; Palanque, P.

    2007-01-01

    We describe the development of a novel tangible interface we call the InterCUBE, a cube-shaped device with no external buttons or widgets. We study the implications of such a shape in terms of interactions, notably the degrees of freedom available and the manipulations possible. We also explain and

  1. A discrete spherical X-ray transform of orientation distribution functions using bounding cubes

    DEFF Research Database (Denmark)

    Kazantsev, Ivan G; Schmidt, Søren; Poulsen, Henning Friis

    2009-01-01

    We investigate a cubed sphere parametrization of orientation space with the aim of constructing a discrete voxelized version of the spherical x-ray transform. For tracing the propagation of a unit great circle through the partition subsets, the frustums of the cubed sphere, a fast procedure...

  2. Stability of cube armoured roundheads exposed to long crested and short crested waves

    DEFF Research Database (Denmark)

    Maciñeira, Enrique G.; Burcharth, Hans Falk

    2016-01-01

    Highlights •A formula to estimate armour damage in cube armoured roundheads is presented •Damage limits for design limit states are proposed......Highlights •A formula to estimate armour damage in cube armoured roundheads is presented •Damage limits for design limit states are proposed...

  3. On the existence of cycles of every even length on generalized Fibonacci cubes

    Directory of Open Access Journals (Sweden)

    Norma Zagaglia Salvi

    1996-12-01

    Full Text Available A new topology for the interconnection of computing nodes in multiprocessors systems is the generalized Fibonacci cube.It can be embedded as a subgraph in the Boolean cube and it is also a supergraph of other structures. We prove that every edge of such a graph, but few initial cases, belongs to cycles of every even length.

  4. NASAs EDSN Aims to Overcome the Operational Challenges of CubeSat Constellations and Demonstrate an Economical Swarm of 8 CubeSats Useful for Space Science Investigations

    Science.gov (United States)

    Smith, Harrison Brodsky; Hu, Steven Hung Kee; Cockrell, James J.

    2013-01-01

    Operators of a constellation of CubeSats have to confront a number of daunting challenges that can be cost prohibitive, or operationally prohibitive, to missions that could otherwise be enabled by a satellite constellation. Challenges including operations complexity, intersatellite communication, intersatellite navigation, and time sharing tasks between satellites are all complicated by operating with the usual CubeSat size, power, and budget constraints. EDSN pioneers innovative solutions to these problems as they are presented on the nano-scale satellite platform.

  5. A Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

    Directory of Open Access Journals (Sweden)

    M. Faridi Masouleh

    2016-10-01

    Full Text Available Decision-based programs include large-scale complex database queries. If the response time is short, query optimization is critical. Users usually observe data as a multi-dimensional data cube. Each data cube cell displays data as an aggregation in which the number of cells depends on the number of other cells in the cube. At any given time, a powerful query optimization method can visualize part of the cells instead of calculating results from raw data. Business systems use different approaches and positioning of data in the data cube. In the present study, the data is trained by a neural network and a genetic-firefly hybrid algorithm is proposed for finding the best position for the data in the cube.

  6. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  7. Sonographic assessment of predictors of depth of the corner pocket for ultrasound-guided supraclavicular brachial plexus block

    Directory of Open Access Journals (Sweden)

    Naveen Yadav

    2016-01-01

    Conclusion: Prescanning of supraclavicular region for estimating depth of corner pocket should be done before choosing an appropriate size needle. Furthermore, the needle should not be advanced more than the predicted corner pocket depth.

  8. Storing Empty Calories and Chronic Disease Risk: Snack-Food Products, Nutritive Content, and Manufacturers in Philadelphia Corner Stores

    OpenAIRE

    Lucan, Sean C.; Karpyn, Allison; Sherman, Sandy

    2010-01-01

    Corner stores are part of the urban food environment that may contribute to obesity and diet-related diseases, particularly for low-income and minority children. The snack foods available in corner stores may be a particularly important aspect of an urban child’s food environment. Unfortunately, there is little data on exactly what snack foods corner stores stock, or where these foods come from. We evaluated snack foods in 17 Philadelphia corner stores, located in three ethnically distinct, l...

  9. Keeping It in Three Dimensions: Measuring the Development of Mental Rotation in Children with the Rotated Colour Cube Test (RCCT)

    Science.gov (United States)

    Lutke, Nikolay; Lange-Kuttner, Christiane

    2015-01-01

    This study introduces the new Rotated Colour Cube Test (RCCT) as a measure of object identification and mental rotation using single 3D colour cube images in a matching-to-sample procedure. One hundred 7- to 11-year-old children were tested with aligned or rotated cube models, distracters and targets. While different orientations of distracters…

  10. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Science.gov (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  11. The Dark Cube: dark character profiles and OCEAN

    Directory of Open Access Journals (Sweden)

    Danilo Garcia

    2017-09-01

    Full Text Available Background The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016, a model of malevolent character theoretically based on Cloninger’s biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships. Method Participants (N = 330 responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy: MNP “maleficent”, MNp “manipulative narcissistic”, MnP “anti-social”, Mnp “Machiavellian”, mNP “psychopathic narcissistic”, mNp “narcissistic”, mnP “psychopathic”, and mnp “benevolent”. Results High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp, high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP, and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp. Conclusions We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory

  12. The Dark Cube: dark character profiles and OCEAN.

    Science.gov (United States)

    Garcia, Danilo; González Moraga, Fernando R

    2017-01-01

    The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN) have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016), a model of malevolent character theoretically based on Cloninger's biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships). Participants ( N  = 330) responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy): MNP "maleficent", MNp "manipulative narcissistic", MnP "anti-social", Mnp "Machiavellian", mNP "psychopathic narcissistic", mNp "narcissistic", mnP "psychopathic", and mnp "benevolent". High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp), high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP), and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp). We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory. This approach suggests that the only clear relationships were narcissism

  13. Privacy-preserving data cube for electronic medical records: An experimental evaluation.

    Science.gov (United States)

    Kim, Soohyung; Lee, Hyukki; Chung, Yon Dohn

    2017-01-01

    The aim of this study is to evaluate the effectiveness and efficiency of privacy-preserving data cubes of electronic medical records (EMRs). An EMR data cube is a complex of EMR statistics that are summarized or aggregated by all possible combinations of attributes. Data cubes are widely utilized for efficient big data analysis and also have great potential for EMR analysis. For safe data analysis without privacy breaches, we must consider the privacy preservation characteristics of the EMR data cube. In this paper, we introduce a design for a privacy-preserving EMR data cube and the anonymization methods needed to achieve data privacy. We further focus on changes in efficiency and effectiveness that are caused by the anonymization process for privacy preservation. Thus, we experimentally evaluate various types of privacy-preserving EMR data cubes using several practical metrics and discuss the applicability of each anonymization method with consideration for the EMR analysis environment. We construct privacy-preserving EMR data cubes from anonymized EMR datasets. A real EMR dataset and demographic dataset are used for the evaluation. There are a large number of anonymization methods to preserve EMR privacy, and the methods are classified into three categories (i.e., global generalization, local generalization, and bucketization) by anonymization rules. According to this classification, three types of privacy-preserving EMR data cubes were constructed for the evaluation. We perform a comparative analysis by measuring the data size, cell overlap, and information loss of the EMR data cubes. Global generalization considerably reduced the size of the EMR data cube and did not cause the data cube cells to overlap, but incurred a large amount of information loss. Local generalization maintained the data size and generated only moderate information loss, but there were cell overlaps that could decrease the search performance. Bucketization did not cause cells to overlap

  14. An investigation of the flow characteristics in the blade endwall corner region

    Science.gov (United States)

    Hazarika, Birinchi K.; Raj, Rishi S.

    1987-01-01

    Studies were undertaken to determine the structure of the flow in the blade end wall corner region simulated by attaching two uncambered airfoils on either side of a flat plate with a semicircular leading edge. Detailed measurements of the corner flow were obtained with conventional pressure probes, hot wire anemometry, and flow visualization. The mean velocity profiles and six components of the Reynolds stress tensor were obtained with an inclined single sensor hot wire probe whereas power spectra were obtained with a single sensor oriented normal to the flow. Three streamwise vortices were identified based on the surface streamlines, distortion of total pressure profiles, and variation of mean velocity components in the corner. A horseshoe vortex formed near the leading edge of the airfoil. Within a short distance downstream, a corner vortex was detected between the horseshoe vortex and the surfaces forming the corner. A third vortex was formed at the rear portion of the corner between the corner vortex and the surface of the flat plate. Turbulent shear stress and production of turbulence are negligibly small. A region of negative turbulent shear stress was also observed near the region of low turbulence intensity from the vicinity of the flat plate.

  15. Soft Costs Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-05-01

    This fact sheet is an overview of the systems integration subprogram at the U.S. Department of Energy SunShot Initiative. Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meet their needs, while at the same time creating sustainable solar market conditions.

  16. Photovoltaics Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  17. Systems Integration Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstration projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.

  18. Hyperspectral light sheet microscopy

    Science.gov (United States)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  19. Axioms for Consensus Functions on the n-Cube

    Directory of Open Access Journals (Sweden)

    C. Garcia-Martinez

    2017-01-01

    Full Text Available A p value of a sequence π=(x1,x2,…,xk of elements of a finite metric space (X,d is an element x for which ∑i=1kdp(x,xi is minimum. The lp–function with domain the set of all finite sequences on X and defined by lp(π={x:  x is a p value of π} is called the lp–function on (X,d. The l1 and l2 functions are the well-studied median and mean functions, respectively. In this note, simple characterizations of the lp–functions on the n-cube are given. In addition, the center function (using the minimax criterion is characterized as well as new results proved for the median and antimedian functions.

  20. Measuring the optical properties of IceCube drill holes

    Directory of Open Access Journals (Sweden)

    Rongen Martin

    2016-01-01

    Full Text Available The IceCube Neutrino Observatory consists of 5160 digital optical modules (DOMs in a cubic kilometer of deep ice below the South Pole. The DOMs record the Cherenkov light from charged particles interacting in the ice. A good understanding of the optical properties of the ice is crucial to the quality of the event reconstruction. While the optical properties of the undisturbed ice are well understood, the properties of the refrozen drill holes still pose a challenge. A new data-acquisition and analysis approach using light originating from LEDs within one DOM detected by the photomultiplier of the same DOM will be described. This method allows us to explore the scattering length in the immediate vicinity of the considered DOMs.

  1. Implementation and validation of a CubeSat laser transmitter

    Science.gov (United States)

    Kingsbury, R. W.; Caplan, D. O.; Cahoy, K. L.

    2016-03-01

    The paper presents implementation and validation results for a CubeSat-scale laser transmitter. The master oscillator power amplifier (MOPA) design produces a 1550 nm, 200mW average power optical signal through the use of a directly modulated laser diode and a commercial fiber amplifier. The prototype design produces high-fidelity M-ary pulse position modulated (PPM) waveforms (M=8 to 128), targeting data rates > 10 Mbit/s while meeting a constraining 8W power allocation. We also present the implementation of an avalanche photodiode (APD) receiver with measured transmitter-to-receiver performance within 3 dB of theory. Via loopback, the compact receiver design can provide built-in self-test and calibration capabilities, and supports incremental on-orbit testing of the design.

  2. Bootstrap-Based Inference for Cube Root Consistent Estimators

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Jansson, Michael; Nagasawa, Kenichi

    This note proposes a consistent bootstrap-based distributional approximation for cube root consistent estimators such as the maximum score estimator of Manski (1975) and the isotonic density estimator of Grenander (1956). In both cases, the standard nonparametric bootstrap is known...... to be inconsistent. Our method restores consistency of the nonparametric bootstrap by altering the shape of the criterion function defining the estimator whose distribution we seek to approximate. This modification leads to a generic and easy-to-implement resampling method for inference that is conceptually distinct...... from other available distributional approximations based on some form of modified bootstrap. We offer simulation evidence showcasing the performance of our inference method in finite samples. An extension of our methodology to general M-estimation problems is also discussed....

  3. Settlement during vibratory sheet piling

    NARCIS (Netherlands)

    Meijers, P.

    2007-01-01

    During vibratory sheet piling quite often the soil near the sheet pile wall will settle. In many cases this is not a problem. For situations with houses, pipelines, roads or railroads at relative short distance these settlements may not be acceptable. The purpose of the research described in this

  4. Turning the corner : taking action to fight climate change

    International Nuclear Information System (INIS)

    2008-03-01

    Climate change is an international problem that necessitates global solutions. Previous governments in Canada had established ambitious goals for reducing greenhouse gases, yet emissions continued to increase. Canada's greenhouse gas emissions are significantly higher than they were in 1990, and also significantly above its Kyoto target. The Canadian government is committed to stopping the increase of Canada's greenhouse gas emissions and drastically reducing them through a high-level framework entitled 'Turning the Corner: action plan for reducing emissions'. This brochure outlined the Canadian government's action plan to ensure Canada is on a responsible path to reduce greenhouse gas emissions and to address the global threat of climate change. The brochure discussed how Canada is getting tough on industry's emissions and discussed regulations that will apply to 16 sectors. Actions to lower emissions from vehicles and buildings were also presented, including mandatory renewable fuel content in gasoline, diesel and heating oil; tough new fuel consumption standards for cars, light trucks, and sport utility vehicles; and implementing new national performance standards that will ban inefficient incandescent lightbulbs. 3 figs

  5. Physics from the four corners of the world

    CERN Multimedia

    2005-01-01

    The field of particle physics is well-known for being a world without frontiers, bringing together researchers of all nationalitie who in spite of their linguistic and cultural differences, work together in the shared pursuit of a fundamental understanding of the universe. On 2nd December, this reality was demonstrated on the internet with a webcast called 'Beyond Einstein', organised by CERN, which for 12 hours brought together physics communities from the four corners of the world. The event, the first of its kind organised on this scale, attracted 30,000 spectators on the Web and in numerous studios. Furthermore, Pakistani national television broadcast all 12 hours of programming, an Italian channel also provided coverage, and many more people tuned in on satellite television. The site of the webcast during the programme from Imperial Colllege London presented by Gareth Mitchell.At Fermilab near Chicago in the US, Nobel-Prize winner Leon Lederman hosted a show called The Late Show with Leon Lederman, feat...

  6. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    Science.gov (United States)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  7. Characterization of microchannel anechoic corners formed by surface acoustic waves

    Science.gov (United States)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  8. Four Corners project experience - Applications to next generation FGD

    International Nuclear Information System (INIS)

    Wild, R.L.; Grimes, R.L.; Wiggins, D.S.

    1990-01-01

    In June 1984, Arizona Public Service Company started up the flue gas desulfurization system installed on Units 4 and 5 at the Four Corners Power Station. At the time, this represented the largest emissions control retrofit in the industry, and consisted of two 800 MWe units. These units burn a low sulfur subbituminous coal from the adjacent Navajo mine. The FGD system was designed for 72% overall removal, with partial bypass. The SO 2 absorbers were designed for 90% removal. This FGD system is considered to be a second generation design. At the time, it represented state-of-the-art of FGD technology, in terms of both process considerations and materials of construction. In the six years since startup, several modifications have been made in the areas of process chemistry, equipment configuration, and materials of construction. These modifications are applicable to the next generation of FGD systems which will be designed in response to Acid Rain Legislation. This paper presents the original plant design basis, summarizes the operating experience to date, and identifies the modifications and improvements which have been made since startup. In addition, recommendations for new installations are offered

  9. Cracking at nozzle corners in the nuclear pressure vessel industry

    International Nuclear Information System (INIS)

    Smith, C.W.

    1986-01-01

    Cracks in nozzle corners at the pressure boundary of nuclear reactors have been frequently observed in service. These cracks tend to form with radial orientations with respect to the nozzle central axis and are believed to be initiated by thermal shock. However, their growth is believed to be primarily due to a steady plus a fluctuating internal pressure. Due to the impracticality of fracture testing of full-scale models, the Oak Ridge National Laboratory instituted the use of an intermediate test vessel (ITV) for use in fracture testing which had the same wall thickness and nozzle size as the prototype but significantly reduced overall length and diameter. In order to determine whether or not these ITVs could provide realistic data for full-scale reactor vessels, laboratory models of full-scale boiling water reactors and ITVs were constructed and tested. After briefly reviewing the laboratory testing and correlating results with service experience, results obtained will be used to draw some general conclusions regarding the stable growth of nonplanar cracks with curved crack fronts which are the most common precursors to fracture of pressure vessel components near junctures. Use of linear elastic fracture mechanics is made in determining stress-intensity distribution along the crack fronts

  10. MR imaging of the posterolateral corner of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Bolog, Nicolae [Emergency Hospital, Department of Radiology, Bucharest (Romania); Hodler, Juerg [Orthopaedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland)

    2007-08-15

    The posterolateral corner (PLC) is a complex functional unit, consisting of several structures, which is responsible for posterolateral stabilization. The PLC is not consistently defined in the literature. However, most descriptions include the popliteal tendon (PT), the lateral collateral ligament (LCL), the popliteofibular ligament (PFL) and the posterolateral capsule, which is reinforced by the arcuate ligament (AL) and the fabellofibular ligament (FFL). Knowledge of PLC anatomy, including its variations, and understanding of the biomechanics is important for correct diagnosis of PLC injuries. An overlooked PLC injury can result in chronic instability, chronic pain, and, eventually, in secondary osteoarthritis. Damage to the PLC also has an adverse effect on the outcome of cruciate ligament repair. Isolated lesions of the PLC are rare. PLC lesions are typically associated with injuries of the cruciate ligaments, the menisci, bone and soft tissue. In the acute phase, clinical findings can be difficult to interpret due to pain and swelling. Magnetic resonance (MR) imaging potentially demonstrates the entire spectrum of PLC injuries and associated lesions of the knee, including those that may be overlooked during clinical examination or arthroscopy. (orig.)

  11. Injuries to posterolateral corner of the knee: a comprehensive review from anatomy to surgical treatment☆

    Science.gov (United States)

    Crespo, Bernardo; James, Evan W.; Metsavaht, Leonardo; LaPrade, Robert F.

    2014-01-01

    Although injuries to the posterolateral corner of the knee were previously considered to be a rare condition, they have been shown to be present in almost 16% of all knee injuries and are responsible for sustained instability and failure of concomitant reconstructions if not properly recognized. Although also once considered to be the “dark side of the knee”, increased knowledge of the posterolateral corner anatomy and biomechanics has led to improved diagnostic ability with better understanding of physical and imaging examinations. The management of posterolateral corner injuries has also evolved and good outcomes have been reported after operative treatment following anatomical reconstruction principles. PMID:26401495

  12. 4-corner arthrodesis and proximal row carpectomy: a biomechanical comparison of wrist motion and tendon forces.

    Science.gov (United States)

    Debottis, Daniel P; Werner, Frederick W; Sutton, Levi G; Harley, Brian J

    2013-05-01

    Controversy exists as to whether a proximal row carpectomy (PRC) is a better procedure than scaphoid excision with 4-corner arthrodesis for preserving motion in the painful posttraumatic arthritic wrist. The purpose of this study was to determine how the kinematics and tendon forces of the wrist are altered after PRC and 4-corner arthrodesis. We tested 6 fresh cadaver forearms for the extremes of wrist motion and then used a wrist simulator to move them through 4 cyclic dynamic wrist motions, during which time we continuously recorded the tendon forces. We repeated the extremes of wrist motion measurements and the dynamic motions after scaphoid excision with 4-corner arthrodesis, and then again after PRC. We analyzed extremes of wrist motion and the peak tendon forces required for each dynamic motion using a repeated measures analysis of variance. Wrist extremes of motion significantly decreased after both the PRC and 4-corner arthrodesis compared with the intact wrist. Wrist flexion decreased on average 13° after 4-corner arthrodesis and 12° after PRC. Extension decreased 20° after 4-corner arthrodesis and 12° after PRC. Four-corner arthrodesis significantly decreased wrist ulnar deviation from the intact wrist. Four-corner arthrodesis allowed more radial deviation but less ulnar deviation than the PRC. The average peak tendon force was significantly greater after 4-corner arthrodesis than after PRC for the extensor carpi ulnaris during wrist flexion-extension, circumduction, and dart throw motions. The peak forces were significantly greater after 4-corner arthrodesis than in the intact wrist for the extensor carpi ulnaris during the dart throw motion and for the flexor carpi ulnaris during the circumduction motion. The peak extensor carpi radialis brevis force after PRC was significantly less than in the intact wrist. The measured wrist extremes of motion decreased after both 4-corner arthrodesis and PRC. Larger peak tendon forces were required to achieve

  13. Brain medical image diagnosis based on corners with importance-values.

    Science.gov (United States)

    Gao, Linlin; Pan, Haiwei; Li, Qing; Xie, Xiaoqin; Zhang, Zhiqiang; Han, Jinming; Zhai, Xiao

    2017-11-21

    Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain medical images for diagnosis. In the image analysis field, corners are one of the most important features, which makes corner detection and matching studies essential. However, existing corner detection studies do not consider the domain information of brain. This leads to many useless corners and the loss of significant information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for 2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we propose a similarity calculation method for diagnosis. Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8% on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the proposed method is robust to different intensity ranges of brain medical image. In this study, we develop a robust corner-based brain medical image classifier. Specifically, we propose a corner detection

  14. Which currency exchange regime for emerging markets?: Corner solutions under question

    Directory of Open Access Journals (Sweden)

    Allegret Jean-Pierre

    2007-01-01

    Full Text Available During the 90s, recurrent exchange rate crises in emerging markets have shown the extreme fragility of soft pegs, the so-called intermediate exchange rate regimes. As a result, numerous academic economists but also International institutions have promoted a new consensus: domestic authorities have to choose their exchange rate regime between only two solutions called corner solutions or extreme regimes: hard pegs or independent floating. This paper questions de relevance of this consensus. We stress the main advantages and costs of each corner solution. We conclude by stressing that intermediate regimes associated to an inflation targeting framework seem a better solution for emerging countries than corner solutions.

  15. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  16. DETERMINING OPTIMAL CUBE FOR 3D-DCT BASED VIDEO COMPRESSION FOR DIFFERENT MOTION LEVELS

    Directory of Open Access Journals (Sweden)

    J. Augustin Jacob

    2012-11-01

    Full Text Available This paper proposes new three dimensional discrete cosine transform (3D-DCT based video compression algorithm that will select the optimal cube size based on the motion content of the video sequence. It is determined by finding normalized pixel difference (NPD values, and by categorizing the cubes as “low” or “high” motion cube suitable cube size of dimension either [16×16×8] or[8×8×8] is chosen instead of fixed cube algorithm. To evaluate the performance of the proposed algorithm test sequence with different motion levels are chosen. By doing rate vs. distortion analysis the level of compression that can be achieved and the quality of reconstructed video sequence are determined and compared against fixed cube size algorithm. Peak signal to noise ratio (PSNR is taken to measure the video quality. Experimental result shows that varying the cube size with reference to the motion content of video frames gives better performance in terms of compression ratio and video quality.

  17. CubeAid - an interactive method of quickly analyzing 3-dimensional gamma-ray data sets

    Energy Technology Data Exchange (ETDEWEB)

    Kuehner, J A; Waddington, J C; Prevost, D [McMaster Univ., Hamilton, ON (Canada)

    1992-08-01

    With the advent of highly efficient gamma detector arrays capable of producing significant 4- and 5-fold data, a new challenge will be to develop appropriate data analysis techniques. One method may be to exploit the relatively fast analysis possible using three-dimensional (3D) analysis of sorted higher-fold data, as can be done using CubeAid software running on a personal computer (PC). This paper describes some of the capabilities of CubeAid. The main idea is to construct and use a 3D array (a cube) of triple data of dimensions suitable to the capability of a PC using VGA mode or higher. So far (as of the time of the conference), the authors had used a cube of edge size 640, and typically 2 or 3 keV per channel. In order to make data extraction fast, and to reduce disk space, a symmetrized 1/2 cube was used, the depth dimension having been compressed. In making this cube, sorting was first done into a symmetrized 1/6 cube from tape to a VAX hard disk. 2 figs.

  18. EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure

    Science.gov (United States)

    Dick, Cindy; Allison, Lee

    2016-04-01

    The US NSF EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. The EarthCube governance implementing processes to facilitate community convergence on a system architecture, which is expected to emerge naturally from a set of data principles, user requirements, science drivers, technology capabilities, and domain needs.

  19. Linking Humans to Data: Designing an Enterprise Architecture for EarthCube

    Science.gov (United States)

    Xu, C.; Yang, C.; Meyer, C. B.

    2013-12-01

    National Science Foundation (NSF)'s EarthCube is a strategic initiative towards a grand enterprise that holistically incorporates different geoscience research domains. The EarthCube as envisioned by NSF is a community-guided cyberinfrastructure (NSF 2011). The design of EarthCube enterprise architecture (EA) offers a vision to harmonize processes between the operations of EarthCube and its information technology foundation, the geospatial cyberinfrastructure. (Yang et al. 2010). We envision these processes as linking humans to data. We report here on fundamental ideas that would ultimately materialize as a conceptual design of EarthCube EA. EarthCube can be viewed as a meta-science that seeks to advance knowledge of the Earth through cross-disciplinary connections made using conventional domain-based earth science research. In order to build capacity that enables crossing disciplinary chasms, a key step would be to identify the cornerstones of the envisioned enterprise architecture. Human and data inputs are the two key factors to the success of EarthCube (NSF 2011), based upon which three hypotheses have been made: 1) cross disciplinary collaboration has to be achieved through data sharing; 2) disciplinary differences need to be articulated and captured in both computer and human understandable formats; 3) human intervention is crucial for crossing the disciplinary chasms. We have selected the Federal Enterprise Architecture Framework (FEAF, CIO Council 2013) as the baseline for the envisioned EarthCube EA, noting that the FEAF's deficiencies can be improved upon with inputs from three other popular EA frameworks. This presentation reports the latest on the conceptual design of an enterprise architecture in support of EarthCube.

  20. Vitamin and Mineral Supplement Fact Sheets

    Science.gov (United States)

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  1. Generalized transmissibilities for corner point rids in reservoir simulation; Transmissibilidades generalizadas em malhas corner point na simulacao de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Mauricio P.; Silva, Antonio Fabio C. da; Maliska, Clovis R. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Lab. de Simulacao Numerica em Mecanica dos Fluidos e Transferencia de Calor (SINMEC)

    2008-07-01

    It is common to use five points schemes in reservoir simulation, since it simplifies the computational implementation and takes the linear resultant system simplest to be solved, giving more process velocity and robust to simulator. However, the use of these schemes may introduce significant errors solutions as function of volume's non orthogonality and medium anisotropy. These errors do not disappear with grid refinement since they are not truncate errors, it is a flux calculus approximation in the control volume faces. In order to get a correct solution and with no errors of these kind, it must be used a nine point scheme based on the correct flux calculus. The objective of this work is to present a new methodology to calculate the transmissibility on simulation reservoir that use a five and nine points scheme with corner-points grids. This mode considers full tensor anisotropy and the heterogeneity. The transmissibility presented are derivative of the discrete flux expression through control volume faces, where a generalized curvilinear coordinate system, located inner to the control volume, it is adopted. The transmissibility is then written on vector form and may to be used for any coordinate system. (author)

  2. Vehicle kinematics in turns and the role of cornering lamps in driver vision.

    Science.gov (United States)

    2010-11-01

    "SAE Recommended Practice J852 and ECE Regulations 119 and 48 for cornering lamps : were compared. Photometric points described in each specification were then compared : to naturalistic low-speed turn trajectories produced by 87 drivers. Future loca...

  3. Stress intensity factors of corner cracks in two nozzle-cylinder intersections

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Polvanich, N.; Emery, A.F.; Love, W.J.

    1977-01-01

    In a recent paper, the authors presented the stress-intensity-magnification factors of a quarter-elliptical surface crack in a quarter-infinite solid and a circular crack approaching a reentry corner in a three-quarter infinite solid. These stress-intensity-magnification factors were used together with a curvature-correction factor to estimate the stress-intensity factor of a corner crack at a nozzle-cylinder intersection. Through appropriate superposition of the above stress-intensity-magnification factors, stress-intensity factors for hypothetical corner cracks at a nozzle-cylinder intersection subjected to internal pressure and transient thermal-stress loadings can be obtained. A description of a computer code based on this procedure as well as its applications in analyzing two corner-crack problems at a nozzle-cylinder intersection are discussed in this paper

  4. Stress intensity factors of corner cracks in two nozzle-cylinder interactions

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Polvanich, N.; Emery, A.F.; Love, W.J.

    1977-01-01

    In a recent paper, the authors presented the stress-intensity-magnification factors of a quarter-elliptical surface crack in a quarter-infinite solid and a circular crack approaching a reentry corner in a three-quarter infinite solid. These stress-intensity-magnification factors were used together with a curvature-correction factor to estimate the stress-intensity factor of a corner crack at a nozzle-cylinder interaction. Through appropriate superposition of the above stress-intensity-magnification factors, stress-intensity factors for hypothetical corner cracks at a nozzle-cylinder intersection subjected to internal pressure and transient thermal-stress loadings can be obtained. A description of a computer code based on this procedure as well as its applications in analyzing two corner-crack probems at a nozzle-cylinder intersection are discussed in this paper. (Auth.)

  5. November 2007 Multibeam Mapping of South West corner of Pulley Ridge

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This disk or set of disks contain high-resolution multibeam and backscatter maps of the south-western corner of the Pulley Ridge Area, near the Tortugas, in the Gulf...

  6. Selectively reflective transparent sheets

    Science.gov (United States)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  7. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Won [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Ko, Do-Kyeong [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Yu, Nan Ei, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kitamura, Kenji [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ro, Jung Hoon, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Department of Biomedical Engineering, School of Medicine, Pusan National University, Busan 602-739 (Korea, Republic of)

    2015-03-09

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic “asymmetric in-out domain wall motion” observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (E{sub c}) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1E{sub c} is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15E{sub c} is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  8. Modeling and calculation of impact friction caused by corner contact in gear transmission

    Science.gov (United States)

    Zhou, Changjiang; Chen, Siyu

    2014-09-01

    Corner contact in gear pair causes vibration and noise, which has attracted many attentions. However, teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches. Based on the mechanism of corner contact, the process of corner contact is divided into two stages of impact and scratch, and the calculation model including gear equivalent error—combined deformation is established along the line of action. According to the distributive law, gear equivalent error is synthesized by base pitch error, normal backlash and tooth profile modification on the line of action. The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action, on basis of the theory of engagement and the curve of tooth synthetic compliance & load-history. Combined secondarily the equivalent error with the combined deflection, the position standard of the point situated at corner contact is probed. Then the impact positions and forces, from the beginning to the end during corner contact before the normal path, are calculated accurately. Due to the above results, the lash model during corner contact is founded, and the impact force and frictional coefficient are quantified. A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated. This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient, and to gear exact design for tribology.

  9. Three-Dimensional Elasto-Plastic Calculations Using Yield Surfaces with Corner Discontinuities

    DEFF Research Database (Denmark)

    Clausen, Johan; Andersen, Lars; Damkilde, Lars

    2009-01-01

    This paper presents a simple and efficient way of dealing with the corners found in many yield surfaces, especially in geotechnical engineering. The efficiency of the method is demonstrated through three-dimensional computational examples.......This paper presents a simple and efficient way of dealing with the corners found in many yield surfaces, especially in geotechnical engineering. The efficiency of the method is demonstrated through three-dimensional computational examples....

  10. Superfund fact sheet: The remedial program. Fact sheet

    International Nuclear Information System (INIS)

    1992-09-01

    The fact sheet describes what various actions the EPA can take to clean up hazardous wastes sites. Explanations of how the criteria for environmental and public health risk assessment are determined and the role of state and local governments in site remediation are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training

  11. Distribution majorization of corner points by reinforcement learning for moving object detection

    Science.gov (United States)

    Wu, Hao; Yu, Hao; Zhou, Dongxiang; Cheng, Yongqiang

    2018-04-01

    Corner points play an important role in moving object detection, especially in the case of free-moving camera. Corner points provide more accurate information than other pixels and reduce the computation which is unnecessary. Previous works only use intensity information to locate the corner points, however, the information that former and the last frames provided also can be used. We utilize the information to focus on more valuable area and ignore the invaluable area. The proposed algorithm is based on reinforcement learning, which regards the detection of corner points as a Markov process. In the Markov model, the video to be detected is regarded as environment, the selections of blocks for one corner point are regarded as actions and the performance of detection is regarded as state. Corner points are assigned to be the blocks which are seperated from original whole image. Experimentally, we select a conventional method which uses marching and Random Sample Consensus algorithm to obtain objects as the main framework and utilize our algorithm to improve the result. The comparison between the conventional method and the same one with our algorithm show that our algorithm reduce 70% of the false detection.

  12. Investigation of corner shock boundary layer interactions to understand inlet unstart

    Science.gov (United States)

    Funderburk, Morgan

    2015-11-01

    Inlet unstart is a detrimental phenomenon in dual-mode ramjet/scramjet engines that causes severe loss of thrust, large transient structural load, and potentially a loss of the aircraft. In order to analyze the effects that the corner shock boundary layer interaction (SBLI) has on initiating and perpetuating inlet unstart, a qualitative and quantitative investigation into mean and dynamic features of corner SBLI at various Mach numbers is made. Surface streakline visualization showed that the corner SBLI is highly three-dimensional with a dominant presence of corner separation vortex. Further, the peak r.m.s. pressure was located at the periphery of corner separation vortex, suggesting that the unsteady loading is caused by the corner vortex. Power spectral densities of wall-pressure fluctuations in the peak r.m.s. location were analyzed in order to characterize the dominant frequencies of oscillation of the flow structures and to unravel the dynamic interactions between them in order to expand the operating margin of future hypersonic air breathing vehicles.

  13. Numerical study of corner separation in a linear compressor cascade using various turbulence models

    Directory of Open Access Journals (Sweden)

    Liu Yangwei

    2016-06-01

    Full Text Available Three-dimensional corner separation is a common phenomenon that significantly affects compressor performance. Turbulence model is still a weakness for RANS method on predicting corner separation flow accurately. In the present study, numerical study of corner separation in a linear highly loaded prescribed velocity distribution (PVD compressor cascade has been investigated using seven frequently used turbulence models. The seven turbulence models include Spalart–Allmaras model, standard k–ɛ model, realizable k–ɛ model, standard k–ω model, shear stress transport k–ω model, v2–f model and Reynolds stress model. The results of these turbulence models have been compared and analyzed in detail with available experimental data. It is found the standard k–ɛ model, realizable k–ɛ model, v2–f model and Reynolds stress model can provide reasonable results for predicting three dimensional corner separation in the compressor cascade. The Spalart–Allmaras model, standard k–ω model and shear stress transport k–ω model overestimate corner separation region at incidence of 0°. The turbulence characteristics are discussed and turbulence anisotropy is observed to be stronger in the corner separating region.

  14. Contour-Based Corner Detection and Classification by Using Mean Projection Transform

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Mousavi Kahaki

    2014-02-01

    Full Text Available Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP and false-negative (FN points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR, is introduced. AR combines repeatability and the localization error (Le for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images.

  15. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm{sup 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaya, Taiga; Mitsuhashi, Takayuki; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Matsumoto, Takahiro; Kawai, Hideyuki; Suga, Mikio [Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Watanabe, Mitsuo, E-mail: taiga@nirs.go.jp [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601 (Japan)

    2011-11-07

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm{sup 3} cubic crystals, in contrast to our previous development using 3.0 mm{sup 3} cubic crystals. The crystal block was composed of a 16 x 16 x 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 x 0.993 x 0.993 mm{sup 3} in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 x 4 array of MPPCs), each having a sensitive area of 3.0 x 3.0 mm{sup 2}, were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  16. DRG-based CubeSat Inertial Reference Unit (DCIRU), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CubeSats currently lack adequate inertial attitude knowledge and control required for future sophisticated science missions. Boeing?s Disc Resonator Gyro (DRG)...

  17. Modified Ionic Liquids for Thermal Properties in CubeSats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA desires new phase change systems to regulate heat transfer among components within a CubeSat small spacecraft. The temperature variation within the small...

  18. High Power Radiation Tolerant CubeSat Power System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — No vendor has yet to provide a radiation tolerant, high efficiency, small Power Management and Distribution module for the SmallSat and CubeSat market yet. Let alone...

  19. Design and Demonstration of a Constrained Control System for Maneuverable CubeSats

    Data.gov (United States)

    National Aeronautics and Space Administration — Picosatellites, such as CubeSats (less than 4 kg), have the potential to reduce the cost of conducting missions in space. Programs such as NASA Ames GeneSat and the...

  20. A Green, Safe, Dual-pulse Solid Motor for CubeSat Orbit Changing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Small satellites such as CubeSats are in need of responsive propulsion, but are limited due to their size. Though single pulse, AP/HTPB fueled solid rocket motors...

  1. Simulation of an extended surface detector IceVeto for IceCube-Gen2

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Tim; Auffenberg, Jan; Haack, Christian; Hansmann, Bengt; Kemp, Julian; Konietz, Richard; Leuner, Jakob; Raedel, Leif; Stahlberg, Martin; Schoenen, Sebastian; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube is a neutrino observatory located at the geographic South Pole. The main backgrounds for IceCube's primary goal, the measurement of astrophysical neutrinos, are muons and neutrinos from cosmic-ray air showers in the Earth's atmosphere. Strong supression of these backgrounds from the Southern hemisphere has been demonstrated by coincident detection of these air showers with the IceTop surface detector. For an extended instrument, IceCube-Gen2, it is considered to build an enlarged surface array, IceVeto, that will improve the detection capabilities of coincident air showers. We will present simulation studies to estimate the IceVeto capabilities to optimize the IceCube-Gen2 design.

  2. CubeSat Ambipolar Thruster for LEO and Deep Space Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aether Industries proposes the development of a novel, primary plasma propulsion system that is well suited for small spacecraft. This technology, called the CubeSat...

  3. Improving Communication Throughput with Retrodirective Arrays for CubeSat Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project will be to investigate and propose solutions regarding the development of retrodirective arrays (RDA) for CubeSat applications. As an end...

  4. High Power CubeSat Control Sub-system (HPoCCS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To date, most CubeSat designs have been 6U or smaller and have operated within power budgets in the 10s of W or less. However, as the demand grows for greater...

  5. High-Strain Composite Deployable Radiators for CubeSats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need for compact, lightweight and efficient, low-cost deployable radiators for CubeSats, Roccor proposes to develop a high-strain laminate...

  6. Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes.

    Science.gov (United States)

    Wang, Da; Hermes, Michiel; Kotni, Ramakrishna; Wu, Yaoting; Tasios, Nikos; Liu, Yang; de Nijs, Bart; van der Wee, Ernest B; Murray, Christopher B; Dijkstra, Marjolein; van Blaaderen, Alfons

    2018-06-08

    Self-assembly of nanoparticles (NPs) inside drying emulsion droplets provides a general strategy for hierarchical structuring of matter at different length scales. The local orientation of neighboring crystalline NPs can be crucial to optimize for instance the optical and electronic properties of the self-assembled superstructures. By integrating experiments and computer simulations, we demonstrate that the orientational correlations of cubic NPs inside drying emulsion droplets are significantly determined by their flat faces. We analyze the rich interplay of positional and orientational order as the particle shape changes from a sharp cube to a rounded cube. Sharp cubes strongly align to form simple-cubic superstructures whereas rounded cubes assemble into icosahedral clusters with additionally strong local orientational correlations. This demonstrates that the interplay between packing, confinement and shape can be utilized to develop new materials with novel properties.

  7. IceCube-Gen2 sensitivity improvement for steady neutrino point sources

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan; Resconi, Elisa [TU Muenchen, Physik-Department, Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    The observation of an astrophysical neutrino flux by high-energy events starting in IceCube strengthens the search for sources of astrophysical neutrinos. Identification of these sources requires good pointing at high statistics, mainly using muons created by charged-current muon neutrino interactions going through the IceCube detector. We report about preliminary studies of a possible high-energy extension IceCube-Gen2. Using a 6 times bigger detection volume, effective area as well as reconstruction accuracy will improve with respect to IceCube. Moreover, using (in-ice) active veto techniques will significantly improve the performance for Southern hemisphere events, where possible local candidate neutrino sources are located.

  8. Rad-hard Smallsat / CubeSat Avionics Board, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — VORAGO will design a rad-hard Smallsat / CubeSat Avionics single board that has the necessary robustness needed for long duration missions in harsh mission...

  9. A Green, Safe, Multi-Pulse Solid Motor (MPM) for CubeSats, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Today's CubeSats lack storable, green, safe propulsion options for complex science missions that may involve large Delta-V changes, proximity operations, and...

  10. Instrument Design for the CubeSat Ultraviolet Transient/Imaging Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing a mission concept for a CubeSat-based synoptic imaging survey to explore the ultraviolet sky for several key discoveries in time-domain...

  11. Inexpensive CubeSat attitude estimation using COTS components and Unscented Kalman Filtering

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Vinther, Kasper

    2011-01-01

    computational cost of estimating bias in measurements is worthwhile. The simulations where performed in a simulation environment for the CubeSat AAUSAT3, where robustness has been an important factor during tuning of the attitude estimators. The results indicate that it is possible to achieve acceptable Cube......This paper describes a quaternion implementation of an Unscented Kalman Filter for attitude estimation on CubeSats using measurements of a sun vector, a magnetic field vector and angular velocity. Using unit quaternions provides a singularity free attitude parameterization. However, the unity...... constraint requires a redesign of the Unscented Kalman Filter. Therefore, a quaternion error state is introduced. Emphasis has been put in making the implementation accessible to other CubeSat by using realistic models of COTS components used for attitude sensing and simulations have shown that the extra...

  12. Integrated CubeSat ADACS with Reaction Wheels and Star Tracker, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance ADACS (Attitude Determination and Control System) for CubeSats incorporating Miniature Star Trackers is proposed. The proposed program will focus...

  13. Flexible High-Efficiency Solar Panels for SmallSats and CubeSats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MicroLink proposes to develop and test, a new type of photovoltaic module that will be suitable for use in SmallSat and CubeSat platforms requiring maximum power in...

  14. CubeSat Communications Research Competes in NASA iTech

    OpenAIRE

    Ehrlich, Michael; Imbukwa, Khaboshi

    2017-01-01

    News Stories Archive Research into how small satellites, known as CubeSats, communicate with each other and the Earth performed by a team of researchers in the Naval Postgraduate School's (NPS) Space Systems Academic Group...

  15. 3-D Image Encryption Based on Rubik's Cube and RC6 Algorithm

    Science.gov (United States)

    Helmy, Mai; El-Rabaie, El-Sayed M.; Eldokany, Ibrahim M.; El-Samie, Fathi E. Abd

    2017-12-01

    A novel encryption algorithm based on the 3-D Rubik's cube is proposed in this paper to achieve 3D encryption of a group of images. This proposed encryption algorithm begins with RC6 as a first step for encrypting multiple images, separately. After that, the obtained encrypted images are further encrypted with the 3-D Rubik's cube. The RC6 encrypted images are used as the faces of the Rubik's cube. From the concepts of image encryption, the RC6 algorithm adds a degree of diffusion, while the Rubik's cube algorithm adds a degree of permutation. The simulation results demonstrate that the proposed encryption algorithm is efficient, and it exhibits strong robustness and security. The encrypted images are further transmitted over wireless Orthogonal Frequency Division Multiplexing (OFDM) system and decrypted at the receiver side. Evaluation of the quality of the decrypted images at the receiver side reveals good results.

  16. CUBE (Computer Use By Engineers) symposium abstracts. [LASL, October 4--6, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ruminer, J.J. (comp.)

    1978-07-01

    This report presents the abstracts for the CUBE (Computer Use by Engineers) Symposium, October 4, through 6, 1978. Contributors are from Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, and Sandia Laboratories.

  17. Integrated Propulsion and Primary Structure Module for Small Satellite and CubeSat Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the last decade, the CubeSat platform has emerged as a viable alternative for both innovative technology development and scientific investigation. However, to...

  18. Integrated Propulsion and Primary Structure Module for Small Satellite and CubeSat Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the last decade, the CubeSat platform has emerged as a viable alternative for both innovative technology development and scientific investigation. However, to...

  19. Lightweight Flexible Thermal Energy Management Panels for CubeSats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to significant gaps in advanced thermal control systems onboard CubeSats and SmallSats, and building off of the successful development of space-based...

  20. Fabrication and characteristics of cube-post microreactors for methanol steam reforming

    International Nuclear Information System (INIS)

    Zeng, Dehuai; Pan, Minqiang; Wang, Liming; Tang, Yong

    2012-01-01

    Highlights: ► We developed a cube-post microreactor for methanol steam reforming. ► We investigated the influences of micro-milling parameters on the burr formation during fabricating the cube posts. ► Larger cutting speed, smaller feed rate and cutting depth are in favor of obtaining relatively small burrs. ► Cube post and manifold structure show important effects on reaction performances at relatively low reaction temperature. -- Abstract: The lamination-plate structure patterned with microchannels and triangle manifolds regarded as one of the preferred constructions for micro fuel reformers. Learned from the microchannel plate structure, a similar plate structure with cube-post array and triangle manifolds is proposed in this work. A micro-milling process is applied to fabricate the cube posts on the plate surface, and the influences of cutting parameters on the burr formation are analyzed. Experimental results indicate that larger cutting speed, smaller feed rate and cutting depth are in favor of obtaining relatively small burrs. Two plates with different cube-post dimensions and manifold structures are experimentally investigated the performances of methanol steam reforming over the Cu/Zn/Al/Zr catalyst. It indicates that the reactor with small-scale cube posts and acute triangle manifold presents better reforming performances at 260 °C than that of the one with large-scale cube posts and right triangle manifolds. However, their performances are closed to each other at relatively high reaction temperature since the catalyst activity is situated in dominated position at the time.

  1. Getting Started: Using a Global Circumnavigation Balloon Flight to Explore Picosatellite (CubeSat) Technology

    OpenAIRE

    Bennett, Keith; Swartwout, Michael; Tobias, Barry; McNally, Patrick

    2001-01-01

    Washington University's Project Aria is currently involved in the CubeSat program. Project Aria is a student-led engineering education, research, and K-12 outreach program. The project’s CubeSat goal is the development of a spherical imaging spacecraft, the "Palantir", ready for launch in late 2002. Recently, the Palantir team was offered the opportunity to fly a small payload on a global circumnavigation balloon flight in mid-2001. The payload would collect atmospheric data such as temperatu...

  2. 2012 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  3. State Fact Sheets on COPD

    Science.gov (United States)

    ... Submit Search The CDC Chronic Obstructive Pulmonary Disease (COPD) Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . COPD Homepage Data and Statistics Fact Sheets Publications Publications ...

  4. Australian Government Balance Sheet Management

    OpenAIRE

    Wilson Au-Yeung; Jason McDonald; Amanda Sayegh

    2006-01-01

    Since almost eliminating net debt, the Australian Government%u2019s attention has turned to the financing of broader balance sheet liabilities, such as public sector superannuation. Australia will be developing a significant financial asset portfolio in the %u2018Future Fund%u2019 to smooth the financing of expenses through time. This raises the significant policy question of how best to manage the government balance sheet to reduce risk. This paper provides a framework for optimal balance sh...

  5. Energy information sheets, July 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  6. Energy information sheets, September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  7. The IceCube Collaboration: contributions to the 30th International Cosmic Ray Conference (ICRC 2007)

    International Nuclear Information System (INIS)

    IceCube Collaboration; Ackermann, M.

    2007-01-01

    This paper bundles 40 contributions by the IceCube collaboration that were submitted to the 30th International Cosmic Ray Conference ICRC 2007. The articles cover studies on cosmic rays and atmospheric neutrinos, searches for non-localized, extraterrestrial ν e , ν μ and ν τ signals, scans for steady and intermittent neutrino point sources, searches for dark matter candidates, magnetic monopoles and other exotic particles, improvements in analysis techniques, as well as future detector extensions. The IceCube observatory will be finalized in 2011 to form a cubic-kilometer ice-Cherenkov detector at the location of the geographic South Pole. At the present state of construction, IceCube consists of 52 paired IceTop surface tanks and 22 IceCube strings with a total of 1426 Digital Optical Modules deployed at depths up to 2350 m. The observatory also integrates the 19 string AMANDA subdetector, that was completed in 2000 and extends IceCube's reach to lower energies. Before the deployment of IceTop, cosmic air showers were registered with the 30 station SPASE-2 surface array. IceCube's low noise Digital Optical Modules are very reliable, show a uniform response and record waveforms of arriving photons that are resolvable with nanosecond precision over a large dynamic range. Data acquisition, reconstruction and simulation software are running in production mode and the analyses, profiting from the improved data quality and increased overall sensitivity, are well under way

  8. Contamination of faecal coliforms in ice cubes sampled from food outlets in Kubang Kerian, Kelantan.

    Science.gov (United States)

    Noor Izani, N J; Zulaikha, A R; Mohamad Noor, M R; Amri, M A; Mahat, N A

    2012-03-01

    The use of ice cubes in beverages is common among patrons of food outlets in Malaysia although its safety for human consumption remains unclear. Hence, this study was designed to determine the presence of faecal coliforms and several useful water physicochemical parameters viz. free residual chlorine concentration, turbidity and pH in ice cubes from 30 randomly selected food outlets in Kubang Kerian, Kelantan. Faecal coliforms were found in ice cubes in 16 (53%) food outlets ranging between 1 CFU/100mL to >50 CFU/ 100mL, while in the remaining 14 (47%) food outlets, in samples of tap water as well as in commercially bottled drinking water, faecal coliforms were not detected. The highest faecal coliform counts of >50 CFU/100mL were observed in 3 (10%) food outlets followed by 11-50 CFU/100mL and 1-10 CFU/100mL in 7 (23%) and 6 (20%) food outlets, respectively. All samples recorded low free residual chlorine concentration (contamination by faecal coliforms was not detected in 47% of the samples, tap water and commercially bottled drinking water, it was concluded that (1) contamination by faecal coliforms may occur due to improper handling of ice cubes at the food outlets or (2) they may not be the water sources used for making ice cubes. Since low free residual chlorine concentrations were observed (food outlets, including that of ice cube is crucial in ensuring better food and water for human consumption.

  9. Using Additive Manufacturing to Print a CubeSat Propulsion System

    Science.gov (United States)

    Marshall, William M.

    2015-01-01

    CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.

  10. SERS Substrates by the Assembly of Silver Nano cubes: High-Throughput and Enhancement Reliability Considerations

    International Nuclear Information System (INIS)

    Rabin, O.; Lee, S.Y.; Rabin, O.

    2012-01-01

    Small clusters of nanoparticles are ideal substrates for SERS measurements, but the SERS signal enhancement by a particular cluster is strongly dependent on its structural characteristics and the measurement conditions. Two methods for high-throughput assembly of silver nano cubes into small clusters at predetermined locations on a substrate are presented. These fabrication techniques make it possible to study both the structure and the plasmonic properties of hundreds of nanoparticle clusters. The variations in SERS enhancement factors from cluster to cluster were analyzed and correlated with cluster size and configuration, and laser frequency and polarization. Using Raman instruments with 633 nm and 785 nm lasers and linear clusters of nano cubes, an increase in the reproducibility of the enhancement and an increase in the average enhancement values were achieved by increasing the number of nano cubes in the cluster, up to 4 nano cubes per cluster. By examining the effect of cluster configuration, it is shown that linear clusters with nano cubes attached in a face-to-face configuration are not as effective SERS substrates as linear clusters in which nano cubes are attached along an edge

  11. Girls in detail, boys in shape: gender differences when drawing cubes in depth.

    Science.gov (United States)

    Lange-Küttner, C; Ebersbach, M

    2013-08-01

    The current study tested gender differences in the developmental transition from drawing cubes in two- versus three dimensions (3D), and investigated the underlying spatial abilities. Six- to nine-year-old children (N = 97) drew two occluding model cubes and solved several other spatial tasks. Girls more often unfolded the various sides of the cubes into a layout, also called diagrammatic cube drawing (object design detail). In girls, the best predictor for drawing the cubes was Mental Rotation Test (MRT) accuracy. In contrast, boys were more likely to preserve the optical appearance of the cube array. Their drawing in 3D was best predicted by MRT reaction time and the Embedded Figures Test (EFT). This confirmed boys' stronger focus on the contours of an object silhouette (object shape). It is discussed whether the two gender-specific approaches to drawing in three dimensions reflect two sides of the appearance-reality distinction in drawing, that is graphic syntax of object design features versus visual perception of projective space. © 2012 The British Psychological Society.

  12. PERANGKAT LUNAK ANTAR MUKA GRAFIS SCHEMA DAN CUBE EDITOR MS ANALYSIS SERVICE BERBASIS WEB

    Directory of Open Access Journals (Sweden)

    Faizal Johan

    2007-01-01

    Full Text Available Aplikasi Web telah menjadi bagian yang tidak terpisahkan lagi dalam kehidupan sehari-hari. Seiring dengan meningkatnya teknologi internet membuat seorang administrator tidak perlu berada didepan komputer server untuk dapat melakukan pekerjaan administratif seperti membuat analisis proses secara online dari sebuah schema database untuk dibuat schema cube (data warehousing dan melakukan perubahan pada schema yang sudah dibuat.Untuk dapat melakukan hal tersebut SQL Server 7.0 maupun SQL Server 2000 telah menyediakan fasilitas pengaksesan tabel dimensi, cube, relasi dan koneksi database dalam Analysis Manager menggunakan DSO (Decision Support Object library component MS OLAP. Dengan adanya DSO connection, seorang administrator dapat memanipulasi schema, tabel, cube, dimension, relasi suatu schema cube dari database SQL Server secara langsung dengan menggunakan bahasa pemrograman yang mendukung, seperti MS Visual Basic, VBScript, MS Visual C++, MS.Net. Dalam penelitian ini dibuat aplikasi berbasis web yang merupakan tahap awal dari OLAP (Online Analytical Processing suatu schema database dengan menggunakan SQL Analysis Service, Analysis Manager yang memungkinkan seorang administrator database untuk dapat melakukan pekerjaan administratif khususnya membuat schema dan cube (fact table dari database yang dianalisis, membuat dan mengedit dimensi, dimana saja tanpa harus berada di komputer server. Kata Kunci : DSO, Cube, Measure,GUI, dimensi, fact table, ADO MD, SQL DMO, OLAP.

  13. Reproducibility study of TLD-100 micro-cubes at radiotherapy dose level

    International Nuclear Information System (INIS)

    Rosa, Luiz Antonio R. da; Regulla, Dieter F.; Fill, Ute A.

    1999-01-01

    The precision of the thermoluminescent response of Harshaw micro-cube dosimeters (TLD-100), evaluated in both Harshaw thermoluminescent readers 5500 and 3500, for 1 Gy dose value, was investigated. The mean reproducibility for micro-cubes, pre-readout annealed at 100 deg. C for 15 min, evaluated with the manual planchet reader 3500, is 0.61% (1 standard deviation). When micro-cubes are evaluated with the automated hot-gas reader 5500, reproducibility values are undoubtedly worse, mean reproducibility for numerically stabilised dosimeters being equal to 3.27% (1 standard deviation). These results indicate that the reader model 5500, or, at least, the instrument used for the present measurements, is not adequate for micro-cube evaluation, if precise and accurate dosimetry is required. The difference in precision is apparently due to geometry inconsistencies in the orientation of the imperfect micro-cube faces during readout, requiring careful and manual reproducible arrangement of the selected micro-cube faces in contact with the manual reader planchet

  14. Efficient and Reliable Solar Panels for Small CubeSat Picosatellites

    Directory of Open Access Journals (Sweden)

    Ivo Vertat

    2014-01-01

    Full Text Available CubeSat picosatellites have a limited area of walls for solar cells assembling and the available area has to be effectively shared with other parts, such as planar antennas, optical sensors, camera lens, and access port. With standard size of solar cell strings, it is not possible to construct a reliable solar panel for CubeSat with redundant strings interconnection. Typical solar panels for CubeSat consist of two solar cell strings serially wired with no redundancy in case of solar string failure. The loss of electric energy from one solar panel can cause a serious problem for most picosatellites due to minimum margin in the blueprints of the picosatellite subsystem power budget. In this paper, we propose a new architecture of solar panels for PilsenCUBE CubeSat with a high level of redundancy in the case of solar string failure or following switched power regulator failure. Our solar panels use a high efficiency triple junction GaInP2/GaAs/Ge in the form of small triangle strings from the Spectrolab Company. A suitable technology for precise solar cell assembling is also discussed, because CubeSat picosatellites are usually developed by small teams with limited access to high-end facilities.

  15. Soft bilateral filtering volumetric shadows using cube shadow maps.

    Directory of Open Access Journals (Sweden)

    Hatam H Ali

    Full Text Available Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications.

  16. The Asia-RiCE activity with data cube

    Science.gov (United States)

    Oyoshi, K.; Sobue, S.; LE Toan, T.; Lam, N. D.

    2017-12-01

    The Asia-RiCE initiative (http://www.asia-rice.org) has been organized to enhance rice production estimates through the use of Earth observation satellites data, and seeks to ensure that Asian rice crops are appropriately represented within GEO Global Agriculture Monitoring (GEO-GLAM) to support FAO Agriculture Market Information System (FAO-AMIS). Asia-RiCE is composed of national teams that are actively contributing to the Crop Monitor for AMIS and developing technical demonstrations of rice crop monitoring activities using both Synthetic Aperture Radar (SAR) data (Radarsat-2 from 2013; Sentinel-1 and ALOS-2 from 2015.From 2016 after the successful rice crop area and growing estimation using SAR in a technical demonstration site (provincial level), wall-to-wall (national scale) excurse as phase 2 has been implemented in Vietnam and Indonesia in cooperation with ministry of agriculture and space agencies. This paper reports this year activity of 2017 accomplishment and way forward, especially for analysis ready data (ARD) definition of SAR to ingest to CEOS data cube to provide national scale service in Vietnam and Indonesia.

  17. Searches for relativistic magnetic monopoles in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Benabderrahmane, M.L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); and others

    2016-03-15

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10{sup -18} cm{sup -2} s{sup -1} sr{sup -1}. This is an improvement of almost two orders of magnitude over previous limits. (orig.)

  18. Searches for Sterile Neutrinos with the IceCube Detector

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rameez, M.; Rawlins, K.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Salvado, J.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-08-01

    The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous νμ or ν¯μ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3 +1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin22 θ24≤0.02 at Δ m2˜0.3 eV2 at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |Ue 4 |2 .

  19. CUBED: South Dakota 2010 Research Center For Dusel Experiments

    International Nuclear Information System (INIS)

    Keller, Christina; Alton, Drew; Bai Xinhau; Durben, Dan; Heise, Jaret; Hong Haiping; Howard, Stan; Jiang Chaoyang; Keeter, Kara; McTaggart, Robert; Medlin, Dana; Mei Dongming; Petukhov, Andre; Rauber, Joel; Roggenthen, Bill; Spaans, Jason; Sun Yongchen; Szczerbinska, Barbara; Thomas, Keenan; Zehfus, Michael

    2010-01-01

    With the selection of the Homestake Mine in western South Dakota by the National Science Foundation (NSF) as the site for a national Deep Underground Science and Engineering Laboratory (DUSEL), the state of South Dakota has sought ways to engage its faculty and students in activities planned for DUSEL. One such effort is the creation of a 2010 Research Center focused on ultra-low background experiments or a Center for Ultra-low Background Experiments at DUSEL (CUBED). The goals of this center include to 1) bring together the current South Dakota faculty so that one may begin to develop a critical mass of expertise necessary for South Dakota's full participation in large-scale collaborations planned for DUSEL; 2) to increase the number of research faculty and other research personnel in South Dakota to complement and supplement existing expertise in nuclear physics and materials sciences; 3) to be competitive in pursuit of external funding through the creation of a center which focuses on areas of interest to experiments planned for DUSEL such as an underground crystal growth lab, a low background counting facility, a purification/depletion facility for noble liquids, and an electroforming copper facility underground; and 4) to train and educate graduate and undergraduate students as a way to develop the scientific workforce of the state. We will provide an update on the activities of the center and describe in more detail the scientific foci of the center.

  20. Fun cube based brain gym cognitive function assessment system.

    Science.gov (United States)

    Zhang, Tao; Lin, Chung-Chih; Yu, Tsang-Chu; Sun, Jing; Hsu, Wen-Chuin; Wong, Alice May-Kuen

    2017-05-01

    The aim of this study is to design and develop a fun cube (FC) based brain gym (BG) cognitive function assessment system using the wireless sensor network and multimedia technologies. The system comprised (1) interaction devices, FCs and a workstation used as interactive tools for collecting and transferring data to the server, (2) a BG information management system responsible for managing the cognitive games and storing test results, and (3) a feedback system used for conducting the analysis of cognitive functions to assist caregivers in screening high risk groups with mild cognitive impairment. Three kinds of experiments were performed to evaluate the developed FC-based BG cognitive function assessment system. The experimental results showed that the Pearson correlation coefficient between the system's evaluation outcomes and the traditional Montreal Cognitive Assessment scores was 0.83. The average Technology Acceptance Model 2 score was close to six for 31 elderly subjects. Most subjects considered that the brain games are interesting and the FC human-machine interface is easy to learn and operate. The control group and the cognitive impairment group had statistically significant difference with respect to the accuracy of and the time taken for the brain cognitive function assessment games, including Animal Naming, Color Search, Trail Making Test, Change Blindness, and Forward / Backward Digit Span. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. CubeSat Deformable Mirror Demonstration mission (DeMi)

    Science.gov (United States)

    Cahoy, K.; Marinan, A.; Kerr, C.; Novak, B.; Webber, M.; Kasdin, N. J.

    The high contrast requirement of 1010 needed to directly image an Earth-like exoplanet around a sun-like star at optical wavelengths requires space telescopes equipped with coronagraphs and wavefront control systems. Coronagraphs are needed to block the parent star's light and improve the ability of the system to detect photons that have reflected off of the exoplanet toward the observer. Wavefront control systems are needed to correct image plane aberrations and speckles caused by imperfections, thermal distortions, and diffraction in the telescope and optics that would otherwise corrupt the wavefront and ruin the desired contrast. The two key elements of wavefront control systems are (1) a way to detect the wavefront distortions (a wavefront sensor) and (2) a way to correct the distortions before the image plane (such as deformable mirrors, or DMs). In this paper, we investigate a compact and inexpensive CubeSat-based wavefront control testbed that can be used as a technology development precursor toward a larger mission.

  2. Improving Estimation Accuracy of Aggregate Queries on Data Cubes

    Energy Technology Data Exchange (ETDEWEB)

    Pourabbas, Elaheh; Shoshani, Arie

    2008-08-15

    In this paper, we investigate the problem of estimation of a target database from summary databases derived from a base data cube. We show that such estimates can be derived by choosing a primary database which uses a proxy database to estimate the results. This technique is common in statistics, but an important issue we are addressing is the accuracy of these estimates. Specifically, given multiple primary and multiple proxy databases, that share the same summary measure, the problem is how to select the primary and proxy databases that will generate the most accurate target database estimation possible. We propose an algorithmic approach for determining the steps to select or compute the source databases from multiple summary databases, which makes use of the principles of information entropy. We show that the source databases with the largest number of cells in common provide the more accurate estimates. We prove that this is consistent with maximizing the entropy. We provide some experimental results on the accuracy of the target database estimation in order to verify our results.

  3. Searches for relativistic magnetic monopoles in IceCube

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J.; Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.; Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P.; Adams, J.; Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.; Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.; Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Bai, X.; Barwick, S.W.; Yodh, G.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D.; Benabderrahmane, M.L.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J.; Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E.

    2016-01-01

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10 -18 cm -2 s -1 sr -1 . This is an improvement of almost two orders of magnitude over previous limits. (orig.)

  4. Corner-point criterion for assessing nonlinear image processing imagers

    Science.gov (United States)

    Landeau, Stéphane; Pigois, Laurent; Foing, Jean-Paul; Deshors, Gilles; Swiathy, Greggory

    2017-10-01

    Range performance modeling of optronics imagers attempts to characterize the ability to resolve details in the image. Today, digital image processing is systematically used in conjunction with the optoelectronic system to correct its defects or to exploit tiny detection signals to increase performance. In order to characterize these processing having adaptive and non-linear properties, it becomes necessary to stimulate the imagers with test patterns whose properties are similar to the actual scene image ones, in terms of dynamic range, contours, texture and singular points. This paper presents an approach based on a Corner-Point (CP) resolution criterion, derived from the Probability of Correct Resolution (PCR) of binary fractal patterns. The fundamental principle lies in the respectful perception of the CP direction of one pixel minority value among the majority value of a 2×2 pixels block. The evaluation procedure considers the actual image as its multi-resolution CP transformation, taking the role of Ground Truth (GT). After a spatial registration between the degraded image and the original one, the degradation is statistically measured by comparing the GT with the degraded image CP transformation, in terms of localized PCR at the region of interest. The paper defines this CP criterion and presents the developed evaluation techniques, such as the measurement of the number of CP resolved on the target, the transformation CP and its inverse transform that make it possible to reconstruct an image of the perceived CPs. Then, this criterion is compared with the standard Johnson criterion, in the case of a linear blur and noise degradation. The evaluation of an imaging system integrating an image display and a visual perception is considered, by proposing an analysis scheme combining two methods: a CP measurement for the highly non-linear part (imaging) with real signature test target and conventional methods for the more linear part (displaying). The application to

  5. FDTD modeling of thin impedance sheets

    Science.gov (United States)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  6. On Jovian plasma sheet structure

    International Nuclear Information System (INIS)

    Khurana, K.K.; Kivelson, M.G.

    1989-01-01

    The authors evaluate several models of Jovian plasma sheet structure by determining how well they organize several aspects of the observed Voyager 2 magnetic field characteristics as a function of Jovicentric radial distance. It is shown that in the local time sector of the Voyager 2 outbound pass (near 0300 LT) the published hinged-magnetodisc models with wave (i.e., models corrected for finite wave velocity effects) are more successful than the published magnetic anomaly model in predicting locations of current sheet crossings. They also consider the boundary between the plasma sheet and the magnetotail lobe which is expected to vary slowly with radial distance. They use this boundary location as a further test of the models of the magnetotail. They show that the compressional MHD waves have much smaller amplitude in the lobes than in the plasma sheet and use this criterion to refine the identification of the plasma-sheet-lobe boundary. When the locations of crossings into and out of the lobes are examined, it becomes evident that the magnetic-anomaly model yields a flaring plasma sheet with a halfwidth of ∼ 3 R J at a radial distance of 20 R J and ∼ 12 R J at a radial distance of 100 R J . The hinged-magnetodisc models with wave, on the other hand, predict a halfwidth of ∼ 3.5 R J independent of distance beyond 20 R J . New optimized versions of the two models locate both the current sheet crossings and lobe encounters equally successfully. The optimized hinged-magnetodisc model suggests that the wave velocity decreases with increasing radial distance. The optimized magnetic anomaly model yields lower velocity contrast than the model of Vasyliunas and Dessler (1981)

  7. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  8. CubeX: The CubeSAT X-ray Telescope for Elemental Abundance Mapping of Airless Bodies and X-ray Pulsar Navigation

    Science.gov (United States)

    Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.

    2017-12-01

    The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several

  9. The dark cube: dark and light character profiles

    Directory of Open Access Journals (Sweden)

    Danilo Garcia

    2016-02-01

    Full Text Available Background. Research addressing distinctions and similarities between people’s malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument rather than as ternary construct (i.e., the uniqueness argument. We put forward the dark cube (cf. Cloninger’s character cube comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger’s “light” character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people’s dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon’s Mechanical Turk (MTurk responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals’ dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com. Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high

  10. Changes in food and beverage environments after an urban corner store intervention.

    Science.gov (United States)

    Cavanaugh, Erica; Green, Sarah; Mallya, Giridhar; Tierney, Ann; Brensinger, Colleen; Glanz, Karen

    2014-08-01

    In response to the obesity epidemic, interventions to improve the food environment in corner stores have gained attention. This study evaluated the availability, quality, and price of foods in Philadelphia corner stores before and after a healthy corner store intervention with two levels of intervention intensity ("basic" and "conversion"). Observational measures of the food environment were completed in 2011 and again in 2012 in corner stores participating in the intervention, using the Nutrition Environment Measures Survey for Corner Stores (NEMS-CS). Main analyses included the 211 stores evaluated at both time-points. A time-by-treatment interaction analysis was used to evaluate the changes in NEMS-CS scores by intervention level over time. Availability of fresh fruit increased significantly in conversion stores over time. Specifically, there were significant increases in the availability of apples, oranges, grapes, and broccoli in conversion stores over time. Conversion stores showed a trend toward a significantly larger increase in the availability score compared to basic stores over time. Interventions aimed at increasing healthy food availability are associated with improvements in the availability of low-fat milk, fruits, and some vegetables, especially when infrastructure changes, such as refrigeration and shelving enhancements, are offered. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Baseline ambient gaseous ammonia concentrations in the Four Corners area and eastern Oklahoma, USA.

    Science.gov (United States)

    Sather, Mark E; Mathew, Johnson; Nguyen, Nghia; Lay, John; Golod, George; Vet, Robert; Cotie, Joseph; Hertel, Terry; Aaboe, Erik; Callison, Ryan; Adam, Jacque; Keese, Danielle; Freise, Jeremy; Hathcoat, April; Sakizzie, Brenda; King, Michael; Lee, Chris; Oliva, Sylvia; San Miguel, George; Crow, Leon; Geasland, Frank

    2008-11-01

    Ambient ammonia monitoring using Ogawa passive samplers was conducted in the Four Corners area and eastern Oklahoma, USA during 2007. The resulting data will be useful in the multipollutant management of ozone, nitrogen oxides, and visibility (atmospheric regional haze) in the Four Corners area, an area with growing oil/gas production and increasing coal-based power plant construction. The passive monitoring data also add new ambient ammonia concentration information for the U.S. and will be useful to scientists involved in present and future visibility modeling exercises. Three week integrated passive ammonia samples were taken at five sites in the Four Corners area and two sites in eastern Oklahoma from December, 2006 through December, 2007 (January, 2008 for two sites). Results show significantly higher regional background ammonia concentrations in eastern Oklahoma (1.8 parts per billion (ppb) arithmetic mean) compared to the Four Corners area (0.2 ppb arithmetic mean). Annual mean ammonia concentrations for all Four Corners area sites for the 2007 study ranged from 0.2 ppb to 1.5 ppb. Peak ambient ammonia concentrations occurred in the spring and summer in both areas. The passive samplers deployed at the Stilwell, Oklahoma site compared favorably with other passive samplers and a continuous ammonia monitoring instrument.

  12. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Directory of Open Access Journals (Sweden)

    Dongyang Ao

    2017-12-01

    Full Text Available The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS in the synthetic aperture radar (SAR images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  13. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Science.gov (United States)

    Ao, Dongyang; Hu, Cheng; Tian, Weiming

    2017-01-01

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917

  14. Uranium mining sites - Thematic sheets

    International Nuclear Information System (INIS)

    2009-01-01

    A first sheet proposes comments, data and key numbers about uranium extraction in France: general overview of uranium mining sites, status of waste rock and tailings after exploitation, site rehabilitation. The second sheet addresses the sources of exposure to ionizing radiations due to ancient uranium mining sites: discussion on the identification of these sources associated with these sites, properly due to mining activities or to tailings, or due to the transfer of radioactive substances towards water and to the contamination of sediments, description of the practice and assessment of radiological control of mining sites. A third sheet addresses the radiological exposure of public to waste rocks, and the dose assessment according to exposure scenarios: main exposure ways to be considered, studied exposure scenarios (passage on backfilled path and grounds, stay in buildings built on waste rocks, keeping mineralogical samples at home). The fourth sheet addresses research programmes of the IRSN on uranium and radon: epidemiological studies (performed on mine workers; on French and on European cohorts, French and European studies on the risk of lung cancer associated with radon in housing), study of the biological effects of chronic exposures. The last sheet addresses studies and expertises performed by the IRSN on ancient uranium mining sites in France: studies commissioned by public authorities, radioactivity control studies performed by the IRSN about mining sites, participation of the IRSN to actions to promote openness to civil society

  15. Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery

    Directory of Open Access Journals (Sweden)

    Sarah W. Cooley

    2017-12-01

    Full Text Available Recent deployments of CubeSat imagers by companies such as Planet may advance hydrological remote sensing by providing an unprecedented combination of high temporal and high spatial resolution imagery at the global scale. With approximately 170 CubeSats orbiting at full operational capacity, the Planet CubeSat constellation currently offers an average revisit time of <1 day for the Arctic and near-daily revisit time globally at 3 m spatial resolution. Such data have numerous potential applications for water resource monitoring, hydrologic modeling and hydrologic research. Here we evaluate Planet CubeSat imaging capabilities and potential scientific utility for surface water studies in the Yukon Flats, a large sub-Arctic wetland in north central Alaska. We find that surface water areas delineated from Planet imagery have a normalized root mean square error (NRMSE of <11% and geolocation accuracy of <10 m as compared with manual delineations from high resolution (0.3–0.5 m WorldView-2/3 panchromatic satellite imagery. For a 625 km2 subarea of the Yukon Flats, our time series analysis reveals that roughly one quarter of 268 lakes analyzed responded to changes in Yukon River discharge over the period 23 June–1 October 2016, one half steadily contracted, and one quarter remained unchanged. The spatial pattern of observed lake changes is heterogeneous. While connections to Yukon River control the hydrologically connected lakes, the behavior of other lakes is complex, likely driven by a combination of intricate flow paths, underlying geology and permafrost. Limitations of Planet CubeSat imagery include a lack of an automated cloud mask, geolocation inaccuracies, and inconsistent radiometric calibration across multiple platforms. Although these challenges must be addressed before Planet CubeSat imagery can achieve its full potential for large-scale hydrologic research, we conclude that CubeSat imagery offers a powerful new tool for the study and

  16. Characterization of the atmospheric muon flux in IceCube

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yáñez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2016-05-01

    Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.

  17. Root-growth-inhibiting sheet

    Science.gov (United States)

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  18. Optimal swimming of a sheet.

    Science.gov (United States)

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  19. Root-growth-inhibiting sheet

    Science.gov (United States)

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  20. A new numerical approach for uniquely solvable exterior Riemann-Hilbert problem on region with corners

    Science.gov (United States)

    Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira

    2014-06-01

    Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.

  1. Ant System-Corner Insertion Sequence: An Efficient VLSI Hard Module Placer

    Directory of Open Access Journals (Sweden)

    HOO, C.-S.

    2013-02-01

    Full Text Available Placement is important in VLSI physical design as it determines the time-to-market and chip's reliability. In this paper, a new floorplan representation which couples with Ant System, namely Corner Insertion Sequence (CIS is proposed. Though CIS's search complexity is smaller than the state-of-the-art representation Corner Sequence (CS, CIS adopts a preset boundary on the placement and hence, leading to search bound similar to CS. This enables the previous unutilized corner edges to become viable. Also, the redundancy of CS representation is eliminated in CIS leads to a lower search complexity of CIS. Experimental results on Microelectronics Center of North Carolina (MCNC hard block benchmark circuits show that the proposed algorithm performs comparably in terms of area yet at least two times faster than CS.

  2. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  3. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    to sea level high stands during past interglacial periods. A number of AIS models have been developed and applied to try to understand the workings of the AIS and to form a robust basis for future projections of the AIS contribution to sea level change. The recent DCESS (Danish Center for Earth System......The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...

  4. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  5. Sheet Beam Klystron Instability Analysis

    International Nuclear Information System (INIS)

    Bane, K.

    2009-01-01

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly

  6. The social balance sheet 2004

    OpenAIRE

    Ph. Delhez; P. Heuse

    2005-01-01

    Each year, in the 4th quarter’s Economic Review, the National Bank examines the provisional results of the social balance sheets. As all the social balance sheets are not yet available for 2004, the study is based on a limited population of enterprises, compiled according to the principle of a constant sample. This population is made up of 38,530 enterprises employing around 1,331,000 workers in 2004. The main results of the analysis, in terms of employment, working hours, labour cost and tra...

  7. Catching cosmic clues in the ice - recent results from IceCube

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    IceCube is a neutrino observatory located deep in the Antarctic glacier close to the geographical South Pole. Close to a gigaton of ice has been instrumented with optical sensors with the primary goal of searching for neutrinos from the still unknown sources of the highest-energy cosmic rays. Last year, IceCube observed for the first time ever a handful of high-energy neutrinos which must have originated outside the solar system. The discovery was named the 2013 Breakthrough of the Year by the British magazine Physics World. It is the first necessary step to actually achieve the dream of charting the places in the universe able to accelerate hadrons to energies over a million times higher than those at the LHC. The science goals of IceCube extend beyond astrophysics: IceCube is also a powerful tool for searches of dark matter and can be used to study phenomena connected to the neutrinos themselves, like neutrino oscillations. The talk will be an update on the most recent results from IceCube.

  8. Development of a Solar Array Drive Assembly for CubeSat

    Science.gov (United States)

    Passaretti, Mike; Hayes, Ron

    2010-01-01

    Small satellites and in particular CubeSats, have increasingly become more viable as platforms for payloads typically requiring much larger bus structures. As advances in technology make payloads and instruments for space missions smaller, lighter and more power efficient, a niche market is emerging from the university community to perform rapidly developed, low-cost missions on very small spacecraft - micro, nano, and picosatellites. In just the last few years, imaging, biological and new technology demonstration missions have been either proposed or have flown using variations of the CubeSat structure as a basis. As these missions have become more complex, and the CubeSat standard has increased in both size (number of cubes) and mass, available power has become an issue. Body-mounted solar cells provide a minimal amount of power; deployable arrays improve on that baseline but are still limited. To truly achieve maximum power, deployed tracked arrays are necessary. To this end, Honeybee Robotics Spacecraft Mechanisms Corporation, along with MMA of Nederland Colorado, has developed a solar array drive assembly (SADA) and deployable solar arrays specifically for CubeSat missions. In this paper, we discuss the development of the SADA.

  9. Interactions between an alpha-helix and a beta-sheet. Energetics of alpha/beta packing in proteins.

    Science.gov (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A

    1985-12-05

    Conformational energy computations have been carried out to determine the favorable ways of packing a right-handed alpha-helix on a right-twisted antiparallel or parallel beta-sheet. Co-ordinate transformations have been developed to relate the position and orientation of the alpha-helix to the beta-sheet. The packing was investigated for a CH3CO-(L-Ala)16-NHCH3 alpha-helix interacting with five-stranded beta-sheets composed of CH3CO-(L-Val)6-NHCH3 chains. All internal and external variables for both the alpha-helix and the beta-sheet were allowed to change during energy minimization. Four distinct classes of low-energy packing arrangements were found for the alpha-helix interacting with both the parallel and the anti-parallel beta-sheet. The classes differ in the orientation of the axis of the alpha-helix relative to the direction of the strands of the right-twisted beta-sheet. In the class with the most favorable arrangement, the alpha-helix is oriented along the strands of the beta-sheet, as a result of attractive non-bonded side-chain-side-chain interactions along the entire length of the alpha-helix. A class with nearly perpendicular orientation of the helix axis to the strands is also of low energy, because it allows similarly extensive attractive interactions. In the other two classes, the helix is oriented diagonally relative to the strands of the beta-sheet. In one of them, it interacts with the convex surface near the middle of the saddle-shaped twisted beta-sheet. In the other, it is oriented along the concave diagonal of the beta-sheet and, therefore, it interacts only with the corner regions of the sheet, so that this packing is energetically less favorable. The packing arrangements involving an antiparallel and a parallel beta-sheet are generally similar, although the antiparallel beta-sheet has been found to be more flexible. The major features of 163 observed alpha/beta packing arrangements in 37 proteins are accounted for in terms of the computed

  10. A Mixed Methods Comparison of Urban and Rural Retail Corner Stores

    Directory of Open Access Journals (Sweden)

    Jared T McGuirt

    2015-08-01

    Full Text Available Efforts to transform corner stores to better meet community dietary needs have mostly occurred in urban areas but are also needed in rural areas. Given important contextual differences between urban and rural areas, it is important to increase our understanding of the elements that might translate successfully to similar interventions involving stores in more rural areas. Thus, an in-depth examination and comparison of corner stores in each setting is needed. A mixed methods approach, including windshield tours, spatial visualization with analysis of frequency distribution, and spatial regression techniques were used to compare a rural North Carolina and large urban (Los Angeles food environment. Important similarities and differences were seen between the two settings in regards to food environment context, spatial distribution of stores, food products available, and the factors predicting corner store density. Urban stores were more likely to have fresh fruits (Pearson chi2 = 27.0423; p < 0.001 and vegetables (Pearson chi2 = 27.0423; p < 0.001. In the urban setting, corner stores in high income areas were more likely to have fresh fruit (Pearson chi2 = 6.00; p = 0.014, while in the rural setting, there was no difference between high and low income area in terms of fresh fruit availability. For the urban area, total population, no vehicle and Hispanic population were significantly positively associated (p < 0.05, and median household income (p < 0.001 and Percent Minority (p < 0.05 were significantly negatively associated with corner store count. For the rural area, total population (p < 0.05 and supermarket count were positively associated (p < 0.001, and median household income negatively associated (P < 0.001, with corner store count. Translational efforts should be informed by these findings, which might influence the success of future interventions and policies in both rural and urban contexts.

  11. A map between corner and link operators in lattice gauge theories

    International Nuclear Information System (INIS)

    Bars, I.

    1979-01-01

    A completely local gauge-invariant lattice gauge theory is formulated in terms of a new set of variables introduced earlier in the continuum. This theory uses local 'corner' variables defined on lattice sites only, as opposed to the conventional 'link' variables. It is shown via a map that the formulation gives identical results to the usual lattice gauge theory. The properties of the quantum commutators in the continuum limit is also discussed and contrasted for the two lattice approaches. In terms of the corner operators the quantized lattice theory is seen to be closely related to continuum QCD. (Auth.)

  12. Popular Public Discourse at Speakers' Corner: Negotiating Cultural Identities in Interaction

    DEFF Research Database (Denmark)

    McIlvenny, Paul

    1996-01-01

    In this paper I examine how cultural identities are actively negotiated in popular debate at a multicultural public setting in London. Speakers at Speakers' Corner manage the local construction of group affiliation, audience response and argument in and through talk, within the context of ethnic...... in which participant 'citizens' in the public sphere can actively struggle over cultural representation and identities. Using transcribed examples of video data recorded at Speakers' Corner my paper will examine how cultural identity is invoked in the management of active participation. Audiences...... and their affiliations are regulated and made accountable through the routines of membership categorisation and the policing of cultural identities and their imaginary borders....

  13. Exact and approximate interior corner problem in neutron diffusion by integral transform methods

    International Nuclear Information System (INIS)

    Bareiss, E.H.; Chang, K.S.J.; Constatinescu, D.A.

    1976-09-01

    The mathematical solution of the neutron diffusion equation exhibits singularities in its derivatives at material corners. A mathematical treatment of the nature of these singularities and its impact on coarse network approximation methods in computational work is presented. The mathematical behavior is deduced from Green's functions, based on a generalized theory for two space dimensions, and the resulting systems of integral equations, as well as from the Kontorovich--Lebedev Transform. The effect on numerical calculations is demonstrated for finite difference and finite element methods for a two-region corner problem

  14. Near-field diffraction of laser light by dielectric corner step

    Science.gov (United States)

    Stafeev, S.; Kotlyar, V.; Kovalev, A.

    2014-01-01

    The diffraction of a linearly polarized plane wave by a corner dielectric microstep of height equals of two incident wavelengths was studied using finite-difference time domain method and near-field scanning optical microscopy. It was shown that the corner step generates an elongated region of enhanced intensity, termed as a curved laser microjet. The curved laser microjet has a length of about DOF = 9.5λ and the smallest diameter FWHM = (1.94+/-0.15)λ at distance z = 5.5λ.

  15. Theoretical evidence for unexpected O-rich phases at corners of MgO surfaces

    Science.gov (United States)

    Bhattacharya, Saswata; Berger, Daniel; Reuter, Karsten; Ghiringhelli, Luca M.; Levchenko, Sergey V.

    2017-12-01

    Realistic oxide materials are often semiconductors, in particular at elevated temperatures, and their surfaces contain undercoordinated atoms at structural defects such as steps and corners. Using hybrid density-functional theory and ab initio atomistic thermodynamics, we investigate the interplay of bond-making, bond-breaking, and charge-carrier trapping at the corner defects at the (100) surface of a p -doped MgO in thermodynamic equilibrium with an O2 atmosphere. We show that by manipulating the coordination of surface atoms, one can drastically change and even reverse the order of stability of reduced versus oxidized surface sites.

  16. Learning from Balance Sheet Visualization

    Science.gov (United States)

    Tanlamai, Uthai; Soongswang, Oranuj

    2011-01-01

    This exploratory study examines alternative visuals and their effect on the level of learning of balance sheet users. Executive and regular classes of graduate students majoring in information technology in business were asked to evaluate the extent of acceptance and enhanced capability of these alternative visuals toward their learning…

  17. Off-Balance Sheet Financing.

    Science.gov (United States)

    Adams, Matthew C.

    1998-01-01

    Examines off-balance sheet financing, the facilities use of outsourcing for selected needs, as a means of saving operational costs and using facility assets efficiently. Examples of using outside sources for energy supply and food services, as well as partnering with business for facility expansion are provided. Concluding comments address tax…

  18. Core-collapse supernovae as possible counterparts of IceCube neutrino multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora Linn; Kowalski, Marek; Franckowiak, Anna [DESY, Zeuthen (Germany); Voge, Markus [Bonn Univ. (Germany). Physikalisches Institut; Collaboration: IceCube-Collaboration

    2016-07-01

    While an astrophysical neutrino flux has been detected by the IceCube Neutrino Observatory its sources remain so far unidentified. IceCube's Optical Follow-up Program is designed to search for the counterparts of neutrino multiplets using the full energy range of the IceCube detector down to 100 GeV. Two or more muon neutrinos arriving from the same direction within few seconds can trigger follow-up observations with optical and X-ray telescopes. Since 2010 the Palomar Transient Factory has followed up about 40 such neutrino alerts and detected several supernovae. Many of the detections are however likely random coincidences. In this talk I describe our search for supernovae and the prospects of identifying a supernova as a source of high-energy neutrinos.

  19. Systematic Verification of the Modal Logic Cube in Isabelle/HOL

    Directory of Open Access Journals (Sweden)

    Christoph Benzmüller

    2015-07-01

    Full Text Available We present an automated verification of the well-known modal logic cube in Isabelle/HOL, in which we prove the inclusion relations between the cube's logics using automated reasoning tools. Prior work addresses this problem but without restriction to the modal logic cube, and using encodings in first-order logic in combination with first-order automated theorem provers. In contrast, our solution is more elegant, transparent and effective. It employs an embedding of quantified modal logic in classical higher-order logic. Automated reasoning tools, such as Sledgehammer with LEO-II, Satallax and CVC4, Metis and Nitpick, are employed to achieve full automation. Though successful, the experiments also motivate some technical improvements in the Isabelle/HOL tool.

  20. Cosmic ray spectrum, composition, and anisotropy measured with IceCube

    International Nuclear Information System (INIS)

    Tamburro, Alessio

    2014-01-01

    Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the “knee” region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube

  1. Cosmic ray spectrum, composition, and anisotropy measured with IceCube

    Science.gov (United States)

    Tamburro, Alessio

    2014-04-01

    Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the "knee" region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube.

  2. Prospects for identifying the sources of the Galactic cosmic rays with IceCube

    International Nuclear Information System (INIS)

    Halzen, Francis; Kappes, Alexander; O Murchadha, Aongus

    2008-01-01

    We quantitatively address whether IceCube, a kilometer-scale neutrino detector under construction at the South Pole, can observe neutrinos pointing back at the accelerators of the Galactic cosmic rays. The photon flux from candidate sources identified by the Milagro detector in a survey of the TeV sky is consistent with the flux expected from a typical cosmic-ray generating supernova remnant interacting with the interstellar medium. We show here that IceCube can provide incontrovertible evidence of cosmic-ray acceleration in these sources by detecting neutrinos. We find that the signal is optimally identified by specializing to events with energies above 30 TeV where the atmospheric neutrino background is low. We conclude that evidence for a correlation between the Milagro and IceCube sky maps should be conclusive after several years.

  3. High Energy Neutrinos from the Cold: Status and Prospects of the IceCube Experiment

    International Nuclear Information System (INIS)

    IceCube Collaboration; Portello-Roucelle, Cecile; Collaboration, IceCube

    2008-01-01

    The primary motivation for building neutrino telescopes is to open the road for neutrino astronomy, and to offer another observational window for the study of cosmic ray origins. Other physics topics, such as the search for WIMPs, can also be developed with neutrino telescope. As of March 2008, the IceCube detector, with half of its strings deployed, is the world largest neutrino telescope taking data to date and it will reach its completion in 2011. Data taken with the growing detector are being analyzed. The results of some of these works are summarized here. AMANDA has been successfully integrated into IceCube data acquisition system and continues to accumulate data. Results obtained using only AMANDA data taken between the years 2000 and 2006 are also presented. The future of IceCube and the extensions in both low and high energy regions will finally be discussed in the last section

  4. Search for neutrino point sources with an all-sky autocorrelation analysis in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Turcati, Andrea; Bernhard, Anna; Coenders, Stefan [TU, Munich (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic kilometre scale neutrino telescope located in the Antarctic ice. Its full-sky field of view gives unique opportunities to study the neutrino emission from the Galactic and extragalactic sky. Recently, IceCube found the first signal of astrophysical neutrinos with energies up to the PeV scale, but the origin of these particles still remains unresolved. Given the observed flux, the absence of observations of bright point-sources is explainable with the presence of numerous weak sources. This scenario can be tested using autocorrelation methods. We present here the sensitivities and discovery potentials of a two-point angular correlation analysis performed on seven years of IceCube data, taken between 2008 and 2015. The test is applied on the northern and southern skies separately, using the neutrino energy information to improve the effectiveness of the method.

  5. The mDOM. A multi-PMT optical module for IceCube-Gen2

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Lew; Kappes, Alexander [Institut fur Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany); Karg, Timo; Kretzschmann, Axel [DESY, Zeuthen (Germany); Koelpin, Alexander; Lindner, Stefan; Roeber, Juergen [LTE, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    Following the discovery of an astrophysical neutrino flux by IceCube in 2013, planning is under way for the next generation neutrino telescope at the South Pole, IceCube-Gen2, which will significantly enhance and expand IceCube's sensitivity both towards high neutrino energies as well as in the low-energy regime. In the scope of these efforts, a novel multi-PMT optical sensor is being developed which, following the KM3NeT design, consists of an array of several small PMTs inside a transparent pressure vessel. This design provides some significant advantages compared to the conventional single-PMT module design, such as an increased effective area, homogeneous coverage of the full solid angle, and intrinsic angular sensitivity. The talk presents an overview of the project and its current status, featuring hardware development, testing, and simulation efforts.

  6. The space-time cube revisited it potential to visualize mobile data

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2010-01-01

    and analyse the complex movement patterns (COST - MOVE, 2009; Keim et al., 2008). This results in the development of new visual analytical and exploratory tools, while existing solutions receive new attention (Andrienko et al., 2007). Among the last the Space Time Cube (STC) can be grouped. It has the ability...... to provide information about spatial and temporal relationships. The original idea of STC was introduced by Hägerstrand (1970). It represents an elegant framework to study spatio-temporal characteristics of human activity (Kraak and Koussoulakou, 2005). The vertical dimension of cube represents time (t......), while horizontal axes represent space (x, y). Basic elements represented in the cube are the Space-time Path (STP), Stations, and the Space Time Prism (STP). The STP represents the continuous activities of movements undertaken in space and time displayed as trajectory. It has been studied...

  7. Sterile neutrinos and indirect dark matter searches in IceCube

    Science.gov (United States)

    Argüelles, Carlos A.; Kopp, Joachim

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  8. A review of MEMS micropropulsion technologies for CubeSats and PocketQubes

    Science.gov (United States)

    Silva, Marsil A. C.; Guerrieri, Daduí C.; Cervone, Angelo; Gill, Eberhard

    2018-02-01

    CubeSats have been extensively used in the past decade as scientific tools, technology demonstrators and for education. Recently, PocketQubes have emerged as an interesting and even smaller alternative to CubeSats. However, both satellite types often lack some key capabilities, such as micropropulsion, in order to further extend the range of applications of these small satellites. This paper reviews the current development status of micropropulsion systems fabricated with MEMS (micro electro-mechanical systems) and silicon technology intended to be used in CubeSat or PocketQube missions and compares different technologies with respect to performance parameters such as thrust, specific impulse, and power as well as in terms of operational complexity. More than 30 different devices are analyzed and divided into 7 main categories according to the working principle. A specific outcome of the research is the identification of the current status of MEMS technologies for micropropulsion including key opportunities and challenges.

  9. Visible-light promoted catalytic activity of dumbbell-like Au nanorods supported on graphene/TiO2 sheets towards hydrogenation reaction

    Science.gov (United States)

    Dai, Yunqian; Zhu, Mingyun; Wang, Xiaotian; Wu, Yanan; Huang, Chengqian; Fu, Wanlin; Meng, Xiangyu; Sun, Yueming

    2018-06-01

    In this work, the rationally-designed sharp corners on Au nanorods tremendously improved the catalytic activity, particularly in the presence of visible light irradiation, towards the hydrogenation of 4-nitrophenol to 4-aminophenol. A strikingly increased rate constant of 50.6 g‑1 s‑1 L was achieved in M-Au-3, which was 41.8 times higher than that of parent Au nanorods under dark conditions. The enhanced activities were proportional to the extent of the protruding sharp corners. Furthermore, remarkably enhanced activities were achieved in novel ternary Au/RGO/TiO2 sheets, which were endowed with a 52.0 times higher rate constant than that of straight Au nanorods. These remarkably enhanced activities were even higher than those of previously reported 3–5 nm Au and 3 nm Pt nanoparticles. It was systematically observed that there are three aspects to the synergistic effects between Au and RGO sheets: (i) electron transfer from RGO to Au, (ii) a high concentration of p-nitrophenol close to dumbbell-like Au nanorods on RGO sheets, and (iii) increased local reaction temperature from the photothermal effect of both dumbbell-like Au nanorods and RGO sheets.

  10. Launching an EarthCube Interoperability Workbench for Constructing Workflows and Employing Service Interfaces

    Science.gov (United States)

    Fulker, D. W.; Pearlman, F.; Pearlman, J.; Arctur, D. K.; Signell, R. P.

    2016-12-01

    A major challenge for geoscientists—and a key motivation for the National Science Foundation's EarchCube initiative—is to integrate data across disciplines, as is necessary for complex Earth-system studies such as climate change. The attendant technical and social complexities have led EarthCube participants to devise a system-of-systems architectural concept. Its centerpiece is a (virtual) interoperability workbench, around which a learning community can coalesce, supported in their evolving quests to join data from diverse sources, to synthesize new forms of data depicting Earth phenomena, and to overcome immense obstacles that arise, for example, from mismatched nomenclatures, projections, mesh geometries and spatial-temporal scales. The full architectural concept will require significant time and resources to implement, but this presentation describes a (minimal) starter kit. With a keep-it-simple mantra this workbench starter kit can fulfill the following four objectives: 1) demonstrate the feasibility of an interoperability workbench by mid-2017; 2) showcase scientifically useful examples of cross-domain interoperability, drawn, e.g., from funded EarthCube projects; 3) highlight selected aspects of EarthCube's architectural concept, such as a system of systems (SoS) linked via service interfaces; 4) demonstrate how workflows can be designed and used in a manner that enables sharing, promotes collaboration and fosters learning. The outcome, despite its simplicity, will embody service interfaces sufficient to construct—from extant components—data-integration and data-synthesis workflows involving multiple geoscience domains. Tentatively, the starter kit will build on the Jupyter Notebook web application, augmented with libraries for interfacing current services (at data centers involved in EarthCube's Council of Data Facilities, e.g.) and services developed specifically for EarthCube and spanning most geoscience domains.

  11. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    Science.gov (United States)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  12. Integration of CubeSat Systems with Europa Surface Exploration Missions

    Science.gov (United States)

    Erdoǧan, Enes; Inalhan, Gokhan; Kemal Üre, Nazım

    2016-07-01

    Recent studies show that there is a high probability that a liquid ocean exists under thick icy surface of Jupiter's Moon Europa. The findings also show that Europa has features that are similar to Earth, such as geological activities. As a result of these studies, Europa has promising environment of being habitable and currently there are many missions in both planning and execution level that target Europa. However, these missions usually involve extremely high budgets over extended periods of time. The objective of this talk is to argue that the mission costs can be reduced significantly by integrating CubeSat systems within Europa exploration missions. In particular, we introduce an integrated CubeSat-micro probe system, which can be used for measuring the size and depth of the hypothetical liquid ocean under the icy surface of Europa. The systems consist of an entry module that houses a CubeSat combined with driller measurement probes. Driller measurement probes deploy before the system hits the surface and penetrate the surface layers of Europa. Moreover, a micro laser probe could be used to examine the layers. This process enables investigation of the properties of the icy layer and the environment beneath the surface. Through examination of different scenarios and cost analysis of the components, we show that the proposed CubeSat systems has a significant potential to reduce the cost of the overall mission. Both subsystem requirements and launch prices of CubeSats are dramatically cheaper than currently used satellites. In addition, multiple CubeSats may be used to dominate wider area in space and they are expandable in face of potential failures. In this talk we discuss both the mission design and cost reduction aspects.

  13. Whooping Cough (Pertussis) - Fact Sheet for Parents

    Science.gov (United States)

    ... months 4 through 6 years Fact Sheet for Parents Color [2 pages] Español: Tosferina (pertussis) The best ... according to the recommended schedule. Fact Sheets for Parents Diseases and the Vaccines that Prevent Them Chickenpox ...

  14. IceCube potential for detecting Q-ball dark matter in gauge mediation

    International Nuclear Information System (INIS)

    Kasuya, Shinta; Kawasaki, Masahiro; Yanagida, Tsutomu T.

    2015-01-01

    We study Q-ball dark matter in gauge-mediated supersymmetry breaking, and seek the possibility of detection in the IceCube experiment. We find that the Q balls would be the dark matter in the parameter region different from that for gravitino dark matter. In particular, the Q ball is a good dark matter candidate for low reheating temperature, which may be suitable for the Affleck–Dine baryogenesis and/or nonthermal leptogenesis. Dark matter Q balls are detectable by IceCube-like experiments in the future, which is a peculiar feature compared to the case of gravitino dark matter

  15. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    Science.gov (United States)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  16. In Defense of Education's "Wild West": Charter Schools Thrive in the Four Corners States

    Science.gov (United States)

    Ladner, Matthew

    2018-01-01

    The point at which the corners of Arizona, Colorado, New Mexico, and Utah meet is the only spot in the United States where the borders of four states converge. Beyond geography, the Four Corners states share a similar approach to charter schooling. All four states have adopted relatively freewheeling authorization policies, and charter schools…

  17. Delayed diagnosis of an isolated posterolateral corner injury: a case report.

    Science.gov (United States)

    Welsh, Patrick; DeGraauw, Christopher; Whitty, David

    2016-12-01

    Isolated injuries to the posterolateral corner of the knee are a rare and commonly missed injury associated with athletic trauma, motor vehicle accidents, and falls. Delayed or missed diagnoses can negatively impact patient prognosis, contributing to residual instability, chronic pain, and failure of surgical repair to other ligaments. A 44-year-old male CrossFit athlete presented with a history of two non-contact hyperextension injuries to his left knee while walking on ice. The only positive finding was the Dial Test at 30 degrees of knee flexion, indicative of an isolated posterolateral corner injury. After a delay in diagnosis, the patient underwent a reconstruction of the posterolateral corner and subsequent rehabilitation. Early recognition of this injury is important as this can affect the prognosis and activities of daily living of the patient. This case will discuss the clinical presentation, diagnostic procedures, and management of an isolated posterolateral corner injury and highlight the importance of early recognition and referrals from primary contact healthcare practitioners.

  18. Substantial improvements not seen in health behaviors following corner store conversions in two Latino food swamps

    Directory of Open Access Journals (Sweden)

    Alexander N. Ortega

    2016-05-01

    Full Text Available Abstract Background The effectiveness of food retail interventions is largely undetermined, yet substantial investments have been made to improve access to healthy foods in food deserts and swamps via grocery and corner store interventions. This study evaluated the effects of corner store conversions in East Los Angeles and Boyle Heights, California on perceived accessibility of healthy foods, perceptions of corner stores, store patronage, food purchasing, and eating behaviors. Methods Household data (n = 1686 were collected at baseline and 12- to 24-months post-intervention among residents surrounding eight stores, three of which implemented a multi-faceted intervention and five of which were comparisons. Bivariate analyses and logistic and linear regressions were employed to assess differences in time, treatment, and the interaction between time and treatment to determine the effectiveness of this intervention. Results Improvements were found in perceived healthy food accessibility and perceptions of corner stores. No changes were found, however, in store patronage, purchasing, or consumption of fruits and vegetables. Conclusions Results suggest limited effectiveness of food retail interventions on improving health behaviors. Future research should focus on other strategies to reduce community-level obesity.

  19. Do Worlds Have Corners? When Children's Picture Books Invite Philosophical Questions

    Science.gov (United States)

    Maagero, Eva; Ostbye, Guri Lorentzen

    2012-01-01

    In this article, we want to present and analyse the picture book "The World has no Corners" (2006/1999) by the Norwegian author and illustrator Svein Nyhus. The book represents a new trend in Norwegian picture books for children by inviting the readers into a world of thinking and wondering about existential topics such as life and death, growing…

  20. Simulating wall and corner fire tests on wood products with the OSU room fire model

    Science.gov (United States)

    H. C. Tran

    1994-01-01

    This work demonstrates the complexity of modeling wall and corner fires in a compartment. The model chosen for this purpose is the Ohio State University (OSU) room fire model. This model was designed to simulate fire growth on walls in a compartment and therefore lends itself to direct comparison with standard room test results. The model input were bench-scale data...

  1. LX-17 and ufTATB Data for Corner-Turning, Failure and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P C; Lauderbach, L; Garza, R; Vitello, P; Hare, D E

    2010-02-03

    Data is presented for the size (diameter) effect for ambient and cold confined LX-17, unconfined ambient LX-17, and confined ambient ultrafine TATB. Ambient, cold and hot double cylinder corner-turning data for LX-17, PBX 9502 and ufTATB is presented. Transverse air gap crossing in ambient LX-17 is studied with time delays given for detonations that cross.

  2. Manufacturability: from design to SPC limits through "corner-lot" characterization

    Science.gov (United States)

    Hogan, Timothy J.; Baker, James C.; Wesneski, Lisa; Black, Robert S.; Rothenbury, Dave

    2005-01-01

    Texas Instruments" Digital Micro-mirror Device, is used in a wide variety of optical display applications ranging from fixed and portable projectors to high-definition television (HDTV) to digital cinema projection systems. A new DMD pixel architecture, called "FTP", was designed and qualified by Texas Instruments DLPTMTM Group in 2003 to meet increased performance objectives for brightness and contrast ratio. Coordination between design, test and fabrication groups was required to balance pixel performance requirements and manufacturing capability. "Corner Lot" designed experiments (DOE) were used to verify "fabrication space" available for the pixel design. The corner lot technique allows confirmation of manufacturability projections early in the design/qualification cycle. Through careful design and analysis of the corner-lot DOE, a balance of critical dimension (cd) "budgets" is possible so that specification and process control limits can be established that meet both customer and factory requirements. The application of corner-lot DOE is illustrated in a case history of the DMD "FTP" pixel. The process for balancing test parameter requirements with multiple critical dimension budgets is shown. MEMS/MOEMS device design and fabrication can use similar techniques to achieve agressive design-to-qualification goals.

  3. Higher acid-chlorite reactivity of cell corner middle lamella lignin in black spruce

    Science.gov (United States)

    Umesh P. Agarwal

    2007-01-01

    To determine if there was a delignification behavior difference between secondary wall (S2) and middle lamella (cell corner or CC) lignin, black spruce cross-sections were acid-chlorite delignified and the tissue was evaluated in-situ by Raman imaging. Lignin concentration in S2 and CC was determined in numerous latewood cell areas in the two hour delignified cross...

  4. Popular Public Discourse at Speakers' Corner: Negotiating Cultural Identities in Interaction

    DEFF Research Database (Denmark)

    McIlvenny, Paul

    1996-01-01

    , religious and general topical 'soap-box' oration. However, audiences are not passive receivers of rhetorical messages. They are active negotiators of interpretations and alignments that may conflict with the speaker's and other audience members' orientations to prior talk. Speakers' Corner is a space...

  5. Effects of the office environment on health and productivity 1: Effects of coffee corner position

    NARCIS (Netherlands)

    Vink, P.; Korte, E.de; Blok, M.; Groenesteijn, L.

    2007-01-01

    New technology will make it possible to have access to information everywhere. As a result "face to face" communication with colleagues could reduce and creativity and health could be influenced negatively. In this paper a coffee corner is changed and the effect on communication is tested by

  6. Individual and Familial Characteristics of Youths Involved in Street Corner Gangs in Singapore.

    Science.gov (United States)

    Kee, C.; Sim, K.; Teoh, J.; Tian, C. S.; Ng, K. H.

    2003-01-01

    Study compares 36 youths involved in street corner gangs in Singapore with 91 age-matched controls on measures of self-esteem, aggression, dysfunctional parenting and parent-adolescent communication. Results revealed that gang youths had lower self-esteem and higher levels of aggression than controls. Findings diverge from anticipated familial…

  7. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram

    International Nuclear Information System (INIS)

    Zeng, K.J.; Haemaelaeinen, M.; Lilius, K.

    1995-01-01

    In the available experimental information on the Cu-Cr-Zr ternary system, there exist different opinions concerning the phase relationships in the Cu-rich corner of Cu-Cr-Zr phase diagram. Glazov et al. and Zakharov et al. investigated the Cu-rich corner of the Cu-Cr-Zr phase diagram within the composition range up to 3.5 Cr and 3.5 Zr (wt. %). A quasi-eutectic reaction L → (Cu) + αCr 2 Zr was observed to occur at 1,020 C and several isothermal sections were constructed within the temperature range from 600 to 1,000 C to show the (Cu)-αCr 2 Zr two phase equilibrium. Therefore, a pseudobinary Cu-Cr 2 Zr system was supposed. Afterwards, Dawakatsu et al, Fedorov et al, and Kuznetsov et al studied the cu-rich corner of the phase diagram in a wider composition range up to 5 Cr and 20 Zr (at.%). Contrary to Glazov et al. and Zakharov et al., they found no Cr 2 Zr phase in their samples. Hence, the pseudobinary Cu-Cr 2 Zr system does not exist. In this study an experimental investigation is presented on the phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram at 940 C in order to clear up the confusion

  8. A Müntz type theorem for a family of corner cutting schemes

    KAUST Repository

    Ait-Haddou, Rachid; Sakane, Yusuke; Nomura, Taishin

    2013-01-01

    Dimension elevation process of Gelfond–Bézier curves generates a family of control polygons obtained through a sequence of corner cuttings. We give a Müntz type condition for the convergence of the generated control polygons to the underlying curve

  9. Using Digital Technology to See Angles from Different Angles. Part 1: Corners

    Science.gov (United States)

    Host, Erin; Baynham, Emily; McMaster, Heather

    2014-01-01

    In Part 1 of their article, Erin Host, Emily Baynham and Heather McMaster use a combination of digital technology and concrete materials to explore the concept of "corners". They provide a practical, easy to follow sequence of activities that builds on students' understandings. [For "Using Digital Technology to See Angles from…

  10. Cu₂O template synthesis of high-performance PtCu alloy yolk-shell cube catalysts for direct methanol fuel cells.

    Science.gov (United States)

    Ye, Sheng-Hua; He, Xu-Jun; Ding, Liang-Xin; Pan, Zheng-Wei; Tong, Ye-Xiang; Wu, Mingmei; Li, Gao-Ren

    2014-10-21

    Novel PtCu alloy yolk-shell cubes were fabricated via the disproportionation and displacement reactions in Cu2O yolk-shell cubes, and they exhibit significantly improved catalytic activity and durability for methanol electrooxidation.

  11. Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields

    Science.gov (United States)

    Zhu, Xiaoyu

    2018-05-01

    A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.

  12. Two-dimensional geometrical corner singularities in neutron diffusion. Part 2: Application to the SNR-300 benchmark

    International Nuclear Information System (INIS)

    Cacuci, D.G.; Univ. of Karlsruhe; Kiefhaber, E.; Stehle, B.

    1998-01-01

    The explicit solution developed by Cacuci for the multigroup neutron diffusion equation at interior corners in two-dimensional two-region domains has been applied to the SNR-300 fast reactor prototype design to obtain the exact behavior of the multigroup fluxes at and around typical corners arising between absorber/fuel and follower/fuel assemblies. The calculations have been performed in hexagonal geometry using four energy groups, and the results clearly show that the multigroup fluxes are finite but not analytical at interior corners. In particular, already the first-order spatial derivatives of the multigroup fluxes become unbounded at the corners between follower and fuel assemblies. These results highlight the need to treat properly the influence of corners, both for the direct calculation and for the reconstruction of pointwise neutron flux and power distributions in heterogeneous reactor cores

  13. 21 CFR 880.5180 - Burn sheet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  14. Manifold free multiple sheet superplastic forming

    Science.gov (United States)

    Elmer, John W.; Bridges, Robert L.

    2004-01-13

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  15. On the possible eigenoscillations of neutral sheets

    International Nuclear Information System (INIS)

    Almeida, W.A.; Costa, J.M. da; Aruquipa, E.G.; Sudano, J.P.

    1974-12-01

    A neutral sheet model with hyperbolic tangent equilibrium magnetic field and hyperbolic square secant density profiles is considered. It is shown that the equation for small oscillations takes the form of an eigenvalue oscillation problem. Computed eigenfrequencies of the geomagnetic neutral sheet were found to be in the range of the resonant frequencies of the geomagnetic plasma sheet computed by other authors

  16. Finite-difference time-domain analysis on radar cross section of conducting cube scatterer covered with plasmas

    International Nuclear Information System (INIS)

    Liu Shaobin; Zhang Guangfu; Yuan Naichang

    2004-01-01

    A PLJERC-FDTD algorithm is applied to the study of the scattering of perfectly conducting cube covered with homogeneous isotropic plasmas. The effects of plasma thickness, density and collision frequency on the radar cross section (RCS) of the conducting cube scatterer have been obtained. The results illustrate that the plasma cloaking can greatly reduce the RCS of radar targets, and the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness when the plasma frequency is greatly less than the electromagnetic (EM) wave frequency; the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness and plasma collision frequency when the plasma frequency is almost half as much as the EM wave frequency; the effects of plasma thickness and collision frequency on the RCS of the perfectly conducting cube scatterer is small when the plasma frequency is close to the EM wave frequency

  17. Tuning the wettability of calcite cubes by varying the sizes of the polystyrene nanoparticles attached to their surfaces

    International Nuclear Information System (INIS)

    He Yongjun; Li Tanliang; Yu Xiangyang; Zhao Shiyong; Lu Jianhua; He Jia

    2007-01-01

    The wettability of calcite cubes was tuned by varying the sizes of the polystyrene nanoparticles attached to their surfaces via a dispersion polymerization. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion spectrum (EDS) and Fourier transformation infrared spectrum (FTIR). The results showed that the hydrophobicity of the calcite cubes was enhanced with the increase of the size of the polystyrene nanoparticles attached. Using polystyrene nanoparticle-attached calcite cubes (PNACC) as emulsifiers, stable water-in-tricaprylin Pickering emulsions were produced. By gelling the water droplets of the Pickering emulsions, the hierarchical structures of polystyrene nanoparticle-attached calcite cube-armored microspheres were obtained. The polystyrene nanoparticle-attached calcite cubes were expected to have novel surface properties similar neither to traditional Pickering particles, nor to macroscopically asymmetrical Janus particles

  18. An introduction to the healthy corner store intervention model in Canada.

    Science.gov (United States)

    Mah, Catherine L; Minaker, Leia M; Jameson, Kristie; Rappaport, Lissie; Taylor, Krystal; Graham, Marketa; Moody, Natalie; Cook, Brian

    2017-09-14

    The majority of Canadians' food acquisition occurs in retail stores. Retail science has become increasingly sophisticated in demonstrating how consumer environments influence population-level diet quality and health status. The retail food environment literature is new but growing rapidly in Canada, and there is a relative paucity of evidence from intervention research implemented in Canada. The healthy corner store model is a comprehensive complex population health intervention in small retail stores, intended to transform an existing business model to a health-promoting one through intersectoral collaboration. Healthy corner store interventions typically involve conversions of existing stores with the participation of health, community, and business sector partners, addressing business fundamentals, merchandising, and consumer demand. This article introduces pioneering experiences with the healthy corner store intervention in Canada. First, we offer a brief overview of the state of evidence within and outside Canada. Second, we discuss three urban and one rural healthy corner store initiatives, led through partnerships among community food security organizations, public health units, academics, and business partners, in Manitoba, Ontario, and Newfoundland and Labrador. Third, we synthesize the promising practices from these local examples, including aspects of both intervention science (e.g., refinements in measuring the food environment) and community-based practice (e.g., dealing with unhealthy food items and economic impact for the retailer). This article will synthesize practical experiences with healthy corner stores in Canada. It offers a baseline assessment of promising aspects of this intervention for health and health equity, and identifies opportunities to strengthen both science and practice in this area of retail food environment work.

  19. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  20. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden)

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  1. Periodic folding of viscous sheets

    Science.gov (United States)

    Ribe, Neil M.

    2003-09-01

    The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.

  2. Ice sheet hydrology from observations

    International Nuclear Information System (INIS)

    Jansson, Peter

    2010-11-01

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  3. Load Test in Sheet Pile

    OpenAIRE

    Luis Orlando Ibanez

    2016-01-01

    In this work, are discussed experiences in the use of mathematical modeling and testing in hydraulic engineering structures. For this purpose the results of load tests in sheet pile, evaluating horizontal and vertical deformations that occur in the same exposed. Comparisons between theoretical methods for calculating deformations and mathematical models based on the Finite Element Method are established. Finally, the coincidence between the numerical model and the results of the load test ful...

  4. Ohm's law for a current sheet

    Science.gov (United States)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  5. First search for dark matter annihilations in the Earth with the IceCube detector

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H.P.; Franckowiak, A.; Gluesenkamp, T.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Rossem, M. van; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Anton, G.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Pino Rosendo, E. del; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Bissok, M.; Glagla, M.; Glauch, T.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S.; Cross, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Collaboration: IceCube Collaboration; and others

    2017-02-15

    We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data. (orig.)

  6. Experimental and Numerical Study for Flow across a Cube at various Reynolds numbers

    Science.gov (United States)

    Khan, Majid Hassan; Agrawal, Amit; Sharma, Atul

    2017-11-01

    Cube is an archetypal three dimensional bluff body and flow around a rigidly suspended cube is one of the least studied. The present work explains the flow behaviour in the wake of a cube. Lattice Boltzmann Method (LBM) simulations are used for Re = 84 to 780 and Particle Image Velocimetry (PIV) measurements are reported for Re = 550 to 55000. Mean and rms velocities at different axial locations are examined. Double peaks for rms velocity profiles at different axial locations in the wake is observed. Recirculation length increases at lower Re and then decreases at higher Re with a critical Re between 500 and 1000. An inverse relationship is found for the coefficient of drag and recirculation length in the steady range. Wake behaviour becomes non-dependent after Re = 1620. Using the nature of recirculation bubbles in the near wake, four flow regimes are established utilizing the LBM results and the categorization extends to the information at higher Re obtained using PIV. Drag coefficients are obtained using modified wake survey method and compared with established correlations for a cube and a sphere. Numerical results explain the relationship between side-forces at lower Re.

  7. A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications.

    Science.gov (United States)

    Shah, Syed Imran Hussain; Lim, Sungjoon

    2017-11-20

    In this paper, a novel dual band frequency reconfigurable antenna using an origami magic cube is proposed for wireless sensor network (WSN) applications. The proposed origami antenna consists of a meandered monopole folded onto three sides of the magic cube. A microstrip open-ended stub is loaded on the meandered monopole. The proposed origami magic cube can be mechanically folded and unfolded. The proposed antenna operates at 1.57 GHZ and 2.4 GHz in the folded state. In the unfolded state, the proposed antenna operates at 900 MHz and 2.3 GHz. The resonant frequency of the second band can be tunable by varying the length and position of the open stub. The origami magic cube is built on paper. Its performance is numerically and experimentally demonstrated from S-parameters and radiation patterns. The measured 10 dB impedance bandwidth of the proposed origami antenna is 18% (900-1120 MHz) and 15% (2.1-2.45 GHz) for the unfolded state and 20% (1.3-1.6 GHz) and 14% (2.3-2.5 GHz) for the folded state. The measured peak gain at 900 MHz and 2.3 GHz are 1.1 dBi and 2.32 dBi, respectively, in the unfolded state. The measured peak gain at 1.5 GHz and 2.4 GHz are 3.28 dBi and 1.98 dBi, respectively, in the folded state.

  8. Applying the cube model to pediatric psychology: development of research competency skills at the doctoral level.

    Science.gov (United States)

    Madan-Swain, Avi; Hankins, Shirley L; Gilliam, Margaux Barnes; Ross, Kelly; Reynolds, Nina; Milby, Jesse; Schwebel, David C

    2012-03-01

    This article considers the development of research competencies in professional psychology and how that movement might be applied to training in pediatric psychology. The field of pediatric psychology has a short but rich history, and experts have identified critical competencies. However, pediatric psychology has not yet detailed a set of research-based competencies. This article initially reviews the competency initiative in professional psychology, including the cube model as it relates to research training. Next, we review and adapt the knowledge-based/foundational and applied/functional research competencies proposed by health psychology into a cube model for pediatric psychology. We focus especially on graduate-level training but allude to its application throughout professional development. We present the cube model as it is currently being applied to the development of a systematic research competency evaluation for graduate training at our medical/clinical psychology doctoral program at the University of Alabama at Birmingham. Based on the review and synthesis of the literature on research competency in professional psychology we propose future initiatives to develop these competencies for the field of pediatric psychology. The cube model can be successfully applied to the development of research training competencies in pediatric psychology. Future research should address the development, implementation, and assessment of the research competencies for training and career development of future pediatric psychologists.

  9. Synthesis of highly monodispersed Ga-soc-MOF hollow cubes, colloidosomes and nanocomposites

    KAUST Repository

    Cai, Xuechao

    2016-07-06

    Ga-soc-MOF hollow cubes with an average size of about 300 nm were prepared by a polyvinylpyrrolidone (PVP) assisted acid etching process. Colloidosomes with sizes of around 5-10 mu m composed of single-layer tetrakaidecahedron building blocks (BBs) were synthesized for the first time. Au@Ga-soc-MOF nanocomposites with excellent catalytic properties were obtained.

  10. Measuring Attending Behavior and Short-Term Memory with Knox's Cube Test.

    Science.gov (United States)

    Stone, Mark H.; Wright, Benjamin D.

    1983-01-01

    A new revision was developed using Rasch psychometric techniques to build a Knox's Cube Test (KCT) variable and item bank using the tapping series from all previous editions. The report forms developed give a clear picture of the subject's performance set in a context that is both normative and criterion. (Author/BW)

  11. Synthesis of highly monodispersed Ga-soc-MOF hollow cubes, colloidosomes and nanocomposites

    KAUST Repository

    Cai, Xuechao; Deng, Xiaoran; Xie, Zhongxi; Bao, Shouxin; Shi, Yanshu; Lin, Jun; Pang, Maolin; Eddaoudi, Mohamed

    2016-01-01

    Ga-soc-MOF hollow cubes with an average size of about 300 nm were prepared by a polyvinylpyrrolidone (PVP) assisted acid etching process. Colloidosomes with sizes of around 5-10 mu m composed of single-layer tetrakaidecahedron building blocks (BBs) were synthesized for the first time. Au@Ga-soc-MOF nanocomposites with excellent catalytic properties were obtained.

  12. Cube-phase in excess Hg-type Al-Mg-Si alloy studied by EFTEM

    Czech Academy of Sciences Publication Activity Database

    Matsuda, K.; Ishida, Y.; Müllerová, Ilona; Frank, Luděk; Ikeno, S.

    2006-01-01

    Roč. 41, č. 9 (2006), s. 2605-2610 ISSN 0022-2461 Institutional research plan: CEZ:AV0Z20650511 Keywords : Al-Mg-Si alloy * beta-phase * cube-phase * EFTEM * EDS Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.999, year: 2006

  13. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    Science.gov (United States)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  14. Construction Process of the Length of [cube root of 2] by Paper Folding

    Science.gov (United States)

    Guler, Hatice Kubra; Gurbuz, Mustafa Cagri

    2018-01-01

    The main purpose of this study is to investigate mathematics teachers' mathematical thinking process while they are constructing the length of [cube root of 2] by paper folding. To carry out this aim, two teachers--who are PhD. students--were interviewed one by one. During the construction, it was possible to observe the consolidation process of…

  15. Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

    NARCIS (Netherlands)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Tjus, J. Becker; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Boeser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.

    2013-01-01

    Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies

  16. Invited review article: IceCube: an instrument for neutrino astronomy.

    Science.gov (United States)

    Halzen, Francis; Klein, Spencer R

    2010-08-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms 1 km(3) of deep and ultratransparent Antarctic ice into a particle detector. A total of 5160 optical sensors is embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system including a phototube, digitization electronics, control and trigger systems, and light-emitting diodes for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: neutrino astronomy and kilometer-scale detectors, high-energy neutrino telescopes: methodologies of neutrino detection, IceCube hardware, high-energy neutrino telescopes: beyond astronomy, and future projects.

  17. A consistent theory of decaying Dark Matter connecting IceCube to the Sesame Street

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, Marco [INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli (Italy); Merle, Alexander, E-mail: chianese@na.infn.it, E-mail: amerle@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2017-04-01

    The high energy events observed at the IceCube Neutrino Observatory have triggered many investigations interpreting the highly energetic neutrinos detected as decay products of heavy unstable Dark Matter particles. However, while very detailed treatments of the IceCube phenomenology exist, only a few references focus on the (non-trivial) Dark Matter production part—and all of those rely on relatively complicated new models which are not always testable directly. We instead investigate two of the most minimal scenarios possible, where the operator responsible for the IceCube events is directly involved in Dark Matter production. We show that the simplest (four-dimensional) operator is not powerful enough to accommodate all constraints. A more non-minimal setting (at mass dimension six), however, can do both fitting all the data and also allowing for a comparatively small parameter space only, parts of which can be in reach of future observations. We conclude that minimalistic approaches can be enough to explain all data required, while complicated new physics seems not to be required by IceCube.

  18. Measurement of the Anisotropy of Cosmic Ray Arrival Directions with IceCube

    DEFF Research Database (Denmark)

    IceCube Collaboration, The; Abbasi, R.; Abdou, Y.

    2010-01-01

    with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 meters inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies...

  19. Elongated grains in cube textured nickel substrate tapes and flat wires

    International Nuclear Information System (INIS)

    Eickemeyer, J; Gueth, A; Holzapfel, B

    2008-01-01

    Cube textured nickel substrate tapes and flat wires with an increased grain aspect ratio were prepared from nickel micro-alloyed with silver plus yttrium and silver, respectively. Whereas the maximum grain aspect ratio for the tapes was about 6, this value reached up to 14 for the flat wires

  20. First search for dark matter annihilations in the Earth with the IceCube detector

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J.; Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.; Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H.P.; Franckowiak, A.; Gluesenkamp, T.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P.; Adams, J.; Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Rossem, M. van; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Altmann, D.; Anton, G.; Katz, U.; Kittler, T.; Tselengidou, M.; Andeen, K.; Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J.; Archinger, M.; Baum, V.; Boeser, S.; Pino Rosendo, E. del; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K.; Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M.; Auffenberg, J.; Bissok, M.; Glagla, M.; Glauch, T.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Wickmann, S.; Wiebusch, C.H.; Bai, X.; Barwick, S.W.; Yodh, G.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Tenholt, F.; Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D.; BenZvi, S.; Cross, R.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Tatar, J.

    2017-01-01

    We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data. (orig.)