WorldWideScience

Sample records for cu3bis3 thin films

  1. Effect of Annealing Temperature on Flowerlike Cu3BiS3 Thin Films Grown by Chemical Bath Deposition

    Science.gov (United States)

    Deshmukh, S. G.; Patel, S. J.; Patel, K. K.; Panchal, A. K.; Kheraj, Vipul

    2017-10-01

    For widespread application of thin-film photovoltaic solar cells, synthesis of inexpensive absorber material is essential. In this work, deposition of ternary Cu3BiS3 absorber material, which contains abundant and environmentally benign elements, was carried out on glass substrate. Flowerlike Cu3BiS3 thin films with nanoflakes as building block were formed on glass substrate by chemical bath deposition. These films were annealed at 573 K and 673 K in sulfur ambient for structural improvement. Their structure was characterized using Raman spectroscopy, as well as their surface morphological and optical properties. The x-ray diffraction profile of as-deposited Cu3BiS3 thin film revealed amorphous structure, which transformed to orthorhombic phase after annealing. The Raman spectrum exhibited a characteristic peak at 290 cm-1. Scanning electron microscopy of as-deposited Cu3BiS3 film confirmed formation of nanoflowers with diameter of around 1052 nm. Wettability testing of as-deposited Cu3BiS3 thin film demonstrated hydrophobic nature, which became hydrophilic after annealing. The measured ultraviolet-visible (UV-Vis) absorption spectra of the Cu3BiS3 thin films gave an absorption coefficient of 105 cm-1 and direct optical bandgap of about 1.42 eV after annealing treatment. Based on all these results, such Cu3BiS3 material may have potential applications in the photovoltaic field as an absorber layer.

  2. Effect of preparation conditions on the properties of Cu3BiS3 thin films grown by a two - step process

    Science.gov (United States)

    Mesa, F.; Gordillo, G.

    2009-05-01

    Cu3BiS3 thin films were prepared on soda-lime glass substrates by co-evaporation of the precursors in a two-step process; for that, the metallic precursors were evaporated from a tungsten boat in presence of elemental sulfur evaporated from a tantalum effusion cell. The films were characterized by spectral transmittance, atomic force microscopy AFM and x-ray diffraction (XRD) measurements to investigate the effect of the growth conditions on the optical, morphological and structural properties. The results revealed that, independently of the deposition conditions, the films grow only in the orthorhombic Cu3BiS3 phase. It was also found that the Cu3BiS3 films present p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and an energy band gap Eg of about 1.41 eV, indicating that this compound has good properties to perform as absorbent layer in thin film solar cells.

  3. Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India); Panchal, A.K. [Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India)

    2016-05-06

    First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the order of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.

  4. Hall Effect and transient surface photovoltage (SPV study of Cu3BiS3 thin films

    Directory of Open Access Journals (Sweden)

    F. Mesa

    2014-03-01

    Full Text Available Here, we present the electrical properties of the compound Cu3BiS3 deposited by co-evaporation. This new compound may have the properties necessary to be used as an absorbent layer in solar cells. The samples were characterized by Hall effect and transient surface photovoltage (SPV measurements. Using Hall effect measurements, we found that the concentration of n charge carriers is in the order of 1016 cm-3 irrespective of the Cu/Bi mass ratio. We also found that the mobility of this compound (μ in the order of 4 cm2 V-1s-1 varies according to the transport mechanisms that govern it and are dependent on temperature. Based on the SPV, we found a high density of surface defects, which can be passivated by superimposing a buffer layer over the Cu3BiS3 compound.

  5. CuInS2 thin films obtained through the annealing of chemically deposited In2S3-CuS thin films

    International Nuclear Information System (INIS)

    Pena, Y.; Lugo, S.; Calixto-Rodriguez, M.; Vazquez, A.; Gomez, I.; Elizondo, P.

    2011-01-01

    In this work, we report the formation of CuInS 2 thin films on glass substrates by heating chemically deposited multilayers of copper sulfide (CuS) and indium sulfide (In 2 S 3 ) at 300 and 350 deg. C in nitrogen atmosphere at 10 Torr. CIS thin films were prepared by varying the CuS layer thickness in the multilayers with indium sulfide. The XRD analysis showed that the crystallographic structure of the CuInS 2 (JCPDS 27-0159) is present on the deposited films. From the optical analysis it was estimated the band gap value for the CIS film (1.49 eV). The electrical conductivity varies from 3 x 10 -8 to 3 Ω -1 cm -1 depending on the thickness of the CuS film. CIS films showed p-type conductivity.

  6. Magnetron sputtered Cu{sub 3}N/NiTiCu shape memory thin film heterostructures for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Choudhary, Nitin [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Goyal, Rajendra N. [Indian Institute of Technology, Roorkee, Department of Chemistry (India); Viladkar, S. [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Matai, I.; Gopinath, P. [Indian Institute of Technology, Roorkee, Centre for Nanotechnology (India); Chockalingam, S. [Indian Institute of Technology, Guwahati, Department of Biotechnology (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India)

    2013-03-15

    In the present study, for the first time, Cu{sub 3}N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu{sub 3}N with thickness {approx}200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-{mu}m-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu{sub 3}N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu{sub 3}N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 Degree-Sign C) of Cu{sub 3}N. Cu{sub 3}N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu{sub 3}N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu{sub 3}N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu{sub 3}N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

  7. CuInS{sub 2} thin films obtained through the annealing of chemically deposited In{sub 2}S{sub 3}-CuS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Y., E-mail: yolapm@gmail.com [Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba S/N, Ciudad Universitaria, 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Lugo, S. [Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba S/N, Ciudad Universitaria, 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Calixto-Rodriguez, M. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco S/N, Col Centro, 62580, Temixco, Morelos (Mexico); Vazquez, A.; Gomez, I.; Elizondo, P. [Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba S/N, Ciudad Universitaria, 66451, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2011-01-01

    In this work, we report the formation of CuInS{sub 2} thin films on glass substrates by heating chemically deposited multilayers of copper sulfide (CuS) and indium sulfide (In{sub 2}S{sub 3}) at 300 and 350 deg. C in nitrogen atmosphere at 10 Torr. CIS thin films were prepared by varying the CuS layer thickness in the multilayers with indium sulfide. The XRD analysis showed that the crystallographic structure of the CuInS{sub 2} (JCPDS 27-0159) is present on the deposited films. From the optical analysis it was estimated the band gap value for the CIS film (1.49 eV). The electrical conductivity varies from 3 x 10{sup -8} to 3 {Omega}{sup -1} cm{sup -1} depending on the thickness of the CuS film. CIS films showed p-type conductivity.

  8. Chemical solution deposition of CaCu3Ti4O12 thin film

    Indian Academy of Sciences (India)

    Administrator

    CaCu3Ti4O12; thin film; chemical solution deposition; dielectric properties. 1. Introduction. The CaCu3Ti4O12. (CCTO) compound has recently attracted considerable ... and Kelvin probe force microscopy (Chung et al 2004). Intrinsic .... SEM images of CCTO thin films as a function of sintering temperature. silicon based ...

  9. Preparation and characterization of Cu2SnS3 thin films by electrodeposition

    Science.gov (United States)

    Patel, Biren; Narasimman, R.; Pati, Ranjan K.; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    Cu2SnS3 thin films were electrodeposited on F:SnO2/Glass substrates at room temperature by using aqueous solution. Copper and tin were first electrodeposited from single bath and post annealed in the presence of sulphur atmosphere to obtain the Cu2SnS3 phase. The Cu2SnS3 phase with preferred orientation along the (112) crystal direction grows to greater extent by the post annealing of the film. Raman analysis confirms the monoclinic crystal structure of Cu2SnS3 with principle mode of vibration as A1 (symmetric breathing mode) corresponding to the band at 291 cm-1. It also reveals the benign coexistence of orthorhombic Cu3SnS4 and Cu2SnS7 phases. Optical properties of the film show direct band gap of 1.25 eV with a high absorption coefficient of the order of 104 cm-1 in the visible region. Photo activity of the electrodeposited film was established in two electrode photoelectro-chemical cell, where an open circuit voltage of 91.6 mV and a short circuit current density of 10.6 µA/cm2 were recorded. Fabrication of Cu2SnS3 thin film heterojunction solar cell is underway.

  10. Structural and magnetic properties of pure and Cu doped In{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam –603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu-603104 (India)

    2015-06-24

    Pure and Cu (7 at.%) doped In{sub 2}O{sub 3} thin films were prepared using an electron beam evaporation technique. A systematic study was carried out on the structural, chemical and magnetic properties of the thin films. X-ray diffraction analysis revealed that all the films were cubic in structure. The pure and Cu doped In{sub 2}O{sub 3} thin films showed ferromagnetism at room temperature. The Cu doped In{sub 2}O{sub 3} thin films showed the saturation magnetization, coercivity and retentivity of 38.71 emu/cm{sup 3}, 245 G and 5.54 emu/cm{sup 3}, respectively.

  11. Superconducting thin films of YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Hudner, J.

    1993-01-01

    Thin films of the high temperature superconductor YBa 2 Cu 3 O 7-x (YBCO) are of significance in fundamental studies of oxide superconductors and for prospected electronic applications based on superconductors operating at liquid nitrogen temperatures (T= 77 K). Synthesis of YBCO thin films is complex and a large part of this thesis has been devoted to the elaboration of various techniques in forming YBCO thin films. A general observation was that synthesis of YBCO films exhibiting high zero-resistivity temperatures temperatures (T c ) ≥ 88 K and elevated critical current densities (J c ) ≥ 10 6 A/cm 2 at 77 K was possible under widely different conditions of film growth. For the BaF 2 -based method, various substrate materials were investigated. Among perovskite related substrates with low losses in the high frequency regime, LaA10 3 was found to yield YBCO films exhibiting the highest quality electrical properties. A study of YBCO film interaction with sapphire substrates was performed. It was suggested that the YBCO film on sapphire consists of weakly coupled superconducting grains. Compositional effects of Y, BA and Cu for MOCVD-YBCO films were examined with respect to morphology, structure, resistivity, as susceptibility and J c (T). High T c :s and J c :s were observed for an anomalous large compositional range of Cu in off-compositional YBCO films. This was shown to be related to the formation of Cu-rich precipitates embedded within a c-Axis oriented stoichiometric YBCO film matrix. Thermal critical current behavior at zero field in thin films of YBCO fabricated by various methods has been studied by three techniques: transport measurements on patterned microbridges, dc magnetization hysteresis loops using the Bean model and non-linear ac susceptibility analysis. Absolute critical current values obtained form the two former techniques when measured on the same YBCO film were observed to differ about a factor of two. The feasibility of non-linear ac

  12. Preparation of YBa2Cu3O7-δ epitaxial thin films by pulsed ion-beam evaporation

    International Nuclear Information System (INIS)

    Sorasit, S.; Yoshida, G.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K.

    2001-01-01

    Thin films of YBa 2 Cu 3 O 7-δ (Y-123) grown epitaxially have been successfully deposited by ion-beam evaporation (IBE). The c-axis oriented YBa 2 Cu 3 O 7-δ thin films were successfully deposited on MgO and SrTiO 3 substrates. The Y-123 thin films which were prepared on the SrTiO 3 substrates were confirmed to be epitaxially grown, by X-ray diffraction analysis. The instantaneous deposition rate of the Y-123 thin films was estimated as high as 4 mm/s. (author)

  13. Cu2SixSn1-xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells

    Science.gov (United States)

    Yan, Chang; Liu, Fang-Yang; Lai, Yan-Qing; Li, Jie; Liu, Ye-Xiang

    2011-10-01

    We report the preparation of Cu2SixSn1-xS3 thin films for thin film solar cell absorbers using the reactive magnetron co-sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1-xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1-xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200-300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm-1 and an optical bandgap of 1.17±0.01 eV.

  14. Stabilization of N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine thin film morphology with UV light

    Energy Technology Data Exchange (ETDEWEB)

    Tomović, A.Ž.; Markešević, N. [Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade (Serbia); Scarpellini, M.; Bovio, S. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy); Lucenti, E. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy); Institute of Molecular Science and Technology of CNR, via Golgi 19, 20133 Milan (Italy); Milani, P. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy); Zikic, R. [Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade (Serbia); Jovanović, V.P., E-mail: vladimir.jovanovic@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade (Serbia); Srdanov, V.I. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy)

    2014-07-01

    Owing to their low glass transition temperature, T{sub g}, amorphous thin films of N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD) undergo morphological changes even at room temperature. It has been noticed previously that exposure to UV light can increase apparent T{sub g} of TPD films and thus stabilize their morphology. However, the reason behind increase in structural stability was not examined at the time. Here we present evidence that TPD molecules undergo photo-oxidation in air when exposed to λ ≈ 350 nm radiation and that less than 5% of the photo-oxidized species are needed to prevent dewetting of thin TPD films. We propose that photo-oxidized TPD species bind strongly to both ordinary TPD molecules and to terminal hydroxyl groups at the substrate surface, which decreases mobility of TPD molecules and makes thin TPD film less prone to morphology changes. - Highlights: • We made variable thickness TPD films and exposed them to UV light under ambient conditions. • Mass spectroscopy and proton NMR measurements of irradiated and pristine TPD films • TPD molecules undergo oxidation process under UV light irradiation. • Dipole–dipole interactions may be responsible for stabilization of morphological changes.

  15. Characterization of Cu3SbS3 thin films grown by thermally diffusing Cu2S and Sb2S3 layers

    OpenAIRE

    Hussain, Arshad; Ahmed, Rashid; Ali, N.; Shaari, A.; Luo, Jing-Ting; Fu, Yong Qing

    2017-01-01

    Copper antimony sulphide (Cu3SbS3) with a p-type conductivity and optical band gaps in the range of 1.38 to 1.84 eV is considered to be a promising solar harvesting material with non-toxic and economical elements. In this study, we reported the fabrication of Cu3SbS3 thin films using successive thermal evaporation of Cu2S and Sb2S3 layers followed by annealing in an argon atmosphere at a temperature range of 300-375°C. The structural and optical properties of the as-deposited and annealed fil...

  16. Infrared refractive index of thin YBa2Cu3O7 superconducting films

    International Nuclear Information System (INIS)

    Zhang, Z.M.; Choi, B.I.; Le, T.A.; Flik, M.I.; Siegal, M.P.; Phillips, J.M.

    1992-01-01

    This work investigates whether thin-film optics with a constant refractive index can be applied to high-T c superconducting thin films. The reflectance and transmittance of YBa 2 Cu 3 O 7 films on LaAlO 3 substrates are measured using a Fourier-transform infrared spectrometer at wavelengths from 1 to 100 μm at room temperature. The reflectance of these superconducting films at 10K in the wavelength region from 2.5 to 25 μm is measured using a cryogenic reflectance accessory. The film thickness varies from 10 to 200 nm. By modeling the frequency-dependent complex conductivity in the normal and superconducting states and applying electromagnetic-wave theory, the complex refractive index of YBa 2 Cu 3 O 7 films is obtained with a fitting technique. It is found that a thickness-independent refractive index can be applied even to a 25nm film, and average values of the spectral refractive index for film thicknesses between 25 and 200 nm are recommended for engineering applications

  17. Electrical transport in (103) YBa2Cu3O7-x thin films

    International Nuclear Information System (INIS)

    Divin, Yu.Ya.; Poppe, U.; Faley, M.I.; Soltner, H.; Seo, J.W.; Kabius, B.; Urban, K.

    1993-01-01

    We have studied the electrical and structural properties of (103) YBa 2 Cu 3 O 7-x thin films to estimate the applicability of these films as base electrodes of planar-type Josephson junctions. (orig.)

  18. Optical response of Cu3Ge thin films

    OpenAIRE

    Aboelfotoh, M. O.; Guizzetti, G.; Marabelli, F.; Pellegrino, Paolo; Sassella, A.

    1996-01-01

    We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01-6.0, 0.01-0.6, and 1.4-5.0 eV energy range, respectively. The complex dielectric function, the optical conductivity, the energy-loss function, and the effective charge density were obtained over the ...

  19. Photolithographically patterened thin-film multilayer devices of YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Kingston, J.J.; Wellstood, F.C.; Quan, D.; Clarke, J.

    1990-09-01

    We have fabricated thin-film YBa 2 Cu 3 O 7-x -SrTiO 3 -YBa 2 Cu 3 O 7-x multilayer interconnect structures in which each in situ laser-deposited film is independently patterned by photolithography. In particular, we have constructed the two key components necessary for a superconducting multilayer interconnect technology, crossovers and window contacts. As a further demonstration of the technology, we have fabricated a thin-film flux transformer, suitable for use with a Superconducting QUantum Interference Device (SQUID), that includes a ten-turn input coil with 6μm linewidth. Transport measurements showed that the critical temperature was 87K and the critical current was 135 μA at 82K. 7 refs., 6 figs

  20. Fractal formation of a Y-Ba-Cu-O thin film on SrTiO3

    International Nuclear Information System (INIS)

    Chow, L.; Chen, J.; Desai, V.; Sundaram, K.; Arora, S.

    1989-01-01

    Fractal formation has been observed after thermal annealing of the rf-sputtered Y-Ba-Cu-O thin film on SrTiO 3 substrate. Through energy-dispersive x-ray analysis, it was found that the composition of the fractal was YBa 2 Cu 3 O x and the surrounding film composition wasY 2 Ba 2 Cu 3 O x . The fractal dimensions D ranging from 1.26 to 1.65 were obtained using the standard sandbox method with different thresholds

  1. YBa2Cu3O(7-x) based superconducting thin films by multitarget sputtering

    International Nuclear Information System (INIS)

    Bouteloup, E.; Mercey, B.; Poullain, G.; Brousse, T.; Murray, H.; Raveau, B.

    1990-01-01

    This paper reports a new technique to prepare superconducting YBa 2 Cu 3 O (7-x) thin films. The multitarget sputtering apparatus described below allows the simultaneous and reproducible production of numerous films with a metallic composition close to Y 17% Ba 33% Cu 50% . Superconducting films (R = 0) at 80 K have been produced on polycrystalline zirconia substrates after a high temperature annealing [fr

  2. Physical and chemical properties of YBa2Cu3O7 thin films

    International Nuclear Information System (INIS)

    El-Samahi, M.I.

    1991-12-01

    Investigations were carried out to determine the influence of different annealing processes on the superconducting properties of the YBa 2 Cu 3 O 7 thin films. The samples were produced by means of coevaporation of Cu, Y and Ba on polycrystalline yttria stabilized (YSZ) ZrO 2 and single crystal SrTiO 3 (001) substrates. Subsequently, the as-deposited films were subjected to two different annealing methods to crystallize the superconducting phase YBa 2 Cu 3 O 7 : (i) heating up, annealing and cooling in an oxygen atmosphere and (ii) heating up in an innert gas atmosphere up to the maximum annealing temperature (T max ) and then annealing and cooling under oxygen. (orig.)

  3. Chemical solution deposition of CaCu 3 Ti 4 O 12 thin film

    Indian Academy of Sciences (India)

    CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron ...

  4. Spray pyrolyzed Cu2SnS3 thin films for photovoltaic application

    Science.gov (United States)

    Patel, Biren; Waldiya, Manmohansingh; Pati, Ranjan K.; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    We report the fabrication of Cu2SnS3 (CTS) thin films by a non-vacuum and low cost spray pyrolysis technique. Annealing of the as-deposited film in the sulphur atmosphere produces highly stoichiometric, granular and crystalline CTS phase. The CTS thin films shows direct optical band gap of 1.58 eV with high absorption coefficient of 105 cm-1. Hall measurement shows the carrier concentration of the order of 1021 cm-3 and a favourable resistivity of 10-3 Ω cm. A solar cell architecture of Glass/FTO/CTS/CdS/Al:ZnO/Al was fabricated and its current-voltage characteristic shows an open circuit voltage, short circuit current density and fill-factor of 12.6 mV, 20.2 µA/cm2 and 26% respectively. A further improvement in the solar cell parameters is underway.

  5. Effect of the ITO substrate on the growth of Cu(In,Ga)Se{sub 2}, CuGa{sub 3}Se{sub 5}, CuGa{sub 5}Se{sub 8} and CuIn{sub 3}Se{sub 5} thin films by flash evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, E J; Merino, J M; Leon, M [Department of Applied Physics, Universidad Autonoma de Madrid (UAM), Cantoblanco, 28049 Madrid (Spain); Trigo, J F; Guillen, C [Department of Energy, CIEMAT, Avda Complutense, 22, 28040 Madrid (Spain); Ramiro, J, E-mail: josue.friedrich@uam.e [Department of Theory of Signal and Communications, URJC, Campus Fuenlabrada, 122, 28943 Madrid (Spain)

    2009-04-21

    Structural, compositional, electrical and morphological properties of CuIn{sub 1-x}Ga{sub x}Se{sub 2} (x = 0.15, 0.30) and ordered defect compounds (ODC) CuGa{sub 3}Se{sub 5}, CuGa{sub 5}Se{sub 8}, CuIn{sub 3}Se{sub 5} thin films grown by flash evaporation onto soda lime glass substrates (SLG) and ITO/SLG have been studied. Polycrystalline thin films with accentuated preferential orientation in the (1 1 2) plane of the tetragonal structure have been obtained. Annealing in Se atmosphere improves the structural, morphological, electrical and optical properties of the evaporated films, but provokes the formation of a CuIn{sub x}Se{sub y} phase on the surface of the films. Band gap values ranging between 1.01 and 1.21 eV have been obtained for the as-grown CuIn{sub 1-x}Ga{sub x}Se{sub 2} thin films and between 1.09 and 2.01 eV for the CuGa{sub 3}Se{sub 5}, CuGa{sub 5}Se{sub 8} and CuIn{sub 3}Se{sub 5} thin films.

  6. Effect of preparation conditions on the properties of Cu{sub 3}BiS{sub 3} thin films grown by a two - step process

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, F; Gordillo, G, E-mail: fgmesar@unal.edu.c, E-mail: ggordillog@unal.edu.c [Departamento de Fisica, Universidad Nacional de Colombia, Bogota Cr.30 No 45-03 (Colombia)

    2009-05-01

    Cu{sub 3}BiS{sub 3} thin films were prepared on soda-lime glass substrates by co-evaporation of the precursors in a two-step process; for that, the metallic precursors were evaporated from a tungsten boat in presence of elemental sulfur evaporated from a tantalum effusion cell. The films were characterized by spectral transmittance, atomic force microscopy AFM and x-ray diffraction (XRD) measurements to investigate the effect of the growth conditions on the optical, morphological and structural properties. The results revealed that, independently of the deposition conditions, the films grow only in the orthorhombic Cu{sub 3}BiS{sub 3} phase. It was also found that the Cu{sub 3}BiS{sub 3} films present p-type conductivity, a high absorption coefficient (greater than 10{sup 4} cm{sup -1}) and an energy band gap Eg of about 1.41 eV, indicating that this compound has good properties to perform as absorbent layer in thin film solar cells.

  7. Detecting properties of thin film superconducting bridges made of YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Kulikov, V.A.; Matveets, L.V.; Serebryakov, A.Yu.; Laptev, V.N.; Makhov, V.I.; Emel'yanenkov, D.G.; Inkin, Yu.N.

    1989-01-01

    Results of study of detecting properties of thin film YBa 2 Cu 3 O 7-x bridges, subjected to the effect of 8 mm SHF-radiation are presented. The transition temperatures of bridges were equal to 80-85 K. Current-voltage characteristics and response dependences of bridges with 67, 150 and 425 Ω resistances were measured. It is shown that thin film bridges of YBa 2 Cu 3 O 7-x , representing the system of weak bonds, demonstrate nonstationary Josephson effect and synchronization of weak bonds in bridge volume

  8. Preparation of Cu2Sn3S7 Thin-Film Using a Three-Step Bake-Sulfurization-Sintering Process and Film Characterization

    Directory of Open Access Journals (Sweden)

    Tai-Hsiang Lui

    2015-01-01

    Full Text Available Cu2Sn3S7 (CTS can be used as the light absorbing layer for thin-film solar cells due to its good optical properties. In this research, the powder, baking, sulfur, and sintering (PBSS process was used instead of vacuum sputtering or electrochemical preparation to form CTS. During sintering, Cu and Sn powders mixed in stoichiometric ratio were coated to form the thin-film precursor. It was sulfurized in a sulfur atmosphere to form CTS. The CTS film metallurgy mechanism was investigated. After sintering at 500°C, the thin film formed the Cu2Sn3S7 phase and no impurity phase, improving its energy band gap. The interface of CTS film is continuous and the formation of intermetallic compound layer can increase the carrier concentration and mobility. Therefore, PBSS process prepared CTS can potentially be used as a solar cell absorption layer.

  9. Smooth surfaces in very thin GdBa2Cu3O7−δ films for application in superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Navarro, H.; Sirena, M.; Kim, Jeehoon; Haberkorn, N.

    2015-01-01

    Highlights: • A detailed study of the morphological properties of GdBa 2 Cu 3 O 7−δ thin films was realized. • The inclusion of a very thin SrTiO 3 buffer layer modifies the surface of the SrTiO 3 substrates. • The inclusion of the buffer layer suppress the three dimensional nucleation in the GdBa 2 Cu 3 O 7−δ film. • GdBa 2 Cu 3 O 7−δ films with large areas free of topological defects and T c close to liquid nitrogen can be obtained. - Abstract: This paper provides a systematic analysis of the morphology and the superconducting critical temperature obtained in very thin GdBa 2 Cu 3 O 7−δ films grown on (0 0 1) SrTiO 3 substrates by DC sputtering. We find that the use of a very thin SrTiO 3 buffer layer (≈2 nm) modify the nucleation of GdBa 2 Cu 3 O 7−δ on the surface of the substrate reducing the formation of 3 dimensional clusters. Our results demonstrate that 16 nm thick GdBa 2 Cu 3 O 7−δ films with an average root-mean-square (RMS) smaller than 1 nm and large surface areas (up 10 μm 2 ) free of 3 dimensional topological defects can be obtained. In films thinner than 24 nm the onset (zero resistance) of superconducting transition of the films is reduced, being close to liquid nitrogen. This fact can be associated with stress reducing the orthorhombicity and slightly drop in oxygen stoichiometry

  10. Surface study and thickness control of thin Al2O3 film on Cu-9%Al(111) single crystal

    International Nuclear Information System (INIS)

    Yamauchi, Yasuhiro; Yoshitake, Michiko; Song Weijie

    2004-01-01

    We were successful in growing a uniform flat Al 2 O 3 film on the Cu-9%Al(111) surface using the improved cleaning process, low ion energy and short time sputtering. The growth of ultra-thin film of Al 2 O 3 on Cu-9%Al was investigated using Auger electron spectroscopy (AES) and a scanning electron microscope (SEM). The Al 2 O 3 film whose maximum thickness was about 4.0 nm grew uniformly on the Cu-9%Al surface. The Al and O KLL Auger peaks of Al 2 O 3 film shifted toward low kinetic energy, and the shifts were related to Schottky barrier formation and band bending at the Al 2 O 3 /Cu-9%Al interface. The thickness of Al 2 O 3 film on the Cu-9%Al surface was controlled by the oxygen exposure

  11. Microstructure, Magnetic, and Magnetoresistance Properties of La0.7Sr0.3MnO3:CuO Nanocomposite Thin Films.

    Science.gov (United States)

    Fan, Meng; Wang, Han; Misra, Shikhar; Zhang, Bruce; Qi, Zhimin; Sun, Xing; Huang, Jijie; Wang, Haiyan

    2018-02-14

    (La 0.7 Sr 0.3 MnO 3 ) 0.67 :(CuO) 0.33 (LSMO:CuO) nanocomposite thin films were deposited on SrTiO 3 (001), LaAlO 3 (001), and MgO (001) substrates by pulsed laser deposition, and their microstructure as well as magnetic and magnetoresistance properties were investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that LSMO:CuO films grow as highly textured self-assembled vertically aligned nanocomposite (VAN), with a systematic domain structure and strain tuning effect based on the substrate type and laser deposition frequency. A record high low-field magnetoresistance (LFMR) value of ∼80% has been achieved in LSMO:CuO grown on LaAlO 3 (001) substrate under high frequency. Detailed analysis indicates that both the strain state and the phase boundary effect play a significant role in governing the overall LFMR behavior.

  12. Optical and magneto-optical properties of spin coated films of novel trinuclear bis(oxamato) and bis(oxamidato) type complexes

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmalic, Mohammad A. [Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Straße der Nationen 62, D-09111 Chemnitz (Germany); Fronk, Michael [Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Physik, Reichenhainer Straße 70, D-09107 Chemnitz (Germany); Bräuer, Björn [Stanford Institute of Materials and Energy Science, Stanford University, Stanford, CA 94025 (United States); Zahn, Dietrich R.T. [Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Physik, Reichenhainer Straße 70, D-09107 Chemnitz (Germany); Salvan, Georgeta, E-mail: salvan@physik.tu-chemnitz.de [Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Physik, Reichenhainer Straße 70, D-09107 Chemnitz (Germany); Eya' ane Meva, Francois [Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, BP 2701 (Cameroon); and others

    2016-12-01

    This work reports the first example of the spectroscopic measurements of the Magneto-Optical Kerr Effect (MOKE) of films being composed of trinuclear transition metal complexes on a non-transparent substrate at room temperature. The thin films of the tailor-made trinuclear bis(oxamidato) type complex 5 ([Cu{sub 3}(opbo{sup n}Pr{sub 2})(tmcd){sub 2}(NO{sub 3}){sub 2}], opbo{sup n}Pr{sub 2} = o-phenylenebis(N’-{sup n}propyloxamido, tmcd=trans-(1 R,2 R)-N,N,N′,N′-tetramethyl-cyclohexanediamine) and of the bis(oxamato) type complexes 11 ([Cu{sub 2}Ni(opbaCF{sub 3})(pmdta){sub 2}(NO{sub 3}){sub 2}], opbaCF{sub 3} = 4-trifluoromethyl-o-phenylenebis(oxamato), pmdta = N,N,N,′N″,N″-pentamethyldiethylenetriamine) and 12 ([Cu{sub 3}(opba)(bppe){sub 2}(NO{sub 3}){sub 2}] (opba = o-phenylenebis(oxamato), bppe = S-N,N-bis(2-picolyl)−1-phenylethylamine) were fabricated by spin-coating and their thicknesses in the range between 0.5 µm and 2 µm was determined by spectroscopic ellipsometry. Based on the spectroscopic ellipsometry results it was also possible to determine the optical constants of the film and compare them with the absorption of the complexes in solution in order to confirm the complex integrity after the film deposition. The fabrication of high-quality films which exhibit Kerr rotation up to 0.2 mrad (11.5 mdeg) was only possible due to tailor-made synthesis, which allows circumventing intermolecular interactions of the trinuclear complexes during the film formation. - Highlights: • Tailor-made trinuclear bis(oxamidato) and bis(oxamato) type complexes were synthesized. • Thin films (between 0.5 µm and 2 µm) were fabricated by spin-coating. • The film optical constants indicate the complex integrity after the deposition. • Film quality enabled first spectroscopic MOKE measurements of multi-nuclear complexes. • Magneto-optical Kerr rotation up to 11.5 mdeg was observed at RT (in 1.7 T).

  13. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    Science.gov (United States)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  14. Fabrication and sulfurization of Cu{sub 2}SnS{sub 3} thin films with tuning the concentration of Cu-Sn-S precursor ink

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jie [Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University, Taiwan (China); Shei, Shih-Chang, E-mail: scshei@mail.nutn.edu.tw [Department of Electrical Engineering, Nation University of Tainan, Taiwan (China); Chang, Shih-Chang [Department of Electrical Engineering, Nation University of Tainan, Taiwan (China); Chang, Shoou-Jinn [Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University, Taiwan (China)

    2016-12-01

    Highlights: • Tuning the relative reaction rate of component phases proved to be beneficial in controlling the reaction process. • Low-concentration samples display closely packed Cu{sub 2}SnS{sub 3} grains with a flat morphology. • Optical band-gap energy measured at 1.346 eV suitable for thin-film solar cell applications. - Abstract: In this study, Cu-Sn-S nanoinks were synthesized by combining chelating polyetheramine to Cu, Sn, S powders of various concentrations. X-ray diffraction patterns indicate that nanoinks synthesized at low concentrations are composed almost entirely of binary phases SnS and Cu{sub 2}S. Synthesizing nanoinks at higher concentrations decreased the quantity of binary phase and led to the appearance of ternary phase Cu{sub 4}SnS{sub 4}. Following sulfurization, single phase Cu{sub 2}SnS{sub 3} (CTS) thin film was obtained from nanoinks of low concentration; however, impurities, such as Cu{sub 2}S were detected in the thin film obtained from nanoinks of high concentration. This can be attributed to the fact that lower concentrations reduce the reactivity of all the elements. As a result, the SnS phase reacted more readily and more rapidly, resulting in the early formation of a stoichiometric CTS thin film during sulfurization. Under these reaction conditions, Cu{sub 2}S and SnS transform into CTS and thereby prevent the formation of unwanted phases of Cu{sub 2}S and Cu{sub 4}SnS{sub 4}. Raman spectra revealed that second phase Cu{sub 2}S phase remained in the high-concentration samples, due to an increase in reactivity due to the participation of a greater proportion of the copper in the reaction. The surface microstructure of low-concentration samples display closely packed Cu{sub 2}SnS{sub 3} grains with a flat morphology and an atomic composition ratio of Cu:Sn:S = 34.69:15.90:49.41, which is close to stoichiometric. Hall measurement revealed that low-concentration sample has superior electrical properties; i.e., a hole

  15. Paraconductivity and excess Hall effect of YBa2Cu3Ox thin films

    International Nuclear Information System (INIS)

    Gueffaf, A.

    2001-10-01

    Superconducting YBa 2 Cu 3 O x thin films were produced by in situ off-axis RF magnetron sputter deposition using a stoichiometric single target (T1). The effects of individual deposition parameters on the film properties are discussed. The transition temperatures for films deposited on MgO (100) are slightly lower than that for the SrTiO 3 and LaAlO 3 (100)-oriented substrates. The lower transition temperatures in the MgO substrates are most likely the result of the larger lattice mismatch with YBa 2 Cu 3 O x . All films grown on (100) substrates are c-axis oriented. The orientation of the sputtered YBCO films appears to depend only on the substrate orientation and not on the substrate material choice. Typical results for the c-axis lattice parameter c for various YBCO thin films sputtered onto SrTiO 3 , LaAIO 3 and MgO all (100)-oriented substrates with a range of T c values are presented. Three different targets were used in the course of this work: the first one (T1) was a 60 mm diameter, 3 mm thickness high density commercial YBCO disc; the second one (T2) was a 35 mm diameter, 4 mm thickness high density YBCO disc; and the third one (T3) was a 60 mm diameter, 3 mm thickness YBCO powder pressed then sintered on a copper plate substrate. The latter two were manufactured in house and are reported here for the first time. The best results were obtained using T1. The best films had T c (onset)= 89-93 K close to that of bulk YBCO and a transition width ΔT c =2-5 K. But some other films exhibited lower critical temperatures T c (onset)= 62-70 K and broader transitions ΔT c = 10.4-13.6 K. These reductions in T c and the broadening of the transition are due to oxygen deficiency. This is shown by the c-axis lattice parameter calculations. All films grown using T2 and T3 exhibited lower critical temperatures and broader transitions for the same reason. A novel heater element was manufactured and a previous heater design was modified for adaptation of the new element

  16. Optical and structural study of In{sub 2}S{sub 3} thin films growth by co-evaporation and chemical bath deposition (CBD) on Cu{sub 3}BiS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, F., E-mail: fgmesar@unal.edu.co [Unidad de Estudios Universitarios, Colegio Mayor de Nuestra Señora del Rosario, Cra. 24 N° 63C-69, Bogotá (Colombia); Chamorro, W. [Université de Lorraine, Institut Jean Lamour, Nancy (France); Hurtado, M. [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá (Colombia); Departamento de Física, Universidad de los Andes, Calle 21 No. 1-20, Bogotá (Colombia)

    2015-09-30

    Highlights: • In{sub 2}S{sub 3} thin films usually grow like an ultrathin. • Samples grown by CBD have a higher degree of coverage of the substrate unlike co-evaporation method. • Solar cells of Al/TCO/In{sub 2}S{sub 3}/Cu{sub 3}BiS{sub 3}/Mo structure. • In{sub 2}S{sub 3} thin films were deposited on Cu{sub 3}BiS{sub 3} (CBS), with of In{sub 2}S{sub 3} β-phase with tetragonal structure. - Abstract: We present the growth of In{sub 2}S{sub 3} onto Cu{sub 3}BiS{sub 3} layers and soda-lime glass (SLG) substrates by using chemical bath deposition (CBD) and physical co-evaporation. The results reveal that the microstructure and the optical properties of the In{sub 2}S{sub 3} films are highly dependent on the growth method. X-ray diffractrograms show that In{sub 2}S{sub 3} films have a higher crystallinity when growing by co-evaporation than by CBD. In{sub 2}S{sub 3} thin films grown by CBD with a thickness below 170 nm have an amorphous structure however when increasing the thickness the films exhibit two diffraction peaks associated to the (1 0 3) and (1 0 7) planes of the β-In{sub 2}S{sub 3} tetragonal structure. It was also found that the In{sub 2}S{sub 3} films present an energy bandgap (E{sub g}) of about 2.75 eV, regardless of the thickness of the samples.

  17. Precipitates in YBa2Cu3O7-δ thin films annealed at low oxygen partial pressure

    International Nuclear Information System (INIS)

    Hou, S.Y.; Phillips, J.M.; Werder, D.J.; Tiefel, T.H.; Fleming, R.M.; Marshall, J.H.; Siegal, M.P.

    1993-01-01

    We have studied the precipitates in YBa 2 Cu 3 O 7-δ (YBCO) thin films grown by the BaF 2 process in p O 2 =4 Torr and 700 degree C. While stoichiometric films result in BaCuO 2 surface precipitates, we have found Y 2 Cu 2 O 5 precipitates embedded in the matrix of the same film. Off stoichiometric films with Ba/Y 2 Cu 2 O 5 in the film matrix. The estimated densities of the two precipitates favor a stoichiometric YBCO film matrix. This behavior is not explainable in terms of phase equilibria and is attributed to kinetic effects. The electrical properties of the films degrade as the Ba/Y ratio deviates from 2.00

  18. Studies of the synthesis and deposition of Cu3BiS 3 for use in photovoltaic devices

    Science.gov (United States)

    Epstein, Joshua A.

    As the world's climate continues to change, alternative energy is being adopted more and more. Solar energy is one extremely promising candidate to supplement our ever increasing energy needs. In order for it to be a viable solution, more efficient and less expensive solar panels must be made. While silicon solar panels are the current market leader their high manufacturing energy input and cost warrant looking into alternatives. Many thin film solar materials are being investigated such as CdTe, CIGS and CZTS, but all come with their own drawbacks. With a near ideal band gap, low toxicity and earth abundant elemental make up copper bismuth sulfide, Cu3BiS3, is a promising candidate for use in future photovoltaic devices. The research presented here details multiple methods to synthesize and deposit this material with an effort to keep the methods low cost, energy efficient and environmentally friendly. Multiple low temperature solvothermal routes to synthesizing copper bismuth sulfide, CBS, have been developed. The resulting powders have been verified as pure Cu3BiS3 via XRD peak matching. The precursor reactants tested for use were copper and bismuth nitrates, acetates, chlorides and hydroxides. L-cystine, L-cysteine, thiourea and CS2 have all been tested for use as sulfur sources. Seven of these combinations produced pure CBS powders. Two custom built benchtop reactors have been designed and fabricated with the aim of studying the possibility of a continuous flow reactor as a way to utilize these precipitation chemistries for making thin films of CBS. Heat and liquid flow simulations were performed in COMSOL multiphysics to assist in the reactor design process. The second reactor was designed to promote uniform liquid flow across the fluorine doped, tin oxide coated, FTO, glass. This reactor was also built with a temperature gradient transverse to the liquid flow so that the optimal temperature for the deposition of CBS could be evaluated. This reactor was also

  19. Bi-epitaxial YBa2Cu3Ox Thin Films on Tilted-axes NdGaO3 Substrates with CeO2 Seeding Layer

    International Nuclear Information System (INIS)

    Mozhaev, P B; Mozhaeva, J E; Jacobsen, C S; Hansen, J Bindslev; Bdikin, I K; Luzanov, V A; Kotelyanskii, I M; Zybtsev, S G

    2006-01-01

    Bi-epitaxial YBa 2 Cu 3 O x (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27 0 were manufactured using pulsed laser deposition on NdGaO 3 tilted-axes substrates with CeO 2 seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed

  20. Femtosecond optical detection of quasiparticle dynamics in high-Tc YBa2Cu3O7-δ superconducting thin films

    International Nuclear Information System (INIS)

    Han, S.G.; Vardeny, Z.V.; Wong, K.S.; Symko, O.G.; Koren, G.

    1990-01-01

    Femtosecond dynamics of photogenerated quasiparticles in YBa 2 Cu 3 O 7-δ superconducting thin films shows, at T≤T c , two main electronic processes: (i) quasiparticle avalanche production during hot-carrier thermalization, which takes about 300 fsec; (ii) recombination of quasiparticles to form Cooper pairs, which is completed within 5 psec. In contrastr, nonsuperconducting epitaxial films such as PrBa 2 Cu 2 O 7 and YBa 2 Cu 3 O 6 show regular picosecond electronic response

  1. Solution processible Cu{sub 2}SnS{sub 3} thin films for cost effective photovoltaics: Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Sandra, E-mail: dias.sandra123@gmail.com; Murali, Banavoth; Krupanidhi, S.B.

    2015-11-01

    Thin films of Cu{sub 2}SnS{sub 3} (CTS) were deposited by the facile solution processed sol–gel route followed by a low-temperature annealing. The Cu–Sn-thiourea complex formation was analysed using Fourier Transform Infrared spectrophotometer (FTIR). The various phase transformations and the deposition temperature range for the initial precursor solution was determined using Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). X-Ray Diffraction (XRD) studies revealed the tetragonal phase formation of the CTS annealed films. Raman spectroscopy studies further confirmed the tetragonal phase formation and the absence of any deterioratory secondary phases. The morphological investigations and compositional analysis of the films were determined using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) respectively. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 1.3 nm. The absorption coefficient was found to be 10{sup 4} cm{sup −1} and bandgap 1.3 eV which qualifies CTS to be a potential candidate for photovoltaic applications. The refractive index, extinction coefficient and relative permittivity of the film were measured by Spectroscopic ellipsometry. Hall effect measurements, indicated the p type nature of the films with a hole concentration of 2 × 10{sup 18} cm{sup −3}, electrical conductivity of 9 S/cm and a hole mobility of 29 cm{sup 2}/V. The properties of CTS as deduced from the current study, present CTS as a potential absorber layer material for thin film solar cells. - Highlights: • Cu{sub 2}SnS{sub 3} thin films have been synthesized by spin coating of a precursor solution. • The Cu–Sn-thiourea complex precursor was analysed. • The structural, optical and electrical properties of the thin films were studied. • Totally 24 infra-red, 30 optical, 29 Raman and 30 hyper Raman modes are active. • Refractive index, extinction coefficient and relative

  2. Structural and optical properties of ITO and Cu doped ITO thin films

    Science.gov (United States)

    Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal

    2018-04-01

    (In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.

  3. Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2013-01-01

    The influence of inserting a Ga 2 O 3 thin film as an n-type semiconductor layer on the obtainable photovoltaic properties in Cu 2 O-based heterojunction solar cells was investigated with a transparent conductive Al-doped ZnO (AZO) thin film/n-Ga 2 O 3 thin film/p-Cu 2 O sheet structure. It was found that this Ga 2 O 3 thin film can greatly improve the performance of Cu 2 O-based heterojunction solar cells fabricated using polycrystalline Cu 2 O sheets that had been prepared by a thermal oxidization of copper sheets. The obtained photovoltaic properties in the AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells were strongly dependent on the deposition conditions of the Ga 2 O 3 films. The external quantum efficiency obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells was found to be greater at wavelengths below approximately 500 nm than that obtained in AZO/Cu 2 O heterojunction solar cells (i.e., prepared without a Ga 2 O 3 layer) at equivalent wavelengths. This improvement of photovoltaic properties is mainly attributed to a decrease in the level of defects at the interface between the Ga 2 O 3 thin film and the Cu 2 O sheet. Conversion efficiencies over 5% were obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells fabricated using an n-Ga 2 O 3 thin-film layer prepared with a thickness of 40–80 nm at an O 2 gas pressure of approximately 1.7 Pa by a pulsed laser deposition. - Highlights: • We demonstrate high-efficiency Cu 2 O-based p-n heterojunction solar cells. • A non-doped Ga 2 O 3 thin film was used as an n-type semiconductor layer. • The Ga 2 O 3 thin film was prepared at a low temperature by a low damage deposition. • p-type Cu 2 O sheets prepared by thermal oxidization of copper sheets were used. • Conversion efficiencies over 5% were obtained in AZO/n-Ga 2 O 3 /p-Cu 2 O solar cells

  4. Smooth surfaces in very thin GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films for application in superconducting tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, H., E-mail: henrynavarro@cab.cnea.gov.ar [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Sirena, M. [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Kim, Jeehoon [Department of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); CALDES, Institute for Basic Science, Pohang (Korea, Republic of); Haberkorn, N. [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

    2015-03-15

    Highlights: • A detailed study of the morphological properties of GdBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films was realized. • The inclusion of a very thin SrTiO{sub 3} buffer layer modifies the surface of the SrTiO{sub 3} substrates. • The inclusion of the buffer layer suppress the three dimensional nucleation in the GdBa{sub 2}Cu{sub 3}O{sub 7−δ} film. • GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films with large areas free of topological defects and T{sub c} close to liquid nitrogen can be obtained. - Abstract: This paper provides a systematic analysis of the morphology and the superconducting critical temperature obtained in very thin GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films grown on (0 0 1) SrTiO{sub 3} substrates by DC sputtering. We find that the use of a very thin SrTiO{sub 3} buffer layer (≈2 nm) modify the nucleation of GdBa{sub 2}Cu{sub 3}O{sub 7−δ} on the surface of the substrate reducing the formation of 3 dimensional clusters. Our results demonstrate that 16 nm thick GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films with an average root-mean-square (RMS) smaller than 1 nm and large surface areas (up 10 μm{sup 2}) free of 3 dimensional topological defects can be obtained. In films thinner than 24 nm the onset (zero resistance) of superconducting transition of the films is reduced, being close to liquid nitrogen. This fact can be associated with stress reducing the orthorhombicity and slightly drop in oxygen stoichiometry.

  5. Spin-on Bi4Sr3Ca3Cu4O16μ/sub x/ superconducting thin films from citrate precursors

    International Nuclear Information System (INIS)

    Furcone, S.L.; Chiang, Y.

    1988-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system have been synthesized from homogeneous liquid citrate precursors by a spin-coating and pyrolysis method. Films prepared on SrTiO 3 substrates of [100] orientation show strongly textured orientations with the c axis of the predominant Bi 4 Sr 3 Ca 3 Cu 4 O 16 μ/sub x/ phase normal to the film plane. In a single coating and firing, crack-free films of 0.2--0.5 μm thickness are obtained. For films fired to peak temperatures of 850--875 0 C, linearly decreasing resistance with temperature is observed, with rho (300 K)∼460 μΩ cm and rho (300 K)rho (100 K)∼2.4. Clear onsets of superconductivity are observed at 90--100 K, with occasional films showing smaller resistant drops at 110--120 K. For all films, T/sub c/ (R = 0) occurs in the range 70--75 K. High critical current densities at 4.2 K of 5--8 x 10 5 Acm 2 are measured by direct transport

  6. Synthesis of in-plane aligned a-axis YBa2Cu3O7-δ thin films

    International Nuclear Information System (INIS)

    Young, K.H.; Sun, J.Z.

    1991-01-01

    We report the successful synthesis of superconducting YBa 2 Cu 3 O 7-δ (YBCO) (100) thin films with alignment of the in-plane c axis. These films were grown on single crystal NdGaO 3 (110) substrates. The twofold symmetry of the substrate surface is believed to lead to anisotropic alignment of the in-plane c axis of the epitaxial YBCO (100) film. X-ray diffraction studies indicate that over 80% of the film grew epitaxially with the YBCO [100] perpendicular to the substrate surface, and YBCO [001] aligned along one pseudo-cubic axis of the NdGaO 3 . The superconductivity onset of the film was measured to be 89 K by ac susceptibility

  7. Epitaxial growth of YBa2Cu3O7-δ thin films on LiNbO3 substrates

    International Nuclear Information System (INIS)

    Lee, S.G.; Koren, G.; Gupta, A.; Segmuller, A.; Chi, C.C.

    1989-01-01

    In situ epitaxial growth of YBa 2 Cu 3 O 7-δ thin films on Y-cut LiNbO 3 substrates using a standard laser ablation technique is reported. Resistance of the films shows a normal metallic behavior and a very sharp ( c (R=0) of 92 K. High critical current density of J c (77 K)=2x10 5 A/cm 2 is observed, which is in accordance with epitaxial growth. Film orientation observed from x-ray diffraction spectra indicates that the c axis is normal to the substrate plane and the a axis is at 45 degree to the [11.0] direction of the hexagonal lattice of the substrate with two domains in mirror image to the (110) plane

  8. Synthesis of single phase of CuTl-1234 thin films

    CERN Document Server

    Khan, N A; Ishida, K; Tateai, F; Kojima, T; Terada, N; Ihara, H

    1999-01-01

    Thin films of CuTl-1234 superconductor have been prepared for the first time using an amorphous phase epitaxy method (APE). In this method, an amorphous phase is sputtered from a target of stoichiometric composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub x/. Thin films on the SrTiO/sub 3/ substrate after the thallium treatment are biaxially oriented. The XRD reflected a predominant single phase with c-axis 18.7 AA and pole figure measurements of (103) reflections showed a-axis oriented films with Delta phi =0.8 degrees . Resistivity measurements showed T/sub c/=113 K and preliminary J/sub c/ measurements manifested a current density of 1.0*10/sup 6/ A/cm (77 K, 0 T). The composition of films after EDX measurements is Cu /sub 0.3/Tl/sub 0.7/CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. (8 refs).

  9. Flux pinning enhancement in thin films of Y3 Ba5 Cu8O18.5 + d

    Science.gov (United States)

    Aghabagheri, S.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.

    2018-06-01

    YBa2Cu3O7 (Y123) and Y3Ba5Cu8O18 (Y358) thin films were deposited by pulsed laser deposition method. XRD analysis shows both films grow in c axis orientation. Resistivity versus temperature analysis shows superconducting transition temperature was about 91.2 K and 91.5 K and transition width for Y358 and Y123 films was about 0.6 K and 1.6 K, respectively. Analysis of the temperature dependence of the AC susceptibility near the transition temperature, employing Bean's critical state model, indicates that intergranular critical current density for Y358 films is more than twice of intergranular critical current density of Y123 films. Thus, flux pining is stronger in Y358 films. Weak links in the both samples is of superconductor-normal-superconductor (SNS) type irrespective of stoichiometry.

  10. Patterned YBa2Cu3O7-x thin films from photopolymerizable precursors

    International Nuclear Information System (INIS)

    Hung, Y.; Agostinelli, J.A.

    1990-01-01

    A technique which combines the fabrication and patterning of thin films of the high T c superconductor YBa 2 Cu 3 O 7-x has been developed. The technique possesses the essential features of the metalorganic decomposition method with the additional attribute that the metalorganic precursor is photopolymerizable. Patterns are generated directly in the precursor film using optical exposure through a mask followed by development in a solvent. A subsequent thermal treatment transforms the patterned precursor film to the oriented superconducting phase with c axis perpendicular to the substrate surface. Resistivity measurements for such a patterned film on a single crystal (100)MgO substrate show an onset to the superconducting state occurring at 85 K with zero resistivity below 67 K

  11. Transport measurements on superconducting YBa2Cu3O7-δ thin film lines

    International Nuclear Information System (INIS)

    Moeckly, B.H.; Lathrop, D.K.; Redinbo, G.F.; Russek, S.E.; Buhrman, R.A.

    1990-01-01

    Critical current densities, magnetic field response, and microwave response have been measured for laser ablated YBa 2 Cu 3 O 7-δ thin film lines on MgO and SrTiO 3 substrates. Films on SrTiO 3 have critical current densities > 1 x 10 6 A/cm 2 at 77 K and show uniform transport properties in lines of all sizes. Films on MgO have critical current densities which range between 10 2 and 10 6 A/cm 2 at 77 K and show considerable variation from device to device on the same chip. Narrow lines on MgO with low critical current densities show Josephson weak link structure which includes RSJ-like IV curves, microwave induced constant voltage steps, and a high sensitivity to magnetic field. The presence of the Josephson weak links if correlated with small amounts of misaligned grains in film on MgO

  12. TiO2 and Cu/TiO2 Thin Films Prepared by SPT

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-12-01

    Full Text Available Titanium oxide (TiO2 and copper (Cu doped titanium oxide (Cu/TiO2 thin films have been prepared by spray pyrolysis technique. Titanium chloride (TiCl4 and copper acetate (Cu(CH3COO2.H2O were used as source of Ti and Cu. The doping concentration of Cu was varied from 1-10 wt. %. The X-ray diffraction studies show that TiO2 thin films are tetragonal structure and Cu/TiO2 thin films implies CuO has present with monoclinic structure. The optical properties of the TiO2 thin films have been investigated as a function of Cu-doping level. The optical transmission of the thin films was found to increase from 88 % to 94 % with the addition of Cu up to 8 % and then decreases for higher percentage of Cu doping. The optical band gap (Eg for pure TiO2 thin film is found to be 3.40 eV. Due to Cu doping, the band gap is shifted to lower energies and then increases further with increasing the concentration of Cu. The refractive index of the TiO2 thin films is found to be 2.58 and the variation of refractive index is observed due to Cu doped. The room temperature resistivity of the films decreases with increasing Cu doping and is found to be 27.50 - 23.76 W·cm. It is evident from the present study that the Cu doping promoted the thin film morphology and thereby it is aspect for various applications.

  13. Substrate decoration for improvement of current-carrying capabilities of YBa2Cu3Ox thin films

    International Nuclear Information System (INIS)

    Khoryushin, Alexey V.; Mozhaev, Peter B.; Mozhaeva, Julia E.; Bdikin, Igor K.; Zhao, Yue; Andersen, Niels H.; Jacobsen, Claus S.; Hansen, Jørn Bindslev

    2013-01-01

    Highlights: ► Effects of substrate decoration on properties of YBCO thin films were studied. ► Y 2 O 3 nanoparticles, ultra-thin Y 2 O 3 and Y:ZrO 2 layers were used as decoration layer. ► Decoration improves j C (5 T and 50 K) up to 0.97 MA/cm 2 vs. 0.76 MA/cm 2 for a reference film. ► Ultra-thin layer of yttria and yttria nanoparticles have a similar effect on YBCO. ► Y 2 O 3 decoration results in power law coefficient α = 0.3 vs. α = 0.4 for a reference film. -- Abstract: The effects of substrate decoration with yttria and Y:ZrO 2 on the structural and electrical properties of the YBa 2 Cu 3 O x (YBCO) thin films are studied. The films were deposited on (LaAlO 3 ) 3 –(Sr 2 AlTaO 8 ) 7 substrates by pulsed laser deposition. Two different structures of decoration layer were applied, a template layer of nanoparticles and an uniform ultra-thin layer. Significant improvement of current-carrying capabilities was observed, especially at high external magnetic fields. Structural studies of these films reveal the presence of extended linear defects in the YBCO matrix. The formation of these structures is attributed to seeding of randomly oriented YBCO grains due to suppression of epitaxy in the very beginning of the deposition. The films of both kinds of decoration layers show nearly the same improvement of j C over the reference film at 77 and 50 K: j C (5T and 50 K) reaches 0.92 and 0.97 MA/cm 2 for uniform and template decoration layers. At 5 and 20 K the effect of template decoration layers is more beneficial: j C (5T and 20 K) values are 3.5 and 4.1 MA/cm 2 , j C (5T and 5 K) values are 6.4 and 7.9 MA/cm 2 , for uniform and template decoration layers, respectively

  14. Morphology, structure, and electrical properties of YBa2Cu3Ox thin films on tilted NdGaO3 substrates, deposited by DC-sputtering

    International Nuclear Information System (INIS)

    Mozhaev, Peter B.; Kotelyanskii, Iosif M.; Luzanov, Valery A.; Mozhaeva, Julia E.; Donchev, Todor; Mateev, Emil; Nurgaliev, Timur; Bdikin, Igor K.; Narymbetov, Bakhyt Zh.

    2005-01-01

    Thin YBa 2 Cu 3 O x (YBCO) films were deposited using DC-sputtering technique on NdGaO 3 substrates, tilted from (1 1 0) orientation by 0-26 deg . The structure and surface quality of the substrates were carefully characterized to obtain reliable results of thin films deposition. Structural, morphological and electrical properties of the YBCO thin films show three different ranges of inclination angle: vicinal, intermediate and high. In the vicinal range the properties of the film are generally the same as of the standard films deposited on (1 1 0) NdGaO 3 substrate. An increase of the inclination angle to the intermediate range results in a significant improvement of morphology and structural quality of the film. Best electrical parameters are measured for the films of the intermediate range also. Probable reason for such behavior is simultaneous and regular seeding of the film in the joints of facets on the substrate surface. Further increase of inclination angle leads to step bunching and oxygen out-diffusion, destroying both structural and electrical perfection of the tilted-axes YBCO film

  15. Microstructure and electric characteristics of AETiO3 (AE=Mg, Ca, Sr doped CaCu3Ti4O12 thin films prepared by the sol–gel method

    Directory of Open Access Journals (Sweden)

    Dong Xu

    2015-10-01

    Full Text Available This paper focuses on the effects of alkline-earth metal titante AETiO3 (AE=Mg, Ca, Sr doping on the microstructure and electric characteristics of CaCu3Ti4O12 thin films prepared by the sol–gel method. The results showed that the grain size of CCTO thin films could be increased by MgTiO3 doping. The movement of the grain boundaries was impeded by the second phases of CaTiO3 and SrTiO3 concentrating at grain boundaries in CaTiO3 and SrTiO3 doped CCTO thin films. Rapid ascent of dielectric constant could be observed in 0.1Mg TiO3 doped CCTO thin films, which was almost as three times high as pure CCTO thin film and the descent of the dielectric loss at low frequency could also be observed. In addition, the nonlinear coefficient (α, threshold voltage (VT and leakage current (IL of AETiO3 doped CCTO thin films (AE=Mg, Ca, Sr showed different variation with the increasing content of the MgTiO3, CaTiO3 and SrTiO3.

  16. Microstructure of epitaxial YBa2Cu3O7-x thin films grown on LaAlO3 (001)

    International Nuclear Information System (INIS)

    Hsieh, Y.; Siegal, M.P.; Hull, R.; Phillips, J.M.

    1990-01-01

    We report a microstructural investigation of the epitaxial growth of YBa 2 Cu 3 O 7-x (YBCO) thin films on LaAlO 3 (001) substrates using transmission electron microscopy (TEM). Epitaxial films grow with two distinct modes: c epitaxy (YBCO) single crystal with the c (axis normal to the surface and a epitaxy (YBCO) single crystal with the c axis in the interfacial plane), where c epitaxy is the dominant mode grown in all samples 35--200 nm thick. In 35 nm YBCO films annealed at 850 degree C, 97±1% of the surface area is covered by c epitaxy with embedded anisotropic a-epitaxial grains. Quantitative analysis reveals the effect of film thickness and annealing temperature on the density, grain sizes, areal coverages, and anisotropic growth of a epitaxy

  17. Flux pinning properties of ErBa2Cu3Oy thin films with BaZrO3 nanorods

    International Nuclear Information System (INIS)

    Haruta, M; Fujiyoshi, T; Sueyoshi, T; Dezaki, K; Ichigosaki, D; Miyahara, K; Miyagawa, R; Mukaida, M; Matsumoto, K; Yoshida, Y; Ichinose, A; Horii, S

    2006-01-01

    ErBa 2 Cu 3 O y (ErBCO) thin films with BaZrO 3 (BZO) nanorods were prepared by a PLD method for an enhancement of the critical current density J c . The values of J c for the ErBCO thin film containing 1.5 wt% BZO (Er15) in magnetic fields are higher than those for the ErBCO thin film containing 0.5 wt% BZO (Er05). The peaks of J c have been observed in the angular dependence of J c in both the films when the magnetic field is applied parallel to the c-axis. It has been found that the peak is attributed to the flux pinning by BZO nanorods oriented parallel to the c-axis. The vortex glass-liquid transition temperature T g and the pinning parameter m were derived by fitting observed electric transport properties to the theoretical expression based on the percolation transition model. The value of T g of Er15 is higher than that of Er05. This result indicates that the vortex glass phase extends to a higher temperature region on increasing the fraction of BZO. The peak of m has been found in the magnetic field dependence. This fact is probably due to matching the density of BZO nanorods with that of fluxoids, which was confirmed by TEM observations

  18. Effect of substituted rare earth element in (Yb1-xNd x)Ba2Cu3O y thin film on growth orientation and superconducting properties

    International Nuclear Information System (INIS)

    Honda, R.; Ichino, Y.; Yoshida, Y.; Takai, Y.; Matsumoto, K.; Ichinose, A.; Kita, R.; Mukaida, M.; Horii, S.

    2005-01-01

    We studied the orientation and superconducting properties in (Yb 1-x Nd x )Ba 2 Cu 3 O y (Yb/Nd123) thin films as a function of Yb/Nd composition ratio x. As a results, we needed so high oxygen pressure as to increase x for obtaining the c-axis oriented films. J c -B curves in the Yb/Nd123 thin films were superior to that in YBa 2 Cu 3 O y thin film. Since a RE fluctuation in a composition in the Yb/Nd123 thin films was observed with TEM-EDX, we speculated the pinning centers in the Yb/Nd123 thin films were strongly affected by the RE fluctuation

  19. Protection of MoO3 high work function by organic thin film

    International Nuclear Information System (INIS)

    Wang, Chenggong; Irfan, Irfan; Gao, Yongli

    2014-01-01

    The effects of air exposure are investigated for molybdenum trioxide (MoO 3 ) covered with organic thin films using ultraviolet photoemission spectroscopy. It is found that the severe drop of the work function of MoO 3 by air exposure is substantially reduced by the organic thin films. Both CuPc and C 60 are used for the investigations. The results indicate that the MoO 3 surface can be passivated by approximately two monolayers of organic thin films against exposure to air

  20. Josephson edge junctions on YBa2Cu3O7 thin films prepared with Br-ethanol etching

    International Nuclear Information System (INIS)

    Faley, M.I.; Poppe, U.; Daehne, U.; Goncharov, Yu.G.; Klein, N.; Urban, K.; Soltner, H.

    1993-01-01

    To produce damage-free edges is one of the main problems in the preparation of the Josephson edge-type junctions and interconnects in multilayer structures including high temperature superconductors. The commonly used ion beam etching has the disadvantages of the risk of contamination by redeposited material and structural damage to the surface of the edge. Vasquez et al and Gurvitch et al introduced a nonaqueous Br-ethanol etching for the preparation of clean surfaces of YBa 2 Cu 3 O 7 single crystals and thin films. We have developed a procedure of deep-UV-photolithography combined with nonaqueous Br-ethanol etching for the preparation of the Josephson edge-type junctions. Here we present the improvement of this method and report further results on the study of the electron transport properties of Josephson junctions with the edges of YBa 2 Cu 3 O 7 thin films produced by this technique. (orig.)

  1. Structural properties 3,16-bis triisopropylsilylethynyl (pentacene) (TIPS-pentacene) thin films onto organic dielectric layer using slide coating method

    Energy Technology Data Exchange (ETDEWEB)

    Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin; Saad, Ismail; Ghosh, Bablu K.; Alias, Afishah [Nano Engineering & Materials (NEMs) Research Group, Faculty of Engineering Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah (Malaysia)

    2015-08-28

    3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMA layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices.

  2. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    International Nuclear Information System (INIS)

    Li, Qibin; Peng, Xianghe; Peng, Tiefeng; Tang, Qizhong; Zhang, Xiaomin; Huang, Cheng

    2015-01-01

    Graphical abstract: Heat transportation in the thin films. - Highlights: • The coherent lattice interface is found at thin films after annealing. • The vacancies are observed clearly in the deposit thin films. • The defect and component will influence the energy transportation in the coatings. • The vacancies and lattice mismatch can enlarge the mobility of atoms. • The phonon transportation in thin films has no apparent rule. - Abstract: Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms’ movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  3. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qibin, E-mail: qibinli@cqu.edu.cn [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Peng, Xianghe [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Peng, Tiefeng, E-mail: pengtiefeng@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Tang, Qizhong [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xiaomin [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Huang, Cheng [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China)

    2015-12-01

    Graphical abstract: Heat transportation in the thin films. - Highlights: • The coherent lattice interface is found at thin films after annealing. • The vacancies are observed clearly in the deposit thin films. • The defect and component will influence the energy transportation in the coatings. • The vacancies and lattice mismatch can enlarge the mobility of atoms. • The phonon transportation in thin films has no apparent rule. - Abstract: Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms’ movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  4. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    Science.gov (United States)

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  5. Pulsed laser deposition of Cu-Sn-S for thin film solar cells

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Bosco, Edoardo

    Thin films of copper tin sulfide were deposited from a target of the stoichiometry Cu:Sn:S ~1:2:3 using pulsed laser deposition (PLD). Annealing with S powder resulted in films close to the desired Cu2SnS3 stoichiometry although the films remained Sn rich. Xray diffraction showed that the final...... films contained both cubic-phase Cu2SnS3 and orthorhombic-phase SnS...

  6. Hall effect measurements of high-quality M n3CuN thin films and the electronic structure

    Science.gov (United States)

    Matsumoto, Toshiki; Hatano, Takafumi; Urata, Takahiro; Iida, Kazumasa; Takenaka, Koshi; Ikuta, Hiroshi

    2017-11-01

    The physical properties of M n3CuN were studied using thin films. We found that an annealing process was very effective to improve the film quality, the key of which was the use of Ti that prevented the formation of oxide impurities. Using these high-quality thin films, we found strong strain dependence for the ferromagnetic transition temperature (TC) and a sign change of the Hall coefficient at TC. The analysis of Hall coefficient data revealed a sizable decrease of hole concentration and a large increase of electron mobility below TC, which is discussed in relation to the electronic structure of this material.

  7. Preparation and properties of Y{sub 1-x}Ho{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films by TFA-MOD method

    Energy Technology Data Exchange (ETDEWEB)

    Jian Hongbin [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li Qi; Shi Dongqi [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2522 (Australia); Zhang Li [Department of Mathematic and Physics, Anhui University of Architecture, Hefei 230022 (China); Yang Zhaorong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dou Shixue [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2522 (Australia); Zhu Xuebin, E-mail: xbzhu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sun Yuping [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2011-12-15

    Y{sub 1-x}Ho{sub x}BCO thin films were prepared by TFA-MOD. The best performances were obtained for the Y{sub 0.6}Ho{sub 0.4}BCO thin film. The pinning mechanism was {delta}l-type for all derived thin films. Y{sub 1-x}Ho{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) thin films were prepared on LaAlO{sub 3} (0 0 1) substrates by trifluoroacetate metal organic deposition (TFA-MOD) without change of the processing parameters. The highest J{sub c} was attributed to the sample of Y{sub 0.6}Ho{sub 0.4}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} thin film, whose critical current density is about 1.6 times as compared to that of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin film at 77 K and self field. The flux pinning type was not varied with Ho substitution and can be attributed to {delta}l pinning model, which is attributed to the close ionic radius between the Y{sup 3+} and Ho{sup 3+} ions. The improvement of J{sub c} by Ho substitution without change of the processing parameters will provide an effective route to enhance the J{sub c} of YBCO-based thin films using TFA-MOD method.

  8. Effect of Y2O3 Nanoparticles on Critical Current Density of YBa2Cu3O7-x Thin Films

    International Nuclear Information System (INIS)

    Tran, H. D.; Reddy, Sreekantha; Wie, C. H.; Kang, B.; Oh, Sang Jun; Lee, Sung Ik

    2009-01-01

    Introduction of proper impurity into YBa 2 Cu 3 O 7-x (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate effect of Y 2 O 3 nanoparticles on the critical current density J c of the YBCO thin films. The Y 2 O 3 nanoparticles were created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/Y 2 O 3 /LAO or Y 2 O 3 /YBCO/STO, by pulsed laser deposition. The deposition temperature of the YBCO films were varied (780 degree C and 800 degree C) to modify surface morphology of the YBCO films. Surface morphology characterization revealed that the lower deposition temperature of 780 degree C created nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produced much denser and smoother surface. J-c values of the YBCO films with Y 2 O 3 particles were either remained nearly the same or decreased for the samples in which YBCO is grown at 780 degree C. On the other hand, J-c values were enhanced for the samples in which YBCO is grown at higher temperature of 800 degree C. The difference in the effect of Y 2 O 3 can be explained by the fact that the higher deposition temperature of 800 degree C reduces intrinsic pinning centers and J c is enhanced by introduction of artificial pinning centers in the form of Y 2 O 3 nanoparticles.

  9. Processing of La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    Science.gov (United States)

    Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.

    1988-03-01

    High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.

  10. Enhanced electrical properties of pulsed laser-deposited CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films via processing control

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Yeon Hwa; Mohanty, Bhaskar Chandra; Cho, Yong Soo [Department of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of)

    2010-12-15

    Polycrystalline CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films were prepared on soda-lime glass substrates using pulsed laser deposition (PLD) with various process parameters such as laser energy, repetition rate and substrate temperature. It was confirmed that there existed a limited laser energy, i.e. less than 300 mJ, to get phase pure CIGS thin films at room temperature. Particularly, even at room temperature, distinct crystalline CIGS phase was observed in the films. Crystallinity of the films improved with increasing substrate temperature as evidenced by the decrease of FWHM from 0.65 degto 0.54 deg. Slightly Cu-rich surface with Cu{sub 2-x}Se phase was confirmed to exist by Raman spectra, depending on substrate temperature. Improved electrical properties, i.e., carrier concentration of {proportional_to}10{sup 18} cm{sup -3} and resistivity of 10{sup -1}{omega} cm at higher substrate temperature for the optimal CIGS films are assumed to be induced by the potential contributions from highly crystallized thin films, existence of Cu{sub 2-x}Se phase and diffusion of Na from substrates to films. (author)

  11. Growth temperature dependence of flux pinning properties in ErBa2Cu3Oy thin films with nano-rods

    International Nuclear Information System (INIS)

    Haruta, M.; Sueyoshi, T.; Fujiyoshi, T.; Mukaida, M.; Kai, H.; Matsumoto, K.; Mele, P.; Maeda, T.; Horii, S.

    2011-01-01

    Nano-rods were introduced into ErBa 2 Cu 3 O y thin films to improve J c . Pinning properties depended on the growth temperature of the films. Morphology of nano-rods was affected by the growth temperature. The growth temperature is important to achieve high in-field J c 's. Irreversibility lines and distributions of local critical current density (J cl ) based on the percolation transition model were affected by the growth temperature (T s ) in 3.5 wt.%-BaNb 2 O 6 -doped ErBa 2 Cu 3 O y thin films. The vortex-Bose-glass-like state appeared by the introduction of nano-rods, and this vortex state was affected by T s . The shape and width of the J cl distribution strongly depended on T s . These results are probably caused by variations of the density and the growth direction for nano-rods reflecting T s . The growth temperature is an important factor to achieve higher critical current properties under magnetic fields for coated conductors of rare-earth-based cuprates with nano-rods.

  12. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  13. Microstructure and opto-electric properties of Cu/ITO thin films

    International Nuclear Information System (INIS)

    Wang Xian; Li Junlei; Shi Shiwei; Song Xueping; Cui Jingbiao; Sun Zhaoqi

    2012-01-01

    Highlights: ► We prepared Cu/ITO films with different Cu layer thickness. ► We analyzed the relation between opto-electric properties and roughness of the films. ► The Cu-16.1 nm/ITO film shows excellent optical and electric properties. ► Cu/ITO films have great application prospects in new-type transflective displays. - Abstract: Cu/ITO thin films were deposited on glass and silicon substrates by DC and RF magnetron sputtering at room temperature. X-ray diffraction results showed that the films were amorphous. Both of SEM images and 3D Profilometer images indicated that the surface morphology of the ITO films had been affected by the Cu layer. The optical and electric properties of the Cu/ITO films changed significantly with the variation of Cu layer thickness. Cu-5.4 nm/ITO film exhibited the highest optical transmittance of 62.9% at 550 nm and the lowest sheet resistance of 96 Ω/□, whereas Cu-16.1 nm/ITO film showed the highest average reflectance of 24.0% and the lowest resistance of 27.4 Ω/□. Based on our analysis, it was evaluated that Cu layer had an important effect on the electrical and optical properties of ITO thin films.

  14. Heteroepitaxial growth of strained multilayer superconducting thin films of Nd1.83Ce0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gupta, A.; Gross, R.; Olsson, E.; Segmueller, A.; Koren, G.; Tsuei, C.C.

    1990-01-01

    Heteroepitaxial growth of strained multilayer thin films of YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x by pulsed-laser deposition is reported. The coherency strain results in biaxial compression of the tetragonal Nd 1.83 Ce 0.17 CuO x layers, whereas the biaxial tension in the YBa 2 Cu 3 O 7-δ layers removes the orthorhombic distortion and makes the unit cell isotropic in the basal plane (a=b). Depending on their oxygen content, either the YBa 2 Cu 3 O 7-δ or the Nd 1.83 Ce 0.17 CuO x layers are superconducting in these multilayers. The strain-induced structural modification has a significant influence on the superconducting transition temperature of the YBa 2 Cu 3 O 7-δ layers

  15. The growth of large-area superconducting YBa2Cu3O7-x thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lai, H.C.; Chang, C.M.; Lin, R.J.; Liu, R.S.

    1996-01-01

    In-situ growth of 2-in. diameter superconducting YBa 2 Cu 3 O 7-x (YBCO) thin films using an excimer KrF pulsed laser has been studied. Films with critical transition temperature (T c,0 ) of 89±1 K and critical current density (J c,77K ) in excess of 1 x 10 6 A cm -2 have been prepared routinely. Uniformity in film thickness of below ±15% and film composition of ±5% have been measured. The effects of gas nozzle geometry and target evolution during ablation on the superconducting properties and surface morphology of YBCO thin films have also been investigated. (orig.)

  16. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  17. Deposition and characterization of spray pyrolysed p-type Cu2SnS3 thin film for potential absorber layer of solar cell

    Science.gov (United States)

    Thiruvenkadam, S.; Sakthi, P.; Prabhakaran, S.; Chakravarty, Sujay; Ganesan, V.; Rajesh, A. Leo

    2018-06-01

    Thin film of ternary Cu2SnS3 (CTS), a potential absorber layer for solar cells was successfully deposited by chemical spray pyrolysis technique. The GIXRD pattern revealed that the film having tetragonal Cu2SnS3 phase with the preferential orientation along (112), (200), (220) and (312) plane and it is further confirmed using Raman spectroscopy by the existence of Raman peak at 320 cm-1. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 28.8 nm. The absorption coefficient was found to be greater than the order of 105 cm-1 and bandgap of 1.70 eV. Hall effect measurement indicates the p type nature of the film with a hole concentration of 1.03 × 1016cm-3 and a hall mobility of 404 cm2/V. The properties of CTS thin film confirmed suitable to be a potential absorber layer material for photovoltaic applications.

  18. Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} Thin Films on Tilted-axes NdGaO{sub 3} Substrates with CeO{sub 2} Seeding Layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, P B [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Mozhaeva, J E [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Jacobsen, C S [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Hansen, J Bindslev [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Bdikin, I K [CICECO, University of Aveiro, Aveiro, 3810-193 (Portugal); Luzanov, V A [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Kotelyanskii, I M [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Zybtsev, S G [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation)

    2006-06-01

    Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27{sup 0} were manufactured using pulsed laser deposition on NdGaO{sub 3} tilted-axes substrates with CeO{sub 2} seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed.

  19. Fabrication and charge/energy-transfer study of 4,7-bis(4-triphenylamino)benzo- 2,1,3-thiadiazole/CuPc composite films

    International Nuclear Information System (INIS)

    Zhu Yuanyuan; Wei Xiao; Xue Minzhao; Zhang Qing; Sheng Qiaorong; Liu Yangang; Gu Shuangxi

    2010-01-01

    Composite films of 4,7-bis(4-triphenylamino)benzo-2,1,3-thiadiazole (TBT) and copper phthalocyanine (CuPc) are fabricated via protonation-coelectrophoretic deposition from nitromethane solutions of TBT/CuPc mixture in the presence of trifluoroacetic acid as a protonation reagent. A nanospheres-nanowires interpenetrating network structure is obtained when the molar percentage of TBT is 70%. Furthermore, the existence of TBT makes α-phased CuPc be partly transformed into the β-phase, and simultaneously, CuPc disorganizes the TBT unit cells. The blue shift on the absorption edge of TBT and the significant fluorescence quenching in the composite films indicate energy/charge transfer and donor-acceptor (D-A) heterojunction formation. Then these results are proved from another point of view: the mutual overlap of absorption and emission spectra of TBT and CuPc lead to a bidirectional Foerster resonance energy transfer at the interface; the molecular energy levels calculated from the results of cyclic voltammetry theoretically determine that there exist a D-A heterojunction and charge transfer from TBT to CuPc. Finally, from the investigation of the field-induced surface photovoltage spectra, it can be concluded that this charge transfer results in efficient dissociation of the photoinduced excitons in the composite films, followed by the generation of a strong photovoltage response.

  20. Fabrication and charge/energy-transfer study of 4,7-bis(4-triphenylamino)benzo- 2,1,3-thiadiazole/CuPc composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yuanyuan; Wei Xiao; Xue Minzhao; Zhang Qing; Sheng Qiaorong; Liu Yangang [School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gu Shuangxi, E-mail: mzxue@sjtu.edu.c [Department of Chemistry, Fudan University, Shanghai 200433 (China)

    2010-12-15

    Composite films of 4,7-bis(4-triphenylamino)benzo-2,1,3-thiadiazole (TBT) and copper phthalocyanine (CuPc) are fabricated via protonation-coelectrophoretic deposition from nitromethane solutions of TBT/CuPc mixture in the presence of trifluoroacetic acid as a protonation reagent. A nanospheres-nanowires interpenetrating network structure is obtained when the molar percentage of TBT is 70%. Furthermore, the existence of TBT makes {alpha}-phased CuPc be partly transformed into the {beta}-phase, and simultaneously, CuPc disorganizes the TBT unit cells. The blue shift on the absorption edge of TBT and the significant fluorescence quenching in the composite films indicate energy/charge transfer and donor-acceptor (D-A) heterojunction formation. Then these results are proved from another point of view: the mutual overlap of absorption and emission spectra of TBT and CuPc lead to a bidirectional Foerster resonance energy transfer at the interface; the molecular energy levels calculated from the results of cyclic voltammetry theoretically determine that there exist a D-A heterojunction and charge transfer from TBT to CuPc. Finally, from the investigation of the field-induced surface photovoltage spectra, it can be concluded that this charge transfer results in efficient dissociation of the photoinduced excitons in the composite films, followed by the generation of a strong photovoltage response.

  1. Static and dynamic magnetization properties of Y1Ba2Cu3Oz thin films

    International Nuclear Information System (INIS)

    Sekula, S.T.

    1989-08-01

    Magnetization studies were carried out on Y 1 Ba 2 Cu 3 O z (YBCO) thin films that were e-beam evaporated onto circular discs of single-crystal SrTiO 3 with (001) and (110) faces as well as KTaO 3 with (001) faces. The measurements were made using vibrating sample (VSM) and SQUID-based magnetometry with the applied field perpendicular to the substrate surface. Critical current densities J c (H,T) are deduced from the magnetic hysteresis. Flux creep effects are observed over longer periods with the SQUID magnetometer. Analysis of the results of low frequency response of these films to collinear ac and dc magnetic fields are compared with the dc magnetometry results. J c (H,T) is observed to be quite sensitive to the type of epitaxial growth on the various substrates. 16 refs., 10 figs

  2. Structural and optical properties of Cu2SnS3 thin films obtained by SILAR method

    Directory of Open Access Journals (Sweden)

    Aykut ASTAM

    2017-06-01

    Full Text Available Cu2SnS3 thin films were obtained by annealing of SILAR deposited films at 350°C for 1 hour in sulphur atmosphere. The structural and optical properties of the films were investigated using X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDAX and optical absorption measurements, before and after annealing. The XRD results showed that the annealing process transformed the crystal structure of the films from amorphous to polycrystalline. SEM images revealed that the surface morphology of films was changed after annealing while EDAX analysis showed that the films were excess in copper concentration before and after annealing. Optical absorption measurements confirmed that the direct band gap of films decreased from 1.27 eV to 1.21 eV with annealing.

  3. Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors

    International Nuclear Information System (INIS)

    Lin, Xianzhong; Kavalakkatt, Jaison; Kornhuber, Kai; Levcenko, Sergiu; Lux-Steiner, Martha Ch.; Ennaoui, Ahmed

    2013-01-01

    Cu 2 ZnSnS 4 (CZTS) has been considered as an alternative absorber layer to Cu(In,Ga)Se 2 due to its earth abundant and environmentally friendly constituents, optimal direct band gap of 1.4–1.6 eV and high absorption coefficient in the visible range. In this work, we propose a solution-based chemical route for the preparation of CZTS thin film absorbers by spin coating of the precursor inks composed of Cu 3 SnS 4 and ZnS NPs and annealing in Ar/H 2 S atmosphere. X-ray diffraction and Raman spectroscopy were used to characterize the structural properties. The chemical composition was determined by energy dispersive X-ray spectroscopy. Optical properties of the CZTS thin film absorbers were studied by transmission, reflection and photoluminescence spectroscopy

  4. Critical parameters in the sputter-deposition of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hakuraku, Y.; Yokoyama, N.; Doi, T.; Inoue, T. [Faculty of Engineering, Kagoshima University, Koorimoto, Kagoshima 890, (Japan); Mori, Z.; Koba, S. [Yatsushiro National College of Technology, Yatsushiro 866 (Japan)

    1999-08-01

    A superconducting thin film of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (NBCO) was prepared on an MgO(100) substrate by dc magnetron sputtering. Superconducting properties as well as features such as resistivity at room temperature and surface morphology were improved by optimizing the composition of sputtering target and critical parameters such as substrate temperature and oxidation gas pressure. A highly c-axis oriented thin film with T{sub c} (zero resistance temperature) = 95.2 K was obtained reproducibly with NdBa{sub 2}Cu{sub 3.2}O{sub 7-{delta}} off-stoichiometric target sputtering. T{sub c} = 95.2 K was 8 K higher than that deposited by stoichiometric target sputtering. Critical current density was 1x10{sup 6} A cm{sup -2} at 77 K, and surface roughness was 35 nm. (author)

  5. Is LaAlO3 a viable substrate for the deposition of high quality thin films of YBa2Cu3O7-δ?

    International Nuclear Information System (INIS)

    Koren, Gad; Polturak, Emil

    2002-01-01

    A systematic study of the surface morphology of epitaxial thin films of YBa 2 Cu 3 O 7-δ on (100) LaAlO 3 wafers is reported. The films were prepared by high pressure dc sputtering or laser ablation deposition, on wafers of 0.5-2.8 mm thickness and 2 or 3 inch diameter. Optical and atomic force microscopy (AFM) were used to characterize the surfaces, while transport was used to verify the high quality of the films. For films prepared under the same conditions, we found a systematic increase in size and number of extended defects in the films with wafer thickness. In some cases, a clear correlation was observed between the defect structure and the twin boundaries of the LaAlO 3 substrate. We specify the conditions for minimizing these defects. (author)

  6. Surface characterization of superconductive Nd1Ba2Cu3Oy thin films using scanning probe microscopes

    International Nuclear Information System (INIS)

    Ting, W.; Badaye, M.; Itti, R.; Morishita, T.; Koshizuka, N.; Tanaka, S.

    1996-01-01

    Recently, superconductive Nd 1 Ba 2 Cu 3 O y (Nd123) thin films with high superconducting transition temperature (T c ) have been successfully fabricated at the authors institute employing the standard laser ablation method. In this paper, they report parts of the results of surface characterization of the Nd123 thin films using an ultrahigh vacuum scanning tunneling microscope/spectroscopy (UHV-STM/STS) and an atomic force microscope (AFM) system operated in air. Clear spiral pattern is observed on the surfaces of Nd123 thin films by STM and AFM, suggesting that films are formed by two-dimensional island growth mode at the final growing stage. Contour plots of the spirals show that the step heights of the spirals are not always the integer or half integer numbers of the c-axis parameter of the structure. This implies that the surface natural termination layer of the films may not be unique. Surface atomic images of the as-prepared Nd123 thin films are obtained employing both STM and AFM. STS measurements show that most of the surfaces are semiconductive, or sometimes even metallic. The results of STS measurements together with the fact that they are able to see the surface atomic images using scanning probe microscopes suggest that exposure to air does not cause serious degradation to the as-prepared surfaces of Nd123 thin films

  7. Synthesis of Cu2O from CuO thin films: Optical and electrical properties

    Directory of Open Access Journals (Sweden)

    Dhanya S. Murali

    2015-04-01

    Full Text Available Hole conducting, optically transparent Cu2O thin films on glass substrates have been synthesized by vacuum annealing (5×10−6 mbar at 700 K for 1 hour of magnetron sputtered (at 300 K CuO thin films. The Cu2O thin films are p-type and show enhanced properties: grain size (54.7 nm, optical transmission 72% (at 600 nm and Hall mobility 51 cm2/Vs. The bulk and surface Valence band spectra of Cu2O and CuO thin films are studied by temperature dependent Hall effect and Ultra violet photo electron Spectroscopy (UPS. CuO thin films show a significant band bending downwards (due to higher hole concentration than Cu2O thin films.

  8. Characterization of Cu(In,Ga)(S,Se)2 thin films prepared by sequential evaporation from ternary compounds

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Hatori, M.; Niiyama, S.; Miyake, Y.

    2006-01-01

    Cu(In,Ga)(S,Se) 2 thin films were fabricated by sequential evaporation from CuGaSe 2 , CuInSe 2 and In 2 S 3 compounds for photovoltaic device applications. From XRF analysis, the Cu:(In+Ga):(S+Se) atomic ratio in all thin films was approximately 1:1:2. As the [In 2 S 3 ]/([CuGaSe 2 ]+[CuInSe 2 ]) mole ratio in the evaporating materials increased, the S/(S+Se) atomic ratio in the thin films increased from 0 to 0.16 determined by XRF and to 0.43 by EPMA. XRD studies demonstrated that the prepared thin films had a chalcopyrite Cu(In,Ga) (S,Se) 2 structure and the preferred orientation to the 112 plane. The SEM images demonstrated that Cu(In,Ga)(S,Se) 2 thin films had large and columnar grains. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. Critical current density of strained multilayer thin films of Nd1.83Ce0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gross, R.; Gupta, A.; Olsson, E.; Segmueller, A.; Koren, G.

    1990-01-01

    The superconducting transport properties of strained multilayer thin films of YBa 2 Cu 3 O 7-δ / Nd 1.83 Ce 0.17 CuO x , grown heteroepitaxially by laser ablation deposition, are reported. For individual layer thicknesses below a critical layer thickness of about 250 A, coherency strain removes the orthorhombic distortion in the YBa 2 Cu 3 O 7-δ layers and makes them twin-free. Zero-field critical current densities as high as 1.1x10 7 A/cm 2 at 77 K have been measured for the YBa 2 Cu 3 O 7-δ layers. Flux pinning energies at zero temperature and zero magnetic field in the range of 80--140 meV have been found

  10. Angular dependence of the irreversible magnetization of YBa2Cu3O7 superconducting thin films

    International Nuclear Information System (INIS)

    Thrane, B.P.; Schlenker, C.; Dumas, J.; Buder, R.

    1996-01-01

    YBa 2 Cu 3 O 7 superconducting thin films have been studied by magnetization measurements in oblique fields up to 0.8 T both at low temperature and at temperatures close to T c . Both components of magnetization parallel and perpendicular to the applied field could be measured with two pairs of crossed detection coils. In all cases the magnetization is found to be perpendicular to the film plane. This is due to the self-field effects related to the thin-film geometry which force the critical currents to circulate along the film plane. At low temperature the properties are found to depend only on the component of the applied magnetic field perpendicular to this plane, as expected in the situation where demagnetizing field effects are dominant. However, at temperatures close to T c the critical currents and therefore the pinning are found to increase when the applied field approaches the film plane. This is attributed to the effect of intrinsic pinning which may be related to the kink structure of the vortices in oblique fields. copyright 1996 The American Physical Society

  11. Influences of annealing temperature on sprayed CuFeO2 thin films

    Science.gov (United States)

    Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.

    2018-06-01

    Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.

  12. Off-axis sputter deposition of YBa2Cu3O7 thin films for microwave applications

    International Nuclear Information System (INIS)

    Greene, L.H.; Bagley, B.G.; Feldmann, W.L.; Barner, J.B.; Shokoohi, F.; Miceli, P.; Wilkens, B.J.; Fathy, A.; Kalokitis, D.; Pendrick, V.

    1991-01-01

    Thin films of superconducting YBa 2 Cu 3 O 7 were grown in situ by off-axis sputter deposition for microwave device fabrication. These ∼1 cm 2 films, which are reproducible, exhibit midpoint T c 's of 89--90.5 K as measured by ac susceptibility, ion channeling yields of 4.7%--6%, and c-axis rocking-curve half-widths of 0.5 degree, even with a rich microstructure as seen by scanning electron microscopy. Two films were photodefined into miniature X-band microwave bandpass filters. These narrow-band filters (0.5% bandwidth) exhibited 4.4-and 4.5-dB insertion losses at 77 K and 9.25 GHz, with little temperature dependence below 80 K

  13. Microwave-detected optical response of YBa2Cu3O7-x thin films

    International Nuclear Information System (INIS)

    Kaplan, R.; Carlos, W.E.; Cukauskas, E.J.; Ryu, J.

    1990-01-01

    Microwave-detected optical response (MDOR) of YBa 2 Cu 3 O 7-x and other oxide superconductor thin films is shown to yield information complementary to that provided by trasnport photoconductivity measurements. The MDOR technique yields a superposition of response from all illuminated portions of a sample, irrespective of the existence of a resistive macroscopic percolative current path. The response is found to be bolometric at temperatures for which resistance appears in transport measurements. At low temperatures MDOR results imply a nonbolometric response which in some respects is consistent with nonequilibrium quasiparticle concentration due to radiative pair breaking

  14. Deposition, characterization, and electronic applications of YBa2Cu3O7 thin films

    International Nuclear Information System (INIS)

    Kromann, R.

    1992-09-01

    YBa 2 Cu 3 O 7 thin films were deposited by rf sputtering and laser ablation. In the case of rf sputtering the presence of negative oxygen ions was found to give rise to severe resputtering effects. In contrast, laser ablation is found to be a much simpler and more reliable depostion method. Structural characterization in the form of an X-ray diffraction study of the structure of laser ablated YBCO thin films is reported. Two films on MgO differing by 75% in the critical current density were examined. The difference was ascribed to the fact that about 5% of the grains in the low J c film grow 45 deg. misoriented with respect to the dominant orientation in the a-b plane. Two other films on SrTiO 3 differing by 70% in J c were examined. Various ways of achieving a 45 deg. grain boundary by a biepitaxial process on MgO substrates are described. The grain boundary junctions are used to fabricate DC SQUIDs. It is demonstrated that the SQUIDs exhibit critical current modulation in a magnetic field at temperatures up to 80 K. It is shown that the 1/f noise can be reduced by a factor of 3 by the double modulation technique, indicating that the dominant contribution to the 1/f noise comes from critical current fluctuations. The high level of 1/f noise from critical current fluctuations is ascribed to the nature of the 45 deg. grain boundary and it is argued that it is necessary to develop a bi-epitaxial process for grain boundaries with angles less than 45 deg.. Finally, it is demonstrated that a SQUID and a flux transformer can be fabricated on the same substrate to form an integrated magnetometer. (au) (8 tabs., 58 ills., 97 refs.)

  15. Substrate decoration for improvement of current-carrying capabilities of YBa2Cu3Ox thin films

    DEFF Research Database (Denmark)

    Khoryushin, Alexey; Mozhaev, Peter; Mozhaeva, Julia

    2013-01-01

    The effects of substrate decoration with yttria and Y:ZrO2 on the structural and electrical properties of the YBa2Cu3Ox (YBCO) thin films are studied. The films were deposited on (LaAlO3)3–(Sr2AlTaO8)7 substrates by pulsed laser deposition. Two different structures of decoration layer were applie...

  16. Substitutions in cation Nd/Ba subsystem in thin films of high-temperature superconductor NdBa2Cu3Oy

    International Nuclear Information System (INIS)

    Mozhaev, P.B.; Komissinskij, F.V.; Ivanov, Z.G.; Ovsyannikov, G.A.

    2000-01-01

    Thin films of the Nd 1+x Ba 2-x Cu 3 O y (NBCO) high-temperature superconductor with various neodymium and barium ratio are obtained through the method of combined laser spraying of targets with different elements composition. The films with neodymium excess (x >0) had low density of particles on the surface and roughness, however the critical temperature decreased with growth of x. The films with barium excess (x z particles. The NbCO structure and superconducting properties demonstrate strong dependence on the conditions of the films saturation with oxygen [ru

  17. Preparation, electrical and optical properties of evaporated thin films of CuPbI3

    International Nuclear Information System (INIS)

    Kuku, T.A.; Azi, S.O.

    1995-10-01

    Thin films of CuPbl 3 have been prepared by a vacuum evaporation process. X-ray analysis gives structural parameters in consonance with the bulk powder form of the material. The film however preferring a growth in the [002] direction. Electrical conductivity indicates an activated process with two activation energies being 0.45 eV for T ≤ 373 K, and 0.6 eV for T ≥ 373 K. Both are interpreted to be due to the transport of anionic carriers in the phases existing below and beyond 373 K respectively. Optical characterization reveals a material with high absorption coefficient, with α ≥ 10 4 cm -1 . The material is characterized by a direct absorption with the direct edge at 1.64 eV. (author). 13 refs, 5 figs

  18. Ion channeling study of epitaxially grown HoBa2Cu3Ox thin films on MgO(001)

    International Nuclear Information System (INIS)

    Watamori, Michio; Shoji, Fumiya; Hanawa, Teruo; Oura, Kenjiro; Itozaki, Hideo.

    1990-01-01

    The crystalline quality of high-T c superconducting HoBa 2 Cu 3 O x thin films formed on MgO(001) has been investigated by a high-energy ion channeling technique. Analysis was performed at 3 depth regions (surface, inside, and interface), and the degree of crystalline quality at each depth was estimated. Based on ion channeling measurements carried out with the normal and off-normal and directions, it has been found that (1) the crystalline quality at the film surface is much better than that at the interface, (2) the crystalline disorder can be seen mainly along the c-axis, and (3) the film consists of two domains, 90deg rotated from each other about the c-axis of the film. The crystalline quality of the MgO substrates has also been investigated. (author)

  19. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    Science.gov (United States)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low

  20. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    International Nuclear Information System (INIS)

    Fan, W.; Kabius, B.; Hiller, J.M.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 deg. C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlO x , while the oxide layer at the TiAl/Cu interface is an Al 2 O 3 -rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlO x interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 deg. C followed by a rapid thermal annealing at 700 deg. C. This process significantly reduced the thickness of the TiAlO x layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high

  1. Structural and electrical properties of co-evaporated Cu(In,Ga)Se{sub 2} thin films with varied Cu contents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Young; Kim, Girim; Kim, Jongwan; Park, Jae Hwan; Lim, Donggun, E-mail: dglim@ut.ac.kr

    2013-11-01

    Cu(In,Ga)Se{sub 2} (CIGS) thin films were fabricated with varying Cu contents. Cu/(Ga + In) ratios were varied between 0.4 and 1.02. Solar cells were then fabricated by co-evaporation using the CIGS layers as absorbers. The influences of Cu content on the cells' structural, optical and electrical properties were studied. The CIGS thin films were characterized by X-ray diffractometer, scanning electron microscopy, energy-dispersive spectroscopy, four-point probe measurement and Hall measurement. Grain size in the films increased with increasing Cu content. At a Cu/(Ga + In) ratio of 0.86, the (220/204) peak was stronger than the (112) peak and carrier concentration was 1.49 × 10{sup 16} cm{sup −3}. Optimizing the Cu content resulted in a CIGS solar cell with an efficiency of 16.5%. - Highlights: • Improvement of technique to form Cu(In,Ga)Se{sub 2} (CIGS) film by co-evaporation method • Cu/(In + Ga) ratio to improve the efficiency for CIGS thin film solar cell • Cu content effects have been analyzed. • Optimum condition of CIGS layer as an absorber of thin film solar cells.

  2. THIN FILM-BASED SENSOR FOR MOTOR VEHICLE EXHAUST GAS, NH3, AND CO DETECTION

    Directory of Open Access Journals (Sweden)

    S. Sujarwata

    2016-10-01

    Full Text Available A copper phthalocyanine (CuPc thin film based gas sensor with FET structure and channel length 100 μm has been prepared by VE method and lithography technique to detect NH3, motor cycle exhaust gases and CO. CuPc material layer was deposited on SiO2 by the vacuum evaporator (VE method at room temperature and pressure of 8 x10-4 Pa. The stages of manufacturing gas sensor were Si/SiO2 substrate blenching with ethanol in an ultrasonic cleaner, source, and drain electrodes deposition on the substrate by using a vacuum evaporator, thin film deposition between the source/drain and gate deposition. The sensor response times to NH3, motorcycle exhaust gases and CO were 75 s, 135 s, and 150, respectively. The recovery times were 90 s, 150 s and 225, respectively. It is concluded that the CuPc thin film-based gas sensor with FET structure is the best sensor to detect the NH3 gas.Sensor gas berbasis film tipis copper phthalocyanine (CuPc berstruktur FET dengan panjang channel 100 μm telah dibuatdengan metode VE dan teknik lithography untuk mendeteksi NH3 gas buang kendaraan bermotor dan CO. Lapisan bahan CuPc dideposisikan pada permukaan silikon dioksida (SiO2 dengan metode vacuum evaporator (VE pada temperatur ruang dengan tekanan 8 x10-4 Pa. Tahapan pembuatan sensor gas adalah pencucian substrat Si/SiO2 dengan etanol dalam ultrasonic cleaner, deposisi elektroda source dan drain di atas substrat dengan metode vacuum evaporator, deposisi film tipis diantara source/drain dan deposisi gate. Waktu tanggap sensor terhadap NH3, gas buang kendaraan bermotor dan CO berturut-turut adalah 75 s, 135 s,dan 150 s. Waktu pemulihan berturut-turut adalah 90 s, 150 s,dan 225 s. Disimpulkan bahwa sensor gas berstruktur FET berbasis film tipis CuPc merupakan sensor paling baik untuk mendeteksi adanya gas NH3.

  3. Influence of ion-rradiated SrTiO sub 3 on the properties of thin film oxide superconductors. [YBaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Bordes, N; Cohen, M; Nastasi, M; Rollett, A D; Maggiore, C J [Los Alamos National Lab., NM (USA)

    1989-12-10

    The quality of high-temperature superconducting thin films is dependent on the structure of the substrate used. The present work examines the effects of radiation-damaged SrTiO{sub 3} substrates on the properties of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin film superconductors. Prior to film deposition, single-crystal SrTiO{sub 3} substrates were cooled to 77 K and irradiated with 400 keV neon ions to doses of 1x10{sup 15} and 1x10{sup 16} ions cm{sup -2}. Following deposition the film/substrate couples were annealed in ''wet'' oxygen at either 850 or 900deg C. Films on substrates irradiated at high doses showed an increase in transition width from 2deg to 8deg and lowered transition temperature from 92 to 65 K relative to films on low dose and unirradiated substrates. These differences are discussed in terms of results obtained from high-energy and Rutherford backscattering and channeling experiments, scanning electron microscopy observations and X-ray diffraction data. (orig.).

  4. Transport in reversibly laser-modified YBa2Cu3O/sub 7-//sub x/ superconducting thin films

    International Nuclear Information System (INIS)

    Krchnavek, R.R.; Chan, S.; Rogers, C.T.; De Rosa, F.; Kelly, M.K.; Miceli, P.F.; Allen, S.J.

    1989-01-01

    A focused argon ion laser beam in a controlled ambient is used to modify the transport properties of superconducting YBa 2 Cu 3 O/sub 7-//sub x/ thin films. The laser-modified region shows a sharp transition temperature (T/sub c/≅76 K) that is reduced from the unmodified regions of the film (T/sub c/≅87 K). In situ monitoring of the room-temperature electrical resistance is used to control the laser processing and prevent formation of the semiconducting phase. The original properties of the superconducting film can be recovered by plasma oxidation indicating that the laser-induced phase is oxygen deficient

  5. Determination and analysis of dispersive optical constants of CuIn3S5 thin films

    International Nuclear Information System (INIS)

    Khemiri, N.; Sinaoui, A.; Kanzari, M.

    2011-01-01

    CuIn 3 S 5 thin films were prepared from powder by thermal evaporation under vacuum (10 -6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 o C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E 0 and dispersion energy E d of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.

  6. Tc enhancement and superconducting properties of a YBa[sub 2]Cu[sub 3]O[proportional to]6. 5 thin film after fluorine insertion

    Energy Technology Data Exchange (ETDEWEB)

    Pena, O.; Mokhtari, M.; Perrin, C.; Thivet, C.; Guilloux-Viry, M.; Perrin, A.; Sergent, M. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France))

    1993-02-10

    An oxygen-deficient YBa[sub 2]Cu[sub 3]O[sub x] thin film (Tc=54 K, [Delta]Tc>8K) was treated under a diluted (3% in N[sub 2]) NF[sub 3] gas flow at temperatures not exceeding 280degC. AC induction measurements show a substantial increase of Tc up to about 86 K and a clear improvement of the [chi]''[sub AC] dissipation component (FWHM=1.2 K), as a function of the reaction time. The film was further studied at the end of the reaction by the AC-field dependence and by DC magnetization measurements, including ZFC/FC and magnetization cycles. It was found that granular effects are not important, meaning that the crystalline properties of the film are not degraded by the fluorination process, in good agreement with the X-ray diffraction data. The sharpness of the [chi]''[sub AC] peak, the low M[sub FC]/M[sub ZFC] ratio and the large hysteresis of the magnetization cycle indicate that the critical current densities are high (of the order of 10[sup 6] A/cm[sup 2] at 5 K) and comparable to reasonably good YBa[sub 2]Cu[sub 3]O[sub 7] thin films. The usefulness of the fluorination method and a comparison with halogenated YBa[sub 2]Cu[sub 3]O[sub x] ceramics are also presented. (orig.).

  7. Effect of yttrium doping on the dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} thin film produced by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S., E-mail: vssaji@chosun.ac.k [Chosun University, College of Dentistry and 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju-501-759 (Korea, Republic of); Choe, Han Cheol [Chosun University, College of Dentistry and 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju-501-759 (Korea, Republic of)

    2009-05-29

    Pure and yttrium substituted CaCu{sub 3}Ti{sub 4-x}Y{sub x}O{sub 12-x/} {sub 2} (x = 0, 0.02, 0.1) thin films were prepared on boron doped silica substrate employing chemical solution deposition, spin coating and rapid thermal annealing. The phase and microstructure of the sintered films were examined using X-ray diffraction and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using electrochemical impedance spectroscopy. Highly ordered polycrystalline CCTO thin film with bimodal grain size distribution was achieved at a sintering temperature of 800 {sup o}C. Yttrium doping was found to have beneficial effects on the dielectric properties of CCTO thin film. Dielectric parameters obtained for a CaCu{sub 3}Ti{sub 4-x}Y{sub x}O{sub 12-x} {sub /2} (x = 0.02) film at 1 KHz were k {approx} 2700 and tan {delta} {approx} 0.07.

  8. Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application

    International Nuclear Information System (INIS)

    Gurav, K.V.; Patil, U.M.; Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S.; Lokhande, C.D.; Kim, J.H.

    2013-01-01

    Highlights: •Cu(OH) 2 is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH) 2 . •The hydrous, nanograined Cu(OH) 2 shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH) 2 ] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH) 2 thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH) 2 thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH) 2 thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance

  9. Fabrication and characterization of CuAlO2 transparent thin films prepared by spray technique

    International Nuclear Information System (INIS)

    Bouzidi, C.; Bouzouita, H.; Timoumi, A.; Rezig, B.

    2005-01-01

    CuAlO 2 thin films have been grown on glass substrates using spray technique; a low-cost method of thin films depositing. The deposition was carried out in a 450-525 deg. C range of substrate temperature. The solution and gas flow rates were kept constant at 5 cm 3 min -1 and 6.10 -3 m 3 min -1 , respectively. Compressed air was used as a carrier gas. The structural, morphological and optical properties of these thin films have been studied. These properties are strongly related to the substrate temperature and to the [Cu]/[Al] molar ratio r. X-ray diffraction analysis confirmed the initial amorphous nature of as-deposited films and phase transition into crystalline CuAlO 2 with the preferential orientation (1 0 1) upon annealing at 570 deg. C. The optical transmission of 80% has been achieved in the visible spectrum. CuAlO 2 band gap energy in the range of 3.34-3.87 eV has been found by optical measurement depending on fabrication parameters

  10. Laser wavelength dependent properties of YBa2Cu3O7-δ thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Baseman, R.J.; Lutwyche, M.I.; Laibowitz, R.B.

    1989-01-01

    YBa 2 Cu 3 O 7-δ thin films were deposited onto (100) SrTiO 3 substrates using 1064, 532, 355, 248, and 193 nm laser ablation. Transport measurements show lower normal-state resistivities and higher critical currents in films deposited by the shorter wavelength lasers. The surface morphology of the films was rough with large particulates when the 1064 nm laser was used whereas much smoother surfaces with fewer and smaller particulates were obtained with the UV lasers. It is suggested that the better film quality obtained when the UV lasers are used is due to a small absorption depth of the UV photons in the ceramic target and to higher absorption by the ablated fragments. This leads to smaller ablated species and further fragmentation in the hotter plume and, therefore, to smoother and denser films

  11. Particulates reduction in laser-ablated YBa2Cu3O7-δ thin films by laser-induced plume heating

    International Nuclear Information System (INIS)

    Koren, G.; Baseman, R.J.; Gupta, A.; Lutwyche, M.I.; Laibowitz, R.B.

    1990-01-01

    Experimental demonstration of reduction in the number and size of particulates formed in the laser ablation deposition of YBa 2 Cu 3 O 7-δ thin films is obtained by the use of a second laser which further heats and fragments the blowoff material in the plume formed by the first laser. This results in a smoother film with higher critical current density as compared to that obtained without the second laser irradiation of the plume

  12. Morphology, structure, and electrical properties of YBa{sub 2}Cu{sub 3}O{sub x} thin films on tilted NdGaO{sub 3} substrates, deposited by DC-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, Peter B. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation)]. E-mail: pbmozh@nm.ru; Kotelyanskii, Iosif M. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Luzanov, Valery A. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Mozhaeva, Julia E. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Donchev, Todor [Institute of Electronics BAS, Sofia (Bulgaria); Mateev, Emil [Institute of Electronics BAS, Sofia (Bulgaria); Nurgaliev, Timur [Institute of Electronics BAS, Sofia (Bulgaria); Bdikin, Igor K. [Institute of Solid State Physics RAS, Chernogolovka, Moscow 142432 (Russian Federation); Department of Ceramic and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Narymbetov, Bakhyt Zh. [Complex Institute of Natural Sciences UzAS, Nukus (Uzbekistan)

    2005-02-15

    Thin YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) films were deposited using DC-sputtering technique on NdGaO{sub 3} substrates, tilted from (1 1 0) orientation by 0-26 deg . The structure and surface quality of the substrates were carefully characterized to obtain reliable results of thin films deposition. Structural, morphological and electrical properties of the YBCO thin films show three different ranges of inclination angle: vicinal, intermediate and high. In the vicinal range the properties of the film are generally the same as of the standard films deposited on (1 1 0) NdGaO{sub 3} substrate. An increase of the inclination angle to the intermediate range results in a significant improvement of morphology and structural quality of the film. Best electrical parameters are measured for the films of the intermediate range also. Probable reason for such behavior is simultaneous and regular seeding of the film in the joints of facets on the substrate surface. Further increase of inclination angle leads to step bunching and oxygen out-diffusion, destroying both structural and electrical perfection of the tilted-axes YBCO film.

  13. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    Directory of Open Access Journals (Sweden)

    Hariyadi Soetedjo

    2018-03-01

    Full Text Available Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm−3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1 and (2 0 0 occurs during deposition. Keywords: Thin films, Lead sulfide, Sputtering, Resistivity, Semiconductor, Infrared

  14. Preparation and properties of KCl-doped Cu2O thin film by electrodeposition

    International Nuclear Information System (INIS)

    Yu, Xiaojiao; Li, Xinming; Zheng, Gang; Wei, Yuchen; Zhang, Ama; Yao, Binghua

    2013-01-01

    With the indium tin oxide-coated glass as working electrode, cuprous oxide thin film is fabricated by means of electrodeposition. The effects of KCl doped and annealing treatment upon Cu 2 O thin film morphology, surface resistivity, open-circuit voltage, electric conduction types and visible light response are studied. The research results indicate that KCl doped has a great effect upon Cu 2 O crystal morphology, thus, making Cu 2 O thin film surface resistivity drop, and the open-circuit voltage increase and that electric conduction types are transformed from p type into n type, and the visible light (400–500 nm) absorption rate is slightly reduced. Annealing treatment can obviously decrease Cu 2 O thin film surface resistivity and improve its open-circuit voltage. When KCl concentration in electrolytic solution reaches 7 mmol/L, Cu 2 O thin film morphology can be changed from the dendritic crystal into the cubic crystal and Cu 2 O thin film surface resistivity decreases from the initial 2.5 × 10 6 Ω cm to 8.5 × 10 4 Ω cm. After annealing treatment at 320 °C for 30 min, the surface resistivity decreases to 8.5 × 10 2 Ω cm, and the open-circuit voltage increases from the initial 3.1 mV to 79.2 mV.

  15. Femtosecond optical detection of quasiparticle dynamics in high- T sub c YBa sub 2 Cu sub 3 O sub 7 minus. delta. superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.G.; Vardeny, Z.V.; Wong, K.S.; Symko, O.G. (Department of Physics, University of Utah, Salt Lake City, UT (USA)); Koren, G. (Department of Physics, Technion, 32000 Haifa (Israel))

    1990-11-19

    Femtosecond dynamics of photogenerated quasiparticles in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconducting thin films shows, at {ital T}{le}{ital T}{sub {ital c}}, two main electronic processes: (i) quasiparticle avalanche production during hot-carrier thermalization, which takes about 300 fsec; (ii) recombination of quasiparticles to form Cooper pairs, which is completed within 5 psec. In contrastr, nonsuperconducting epitaxial films such as PrBa{sub 2}Cu{sub 2}O{sub 7} and YBa{sub 2}Cu{sub 3}O{sub 6} show regular picosecond electronic response.

  16. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhenghua; Yan Chang; Sun Kaiwen; Han Zili [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Fangyang, E-mail: liufangyang@csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Jin [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Lai Yanqing, E-mail: laiyanqingcsu@163.com [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Li Jie; Liu Yexiang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2012-07-15

    Earth-abundant Cu{sub 2}ZnSnS{sub 4} is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu{sub 2}ZnSnS{sub 4} and the p-type conductivity with a carrier concentration in the order of 10{sup 18} cm{sup -3} and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  17. The growth and characterisation of YBa2Cu3O7-δ superconducting thin films

    International Nuclear Information System (INIS)

    McCurry, M.P.

    1999-02-01

    The normal state properties of YBa 2 Cu 3 O 7-δ (YBCO) are not completely understood. It is known that the oxygen doping play a large part in determining these properties. The optical conductivity of a series of c-axis YBCO thin films was investigated in this thesis. The films were grown on (100) MgO substrates using a pulsed laser deposition (PLD) system and characterised using X-ray diffraction, atomic force microscopy and resistance-temperature measurements. The optimum parameters for c-axis YBCO thin film growth were determined by systematically varying the main deposition parameters. The best quality films had a transition temperature T c ∼ 88K, with a transition width ∼ 1-2K. Critical current densities of J c ∼ 10 7 Acm -2 were obtained. Substrate and target morphology affected the quality of the films. a-axis YBCO films were grown using a PrBa 2 Cu 3 O 7 (PBCO) film as a template for growth. The choice of target and substrate were again important, with a smooth substrate essential for the multi-layering. T c ∼ 83K and J c ∼ 10 6 Acm -2 were the best values obtained. These values compare with data published on the 'best' YBCO films deposited by PLD. A series of c-axis films was controllably under-doped using an ex-situ annealing process. The as-grown films were assumed to be optimally doped with δ ∼ 0.05. Doping levels in the 'metallic' region, 0.05 -2 mbar. Another tetragonal film was obtained by cooling it after deposition in a nitrogen atmosphere. Neither had a superconducting transition; the c-axes of both films were elongated. The films could be successfully re-doped with oxygen, with a subsequent return to optimal values of T c and c-axis lattice parameter. The dielectric function of optimally doped and under-doped c-axis YBCO films was determined using the attenuated total reflection (ATR) technique. This data was obtained at a fixed frequency of 2984 cm -1 , (0.366eV), at temperatures ranging from 300K to 80K. The data was analysed in

  18. Processing of La/sub 1.8/Sr/sub 0.2/CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    International Nuclear Information System (INIS)

    Madakson, P.; Cuomo, J.J.; Yee, D.S.; Roy, R.A.; Scilla, G.

    1988-01-01

    High quality La/sub 1.8/Sr/sub 0.2/CuO 4 and YBa 2 Cu 3 O 7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 μm thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF 2 , Si, CaF 2 , ZrO 2 -9% Y 2 O 3 , BaF 2 , Al 2 O 3 , and SrTiO 3 . Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, transmission electron microscopy, x-ray diffraction, and secondary ion mass spectroscopy. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa 2 Cu 2 O 7 structure, in the case of SrTiO 3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film. In general, the superconducting transition temperature is found to depend on substrate temperature and ion beam energy, film composition, annealing conditions, and the nature and the magnitude of the substrate/film interaction

  19. Magnetic penetration depth of YBa2Cu3O(7-delta) thin films determined by the power transmission method

    Science.gov (United States)

    Heinen, Vernon O.; Miranda, Felix A.; Bhasin, Kul B.

    1992-01-01

    A power transmission measurement technique was used to determine the magnetic penetration depth (lambda) of YBa2Cu3O(7-delta) superconducting thin films on LaAlO3 within the 26.5 to 40.0 GHz frequency range, and at temperatures from 20 to 300 K. Values of lambda ranging from 1100 to 2500 A were obtained at low temperatures. The anisotropy of lambda was determined from measurements of c-axis and a-axis oriented films. An estimate of the intrinsic value of lambda of 90 +/- 30 nm was obtained from the dependence of lambda on film thickness. The advantage of this technique is that it allows lambda to be determined nondestructively.

  20. YBa2Cu3O7-δ thin films deposited by MOCVD vertical reactor with a flow guide

    International Nuclear Information System (INIS)

    Sujiono, E.H.; Negeri Makassar; Sani, R.A.; Saragi, T.; Arifin, P.; Barmawi, M.

    2001-01-01

    The effect of a flow guide in a vertical MOCVD reactor on the deposition uniformity and growth rate of thin YBCO films has been studied. Without the flow guide the growth rates are low, have a poor uniformity and the film composition is not stoichiometric. The growth rate of the films grown using a reactor with the flow guide was approximately twice that without the flow guide. Using this flow guide the growth rates were 0.4-0.7 μm/h for growth temperatures varying between 600 and 750 C, and the crystalline quality as well as the surface morphology of YBCO films on MgO substrates is improved. For films grown at temperatures above 650 C the composition of Y:Ba:Cu is 1:2:3, as confirmed by EDAX spectra. Films deposited without and with the flow guide at 700 C have critical temperatures around 85 and 88 K, respectively. The reduction in ΔT c (T c,zero -T c,onset ) also shows an improvement of the superconducting properties of YBCO thin films deposited with a flow guide. (orig.)

  1. Fabrication of high quality Cu2SnS3 thin film solar cell with 1.12% power conversion efficiency obtain by low cost environment friendly sol-gel technique

    Science.gov (United States)

    Chaudhari, J. J.; Joshi, U. S.

    2018-03-01

    Cu2SnS3 (CTS) is an emerging ternery chalcogenide material with great potential application in thin film solar cells. We present here high quality Cu2SnS3 thin films using a facile spin coating method. The as deposited films of CTS were sulphurized in a graphite box using tubular furnace at 520 °C for 60 min at the rate of 2.83 °C min-1 in argon atmosphere. X-ray diffraction (XRD) and Raman spectroscopy studies confirm tetragonal phase and absence of any secondary phase in sulphurized CTS thin films. X-ray photoelectron spectroscopy (XPS) demonstrates that Cu and Sn are in +1 and +4 oxidation state respectively. Surface morphology of CTS films were analyzed by field emission scanning electron microscope and atomic force microscope (AFM), which revealed a smooth surface with roughness (RMS) of 6.32 nm for sulphurized CTS film. Hall measurements confirmed p-type conductivity with hole concentartion of sulphurized CTS thin film is of 6.5348 × 1020 cm-3. UV-vis spectra revealed a direct energy band gap varies from 1.45 eV to 1.01 eV for as-deposited and sulphurized CTS thin film respectively. Such band gap values are optimum for semiconductor material as an absorber layer of thin film solar cell. The CTS thin film solar cell had following structure: SLG/FTO/ZnO/CTS/Al with short circuit current density of (Jsc) of 11.6 mA cm-2, open circuit voltage (Voc) of 0.276 V, active area of 0.16 cm2, fill factor (FF) of 35% and power conversion efficiency of 1.12% under AM 1.5 (100 mW cm-2) illumination in simulated standard test conditions.

  2. Stability of Tl-Ba-Ca-Cu-O Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M.P.; Overmyer, D.L.; Venturini, E.L.; Padilla, R.R.; Provencio, P.N.

    1999-08-23

    We report the stability of TlBa{sub 2}CaCu{sub 2}O{sub 7} (Tl-1212) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} (T1-2212) thin films and by inference, the stability of TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 9} (Tl-1223) and Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl-2223) thin films, under a variety of conditions. In general, we observe that the stability behavior of the single Tl-O layer materials (Tl-1212 and Tl-1223)are similar and the double Tl-O layer materials (Tl-2212 and Tl-2223) are similar. All films are stable with repeated thermal cycling to cryogenic temperatures. Films are also stable in acetone and methanol. Moisture degrades film quality rapidly, especially in the form of vapor. Tl-1212 is more sensitive to vapor than Tl-2212. These materials are stable to high temperatures in either N{sub 2}, similar to vacuum for the cuprates, and O{sub 2} ambients. While total degradation of properties (superconducting and structural) occur at the same temperatures for all phases, 600 C in N{sub 2} and 700 C in O{sub 2}, the onset of degradation occurs at somewhat lower temperatures for Tl-1212 than for Tl-2212 films. In all cases, sample degradation is associated with Tl depletion from the films.

  3. Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation.

    Science.gov (United States)

    Cayado, P; Sánchez-Valdés, C F; Stangl, A; Coll, M; Roura, P; Palau, A; Puig, T; Obradors, X

    2017-05-31

    The kinetics of oxygen incorporation (in-diffusion process) and excorporation (out-diffusion process), in YBa 2 Cu 3 O 6+x (YBCO) epitaxial thin films prepared using the chemical solution deposition (CSD) methodology by the trifluoroacetate route, was investigated by electrical conductivity relaxation measurements. We show that the oxygenation kinetics of YBCO films is limited by the surface exchange process of oxygen molecules prior to bulk diffusion into the films. The analysis of the temperature and oxygen partial pressure influence on the oxygenation kinetics has drawn a consistent picture of the oxygen surface exchange process enabling us to define the most likely rate determining step. We have also established a strategy to accelerate the oxygenation kinetics at low temperatures based on the catalytic influence of Ag coatings thus allowing us to decrease the oxygenation temperature in the YBCO thin films.

  4. Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Molin, Sebastian; Hendriksen, Peter Vang

    2017-01-01

    In this work, thin films (~1000 nm) of a pure MnCo2O4 spinel together with its partially substituted derivatives (MnCo1.6Cu0.2Fe0.2O4, MnCo1.6Cu0.4O4, MnCo1.6Fe0.4O4) were prepared by spray pyrolysis and were evaluated for electrical conductivity. Doping by Cu increases the electrical conductivit...

  5. Substrate decoration for improvement of current-carrying capabilities of YBa{sub 2}Cu{sub 3}O{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khoryushin, Alexey V., E-mail: khoryushin@ya.ru [Department of Physics, Technical University of Denmark, DTU Building 309, Kgs. Lyngby DK-2800 (Denmark); Mozhaev, Peter B.; Mozhaeva, Julia E. [Department of Physics, Technical University of Denmark, DTU Building 309, Kgs. Lyngby DK-2800 (Denmark); Bdikin, Igor K. [Department of Mechanical Engineering, Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Zhao, Yue [Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde (Denmark); Andersen, Niels H.; Jacobsen, Claus S.; Hansen, Jørn Bindslev [Department of Physics, Technical University of Denmark, DTU Building 309, Kgs. Lyngby DK-2800 (Denmark)

    2013-03-15

    Highlights: ► Effects of substrate decoration on properties of YBCO thin films were studied. ► Y{sub 2}O{sub 3} nanoparticles, ultra-thin Y{sub 2}O{sub 3} and Y:ZrO{sub 2} layers were used as decoration layer. ► Decoration improves j{sub C} (5 T and 50 K) up to 0.97 MA/cm{sup 2} vs. 0.76 MA/cm{sup 2} for a reference film. ► Ultra-thin layer of yttria and yttria nanoparticles have a similar effect on YBCO. ► Y{sub 2}O{sub 3} decoration results in power law coefficient α = 0.3 vs. α = 0.4 for a reference film. -- Abstract: The effects of substrate decoration with yttria and Y:ZrO{sub 2} on the structural and electrical properties of the YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films are studied. The films were deposited on (LaAlO{sub 3}){sub 3}–(Sr{sub 2}AlTaO{sub 8}){sub 7} substrates by pulsed laser deposition. Two different structures of decoration layer were applied, a template layer of nanoparticles and an uniform ultra-thin layer. Significant improvement of current-carrying capabilities was observed, especially at high external magnetic fields. Structural studies of these films reveal the presence of extended linear defects in the YBCO matrix. The formation of these structures is attributed to seeding of randomly oriented YBCO grains due to suppression of epitaxy in the very beginning of the deposition. The films of both kinds of decoration layers show nearly the same improvement of j{sub C} over the reference film at 77 and 50 K: j{sub C} (5T and 50 K) reaches 0.92 and 0.97 MA/cm{sup 2} for uniform and template decoration layers. At 5 and 20 K the effect of template decoration layers is more beneficial: j{sub C} (5T and 20 K) values are 3.5 and 4.1 MA/cm{sup 2}, j{sub C} (5T and 5 K) values are 6.4 and 7.9 MA/cm{sup 2}, for uniform and template decoration layers, respectively.

  6. Compositional ratio effect on the surface characteristics of CuZn thin films

    Science.gov (United States)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  7. Growth and characterization of high-Tc Y1Ba2Cu3O7-x superconducting thin films by chemical vapor deposition

    International Nuclear Information System (INIS)

    Feng, A.

    1992-01-01

    In chapter I, the current status of high-Tc superconductors (especially Y 1 Ba 2 Cu 3 O 7-x ), their microstructures and their unique physical properties are reviewed. An introduction to the potential and importance of those high-Tc superconductors in practical applications, especially for the application of YBCO thin films in microelectronics, is given. A general description of the common YBCO thin film fabrication and characterization techniques is also presented in this first chapter. Chapter II describes a new CVD process, temperature-controlled chemical vapor deposition (TC-CVD) for the growth of YBCO superconducting thin films on substrates of practical importance, such as sapphire (Al 2 O 3 ) and on substrates of lattice matched perovskite-type single crystals, such as LaAlO 3 . In order to verify the viability of this new CVD process the qualities of YBCO superconducting thin films were examined by various characterization methods, such as resistivity vs. temperature (R vs. T), scanning electron microscopy (SEM), X-ray diffraction (XRD), and magnetic susceptibility (x) measurements. Chapter III deals with the effect of substrate temperature on the properties of YBCO thin films made by TC-CVD. The principle objective of this study is to raise the transition temperature and critical current densities of CVD YBCO superconducting thin films. Understanding the relations between YBCO film growth process and varying substrate temperatures proved to be crucial in reaching this goal. The authors present the characterization results of YBCO thin films produced by different temperature schemes, to illustrate the importance of varying substrate temperature during the film growth. In chapter IV, the Rutherford backscattering (RBS) channeling technique is described. They have used RBS channeling to characterize the epitaxial YBCO thin film's crystallinity and lattice alignment. Transmission electron microscopy studies are also included

  8. Semiconductor thin films directly from minerals—study of structural, optical, and transport characteristics of Cu2O thin films from malachite mineral and synthetic CuO

    International Nuclear Information System (INIS)

    Balasubramaniam, K.R.; Kao, V.M.; Ravichandran, J.; Rossen, P.B.; Siemons, W.; Ager, J.W.

    2012-01-01

    We demonstrate the proof-of-concept of using an abundantly occurring natural ore, malachite (Cu 2 CO 3 (OH) 2 ) to directly yield the semiconductor Cu 2 O to be used as an active component of a functional thin film based device. Cu 2 O is an archetype hole-conducting semiconductor that possesses several interesting characteristics particularly useful for solar cell applications, including low cost, non-toxicity, good hole mobility, large minority carrier diffusion length, and a direct energy gap ideal for efficient absorption. In this article, we compare the structural, optical, and electrical transport characteristics of Cu 2 O thin films grown from the natural mineral malachite and synthetic CuO targets. Growth from either source material results in single-phase, fully epitaxial cuprous oxide thin films as determined by x-ray diffraction. The films grown from malachite have strong absorption coefficients ( 10 4 cm −1 ), a direct allowed optical bandgap ( 2.4 eV), and majority carrier hole mobilities ( 35 cm 2 V −1 s −1 at room temperature) that compare well with films grown from the synthetic target as well as with previously reported values. Our work demonstrates that minerals could be useful to directly yield the active components in functional devices and suggests a route for the exploration of low cost energy conversion and storage technologies. - Highlights: ► Semiconductor thin films directly from minerals ► Chemistry and structure evolution of the films obtained from mineral target is very similar to that films obtained from high-purity synthetic targets. ► Quite interestingly, transport and optical characteristics are also found to be similar.

  9. Room temperature chemical synthesis of Cu(OH){sub 2} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Gurav, K.V. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Patil, U.M. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Kim, J.H., E-mail: jinhyeok@chonnam.ac.kr [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of)

    2013-10-05

    Highlights: •Cu(OH){sub 2} is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH){sub 2}. •The hydrous, nanograined Cu(OH){sub 2} shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH){sub 2}] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH){sub 2} thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH){sub 2} thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH){sub 2} thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance.

  10. Thin film YBa{sub 2}Cu{sub 3}O{sub 7} junctions with La{sub 2/3}Ca{sub 1/3}MnO{sub 3} barrier

    Energy Technology Data Exchange (ETDEWEB)

    Hepting, Matthias; Stoehr, Andreas; Werner, Robert; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena in LISAplus, Universitaet Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany)

    2012-07-01

    We report on the fabrication and electric transport properties of thin film YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) junctions with La{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LCMO) barrier. Heteroepitaxial YBCO/LCMO/YBCO multilayers were grown in-situ by pulsed laser deposition and subsequently patterned by photolithography and Ar ion milling to form rectangular junctions with typical area 5 {mu}m x 30 {mu}m. A self-alignment process was used for electrical contact via an Au wiring layer to the upper YBCO electrode, similarly as described. Samples were characterized at temperature T=4.2 K either in magnetically shielded environment or in in-plane magnetic fields B up to the Tesla range. We present and discuss current-voltage-characteristics and measurements of critical current vs B.

  11. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al2O3(0001) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-01-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al 2 O 3 (0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively

  12. Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films

    Science.gov (United States)

    Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.

    2018-03-01

    It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.

  13. Yttrium-enriched YBa2Cu3Ox thin films for coated conductors fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Khoryushin, Alexey V.; Mozhaev, Peter B.; Mozhaeva, Julia E.; Andersen, Niels H.; Grivel, Jean-Claude; Hansen, Jørn Bindslev; Jacobsen, Claus S.

    2013-01-01

    Highlights: ► YBCO films were fabricated by PLD from targets of various elemental compositions. ► The Y-enriched films contain yttria nanoparticles which provide efficient pinning. ► The best film has 5.5× higher j c (5 T,50 K) = 2.6MA/cm 2 comparing with a reference film. ► The Y-enriched films remain c-oriented up to 500 nm. ► Films demonstrate no j c suppression with thickness and remarkable stability with time. -- Abstract: The effects of excess yttria on the structural and electrical properties of the YBa 2 Cu 3 O x (YBCO) thin films are studied. The films were deposited on (LaAlO 3 ) 0.3 –(Sr 2 AlTaO 8 ) 0.7 substrates by pulsed laser ablation from targets with different elemental composition. An increase of yttrium content of the target leads to formation of porous films with significantly improved current-carrying capabilities. Structural studies of these films reveal presence of yttria nanoparticles embedded into the YBCO matrix. The highest obtained critical current density in an external magnetic field of 5 T was 2.6 MA/cm 2 at 50 K and 9.4 MA/cm 2 at 20 K. The fabricated Y-enriched YBCO films remain c-oriented at least up to 600 nm thickness with no significant suppression of the critical current density

  14. Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films

    International Nuclear Information System (INIS)

    Wijesundera, R.P.; Hidaka, M.; Koga, K.; Sakai, M.; Siripala, W.

    2006-01-01

    Cuprous oxide and copper thin films were potentiostatically electrodeposited in an acetate bath. Voltammetric curves were used to investigate the growth parameters; deposition potential, pH and temperature of the bath. Deposition potential dependency on the structural, morphological, optical and electronic properties of the films were investigated by the X-ray diffraction measurements, scanning electron micrographs, absorption measurements and dark and light current-voltage characterisations. It was observed that single phase polycrystalline Cu 2 O can be deposited from 0 to - 300 mV Vs saturated calomel electrode (SCE) and co-deposition of Cu and Cu 2 O starts at - 400 mV Vs SCE. Further increase in deposition potential from - 700 mV Vs SCE produces single phase Cu thin films. Single phase polycrystalline Cu 2 O thin films with cubic grains of 1-2 μm can be possible within the very narrow potential domain around - 200 mV Vs SCE. Enhanced photoresponse in a photoelectrochemical cell is produced by the Cu 2 O thin film prepared at - 400 mV Vs SCE, where Cu is co-deposited with Cu 2 O with random distribution of Cu spheres on the Cu 2 O surface. This study reveals that a single deposition bath can be used to deposit both Cu and Cu 2 O separately and an admixture of Cu-Cu 2 O by controlling the deposition parameters

  15. The effect of Se/Te ratio on transient absorption behavior and nonlinear absorption properties of CuIn0.7Ga0.3(Se1-xTex)2 (0 ≤ x ≤ 1) amorphous semiconductor thin films

    Science.gov (United States)

    Karatay, Ahmet; Küçüköz, Betül; Çankaya, Güven; Ates, Aytunc; Elmali, Ayhan

    2017-11-01

    The characterization of the CuInSe2 (CIS), CuInGaSe (CIGS) and CuGaSe2 (CGS) based semiconductor thin films are very important role for solar cell and various nonlinear optical applications. In this paper, the amorphous CuIn0.7Ga0.3(Se1-xTex)2 semiconductor thin films (0 ≤ x ≤ 1) were prepared with 60 nm thicknesses by using vacuum evaporation technique. The nonlinear absorption properties and ultrafast transient characteristics were investigated by using open aperture Z-scan and ultrafast pump-probe techniques. The energy bandgap values were calculated by using linear absorption spectra. The bandgap values are found to be varying from 0.67 eV to 1.25 eV for CuIn0.7Ga0.3Te2, CuIn0.7Ga0.3Se1.6Te0.4, CuIn0.7Ga0.3Se0.4Te1.6 and CuIn0.7Ga0.3Se2 thin films. The energy bandgap values decrease with increasing telluride (Te) doping ratio in mixed CuIn0.7Ga0.3(Se1-xTex)2 films. This affects nonlinear characteristics and ultrafast dynamics of amorphous thin films. Ultrafast pump-probe experiments indicated that decreasing of bandgap values with increasing the Te amount switches from the excited state absorption signals to ultrafast bleaching signals. Open aperture Z-scan experiments show that nonlinear absorption properties enhance with decreasing bandgaps values for 65 ps pulse duration at 1064 nm. Highest nonlinear absorption coefficient was found for CuIn0.7Ga0.3Te2 thin film due to having the smallest energy bandgap.

  16. Preparation and properties of KCl-doped Cu{sub 2}O thin film by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaojiao, E-mail: yxjw@xaut.edu.cn [Xi’an University of Technology, Xi’an 710048 (China); Li, Xinming [Xi’an University of Technology, Xi’an 710048 (China); Zheng, Gang [Xi’an University of Technology, Xi’an 710048 (China); Northwestern Polytechnical University, Xi’an 710072 (China); Wei, Yuchen [The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Zhang, Ama; Yao, Binghua [Xi’an University of Technology, Xi’an 710048 (China)

    2013-04-01

    With the indium tin oxide-coated glass as working electrode, cuprous oxide thin film is fabricated by means of electrodeposition. The effects of KCl doped and annealing treatment upon Cu{sub 2}O thin film morphology, surface resistivity, open-circuit voltage, electric conduction types and visible light response are studied. The research results indicate that KCl doped has a great effect upon Cu{sub 2}O crystal morphology, thus, making Cu{sub 2}O thin film surface resistivity drop, and the open-circuit voltage increase and that electric conduction types are transformed from p type into n type, and the visible light (400–500 nm) absorption rate is slightly reduced. Annealing treatment can obviously decrease Cu{sub 2}O thin film surface resistivity and improve its open-circuit voltage. When KCl concentration in electrolytic solution reaches 7 mmol/L, Cu{sub 2}O thin film morphology can be changed from the dendritic crystal into the cubic crystal and Cu{sub 2}O thin film surface resistivity decreases from the initial 2.5 × 10{sup 6} Ω cm to 8.5 × 10{sup 4} Ω cm. After annealing treatment at 320 °C for 30 min, the surface resistivity decreases to 8.5 × 10{sup 2} Ω cm, and the open-circuit voltage increases from the initial 3.1 mV to 79.2 mV.

  17. Origin of the irreversibility line in thin YBa2Cu3O7-δ films with and without columnar defects

    International Nuclear Information System (INIS)

    Prozorov, R.; Konczykowski, M.; Schmidt, B.; Yeshurun, Y.; Shaulov, A.; Villard, C.; Koren, G.

    1996-01-01

    We report on measurements of the angular dependence of the irreversibility temperature T irr (θ) in YBa 2 Cu 3 O 7-δ thin films, defined by the onset of a third-harmonic signal and measured by a miniature Hall probe. From the functional form of T irr (θ) we conclude that the origin of the irreversibility line in unirradiated films is a dynamic crossover from an unpinned to a pinned vortex liquid. In irradiated films the irreversibility temperature is determined by the trapping angle. copyright 1996 The American Physical Society

  18. Deposition and characterization of CuInSe2 thin films

    International Nuclear Information System (INIS)

    Dhere, N.G.; Ferreira, C.L.; Cruz, L.R.O.; Mattoso, I.G.; Alves, R.M.P.

    1988-01-01

    CuInSe 2 thin films with 1,3 to 1,7 μm of thickness were deposited by the constituent elements (copper, indium and selenium) in glass substrate. The producted films were characterized by scanning microscopy, X-ray diffraction, Auger electron spectroscopy, Hall effect measures and optical absorption. (C.G.C.) [pt

  19. Solution processed Cu2SnS3 thin films for visible and infrared photodetector applications

    Directory of Open Access Journals (Sweden)

    Sandra Dias

    2016-02-01

    Full Text Available The Cu2SnS3 thin films were deposited using an economic, solution processible, spin coating technique. The films were found to possess a tetragonal crystal structure using X-ray diffraction. The film morphology and the particle size were determined using scanning electron microscopy. The various planes in the crystal were observed using transmission electron microscopy. The optimum band gap of 1.23 eV and a high absorption coefficient of 104 cm−1 corroborate its application as a photoactive material. The visible and infrared (IR photo response was studied for various illumination intensities. The current increased by one order from a dark current of 0.31 μA to a current of 1.78 μA at 1.05 suns and 8.7 μA under 477.7 mW/cm2 IR illumination intensity, at 3 V applied bias. The responsivity, sensitivity, external quantum efficiency and specific detectivity were found to be 10.93 mA/W, 5.74, 2.47% and 3.47 × 1010 Jones respectively at 1.05 suns and 16.32 mA/W, 27.16, 2.53% and 5.10 × 1010 Jones respectively at 477.7 mW/cm2 IR illumination. The transient photoresponse was measured both for visible and IR illuminations.

  20. Noise measurements of YBa2Cu3O7 thin film high-temperature superconductors

    International Nuclear Information System (INIS)

    Hall, J.J.

    1992-01-01

    The characteristics of thin-film YBa2Cu3O7 superconductors were studied from the superconducting region through the transition region and into the normal region. The properties studied included the resistance-temperature, current-voltage, and electrical noise with concentration of measurements in the transition region. The resistance vs. temperature measurements show a zero resistance followed by a small rise in magnitude at the onset of resistance followed by a sharp increase until the resistance tapers off in the fully normal region. The a-axis films had a larger normal resistivity, a lower critical temperature, and a broader transition than the similar c-axis films. The current(I) - voltage(V) measurements were concentrated in the transition region. A power relation between I and V was found to be V varies as I a(T) where a(T) is temperature dependent starting high the onset of vortex formation, approaches 3 at the vortex unbinding temperature, and goes to 1 when fully normal. This behavior was predicted by the Kosterlitz-Thouless theory and was found experimentally in all four films measured. The current-induced electrical noise characteristics were measured for four samples varying in thickness and axis orientation. Each film exhibited a widely varying magnitude of the noise voltage spectral density (S V ) in the transition region with a leveling off when fully normal. The normalized noise (S V /V squared) showed a sharp decrease in magnitude from the onset of measurable noise continually decreasing until flattening out when fully normal. The a-axis films exhibited S V /V squared over 3 order of magnitude larger than the c-axis films in the transition and normal regions. The normalized temperature coefficient of resistance (beta) was plotted against S V /V squared on a log-log scale to see if the noise generated was due to temperature fluctuations (slope = 2)

  1. The investigation on electrochemical reaction mechanism of CuF2 thin film with lithium

    International Nuclear Information System (INIS)

    Cui Yanhua; Xue Mingzhe; Zhou Yongning; Peng Shuming; Wang Xiaolin; Fu Zhengwen

    2011-01-01

    Crystalline CuF 2 thin films were prepared by pulsed laser deposition under room temperature. The physical and electrochemical properties of the as-deposited thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic cycling and cyclic voltammetry (CV). Reversible capacity of 544 mAh g -1 was achieved in the potential range of 1.0-4.0 V. A reversible couple of redox peaks at 3.0 V and 3.7 V was firstly observed. By using ex situ XRD and TEM techniques, an insertion process followed by a fully conversion reaction to Cu and LiF was revealed in the lithium electrochemical reaction of CuF 2 thin film electrode. The reversible insertion reaction above 2.8 V could provide a capacity of about 125 mAh g -1 , which makes CuF 2 a potential cathode material for rechargeable lithium batteries.

  2. High performance batch production of LREBa2Cu3Oy using novel thin film Nd-123 seed

    International Nuclear Information System (INIS)

    Muralidhar, M.; Suzuki, K.; Fukumoto, Y.; Ishihara, A.; Tomita, M.

    2011-01-01

    A batch production for fabrication of LREBa 2 Cu 3 O y (LRE: Sm, Gd, NEG) 'LRE-123' pellets are developed in air and Ar-1% O 2 using a novel thin film Nd-123 seeds grown on MgO crystals. The SEM and XRD results conformed that the quality and orientation of the seed crystals are excellent. On the other hand, new seeds can withstand temperatures >1100 deg. C, as a result, the cold seeding process was applied even to grow Sm-123 material in Air. The trapped field observed in the best 45 mm single-grain puck of Gd-123 was in the range of 1.35 T and 0.35 T at 77.3 K and 87.3 K, respectively. The average trapped field at 77.3 K in the 24 mm diameter NEG-123 samples batch lies between 0.9 and 1 T. The maximum trapped field of 1.2 T was recorded at the sample surface. Further, the maximum trapped field of 0.23 T at 77 K was recorded in a sample with 16 mm diameter of Sm-123 with 3 mol% BaO 2 addition. As a result we made more then 130 single grain pucks within a couple of months. Taking advantage of the single grain batch processed material, we constructed self-made chilled levitation disk, which was used on the open day of railway technical research Institute. More then 150 children stood on the levitation disk and revel the experience of levitation. The present results prove that a high-performance good-quality class of LREBa 2 Cu 3 O y material can be made by using a novel thin film Nd-123 seeds.

  3. Electron scattering rate in epitaxial YBa2Cu3O7 superconducting films

    Science.gov (United States)

    Flik, M. I.; Zhang, Z. M.; Goodson, K. E.; Siegal, M. P.; Phillips, Julia M.

    1992-09-01

    This work determines the electron scattering rate in the a-b plane of epitaxial YBa2Cu3O7 films using two techniques. Infrared spectroscopy yields the scattering rate at temperatures of 10, 78, and 300 K by fitting reflectance data using thin-film optics and a model for the free-carrier conductivity. The scattering rate is also obtained using kinetic theory and an extrapolation of normal-state electrical resistivity data to superconducting temperatures based on the Bloch theory for the phonon-limited electrical resistivity of metals. The scattering rates determined using both techniques are in agreement and show that the electron mean free path in the a-b plane of YBa2Cu3O7 superconducting films is three to four times the coherence length. Hence YBa2Cu3O7 is pure but not in the extreme pure limit. An average defect interaction range of 4 nm is obtained using the defect density resulting from flux-pinning considerations.

  4. Solution processing of YBa2Cu3O7-x thin films

    International Nuclear Information System (INIS)

    Singhal, A.; Paranthaman, M.; Specht, E.D.; Hunt, R.D.; Beach, D.B.; Martin, P.M.; Lee, D.F.

    1997-12-01

    The aim of this work was to develop a non-vacuum chemical deposition technique for YBa 2 Cu 3 O 7-x (YBCO) coated conductors on rolling-assisted biaxially textured substrates (RABiTS). The authors have chosen the metal-organic decomposition (MOD) and sol-gel precursor routes to grow textured YBCO films. In the MOD process, yttrium 2-ethylhexonate, barium neodecanoate, copper 2-ethylhexonate and toluene were used as the starting reagents. YBCO films processed by the MOD method on SrTiO 3 (100) single crystal substrates were consisted of c and a-axis oriented materials. These films also contained some amount of the random phase. The c and a-axis oriented materials were epitaxial on SrTiO 3 substrates. Films have a T c,onset of 89K and the best superconducting transition temperature of 63K. Films pyrolyzed at 525 C and subsequently annealed at 780 C in a p(O 2 ) of 3.5 x 10 -4 atm contained YBCO phase predominantly in a-axis orientation. In the sol-gel route, yttrium-isopropoxide, barium metal, copper methoxide and 2-methoxyethanol were used as the starting reagents. Sol-gel YBCO films on SrTiO 3 substrates were epitaxial and c-axis oriented

  5. Epitaxial growth of YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on LiNbO sub 3 substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Koren, G.; Gupta, A.; Segmuller, A.; Chi, C.C. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (US))

    1989-09-18

    {ital In} {ital situ} epitaxial growth of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films on {ital Y}-cut LiNbO{sub 3} substrates using a standard laser ablation technique is reported. Resistance of the films shows a normal metallic behavior and a very sharp ({lt}1 K) superconducting transition with {ital T}{sub {ital c}}({ital R}=0) of 92 K. High critical current density of {ital J}{sub {ital c}}(77 K)=2{times}10{sup 5} A/cm{sup 2} is observed, which is in accordance with epitaxial growth. Film orientation observed from x-ray diffraction spectra indicates that the {ital c} axis is normal to the substrate plane and the {ital a} axis is at 45{degree} to the (11.0) direction of the hexagonal lattice of the substrate with two domains in mirror image to the (110) plane.

  6. Yttrium-enriched YBa2Cu3Ox thin films for coated conductors fabricated by pulsed laser deposition

    DEFF Research Database (Denmark)

    Khoryushin, Alexey V.; Mozhaev, Peter B.; Mozhaeva, Julia E.

    2013-01-01

    The effects of excess yttria on the structural and electrical properties of the YBa2Cu3Ox (YBCO) thin films are studied. The films were deposited on (LaAlO3)0.3–(Sr2AlTaO8)0.7 substrates by pulsed laser ablation from targets with different elemental composition. An increase of yttrium content of ...

  7. Anisotropy of the irreversibility field for Zr-doped $(Y,Gd)Ba_2Cu_3O_{7-x}$ thin films up to 45T

    OpenAIRE

    Tarantini, C.; Jaroszynski, J.; Kametani, F.; Zuev, Y. L.; Gurevich, A.; Chen, Y.; Selvamanickam, V.; Larbalestier, D. C.; Christen, D. K.

    2012-01-01

    The anisotropic irreversibility field B$_{Irr}$ of two $YBa_2Cu_3O_{7-x}$ thin films doped with additional rare earth (RE)=(Gd,Y) and Zr and containing strong correlated pins (splayed BaZrO$_{3}$ nanorods, and $RE_2O_3$ nanoprecipitates), has been measured over a very broad range up to 45T at temperatures 56 K

  8. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    Science.gov (United States)

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  9. Optoelectronic characterizations of vacuum evaporated Cu 2 SnS 3 ...

    African Journals Online (AJOL)

    ... of non-toxic, cheap earthly abundant, ternary compound of Cu2SnS3 thin film. ... film were investigated by X-Ray Diffraction and Scanning Electron Microscope. ... to determine the electrical properties of the deposited Cu2SnS3 ternary films.

  10. Fabrication, characterization and sensing properties of Cu(II) ion imprinted sol–gel thin film on QCM

    International Nuclear Information System (INIS)

    Su, Pi-Guey; Hung, Fang-Chieh; Lin, Po-Hung

    2012-01-01

    Cu(II)-molecularly imprinted sol–gel films (Cu(II)-MISGF), coated on a quartz crystal microbalance (QCM) chip, were fabricated using a sol–gel procedure. Co-hydrolysis and co-condensation of Cu(II) (templates), 3-aminopropyltrimethoxysilane (APTS, functional monomer) and tetraethoxysilane (TEOS, cross-linking agent) were performed with acid and base catalysis. The properties of the Cu(II)-MISGF were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and the electrochemical methods of cyclic voltammetry (CV). Microstructural observations revealed that the acid-catalyzed system yielded more mechanically stable thin films. A combined Cu(II)-MISGF-QCM with flow injection analysis (FIA) method was utilized to investigate the sensing performance of the Cu(II)-MISGF, with special emphasis on the most important properties of sensitivity, selectivity and response time. The Cu(II)-MISGF-QCM sensor, at a TEOS/APTS molar ratio of 10, exhibited excellent selectivity and rapidly responded to Cu(II) ions. - Highlights: ► A Cu(II)-molecularly imprinted sol–gel thin film on chip was fabricated. ► The thin film had mechanical stability using acidic catalyst. ► The thin film had good selectivity and response time for Cu(II) ions.

  11. MOCVD with gas phase composition control for the growth of high quality YBa2Cu3O7-x thin films for microwave applications

    International Nuclear Information System (INIS)

    Musolf, J.

    1997-01-01

    The MOCVD growth technique has demonstrated YBa 2 Cu 3 O 7-x thin films with adequate transport properties (T c >90 K, J c > x 10 6 A cm -2 , R s p /C v ) and the species concentrations. After determining the correlation between gas phase and solid phase composition this technique enables the reproducible growth of YBa 2 Cu 3 O 7-x thin films by MOCVD with composition very close to 123. Further refinement of growth temperature, total pressure, oxygen partial pressure and total flow rates has produced films with excellent properties. Smooth surface morphology with a low density of outgrowths ( 4 cm -2 ), narrow XRD rocking curve peaks FWHM c =92 K), low surface resistance (device R s <350 μΩ at 77 K, 10 GHz) have been demonstrated using this growth concept. Special focus was placed on optimization of the performance of a microwave test device which serves as a process control monitor of the suitability of these films for passive microwave applications. (orig.)

  12. Structural and optical properties of Cu{sub 2}ZnSnS{sub 4} thin film absorbers from ZnS and Cu{sub 3}SnS{sub 4} nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xianzhong, E-mail: lin.xianzhong@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Kavalakkatt, Jaison [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Berlin (Germany); Kornhuber, Kai; Levcenko, Sergiu [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Berlin (Germany); Ennaoui, Ahmed, E-mail: ennaoui@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2013-05-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) has been considered as an alternative absorber layer to Cu(In,Ga)Se{sub 2} due to its earth abundant and environmentally friendly constituents, optimal direct band gap of 1.4–1.6 eV and high absorption coefficient in the visible range. In this work, we propose a solution-based chemical route for the preparation of CZTS thin film absorbers by spin coating of the precursor inks composed of Cu{sub 3}SnS{sub 4} and ZnS NPs and annealing in Ar/H{sub 2}S atmosphere. X-ray diffraction and Raman spectroscopy were used to characterize the structural properties. The chemical composition was determined by energy dispersive X-ray spectroscopy. Optical properties of the CZTS thin film absorbers were studied by transmission, reflection and photoluminescence spectroscopy.

  13. Magnetic and structural study of Cu-doped TiO2 thin films

    International Nuclear Information System (INIS)

    Torres, C.E. Rodriguez; Golmar, F.; Cabrera, A.F.; Errico, L.; Navarro, A.M. Mudarra; Renteria, M.; Sanchez, F.H.; Duhalde, S.

    2007-01-01

    Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO 2 thin films were grown by pulsed laser deposition technique on LaAlO 3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO 2 . The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO 2

  14. Magnetic study of superconductivity in YBa2Cu3O7-x thin films

    International Nuclear Information System (INIS)

    McGuire, T.R.; Gupta, A.; Koren, G.; Laibowitz, R.B.; Dimos, D.

    1989-01-01

    Magnetic and transport measurements on 0.3 micron thick films of YBa 2 Cu 3 O 7 - x made by a laser ablation technique show critical current densities of up to 40X10 6 amps/cm 2 . At 77K the transport data gives J c ∼5x10 6 amps/cm 2 while magnetic data is 40 % lower. Comparison is made with evaporated films

  15. High-frequency properties of superconducting Y-Ba-Cu-oxide thin films

    International Nuclear Information System (INIS)

    Ramakrishnan, E.S.; Su, M.; Howng, W.

    1992-01-01

    rf and microwave properties of superconducting YBa 2 Cu 3 O 7-x thin films were measured and analyzed using a coplanar resonator structure. The films were developed by sequential electron-beam evaporation of the metals followed by postanneal processing. dc properties of the films were obtained from resistance-temperature and current-voltage measurements to evaluate the transition temperature and current densities. High-frequency properties were measured from 70 to 10 K and in the frequency range 1--3 GHz to determine the film characteristics as compared to pure copper films on the same substrates

  16. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  17. Photon induced facile synthesis and growth of CuInS{sub 2} absorber thin film for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Manjeet, E-mail: msitbhu@gmail.com [Department of Physics, Incheon National University, 12-1, Songdo-dong, Yeonsu-gu, Incheon 406-772 (Korea, Republic of); Jiu, Jinting; Suganuma, Katsuaki [Department of Advanced Interconnection Materials, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047 (Japan)

    2016-04-30

    Graphical abstract: The thin film containing CuS and In{sub 2}S{sub 3} can be converted into CuInS{sub 2} by irradiation of intense pulses of light. - Highlights: • Photonic sintering technique is demonstrated for CuInS{sub 2} (CIS) thin film preparation. • The binary sulfides CuS and In{sub 2}S{sub 3} are converted into CIS using intense light pulses. • The light energy of 706 mJ/cm{sup 2} is found best for phase pure CIS film formation. - Abstract: In this paper, we demonstrate the use of high intensity pulsed light technique for the synthesis of phase pure CuInS{sub 2} (CIS) thin film at room temperature. The intense pulse of light is used to induce sintering of binary sulfides CuS and In{sub 2}S{sub 3} to produce CIS phase without any direct thermal treatment. Light energy equivalent to the 706 mJ/cm{sup 2} is found to be the best energy to convert the CIS precursor film deposited at room temperature into CIS pure phase and well crystalline film. The CIS absorber film thus prepared is useful in making printed solar cell at room temperature on substrate with large area.

  18. Convenient hydrothermal decomposition process for preparation of nanocrystalline mineral Cu3BiS3 and Pb1-xBi2x/3S

    International Nuclear Information System (INIS)

    Hu Junqing; Deng Bin; Wang Chunrui; Tang Kaibin; Qian Yitai

    2003-01-01

    Mineral nanocrystalline Cu 3 BiS 3 and Pb 1-x Bi 2x/3 S (or Bi 0.22 Pb 0.89 S 1.22 ) have been prepared at low synthetic temperature of 100-150 deg. C by convenient hydrothermal decomposition process. X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectra, and element analysis were used to characterize and measure the samples. The as-prepared Cu 3 BiS 3 sample consisted of whisker-like particles with an average size of 50x10 nm 2 and the Pb 1-x Bi 2x/3 S sample displayed aggregative particles with size in the range of 30-50 nm. Preliminary results showed that the prepared precursors, reaction temperature and time played a role in the formation of the final products. A possible reaction mechanism was also discussed briefly

  19. Correlation of tunneling spectra with surface nano-morphology and doping in thin YBa2Cu3O7-delta films

    OpenAIRE

    Sharoni, A.; Koren, G.; Millo, O.

    2001-01-01

    Tunneling spectra measured on thin epitaxial YBa2Cu3O7-delta films are found to exhibit strong spatial variations, showing U and V-shaped gaps as well as zero bias conductance peaks typical of a d-wave superconductor. A full correspondence is found between the tunneling spectra and the surface morphology down to a level of a unit-cell step. Splitting of the zero bias conductance peak is seen in optimally-doped and overdoped films, but not in the underdoped ones, suggesting that there is no tr...

  20. Effect of the Precursor Solution Concentration of CuI Thin Film Deposited By Spin Coating Method

    International Nuclear Information System (INIS)

    Nur Amalina Muhmmad; Atiq, A.M.; Rusop, M.

    2011-01-01

    Copper (I) Iodide is a p-type semiconductor with bandgap of 3.1 eV. It is water insoluble solid with three crystalline phases α, β, γ. In this research, the effect of precursor concentration of CuI thin film deposited by spin coating method was studied. The wide band gap p type semiconductor CuI thin film was prepared by mixing the CuI powder (ALDRICH, 98 %) with 50 ml of acetonitrile as a solvent. The CuI concentration varies from 0.025 M to 0.5 M. The speed for spin coating is 1000 rpm for 60 seconds. After the deposition the CuI thin films were annealed at 150 degree Celsius. The electrical and optical properties were characterized by current-voltage (I-V) measurement using Solar Simulator (Bukoh Keiki EP-2000) and ultraviolet visible- near infrared (UV-VIS-NIR) measurement (Jasco V-670). The result shows the CuI thin film properties strongly depends on its precursor concentration. Thickness between 33.65 nm - 441.25 nm was obtained as the concentration increases. The increment of thickness affects the electrical properties which is the resistivity and conductivity of CuI thin film. For optical properties, the transmittance decreases with high concentration as high amount of CuI particle were observed in the thin films. From the transmittance, the absorption coefficient and optical band gap of CuI was determined using Taucs plot. (author)

  1. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    Science.gov (United States)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  2. Anisotropic electrical properties of epitaxial Yba2Cu3O7-gd films on (110) SrTiO3

    International Nuclear Information System (INIS)

    Gupta, A.; Koren, G.; Baseman, R.J.; Segmuller, A.; Holber, W.

    1989-01-01

    Epitaxial thin films of YBa 2 Cu 3 O 7 - δ were deposited on (110) SrTiO 3 at 600 degrees C in the presence of atomic oxygen using the laser ablation technique. X-ray diffraction patterns in the standard Bragg and grazing incidence modes show epitaxial growth of the films with their c-axis and axis parallel to the and directions in the plane of the substrate, respectively. Superconductivity with T c (R = ) = 82 K was found along the direction in the basal plane, whereas finite resistivity down to 5 k was observed along the c-axis direction. The authors maintain that these preliminary results suggest that YBa 2 Cu 3 O 7 - δ behaves like a true two-dimensional superconductor

  3. Preparation and structure characterization of SmCo5(0001) epitaxial thin films grown on Cu(111) underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    SmCo 5 (0001) epitaxial films were prepared on Cu(111) single-crystal underlayers formed on Al 2 O 3 (0001) substrates at 500 deg. C. The nucleation and growth mechanism of (0001)-oriented SmCo 5 crystal on Cu(111) underlayer is investigated and a method to control the nucleation is proposed. The SmCo 5 epitaxial thin film formed directly on Cu underlayer consists of two types of domains whose orientations are rotated around the film normal by 30 deg. each other. By introducing a thin Co seed layer on the Cu underlayer, a SmCo 5 (0001) single-crystal thin film is successfully obtained. Nucleation of SmCo 5 crystal on Cu underlayer seems controllable by varying the interaction between the Cu underlayer and the SmCo 5 layer

  4. Modeling flux pinning in thin undoped and BazRo3-doped YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Irjala, M.; Huhtinen, H.

    2009-01-01

    A simple model based on distributions of twin boundaries, dislocations, and BaZrO3 nanorods is presented to describe the Jc properties of undoped and BaZrO3 (BZO)-doped YBa2Cu3Ox thin films. The model accurately describes the shape of Jc(B,T) curves of the films, when the pinning site distributions...... are taken from distributions of twin spacings and BZO nanorods from transmission electron microscope images. Thus, assuming that the model can be used for prediction of the Jc properties, we conclude that for enhancement of undoped films more crystalline defects are needed and for doped films a dopant...

  5. Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Galván, A., E-mail: amendoza@qro.cinvestav.mx [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico); Laboratory of Applied Optics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Arreola-Jardón, G. [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico); Karlsson, L.H.; Persson, P.O.Å. [Thin Film Physics Division, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Jiménez-Sandoval, S. [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico)

    2014-11-28

    The effective complex dielectric function (ε) of Cu and O containing CdTe thin films is reported in the spectral range of 0.05 to 6 eV. The films were fabricated by rf sputtering from targets comprised by a mixture of CdTe and CuO powders with nominal Cu and O concentrations in the range of 2–10 at.%. Low concentration levels improved the crystalline quality of the films. Spectroscopic ellipsometry and transmittance measurements were used to determine ε. The critical point energies E{sub 1}, E{sub 1} + Δ{sub 1}, and E{sub 2} of CdTe are red-shifted with the incorporation of Cu and O. Also, an absorption band is developed in the infrared range which is associated with a mixture of CdTe and low resistivity phases Cu{sub 2−x}Te according to an effective medium analysis. The elemental distribution of the films was mapped by energy dispersive X-ray spectroscopy using scanning transmission electron microscopy. - Highlights: • Incorporation of 2 to 10 at.% of Cu and O atoms in CdTe films • Improved crystalline quality with 2 and 3 at.% of Cu and O • Complex dielectric function of Cu and O containing CdTe thin films • Effective medium modeling of below band-gap absorption.

  6. Stability of Tl-Ba-Ca-Cu-O superconducting thin films

    International Nuclear Information System (INIS)

    Siegal, M. P.; Overmyer, D. L.; Venturini, E. L.; Padilla, R. R.; Provencio, P. N.

    1999-01-01

    We report the stability of TlBa 2 CaCu 2 O 7 and Tl 2 Ba 2 CaCu 2 O 8 on LaAlO 3 (100) epitaxial thin films, under a variety of conditions. All films are stable in acetone and methanol and with repeated thermal cycling to cryogenic temperatures. Moisture, especially vapor, degrades film quality rapidly. These materials are stable to high temperatures in either N 2 or O 2 ambients. While total degradation, resulting from Tl depletion, occurs at the same temperatures for both phases, 600 degree sign C in N 2 and 700 degree sign C in O 2 , the onset of degradation occurs at somewhat lower temperatures for TlBa 2 CaCu 2 O 7 than for Tl 2 Ba 2 CaCu 2 O 8 . (c) 1999 Materials Research Society

  7. Fabrication of High-Quality SmBa2Cu3O7-δ Thin Films by a Modified TFA-MOD Process

    International Nuclear Information System (INIS)

    Kim, Duck Jin; Moon, Seung Hyun; Park, Chan; Yoo, Sang Im; Song, Kyu Jeong

    2005-01-01

    We report a successful fabrication of high-quality SmBa 2 Cu 3 O 7-δ (SmBCO) thin films on LaAlO 3 (LAO)(100) single crystalline substrates by a modified TFA-MOD method. After the pyrolysis heat treatment of spin-coated films up to 400 degree C, SmBCO films were fired at various temperatures ranging from 810 to 850 degree C in a reduced oxygen atmosphere (10 ppm O 2 in Ar). Optimally processed SmBCO films exhibited the zero-resistance temperature (T c ,zero) of 90.2 K and the critical current density (J c ) of 0.8 MA/cm 2 at 77K in self-field. Compared with the J c values (normally, > 2 MA/cm 2 at 77 K) of MOD-TFA processed YBCO films, rather depressed J c values in SmBCO films are most probably attributed to the existence of alpha-axis oriented grains.

  8. Effect of Ga2O3 buffer layer thickness on the properties of Cu/ITO thin films deposited on flexible substrates

    International Nuclear Information System (INIS)

    Zhuang Huihui; Yan Jinliang; Xu Chengyang; Meng Delan

    2014-01-01

    Cu and Cu/ITO films were prepared on polyethylene terephthalate (PET) substrates with a Ga 2 O 3 buffer layer using radio frequency (RF) and direct current (DC) magnetron sputtering. The effect of Cu layer thickness on the optical and electrical properties of the Cu film deposited on a PET substrate with a Ga 2 O 3 buffer layer was studied, and an appropriate Cu layer thickness of 4.2 nm was obtained. Changes in the optoelectrical properties of Cu(4.2 nm)/ITO(30 nm) films were investigated with respect to the Ga 2 O 3 buffer layer thickness. The optical and electrical properties of the Cu/ITO films were significantly influenced by the thickness of the Ga 2 O 3 buffer layer. A maximum transmission of 86%, sheet resistance of 45 Ω/□ and figure of merit of 3.96 × 10 −3 Ω −1 were achieved for Cu(4.2 nm)/ITO(30 nm) films with a Ga 2 O 3 layer thickness of 15 nm. (semiconductor materials)

  9. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    KAUST Repository

    Alias, Mohd Sharizal

    2016-07-14

    The lack of optical constants information for hybrid perovskite of CH3NH3PbBr3 in thin films form can delay the progress of efficient LED or laser demonstration. Here, we report on the optical constants (complex refractive index and dielectric function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained from photoluminescence and spectrophotometry spectra, and calculated from the SE analysis. The precise measurement of optical constants will be useful in designing optical devices using CH3NH3PbBr3 thin films.

  10. Deposition of Cu-doped PbS thin films with low resistivity using DC sputtering

    Science.gov (United States)

    Soetedjo, Hariyadi; Siswanto, Bambang; Aziz, Ihwanul; Sudjatmoko

    2018-03-01

    Investigation of the electrical resistivity of Cu-doped PbS thin films has been carried out. The films were prepared using a DC sputtering technique. The doping was achieved by introducing the Cu dopant plate material directly on the surface of the PbS sputtering target plate. SEM-EDX data shows the Cu concentration in the PbS film to be proportional to the Cu plate diameter. The XRD pattern indicates the film is in crystalline cubic form. The Hall effect measurement shows that Cu doping yields an increase in the carrier concentration to 3.55 × 1019 cm-3 and a significant decrease in electrical resistivity. The lowest resistivity obtained was 0.13 Ωcm for a Cu concentration of 18.5%. Preferential orientation of (1 1 1) and (2 0 0) occurs during deposition.

  11. Post-annealing effect on the room-temperature ferromagnetism in Cu-doped ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yu-Min; Kuang, Chein-Hsiun; Han, Tai-Chun; Yu, Chin-Chung; Li, Sih-Sian

    2015-01-01

    In this work, we investigated the structural and magnetic properties of both as-deposited and post-annealed Cu-doped ZnO thin films for better understanding the possible mechanisms of room-temperature ferromagnetism (RT-FM) in ZnO-based diluted magnetic oxides. All of the films have a c-axis-oriented wurtzite structure and display RT-FM. X-ray photoelectron spectroscopy results showed that the incorporated Cu ions in as-deposited films are in 1+ valence state merely, while an additional 2+ valence state occurs in post-annealed films. The presence of Cu 2+ state in post-annealed film accompanies a higher magnetization value than that of as-deposited film and, in particular, the magnetization curves at 10 K and 300 K of the post-annealed film separate distinctly. Since Cu 1+ ion has a filled 3d band, the RT-FM in as-deposited Cu-doped ZnO thin films may stem solely from intrinsic defects, while that in post-annealed films is enhanced due to the presence of CuO crystallites

  12. X-ray photo-emission studies of Cu1-xTlxBa2Ca3Cu4O12-y superconductor thin films

    International Nuclear Information System (INIS)

    Khan, Nawazish A.; Mumtaz, M.; Ahadian, M.M.; Iraji-zad, Azam

    2006-01-01

    X-ray photo-emission spectroscopy (XPS) studies of Cu 1-x Tl x Ba 2 Ca 3 Cu 4 O 12-y superconductor thin films have been carried out for understanding the mechanism of superconductivity and to find out the reasons for the increase of zero resistivity critical temperature T c (R = 0) with post-annealing in a nitrogen atmosphere. It is observed from these studies that reduction of charge state of thallium is a source of doping of carriers to the CuO 2 planes. The reduced charge state of thallium (i.e. Tl 1+ ) promotes lower oxygen concentration in the charge reservoir layer, which possibly results in movement of electrons to the conducting CuO 2 planes. The higher density of electrons in the CuO 2 planes optimizes the hole concentration 'n p ' in these planes. The reduced charge state of thallium in the Cu 1-x Tl x Ba 2 O 4-δ charge reservoir layer is also supported by a shift of the Ba 3d 5/2 and Ba 3d 3/2 XPS lines to lower binding energies with post-annealing in nitrogen atmosphere. Moreover, the movement of the valance band spectrum to lower binding energies suggested that the electronic density of states changes in the valance band with the post-annealing in nitrogen, which possibly becomes a source of doping of carriers to the CuO 2 planes. The increased doping of electrons to the CuO 2 planes optimizes the Fermi-vector K F and Fermi-velocity V F of the carriers and increases the T c (R = 0) of final compound

  13. Optimization of Nd1+xBa2-xCu3O7 thin-film growth conditions using micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Bae, J S; Yang, In-Sang; Jo, W; Wee, S H; Yoo, S I

    2006-01-01

    We explore optimal growth conditions for superconducting Nd 1+x Ba 2-x Cu 3 O 7 (NdBCO) thin films deposited under various oxygen pressures in the range of 100-800 mTorr. In this study we address spatial inhomogeneity, growth orientation, impurity phases, cation disorder, and oxygen deficiency of NdBCO thin films by using micro-Raman scattering. The films grown in the low oxygen pressure range of 100-200 mTorr show predominantly a-axis orientation and degraded superconducting properties with a critical temperature (T c ) of ∼80 K. The degradation of the transition temperature of the films deposited at lower oxygen pressure is attributed to the cation disorder, on the basis of analysis of the apical oxygen Raman mode. On the other hand, the samples grown in the higher oxygen pressure range of 400-800 mTorr show strong c-axis orientation and much less cation disorder. These features correlate with their high values of T c and J c

  14. The relationship between open volume defects and deposition conditions of superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x

    CERN Document Server

    Zhou, X Y; Jiang, H; Bauer-Kugelmann, W; Duffy, J A; Koegel, G; Triftshaeuser, W

    1997-01-01

    The relationship between the open volume defects and the deposition conditions of superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x was studied by the position lifetime technique. Using a low-energy pulsed positron system, positron lifetime as a function of implantation energy was measured on epitaxial superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x deposited on yttrium stabilized cubic zirconia substrates (YSZ) with pulsed laser deposition in a partial pressure of air under different conditions. The results show that the type of open volume defect is independent of deposition conditions such as the substrate temperature, T sub s , and the air pressure, P sub a. The defect concentration increases with decreasing T sub s and increasing P sub a. (author). Letter-to-the-editor

  15. Impregnation of chelating agent 3,3-bis-N,N bis-(carboxymethylaminomethyl-o-cresolsulfonephthalein in biopolymer chitosan: adsorption equilibrium of Cu(II in aqueous medium

    Directory of Open Access Journals (Sweden)

    Luciano Vitali

    2006-06-01

    Full Text Available The aim of this study was to impregnate the chelating agent 3,3-bis-N,N,bis-(carboxymethylaminomethyl-o-cresolsulfonephthalein in chitosan and to investigate the adsorption of Cu(II ions. The chemical modification was confirmed by FTIR spectrometry, thermogravimetric analysis (TGA and energy dispersive x-ray spectroscopy (EDX. The adsorption studies were carried out with Cu(II ions in a batch process and were shown to be dependent on pH. The adsorption kinetics was tested using three models: pseudo first-order, pseudo second order and intraparticle diffusion. The experimental kinetics data were best fitted with the pseudo second-order model (R² = 0.999, which provided a rate constant, k2, of 1.21 x 10-3 g mg-1 min-1. The adsorption rate depended on the concentration of Cu(II ions on the adsorbent surface and on the quantity of Cu(II ions adsorbed at equilibrium. The Langmuir isotherm model provided the best fit for the equilibrium data in the concentration range investigated, with the maximum adsorption capacity being 81.0 mg of Cu(II per gram of adsorbent, as obtained from the linear equation of the isotherm. Desorption tests revealed that around 90% of the adsorbed metal was removed, using EDTA solution as the eluent. This result suggests that the polymeric matrix can be reused.

  16. A novel application of the CuI thin film for preparing thin copper nanowires

    International Nuclear Information System (INIS)

    Shi Shuo; Sun Jialin; Zhang Jianhong; Cao Yang

    2005-01-01

    We present a novel application of the CuI thin film for preparing thin copper nanowires under a direct current electric field (DCEF). The CuI thin film was used as a medium for transmitting cuprous ions during the growing process of copper nanowires. As electrodes are the source of cuprous ions, high-purity copper films were deposited on both ends of the CuI thin film. At 353 K, under whole solid condition, without any templates, and having applied a DCEF of 1.5x10 4 V/m, cuprous ions were generated at the anode and migrated towards the cathode through the CuI film. At the edge of the cathode, cuprous ions obtained electrons and congregated to form a disordered thin copper nanowires bundle. The SEM images showed that these copper nanowires were from 10 to 20 nm in diameter and several hundred nanometers in length. The effect of the electric field intensity and the growth temperature on the diameter of the nanowires was also studied

  17. Study on the preheating duration of Cu{sub 2}SnS{sub 3} thin films using RF magnetron sputtering technique for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuchen; He, Jun; Li, Xinran; Chen, Ye; Sun, Lin, E-mail: lsun@ee.ecnu.edu.cn; Yang, Pingxiong; Chu, Junhao

    2016-04-25

    Cu{sub 2}SnS{sub 3} (CTS) thin films are prepared by sulfurization the stacked metallic precursors deposited by raido-frequency magnetron sputtering method on molybdenum-coated soda lime glass substrates. The details of sulfurization process and the effect of preheating duration on the properties of CTS thin films have been investigated. It is found that the content of element tin strongly depend on the preheating duration. X-ray diffraction patterns identify that the CTS thin films exhibit the monoclinic structure. Raman scattering spectra make a further confirmation for the crystal structure. Fourier transform infrared reflectance spectroscopy (FTIR) is first used to study the properties of CTS thin films. The assigned active modes in Raman scattering spectra is consistent with the analysis in FTIR. Morphology analysis reveals long preheating duration would make the quality of films deteriorate. The thin film solar cell (TFSC) fabricated using the CTS absorber layer synthesized at preheating duration of 15 min shows that a power conversion efficiency up to 0.76% for a 0.19 cm{sup 2} area. The electrical characterization of CTS TFSC is first studied by electrochemical impedance spectroscopy, which implies the existence of MoS{sub x} and defects in the CTS/CdS interface. - Highlights: • CTS thin films and solar cells prepared by RF magnetron sputtering. • Preheating duration is a critical way to remain the Sn content in CTS thin film. • XRD, Raman, FTIR and XPS confirmed the single phase of CTS thin film. • The device characterization of CTS solar cell has been systematically investigated.

  18. Structural and thermal characterization of La5Ca9Cu24O41 thin films grown by pulsed laser deposition on (1 1 0) SrTiO3 substrates

    International Nuclear Information System (INIS)

    Svoukis, E.; Athanasopoulos, G.I.; Altantzis, Th.; Lioutas, Ch.; Martin, R.S.; Revcolevschi, A.; Giapintzakis, J.

    2012-01-01

    In the present study stoichiometric, b-axis oriented La 5 Ca 9 Cu 24 O 41 thin films were grown by pulsed laser deposition on (1 1 0) SrTiO 3 substrates in the temperature range 600–750 °C. High resolution transmission electron microscopy was employed to investigate the growth mechanism and the epitaxial relationship between the SrTiO 3 substrates and the La 5 Ca 9 Cu 24 O 41 films grown at 700 °C. The 3-ω method was used to measure the cross-plane thermal conductivity of La 5 Ca 9 Cu 24 O 41 films in the temperature range 50–350 K. The observed glass-like behavior is attributed to atomic-scale defects, grain boundaries and an interfacial layer formed between film and substrate.

  19. Formation of high-Tc YBa2Cu3O(7-delta) films on Y2BaCuO5 substrate

    Science.gov (United States)

    Wang, W. N.; Lu, H. B.; Lin, W. J.; Yao, P. C.; Hsu, H. E.

    1988-07-01

    High-Tc superconducting YBa2Cu3O(7-delta) films have been successfully prepared on green Y2BaCuO5 (2115) ceramic substrate. The films have been formed by RF sputtering and screen printing with post annealing at 925 C. Regarding superconducting features, the sharp resistivity drop with Tc onset around 95 K (midpoint 84 K) and 99 K (midpoint 89 K) has been observed for RF sputtered and printed films respectively. Both films show the excellent adhesion towards the 2115 substrate. Powder X-ray diffraction profiles indicate a majority of 1237 phase with preferred orientation for RF sputtered thin film.

  20. Determination and analysis of dispersive optical constants of CuIn{sub 3}S{sub 5} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khemiri, N., E-mail: naoufel_khemiri@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semiconducteurs-ENIT, Universite Tunis, ElManar BP 37, Le belvedere, 1002 Tunis (Tunisia); Sinaoui, A.; Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semiconducteurs-ENIT, Universite Tunis, ElManar BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2011-04-15

    CuIn{sub 3}S{sub 5} thin films were prepared from powder by thermal evaporation under vacuum (10{sup -6} mbar) onto glass substrates. The glass substrates were heated from 30 to 200 {sup o}C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E{sub 0} and dispersion energy E{sub d} of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.

  1. Microscopic measurement of penetration depth in YBa2Cu3O7-δ thin films by scanning Hall probe microscopy

    International Nuclear Information System (INIS)

    Oral, A.; Bending, S.J.; Humphreys, R.G.; Henini, M.

    1997-01-01

    We have used a low noise scanning Hall probe microscope to measure the penetration depth microscopically in a YBa 2 Cu 3 O 7-δ thin film as a function of temperature. The instrument has high magnetic field (approx. 2.9x10 -8 T Hz -1/2 at 77 K) and spatial resolution (approx. 0.85 μm). Magnetic field profiles of single vortices in the superconducting film have been successfully measured and the microscopic penetration depth of the superconductor has been extracted. We find surprisingly large variations in values of λ for different vortices within the scanning field. (author)

  2. Magnetic and structural properties of ion beam sputtered Fe–Zr–Nb–B–Cu thin films

    International Nuclear Information System (INIS)

    Modak, S.S.; Kane, S.N.; Gupta, A.; Mazaleyrat, F.; LoBue, M.; Coisson, M.; Celegato, F.; Tiberto, P.; Vinai, F.

    2012-01-01

    Magnetic and structural properties of Fe–Zr–Nb–B–Cu thin films, prepared by ion beam sputtering on silicon substrates by using a target made up of amorphous ribbons of nominal composition Fe 84 Zr 3.5 Nb 3.5 B 8 Cu 1 , are reported. As-deposited thin film samples exhibit an in-plane uniaxial anisotropy, which can be ascribed to the preparation technique and the coupling of quenched-in internal stresses. Structural measurements indicate no significant variation of the grain size with thickness and with the annealing temperature. Increase in surface irregularities with annealing temperature and oxidation results in aggregates that would act as pinning centers, affecting the magnetic properties leading to magnetic hardening of the specimens. The role of the magnetic anisotropy is thoroughly discussed with the help of magnetic and ferromagnetic resonance measurements. - Highlights: ►Ion beam sputtered Fe–Zr–Nb–B–Cu thin films of different thickness are prepared. ►Films exhibit in-plane uniaxial anisotropy, which reduces with thermal treatments. ►Increased surface roughness leads to wall pinning, increasing the coercive field.

  3. Improved Charge Separation in WO3/CuWO4 Composite Photoanodes for Photoelectrochemical Water Oxidation

    Directory of Open Access Journals (Sweden)

    Danping Wang

    2016-05-01

    Full Text Available Porous tungsten oxide/copper tungstate (WO3/CuWO4 composite thin films were fabricated via a facile in situ conversion method, with a polymer templating strategy. Copper nitrate (Cu(NO32 solution with the copolymer surfactant Pluronic®F-127 (Sigma-Aldrich, St. Louis, MO, USA, generic name, poloxamer 407 was loaded onto WO3 substrates by programmed dip coating, followed by heat treatment in air at 550 °C. The Cu2+ reacted with the WO3 substrate to form the CuWO4 compound. The composite WO3/CuWO4 thin films demonstrated improved photoelectrochemical (PEC performance over WO3 and CuWO4 single phase photoanodes. The factors of light absorption and charge separation efficiency of the composite and two single phase films were investigated to understand the reasons for the PEC enhancement of WO3/CuWO4 composite thin films. The photocurrent was generated from water splitting as confirmed by hydrogen and oxygen gas evolution, and Faradic efficiency was calculated based on the amount of H2 produced. This work provides a low-cost and controllable method to prepare WO3-metal tungstate composite thin films, and also helps to deepen the understanding of charge transfer in WO3/CuWO4 heterojunction.

  4. Improved current transport properties of post annealed Y1Ba2Cu3O7-x thin films using Ag doping

    DEFF Research Database (Denmark)

    Clausen, Thomas; Skov, Johannes; Jacobsen, Claus Schelde

    1996-01-01

    The influence of Ag doping on the transport properties of Y1Ba2Cu3O7–x thin films prepared by Y, BaF2, and Cu co-evaporation and optimized ex situ post annealing has been investigated. Both undoped and Ag doped films have values of Tc above 90 K, but Jc (77 K) is highly dependent on the nominal...... thickness (tnom) of the as-deposited film. For undoped films with tnom>106 A/cm2) decreases monotonically with increasing film thickness. Above 300 nm Jc (77 K) decreases rapidly to values below 5×105 A/cm2. Ag doped films with tnom>=200 nm have higher Jc (77 K) values than those of undoped films. Ag doped...... films have a maximum in Jc (77 K) around 250 nm. As for the undoped films, there is a large decrease in Jc (77 K) for Ag doped films with tnom>=300 nm. It was found that the higher values of Jc (77 K) for the Ag doped films were due to a better epitaxial growth of the YBCO compound. The low values of Jc...

  5. Epitaxial growth and superconducting properties of YBa23Cu3O7 thin films and YBa2Cu3O7/Dy(Pr)Ba2Cu3O7 superlattices

    International Nuclear Information System (INIS)

    Triscone, J.M.; Brunner, O.; Antognazza, L.; Kent, A.D.; Fischer, O.; Karkut, M.G.

    1990-01-01

    The authors have prepared in situ REBa 2 Cu 3 O 7 (REBCO) (RE = Y, Pr, Dy) thin films and YBCO/Dy(Pr)BCO superlattices by single target dc planar magnetron sputtering. YBCO/DyBCO superlattices have been realized with modulation wavelength as short as 24 Angstrom, i.e., a unit cell of YBCO alternates with a unit cell of DyBCO, on average. The superconducting properties of such superlattices are indistinguishable from those of single layers. T co 's (zero resistance) are between 85 and 89K, and the residual resistivity ratios are between 2.5 and 3. In contrast to these results, when YBCO is layered with PrBCO, which is insulating, a dramatic change in the superconducting properties is observed. The authors have been able to artificially vary the coupling between single 12 Angstrom unit cell of YBCO by interposing insulating planes of PrBCO. As the YBCO layer separation increases, T c is reduced and the transition broadens showing evidence of 2-D superconducting fluctuations

  6. The crystallisation of Cu{sub 2}ZnSnS{sub 4} thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schurr, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany)], E-mail: schurr@krist.uni-erlangen.de; Hoelzing, A.; Jost, S.; Hock, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Voss, T.; Schulze, J.; Kirbs, A. [Atotech Deutschland GmbH, Erasmusstrasse 20, D-10553 Berlin (Germany); Ennaoui, A.; Lux-Steiner, M. [Heterogeneous Material Systems SE II, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany); Weber, A.; Koetschau, I.; Schock, H.-W. [Technology SE III, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany)

    2009-02-02

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu{sub 2}ZnSnS{sub 4} based thin film solar cells. A kesterite based solar cell (size 0.5 cm{sup 2}) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu{sub 2}SnS{sub 3} and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu{sub 3}Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu{sub 6}Sn{sub 5} and Sn phases were detected. The formation mechanism of Cu{sub 2}SnS{sub 3} involves the binary sulphides Cu{sub 2-x}S and SnS{sub 2} in the absence of the binary precursor phase Cu{sub 6}Sn{sub 5}. The presence of Cu{sub 6}Sn{sub 5} leads to a preferred formation of Cu{sub 2}SnS{sub 3} via the reaction educts Cu{sub 2-x}S and SnS{sub 2} in the presence of a SnS{sub 2}(Cu{sub 4}SnS{sub 6}) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase.

  7. Controllable Electrical Contact Resistance between Cu and Oriented-Bi2Te3 Film via Interface Tuning.

    Science.gov (United States)

    Kong, Xixia; Zhu, Wei; Cao, Lili; Peng, Yuncheng; Shen, Shengfei; Deng, Yuan

    2017-08-02

    The contact resistance between metals and semiconductors has become critical for the design of thin-film thermoelectric devices with their continuous miniaturization. Herein, we report a novel interface tuning method to regulate the contact resistance at the Bi 2 Te 3 -Cu interface, and three Bi 2 Te 3 films with different oriented microstructures are obtained. The lowest contact resistivity (∼10 -7 Ω cm 2 ) is observed between highly (00l) oriented Bi 2 Te 3 and Cu film, nearly an order of magnitude lower than other orientations. This significant decrease of contact resistivity is attributed to the denser film connections, lower lattice misfit, larger effective conducting contact area, and smaller width of the surface depletion region. Meanwhile, our results show that the reduction of contact resistance has little dependence on the interfacial diffusion based on the little change in contact resistivity after the introduction of an effective Ti barrier layer. Our work provides a new idea for the mitigation of contact resistivity in thin-film thermoelectric devices and also gives certain guidance for the size design of the next-level miniaturized devices.

  8. In-situ laser processing and microstructural characteristics of YBa2Cu3O7-δ thin films on Si with TiN buffer layer

    International Nuclear Information System (INIS)

    Tiwari, P.; Zheleva, T.; Narayan, J.

    1993-01-01

    The authors have prepared high-quality superconducting YBa 2 Cu 3 O 7 -δ (YBCO) thin films on Si(100) with TiN as a buffer layer using in-situ multitarget deposition system. Both TiN and YBCO thin films were deposited sequentially by KrF excimer laser ( | = 248 nm ) at substrate temperature of 650 C . Thin films were characterized using X-ray diffraction (XRD), four-point-probe ac resistivity, scanning electron microscopy (S E M), transmission electron microscopy (TEM), and Rutherford backscattering (RBS). The TiN buffer layer was epitaxial and the epitaxial relationship was found to be cube on cube with TiN parallel Si. YBCO thin films on Si with TiN buffer layer showed the transition temperature of 90-92K with T co (zero resistance temperature) of 84K. The authors have found that the quality of the buffer layer is very important in determining the superconducting transition temperature of the thin film. The effects of processing parameters and the correlation of microstructural features with superconducting properties are discussed in detail

  9. Magnetic and structural study of Cu-doped TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Torres, C.E. Rodriguez [Dpto de Fisica-IFLP, Fac. Cs. Exactas, Universidad Nacional de La Plata-CONICET, CC 67, 1900 La Plata (Argentina)], E-mail: torres@fisica.unlp.edu.ar; Golmar, F. [Laboratorio de Ablacion Laser, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Cabrera, A.F.; Errico, L.; Navarro, A.M. Mudarra; Renteria, M.; Sanchez, F.H. [Dpto de Fisica-IFLP, Fac. Cs. Exactas, Universidad Nacional de La Plata-CONICET, CC 67, 1900 La Plata (Argentina); Duhalde, S. [Laboratorio de Ablacion Laser, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

    2007-10-31

    Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO{sub 2} thin films were grown by pulsed laser deposition technique on LaAlO{sub 3} substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO{sub 2}. The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO{sub 2}.

  10. One, step electrodeposition of Cu(Ga,In)Se2 thin films from aqueous solution

    Science.gov (United States)

    Fahoume, M.; Boudraine, H.; Aggour, M.; Chraïbi, F.; Ennaoui, A.; Delplancke, J. L.

    2005-03-01

    Cu(In,Ga)Se{2} (CIGS) semiconducting thin films films were prepared by electrodeposition from aqueous solution containing CuCl{2}, InCl{3}, GaCl{3} and H{2}SeO{3}. The deposited material was characterized by cyclic voltammetry. The compositional, structural studies were carried out using scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). X-ray analysis showed the formation of CuIn{1-x}GaxSe{2} films, in the optimum conditions, with preferred orientation in the (112) direction. We observed a shift of the peaks to higher angles with increasing x, accounting for a decrease of the lattice constants when In atoms are substituted by Ga atoms. Element mapping and scanline (EDX) indicate that the Cu, In, Ga, and Se elements are homogeneously distributed.

  11. Analysis of low-field isotropic vortex glass containing vortex groups in YBa2Cu3O7-x thin films visualized by scanning SQUID microscopy

    NARCIS (Netherlands)

    Wells, Frederick S.; Pan, Alexey V.; Wang, X.; Fedoseev, Sergey A.; Hilgenkamp, Hans

    2015-01-01

    The glass-like vortex distribution in pulsed laser deposited YBa2Cu3O7-x thin films is observed by scanning superconducting quantum interference device microscopy and analysed for ordering after cooling in magnetic fields significantly smaller than the Earth's field. Autocorrelation calculations on

  12. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices

    International Nuclear Information System (INIS)

    Fan, W.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    Ti-Al/Cu/Ta multilayered electrodes were fabricated on SiO 2 /Si substrates by ion beam sputtering deposition, to overcome the problems of Cu diffusion and oxidation encountered during the high dielectric constant (κ) materials integration. The Cu and Ta layers remained intact through the annealing in oxygen environment up to 600 deg. C. The thin oxide layer, formed on the Ti-Al surface, effectively prevented the oxygen penetration toward underneath layers. Complex oxide (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the layered Ti-Al/Cu/Ta electrodes using rf magnetron sputtering. The deposited BST films exhibited relatively high permittivity (150), low dielectric loss (0.007) at zero bias, and low leakage current -8 A/cm 2 at 100 kV/cm

  13. Transport properties of ultra-thin granular YBa2Cu3O7−δ nanobridges

    International Nuclear Information System (INIS)

    Bar, E.; Levi, D.; Koren, G.; Shaulov, A.; Yeshurun, Y.

    2014-01-01

    Highlights: • Nano bridges were patterned on laser ablated ultra-thin YBa 2 Cu 3 O 7 films. • Magneto-transport measurements reveal phenomena that are usually absent in the bulk. • Magnetoresistance (MR) oscillation point to effect of granularity. • Negative MR at low fields and negative MR slope at high fields were observed. • V-I curves exhibit voltage jumps at temperatures well below T c . - Abstract: Magneto-transport measurements in YBa 2 Cu 3 O 7 nanobridges, patterned on laser ablated ultra-thin films, reveal phenomena that are usually absent in the bulk of the material. These include broadening of the resistive transition, magnetoresistance oscillation, negative magnetoresistance at low fields, negative magnetoresistance slope at high fields, and V–I curves that exhibit voltage jumps at temperatures well below T c . These phenomena, attributed to the granular nature of the bridges, should be taken into account in any future attempts to utilize such bridges in technological applications

  14. Stability of Tl-Ba-Ca-Cu-O superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Venturini, E. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Padilla, R. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States)

    1999-12-01

    We report the stability of TlBa{sub 2}CaCu{sub 2}O{sub 7} and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8} on LaAlO{sub 3}(100) epitaxial thin films, under a variety of conditions. All films are stable in acetone and methanol and with repeated thermal cycling to cryogenic temperatures. Moisture, especially vapor, degrades film quality rapidly. These materials are stable to high temperatures in either N{sub 2} or O{sub 2} ambients. While total degradation, resulting from Tl depletion, occurs at the same temperatures for both phases, 600 degree sign C in N{sub 2} and 700 degree sign C in O{sub 2}, the onset of degradation occurs at somewhat lower temperatures for TlBa{sub 2}CaCu{sub 2}O{sub 7} than for Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}. (c) 1999 Materials Research Society.

  15. Synthesis, crystal structure, and spectroscopic characterization of trans-bis[(mu-1,3-bis(4-pyridyl)propane)(mu-(3-thiopheneacetate-O))(3-thiopheneacetate-O)]dicopper(II), [[Cu2(O2CCH2C4H3S)4mu-(BPP)2

    Science.gov (United States)

    Marinho, Maria Vanda; Yoshida, Maria Irene; Guedes, Kassilio J; Krambrock, Klaus; Bortoluzzi, Adailton J; Hörner, Manfredo; Machado, Flávia C; Teles, Wagner M

    2004-02-23

    From the reaction between a dinuclear paddle-wheel carboxylate, namely [Cu2mu-(O2CCH2C4H3S)4] (1), and the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a neutral 2-D coordination polymer [[Cu2(O2CCH2C4H3S)4mu-(BPP)2

  16. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  17. Smooth YBa2Cu3O7-x thin films prepared by pulsed laser deposition in O2/Ar atmosphere

    DEFF Research Database (Denmark)

    Kyhle, Anders; Skov, Johannes; Hjorth, Søren

    1994-01-01

    We report on pulsed laser deposition of YBa2Cu3O7-x in a diluted O2/Ar gas resulting in thin epitaxial films which are almost outgrowth-free. Films were deposited on SrTiO3 or MgO substrates around 800-degrees-C at a total chamber pressure of 1.0 mbar, varying the argon partial pressure from 0 to 0.......6 mbar. The density of boulders and outgrowths usual for laser deposited films varies strongly with Ar pressure: the outgrowth density is reduced from 1.4 x 10(7) to 4.5 x 10(5) cm-2 with increasing Ar partial pressure, maintaining a critical temperature T(c,zero) almost-equal-to 90 K and a transport...... critical current density J(c)(77 K) greater-than-or-equal-to 10(6) A/cm2 by extended oxygenation time during cool down....

  18. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films

    Science.gov (United States)

    Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert

    2016-03-01

    We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b

  19. Granularity effect on microwave surface resistance in high-Tc YBa2Cu3O7-x bulk and thin film superconductor

    International Nuclear Information System (INIS)

    Swarup, Ram; Gupta, A.K.

    2001-01-01

    We report the effect of variation of Josephson coupling strength in YBa 2 Cu 3 O 7-x (YBCO) superconductor due to grain enlargement, grain orientation and magnetic field on microwave surface resistance (R s ). The coupling strength in the bulk samples has been increased by increasing the sample density from 4.4 to 5.3 g/cm 3 , whereas in thin films, the same could be increased by increasing the c-axis orientation of the grains. The value of R s (10 GHz, 65 K) in bulk samples has been found to decrease from 52 to 4 mΩ with the increase of the coupling strength from 0.06 to 0.43 and in thin films from 930 to 600 μΩ with increase of the coupling strength from 0.92 to 2.43. The effect of grain decoupling on microwave surface resistance was studied under dc and microwave magnetic fields. The surface resistance increases gradually with the application of dc and microwave magnetic fields due to grain decoupling and finally gets saturated beyond a certain critical field. (author)

  20. Dinuclear Cu(II) complexes of isomeric bis-(3-acetylacetonate)benzene ligands: synthesis, structure, and magnetic properties.

    Science.gov (United States)

    Rancan, Marzio; Dolmella, Alessandro; Seraglia, Roberta; Orlandi, Simonetta; Quici, Silvio; Sorace, Lorenzo; Gatteschi, Dante; Armelao, Lidia

    2012-05-07

    Highly versatile coordinating ligands are designed and synthesized with two β-diketonate groups linked at the carbon 3 through a phenyl ring. The rigid aromatic spacer is introduced in the molecules to orient the two acetylacetone units along different angles and coordination vectors. The resulting para, meta, and ortho bis-(3-acetylacetonate)benzene ligands show efficient chelating properties toward Cu(II) ions. In the presence of 2,2'-bipyridine, they promptly react and yield three dimers, 1, 2, and 3, with the bis-acetylacetonate unit in bridging position between two metal centers. X-ray single crystal diffraction shows that the compounds form supramolecular chains in the solid state because of intermolecular interactions. Each of the dinuclear complexes shows a magnetic behavior which is determined by the combination of structural parameters and spin polarization effects. Notably, the para derivative (1) displays a moderate antiferromagnetic coupling (J = -3.3 cm(-1)) along a remarkably long Cu···Cu distance (12.30 Å).

  1. AFM study of growth of Bi2Sr2-xLaxCuO6 thin films

    International Nuclear Information System (INIS)

    Haitao Yang; Hongjie Tao; Yingzi Zhang; Duogui Yang; Lin Li; Zhongxian Zhao

    1997-01-01

    c-axis-oriented Bi 2 Sr 1.6 La 0.4 CuO 6 thin films deposited on flat planes of (100)SrTiO 3 , (100)LaAlO 3 and (100)MgO substrates and vicinal planes (off-angle ∼ 6 deg.) of SrTiO 3 substrates by RF magnetron sputtering were studied by atomic force microscopy (AFM). T c of these films reached 29 K. Film thickness ranged from 15 nm to 600 nm. Two typical growth modes have been observed. AFM images of thin films on flat planes of substrates showed a terraced-island growth mode. By contrast, Bi-2201 thin films on vicinal planes of substrates showed a step-flow growth mode. The growth unit is a half-unit-cell in the c-axis for both growth modes. No example of spiral growth, which was thought to be the typical structure of YBCO thin films, was found in either of these kinds of thin films. (author)

  2. Highly absorbing Cu-In-O thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Khemiri, N.; Chaffar Akkari, F.; Kanzari, M.; Rezig, B.

    2008-01-01

    We report in this paper on the preparation and characterization of improved quality Cu-In-O films for use as a high-efficiency solar cell absorber. Samples were prepared via sequential thermal vacuum deposition of Cu and In or In and Cu (at 10 -5 mbar) on glass substrates heated at 150 deg. C. After what, the obtained binary systems (Cu/In or In/Cu) were annealed in air at 400 deg. C for 3h. These films were characterized for their structural, electrical and optical properties by using X-ray diffraction (XRD), electrical resistivity and optical (transmittance and reflectance) measurement techniques. The X-ray diffraction (XRD) patterns revealed the presence of CuO and In 2 O 3 phases. The absorption coefficient of Cu-In-O thin films (4.10 5 cm -1 ) is larger than 10 5 cm -1 for the In/Cu case and in the range of 10 4 -10 5 cm -1 for the Cu/In case in the visible spectral range. Direct optical band gaps of 1.40 and 1.52eV were found for the In/Cu and Cu/In cases, respectively. The complex dielectric constants of the Cu-In-O films have been calculated. It was found that the refractive index dispersion data obeyed the Wemple-Di Domenico single oscillator model, from which the dispersion parameters and the high-frequency dielectric constant were determined. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan. The electrical measurements show a conversion from a metallic phase to the semiconductor phase by a switching in the electrical resistivity values at an annealing temperature of 275 deg. C. In both cases the samples were highly compensated

  3. Post-growth annealing treatment effects on properties of Na-doped CuInS2 thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural and optical properties of Na-doped CuInS 2 thin films grown by double source thermal evaporation method were studied. The films were annealed from 250 to 500 deg. C in a vacuum after evaporation. X-ray diffraction pattern indicated that there are traces of Cu and In 6 S 7 , which disappeared on annealing above 350 deg. C. Good quality CuInS 2 :Na 0.3% films were obtained on annealing at 500 deg. C. Furthermore, we found that the absorption coefficient of Na-doped CuInS 2 thin films reached 1.5 x 10 5 cm -1 . The change in band gap of the doped samples annealed in the temperatures from 250 to 500 deg. C was in the range 0.038-0.105 eV

  4. YBa2Cu3O7-x thin films prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Apetrii, Claudia

    2009-01-01

    The discovery of superconductivity in ceramic materials by Bednorz and Mueller in early 1987, immediately followed by Wu et al., who showed that YBa 2 Cu 3 O 7-x (YBCO) becomes superconducting (92 K) well above the boiling point of nitrogen (77 K) created a great excitement in superconductivity research. Potential applications of high T c -superconductors require large critical currents and high-applied magnetic fields. Effective ways to increase the critical current density at high magnetic fields in YBCO are the introduction of nanoparticles and chemical substitution of yttrium by other rare earth elements. Since low costs and environmental compatibility are essential conditions for the preparation of long length YBCO films, the cost effective chemical solution deposition (CSD) procedure was selected, given that no vacuum technology is required. To reveal the flexibility and the good optimization possibilities of the CSD approach two main processes were chosen for comparison: a fluorine-free method, namely the polymer-metal precursor technique, and a fluorine-based method, the metalorganic deposition (MOD) using the trifluoroacetates (TFA) technique. Sharp transition temperature widths ΔT c of 1.1 K for the polymer metal method, 0.8 K for TFA method and critical current densities J c of ∼3.5 MA/cm 2 shows that high quality YBCO thin films can be produced using both techniques. Especially interesting is the magnetic field dependence of the critical current density J c (B) of the Y(Dy)BCO (80 %) films showing that for the lower magnetic fields the critical current density J c (B) is higher for a standard YBCO film, but at fields higher than 4.5 T the critical current density J c (B) of Y(Dy)BCO is larger than that for the YBCO. Above 8 T, J c (B) of the Y(Dy)BCO film is more than one order of magnitude higher than in pure YBCO film. (orig.)

  5. Interdiffusion studies on high-Tc superconducting YBa2Cu3O7-δ thin films on Si(111) with a NiSi2/ZrO2 buffer layer

    DEFF Research Database (Denmark)

    Aarnink, W.A.M.; Blank, D.H.A.; Adelerhof, D.J.

    1991-01-01

    Interdiffusion studies on high-T(c) superconducting YBa2Cu3O7-delta thin films with thickness in the range of 2000-3000 angstrom, on a Si(111) substrate with a buffer layer have been performed. The buffer layer consists of a 400 angstrom thick epitaxial NiSi2 layer covered with 1200 angstrom...... of polycrystalline ZrO2. YBa2Cu3O7-delta films were prepared using laser ablation. The YBa2Cu3O7-delta films on the Si/NiSi2/ZrO2 substrates are of good quality; their critical temperatures T(c,zero) and T(c,onset) have typical values of 85 and 89 K, respectively. The critical current density j(c) at 77 K equaled 4...... x 10(4) A/cm2. With X-ray analysis (XRD), only c-axis orientation has been observed. The interdiffusion studies, using Rutherford backscattering spectrometry (RBS) and scanning Auger microscopy (SAM) show that the ZrO2 buffer layer prevents severe Si diffusion to the YBa2Cu3O7-delta layer, the Si...

  6. Synthesis, structure and magnetic properties of crystallographically aligned CuCr_2Se_4 thin films

    International Nuclear Information System (INIS)

    Esters, Marco; Liebig, Andreas; Ditto, Jeffrey J.; Falmbigl, Matthias; Albrecht, Manfred; Johnson, David C.

    2016-01-01

    We report the low temperature synthesis of highly textured CuCr_2Se_4 thin films using the modulated elemental reactant (MER) method. The structure of CuCr_2Se_4 is determined for the first time in its thin film form and exhibits cell parameters that are smaller than found in bulk CuCr_2Se_4. X-ray diffraction and precession electron diffraction show a strong degree of crystallographic alignment of the crystallites, where the axis is oriented perpendicular to the substrate surface, while being rotationally disordered within the plane. Temperature and field dependent in-plane and out-of-plane magnetization measurements show that the film is ferromagnetic with a Curie temperature of 406 K CuCr_2Se_4 synthesized utilizing the MER method shows stronger magnetic anisotropy (effective anisotropy: 1.82 × 10"6 erg cm"−"3; shape anisotropy: 1.07 × 10"6 erg cm"−"3), with the easy axis lying out of plane, and a larger magnetic moment (6 μ_B/f.u.) than bulk CuCr_2Se_4. - Highlights: • Crystallographically aligned, phase pure CuCr_2Se_4 were synthesized. • The degree of alignment decreases with annealing time. • The films are ferromagnetic with the easy axis along the direction. • The magnetization is larger than bulk CuCr_2Se_4 or other CuCr_2Se_4 films made to date.

  7. Temperature behaviour of optical parameters in (Ag3AsS3)0.3(As2S3)0.7 thin films

    Science.gov (United States)

    Kutsyk, Mykhailo M.; Ráti, Yosyp Y.; Izai, Vitalii Y.; Makauz, Ivan I.; Studenyak, Ihor P.; Kökényesi, Sandor; Komada, Paweł; Zhailaubayev, Yerkin; Smailov, Nurzhigit

    2015-12-01

    (Ag3AsS3)0.3(As2S3)0.7 thin films were deposited onto a quartz substrate by rapid thermal evaporation. The optical transmission spectra of thin films were measured in the temperature range 77-300 K. It is shown that the absorption edge spectra are described by the Urbach rule. The temperature behaviour of absorption spectra was studied, the temperature dependences of energy position of absorption edge and Urbach energy were investigated. The influence of transition from three-dimensional glass to the two-dimensional thin film as well as influence of Ag3AsS3 introduction into As2S3 on the optical parameters of (Ag3AsS3)0.3(As2S3)0.7 were analysed. The spectral and temperature behaviour or refractive index for (Ag3AsS3)0.3(As2S3)0.7 thin film were studied.

  8. The effect of the sulfur concentration on the phase transformation from the mixed CuO-Bi{sub 2}O{sub 3} system to Cu{sub 3}BiS{sub 3} during the sulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijian; Jin, Xin; Yuan, Chenchen; Jiang, Guoshun; Liu, Weifeng, E-mail: liuwf@ustc.edu.cn; Zhu, Changfei, E-mail: cfzhu@ustc.edu.cn

    2016-12-15

    Highlights: • Cu{sub 3}BiS{sub 3} thin films were creatively fabricated by sulfurizing metal oxide precursor. • The phase transformation mechanism during the sulfurization process was studied. • The reason why the excess S restrained the formation of Cu{sub 3}BiS{sub 3} was discussed. • The effect of temperature on film morphology and bandgap was studied. - Abstract: The ternary semiconductor Cu{sub 3}BiS{sub 3}, as a promising light-absorber material for thin film solar cells, was creatively synthesized by sulfurizing the mixed metal oxides precursor film deposited by spin-coating chemical solution method. Two kinds of sulfurization techniques were introduced to study the effect of the sulfur concentration on the phase formation for the pure Cu{sub 3}BiS{sub 3}. It was found that Cu-poor S-rich phases such as Cu{sub 3}Bi{sub 3}S{sub 7} and Cu{sub 4}Bi{sub 4}S{sub 9} were easily generated at high S concentration and then can transform to Cu{sub 3}BiS{sub 3} phase by a simple desulphurization process, which means the sulfur concentration had a significant influence on the formation of Cu{sub 3}BiS{sub 3} during the sulfurization process. The probable transformation mechanism from the mixed metal oxides to the pure Cu{sub 3}BiS{sub 3} phase during the sulfurization process was studied in detail through the XRD analysis and thermodynamic calculation. In addition, the electrical properties were characterized by Hall measurement and the effects of sulfurization temperature on the phase transformation, morphology and optical band gap of the absorber layer were also studied in detail.

  9. Characterization and in situ fluorescence diagnostic of the deposition of YBa2Cu3O7-x thin films by pseudo-spark electron beam ablation

    International Nuclear Information System (INIS)

    Jiang, Q.D.; Matacotta, F.C.; Masciarelli, G.; Fuso, F.; Arimondo, E.; Sandrin, G.

    1992-12-01

    The pseudo-spark electron beam ablation (PSA) technique is a comparatively simple and inexpensive method to deposit thin films of oxide materials. The effect of the electron beam power density on the efficiency of the PSA is studied. Results concerning the optimization of the deposition process of high quality superconducting YBa 2 Cu 3 O 7-x thin films on single crystal SrTiO 3 substrates are reported. Correlation between processing parameters and superconducting properties of the thin films are presented: in particular, the effects of the break-down voltage of the pseudo-spark and geometrical arrangement of the target-substrate-beam system on the T c of the resulting films. In situ spectral analysis of the radiative emission from the plasma plume has been performed at different distances from the surface of the target and at different break-down voltages of the pseudo-spark. The role of the oxygen pressure in the PSA process, which could be one order of magnitude less than that for a typical laser ablation system, is discussed. (author). 17 refs, 7 figs, 1 tab

  10. Thin Cu film resistivity using four probe techniques: Effect of film thickness and geometrical shapes

    Science.gov (United States)

    Choudhary, Sumita; Narula, Rahul; Gangopadhyay, Subhashis

    2018-05-01

    Precise measurement of electrical sheet resistance and resistivity of metallic thin Cu films may play a significant role in temperature sensing by means of resistivity changes which can further act as a safety measure of various electronic devices during their operation. Four point probes resistivity measurement is a useful approach as it successfully excludes the contact resistance between the probes and film surface of the sample. Although, the resistivity of bulk samples at a particular temperature mostly depends on its materialistic property, however, it may significantly differ in the case of thin films, where the shape and thickness of the sample can significantly influence on it. Depending on the ratio of the film thickness to probe spacing, samples are usually classified in two segments such as (i) thick films or (ii) thin films. Accordingly, the geometric correction factors G can be related to the sample resistivity r, which has been calculated here for thin Cu films of thickness up to few 100 nm. In this study, various rectangular shapes of thin Cu films have been used to determine the shape induced geometric correction factors G. An expressions for G have been obtained as a function of film thickness t versus the probe spacing s. Using these expressions, the correction factors have been plotted separately for each cases as a function of (a) film thickness for fixed linear probe spacing and (b) probe distance from the edge of the film surface for particular thickness. Finally, we compare the experimental results of thin Cu films of various rectangular geometries with the theoretical reported results.

  11. X-ray-induced thinning of 3He and 3He/4He mixture films

    International Nuclear Information System (INIS)

    Penanen, Konstantin; Fukuto, Masafumi; Silvera, Isaac F.; Pershan, Peter

    2000-01-01

    Films of isotopic mixtures of helium have been studied using x-ray specular reflectivity techniques. In contrast with superfluid 4 He films, x-ray exposure causes a reduction in the thickness of 4 He films above the superfluid transition as well as films of pure 3 He and 3 He/ 4 He mixtures. One proposed model that could account for this effect is a charging model, in which thinning is caused by electrostatic pressure of free charges that accumulate on the helium surface. Unfortunately, this model is not fully consistent with all of the experimental observations. A localized heating model, in which indirect heating of the film causes it to thin would explain the data if there were dissipative film flow in the 3 He/ 4 He mixtures at temperatures where the bulk is superfluid. We argue that various published experimental results suggest such an effect. In this model, film thinning data for dilute 3 He/ 4 He films indicates dissipation that is linear in 3 He content of the film over two orders of magnitude

  12. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    KAUST Repository

    Alias, Mohd Sharizal; Dursun, Ibrahim; Saidaminov, Makhsud I.; Diallo, Elhadj Marwane; Mishra, Pawan; Ng, Tien Khee; Bakr, Osman; Ooi, Boon S.

    2016-01-01

    function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained

  13. Sol-gel deposition and electrical properties of laser irradiated Cu doped TiO2 multilayer thin films

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available Multilayer thin films (3, 5 and 7 of 20% copper doped titanium dioxide (Cu:TiO2 have been deposited on glass substrates by sol-gel spin coating method. After deposition, films have been irradiated by a beam of continuous wave diode laser (532 nm for two minutes at the angle of 45°. Structural, surface morphology and electrical properties of films have been investigated by X-rays diffraction (XRD, scanning electron microscope (SEM and four point probe technique respectively. XRD shows the formation of titanium copper oxide. Surface morphology of thin films indicated that the average grain size is increased by increasing the number of layers. The average sheet resistivity of 3, 5 and 7 layers of thin films measured by four point probe technique is 2.2 × 104, 1.2 × 104 and 1.0 × 104 (Ohm-cm respectively. The present study will facilitate a cost effective and environmental friendly study for several properties of materials. Keywords: Cu:TiO2, Multilayer thin films, Diode laser

  14. Formation and electronic properties of In2S3/Cu(In,Ga)Se2 junctions and related thin film solar cells

    International Nuclear Information System (INIS)

    Pistor, Paul

    2009-01-01

    In this work, thermally evaporated In 2 S 3 thin films have been used as buffer layers in Cu(In,Ga)Se 2 solar cells. The state of the art Cu(In,Ga)Se 2 solar cell with CdS buffer layer was the starting point for this work and the role of the buffer layer as well as alternative buffer layer concepts were introduced in the beginning, together with some theoretical considerations needed for the physical interpretation of solar cell parameters. High quality, crystalline In 2+x S 3 was successfully synthesised and used as a reference material for the structural characterisation of In 2 S 3 . Three modifications with tetragonal, cubic and trigonal symmetry were identified and characterised with X-ray diffraction (XRD) measurements in the temperature range from 31 C to 1040 C. A refinement by the Rietveld method was performed, extending the existing literature data on the structure of In 2 S 3 . Resulting In 2 S 3 thin films were stoichiometric and homogeneous with an indirect optical bandgap of (1.99±0.5) eV. The utilisation of crystalline, single phase source material and the development of appropriate buffer processing led to high efficiency solar cells. A key process for optimal device performance was post deposition annealing of the completed solar cells for 35 min. to 55 min. at a temperature of 200 C. Annealing was found to improve mainly the fill factor and open circuit voltage of devices with an In 2 S 3 buffer, independent of the atmosphere in which the annealing was carried out (e.g. in air or inert gas). The controlled and reproducible enhancement of the device performance during annealing allowed coherent analysis of the changes in the photo-generated charge carrier collection and the dominant recombination mechanism of the solar cell devices. Losses in the spectral response upon annealing observed at long wavelengths (700-1200 nm) were attributed to a reduction of the space charge region width at the In 2 S 3 /Cu(In,Ga)Se 2 junction. Prior to annealing, it

  15. Electrochromic properties of nanocrystalline MoO3 thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Chan, C.-C.; Huang, H.-T.; Peng, C.-H.; Hsu, W.-C.

    2008-01-01

    Electrochromic MoO 3 thin films were prepared by a sol-gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO 3 thin films. The effects of annealing temperatures ranging from 100 o C to 500 o C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO 4 /propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO 3 thin films heat-treated at 350 o C varied from 80% to 35% at λ = 550 nm (ΔT = ∼ 45%) and from 86% to 21% at λ ≥ 700 nm (ΔT = ∼ 65%) after coloration. Films heat-treated at 350 deg. C exhibited the best electrochromic properties in the present study

  16. Effect of substrate on texture and mechanical properties of Mg-Cu-Zn thin films

    Science.gov (United States)

    Eshaghi, F.; Zolanvari, A.

    2018-04-01

    In this work, thin films of Mg-Cu-Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg-Cu-Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg-Cu-Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg-Cu-Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.

  17. Preparation and characterization of CuInSe2 particles via the hydrothermal route for thin-film solar cells

    International Nuclear Information System (INIS)

    Wu, Chung-Hsien; Chen, Fu-Shan; Lin, Shin-Hom; Lu, Chung-Hsin

    2011-01-01

    Highlights: → A new hydrothermal process for preparing copper indium diselenide (CuInSe 2 ). → Well-crystallized CuInSe 2 particles are obtained at 180 deg. C for 1 h. → Densified CuInSe 2 thin films are prepared from ink printing. → Increasing temperatures result in an improvement of properties of CuInSe 2 films. - Abstract: CuInSe 2 powders with a chalcopyrite structure used in thin-film solar cells were successfully prepared via a hydrothermal method at low temperatures within short durations. Well-crystallized CuInSe 2 particles were formed via the hydrothermal reaction at 180 deg. C for 1 h. The concentrations of stabilizer, triethanolamine (TEA), significantly affected the purity, morphology and particle sizes of the prepared powders. Increasing the reaction duration and temperatures led to decrease the amount of second phase In(OH) 3 and resulted in the formation of pure CuInSe 2 . Densified CuInSe 2 thin films were prepared from ink printing with the addition of the flux. Increasing the selenization temperatures increased the grain size and improved the crystallinity of CuInSe 2 films.

  18. Structural, optical and electrical properties of CuInS{sub 2} thin films prepared by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Terasako, Tomoaki; Uno, Yuji; Inoue, Seiki; Shirakata, Sho [Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 780-8577 (Japan); Kariya, Tetsuya [Faculty of Science, Kochi University, Akebono-cho, Kochi, 780-8072 (Japan)

    2006-09-15

    Polycrystalline CuInS{sub 2} thin films were prepared by chemical spray pyrolisis (CSP) on glass substrate from the ethanol aqueous solution containing CuCl{sub 2}, InCl{sub 3} and thiourea. Structural, electrical and optical properties were systematically studied in terms of substrate temperature, pH and the ion ratio (Cu/In) of the spray solution. Although the In-rich films were composed of CuInS{sub 2} and In{sub 2}S{sub 3}, the In{sub 2}S{sub 3} content in the film decreased with Cu/In ratio. Appearance of Raman peaks at 288 and 298 cm{sup -1} indicated that the films contained CuInS{sub 2} with chalcopyrite and CuAu phases. Typical grain size in the Cu-rich films was 200 nm. Optical gap energies were approximately 0.1-0.2eV smaller than the bandgap energy of the CuInS{sub 2} bulk crystal. Resistivity of the Cu-rich films without In{sub 2}S{sub 3} secondary phase was 0.2-5 {omega}cm. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Highly oriented as-deposited superconducting laser ablated thin films of Y1Ba2Cu3O/sub 7-//sub δ/ on SrTiO3, zirconia, and Si substrates

    International Nuclear Information System (INIS)

    Koren, G.; Polturak, E.; Fisher, B.; Cohen, D.; Kimel, G.

    1988-01-01

    KrF excimer laser ablation of an Y 1 Ba 2 Cu 3 O/sub 7-//sub δ/ pellet in 0.1--0.2 Torr of O 2 ambient was used to deposit thin superconducting films onto SrTiO 3 , yttria-stabilized zirconia (YSZ), and silicon substrates at 600--700 0 C. The as-deposited 1-μm-thick films at 650--700 0 C substrate temperature were superconducting, without further high-temperature annealing. All films had a similar T/sub c/ onset of ∼92 K but different zero-resistance T/sub c/ of 90, 85, and 70 K for the films on SrTiO 3 , YSZ, and Si substrates, respectively. Angular x-ray diffraction analysis showed that all the films were highly oriented with the c axis perpendicular to their surface. Critical current densities at 77 K were about 40 000 and 10 000 A/cm 2 for the films on SrTiO 3 and YSZ, respectively. Smooth surface morphology was observed in all films, with occasional defects and cracks in the films on YSZ, which seems to explain the lower critical current in these films

  20. Thin-Film Transformation of NH4 PbI3 to CH3 NH3 PbI3 Perovskite: A Methylamine-Induced Conversion-Healing Process.

    Science.gov (United States)

    Zong, Yingxia; Zhou, Yuanyuan; Ju, Minggang; Garces, Hector F; Krause, Amanda R; Ji, Fuxiang; Cui, Guanglei; Zeng, Xiao Cheng; Padture, Nitin P; Pang, Shuping

    2016-11-14

    Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH 4 PbI 3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH 3 NH 3 PbI 3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH 4 PbI 3 -to-CH 3 NH 3 PbI 3 transformation process. The chemical origins of this transformation are studied at various length scales. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7−δ thin films

    International Nuclear Information System (INIS)

    Molina-Luna, Leopoldo; Duerrschnabel, Michael; Turner, Stuart; Martinez, Gerardo T; Van Aert, Sandra; Van Tendeloo, Gustaaf; Erbe, Manuela; Holzapfel, Bernhard

    2015-01-01

    Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa 2 Cu 3 O 7−δ (YBCO) superconducting thin films containing nanosized BaHfO 3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO 3 (STO) substrates yielding critical current densities up to 3.6 MA cm −2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m 3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (∼1.5 nm) and the determination of 0.25 nm dislocation cores. (paper)

  2. Electrochemical preparation of photoelectrochemically active CuI thin films from room temperature ionic liquid

    International Nuclear Information System (INIS)

    Huang, Hsin-Yi; Chien, Da-Jean; Huang, Genin-Gary; Chen, Po-Yu

    2012-01-01

    Highlights: ► CuI film can be formed by anodization of Cu in ionic liquid containing iodide. ► Coordinating strength of anion in ionic liquid determine the formation of CuI. ► Photocurrent of the CuI film can be observed in aqueous solution and in ionic liquid. ► Cu layer coated on conductive substrates can be converted to CuI. - Abstract: Cuprous iodide (CuI) thin films with photoelectrochemical activity were prepared by anodizing copper wire or copper-electrodeposited tungsten wire in the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF 6 RTIL) containing N-butyl-N-methylpyrrolidinium iodide (BMP-I). A copper coating was formed on the tungsten wire by potentiostatic electrodeposition in BMP-dicyanamide (BMP-DCA) RTIL containing copper chloride (CuCl). The CuI films formed using this method were compact, fine-grained and exhibited good adhesion. The characteristic diffraction signals of CuI were observed by powder X-ray diffractometry (XRD). X-ray photoelectron spectroscopy (XPS) also confirmed the formation of a CuI compound semiconductor. The CuI films demonstrated an apparent and stable photocurrent under white light illumination in aqueous solutions and in a RTIL. This method has enabled the electrochemical formation of CuI from a RTIL for the first time, and the first observation of a photocurrent produced from CuI in a RTIL. The coordinating strength of the anions of the RTIL is the key to the successful formation of the CuI thin film. If the coordinating strength of the anions of the RTIL is too strong, no CuI formation is observed.

  3. Investigations of spherical Cu NPs in sodium lauryl sulphate with Tb"3"+ ions dispersed in PVA films

    International Nuclear Information System (INIS)

    Kumar, Brijesh; Kaur, Gagandeep; Rai, S.B.

    2016-01-01

    Highlights: • Cu NPs were prepared in SDS using 1064 nm laser radiation at fluence 37, 64 and 88 J/cm"2. • Spherical Cu NPs with average diameter varying between 10 and 50 nm atdifferent fluence. • PL of Tb3+ ions in PVA polymer film is maximum with Cu NPS at fluence 37 J/cm"2. • PVA films of Cu NPs displayed a highly temperature-dependent electrical conductivity. • These copper NPs embedded PVA films can be used as novel, low-cost sensor materials. - Abstract: Cu nanoparticles (NPs) have been prepared in SDS solution using 1064 nm laser radiation at different fluence 37 J/cm"2, 64 J/cm"2 and 88 J/cm"2 and structurally characterized. The TEM measurements reveal the presence of nanoparticles of spherical shape with different size. The size of the nanoparticles and their concentration increases with the increase of fluence.The effect of these Cu nanoparticles on the emissive properties of Tb"3"+ ion in polymer films has been studied. It is found that emission intensity of Tb"3"+ first increases and then deceases both with concentration of Cu NPs as well as with sizes. The PL intensity of Tb"3"+ ions is minimum for Cu NPs prepared with highest fluence. It has been explained in term of local field effect. This was also verified by life time measurements. These thin PVA films of copper nanoparticles displayed a highly temperature-dependent electrical conductivity with sensitivity at least comparable to commercial materials which suggest the use of these copper NPs embedded PVA films as novel, low-cost sensor materials.

  4. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.

    Science.gov (United States)

    Cho, Jin Woo; Ismail, Agus; Park, Se Jin; Kim, Woong; Yoon, Sungho; Min, Byoung Koun

    2013-05-22

    Cu2ZnSnS4 (CZTS) is a very promising semiconductor material when used for the absorber layer of thin film solar cells because it consists of only abundant and inexpensive elements. In addition, a low-cost solution process is applicable to the preparation of CZTS absorber films, which reduces the cost when this film is used for the production of thin film solar cells. To fabricate solution-processed CZTS thin film using an easily scalable and relatively safe method, we suggest a precursor solution paste coating method with a two-step heating process (oxidation and sulfurization). The synthesized CZTS film was observed to be composed of grains of a size of ~300 nm, showing an overall densely packed morphology with some pores and voids. A solar cell device with this film as an absorber layer showed the highest efficiency of 3.02% with an open circuit voltage of 556 mV, a short current density of 13.5 mA/cm(2), and a fill factor of 40.3%. We also noted the existence of Cd moieties and an inhomogeneous Zn distribution in the CZTS film, which may have been triggered by the presence of pores and voids in the CZTS film.

  5. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques

    International Nuclear Information System (INIS)

    Chaki, Sunil H.; Deshpande, M.P.; Tailor, Jiten P.

    2014-01-01

    CuS thin films were synthesized by chemical bath deposition and dip coating techniques at ambient temperature. The energy dispersive analysis of X-rays of the thin films confirmed that both the as synthesized thin films are stoichiometric. The X-ray diffraction of the chemical bath deposited and dip coating deposited thin films showed that the films possess hexagonal structure having lattice parameters, a = b = 3.79 A and c = 16.34 A. The crystallite sizes determined from the X-ray diffraction data using Scherrer's formula for the chemical bath deposition and dip coating deposition thin films came out to be nearly 11 nm and 13 nm, respectively. The optical microscopy of the as deposited thin films surfaces showed that the substrates are well covered in both the deposited films. The scanning electron microscopy of the thin films clearly showed that in chemical bath deposited thin films the grain size varies from few μm to nm, while in dip coating deposited films the grain size ranges in nm. The optical bandgap determined from the optical absorbance spectrum analysis showed, chemical bath deposited thin films possess direct bandgap of 2.2 eV and indirect bandgap of 1.8 eV. In the case of dip coating deposited thin films, the direct bandgap is 2.5 eV and indirect bandgap is 1.9 eV. The d.c. electrical resistivity variation with temperature for both the deposited films showed that the resistivity decreases with temperature thus confirming the semiconducting nature. The thermoelectric power variations with temperature and the room temperature Hall Effect study of both the synthesized CuS thin films showed them to be of p-type conductivity. The obtained results are discussed in details. - Highlights: • CuS thin films were synthesized by chemical bath deposition and dip coating techniques. • The films possessed hexagonal structure. • The optical absorption showed that the films had direct and indirect bandgap. • Study of electrical transport properties

  6. Normal-state transport parameters of epitaxial thin films of YBa2Cu3O/sub 7-//sub δ/

    International Nuclear Information System (INIS)

    Stormer, H.L.; Levi, A.F.J.; Baldwin, K.W.; Anzlowar, M.; Boebinger, G.S.

    1988-01-01

    We report on a striking correlation in the electrical transport behavior of very high-quality (j/sub c/∼3.4 x 10 6 A/cm 2 at T = 77 K) epitaxial thin films of high-T/sub c/ Y-Ba-Cu-O in the normal state. With increasing superconducting performance, as characterized by the transition temperature, transition-temperature width, and critical current density, the resistivity rho, and the Hall coefficient R/sub H/, both assume remarkably simple temperature dependences rho = αT and R/sub H//sup -1/ = βT leading to a Hall mobility μ/sub H/proportionalT/sup -2/. The magnetoresistance at 10 T is less than Δrho/rho<10/sup -3/. We discuss an extreme two-carrier model to assess the T dependence of R/sub H/. .AE

  7. Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides

    Science.gov (United States)

    Medina-Montes, M. I.; Vieyra-Brito, O.; Mathews, N. R.; Mathew, X.

    2018-05-01

    In this work, CuSbS2 thin films were developed by annealing binary precursors deposited sequentially by rf magnetron sputtering. The recrystallization process was optimized and the films were extensively characterized using a number of tools such as XRD, Raman, SEM, energy dispersive x-ray spectroscopy, atomic force microscopy, Hall, UV–vis spectroscopy, Ellipsometry, Seebeck, and photoresponse. The influence of annealing temperature on the structure, morphology, elemental composition, optical and electrical properties are reported. Annealing below 350 °C resulted in famatinite (Cu3SbS4) and chalcostibite (CuSbS2) ternaries as well as binary phases. Phase-pure chalcostibite was obtained in the range of 350 °C–375 °C. At 400 °C, although CuSbS2 was predominant, tetrahedrite phase (Cu12Sb4S13) appeared as an additional phase. The elemental composition of the films was slightly sulfur deficient, and the atomic percentages of Cu, Sb and S showed a dependence on annealing temperature. The material properties of the phase-pure CuSbS2 thin films are: optical band gap in the range of 1.5–1.62 eV, absorption coefficient close to 105 cm‑1, atomic ratios of Cu/Sb ∼1 and (Cu + Sb)/S ∼1.2, crystal size 18.3–24.5 nm and grain size 50–300 nm. The films were photo-sensitive, showed p-type semiconductor behavior. Electrical resistivity, carrier density and hole mobility were 94–459 Ω cm, 1.6–7.0 × 1015 cm‑3 and 8.4–9.5 cm2 V‑1 s respectively.

  8. The Effects of Film Thickness and Evaporation Rate on Si-Cu Thin Films for Lithium Ion Batteries.

    Science.gov (United States)

    Polat, B Deniz; Keles, Ozgul

    2015-12-01

    The reversible cyclability of Si based composite anodes is greatly improved by optimizing the atomic ratio of Si/Cu, the thickness and the evaporation rates of films fabricated by electron beam deposition method. The galvanostatic test results show that 500 nm thick flim, having 10%at. Cu-90%at. Si, deposited with a moderate evaporation rate (10 and 0.9 Å/s for Si and Cu respectively) delivers 2642.37 mAh g(-1) as the first discharge capacity with 76% Coulombic efficiency. 99% of its initial capacity is retained after 20 cycles. The electron conductive pathway and high mechanical tolerance induced by Cu atoms, the low electrical resistivity of the film due to Cu3Si particles, and the homogeneously distributed nano-sized/amorphous particles in the composite thin film could explain this outstanding electrochemical performance of the anode.

  9. Cu{sub 2}ZnSnS{sub 4} thin films obtained by sulfurization of evaporated Cu{sub 2}SnS{sub 3} and ZnS layers: Influence of the ternary precursor features

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V.; Guillén, C., E-mail: c.guillen@ciemat.es; Trigo, J.F.; Herrero, J.

    2017-04-01

    Highlights: • Kesterite Cu{sub 2}ZnSnS{sub 4} is got by sulfurization of evaporated Cu{sub 2}SnS{sub 3} and ZnS layers. • Smooth films are obtained by decreasing the growth temperature of Cu{sub 2}SnS{sub 3}. • The lattice strain and the electrical conductivity increase with the Cu-content. • The energy gap diminishes as the Cu-content and/or the surface roughness increase. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been grown by sulfurization of Cu{sub 2}SnS{sub 3} (CTS) and ZnS layers evaporated on glass substrates. Four CTS precursor films have been tested, with two different atomic compositions (Cu/Sn = 1.7 and Cu/Sn = 2.1) and substrate temperatures (350 and 450 °C), together with analogous ZnS layers deposited by maintaining the substrate at 200 °C. The sulfurization of the CTS and ZnS stacked layers was performed at 500 °C during 1 h. The evolution of the crystalline structure, morphology, optical and electrical properties from each CTS precursor to the CZTS compound has been studied, especially the influence of the ternary precursor features on the quaternary film characteristics. The kesterite structure has been identified after sulfurization of the various samples, with main (112) orientation and mean crystallite sizes S{sub 112} = 40–56 nm, being higher for the Cu-poor compositions. The CZTS average roughness has varied in a wide interval R{sub a} = 8–66 nm, being directly related to the CTS precursor layer, which becomes rougher for a higher deposition temperature or Cu content. Besides, the band gap energy and the electrical resistivity of the CZTS films have changed in the ranges E{sub g} = 1.54–1.64 eV and ρ = 0.2–40 Ωcm, both decreasing when the Cu content and/or the surface roughness increase.

  10. New complexes of Co(II, Ni(II, Cu(II with Schiff base N,N’-bis-(3-methoxy-saliciliden-3,3’-dimethylbenzidine

    Directory of Open Access Journals (Sweden)

    Alan Ionela

    2013-01-01

    Full Text Available The new N,N’-bis-(3-methoxy-saliciliden-3,3’-dimetilbenzidine (H2L Schiff base and complexes with Co(II, Ni(II and Cu(II of type [M(HLCl(H2O] (M=Co(II, Cu(II [M2L(H2O4]X2 (M=Co(II, X=ClO4 and M=Cu(II, X=NO3 and [M2L(CH3COO2] (M=Co(II, Ni(II, Cu(II were synthesised. The ligand and complexes were characterized by elemental analysis, conductibility measurements, magnetic moments at room temperature, IR, NMR, UV-VIS-NIR, EPR spectra and thermogravimetric analysis. A molar ratio of 1:1 or 1:2 between ligand and metal was determined from the elemental analysis. Except for perchlorate complex that behave as electrolyte, the rest of complexes are non-electrolytes. The spectral data suggest a tetrahedral, pseudo-tetrahedral or square-planar stereochemistry respectively, data confirmed by magnetic behaviour of complexes. The antimicrobial tests indicate a fungicide effect both for ligand and complexes.

  11. Upper-critical fields of YBa2Cu3O7-δ epitaxial thin films with variable oxygen deficiency δ

    International Nuclear Information System (INIS)

    Jones, E.C.; Christen, D.K.; Thompson, J.R.; Ossandon, J.G.; Feenstra, R.; Phillips, J.M.; Siegal, M.P.

    1994-01-01

    Fluctuation analysis in the limit of high magnetic fields was performed on three epitaxial thin films of YBa 2 Cu 3 O 7-δ for various oxygen deficiencies δ c2 (T) slope of -1.7 T/K for H parallel c, consistent with previous observations of transport and magnetic properties. Moreover, the 3D scaling showed better convergence than the 2D scaling, which gave relatively low values of H c2 . In contrast, the transitions were not adequately described by either scaling for T c off the 90-K plateau; it is speculated that this is due to an extrinsic broadening of the transitions, possibly due to the lack of a complete percolation path of the ortho-I phase (δ=0)

  12. Superconducting Tl2Ba2CaCu2O8 thin films prepared by post-annealing in a flow-through multiple-zone furnace

    International Nuclear Information System (INIS)

    Pluym, T.C.; Muenchausen, R.E.; Arendt, P.N.

    1994-01-01

    Tl 2 Ba 2 CaCu 2 O 8 thin films were prepared for the first time by use of a multiple-zone flow-through thallination process. Thallous oxide was volatilized from condensed thallium oxide in a low temperature source zone and convectively transported to a higher temperature thallination zone in which initially amorphous Ba 2 CaCu 2 O 5 precursor films were located. By careful control of the source temperature, film temperature, flow rate, anneal time, and rates of heat up and cool down, smooth Tl 2 Ba 2 CaCu 2 O 8 thin films were prepared on (100) LaAlO 3 with the following properties: inductive T c of 107.6 K and 80% transition width of 1.3 K, transport J c at 75 K of 1.3 x 10 5 A/cm 2 , and R s at 10 GHz and 80 K of 1.3 mΩ. The scalability of the process to large area film processing was demonstrated by the preparation of Tl 2 Ba 2 CaCu 2 O 8 thin films on LaAlO 3 three-inch diameter wafers

  13. Superconducting Bi-Sr-Ca-Cu-O thin films from metallo-organic complexes

    International Nuclear Information System (INIS)

    Gruber, H.; Krautz, E.; Fritzer, H.P.; Popitsch, A.

    1991-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system are produced by decomposition of organic precursor compounds containing different metallo-organic complexes. The superconducting phase identified is Bi 2 Sr 2 CaCu 2 O 8+x on (100)-MgO single crystal substrates, polycrystalline Au- and Ag-ribbons and Bi 2 Sr 2 Ca 2 Cu 3 O 10+x on Ag-ribbons. For the 2212-phase a zero resistance temperature of 79 K is found. The 2223-samples on Ag-ribbons show a broad transition at 110 K with a zero resistance at 85 K. SEM and EDX are used for the detection of the microstructure and composition of the prepared films. (orig.)

  14. An optimized In–CuGa metallic precursors for chalcopyrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: junfeng.han@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Department of Physics, Peking University, Beijing 100871 (China); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan Province 601207 (China); Jiang, Tao; Xie, Hua-mu; Zhao, Kui [Department of Physics, Peking University, Beijing 100871 (China); Besland, M.-P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-10-31

    We report a study of CuGa–In metallic precursors for chalcopyrite thin film. CuGa and In thin films were prepared by DC sputtering at room temperature. Due to low melting point of indium, the sputtering power on indium target was optimized. Then, CuGa and In multilayers were annealed at low temperature. At 120 °C, the annealing treatment could enhance diffusion and alloying of CuGa and In layers; however, at 160 °C, it caused a cohesion and crystalline of indium from the alloy which consequently formed irregular nodules on the film surface. The precursors were selenized to form copper indium gallium selenide (CIGS) thin films. The morphological and structural properties were investigated by scanning electron microscopy, X-ray diffraction and Raman spectra. The relationships between metallic precursors and CIGS films were discussed in the paper. A smooth precursor layer was the key factor to obtain a homogeneous and compact CIGS film. - Highlights: • An optimized sputtered indium film • An optimized alloying process of metallic precursor • An observation of nodules forming on the indium film and precursor surface • An observation of cauliflower structure in copper indium gallium selenide film • The relationship between precursor and CIGS film surface morphology.

  15. Surface morphology and in-plane-epitaxy of SmBa2Cu3O7-δ films on SrTiO3 (001) substrates studied by STM and grazing incidence x-ray diffraction

    DEFF Research Database (Denmark)

    Jiang, Q.D.; Smilgies, D.M.; Feidenhans'l, R.

    1996-01-01

    The surface morphology and in-plane epitaxy of thin films of SmBa(2)Cu3O(7-delta) (Sm-BCO) grown on SrTiO3 (001) substrates with various thicknesses have been investigated by scanning tunneling microscopy (STM) and grazing incidence x-ray diffraction (GIXRD). As revealed by GIXRD, SmBCO films as ...... films above h(c2), introduction of screw dislocations leads to spiral growth.......The surface morphology and in-plane epitaxy of thin films of SmBa(2)Cu3O(7-delta) (Sm-BCO) grown on SrTiO3 (001) substrates with various thicknesses have been investigated by scanning tunneling microscopy (STM) and grazing incidence x-ray diffraction (GIXRD). As revealed by GIXRD, SmBCO films...... substrate. Three different types of surface morphology were observed by STM with increasing film thickness h: a) 2D growth for hh(c2). With GIXRD, a density modulation is observed in the films with a thickness below h(c2). For thicker...

  16. Laser writing of superconducting patterns on YBa2Cu3Ox films

    International Nuclear Information System (INIS)

    Dye, R.C.; Muenchausen, R.E.; Nogar, N.S.; Mukherjee, A.; Brueck, S.R.J.

    1990-01-01

    A novel process for the direct laser writing of thin-film high T c patterns is demonstrated. The process consists of deposition of a high quality film (308 nm laser ablation from a YBa 2 Cu 3 O x target with a 750 degree C substrate temperature and a 150 mTorr O 2 ambient), annealing in an inert atmosphere (Ar at 400 degree C for 5--20 min) to reduce the oxygen content and depress or eliminate the superconducting transition temperature, and direct-write laser heating (1.06 μm at ∼0.5 kW/cm 2 for ∼5 min) in an oxygen atmosphere at ∼590 Torr to selectively regenerate the high T c material. rf eddy current and four-point resistivity probe results confirm this process for both SrTiO 3 and LaAlO 3 substrates. Scanning electron micrographs indicate that this is a very mild processing sequence with no observable changes in film morphology

  17. Microstructural comparison of Yba2Cu3O7-x thin films laser deposited in O2 and O2/Ar ambient

    DEFF Research Database (Denmark)

    Verbist, K.; Kyhle, Anders; Vasiliev, A.L.

    1996-01-01

    The use of a diluted O-2/Ar atmosphere-for laser deposition of YBa2Cu3O7-x thin films results in a strong decrease of the surface outgrowth density as compared to deposition in pure O-2. The smoother films need a longer oxygenation period and show slightly lower critical current densities; though...... still in excess of 10(6) A cm(-2) at 77 K. Electron microscopy revealed that the outgrowths mainly consist of a large copper-oxide grain connected to Y2O3 grains. Y2O3 nano-scale inclusions are present irrespective of the deposition atmosphere, however at remarkably low densities compared to other...... literature data. We find that the twin plane density is lower and the twin structure more homogeneous in the case of films deposited in a mixture of O-2/Ar. This we ascribe to the absence of surface outgrowths which seem to block regular twin structure formation. Possibly the differences in necessary post...

  18. Anomalous precipitation hardening in Al-(1 wt%)Cu thin films

    NARCIS (Netherlands)

    Bergers, L. J. C.; De Hosson, J. Th. M.; Geers, M. G. D.; Hoefnagels, J. P. M.

    2018-01-01

    This paper concentrates on the precipitation hardening of Al-(1 wt%)Cu thin films. It is shown that in contrast to bulk, the well-known approach of precipitation hardening in confined systems like thin layers and thin films does not operate in the conventional way. This work analyses and discusses

  19. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V. [Department of Physics, Mahatma Fule Arts, Commerce & SitaramjiChoudhari Science College, Warud, Dist. Amravati (MS), India-444906 (India); Pahurkar, V. G.; Muley, G. G., E-mail: gajananggm@yahoo.co.in [Department of Physics, SantGadge Baba Amravati University, Amravati (MS), India-444602 (India); Talwatkar, S. S. [Department of Physics, D K Marathe and N G Acharya College, Chembur, Mumbai (MS), India-440071 (India); Sunatkari, A. L. [Department of Physics, Siddharth College of Arts, Science and Commerce, Fort, Mumbai (MS), India-440001 (India)

    2016-05-06

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  20. Properties of HTS YBCO thin films deposited on tilted NdGaO3 substrates

    International Nuclear Information System (INIS)

    Nurgaliev, T.; Donchev, T.; Mateev, E.; Miteva, S.; Mozhaev, P.B.; Mozhaeva, J.E.

    2005-01-01

    Thin YBa 2 Cu 3 O 7 films were fabricated by 2-opposed DC magnetron sputtering onto NdGaO 3 substrates, tilted from standard (1 1 0) orientation by 0-26 deg , and their surface morphology and electrical characteristics were investigated. Normal state resistivity (at 295 K) and microwave surface resistance (at 77 K and ∼8 GHz) of the films demonstrated anisotropy, introduced by the tilted substrate, and some improvement of the superconducting parameters of the films was observed at small tilt angles (θ ∼ 1.5-3 deg ). The increase of the microwave surface resistance at high tilt angles for the current tracks, perpendicular to the steps of the substrate, was described in the framework of a simple model, which takes into account the complex conductivity of the film and the weak links between the film terraces

  1. 11.3% efficiency Cu(In,Ga)(S,Se)2 thin film solar cells via drop-on-demand inkjet printing

    OpenAIRE

    Lin, Xianzhong; Klenk, Reiner; Wang, Lan; Köhler, Tristan; Albert, Jürgen; Fiechter, Sebastian; Ennaoui, Ahmed; Lux-Steiner, Martha

    2017-01-01

    Although Cu(In,Ga)(S,Se)2 (CIGSe) based thin film solar cells have reached efficiencies exceeding 22% based on vacuum processed CIGSSe absorbers, the supply of indium and gallium might become an issue if CIGSSe thin-film solar cells are produced in very large volumes. It is therefore mandatory to reduce the wastage of indium and gallium during the fabrication process. In this work, we report on a highly efficient precursor utilization, and a vacuum-free, and scalable route to the deposition o...

  2. Influence of annealing temperature on properties of Cu(In,Ga)(Se,S){sub 2} thin films prepared by co-sputtering from quaternary alloy and In{sub 2}S{sub 3} targets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C., E-mail: ielinyc@cc.ncue.edu.t [Department of Mechatronics Engineering, National Changhua University of Education, No. 2, Shida Road, Changhua 50074, Taiwan (China); Yen, W.T.; Chen, Y.L.; Wang, L.Q. [Department of Mechatronics Engineering, National Changhua University of Education, No. 2, Shida Road, Changhua 50074, Taiwan (China); Jih, F.W. [Chung-Shan Institute of Science and Technology, No. 15, Shi Qi Zi, Gaoping village, Longtan Township, Taoyuan County, Taiwan (China)

    2011-02-15

    Pentanary Cu(In,Ga)(Se,S){sub 2} (CIGSS) thin films were deposited on soda-lime glass substrate by co-sputtering quaternary alloy, and In{sub 2}S{sub 3} targets. In this study, we investigated the influence of post-annealing temperature on structural, compositional, electrical, and optical properties of CIGSS films. Our experimental results show that the CIGS quaternary target had chalcopyrite characteristics. All CIGSS films annealed above 733 K exhibited a polycrystalline tetragonal chalcopyrite structure, with (1 1 2) preferred orientation. The carrier concentration and resistivity of the resultant CIGSS layer annealed above 763 K was 4.86x10{sup 16} cm{sup -3} and 32 {Omega} cm, respectively, and the optical band-gap of the CIGSS absorber layer was 1.18 eV. Raman spectral analysis demonstrated the existence of many different phases, including CuInSe{sub 2}, CuGaSe{sub 2}, and CuInS{sub 2}. This may be because the vibration frequencies of In-Se, In-S bonds are similar to the Ga-Se and Ga-S bonds, causing their absorption bands overlap. -- Research Highlights: {yields} We report a chalcopyrite Cu(In,Ga)(Se,S){sub 2} (CIGSS) thin films on soda lime glass substrate by co-sputtering quaternary single-phase chalcopyrite CIGS alloy, and In{sub 2}S{sub 3} targets. {yields} By incorporating sulfur into partly selenized CIGS films, researchers fabricated a chalcopyrite CIGSS layer with double-graded band-gap structure. {yields} The CIGS quaternary target and Raman spectra were analyzed for investigating the CIGSS structure and quality.

  3. Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se{sub 2} based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Seol, M.S.; Kwak, D.W.; Oh, J.S. [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of); Jeong, J.H. [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2012-08-01

    Hydrogen effects on deep level defects and a defect generation in proton implanted Cu(In,Ga)Se{sub 2} (CIGS) based thin films for solar cell were investigated. CIGS films with a thickness of 3 {mu}m were grown on a soda-lime glass substrate by a co-evaporation method, and then were implanted with protons. To study deep level defects in the proton implanted CIGS films, deep level transient spectroscopy measurements on the CIGS-based solar cells were carried out, these measurements found 6 traps (including 3 hole traps and 3 electron traps). In the proton implanted CIGS films, the deep level defects, which are attributed to the recombination centers of the CIGS solar cell, were significantly reduced in intensity, while a deep level defect was generated around 0.28 eV above the valence band maximum. Therefore, we suggest that most deep level defects in CIGS films can be controlled by hydrogen effects. - Highlights: Black-Right-Pointing-Pointer Proton implanted Cu(In,Ga)Se{sub 2} thin film and solar cell are prepared. Black-Right-Pointing-Pointer Deep level defects of Cu(In,Ga)Se{sub 2} thin film and solar cell are investigated. Black-Right-Pointing-Pointer Hydrogenation using proton implantation and H{sub 2} annealing reduces deep level defects. Black-Right-Pointing-Pointer Hydrogenation could enhance electrical properties and efficiency of solar cells.

  4. CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition

    Science.gov (United States)

    Castillo-Hernández, G.; Mayén-Hernández, S.; Castaño-Tostado, E.; DeMoure-Flores, F.; Campos-González, E.; Martínez-Alonso, C.; Santos-Cruz, J.

    2018-06-01

    CuAlO2 and CuAl2O4 thin films were synthesized by the deposition of the precursor metals using the physical vapor deposition technique and subsequent annealing. Annealing was carried out for 4-6 h in open and nitrogen atmospheres respectively at temperatures of 900-1000 °C with control of heating and cooling ramps. The band gap measurements ranged from 3.3 to 4.5 eV. Electrical properties were measured using the van der Pauw technique. The preferred orientations of CuAlO2 and CuAl2O4 were found to be along the (1 1 2) and (3 1 1) planes, respectively. The phase percentages were quantified using a Rietveld refinement simulation and the energy dispersive X-ray spectroscopy indicated that the composition is very close to the stoichiometry of CuAlO2 samples and with excess of aluminum and deficiency of copper for CuAl2O4 respectively. High resolution transmission electron microscopy identified the principal planes in CuAlO2 and in CuAl2O4. Higher purities were achieved in nitrogen atmosphere with the control of the cooling ramps.

  5. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  6. Electrochemical Behavior of TiO2 Nanoparticle Doped WO3 Thin Films

    Directory of Open Access Journals (Sweden)

    Suvarna R. Bathe

    2014-01-01

    Full Text Available Nanoparticle TiO2 doped WO3 thin films by pulsed spray pyrolysis technique have been studied on fluorine tin doped (FTO and glass substrate. XRD shows amorphous nature for undoped and anatase phase of TiO2 having (101 plane for nanoparticle TiO2 doped WO3 thin film. SEM shows microfibrous reticulated porous network for WO3 with 600 nm fiber diameter and nanocrystalline having size 40 nm for TiO2 nanoparticle doped WO3 thin film. TiO2 nanoparticle doped WO3 thin film shows ~95% reversibility due to may be attributed to nanocrystalline nature of the film, which helpful for charge insertion and deinsertion process. The diffusion coefficient for TiO2 nanoparticle doped WO3 film is less than undoped WO3.

  7. Top-Contact Pentacene-Based Organic Thin Film Transistor (OTFT) with N, N'-Bis(3-Methyl Phenyl)- N, N'-Diphenyl Benzidine (TPD)/Au Bilayer Source-Drain Electrode

    Science.gov (United States)

    Borthakur, Tribeni; Sarma, Ranjit

    2018-01-01

    A top-contact Pentacene-based organic thin film transistor (OTFT) with N, N'-Bis (3-methyl phenyl)- N, N'-diphenyl benzidine (TPD)/Au bilayer source-drain electrode is reported. The devices with TPD/Au bilayer source-drain (S-D) electrodes show better performance than the single layer S-D electrode OTFT devices. The field-effect mobility of 4.13 cm2 v-1 s-1, the on-off ratio of 1.86 × 107, the threshold voltage of -4 v and the subthreshold slope of .27 v/decade, respectively, are obtained from the device with a TPD/Au bilayer source-drain electrode.

  8. Structure and Electrical Properties of NdBa2Cu3Oy Thin Films by Laser Ablation at Low Oxygen Partial Pressure

    DEFF Research Database (Denmark)

    Mozhaev, Peter B.; Mozhaeva, Julia; Khoryushin, Alexey

    2017-01-01

    in the film can be suppressed by an increase of the deposition temperature or by a decrease of the oxygen partial pressure during deposition. The presence of Nd/Ba disorder during deposition stimulates the introduction of oxygen into the growing film. A simple model is proposed for estimation of oxygen......A deposition process for NdBa2Cu3Oy thin films by laser ablation at decreased deposition temperature was developed using substitution of oxygen with argon in the chamber during deposition. A low deposition rate is the crucial factor to obtain high-quality NBCO films. The Nd/Ba cation disorder...... contents in the film using structural parameters measured with XRD techniques. Studies of the post-deposition annealing process showed ordering of the Nd/Ba sub-lattice and intense oxygen in- and out-diffusion. The temperature of the post-deposition annealing step should be chosen low enough (∼400 °C...

  9. Growth and Magnetotransport Properties of Dirac Semimetal Candidate Cu3PdN

    Science.gov (United States)

    Quintela, C. X.; Campbell, N.; Harris, D. T.; Shao, D. F.; Xie, L.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    Since the discovery of three-dimensional Dirac semimetals (DSM) Cd3As2 and Na3Bi, many efforts have been made to identify new DSM materials. Recently, nitride antiperovskite Cu3PdN has been proposed by two different groups as a new DSM candidate. However, until now, the experimental realization of bulk Cu3PdN and the study of its electronic properties has been hindered due to the difficulty of synthesizing bulk single crystals of this material. Here, we report the first growth and magnetotransport characterization of epitaxial Cu3PdN thin films on (001) SrTiO3 substrates. Magnetotransport measurements reveal p-type metallic conduction with very low temperature coefficient of the resistance and small non-linear magnetoresistance at low temperatures. The successful growth of Cu3PdN thin films opens the path to investigating the unknown electronic properties of this material, and provides a template for further research on other antiperovskite DSM candidates such as Cu3ZnN.

  10. Epitaxial growth and properties of YBaCuO thin films

    International Nuclear Information System (INIS)

    Geerk, J.; Linker, G.; Meyer, O.

    1989-08-01

    The growth quality of YBaCuO thin films deposited by sputtering on different substrates (Al 2 O 3 , MgO, SrTiO 3 , Zr(Y)O 2 ) has been studied by X-ray diffraction and channeling experiments as a function of the deposition temperature. Besides the substrate orientation, the substrate temperature is the parameter determining whether films grow in c-, a-, (110) or mixed directions. Epitaxial growth correlates with high critical current values in the films of up to 5.5x10 6 A/cm 2 at 77 K. Ultrathin films with thicknesses down to 2 nm were grown revealing three-dimensional superconducting behaviour. Films on (100) SrTiO 3 of 9 nm thickness and below are partially strained indicating commensurate growth. From the analysis of the surface disorder 1 displaced Ba atom per Ba 2 Y row was obtained indicating that the disordered layer thickness is about 0.6 nm. Tunnel junctions fabricated on these films reveal gap-like structures near ±16 mV and ±30 mV. (orig.) [de

  11. Cathodic electrodeposition of CuInSe sub 2 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C; Galiano, E; Herrero, J [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1991-01-01

    In order to study the preparation process of CuInSe{sub 2} thin films by a one-step electrodeposition method, thin films of the compound were prepared from aqueous citric acid (C{sub 6}H{sub 8}O{sub 7} . H{sub 2}O) plating baths onto titanium substrates. During electrodeposition, the bath composition and deposition potential were changed to obtain stoichiometric thin films. In general, close to stoichiometry, layers rich in selenium were observed, and this excess of selenium was removed after heat treatment. Best quality films were obtained after annealing at 400deg C during 15 min. X-ray diffraction showed the formation of CuInSe{sub 2} films, the chalcopyrite structure, at heating treatment temperatures higher than 350deg C. Optical measurements showed that the band gap of the deposited material was 0.99 eV. (orig.).

  12. Optical and structural properties of Cu-doped β-Ga2O3 films

    International Nuclear Information System (INIS)

    Zhang Yijun; Yan Jinliang; Li Qingshan; Qu Chong; Zhang Liying; Xie Wanfeng

    2011-01-01

    Graphical abstract: Highlights: → We prepare polycrystalline Cu-doped β-Ga2O3 films. → Cu dopants cause poor crystal quality and shrinkage of the optical band gap. → Cu-doping enhances the UV and blue emission. → A new blue emission peak centre at 475 nm appears by Cu-doping. → Cu dopants decrease the optical transmittance. - Abstract: The intrinsic and Cu-doped β-Ga 2 O 3 films were grown on Si and quartz substrates by RF magnetron sputtering in an argon and oxygen mixture ambient. The effects of the Cu doping and the post thermal annealing on the optical and structural properties of the β-Ga 2 O 3 films were studied. The surface morphology, microstructure, optical transmittance, optical absorption, optical energy gap and photoluminescence of the β-Ga 2 O 3 films were significantly changed after Cu-doping. After post thermal annealing, Polycrystalline β-Ga 2 O 3 films were obtained, the transmittance decreased. After Cu-doping, the grain size decreased, the crystal quality deteriorated and the optical band gap shrunk. The UV, blue and green emission bands were observed and discussed. The UV and blue emission were enhanced and a new blue emission peak centred at 475 nm appeared by Cu-doping.

  13. Influence of substrate temperature and post annealing of CuGaO2 thin films on optical and structural properties

    International Nuclear Information System (INIS)

    Bakar, Muhammad Hafiz Abu; Li, Lam Mui; Salleh, Saafie; Alias, Afishah; Mohamad, Khairul Anuar; Sulaiman, Salina

    2015-01-01

    A transparent p-type thin film CuGaO 2 was deposited by using RF sputtering deposition method on plastic (PET) and glass substrate. The characteristics of the film is investigated. The thin film was deposited at temperature range from 50-250°C and the pressure inside the chamber is 1.0×10 −2 Torr and Argon gas was used as a working gas. The RF power is set to 100 W. The thickness of thin film is 300nm. In this experiment the transparency of the thin film is more than 70% for the visible light region. The band gap obtain is between 3.3 to 3.5 eV. The details of the results will be discussed in the conference

  14. Critical current density of strained multilayer thin films of Nd sub 1. 83 Ce sub 0. 17 CuO sub x /YBa sub 2 Cu sub 3 O sub 7 minus. delta

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.; Gupta, A.; Olsson, E.; Segmueller, A.; Koren, G. (IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))

    1990-07-09

    The superconducting transport properties of strained multilayer thin films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}/ Nd{sub 1.83}Ce{sub 0.17}CuO{sub {ital x}}, grown heteroepitaxially by laser ablation deposition, are reported. For individual layer thicknesses below a critical layer thickness of about 250 A, coherency strain removes the orthorhombic distortion in the YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} layers and makes them twin-free. Zero-field critical current densities as high as 1.1{times}10{sup 7} A/cm{sup 2} at 77 K have been measured for the YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} layers. Flux pinning energies at zero temperature and zero magnetic field in the range of 80--140 meV have been found.

  15. Yttrium-enriched YBa{sub 2}Cu{sub 3}O{sub x} thin films for coated conductors fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Khoryushin, Alexey V., E-mail: khoryushin@ya.ru [Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Mozhaev, Peter B.; Mozhaeva, Julia E.; Andersen, Niels H. [Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Grivel, Jean-Claude [Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde (Denmark); Hansen, Jørn Bindslev; Jacobsen, Claus S. [Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2013-02-14

    Highlights: ► YBCO films were fabricated by PLD from targets of various elemental compositions. ► The Y-enriched films contain yttria nanoparticles which provide efficient pinning. ► The best film has 5.5× higher j{sub c}(5 T,50 K) = 2.6MA/cm{sup 2} comparing with a reference film. ► The Y-enriched films remain c-oriented up to 500 nm. ► Films demonstrate no j{sub c} suppression with thickness and remarkable stability with time. -- Abstract: The effects of excess yttria on the structural and electrical properties of the YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films are studied. The films were deposited on (LaAlO{sub 3}){sub 0.3}–(Sr{sub 2}AlTaO{sub 8}){sub 0.7} substrates by pulsed laser ablation from targets with different elemental composition. An increase of yttrium content of the target leads to formation of porous films with significantly improved current-carrying capabilities. Structural studies of these films reveal presence of yttria nanoparticles embedded into the YBCO matrix. The highest obtained critical current density in an external magnetic field of 5 T was 2.6 MA/cm{sup 2} at 50 K and 9.4 MA/cm{sup 2} at 20 K. The fabricated Y-enriched YBCO films remain c-oriented at least up to 600 nm thickness with no significant suppression of the critical current density.

  16. 2D-3D crossover effects on the vortex-glass phase transition in thin YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Woeltgens, P.J.M.; Dekker, C.; Koch, R.H.; Hussey, B.W.; Gupta, A.

    1994-01-01

    Nonlinear current-voltage characteristics have been measured for ultrathin (16-400 A) YBa 2 Cu 3 O 7-δ films in high magnetic fields. A scaling analysis of these data reveals deviations from the universal vortex-glass critical scaling behavior observed for thick films. This is argued to be a dimensionality effect: At large currents, one probes length scales smaller than the film thickness, i.e., the three-dimensional (3d) vortex-glass behavior, whereas at low currents the vortex excitations involve typical length scales which exceed the film thickness, hence the 2d behavior is exhibited. Further evidence for this picture is found from the 3d vortex-glass correlation length, which appears to be cut off by the film thickness. (orig.)

  17. RF magnetron sputtered TiNiCu shape memory alloy thin film

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun

    2003-01-01

    Shape memory alloys (SMAs) offer a unique combination of novel properties, such as shape memory effect, super-elasticity, biocompatibility and high damping capacity, and thin film SMAs have the potential to become a primary actuating mechanism for micro-actuators. In this study, TiNiCu films were successfully prepared by mix sputtering of a Ti 55 Ni 45 target with a separated Cu target. Crystalline structure, residual stress and phase transformation properties of the TiNiCu films were investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and curvature measurement methods. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Results showed that films prepared at a high Ar gas pressure exhibited a columnar structure, while films deposited at a low Ar gas pressure showed smooth and featureless structure. Chemical composition of TiNiCu thin films was dependent on the DC power of copper target. DSC, XRD and curvature measurement revealed clearly the martensitic transformation of the deposited TiNiCu films. When the free-standing film was heated and cooled, a 'two-way' shape-memory effect can be clearly observed

  18. Correlation of tunneling spectra with surface nanomorphology and doping in thin YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films

    Energy Technology Data Exchange (ETDEWEB)

    Sharoni, A.; Millo, O. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Koren, G. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Physics

    2001-06-01

    Tunneling spectra measured on thin epitaxial YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films are found to exhibit strong spatial variations, showing U- and V-shaped gaps as well as zero-bias conductance peaks typical of a d-wave superconductor. A full correspondence is found between the tunneling spectra and the surface morphology down to a level of a unit-cell step. Splitting of the zero-bias conductance peak is seen in optimally-doped and overdoped films, but not in the underdoped ones, suggesting that there is no transition to a state of broken time-reversal symmetry in the underdoped regime. (orig.)

  19. Effect of deposition time of sputtering Ag-Cu thin film on mechanical and antimicrobial properties

    Science.gov (United States)

    Purniawan, A.; Hermastuti, R.; Purwaningsih, H.; Atmono, T. M.

    2018-04-01

    Metallic implants are important components in biomedical treatment. However, post-surgery infection often occurs after installation of implant. The infections are usually treated by antibiotics, but it still causes several secondary problems. As a prevention treatment, the surgical instruments and implants must be in a sterile condition. This action is still not optimal too because the material still can attract the bacteria. From material science point of view, it can be anticipated by developing a type of material which has antibacterial properties or called antimicrobial material. Silver (Ag) and Copper (Cu) have antimicrobial properties to prevent the infection. In this research, the influence of deposition time of Ag-Cu thin film deposition process as antimicrobial material with Physical Vapor Deposition (PVD) RF Sputtering method was analyzed. Deposition time used were for 10, 15 and 20 minutes in Argon gas pressure around 3 x 10-2 mbar in during deposition process. The morphology and surface roughness of Ag-Cu thin film were characterized using SEM and AFM. Based on the results, the deposition time influences the quality morphology that the thin films have good homogeneity and complete structure for longer deposition time. In addition, from roughness measurement results show that increase deposition time decrease the roughness of thin film. Antimicrobial performance was analyzed using Kirby Bauer Test. The results show that all of sample have good antimicrobial inhibition. Adhesion quality was evaluated using Rockwell C Indentation Test. However, the results indicate that the Ag-Cu thin film has low adhesion strength.

  20. Chemically deposited Sb2S3 thin films for optical recording

    International Nuclear Information System (INIS)

    Shaji, S; Arato, A; Castillo, G Alan; Palma, M I Mendivil; Roy, T K Das; Krishnan, B; O'Brien, J J; Liu, J

    2010-01-01

    Laser induced changes in the properties of Sb 2 S 3 thin films prepared by chemical bath deposition are described in this paper. Sb 2 S 3 thin films of thickness 550 nm were deposited from a solution containing SbCl 3 and Na 2 S 2 O 3 at 27 0 C for 5 h. These thin films were irradiated by a 532 nm continuous wave laser beam under different conditions at ambient atmosphere. X-ray diffraction analysis showed amorphous to polycrystalline transformation due to laser exposure of these thin films. Morphology and composition of these films were described. Optical properties of these films before and after laser irradiation were analysed. The optical band gap of the material was decreased due to laser induced crystallization. The results obtained confirm that there is further scope for developing this material as an optical recording media.

  1. Properties of MoO3 thin film polymorphs

    International Nuclear Information System (INIS)

    McCarron, E.M.; Carcia, P.F.

    1987-01-01

    Thin film polymorphs of molybdenum trioxide have been synthesized by RF sputtering. Films deposited on thermally floating substrates are polycrystalline and exhibit preferred orientation. Depending upon the oxygen partial pressure maintained during sputtering, the films can be made to crystallize in either the thermodynamically stable orthorhombic α MoO 3 form (unique 2D-layered structure) or the metastable monoclinic β MoO 3 phase (3D ReO 3 -related structure). Metastable β films can be converted thermally to the α phase and the transformation appears topotactic. Films deposited on the cooled substrates are amorphous. A correlation between the particular phase formed and adatom mobility is noted

  2. Optical properties of WO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay; Tomar, Monika

    2014-01-01

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO 3 thin films. WO 3 thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO 3 thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO 3 thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO 3 /Au/prism structure were utilized to estimate the dielectric properties of WO 3 thin films at optical frequency (λ = 633 nm). As the thickness of WO 3 thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO 3 film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light

  3. Improvement of CH3NH3PbI3 thin film using the additive 1,8-diiodooctane for planar heterojunction perovskite cells

    Science.gov (United States)

    Abdulrahman, Solh; Wang, Chunhua; Cao, Chenghao; Zhang, Chujun; Yang, Junliang; Jiang, Li

    2017-10-01

    The thin-film quality is critical for obtaining high-performance perovskite solar cells (PSCs). The additive 1,8-diiodooctane (DIO) was used to control the morphology and structure of CH3NH3PbI3 perovskite thin films, and planar heterojunction (PHJ) PSCs with an architecture of ITO/PEDOT: PSS/CH3NH3PbI3/PCBM/Al was fabricated. It was found that the DIO played an important role on CH3NH3PbI3 thin-film quality and the performance of PHJ-PSCs. With the optimal volume ratio of 2%, the compact and uniform high-quality CH3NH3PbI3 thin films with enhanced crystallinity and less roughness were achieved, resulting in the great improvement of power conversion efficiency (PCE) from about 4.5% to over 9.0%. The research results indicate that the additive DIO is a simple and effective method to produce high-quality perovskite thin film and accordingly develop high-performance PHJ-PSCs.

  4. Composition-dependent nanostructure of Cu(In,Ga)Se{sub 2} powders and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schnohr, C.S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Kämmer, H.; Steinbach, T.; Gnauck, M. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Rissom, T.; Kaufmann, C.A.; Stephan, C. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Schorr, S. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin (Germany)

    2015-05-01

    Atomic-scale structural parameters of Cu(In,Ga)Se{sub 2} powders and polycrystalline thin films were determined as a function of the In and Cu contents using X-ray absorption spectroscopy. No difference in the two sample types is observed for the average bond lengths demonstrating the strong tendency towards bond length conservation typical for tetrahedrally coordinated semiconductors. In contrast, the bond length variation is significantly smaller in the thin films than in the powders, particularly for Cu-poor material. This difference in the nanostructure is proposed to originate from differences in the preparation conditions, most prominently from the different history of Cu composition. - Highlights: • Cu(In,Ga)Se{sub 2} powders and thin films are studied with X-ray absorption spectroscopy. • Structural parameters are determined as a function of the In and Cu contents. • The element-specific average bond lengths are identical for powders and thin films. • The Ga-Se/In-Se bond length variation is smaller for thin films than for powders. • The differences are believed to stem from the different history of the Cu content.

  5. Laser writing and rewriting on YBa2Cu3O7 films

    International Nuclear Information System (INIS)

    Shen, Y.Q.; Freltoft, T.; Vase, P.

    1991-01-01

    High-resolution patterning (4 μm) has been achieved on epitaxial thin films of the high-temperature superconductor YBa 2 Cu 3 O 7-δ using laser writing. A focused laser beam is applied to write semiconducting patterns on superconducting films in a vacuum or in a nitrogen atmosphere. The semiconducting patterns are shown to be formed by a reduction of the oxygen content due to local heating caused by the laser beam. The process does not cause any structural damage and does not change the surface morphology. When reapplying the same laser beam and rewriting the film in an oxygen atmosphere, it is possible to restore the superconductive properties. The application of this method for production of superconducting microelectronic circuits is discussed

  6. Out-of-substrate plane orientation control of thin YBa2Cu3O x films on NdGaO3 tilted-axes substrates

    International Nuclear Information System (INIS)

    Mozhaev, Peter B.; Mozhaeva, Julia E.; Bdikin, Igor K.; Kotelyanskii, Iosif M.; Lusanov, Valery A.; Hansen, Jorn Bindslev; Jacobsen, Claus S.; Kholkin, Andrey L.

    2006-01-01

    Epitaxial heterostructures YBa 2 Cu 3 O x (YBCO)/CeO 2 /NdGaO 3 were prepared on tilted-axes NdGaO 3 substrates using laser ablation technique. Morphology, crystal structure and electrical properties of the obtained films were characterized. The seeding mechanisms are affected by the tilt angle, resulting in superior YBCO films on NdGaO 3 substrates in an intermediate range of tilt angles of 6-14 o . The introduction of CeO 2 layer leads to change of the YBCO film orientation: at low deposition rate c-oriented films are formed, while at high deposition rates the film grows with c-axis tilted along the [1 1 0] NdGaO 3 direction. Bi-epitaxial films and structures were prepared by removal of part of the CeO 2 layer using ion-beam milling

  7. Sensors of the gas CO in thin film of SnO2:Cu

    International Nuclear Information System (INIS)

    Tirado G, S.; Sanchez Z, F. E.

    2011-10-01

    Thin films of SnO 2 :Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO 2 were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO 2 :Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO 2 :Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  8. Fluorination of an epitaxial YBaCuO thin film with controlled oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, C. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Pena, O. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Mokhtari, M. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Thivet, C. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Guilloux-Viry, M. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Perrin, A. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Sergent, M. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France))

    1993-05-10

    An intentionally oxygen-deficient thin film, epitaxially grown in-situ on a (100) MgO substrate by laser ablation at 750 C under a low pressure oxygen atmosphere, has been treated under NF[sub 3] diluted in N[sub 2] at temperatures not exceeding 280 C. During the fluorination process the epitaxy of the thin film is maintained; its Tc onset progressively increases from 54 K up to 85.6 K and the width of the inductive transition is narrow at the end of treatment (1.2 K). These results are discussed and compared to those obtained during the fluorination of oxygen-deficient YBa[sub 2]Cu[sub 3]O[sub x] ceramics. (orig.)

  9. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films

    International Nuclear Information System (INIS)

    Kharade, Rohini R.; Mali, Sawanta S.; Patil, Satish P.; Patil, Kashinath R.; Gang, Myong G.; Patil, Pramod S.; Kim, Jin H.; Bhosale, Popatrao N.

    2013-01-01

    Highlights: • Electrochromic WO 3 /Ag nanocomposites prepared by hybrid physico-chemical route. • XRD and XPS results confirm formation of Ag 8 W 4 O 16 phase. • WO 3 /Ag thin films showed good optical transmittance change and coloration efficiency. • SPR enhanced coloration and bleaching mechanism is well explained for electrochromism. • Color stimuli are quantified using CIE chromaticity principles. -- Abstract: WO 3 /Ag composite thin films were prepared by microwave assisted sol–gel synthesis (MW-SGS) of WO 3 followed by vacuum evaporation of Ag nanoparticles and their enhanced electrochromic coloration was investigated. The composition and morphology of WO 3 thin films with different thickness of Ag layer obtained by vacuum evaporation were investigated. Distinct plasmon absorption bands of Ag nanoparticle thin films were obtained. The optical band gap energy of WO 3 /Ag films decreased with increasing the Ag layer thickness. The surface of these films has been examined using X-ray photoelectron spectroscopy (XPS) to gain information about the chemical states of species present at surfaces. Experimental results indicated that the conductivity of the films increased after surface modification by Ag layer. To investigate the origin of enhanced electrochromic absorption in optical properties, working electrode consisting of WO 3 /Ag thin film was used and observed the optical properties during electrochemical reaction. It was found that composite electrode shows enhancement in electrochromic properties in terms of optical modulation (ΔOD) and coloration efficiency (η)

  10. Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ thin films grown by a simple spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Koren, G.; Giess, E.A.; Moore, N.R.; O' Sullivan, E.J.M.; Cooper, E.I.

    1988-01-11

    The preparation of high T/sub c/ superconducting thin films of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ on (100) single crystals of MgO, ZrO/sub 2/ with 9% Y/sub 2/O/sub 3/ (yttria stabilized zirconia, or YSZ), and SrTiO/sub 3/ using a simple spray deposition technique is described. Typical film growth procedure involves (a) the spraying of a stoichiometric solution of the nitrate precursors on the heated substrate (180 /sup 0/C), (b) prebaking in air of the sprayed film (20 min at 500 /sup 0/C), and (c) oven annealing of the film under flowing O/sub 2/ (900--950 /sup 0/C followed by slow cooling to 200 /sup 0/C in about 3 h). X-ray diffraction analysis of the films after each of the growing steps mentioned above shows primarily the presence of crystalline phases of the nitrates, the oxides, and the orthorhombic superconducting phase, respectively. Resistivity versus temperature measurements show that the onset and completion of the superconductive transition occur at 92 and 87 K, respectively, in films on YSZ substrate; at 95 and 80 K, respectively, in films on SrTiO/sub 3/ substrate; and at 82 and 77 K, respectively, in films on MgO substrate.

  11. Nanostructured Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction photoelectrode for efficient hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dipika; Upadhyay, Sumant; Verma, Anuradha [Department of Chemistry, Dayalbagh Educational Institute, Agra-282 110 India (India); Satsangi, Vibha R. [Department of Physics Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 India (India); Shrivastav, Rohit [Department of Chemistry, Dayalbagh Educational Institute, Agra-282 110 India (India); Dass, Sahab, E-mail: drsahabdas@gmail.com [Department of Chemistry, Dayalbagh Educational Institute, Agra-282 110 India (India)

    2015-01-01

    Nanostructured thin films of pristine Fe{sub 2}O{sub 3}, Ti-doped Fe{sub 2}O{sub 3}, Cu{sub 2}O, and Fe{sub 2}O{sub 3}/Cu{sub 2}O, and Ti-doped Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction were deposited on tin-doped indium oxide (Sn:In{sub 2}O{sub 3}) glass substrate using spray pyrolysis method. Ti doping is done to improve photoelectric conversion efficiency and electrical conductivity of hematite thin films. Further enhanced photocurrent is achieved for Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction electrodes. All samples were characterized using X-ray diffractometry, scanning electron microscopy, atomic force microscopy, and UV-Vis spectrometry. Photoelectrochemical properties were also investigated in a three-electrode cell system. UV-Vis absorption spectrum for pristine Fe{sub 2}O{sub 3}, Ti-Fe{sub 2}O{sub 3}, Cu{sub 2}O, Fe{sub 2}O{sub 3}/Cu{sub 2}O, and Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction thin films exhibited absorption in visible region. Nanostructured thin films as prepared were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 2.60 mA/cm{sup 2} at 0.95 V/SCE was exhibited by 454 nm thick Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction photoelectrode. Increased photocurrent density and enhanced incident photon-to-electron conversion efficiency, offered by the heterojunction thin films may be attributed to improved conductivity and efficient separation of the photogenerated charge carriers at the Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O interface. - Highlights: • Heterojunction thin films were deposited using spray pyrolysis techniques. • Titanium doping in Fe{sub 2}O{sub 3} played a significant role in PEC response. • Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O heterojunction shows the absorption in visible range. • Improved charge separation and enhanced PEC response were achieved in Ti-Fe{sub 2}O{sub 3}/Cu{sub 2}O.

  12. CuS p-type thin film characterization deposited on Ti, ITO and glass substrates using spray pyrolysis deposition (SPD) for light emitting diode (LED) application

    Energy Technology Data Exchange (ETDEWEB)

    Sabah, Fayroz A., E-mail: fayroz-arif@yahoo.com [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Electrical Engineering, College of Engineering, Al-Mustansiriya University, Baghdad (Iraq); Ahmed, Naser M., E-mail: naser@usm.my; Hassan, Z., E-mail: zai@usm.my; Azzez, Shrook A. [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Rasheed, Hiba S., E-mail: hibasaad1980@yahoo.com [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Physics, College of Education, Al-Mustansiriya University, Baghdad (Iraq); Al-Hazim, Nabeel Z., E-mail: nabeelnano333@gmail.com [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ministry of Education, the General Directorate for Educational Anbar (Iraq)

    2016-07-06

    The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl{sub 2}.2H{sub 2}O as a source of Cu{sup 2+} and sodium thiosulfate Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as a source of and S{sup 2−}. Two concentrations (0.2 and 0.4 M) were used for each CuCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3} to be prepared and then sprayed (20 ml). The process was started by spraying the solution for 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu{sub 2}S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.

  13. Electrochemical growth and studies of CuInSe2 thin films

    International Nuclear Information System (INIS)

    Prasher, Dixit; Chandel, Tarun; Rajaram, Poolla

    2014-01-01

    Thin films of CuInSe 2 were grown on fluorine doped tin oxide (<10 Ω/□) coated glass using the electrodeposition technique. The electrodeposition was carried out potentiostatically using an aqueous bath consisting of solutions of CuCl 2 , InCl 3 and SeO 2 with ethylenediamine-dihydrochloride (EDC) added for complexation. CuInSe 2 films were also deposited without using any complexing agent in the bath. To improve the crystallinity the CuInSe 2 films were annealed in vaccum at 300 °C for one hour. The annealed films were analyzed by x-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of x-rays (EDAX), atomic force microscopy (AFM) and optical spectra. The results obtained in this work show that by adding a suitable complexing agent to the electrochemical bath, nanocrystalline CuInSe 2 , 20 nm to 30 nm in size, can be grown. The composition of the CuInSe 2 films can be controlled by means of the bath composition and stoichiometric films can be obtained for a bath with ionic Cu:In:Se composition close to 1:4:2. AFM micrographs show that the particles are generally oval shaped for near stoichiometric compositions. However for extreme copper rich layers, the morphology is completely different, the particles in this case appearing in the form of nanoflakes. Each flake has a thickness in the nano range, but the surface extends to a length of several microns. (papers)

  14. Conductivity of CH{sub 3}NH{sub 3}PbI{sub 3} thin film perovskite stored in ambient atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gebremichael, Bizuneh, E-mail: bizunehme@gmail.com [Physics Department, Addis Ababa University, Addis Ababa, P.O. Box 1176 (Ethiopia); Alemu, Getachew [Physics Department, Addis Ababa University, Addis Ababa, P.O. Box 1176 (Ethiopia); Tessema Mola, Genene [School of Chemistry & Physics, University of KwaZulu-Nat al, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209 (South Africa)

    2017-06-01

    Time dependent conductivity loss in CH{sub 3}NH{sub 3}PbI{sub 3} thin film perovskite stored in ambient atmosphere were studied based on electrical and optical measurements. Recent investigations on thin film perovskite solar cell suggest that in the steady state operation of the device, the V{sub oc} is unchanged by continuous illumination of light. Rather the reduction in the power conversion efficiency is caused by significant reduction of the short circuit current (J{sub sc}). In this paper, the effect of light on the optical absorption and electrical conductivity of the CH{sub 3}NH{sub 3}PbI{sub 3} thin film which is deposited on a glass substrate is investigated. The temperature dependent conductivity measurements indicated that the dominant conduction mechanism in the film perovskite is electronic rather than ionic.

  15. Strain Induced Magnetism in SrRuO3 Epitaxial Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Grutter, A.; Wong, F.; Arenholz, E.; Liberati, M.; Suzuki, Y.

    2010-01-10

    Epitaxial SrRuO{sub 3} thin films were grown on SrTiO{sub 3}, (LaAlO{sub 3}){sub 0.3}(SrAlO{sub 3}){sub 0.7} and LaAlO{sub 3} substrates inducing different biaxial compressive strains. Coherently strained SrRuO{sub 3} films exhibit enhanced magnetization compared to previously reported bulk and thin film values of 1.1-1.6 {micro}{sub B} per formula unit. A comparison of (001) and (110) SrRuO{sub 3} films on each substrate indicates that films on (110) oriented have consistently higher saturated moments than corresponding (001) films. These observations indicate the importance of lattice distortions in controlling the magnetic ground state in this transitional metal oxide.

  16. Progress in Polycrystalline Thin-Film Cu(In,GaSe2 Solar Cells

    Directory of Open Access Journals (Sweden)

    Udai P. Singh

    2010-01-01

    Full Text Available For some time, the chalcopyrite semiconductor CuInSe2 and its alloy with Ga and/or S [Cu(InGaSe2 or Cu(InGa(Se,S2], commonly referred as CIGS, have been leading thin-film material candidates for incorporation in high-efficiency photovoltaic devices. CuInSe2-based solar cells have shown long-term stability and the highest conversion efficiencies among all thin-film solar cells, reaching 20%. A variety of methods have been reported to prepare CIGS thin film. Efficiency of solar cells depends upon the various deposition methods as they control optoelectronic properties of the layers and interfaces. CIGS thin film grown on glass or flexible (metal foil, polyimide substrates require p-type absorber layers of optimum optoelectronic properties and n-type wideband gap partner layers to form the p-n junction. Transparent conducting oxide and specific metal layers are used for front and back contacts. Progress made in the field of CIGS solar cell in recent years has been reviewed.

  17. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    International Nuclear Information System (INIS)

    Tamgadge, Y.S.; Talwatkar, S.S.; Sunatkari, A.L.; Pahurkar, V.G.; Muley, G.G.

    2015-01-01

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  18. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamgadge, Y.S. [Department of Physics, Mahatma Fule Arts, Commerce and S C Science Mahavidyalaya, Warud, Dist. Amravati (MS), 444906 (India); Talwatkar, S.S. [Department of Physics, D K Marathe and N G Acharya College, Chembur, Mumbai (MS) 440071 (India); Sunatkari, A.L. [Department of Physics, Siddharth College of Arts, Science and Commerce, Fort, Mumbai (MS) 440001 (India); Pahurkar, V.G. [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India); Muley, G.G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India)

    2015-11-30

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  19. Review of WO3 thin film preparation for photoelectrochemical water splitting

    International Nuclear Information System (INIS)

    Ehsan Eftekhari; Mohammad Kassim

    2009-01-01

    Full text: Tungsten trioxide (WO 3 ), which is one of the most essential materials in our daily life has appeared as an excellent photo electrode material for environmental purification. The nano-size of WO 3 thin film water-splitting technology has great potential for environmentally friendly solar-hydrogen production for the future hydrogen economy. There are several methods for producing tungsten oxide film. In this review, we outlined several WO 3 thin film preparation methods such as doctor Bladding, sputtering, layer-by-layer brush painting, spray pyrolysis deposition, sol-gel and other methods. Here we compare the maximum photocurrent obtained, different condition for preparation of WO 3 thin film and characterization outcome. (author)

  20. Effects of the substrate temperature on the properties of CuIn5S8 thin films

    International Nuclear Information System (INIS)

    Gannouni, M.; Kanzari, M.

    2011-01-01

    Structural, optical and electrical properties of CuIn 5 S 8 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuIn 5 S 8 thin films were carried out at substrate temperatures in the temperature range 100-300 deg. C. The effects of heated substrate on their physico-chemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), optical transmission and hot probe method. X-ray diffraction revealed that the films are strong preferred orientation along the (3 1 1) plane upon substrate temperature 200 deg. C and amorphous for the substrate temperatures below 200 deg. C. No secondary phases are observed for all the films. The composition is greatly affected by heated substrate. From the optical transmission and reflection, an important absorption coefficient exceeds 10 5 cm -1 at 800 nm was found. As increasing the substrate temperature, the optical energy band gap decreases from 1.70 eV for the unheated films to 1.25 eV for the deposited films at 300 deg. C. It was found that CuIn 5 S 8 thin film is an n-type semiconductor at 250 deg. C.

  1. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films

    Directory of Open Access Journals (Sweden)

    Karupanan Periyanan Ganesan

    Full Text Available Cuprous oxide (Cu2O thin films with different crystal orientations were electrochemically deposited in the presence of various molar concentrations of cetyl trimethyl ammonium bromide (CTAB on fluorine doped tin oxide (FTO glass substrate using standard three electrodes system. X-ray diffraction (XRD studies reveal cubic structure of Cu2O with (111 plane orientation, after addition of CTAB in deposition solution, the orientation of crystal changes from (111 into (200 plane. Scanning electron microscope (SEM images explored significant variation on morphology of Cu2O thin films deposited with addition of CTAB compared to without addition of CTAB. Photoluminescence (PL spectra illustrate that the emission peak around at 650 nm is attributed to near band edge emission, and the film prepared at the 3 mM of CTAB exhibits much higher intensity than that of the all other films. UV–Visible spectra show optical absorption in the range of 480–610 nm and the highest transparency of Cu2O film prepared at the concentration of 3 mM CTAB. The optical band gap is increased in the range between 2.16 and 2.45 eV with increasing the CTAB concentrations. Keywords: Cuprous oxide, Crystal orientation, Electrodeposition and cubic structure

  2. 3-[Bis(pyridin-2-ylmethylamino]-5-(4-carboxyphenyl-BODIPY as Ratiometric Fluorescent Sensor for Cu2+

    Directory of Open Access Journals (Sweden)

    Akira Hafuka

    2018-05-01

    Full Text Available We developed an asymmetric fluorescent sensor 1 for Cu2+, based on 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY, by introducing 4-carboxyphenyl and bis(pyridin-2-ylmethylamine groups at the 5- and 3-positions, respectively, of the BODIPY core. We then investigated the photophysical and cation-sensing properties of the sensor. BODIPY 1 showed large absorption and fluorescence spectral shifts on binding to Cu2+. The fluorescence peak at 580 nm red-shifted to 620 nm. The binding stoichiometry of BODIPY 1 and Cu2+ was 1:3. The ratio of the fluorescence intensity at 620 nm to that at 580 nm (F620/F580 increased with increasing concentration of Cu2+ (3–10 equiv; this enabled ratiometric determination of Cu2+. Although BODIPY 1 showed good selectivity for Cu2+, there was an interfering effect of Fe3+. BODIPY 1 could be used for the naked-eye detection of Cu2+ in a water-containing sample.

  3. Overgrowth of cracks in YBa{sub 2}Cu{sub 3}O{sub 6+δ}-thin films grown on SrTiO{sub 3}- and Al{sub 2}O{sub 3}-substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Kai; Haenisch, Jens; Holzapfel, Bernhard [Institut fuer Technische Physik, Karlsruher Institut fuer Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-07-01

    High temperature superconducting materials like REBCO-thin films offer a wide range of applications like superconducting transformers, cables, coils or fault current limiters. Although the number of applications is increasing the REBCO-coated conductor length is still limited due to substrate and thin film fabrication defects. In order to improve the manufacturing processes of REBCO-coated conductors the growth behavior of REBCO-thin films on defective or broken substrate surfaces has to be understood. Therefore we investigated the structural and electronic properties of YBCO-thin films grown on cracked SrTiO{sub 3}- and Al{sub 2}O{sub 3}-substrates. The YBCO-films were prepared by using metalorganic (MOD) and pulsed laser deposition (PLD). Structural and electronic properties of the YBCO-films were investigated by using x-ray diffractometry, atomic force microscopy, scanning electron microscopy and temperature- and magnetic field-dependent conductivity measurements.

  4. Thin films of copper antimony sulfide: A photovoltaic absorber material

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas-Acosta, R.E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Shaji, S. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León (Mexico)

    2015-01-15

    Highlights: • CuSbS{sub 2} thin films were prepared by heating Sb{sub 2}S{sub 3}/Cu layers. • Analyzed the structure, composition, optical, and electrical properties. • PV structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag were formed at different conditions. • The PV parameters (J{sub sc}, V{sub oc}, and FF) were evaluated from the J–V characteristics. • J{sub sc}: 0.52–3.20 mA/cm{sup 2}, V{sub oc}:187–323 mV, FF: 0.27–0.48 were obtained. - Abstract: In this work, we report preparation and characterization of CuSbS{sub 2} thin films by heating glass/Sb{sub 2}S{sub 3}/Cu layers and their use as absorber material in photovoltaic structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag. The Sb{sub 2}S{sub 3} thin films of 600 nm were prepared by chemical bath deposition on which copper thin films of 50 nm were thermally evaporated, and the glass/Sb{sub 2}S{sub 3}/Cu multilayers were heated in vacuum at different temperatures. X-ray diffraction analysis showed the formation of orthorhombic CuSbS{sub 2} after heating the precursor layers. Studies on identification and chemical state of the elements were done using X-ray photoelectron spectroscopy. The optical band gap of the CuSbS{sub 2} thin films was 1.55 eV and the thin films were photoconductive. The photovoltaic parameters of the devices using CuSbS{sub 2} as absorber and CdS as window layer were evaluated from the J–V curves, yielding J{sub sc}, V{sub oc}, and FF values in the range of 0.52–3.20 mA/cm{sup 2}, 187–323 mV, and 0.27–0.48, respectively, under illumination of AM1.5 radiation.

  5. Transformational dynamics of BZO and BHO nanorods imposed by Y2O3 nanoparticles for improved isotropic pinning in YBa2Cu3O7 -δ thin films

    Science.gov (United States)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Shi, Jack; Haugan, Timothy; Xing, Zhongwen; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Osofsky, Mike; Prestigiacomo, Joseph; Wu, Judy Z.

    2017-07-01

    An elastic strain model was applied to evaluate the rigidity of the c-axis aligned one-dimensional artificial pinning centers (1D-APCs) in YBa2Cu3O7-δ matrix films. Higher rigidity was predicted for BaZrO3 1D-APCs than that of the BaHfO3 1D-APCs. This suggests a secondary APC doping of Y2O3 in the 1D-APC/YBa2Cu3O7-δ nanocomposite films would generate a stronger perturbation to the c-axis alignment of the BaHfO3 1D-APCs and therefore a more isotropic magnetic vortex pinning landscape. In order to experimentally confirm this, we have made a comparative study of the critical current density Jc (H, θ, T) of 2 vol.% BaZrO3 + 3 vol.%Y2O3 and 2 vol.%BaHfO3 + 3 vol.%Y2O3 double-doped (DD) YBa2Cu3O7-δ films deposited at their optimal growth conditions. A much enhanced isotropic pinning was observed in the BaHfO3 DD samples. For example, at 65 K and 9.0 T, the variation of the Jc across the entire θ range from θ=0 (H//c) to θ=90 degree (H//ab) is less than 18% for BaHfO3 DD films, in contrast to about 100% for the BaZrO3 DD counterpart. In addition, lower α values from the Jc(H) ˜ H-α fitting were observed in the BaHfO3 DD films in a large θ range away from the H//c-axis. Since the two samples have comparable Jc values at H//c-axis, the improved isotropic pinning in BaHfO3 DD films confirms the theoretically predicted higher tunability of the BaHfO3 1D-APCs in APC/YBa2Cu3O7-δ nanocomposite films.

  6. Effect of Sr doping on LaTiO3 thin films

    International Nuclear Information System (INIS)

    Vilquin, B.; Kanki, T.; Yanagida, T.; Tanaka, H.; Kawai, T.

    2005-01-01

    We report on the electric properties of La 1-x Sr x TiO 3 (0 ≤ x ≤ 0.5) thin films fabricated by pulsed laser deposition method. Crystallographic measurement of the thin films showed the epitaxial c-axis perovskite structure. The electric property of LaTiO 3 thin film, which is a typical Mott insulative material in bulk, showed insulative behaviour, while the Sr-doped films showed metallic conduction suffering electron-electron scattering. Below x = 0.1, the major carrier type was identified to be hole, and switched to electron with further increasing Sr-doping above x = 0.15. In fact, the switching from p-type to n-type for La 1-x Sr x TiO 3 thin films is first demonstrated in this study. The transition suggests that effective Coulomb gap vanishes due to over-additional Sr doping

  7. Epitaxial growth of textured YBa2Cu3O7-δ films on silver

    International Nuclear Information System (INIS)

    Liu Dan-Min; Liu Wei-Peng; Suo Hong-Li; Zhou Mei-Ling

    2005-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) films were deposited on (100), (110) and (111) oriented silver single crystals and {100} left angle 100 right angle, {110} left angle 211 right angle, {110} left angle 100 right angle +{110} left angle 011 right angle {110} left angle 011 right angle and {012} left angle 100 right angle textured Ag substrates using pulsed laser deposition. The relationship between the epitaxial growth YBCO film and silver substrate has been determined. It is shown that among polycrystalline Ag substrates, {110} left angle 011 right angle textured tape is suitable for the deposition of YBCO thin films having strong texture. (orig.)

  8. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  9. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  10. Synthesis, structure and magnetic properties of crystallographically aligned CuCr{sub 2}Se{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Esters, Marco [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Liebig, Andreas [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Ditto, Jeffrey J.; Falmbigl, Matthias [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Albrecht, Manfred [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Johnson, David C., E-mail: davej@uoregon.edu [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States)

    2016-06-25

    We report the low temperature synthesis of highly textured CuCr{sub 2}Se{sub 4} thin films using the modulated elemental reactant (MER) method. The structure of CuCr{sub 2}Se{sub 4} is determined for the first time in its thin film form and exhibits cell parameters that are smaller than found in bulk CuCr{sub 2}Se{sub 4}. X-ray diffraction and precession electron diffraction show a strong degree of crystallographic alignment of the crystallites, where the <111> axis is oriented perpendicular to the substrate surface, while being rotationally disordered within the plane. Temperature and field dependent in-plane and out-of-plane magnetization measurements show that the film is ferromagnetic with a Curie temperature of 406 K CuCr{sub 2}Se{sub 4} synthesized utilizing the MER method shows stronger magnetic anisotropy (effective anisotropy: 1.82 × 10{sup 6} erg cm{sup −3}; shape anisotropy: 1.07 × 10{sup 6} erg cm{sup −3}), with the easy axis lying out of plane, and a larger magnetic moment (6 μ{sub B}/f.u.) than bulk CuCr{sub 2}Se{sub 4}. - Highlights: • Crystallographically aligned, phase pure CuCr{sub 2}Se{sub 4} were synthesized. • The degree of alignment decreases with annealing time. • The films are ferromagnetic with the easy axis along the <111> direction. • The magnetization is larger than bulk CuCr{sub 2}Se{sub 4} or other CuCr{sub 2}Se{sub 4} films made to date.

  11. Optical properties of the c-axis oriented LiNbO3 thin film

    International Nuclear Information System (INIS)

    Shandilya, Swati; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2012-01-01

    C-axis oriented Lithium Niobate (LiNbO 3 ) thin films have been deposited onto epitaxially matched (001) sapphire substrate using pulsed laser deposition technique. Structural and optical properties of the thin films have been studied using the X-ray diffraction (XRD) and UV–Visible spectroscopy respectively. Raman spectroscopy has been used to study the optical phonon modes and defects in the c-axis oriented LiNbO 3 thin films. XRD analysis indicates the presence of stress in the as-grown LiNbO 3 thin films and is attributed to the small lattice mismatch between LiNbO 3 and sapphire. Refractive index (n = 2.13 at 640 nm) of the (006) LiNbO 3 thin films was found to be slightly lower from the corresponding bulk value (n = 2.28). Various factors responsible for the deviation in the refractive index of (006) LiNbO 3 thin films from the corresponding bulk value are discussed and the deviation is mainly attributed to the lattice contraction due to the presence of stress in deposited film.

  12. Preparation of YBa2Cu3O7 films by low pressure MOCVD using liquid solution sources

    International Nuclear Information System (INIS)

    Weiss, F.; Froehlich, K.; Haase, R.; Labeau, M.; Selbmann, D.; Senateur, J.P.; Thomas, O.

    1993-01-01

    A hybrid low pressure MOCVD process is described for reproducible preparation of superconducting thin films of YBa 2 Cu 3 O 7 . The process uses a single solution source of Y, Ba, and Cu β-diketonates dissolved in suitable organic solvents. This liquid precursor is atomized using an ultrasonic aerosol generator and transported as small droplets (∼1μm) into a CVD reactor where solvent and precursor are first evaporated before deposition takes place at low pressure on heated substrates in a cold wall geometry. This process allows, with stable evaporation rates for all three precursors, to grow in-situ superconducting films with constant composition from film to film. Thin and thick films with high critical temperatures and critical currents have been obtained (Tc>80K, Jc>10 4 A/cm 2 at 77K in self field) which are highly c-axis oriented. Experimental details of this new process are described and the effects of different process parameters are studied in order to improve the quality of the deposited layers. (orig.)

  13. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B.D., E-mail: bpolat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Eryilmaz, O.L. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keleş, O., E-mail: ozgulkeles@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Erdemir, A. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Amine, K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-12-01

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g{sup −1} capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g{sup −1} (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g{sup −1} as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g{sup −1} capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.b - Highlights: • Highly adherent SiCu films are deposited by magnetron sputtering. • Compositionally graded SiCu film is produced and characterized. • Decrease of Cu content diverted the propagation of stress in the anode. • Cu rich layer at the bottom improves the adherence of the film.

  14. UHV-cluster-tool for fabrication of thin film structures and transport- and noise properties of YBa2Cu3O7-δ grain boundary-SQUIDs

    International Nuclear Information System (INIS)

    Back, Christoph

    2007-01-01

    A UHV-thin-film-deposition system for the fabrication of thin film structures of metals and oxides was designed and optimized. For oxide materials, Pulsed Laser Deposition (PLD) was implemented. Epitaxial thin film growth can be analyzed during the PLD process by high-pressure RHEED (Reflection High-Energy Electron Diffraction). Furthermore layer-by-layer growth can be triggered by Pulsed Laser Intervall Deposition (PLiD). Heteroepitaxial multilayers can be fabricated automatically. Metal thin films can be grown by planar magnetron sputtering and by electron beam evaporation. Furthermore the system contains an rf-plasma source for surface cleaning and Ion Beam Etching (IBE). The three different deposition techniques are located in separate vacuum chambers which are connected by a central handling chamber allowing to combine all these processes in-situ. Furthermore superconducting quantum interference devices (SQUIDs) were fabricated out of epitaxially grown high-temperature superconducting YBa 2 Cu 3 O 7 -films on bicrystals. The SQUIDs were structured using a combined process of ion milling and chemical wet etching. By this combined etching process, edge signals that appear during imaging of flux quanta by low temperature scanning microscopy can be avoided. The transport- and noise properties of the SQUIDs were investigated. (orig.)

  15. Insulating nanoparticles on YBa2Cu3O7-δ thin films revealed by comparison of atomic force and scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Thomson, R.E.; Moreland, J.; Missert, N.; Rudman, D.A.; Sanders, S.C.; Cole, B.F.

    1993-01-01

    The surface topography of YBa 2 Cu 3 O 7-δ thin films has been studied with both atomic force microscopy (AFM) and scanning tunneling microscopy (STM). The AFM images reveal a high density of small distinct nanoparticles, 10--50 nm across and 5--20 nm high, which do not appear in STM images of the same samples. In addition, we have shown that scanning the STM tip across the surface breaks off these particles and moves them to the edge of the scanned area, where they can later be imaged with the AFM

  16. Influence of substrate temperature and post annealing of CuGaO{sub 2} thin films on optical and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Bakar, Muhammad Hafiz Abu; Li, Lam Mui; Salleh, Saafie; Alias, Afishah [Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88999, Kota Kinabalu, Sabah (Malaysia); Mohamad, Khairul Anuar; Sulaiman, Salina [Faculty of Engineering, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia)

    2015-08-28

    A transparent p-type thin film CuGaO{sub 2} was deposited by using RF sputtering deposition method on plastic (PET) and glass substrate. The characteristics of the film is investigated. The thin film was deposited at temperature range from 50-250°C and the pressure inside the chamber is 1.0×10{sup −2} Torr and Argon gas was used as a working gas. The RF power is set to 100 W. The thickness of thin film is 300nm. In this experiment the transparency of the thin film is more than 70% for the visible light region. The band gap obtain is between 3.3 to 3.5 eV. The details of the results will be discussed in the conference.

  17. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    Science.gov (United States)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  18. Effect of BSO addition on Cu-O bond of GdBa{sub 2}Cu{sub 3}O{sub 7-x} films with varying thickness probed by extended x-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H. K.; Lee, J. K.; Yang, D. S.; Kang, B. [Chungbuk National University, Cheongju (Korea, Republic of); Kang, W. N. [Dept. of Physics, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    We investigated the relation between the Cu-O bond length and the superconducting properties of BaSnO{sub 3} (BSO)-added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films by using extended x-ray absorption fine structure (EXAFS) spectroscopy. 4 wt.% BaSnO{sub 3} (BSO) added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films with varying thickness from 0.2 μm to 1.0 μm were fabricated by using pulsed laser deposition (PLD) method. The transition temperature (T{sub c}) and the residual resistance ratio (RRR) of the GdBCO films increased with increasing thickness up to 0.8 μm, where the crystalline BSO has the highest peak intensity, and then decreased. This uncommon behaviors of T{sub c} and RRR are likely to be created by the addition of BSO, which may change the ordering of GdBCO atomic bonds. Analysis from the Cu K-edge EXAFS spectroscopy showed an interesting thickness dependence of ordering behavior of BSO-added GdBCO films. It is noticeable that the ordering of Cu-O bond and the transition temperature are found to show opposite behaviors in the thickness dependence. Based on these results, the growth of BSO seemingly have evident effect on the alteration of the local structure of GdBCO film.

  19. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V., E-mail: victor.robles@ciemat.es; Trigo, J.F.; Guillén, C.; Herrero, J.

    2015-09-05

    Highlights: • Copper tin sulfide (CTS) thin films were grown by co-evaporation at different Cu/Sn atomic ratios. • Smooth Cu{sub 2}SnS{sub 3} layers with large grains are obtained at Cu/Sn ⩾ 1.5 and T ⩾ 350 °C. • At 450 °C, the cubic Cu{sub 2}SnS{sub 3} phase changes to tetragonal phase. • Cu{sub 2}SnS{sub 3} presents suitable optical and electrical properties for use as photovoltaic absorbers. - Abstract: Copper tin sulfide thin films have been grown on soda-lime glass substrates from the elemental constituents by co-evaporation. The synthesis was performed at substrate temperatures of 350 °C and 450 °C and different Cu/Sn ratios, adjusting the deposition time in order to obtain thicknesses above 1000 nm. The evolution of the morphological, structural, chemical, optical and electrical properties has been analyzed as a function of the substrate temperature and the Cu/Sn ratio. For the samples with Cu/Sn ⩽ 1, Cu{sub 2}Sn{sub 3}S{sub 7} and Cu{sub 2}SnS{sub 3} have been observed by XRD. Increasing the Cu/Sn to 1.5, the Cu{sub 2}SnS{sub 3} phase was the majority, being the formation completed at Cu/Sn ratio around 2. The increment of the substrate temperature leads to a change of cubic structure to tetragonal of the Cu{sub 2}SnS{sub 3} phase. The chemical treatment with KCN was effective to eliminate CuS excess detected in the samples with Cu/Sn > 2.2. The samples with Cu{sub 2}SnS{sub 3} structure show a band gap energy increasing from 0.9 to 1.25 eV and an electrical resistivity decreasing from 7 ∗ 10{sup −2} Ω cm to 3 ∗ 10{sup −3} Ω cm when the Cu/Sn atomic ratio increases from 1.5 to 2.2.

  20. Characterization of defect modes in YBa2Cu3O7-δ thin films probed by Raman scattering

    International Nuclear Information System (INIS)

    Hong, Seongsik; Jo, Hyunchul; Cheong, Hyeonsik; Park, Gwangseo

    2005-01-01

    A Raman analysis is performed on a series of fully oxygenated YBa 2 Cu 3 O 7-δ thin films, on MgO(1 0 0) substrates, deposited by the pulsed laser technique at temperatures between 680 deg C and 820 deg C. θ - 2θ scans of the films by the X-ray diffraction show that the YBCO films are oriented in the c-axis. There are no extra peaks appearing in the X-ray diffraction data. Besides the well-known active modes, however, Raman spectra reveal a number of defect modes. The defect mode at 594 cm -1 redshifts and merges toward the O(4)-A g mode at 502 cm -1 with decreasing deposition temperatures. This mode is significantly asymmetrical and broad, whereas the mode at 243 cm -1 is symmetrical, with a small full width at half maximum remaining unchanged at a value around its own frequency. The intensity of the mode at 243 cm -1 seems to depend on the intensity of the mode at 594 cm -1 . Quantitative calculations concerning the relative intensities show that the two modes are related to each other

  1. Micro-Raman spectroscopy studies of bulk and thin films of CuInTe2

    International Nuclear Information System (INIS)

    Ananthan, M R; Mohanty, Bhaskar Chandra; Kasiviswanathan, S

    2009-01-01

    Micro-Raman spectroscopy measurements were made on polycrystalline and amorphous thin films of CuInTe 2 as well as bulk polycrystalline CuInTe 2 . Various vibrational modes exhibited by the bulk and polycrystalline thin films were attributed to those expected for single crystal CuInTe 2 . Raman spectra of amorphous films presented a broad spectrum, decomposition of which revealed the presence of elemental tellurium on the film surface. Laser-induced changes on CuInTe 2 thin films were studied by acquiring spectra with higher laser beam power. Modes due to tellurium appeared when the spectra were acquired during laser–sample interaction, indicating tellurium segregation. The Raman spectra measured from polycrystalline films during high laser power irradiation did not show decrease in the intensity of the A 1 mode of CuInTe 2 in spite of loss of tellurium from the lattice. This has been interpreted as related to an increased contribution from the undistorted subsurface CuInTe 2 region at higher excitation power

  2. Optical properties of WO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay, E-mail: drguptavinay@gmail.com, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India)

    2014-01-28

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO{sub 3} thin films. WO{sub 3} thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO{sub 3} thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO{sub 3} thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO{sub 3}/Au/prism structure were utilized to estimate the dielectric properties of WO{sub 3} thin films at optical frequency (λ = 633 nm). As the thickness of WO{sub 3} thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO{sub 3} film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light.

  3. Properties of HTS YBCO thin films deposited on tilted NdGaO{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nurgaliev, T. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria)]. E-mail: timur@ie.bas.bg; Donchev, T. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Mateev, E. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Miteva, S. [Laboratory of Superconductivity and Cryoelectronics, Institute of Electronics BAS, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Mozhaev, P.B. [Institute of Physics and Technology RAS, Nakhimovsky Ave. 36, 117218 Moscow (Russian Federation); Mozhaeva, J.E. [Institute of Physics and Technology RAS, Nakhimovsky Ave. 36, 117218 Moscow (Russian Federation)

    2005-03-15

    Thin YBa{sub 2}Cu{sub 3}O{sub 7} films were fabricated by 2-opposed DC magnetron sputtering onto NdGaO{sub 3} substrates, tilted from standard (1 1 0) orientation by 0-26 deg , and their surface morphology and electrical characteristics were investigated. Normal state resistivity (at 295 K) and microwave surface resistance (at 77 K and {approx}8 GHz) of the films demonstrated anisotropy, introduced by the tilted substrate, and some improvement of the superconducting parameters of the films was observed at small tilt angles ({theta} {approx} 1.5-3 deg ). The increase of the microwave surface resistance at high tilt angles for the current tracks, perpendicular to the steps of the substrate, was described in the framework of a simple model, which takes into account the complex conductivity of the film and the weak links between the film terraces.

  4. Metal-insulator transition induced in CaVO3 thin films

    International Nuclear Information System (INIS)

    Gu Man; Laverock, Jude; Chen, Bo; Smith, Kevin E.; Wolf, Stuart A.; Lu Jiwei

    2013-01-01

    Stoichiometric CaVO 3 (CVO) thin films of various thicknesses were grown on single crystal SrTiO 3 (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 μA. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film (∼60 nm), thin films of CVO (2–4 nm) were more two-dimensional with the V charge state closer to V 4+ .

  5. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting [UCB

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules with a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.

  6. Growth and transport properties of multilayer superconducting films of Nd1.83Co0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gupta, A.; Gross, R.; Olsson, E.; Segmuller, A.; Koren, G.

    1990-01-01

    This paper reports on strained multilayer thin films of YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x that have been prepared by laser ablation deposition. For individual layers below a critical layer thickness of about 250 Angstrom, coherency strain compresses the Nd 1.83 Ce 0.17 CuO x lattice and expands the YBa 2 Cu 3 O 7-δ lattice. The orthorhombic distortion in the YBa 2 Cu 3 O 7-δ layers is also removed. Depending on their oxygen content, either the YBa 2 Cu 3 O 7-δ , or the Nd 1.83 Ce 0.17 CuO x layers are superconducting in these multilayers. The strain-induced structural modification has a significant influence on the superconducting transition temperature and critical current density of the YBa 2 Cu 3 O 7-δ layers. Zero field critical current densities as high as 1.1 x 10 7 A/cm 2 at 77K have been measured for the YBa 2 Cu 3 O 7-δ layers

  7. Paramagnetic moments in YBa2Cu3O7−δ nanocomposite films

    International Nuclear Information System (INIS)

    Dias, F.T.; Vieira, V.N.; Silva, D.L.; Albino Aguiar, J.; Valadão, D.R.B.; Obradors, X.; Puig, T.; Wolff-Fabris, F.; Kampert, E.

    2014-01-01

    Highlights: • The paramagnetic Meissner effect was observed in a nanocomposite YBaCuO thin film. • The paramagnetic moments in FC experiments were observed up to 10 T. • The paramagnetic Meissner effect increases when the magnetic field is increased. • Results may be explained based on the flux compression scenario and vortex pinning. • An apparent saturation tendency of the paramagnetic moments could be observed. - Abstract: We report on magnetization studies in YBa 2 Cu 3 O 7−δ thin films with dispersed Ba 2 YTaO 6 nanoparticles. The magnetization measurements were made using a superconducting quantum interference device (SQUID) and a vibrating sample magnetometer (VSM). Magnetic moments were measured as functions temperature using zero-field cooling (ZFC) and field-cooled (FC) prescriptions for magnetic fields up to 10 T applied parallel and perpendicular to the ab planes. A paramagnetic response related to the superconducting state was observed during the FC experiments. This effect, known as paramagnetic Meissner effect (PME), apparently increases when the magnetic field is increased. We discuss our PME results in terms of the strong pinning scenario modulated by Ba 2 YTaO 6 nanoparticles dispersed into the superconducting matrix

  8. Optical properties of titanium trisulphide (TiS3) thin films

    International Nuclear Information System (INIS)

    Ferrer, I.J.; Ares, J.R.; Clamagirand, J.M.; Barawi, M.; Sánchez, C.

    2013-01-01

    Titanium trisulphide thin films have been grown on quartz substrates by sulphuration of electron-beam evaporated Ti layers (d ∼ 300 nm) in a vacuum sealed ampoule in the presence of sulphur powder at 550 °C for different periods of time (1 to 20 h). Thin films were characterized by X-ray diffraction, energy dispersive analyses of X-ray and scanning electron microscopy. Results demonstrate that films are composed by monoclinic titanium trisulphide. Films show n-type conductivity with a relatively high resistivity (ρ ∼ 4 ± 2 Ω·cm) and high values of the Seebeck coefficient (− 600 μV/K) at room temperature. Values of the optical absorption coefficient about α ∼ 10 5 cm −1 , determined from reflectance and transmittance measurements, have been obtained at photon energies hυ > 2 eV. The absorption coefficient dependence on the photon energy in the range of 1.6–3.0 eV hints the existence of a direct transition with an energy gap between 1.35 and 1.50 eV. By comparing these results with those obtained from bulk TiS 3 , a direct transition with lower energy is also found which could have been hidden due to the low value of the absorption coefficient in this energy range. - Highlights: ► Thin films of TiS 3 have been obtained by sulphuration of Ti layers. ► Optical properties of TiS 3 thin films have been determined. ► Optical energy gap of TiS 3 has been obtained. ► Optical properties of bulk TiS 3 have been measured and compared with those of films

  9. Characterization of CuInS2 thin films prepared by chemical bath deposition and their implementation in a solar cell

    International Nuclear Information System (INIS)

    Lugo, S.; López, I.; Peña, Y.; Calixto, M.; Hernández, T.; Messina, S.

    2014-01-01

    CuInS 2 thin films were formed by the sequential deposition of In 2 S 3CuS layers on glass substrates, by chemical bath deposition technique, and heating these multilayer 1 h at 350 °C and 400 mPa. The morphology and thickness of the CuInS 2 thin films were analysed by scanning electron microscopy, showing particles with elongated shape and length about 40 nm, and thickness of 267 and 348 nm for samples from 15 and 24 h of deposition time in the chemical bath of In 2 S 3 , respectively. The energy band gap values of the films were around 1.4 eV, whereas the electrical conductivity showed values from 64.91 to 4.11 × 10 −3 Ω −1 cm −1 for the samples of 15 and 24 h of In 2 S 3 deposition bath, respectively. The obtained CuInS 2 films showed appropriate values for their application as an absorbing layer in photovoltaic structures of the type: glass/SnO 2 :F/CdS/Sb 2 S 3 /CuInS 2 /PbS/C/Ag. The whole structure was obtained through chemical bath deposition technique. The solar cell corresponding to 15 h of In 2 S 3 deposition duration bath showed energy-conversion efficiency (η) of 0.53% with open circuit voltage (V oc ) of 530 mV, short circuit current density (J sc ) of 2.43 mA cm −2 , and fill factor (FF) of 0.41. In the case of the structure with 24 h of deposition of In 2 S 3 bath, η = 0.43% was measured with the following parameters: V oc = 330 mV, J sc = 4.78 mA cm −2 and FF = 0.27. - Highlights: • CuInS 2 films were formed by chemical bath deposition followed by a heat treatment. • Prepared CuInS 2 thin films can work as an effective absorbing layer in a solar cell. • A complete solar cell structure was made by a chemical bath deposition method

  10. n-Type Conductivity of Cu2O Thin Film Prepared in Basic Aqueous Solution Under Hydrothermal Conditions

    Science.gov (United States)

    Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela

    2018-03-01

    We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.

  11. FABRICATION OF Cu-Al-Ni SHAPE MEMORY THIN FILM BY THERMAL EVOPRATION

    OpenAIRE

    Özkul, İskender; Canbay, Canan Aksu; Tekataş, Ayşe

    2017-01-01

    Among the functional, materials shape memory alloysare important because of their unique properties. So, these materials haveattracted more attention to be used in micro/nano electronic andelectromechanic systems. In this work, thermal evaporation method has been usedto produce CuAlNi shape memory alloy thin film. The produced CuAlNi thin filmhas been characterized and the presence of the martensite phase wasinvestigated and compared with the CuAlNi alloy sample. CuAlNi shape memoryalloy thin...

  12. Optoelectronic properties of transparent p-type semiconductor Cu{sub x}S thin films

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, P.; Valente, J. [ICEMS, IST-UTL, Lisboa (Portugal); Lavareda, G. [Departamento de Fisica, IST-UTL, Lisboa (Portugal); Nunes, F.T. [Departamento de Ciencia dos Materiais, FCT-UNL, Caparica (Portugal); Amaral, A. [Departamento de Fisica, IST-UTL, Lisboa (Portugal); ICEMS, IST-UTL, Lisboa (Portugal); Carvalho, C.N. de [Departamento de Ciencia dos Materiais, FCT-UNL, Caparica (Portugal); ICEMS, IST-UTL, Lisboa (Portugal)

    2010-07-15

    Nowadays, among the available transparent semiconductors for device use, the great majority (if not all) have n-type conductivity. The fabrication of a transparent p-type semiconductor with good optoelectronic properties (comparable to those of n-type: InO{sub x}, ITO, ZnO{sub x} or FTO) would significantly broaden the application field of thin films. However, until now no material has yet presented all the required properties. Cu{sub 2}S is a p-type narrow-band-gap material with an average optical transmittance of about 60% in the visible range for 50 nm thick films. However, due to its high conductivity at room temperature, 10 nm in thickness seems to be appropriate for device use. Cu{sub 2}S thin films with 10 nm in thickness have an optical visible transmittance of about 85% rendering them as very good candidates for transparent p-type semiconductors. In this work Cu{sub x}S thin films were deposited on alkali-free (AF) glass by thermal evaporation. The objective was not only the determination of its optoelectronic properties but also the feasibility of an active layer in a p-type thin film transistor. In our Cu{sub x}S thin films, p-type high conductivity with a total visible transmittance of about 50% have been achieved. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    International Nuclear Information System (INIS)

    Cherif, S.-M.; Layadi, A.; Ben Youssef, J.; Nacereddine, C.; Roussigne, Y.

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K 1 and K 2 , have been included; for the Ni/Cu series, K 1 was found to decrease from 1.0x10 6 to 0.18x10 6 erg/cm 3 as t increases from 31 to 165 nm, while K 2 increased from 0.24x10 6 to 0.8x10 6 erg/cm 3 . Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t≥165 nm in Ni/glass and t≥90 nm in Ni/Cu

  14. Preparation and Characterization of Sb2Te3 Thin Films by Coevaporation

    Directory of Open Access Journals (Sweden)

    Bin Lv

    2010-01-01

    Full Text Available Deposition of Sb2Te3 thin films on soda-lime glass substrates by coevaporation of Sb and Te is described in this paper. Sb2Te3 thin films were characterized by x-ray diffraction (XRD, x-ray fluorescence (XRF, atomic force microscopy (AFM, x-ray photoelectron spectroscopy (XPS, electrical conductivity measurements, and Hall measurements. The abnormal electrical transport behavior occurred from in situ electrical conductivity measurements. The results indicate that as-grown Sb2Te3 thin films are amorphous and undergo an amorphous-crystalline transition after annealing, and the posttreatment can effectively promote the formation of Sb-Te bond and prevent oxidation of thin film surface.

  15. Optical and Electrical Properties of Thin Films of CuS Nanodisks Ensembles Annealed in a Vacuum and Their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    J. Santos Cruz

    2013-01-01

    Full Text Available Effects on the optical, electrical, and photocatalytic properties of undoped CuS thin films nanodisks vacuum annealed at different temperatures were investigated. The chemical bath prepared CuS thin films were obtained at 40°C on glass substrates. The grain size of 13.5±3.5 nm was computed directly from high-resolution transmission electron microscopy (HRTEM images. The electrical properties were measured by means of both Hall effect at room temperature and dark resistivity as a function of the absolute temperature 100–330 K. The activation energy values were calculated as 0.007, 0.013, and 0.013 eV for 100, 150, and 200°C, respectively. The energy band gap of the films varied in the range of 1.98 up to 2.34 eV. The photocatalytic activity of the CuS thin film was evaluated by employing the degradation of aqueous methylene blue solution in the presence of hydrogen peroxide. The CuS sample thin film annealed in vacuum at 150°C exhibited the highest photocatalytic activity in presence of hydrogen peroxide.

  16. Characterization of MAPLE deposited WO3 thin films for electrochromic applications

    Science.gov (United States)

    Boyadjiev, S. I.; Stefan, N.; Szilágyi, I. M.; Mihailescu, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Besleaga, C.; Iliev, M. T.; Gesheva, K. A.

    2017-01-01

    Tungsten trioxide (WO3) is a widely studied material for electrochromic applications. The structure, morphology and optical properties of WO3 thin films, grown by matrix assisted pulsed laser evaporation (MAPLE) from monoclinic WO3 nano-sized particles, were investigated for their possible application as electrochromic layers. A KrF* excimer (λ=248 nm, ζFWHM=25 ns) laser source was used in all experiments. The MAPLE deposited WO3 thin films were studied by atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry measurements were also performed, and the coloring and bleaching were observed. The morpho-structural investigations disclosed the synthesis of single-phase monoclinic WO3 films consisting of crystalline nano-grains embedded in an amorphous matrix. All thin films showed good electrochromic properties, thus validating application of the MAPLE deposition technique for the further development of electrochromic devices.

  17. Characterization of MAPLE deposited WO3 thin films for electrochromic applications

    International Nuclear Information System (INIS)

    Boyadjiev, S I; Iliev, M T; Stefan, N; Mihailescu, N; Visan, A; Mihailescu, I N; Szilágyi, I M; Stan, G E; Besleaga, C; Gesheva, K A

    2017-01-01

    Tungsten trioxide (WO 3 ) is a widely studied material for electrochromic applications. The structure, morphology and optical properties of WO 3 thin films, grown by matrix assisted pulsed laser evaporation (MAPLE) from monoclinic WO 3 nano-sized particles, were investigated for their possible application as electrochromic layers. A KrF* excimer (λ=248 nm, ζ FWHM =25 ns) laser source was used in all experiments. The MAPLE deposited WO 3 thin films were studied by atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry measurements were also performed, and the coloring and bleaching were observed. The morpho-structural investigations disclosed the synthesis of single-phase monoclinic WO 3 films consisting of crystalline nano-grains embedded in an amorphous matrix. All thin films showed good electrochromic properties, thus validating application of the MAPLE deposition technique for the further development of electrochromic devices. (paper)

  18. Synthesis and characterization of MoO3–WO3 composite thin films ...

    Indian Academy of Sciences (India)

    Abstract. In order to achieve high colouration efficiency, MoO3–WO3 composite thin films have been successfully deposited on sodium silicate glass and silicon wafer (111) at 30 ◦C by a very simple novel wet process known as liquid phase deposition. The deposited films were annealed at different temperatures and ...

  19. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.

    2014-11-11

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films as the lower layer we built a matrix of bottom-gate Cu2O/SnO bilayer thin-film transistors of different thickness. We found that the thickness of the Cu2O layer is of major importance in oxidation of the SnO layer underneath. The thicker the Cu2O layer, the more the underlying SnO layer is oxidized, and, hence, the more transistor mobility is enhanced at a specific temperature. Both device performance and the annealing temperature required could be adjusted by controlling the thickness of each layer of Cu2O/SnO bilayer thin-film transistors.

  20. Effect of oxygen on the surface morphology of CuGaS{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Smaili, F., E-mail: fethi.smaili@voila.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2009-08-01

    Since the effect of oxygen is very significant during the heat treatment of the thin films, we study the effect of this during the annealing of CuGaS{sub 2} thin films by two different types. In this study, CuGaS{sub 2} thin films were deposited by vacuum thermal evaporation of CuGaS{sub 2} powder on heated glass substrates at 200 deg. C submitted to a thermal gradient. The films are annealed in air and under nitrogen atmosphere at 400 deg. C for 2 h. In order to improve our understanding of the influence of oxygen during two annealing types on device performance, we have investigated our CuGaS{sub 2} material by X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) and spectrophotometry. A correlation was established between the surface roughness, growth morphology and optical properties, of the annealed CuGaS{sub 2} thin films. It was found that annealing of CuGaS{sub 2} film in nitrogen atmosphere leads to a decrease of the mean grain size and to an evolution of a (112) preferred film orientation. Annealing in air results in the growth of oxide phases such as CuO and modifies the films structure and their surface morphology.

  1. Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Lin, C.-K.; Chan, C.-C.; Chang, C.-C.; Tsay, C.-Y.

    2006-01-01

    TiO 2 materials possessing not only photocatalytic but also electrochromic properties have attracted many research and development interests. Though WO 3 exhibits excellent electrochromic properties, the much higher cost and water-sensitivity of WO 3 as compared with the TiO 2 may restrict the practical application of WO 3 materials. In the present study, the feasibility of preparing nanocrystalline porous TiO 2 /WO 3 composite thin films was investigated. Precursors of sols TiO 2 and/or WO 3 and polystyrene microspheres were used to prepare nanocrystalline pure TiO 2 , WO 3 , and composite TiO 2 /WO 3 thin films by spin coating. The spin-coated thin films were amorphous and, after heat treating at a temperature of 500 o C, nanocrystalline TiO 2 , TiO 2 /WO 3 , and WO 3 thin films with or without pores were prepared successfully. The heat-treated thin films were colorless and coloration-bleaching phenomena can be observed during cyclic voltammetry tests. The heat-treated thin films exhibited good reversible electrochromic behavior while the porous TiO 2 /WO 3 composite film exhibited improved electrochromic properties

  2. Optimization of the deposition conditions and structural characterization of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-x} thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, J.; Meng-Burany, S.; Xing, W.B. [Simon Fraser Univ., British Columbia (Canada)

    1994-12-31

    Two series of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub z} thin films deposited on (001) LaAlO{sub 3} single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O{sub 2}) and substrate temperature of the deposition process T{sub h}, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j{sub c} and T{sub c} exhibited T{sub c}{ge}91 K and j{sub c}{ge}4 x 10{sup 6} A/cm{sup 2}, at 77 K. Close correlations between the structural quality of the film, the growth parameters (p(O{sub 2}), T{sub h}) and j{sub c} and T{sub c} have been found.

  3. Critical current density and microstructure of YBa2Cu3O7-x films as a function of film thickness

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Turner, L.G.; Hall, E.L.; Lewis, N.

    1990-01-01

    Thin films of nominal composition YBa 2 Cu 3 O 7-x (YBCO) were produced on (100) SrTiO 3 substrates by coevaporation and furnace annealing. Film thicknesses in the range of 0.2 to 2.4 μm were analyzed. Microstructural investigations by cross sectional transmission electron microscopy (TEM) reveal a continuous layer of about 0.4 μm thickness adjacent to the substrate with c-axis normal to the substrate plane. In thicker films the remaining top portion has the c-axis in the film plane. The critical current density (J c ) at 77 K decreases with increasing thickness in the thickness range exceeding 0.4 μm, qualitatively consistent with the microstructural observation, but quantitatively inconsistent with a simple model based on the microstructural data

  4. Preliminary study of CdTe and CdTe:Cu thin films nanostructures deposited by using DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Marwoto, Putut; Made, D. P. Ngurah; Sugianto [Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Wibowo, Edy; Astuti, Santi Yuli; Aryani, Nila Prasetya [Materials Research Group, Laboratory of Thin Film, Department of Physics, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Othaman, Zulkafli [Departement of Physics, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru (Malaysia)

    2013-09-03

    Growth and properties of CdTe and CdTe:Cu thin films nanostrucures deposited by using dc magnetron sputtering are reported. Scanning electron microscope (SEM) was used to observe the surface morphologies of the thin films. At growth conditions of 250 °C and 14 W, CdTe films did not yet evenly deposited. However, at growth temperature and plasma power of 325 °C and 43 W, both CdTe and CdTe:Cu(2%) have deposited on the substrates. In this condition, the morphology of the films indicate that the films have a grain-like nanostructures. Grain size diameter of about 200 nm begin to appear on top of the films. Energy Dispersive X-rays spectroscopy (EDX) was used to investigate chemical elements of the Cu doped CdTe film deposited. It was found that the film deposited consist of Cd, Te and Cu elements. XRD was used to investigate the full width at half maximum (FWHM) values of the thin films deposited. The results show that CdTe:Cu(2%) thin film has better crystallographic properties than CdTe thin film. The UV-Vis spectrometer was used to investigate the optical properties of thin films deposited. The transmittance spectra showed that transmittance of CdTe:Cu(2%) film is lower than CdTe film. It was found that the bandgap energy of CdTe and CdTe:Cu(2%) thin films of about 1.48 eV.

  5. SILAR deposited Bi2S3 thin film towards electrochemical supercapacitor

    Science.gov (United States)

    Raut, Shrikant S.; Dhobale, Jyotsna A.; Sankapal, Babasaheb R.

    2017-03-01

    Bi2S3 thin film electrode has been synthesized by simple and low cost successive ionic layer adsorption and reaction (SILAR) method on stainless steel (SS) substrate at room temperature. The formation of interconnected nanoparticles with nanoporous surface morphology has been achieved and which is favourable to the supercapacitor applications. Electrochemical supercapacitive performance of Bi2S3 thin film electrode has been performed through cyclic voltammetry, charge-discharge and stability studies in aqueous Na2SO4 electrolyte. The Bi2S3 thin film electrode exhibits the specific capacitance of 289 Fg-1 at 5 mVs-1 scan rate in 1 M Na2SO4 electrolyte.

  6. Lead-doped electron-beam-deposited Bi-Sr-Ca-Cu-O superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotry, S.A.; Saini, K.K.; Kant, C.; Sharma, C.P.; Ekbote, S.N.; Asthana, P.; Nagpal, K.C.; Chandra, S. (National Physical Lab., New Delhi (India))

    1991-03-20

    Superconducting thin films of the lead-doped Bi-Sr-Ca-Cu-O system have been prepared on (100) single-crystal SrTiO{sub 3} substrates by an electron beam deposition technique using a single sintered pellet as the evaporation source. As-deposited films are amorphous and non-superconducting; post-deposition annealing at an optimized temperature in air has been found to result in crystalline and superconducting films. The superconducting characteristics of the films have been observed to be sensitive not only to the duration and temperature of post-deposition annealing but also to the lead content and the sintering parameters for the pellet to be used as the evaporation source. A pellet with nominal composition Bi{sub 3}Pb{sub 1}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y} that had been sintered for 200 h zero resistivity Tc{sup 0}=112 K. However, films deposited using such a pellet as the evaporation source had Tc{sup 0} {approx equal} 73-78 K, as had the films deposited from a pellet without any lead. We investigated systematically films deposited from pellets with more lead and sintered for different durations. It is evident from these investigations that pellets with nominal composition Bi{sub 3}Pb{sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y}, i.e. with an excess of lead, and sintered for about 75 h when used as the evaporation source yield films with Tc{sup 0} {approx equal} 100 K when annealed between 835 and 840deg C for an optimized long duration. The films are characterized by X-ray diffraction and energy-dispersive spectroscopy techniques and have been found to be highly c axis oriented. The effect of lead in promoting a high Tc{sup 0}=110 K phase seems to be similar to that in bulk ceramics. (orig.).

  7. Effects of substrate temperature and Cu underlayer thickness on the formation of SmCo5(0001) epitaxial thin films

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmCo 5 (0001) epitaxial thin films were prepared on Cu(111) underlayers heteroepitaxially grown on Al 2 O 3 (0001) single-crystal substrates by molecular beam epitaxy. The effects of substrate temperature and Cu underlayer thickness on the crystallographic properties of SmCo 5 (0001) epitaxial films were investigated. The Cu atoms of underlayer diffuse into the SmCo 5 film and substitute the Co sites in SmCo 5 structure forming an alloy compound of Sm(Co,Cu) 5 . The ordered phase formation is enhanced with increasing the substrate temperature and with increasing the Cu underlayer thickness. The Cu atom diffusion into the SmCo 5 film is assisting the formation of Sm(Co,Cu) 5 ordered phase.

  8. Electrical and photovoltaic characteristics of CuInSe2 thin films processed by nontoxic Cu–In precursor solutions

    International Nuclear Information System (INIS)

    Choi, Ik Jin; Jang, Jin Woo; Lee, Seung Min; Yeon, Deuk Ho; Jo, Yeon Hwa; Lee, Myung Ho; Cho, Yong Soo; Yun, Jae Ho; Yoon, Kyung Hoon

    2013-01-01

    Nontoxic Cu–In solution-processed CuInSe 2 absorber thin films and resultant photovoltaic cells have been investigated. Acetate-based Cu–In precursors having different Cu/In ratios of 0.8–1.2 were deposited by spin-coating and then selenized in Se atmosphere up to 550 °C. Single tetragonal CuInSe 2 phase was dominantly obtained regardless of Cu/In ratios, with the segregation of Cu 2−x Se secondary phase only in the case of Cu-rich films as evidenced by Raman spectra. The films with the 1.1 ratio demonstrated a larger grain size of ∼1.06 µm with an increased carrier concentration of ∼1.7 × 10 18 cm −3 and a decreased band gap of ∼1.02 eV, compared to the values obtained for Cu-deficient absorber films. The resultant best cell efficiency was ∼3.1% for the absorber having the 1.1 ratio, suggesting a potential of this simple spin-coating method as an alternative to typical vacuum processes. (paper)

  9. YBa2Cu3O7 films prepared by aerosol MOCVD

    International Nuclear Information System (INIS)

    Weiss, F.; Froehlich, K.; Haase, R.; Labeau, M.; Selbmann, D.; Senateur, J.P.; Thomas, O.

    1993-01-01

    In the present study we report on properties of YBa 2 Cu 3 O 7 films prepared by aerosol MOCVD. We give a short description of the process and we focus on the superconducting and related properties of the films deposited on SrTiO 3 , LaAlO 3 and NdGaO 3 single crystalline substrates. (orig.)

  10. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  11. Improved photoelectrochemical performance of BiVO4/MoO3 heterostructure thin films

    Science.gov (United States)

    Kodan, Nisha; Mehta, B. R.

    2018-05-01

    Bismuth vanadate (BiVO4) and Molybdenum trioxide (MoO3) thin films have been prepared by RF sputtering technique. BiVO4 thin films were deposited on indium doped tin oxide (In: SnO2; ITO) substrates at room temperature and 80W applied rf power. The prepared BiVO4 thin films were further annealed at 450°C for 2 hours in air to obtain crystalline monoclinic phase and successively coated with MoO3 thin films deposited at 150W rf power and 400°C for 30 minutes. The effect of coupling BiVO4 and MoO3 on the structural, optical and photoelectrochemical (PEC) properties have been studied. Optical studies reveal that coupling of BiVO4 and MoO3 results in improvement of optical absorption in visible region of solar spectrum. PEC study shows approximate 3-fold and 38-fold increment in photocurrent values of BiVO4/MoO3 (0.38 mA/cm2) heterostructure thin film as compared to MoO3 (0.15 mA/cm2) and BiVO4 (10 µA/cm2) thin films at applied bias of 1 V vs Ag/AgCl in 0.5 M Na2SO4 (pH=7) electrolyte.

  12. Passivation of defects in polycrystalline Cu2O thin films by hydrogen or cyanide treatment

    International Nuclear Information System (INIS)

    Ishizuka, S.; Kato, S.; Okamoto, Y.; Sakurai, T.; Akimoto, K.; Fujiwara, N.; Kobayashi, H.

    2003-01-01

    The effects of the passivation of defects in polycrystalline nitrogen-doped cuprous oxide (Cu 2 O) thin films with hydrogen or cyanide treatment were studied. In the photoluminescence (PL) measurements, although the emission was not observed before treatment, luminescence of Cu 2 O at around 680 nm was observed after each treatment. This improvement in the luminescence property may be due to the passivation of non-radiative recombination centers by H or CN. The hole carrier concentration increased from the order of 10 16 to 10 17 cm -3 with hydrogen or cyanide treatment. From these results, both the hydrogen and cyanide treatments were found to be very effective to passivate defects and improve the optical and electrical properties of polycrystalline Cu 2 O thin films. The thermal stability of the passivation effects by the cyanide treatment is, however, superior to that by the hydrogen treatment

  13. Structural phototransformation of WO{sub 3} thin films detected by photoacoustic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Argelia Perez, E-mail: ekargy@hotmail.com [Universidad Nacional Autonoma de Mexico, Laboratorio de Fotofisica y Peliculas Delgadas-CCADET, Ciudad Universitaria, Coyoacan, A.P. 70-186, C.P. 04510, Mexico, D.F. (Mexico); Montes de Oca, C. Oliva; Castaneda-Guzman, R.; Garcia, A. Esparza [Universidad Nacional Autonoma de Mexico, Laboratorio de Fotofisica y Peliculas Delgadas-CCADET, Ciudad Universitaria, Coyoacan, A.P. 70-186, C.P. 04510, Mexico, D.F. (Mexico)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The phototransformation of WO{sub 3} thin films were studied by photoacoustic technique. Black-Right-Pointing-Pointer The phase transition in WO{sub 3} thin films was induced by laser irradiation fluence. Black-Right-Pointing-Pointer The onset and end of the phototransformation in the thin films was identified. Black-Right-Pointing-Pointer The ablation threshold for each sample was identified. - Abstract: The photoacoustic technique (PA) was used to detect the phase transformation from amorphous to crystalline state of tungsten oxide (WO{sub 3}) thin films induced by UV pulsed laser radiation at low energy (<1.5 mJ). The evolution of photoacoustic signal was studied by a correlation analysis, comparing successive signals at fluences ranging from 0 to 20 mJ/cm{sup 2}. In this interval, it was possible to observe structural changes and the ablation threshold in films due to incident laser fluence effect. Thin films of WO{sub 3} were deposited by DC reactive magnetron sputtering over glass substrates at different deposition times. The results obtained by correlation analysis were compared with Raman spectroscopy data.

  14. Correlations between the Hall coefficient and the superconducting transport properties of oxygen-deficient YBa2Cu3O7-δ epitaxial thin films

    International Nuclear Information System (INIS)

    Jones, E.C.; Christen, D.K.; Thompson, J.R.; Feenstra, R.; Zhu, S.; Lowndes, D.H.; Phillips, J.M.; Siegal, M.P.; Budai, J.D.

    1993-01-01

    Strong correlations between the Hall coefficient R H , the transition temperature T c , and the critical current density J c were established in a series of epitaxial YBa 2 Cu 3 O 7-δ thin films as a function of oxygen deficiency δ. Steady increases in R H with δ suggest that deoxygenation reduces the density of states which, according to BCS theory, should lead to corresponding decreases in T c . In contrast, two well-known plateaus occurring at 90 K and 60 K were observed in T c vs δ. Others have ascribed these plateaus to either electronic phenomena or phase separations. We find that in the 90-K plateau, the critical current density J c (δ,H=0) decreases with δ and extrapolates toward zero at the edge of the plateau, while the relative-field dependence of J c (δ,H) and the flux-creep pinning energies are independent of δ. These observations suggest that the phase-separation scenario occurs on the 90-K plateau. However, electronic origins cannot be ruled out at present due to difficulties in determining the equilibrium superconducting properties of oxygen-deficient YBa 2 Cu 3 O 7-δ films

  15. Deposition of CuIn(Se,S)2 thin films by sulfurization of selenized Cu/In alloys

    International Nuclear Information System (INIS)

    Sheppard, C.J.; Alberts, V.; Bekker, W.J.

    2004-01-01

    The relatively small band gap values (close to 1eV) of CuInSe 2 thin films limits the conversion efficiencies of completed CuInSe 2 /CdS/ZnO solar cell devices. In the case of traditional two-stage growth techniques, limited success has been achieved to increase the band gap by substituting indium with gallium. In this study, sputtered copper-indium alloys were exposed to a H 2 Se/Ar atmosphere under defined conditions in order to produce partially reacted CuInSe 2 structures. These films were subsequently exposed to a H 2 S/Ar atmosphere to produce monophasic CuIn(Se, S) 2 quaternary alloys. The homogeneous incorporation of S into CuInSe 2 led to a systematic shift in the lattice parameters and band gap of the ab- sorber films. From these studies optimum selenization/sulfurization conditions were determined for the deposition of homogeneous CuIn(Se,S) 2 thin films with an optimum band gap values between 1.15 and 1.2 eV. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Structural, optical and electrical properties of CuIn{sub 5}S{sub 8} thin films grown by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Gannouni, M., E-mail: gm_mounir@yahoo.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2011-05-19

    Highlights: > In this work, thin films of CuIn{sub 5}S{sub 8} were successfully deposited onto glass substrates by thermal evaporation and annealed in air. > Post-depositional annealing effects on structural, optical and electrical properties of thermal evaporated CuIn{sub 5}S{sub 8} thin films were studied. > The results reported in this work make this material attractive as an absorber material in solar cells applications. - Abstract: Stoichiometric compound of copper indium sulfur (CuIn{sub 5}S{sub 8}) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 A. Thin films of CuIn{sub 5}S{sub 8} were deposited onto glass substrates under the pressure of 10{sup -6} Torr using thermal evaporation technique. CuIn{sub 5}S{sub 8} thin films were then thermally annealed in air from 100 to 300 deg. C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn{sub 5}S{sub 8} thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 deg. C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 10{sup 4} cm{sup -1} was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 deg. C. It was found that CuIn{sub 5}S{sub 8} thin film is an n-type semiconductor at 300 deg. C.

  17. Studies of electronic and magnetic properties of LaVO3 thin film

    Science.gov (United States)

    Jana, Anupam; Karwal, Sharad; Choudhary, R. J.; Phase, D. M.

    2018-04-01

    We have investigated the electronic and magnetic properties of pulsed laser deposited Mott insulator LaVO3 (LVO) thin film. Structural characterization revels the single phase [00l] oriented LVO thin film. Enhancement of out of plane lattice parameter indicates the compressively strained LVO film. Electron spectroscopic studies demonstrate that vanadium is present in V3+ state. An energy dispersive X-ray spectroscopic study ensures the stoichiometric growth of the film. Very smooth surface is observed in scanning electron micrograph. Colour mapping for elemental distribution reflect the homogeneity of LVO film. The bifurcation between zero-field-cooled and Field-cooled curves clearly points towards the weak ferromagnetic phase presence in compressively strained LVO thin film. A finite value of coercivity at 300 K reflects the possibility of room temperature ferromagnetism of LVO thin film.

  18. Epitaxial films of YBa2Cu3O/sub 7-//sub δ/ on NdGaO3, LaGaO3, and SrTiO3 substrates deposited by laser ablation

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Giess, E.A.; Segmueller, A.; Laibowitz, R.B.

    1989-01-01

    Frequency-doubled Nd:YAG laser (532 nm) pulses of 1.7 J/cm 2 and 10 ns duration were used to deposit thin films of YBa 2 Cu 3 O/sub 7-//sub δ/ by laser ablation on NdGaO 3 , LaGaO 3 , and SrTiO 3 substrates held at 725 +- 5 0 C in 0.2 Torr of O 2 ambient. Electrical resistivities versus temperature of all films show normal metallic behavior and sharp superconducting transitions with T/sub c/ (R = 0) at 92--93 K. Critical current densities in 0.3--0.6 μm thick, 200 μm long, and 10--30 μm wide strips were measured to be 10 6 A/cm 2 at 60, 77, and 80 K in the films on LaGaO 3 , NdGaO 3 , and SrTiO 3 , respectively. X-ray diffraction patterns show that all films grew epitaxially, with domains of only two crystalline orientations rotated 90 0 with respect to each other in the a-b plane (consistent with twins), and the c axis perpendicular to the substrates. The closely matched lattice constants of the film and substrates (0.8--2.1%) result in epitaxial growth of the films

  19. YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films prepared by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Apetrii, Claudia

    2009-11-25

    The discovery of superconductivity in ceramic materials by Bednorz and Mueller in early 1987, immediately followed by Wu et al., who showed that YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) becomes superconducting (92 K) well above the boiling point of nitrogen (77 K) created a great excitement in superconductivity research. Potential applications of high T{sub c}-superconductors require large critical currents and high-applied magnetic fields. Effective ways to increase the critical current density at high magnetic fields in YBCO are the introduction of nanoparticles and chemical substitution of yttrium by other rare earth elements. Since low costs and environmental compatibility are essential conditions for the preparation of long length YBCO films, the cost effective chemical solution deposition (CSD) procedure was selected, given that no vacuum technology is required. To reveal the flexibility and the good optimization possibilities of the CSD approach two main processes were chosen for comparison: a fluorine-free method, namely the polymer-metal precursor technique, and a fluorine-based method, the metalorganic deposition (MOD) using the trifluoroacetates (TFA) technique. Sharp transition temperature widths {delta}T{sub c} of 1.1 K for the polymer metal method, 0.8 K for TFA method and critical current densities J{sub c} of {approx}3.5 MA/cm{sup 2} shows that high quality YBCO thin films can be produced using both techniques. Especially interesting is the magnetic field dependence of the critical current density J{sub c}(B) of the Y(Dy)BCO (80 %) films showing that for the lower magnetic fields the critical current density J{sub c}(B) is higher for a standard YBCO film, but at fields higher than 4.5 T the critical current density J{sub c}(B) of Y(Dy)BCO is larger than that for the YBCO. Above 8 T, J{sub c}(B) of the Y(Dy)BCO film is more than one order of magnitude higher than in pure YBCO film. (orig.)

  20. Epitaxial c-axis oriented BaTiO3 thin films on SrTiO3-buffered Si(001) by atomic layer deposition

    International Nuclear Information System (INIS)

    Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G.; Posadas, Agham B.; Demkov, Alexander A.; Hu, Chengqing; Yu, Edward T.; Bruley, John

    2014-01-01

    Atomic layer deposition (ALD) of epitaxial c-axis oriented BaTiO 3 (BTO) on Si(001) using a thin (1.6 nm) buffer layer of SrTiO 3 (STO) grown by molecular beam epitaxy is reported. The ALD growth of crystalline BTO films at 225  °C used barium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and water as co-reactants. X-ray diffraction (XRD) reveals a high degree of crystallinity and c-axis orientation of as-deposited BTO films. Crystallinity is improved after vacuum annealing at 600  °C. Two-dimensional XRD confirms the tetragonal structure and orientation of 7–20-nm thick films. The effect of the annealing process on the BTO structure is discussed. A clean STO/Si interface is found using in-situ X-ray photoelectron spectroscopy and confirmed by cross-sectional scanning transmission electron microscopy. The capacitance-voltage characteristics of 7–20 nm-thick BTO films are examined and show an effective dielectric constant of ∼660 for the heterostructure

  1. Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Birkett, Martin, E-mail: martin.birkett@northumbria.ac.uk; Penlington, Roger; Wan, Chaoying; Zoppi, Guillaume

    2013-07-01

    The structural and electrical properties of a low resistivity CuAlMo thin film resistor material were investigated. The thin films were grown on Al{sub 2}O{sub 3} and glass substrates by direct current (dc) magnetron sputtering. The key electrical properties of sheet resistance, temperature coefficient of resistance (TCR) and resistance stability were investigated as a function of sputtering pressure and post-deposition heat treatment time and temperature. A low sputtering pressure range of 0.13 to 0.40 Pa produced CuAlMo films with sheet resistance in the range 0.1 to 0.2 Ω/□ and resistance stability of 0.45 to 0.65% with a TCR of − 90 ppm/°C which could be shifted to zero following annealing in air at 425 °C. Films grown at higher sputtering pressures of 0.53 to 0.80 Pa had increased sheet resistance in the range 0.4 to 0.6 Ω/□ and inferior stability of 0.8 to 1.7% with a more negative TCR of − 110 to − 180 ppm/°C which could not be shifted to zero following annealing. The stability of the films grown at 0.13 and 0.40 Pa could be further improved to < 0.25% with heat treatment, due to the formation of a protective aluminium oxide layer. A minimum dwell time of 3 h at 425 °C was required to stabilise the films and set the electrical properties. - Highlights: • Thin films of copper–aluminium–molybdenum were sputtered on alumina substrates. • Film properties were investigated with variation in process conditions. • Low sputtering pressure gave improved electrical performance. • Post deposition annealing in air further improved electrical performance.

  2. Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Birkett, Martin; Penlington, Roger; Wan, Chaoying; Zoppi, Guillaume

    2013-01-01

    The structural and electrical properties of a low resistivity CuAlMo thin film resistor material were investigated. The thin films were grown on Al 2 O 3 and glass substrates by direct current (dc) magnetron sputtering. The key electrical properties of sheet resistance, temperature coefficient of resistance (TCR) and resistance stability were investigated as a function of sputtering pressure and post-deposition heat treatment time and temperature. A low sputtering pressure range of 0.13 to 0.40 Pa produced CuAlMo films with sheet resistance in the range 0.1 to 0.2 Ω/□ and resistance stability of 0.45 to 0.65% with a TCR of − 90 ppm/°C which could be shifted to zero following annealing in air at 425 °C. Films grown at higher sputtering pressures of 0.53 to 0.80 Pa had increased sheet resistance in the range 0.4 to 0.6 Ω/□ and inferior stability of 0.8 to 1.7% with a more negative TCR of − 110 to − 180 ppm/°C which could not be shifted to zero following annealing. The stability of the films grown at 0.13 and 0.40 Pa could be further improved to < 0.25% with heat treatment, due to the formation of a protective aluminium oxide layer. A minimum dwell time of 3 h at 425 °C was required to stabilise the films and set the electrical properties. - Highlights: • Thin films of copper–aluminium–molybdenum were sputtered on alumina substrates. • Film properties were investigated with variation in process conditions. • Low sputtering pressure gave improved electrical performance. • Post deposition annealing in air further improved electrical performance

  3. Synthesis of nanostructured CuInS{sub 2} thin films and their application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu; Zhuang, Mixue; Liu, Zhen; Wei, Aixiang [Guangdong University of Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangzhou (China); Luo, Fazhi [Guangdong University of Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangzhou (China); The Fifth Electronics Research Institute of Ministry of Industry and Information Technology, Guangzhou (China); Liu, Jun [Guangdong University of Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangzhou (China); Zhejiang University, State Key Lab of Silicon Materials, Hangzhou (China)

    2016-03-15

    CuInS{sub 2} (CIS) nanostructure thin films were successfully synthesized on FTO conductive glass substrates by solvothermal method. It is found that the surface morphology and microstructure of CIS thin films can be tailored by simply adjusting the concentration of oxalic acid. CIS nanostructure films with texture of ''nanosheet array'' and ''flower-like microsphere'' were obtained and used as Pt-free counter electrode for dye-sensitized solar cells (DSSCs). The nanosheet array CIS was found to have a better electrocatalytic activity than the flower-like microsphere one. DSSCs based on nanosheet array CIS thin film counter electrode show conversion efficiency of 3.33 %, which is comparable to the Pt-catalyzed DSSCs. The easy synthesis, low cost, morphology tunable and excellent electrocatalytic property may make the CuInS{sub 2} nanostructure competitive as counter electrode in DSSCs. (orig.)

  4. Acoustic study of YBa2Cu3Ox thin films

    International Nuclear Information System (INIS)

    Lee, S.; Chi, C.; Koren, G.; Gupta, A.

    1991-01-01

    The attenuation of surface acoustic waves by epitaxial YBa 2 Cu 3 O x films has been studied for x congruent 6 to 7. For fully oxygenated samples, the acoustic attenuation as a function of temperature shows two broad peaks at about 135 and 240 K, and decreases monotonically below the lower peak temperature. The cause of attenuation peaks is attributed to scattering by optical phonons. Our data do not show any gap structure at T c due to relatively weak electron-phonon interactions at the acoustic frequencies. As the oxygen deficiency increases, the temperature dependence of the dc resistance changes from metallic to semiconducting and finally to insulating behavior. Acoustic attenuation data correspondingly show a drastic change due to different attenuation mechanisms: from the phonon scattering loss in the metallic regime to the electric-field coupling loss in the semiconducting and insulating regimes. In the latter regimes, the temperature dependence of low-frequency resistance calculated from the attenuation data can be fitted to a three-dimensional Mott variable-range-hopping model

  5. Y-Ba-Cu-O superconducting thin films by simultaneous or sequential evaporation

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Hunt, B.D.; Turner, L.G.; Burrell, M.C.; Balz, W.E.

    1988-01-01

    Superconducting thin films of Y-Ba-Cu-O near the 1:2:3 stoichiometry were produced by simultaneous (coevaporation) and sequential (multilayer) evaporation in the same evaporator. The best film obtained on yttria-stabilized zirconia (YSZ) had a superconducting onset temperature of 104 K, a midpoint T/sub c/ of 92 K, and zero resistance at T≤74 K. Stoichiometry was deduced by inductively coupled plasma emission spectroscopy, and elemental depth profiles were obtained by x-ray photoelectron spectroscopy. Film stoichiometry changes only near the film/substrate boundary for films on YSZ. Films on Si/SiO 2 were not superconducting; depth profiling shows severe changes of film composition with depth. A major theme of this work is process reproducibility, which was found to be poor for coevaporation but improved considerably for sequential evaporation

  6. Tunneling spectroscopy study of YBa2Cu3O7 thin films using a cryogenic scanning tunneling microscope

    International Nuclear Information System (INIS)

    Wilkins, R.; Amman, M.; Soltis, R.E.; Ben-Jacob, E.; Jaklevic, R.C.

    1990-01-01

    We have measured reproducible tunneling spectra on YBa 2 Cu 3 O 7 (T c ∼85 K) thin films (thickness ∼2 μm) with a cryogenic scanning tunneling microscope. We find that the I-V curves are generally of three types. The most common type, featured in a large majority of the data, shows a region of high conductance at zero bias. The amplitude of this region is inversely proportional to the tunneling resistance between the tip and sample. It is possible that this can be explained in terms of Josephson effects within the films, although an alternative is given based on electronic self-energy corrections. Data showing capacitive charging steps are analyzed in terms of two ultrasmall tunnel junctions in series.. Theoretical fits to the data give specific values of the junction parameters that are consistent with the assumed geometry of the tip probing an individual grain of the film. The third type of I-V curves exhibits negative differential resistance. We conclude that this phenomenon is probably due to tunneling to localized states in the surface oxide. We also present and discuss data with energy-gap-like behavior; the best example gives Δ to be about 27 mV

  7. Investigation of Au9+ swift heavy ion irradiation on CdS/CuInSe2 thin films

    International Nuclear Information System (INIS)

    Joshi, Rajesh A.; Taur, Vidya S.; Singh, Fouran; Sharma, Ramphal

    2013-01-01

    In the present manuscript we report about the preparation of CdS/CuInSe 2 heterojunction thin films by chemical ion exchange method and investigation of 120 MeV Au 9+ swift heavy ions (SHI) irradiation effect on its physicochemical as well as optoelectronic properties. These pristine (as grown) samples are irradiated with 120 MeV Au 9+ SHI of 5×10 11 and 5×10 12 ions/cm 2 fluencies and later on characterized for structural, compositional, morphological, optical and I–V characteristics. X-ray diffraction (XRD) pattern obtained from pristine and irradiated films shows considerable modifications in peak intensity as well as rising of some new peaks, corresponding to In 2 Se 3 , Cu 3 Se 2 and CuIn 2 Se 3 materials. Transmission electron microscope (TEM) images show decrease in grain size upon increase in irradiation ion fluencies, which is also supported from the observation of random and uneven distribution of nano-grains as confirmed through scanning electron microscope (SEM) images. Presence of Cd, Cu, In, S and Se in energy dispersive X-ray spectrum analysis (EDAX) confirms the expected and observed elemental composition in thin films, the absorbance peaks are related to band to band transitions and spin orbit splitting while energy band gap is observed to increase from 1.36 for pristine to 1.53 eV for SHI irradiated thin films and I–V characteristics under illumination to 100 mW/cm 2 light source shows enhancement in conversion efficiency from 0.26 to 1.59% upon irradiation. - Highlights: • Nanostructured CdS/CuInSe 2 can be grown by chemical ion exchange method. • Physicochemical and optoelectronic properties can be modified by 120 MeV Au 9+ SHI Irradiation. • Solar energy conversion efficiency improved from 0.26 to 1.59% in CdS/CuInSe 2 upon irradiation

  8. Study of Sb2S3 thin films deposited by SILAR method

    Science.gov (United States)

    Deshpande, M. P.; Chauhan, Krishna; Patel, Kiran N.; Rajput, Piyush; Bhoi, Hiteshkumar R.; Chaki, S. H.

    2018-05-01

    In the present work, we deposited Sb2S3 thin films on glass slide by successive ionic layer adsorption and reaction (SILAR) technique with different time cycles. From EDAX, we could observe that the films were non-stoichiometric and contained few elements from glass slide. X-ray diffraction has shown that these films are orthorhombic in structure from where we have calculated the lattice parameter and crystallize size. SEM images shows that SILAR synthesized Sb2S3 thin films are homogenous and well distributed indicating the formation of uniform thin films at lower concentration. The room temperature Raman spectra of Sb2S3 thin films showed sharp peaks at 250 cm‑1 and 300 cm‑1 for all cases. Room temperature photoluminescence emission spectrum shows broad bands over 430–480 nm range with strong blue emission peak centered at same wavelength of 460 nm (2.70 eV) for all cases.

  9. Electrodeposited semiconductors at room temperature: an X-ray Absorption Spectroscopy study of Cu-, Zn-, S-bearing thin films

    International Nuclear Information System (INIS)

    Di Benedetto, Francesco; Cinotti, Serena; D’Acapito, Francesco; Vizza, Francesco; Foresti, Maria Luisa; Guerri, Annalisa; Lavacchi, Alessandro; Montegrossi, Giordano; Romanelli, Maurizio; Cioffi, Nicola; Innocenti, Massimo

    2015-01-01

    A SEM, DRS and XAS study was carried out on ultra-thin films with chemical composition belonging to the Cu-Zn-S ternary system, related to the kesterite-type materials, in the light of their potential application to thin film photovoltaic technology. The films, realized through the layer-by-layer E-ALD electrochemical technique, reveal variable phase composition as a function of the applied E-ALD sequence. In particular, by increasing the Zn cycles per Cu cycle from 1:1 to 9:1, the number of detected phases changes from 3 to 2. In all samples, Cu mainly crystallize in a Cu_2S type phase, whereas Zn occurs as ZnS. In the 1:1 sample, additional ZnO is detected. The variable phase composition parallels apparent changes in the sample morphology. In all samples, a sulphide thin film is covered by a net of elongated nanostructures, the length of which decreases with increasing the number of Zn cycles per Cu cycle. All these evidences are interpreted as due to the operating electrochemical route during the synthesis and confirm the lack of miscibility between Cu_2S and ZnS, thermodynamically relevant after the E-ALD has stopped. The band gap values exhibited by the three films, modulated by changing the copper:zinc ratio, progressively approach a value useful for solar energy conversion, thus strongly proposing these new sulfide nanomaterials for photovoltaics and photochemical applications.

  10. Optical characterization of YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin film modified gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Naujok, P.; Katzer, C. [Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 5, 07743 Jena (Germany); Schmidl, G., E-mail: gabriele.schmidl@ipht-jena.de [Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena (Germany); Jatschka, J.; Fritzsche, W. [Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena (Germany); Schmidl, F. [Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 5, 07743 Jena (Germany)

    2015-12-01

    Highlights: • Different thick YBCO layers allow an active control of particle sizes and density distributions on film surfaces. • The gold volume on the YBCO film surface decreases with increasing YBCO layer thickness. • Combining SEM and dark-field microscopy via image processing. • Clear correlation of scattering spectrum and addressed particles supporting by a new Ti-marker technology. - Abstract: We report on the influence of YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films on the self-organized formation of gold nanoparticles. A thickness variation of the YBCO film allows one to actively control the size of the particles and their density distribution. In this context, the particle forming process is discussed. The YBCO matrix can be removed in order to reduce the particle density on the substrate. The remaining modified particles can be used in plasmonic applications. Combining scanning electron microscopy and dark-field microscopy permits one to identify a correlation of the measured scattering spectra with the physical properties of each studied particle. A clear assignment of spectrum and particle is supported by a new Ti-marker technology and image processing. Growth parameters allow the scientist to tune the spectral peak position of the plasmon resonance and the spectral bandwidth.

  11. Porous anodic film formation on an Al-3.5 wt% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Paez, M.A.; Bustos, O.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Wood, G.C.

    2000-03-01

    Anodic film growth has been undertaken on an electropolished Al-3.5 wt % Cu alloy to determine the influence of copper in solid solution on the anodizing behavior. At the commencement of anodizing of the electropolished alloy, in the presence of interfacial enrichment of copper, Al{sup 3+} and Cu{sup 2+} ions egress and O{sup 2{minus}} ion ingress proceed; film growth occurs at the alloy/film interface though O{sup 2{minus}} ion ingress, with outwardly mobile Al{sup 3+} and Cu{sup 2+} ions ejected at the film/electrolyte interface, and field-assisted dissolution proceeding at the bases of pores. Oxidation of copper, in the presence of the enriched layer, is also associated with O{sub 2} gas generation, leading to development of oxygen-filled voids. As a result of significant pressures in the voids, film rupture proceeds, with electrolyte access to the alloy, dissolution of the enriched interfacial layer and re-anodizing. The consequence of such processes in the development of anodic films of increased porosity and reduced efficiency of film formation compared with anodizing of superpure aluminum under similar conditions.

  12. Josephson effectss in bicrystalline Bi2Sr2CaCu2O8+δ thin films

    International Nuclear Information System (INIS)

    Amrein, T.

    1994-08-01

    A pulsed laser deposition process is developed for preparing high quality thin films of Bi 2 Sr 2 CaCu 2 O x on different substrates. Both microstructural and electrical properties of the superconducting films are well characterized, e.g. by SEM, TEM and AFM. The high reproducability of the thin film quality facilitated a detailed study of Josephson effects in bicrystalline grain boundary junctions (GBJs). Thin films are deposited on commercially available (001) SrTiO 3 bicrystalls and patterned by standard photolithography using wet-etching or Ar + -ion milling. The width of the micobridges ranges from 2 to 111 μm. The critical current densities across grain boundaries of thin film bicrystals have been measured as a function of the tilt angle Θ. For Θ=0 to 45 , the ratio of the grain boundary critical current density to the bulk critical current density decreases exponentially with increasing tilt angle. Microstructure investigations show a rough grain boundary of the superconductor (roughness 100 nm-1 μm) which is not determined by the roughness of the substrate grain boundary (1-3 nm) but by the island-plus-layer growth of the twin domains. The electrical properties are well described by the resistively shunted junction (RSJ) model. The I c R n -product reaches values of 2.2 mV at 4.2 K and 60 μV at 77 K. An optimized design for dc SQUIDs (Θ=24 ) is developed relating to the results of single GBJs. The values of the transfer function (∂V/∂Φ) run up to 74 μV/Φ o . The equivalent flux noise which is measured in a flux-locked loop mode amounts 4.5 to 25 μPhi o Hz in the white noise region for Φ≥25-50 Hz and 13 to 150 μΦ o Hz at 1 Hz. In conclusion, microstructural as well as electrical properties of bicrystalline Bi 2 Sr 2 CaCu 2 O x and YBa 2 Cu 3 O y GBJs are more or less equal. (orig.)

  13. Effects of the substrate temperature on the properties of CuIn{sub 5}S{sub 8} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gannouni, M., E-mail: gm_mounir@yahoo.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs - ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs - ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2011-10-01

    Structural, optical and electrical properties of CuIn{sub 5}S{sub 8} thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuIn{sub 5}S{sub 8} thin films were carried out at substrate temperatures in the temperature range 100-300 deg. C. The effects of heated substrate on their physico-chemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), optical transmission and hot probe method. X-ray diffraction revealed that the films are strong preferred orientation along the (3 1 1) plane upon substrate temperature 200 deg. C and amorphous for the substrate temperatures below 200 deg. C. No secondary phases are observed for all the films. The composition is greatly affected by heated substrate. From the optical transmission and reflection, an important absorption coefficient exceeds 10{sup 5} cm{sup -1} at 800 nm was found. As increasing the substrate temperature, the optical energy band gap decreases from 1.70 eV for the unheated films to 1.25 eV for the deposited films at 300 deg. C. It was found that CuIn{sub 5}S{sub 8} thin film is an n-type semiconductor at 250 deg. C.

  14. DC Magnetron sputtering of Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Larsson, Gunnar.

    1990-01-01

    I have been studying dc magnetron sputtering of thin film YBa 2 Cu 3 O 6+x , one of the recently discovered high- temperatures superconductors. In the introduction a brief review of the subjects sputtering and superconductivity is given. Since partial pressure measurements, especially for oxygen, have been important in the work I include a short description of the operating principles of mass spectroscopy. Experimental results in addition to what is given in the papers concerning plasma are presented in an appendix at the end of the introduction. (au)

  15. Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Steyer, P., E-mail: philippe.steyer@insa-lyon.fr [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Joly-Pottuz, L. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Billard, A. [LERMPS-UTBM, Site de Montbéliard, 90010 Belfort Cédex (France); Qiao, J.; Cardinal, S. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Sanchette, F. [LASMIS-UTT, UMR CNRS 6279, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Pelletier, J.M.; Esnouf, C. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France)

    2014-06-30

    Bulk metallic glasses have attracted considerable attention over the last decades for their outstanding mechanical features (high strength, super-elasticity) and physico-chemical properties (corrosion resistance). Recently, some attempts to assign such original behavior from bulk materials to modified surfaces have been reported in the literature based on multicomponent alloys. In this paper we focused on the opportunity to form a metallic glass coating from the binary Zr–Cu system using a magnetron co-sputtering physical vapor deposition process. The composition of the films can be easily controlled by the relative intensities applied to both pure targets, which made possible the study of the whole Zr–Cu system (from 13.4 to 85.0 at.% Cu). The chemical composition of the films was obtained by energy dispersive X-ray spectroscopy, and their microstructure was characterized by scanning and transmission electron microscopy. The thermal stability of the films was deduced from an in situ X-ray diffraction analysis (from room temperature up to 600 °C) and correlated with the results of the differential scanning calorimetry technique. Their mechanical properties were determined by nanoindentation experiments. - Highlights: • We reported deposition of Zr-Cu thin film metallic glasses by co-sputtering • Films were XRD-amorphous in a wide composition range (33.3 – 85.0 at.% Cu) • Microstructure investigation revealed some local nanodomains • We examined the thermal stability by means of in situ X-ray diffraction • Nanoindentation was used to obtained mechanical properties of thin films.

  16. Optical properties of the c-axis oriented LiNbO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Shandilya, Swati; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Tomar, Monika [Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2012-01-01

    C-axis oriented Lithium Niobate (LiNbO{sub 3}) thin films have been deposited onto epitaxially matched (001) sapphire substrate using pulsed laser deposition technique. Structural and optical properties of the thin films have been studied using the X-ray diffraction (XRD) and UV-Visible spectroscopy respectively. Raman spectroscopy has been used to study the optical phonon modes and defects in the c-axis oriented LiNbO{sub 3} thin films. XRD analysis indicates the presence of stress in the as-grown LiNbO{sub 3} thin films and is attributed to the small lattice mismatch between LiNbO{sub 3} and sapphire. Refractive index (n = 2.13 at 640 nm) of the (006) LiNbO{sub 3} thin films was found to be slightly lower from the corresponding bulk value (n = 2.28). Various factors responsible for the deviation in the refractive index of (006) LiNbO{sub 3} thin films from the corresponding bulk value are discussed and the deviation is mainly attributed to the lattice contraction due to the presence of stress in deposited film.

  17. Epitaxial Pb(Mg1/3Nb2/3)O3 thin films synthesized by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Bai, G. R.; Streiffer, S. K.; Baumann, P. K.; Auciello, O.; Ghosh, K.; Stemmer, S.; Munkholm, A.; Thompson, Carol; Rao, R. A.; Eom, C. B.

    2000-01-01

    Metal-organic chemical vapor deposition was used to prepare Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) thin films on (001) SrTiO 3 and SrRuO 3 /SrTiO 3 substrates, using solid Mg β-diketonate as the Mg precursor. Parameters including the precursor ratio in the vapor phase, growth temperature, growth rate, and reaction pressure in the reactor chamber were varied in order to determine suitable growth conditions for producing phase-pure, epitaxial PMN films. A cube-on-cube orientation relationship between the thin film and the SrTiO 3 substrate was found, with a (001) rocking curve width of 0.1 degree sign , and in-plane rocking-curve width of 0.8 degree sign . The root-mean-square surface roughness of a 200-nm-thick film on SrTiO 3 was 2 to 3 nm as measured by scanning probe microscopy. The zero-bias dielectric constant and loss measured at room temperature and 10 kHz for a 200-nm-thick film on SrRuO 3 /SrTiO 3 were approximately 1100 and 2%, respectively. The remnant polarization for this film was 16 μC/cm 2 . (c) 2000 American Institute of Physics

  18. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.; Caraveo-Frescas, Jesus Alfonso; Hedhili, Mohamed N.

    2014-01-01

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films

  19. Fabrication and Film Qualification of Sr Modified Pb(Ca) TiO3 Thin Films

    International Nuclear Information System (INIS)

    Naw Hla Myat San; Khin Aye Thwe; Than Than Win; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    Strontium and calcium - modified lead titanate (Pb0.7 Ca0.15 Sr0.15 ) TiO3 (PCST)thin films were prepared by using spin coating technique. Phase transition of PCST was interpreted by means of Er-T characteristics. Process temperature dependence on micro-structure of PCST film was studied. Charge conduction mechanism of PCST thin film was also investigated for film qualification.

  20. Rapid processing method for solution deposited YBa2Cu3O7-δ thin films

    International Nuclear Information System (INIS)

    Dawley, J.T.; Clem, P.G.; Boyle, T.J.; Ottley, L.M.; Overmyer, D.L.; Siegal, M.P.

    2004-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) films, deposited on buffered metal substrates, are the primary candidate for second-generation superconducting (SC) wires, with applications including expanded power grid transmission capability, compact motors, and enhanced sensitivity magnetic resonance imaging. Feasibility of manufacturing such superconducting wires is dependent on high processing speed, often a limitation of vapor and solution-based YBCO deposition processes. In this work, YBCO films were fabricated via a new diethanolamine-modified trifluoroacetic film solution deposition method. Modifying the copper chemistry of the YBCO precursor solution with diethanolamine enables a hundredfold decrease in the organic pyrolysis time required for MA/cm 2 current density (J c ) YBCO films, from multiple hours to ∼20 s in atmospheric pressure air. High quality, ∼0.2 μm thick YBCO films with J c (77 K) values ≥2 MA/cm 2 at 77 K are routinely crystallized from these rapidly pyrolyzed films deposited on LaAlO 3 . This process has also enabled J c (77 K)=1.1 MA/cm 2 YBCO films via 90 m/h dip-coating on Oak Ridge National Laboratory RABiTS textured metal tape substrates. This new YBCO solution deposition method suggests a route toward inexpensive and commercializable ∼$10/kA m solution deposited YBCO coated conductor wires

  1. Metal-insulator transition induced in CaVO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu Man [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Laverock, Jude; Chen, Bo; Smith, Kevin E. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States)

    2013-04-07

    Stoichiometric CaVO{sub 3} (CVO) thin films of various thicknesses were grown on single crystal SrTiO{sub 3} (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 {mu}A. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film ({approx}60 nm), thin films of CVO (2-4 nm) were more two-dimensional with the V charge state closer to V{sup 4+}.

  2. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  3. Extending the 3ω method: thermal conductivity characterization of thin films.

    Science.gov (United States)

    Bodenschatz, Nico; Liemert, André; Schnurr, Sebastian; Wiedwald, Ulf; Ziemann, Paul

    2013-08-01

    A lock-in technique for measurement of thermal conductivity and volumetric heat capacity of thin films is presented. The technique is based on the 3ω approach using electrical generation and detection of oscillatory heat along a thin metal strip. Thin films are deposited onto the backside of commercial silicon nitride membranes, forming a bilayer geometry with distinct thermal parameters. Stepwise comparison to an adapted heat diffusion model delivers these parameters for both layers. Highest sensitivity is found for metallic thin films.

  4. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    Science.gov (United States)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  5. Improved electrochromical properties of sol-gel WO3 thin films by doping gold nanocrystals

    International Nuclear Information System (INIS)

    Naseri, N.; Azimirad, R.; Akhavan, O.; Moshfegh, A.Z.

    2010-01-01

    In this investigation, the effect of gold nanocrystals on the electrochromical properties of sol-gel Au doped WO 3 thin films has been studied. The Au-WO 3 thin films were dip-coated on both glass and indium tin oxide coated conducting glass substrates with various gold concentrations of 0, 3.2 and 6.4 mol%. Optical properties of the samples were studied by UV-visible spectrophotometry in a range of 300-1100 nm. The optical density spectra of the films showed the formation of gold nanoparticles in the films. The optical bandgap energy of Au-WO 3 films decreased with increasing the Au concentration. Crystalline structure of the doped films was investigated by X-ray diffractometry, which indicated formation of gold nanocrystals in amorphous WO 3 thin films. X-ray photoelectron spectroscopy (XPS) was used to study the surface chemical composition of the samples. XPS analysis indicated the presence of gold in metallic state and the formation of stoichiometric WO 3 . The electrochromic properties of the Au-WO 3 samples were also characterized using lithium-based electrolyte. It was found that doping of Au nanocrystals in WO 3 thin films improved the coloration time of the layer. In addition, it was shown that variation of Au concentration led to color change in the colored state of the Au-WO 3 thin films.

  6. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    Science.gov (United States)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  7. Chemically deposited Sb{sub 2}S{sub 3} thin films for optical recording

    Energy Technology Data Exchange (ETDEWEB)

    Shaji, S; Arato, A; Castillo, G Alan; Palma, M I Mendivil; Roy, T K Das; Krishnan, B [Facultad de IngenierIa Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P- 66450 (Mexico); O' Brien, J J; Liu, J, E-mail: bkrishnan@fime.uanl.m [Center for Nanoscience and Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One Univ. Blvd., St. Louis, MO - 63121 (United States)

    2010-02-24

    Laser induced changes in the properties of Sb{sub 2}S{sub 3} thin films prepared by chemical bath deposition are described in this paper. Sb{sub 2}S{sub 3} thin films of thickness 550 nm were deposited from a solution containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3} at 27 {sup 0}C for 5 h. These thin films were irradiated by a 532 nm continuous wave laser beam under different conditions at ambient atmosphere. X-ray diffraction analysis showed amorphous to polycrystalline transformation due to laser exposure of these thin films. Morphology and composition of these films were described. Optical properties of these films before and after laser irradiation were analysed. The optical band gap of the material was decreased due to laser induced crystallization. The results obtained confirm that there is further scope for developing this material as an optical recording media.

  8. Microstructural properties of BaTiO3 ceramics and thin films

    International Nuclear Information System (INIS)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M.

    2000-01-01

    A microstructural study of BaTiO 3 ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO 3 thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO 3 ceramic samples and thin films, as deposited and after an annealing process. (Author)

  9. Influence of Sn incorporation on the properties of CuInS2 thin films grown by vacuum evaporation method

    International Nuclear Information System (INIS)

    Zribi, M.; Rabeh, M. Ben; Brini, R.; Kanzari, M.; Rezig, B.

    2006-01-01

    Structural, morphological and optical properties of Sn-doped CuInS 2 thin films grown by double source thermal evaporation method were studied. Firstly, the films were annealed in vacuum after evaporation from 250 to 500 deg. C for Sn deposition time equal to 3 min. Secondly, the films deposited for several Sn evaporation times were annealed in vacuum after evaporation at 500 deg. C. The X-ray diffraction spectra indicated that polycrystalline Sn-doped CuInS 2 films were obtained and no Sn binary or ternary phases are observed for the Sn evaporation times equal to 5 min. Scanning electron microscopy observation revealed the decrease of the surface crystallinity with increasing the Sn evaporation times and the annealing temperatures. The Sn-doped samples after annealing have bandgap energy of 1.42-1.50 eV. Furthermore, we found that the Sn-doped CuInS 2 thin films exhibit N-type conductivity after annealing

  10. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: a_layadi@yahoo.fr; Ben Youssef, J. [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Roussigne, Y. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France)

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K {sub 1} and K {sub 2}, have been included; for the Ni/Cu series, K {sub 1} was found to decrease from 1.0x10{sup 6} to 0.18x10{sup 6} erg/cm{sup 3} as t increases from 31 to 165 nm, while K {sub 2} increased from 0.24x10{sup 6} to 0.8x10{sup 6} erg/cm{sup 3}. Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t{>=}165 nm in Ni/glass and t{>=}90 nm in Ni/Cu.

  11. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  12. CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    D. Santos-Cruz

    Full Text Available Thin films of Cu2O and CuO oxides were developed by direct oxidation of physical vapor deposited copper films in an open atmosphere by varying the temperature in the range between 250 and 400 °C. In this work, the influence of oxidation temperature on structural, optical and electrical properties of copper oxide films has been discussed. The characterization results revealed that at lower temperatures (<300 °C, it is feasible to obtained coper (I oxide whereas at temperatures higher than 300 °C, the copper (II oxide is formed. The band gap is found to vary in between 1.54 and 2.21 eV depending on the oxidation temperature. Both oxides present p-type electrical conductivity. The carrier concentration has been increased as a function of the oxidation temperature from 1.61 × 1012 at 250 °C to 6.8 × 1012 cm−3 at 400 °C. The mobility has attained its maximum of 34.5 cm2 V−1 s−1 at a temperature of 300 °C, and a minimum of 13.8 cm2 V−1 s−1 for 400 °C. Finally, the resistivity of copper oxide films decreases as a function of oxidation temperature from 5.4 × 106 to 2.4 × 105 Ω-cm at 250 and 400 °C, respectively. Keywords: PVD, Oxidizing annealed treatment, Non-toxic material

  13. A rapid process of Yba2Cu3O7-δ thin film fabrication using trifluoroacetate metal-organic deposition with polyethylene glycol additive

    DEFF Research Database (Denmark)

    Wu, Wei; Feng, Feng; Shi, Kai

    2013-01-01

    Trifluoroacetate metal-organic deposition (TFA-MOD) is a promising technique to fabricate YBa2Cu3O7-δ (YBCO) superconducting films. However, its slow pyrolysis process, which usually takes more than 10 h, constitutes a barrier for industrial production. In this study, polyethylene glycol (PEG......) was utilized to reduce the stress generation inside the coated films when the strong pyrolysis reactions happen. With the addition of 30 wt% PEG2000 to the precursor solution, a smooth film surface could be obtained through a rapid pyrolysis process of 15 min. After the optimizations of the crystallization...... and oxygenation processes, mass percentage and molecular weight of PEG additive, YBCO thin films with Jc of about 4.5 MA cm-2 (77 K, self-field) could be routinely fabricated using (20-30) wt% PEG(1000-2000) additive with a total treatment time of about 2 h including the 15 min pyrolysis process time. The effects...

  14. Raman scattering studies of YBa2Cu3O7-x thin films grown by chemical vapor deposition and metal-organic deposition

    International Nuclear Information System (INIS)

    Lee, E.; Yoon, S.; Um, Y.M.; Jo, W.; Seo, C.W.; Cheong, H.; Kim, B.J.; Lee, H.G.; Hong, G.W.

    2007-01-01

    We present results of Raman scattering studies of superconducting YBa 2 Cu 3 O 7-x (YBCO) films grown by chemical vapor deposition and metal-organic deposition methods. It is shown by X-ray diffraction that all the as-grown YBCO films have a highly c-axis oriented and in-plane aligned texture. Raman scattering measurements were used to investigate optical phonon modes, oxygen contents, structural properties, and second-phases of the YBCO coated conductors. Raman spectra of YBCO films with lower-transport qualities exhibit additional phonon modes at ∼300 cm -1 , ∼600 cm -1 , and ∼630 cm -1 , which are related to second-phases such as Ba 2 Cu 3 O 5.9 and BaCuO 2 . Our results strongly suggest that Raman scattering be useful for optimizing YBCO film growth conditions

  15. Magnetic and electronic properties of SrMnO3 thin films

    Science.gov (United States)

    Mandal, Arup Kumar; Panchal, Gyanendra; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Single phase hexagonal bulk SrMnO3 (SMO) was prepared by solid state route and it was used for depositing thin films by pulsed laser deposition (PLD) technique on single crystalline (100) oriented SrTiO3 (STO) substrate. X-ray diffraction shows that the thin film is deposited in cubic SrMnO3 phase. From X-ray absorption at the Mn L edge we observed the mixed valency of Mn (Mn3+& Mn4+) due to strain induced by the lattice mismatching between SMO and STO. Due to this mixed valency of Mn ion in SMO film, the ferromagnetic nature is observed at lower temperature because of double exchange. After post annealing with very low oxygen partial pressure, magnetic and electronic property of SMO films are effectively modified.

  16. Scaling properties of YBa{sub 2}Cu{sub 3}O{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Arushanov, E [Institute of Applied Physics, Academy of Sciences of the Moldova Republic, Academie street 5, Chisinau, MD 2028 (Moldova, Republic of); Levcenko, S [Institute of Applied Physics, Academy of Sciences of the Moldova Republic, Academie street 5, Chisinau, MD 2028 (Moldova, Republic of); Alami, H El [GPMD-Universite Paris 12, 61 avenue De Gaulle, 94010 CRETEIL Cedex (France); Cavellin, C Deville [GPMD-Universite Paris 12, 61 avenue De Gaulle, 94010 CRETEIL Cedex (France)

    2005-11-01

    An alternative simple method is proposed for analysing the scaling properties of the high-T{sub c} superconductor cuprates. The temperature is rescaled with a parameter T{sub R} determined from the precise analysis of R{sub H}(1/T), where R{sub H} is the Hall coefficient, in the high-temperature range. To illustrate this new method, the resistivity and Hall effect data obtained on underdoped YBa{sub 2}Cu{sub 3}O{sub x} epitaxial thin films are analysed. It is shown that the temperature-dependent resistivity {rho}(T), Hall coefficient R{sub H}(T) and the cotangent of the Hall angle cot {theta}{sub H}(T) of underdoped YBa{sub 2}Cu{sub 3}O{sub x} can be scaled into universal curves using this parameter T{sub R} to make a linear transformation of temperature and {rho}(T), R{sub H}(T) or cot{theta}{sub H}(T)

  17. Dynamic electrical response of YBaCuO thin films as a function of microstructure in view of applications to agile electronics

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, F.; Degardin, A.F.; Luca, A. de; Schneegans, O.; Caristan, E.; Kreisler, A.J. [Paris-6 Univ. (France). LGEP

    2001-12-01

    The electrical characteristics of YBaCuO thin films sputtered on LaAlO{sub 3} and MgO single-crystal substrates have been measured using a pulsed current technique, to avoid ohmic heating effects. The results are discussed in relation with deposition temperature (for films deposited on LaAlO{sub 3}) and substrate preparation (for films deposited on MgO). In the latter case, results are also discussed in the framework of a statistical model, which provides an empirical approach for the pinning phenomena in YBaCuO films, when a static magnetic field is applied. (orig.)

  18. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere

    Directory of Open Access Journals (Sweden)

    Heberto Gómez-Pozos

    2016-01-01

    Full Text Available A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM and secondary ion mass spectroscopy (SIMS, respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C3H8, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 104, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C3H8 gas.

  19. Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.

    2010-12-01

    Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.

  20. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  1. Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron X-ray absorption near edge structure analysis

    Science.gov (United States)

    Zillner, E.; Paul, A.; Jutimoosik, J.; Chandarak, S.; Monnor, T.; Rujirawat, S.; Yimnirun, R.; Lin, X. Z.; Ennaoui, A.; Dittrich, Th.; Lux-Steiner, M.

    2013-06-01

    Lattice positions of Sn in kesterite Cu2ZnSnS4 and Cu2SnS3 nanoparticles and thin films were investigated by XANES (x-ray absorption near edge structure) analysis at the S K-edge. XANES spectra were analyzed by comparison with simulations taking into account anti-site defects and vacancies. Annealing of Cu2ZnSnS4 nanoparticle thin films led to a decrease of Sn at its native and defect sites. The results show that XANES analysis at the S K-edge is a sensitive tool for the investigation of defect sites, being critical in kesterite thin film solar cells.

  2. Tunable flux pinning landscapes achieved by functional ferromagnetic Fe2O3:CeO2 vertically aligned nanocomposites in YBa2Cu3O7−δ thin films

    International Nuclear Information System (INIS)

    Tsai, Chen-Fong; Huang, Jijie; Lee, Joon-Hwan; Khatkhatay, Fauzia; Chen, Li; Chen, Aiping; Su, Qing; Wang, Haiyan

    2015-01-01

    Highlights: • Functional ferromagnetic (Fe 2 O 3 ) x :(CeO 2 ) 1−x vertically aligned nanocomposites (VAN). • An ordered arrangement of ferromagnetic Fe 2 O 3 nanoinclusions. • Significant in-field improvement of J c (H//c) in both VAN nanolayer capped and buffered samples. • T c above 90 K and the J c sf maximized at 3.07 MA/cm 2 (75 K) and 9.2 MA/cm 2 (65 K) for 30% Fe 2 O 3 sample. - Abstract: Functional ferromagnetic (Fe 2 O 3 ) x :(CeO 2 ) 1−x vertically aligned nanocomposite (VAN) layers were deposited as either buffer or cap layers for YBa 2 Cu 3 O 7−δ (YBCO) thin films. The composition of Fe 2 O 3 dopants in the VAN nanolayers is controlled at 10%, 30% and 50% in order to create different arrangements of Fe 2 O 3 and CeO 2 nanopillars and therefore to tune the flux pining landscapes. The composition variation provides tunable and ordered arrangements of magnetic nanodopants and interfacial defects as pinning centers in the YBCO thin films. The superconducting property measurements show that most doped samples obtain a T c above 90 K and the J c sf measured at 75 K and 65 K maximized at 3.07 MA/cm 2 and 9.2 MA/cm 2 for 30% Fe 2 O 3 VAN doped sample. As the temperature decreased to 5 K, the sample with 50% Fe 2 O 3 VAN doped sample show the best pinning effect due to pronounced magnetic pinning effects. This work demonstrates the tunable density of magnetic pinning centers can be achieved by VAN to meet the specific pinning requirement

  3. Thin film formation at the air-water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Teran, Jose, E-mail: jcampos@correo.cua.uam.mx [Departamento de Procesos y Tecnologia, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Garza, Cristina [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico); Beltran, Hiram I. [Departamento de Ciencias Naturales, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Castillo, Rolando [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico)

    2012-01-01

    Herein we study thin films of a recent kind of soluble axial substituted cis-bis-decanoate-tin{sup IV} phthalocyanine (PcSn10) at the air/water interface, which were compressed isothermally and observed with Brewster Angle Microscopy. The air/water interfacial behavior of the films suggests that there are strong interactions among the PcSn10 molecules, which produces multilayers and 3D self-assemblies that prevent the formation of a Langmuir monolayer. Langmuir-Blodgett deposits of these films on both mica (negatively charged) and mild steel (positively charged) surfaces were developed. Information about the morphology of the film was obtained by using atomic force microscopy. We found structural differences in the PcSn10 thin films deposited on both substrates, suggesting that a combination of {pi}-{pi}, {sigma}-{pi} and Van der Waals interactions are the leading factors for the deposition, and consequently, for the control of supramolecular order. Our findings provide insights in the design of phthalocyanine molecules for the development of highly ordered and reproducible thin films.

  4. Thin film formation at the air–water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine

    International Nuclear Information System (INIS)

    Campos-Terán, José; Garza, Cristina; Beltrán, Hiram I.; Castillo, Rolando

    2012-01-01

    Herein we study thin films of a recent kind of soluble axial substituted cis-bis-decanoate-tin IV phthalocyanine (PcSn10) at the air/water interface, which were compressed isothermally and observed with Brewster Angle Microscopy. The air/water interfacial behavior of the films suggests that there are strong interactions among the PcSn10 molecules, which produces multilayers and 3D self-assemblies that prevent the formation of a Langmuir monolayer. Langmuir–Blodgett deposits of these films on both mica (negatively charged) and mild steel (positively charged) surfaces were developed. Information about the morphology of the film was obtained by using atomic force microscopy. We found structural differences in the PcSn10 thin films deposited on both substrates, suggesting that a combination of π–π, σ–π and Van der Waals interactions are the leading factors for the deposition, and consequently, for the control of supramolecular order. Our findings provide insights in the design of phthalocyanine molecules for the development of highly ordered and reproducible thin films.

  5. AC plasma induced modifications in Sb{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Calixto-Rodriguez, M; Martinez, H [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210, Cuernavaca, Morelos (Mexico); Castillo, F [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Mexico D. F. (Mexico); Pena, Y [Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, N.L (Mexico); Sanchez-Juarez, A, E-mail: ciro@nucleares.unam.m [Centro de Investigacion en EnergIa, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n Col. Centro, Temixco, Morelos, C.P. 62580 (Mexico)

    2010-01-01

    Sb{sub 2}S{sub 3} thin films, deposited by the chemical bath deposition method, were treated with N{sub 2} plasma at 3.0 Torr during several minutes. The as-prepared Sb{sub 2}S{sub 3} thin films and films treated with N{sub 2} plasma have been characterized using several techniques. X-ray diffraction studies have shown that plasma treatment induced recrystallization on the as-prepared Sb{sub 2}S{sub 3}thin films. The band gap values decreased from 2.37 to 1.82 eV after plasma treatment, and the electrical conductivity increased from 10{sup 9} to 10{sup 7} ({Omega}cm){sup -1} due to the annealing effect.

  6. Back surface studies of Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Simchi, Hamed

    Cu(In,Ga)Se2 thin film solar cells have attracted a lot of interest because they have shown the highest achieved efficiency (21%) among thin film photovoltaic materials, long-term stability, and straightforward optical bandgap engineering by changing relative amounts of present elements in the alloy. Still, there are several opportunities to further improve the performance of the Cu(In,Ga)Se2 devices. The interfaces between layers significantly affect the device performance, and knowledge of their chemical and electronic structures is essential in identifying performance limiting factors. The main goal of this research is to understand the characteristics of the Cu(In,Ga)Se2-back contact interface in order to design ohmic back contacts for Cu(In,Ga)Se2-based solar cells with a range of band gaps and device configurations. The focus is on developing either an opaque or transparent ohmic back contact via surface modification or introduction of buffer layers in the back surface. In this project, candidate back contact materials have been identified based on modeling of band alignments and surface chemical properties of the absorber layer and back contact. For the first time, MoO3 and WO 3 transparent back contacts were successfully developed for Cu(In,Ga)Se 2 solar cells. The structural, optical, and surface properties of MoO 3 and WO3 were optimized by controlling the oxygen partial pressure during reactive sputtering and post-deposition annealing. Valence band edge energies were also obtained by analysis of the XPS spectra and used to characterize the interface band offsets. As a result, it became possible to illuminate of the device from the back, resulting in a recently developed "backwall superstrate" device structure that outperforms conventional substrate Cu(In,Ga)Se2 devices in the absorber thickness range 0.1-0.5 microm. Further enhancements were achieved by introducing moderate amounts of Ag into the Cu(In,Ga)Se2 lattice during the co-evaporation method

  7. Characterization of CuInS{sub 2} thin films prepared by chemical bath deposition and their implementation in a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, S.; López, I. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México (Mexico); Peña, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México (Mexico); Calixto, M. [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, C.P. 62580, Temixco, Morelos, México (Mexico); Hernández, T. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México (Mexico); Messina, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo”, S/N C.P. 63155, Tepic, Nayarit, México (Mexico); and others

    2014-10-31

    CuInS{sub 2} thin films were formed by the sequential deposition of In{sub 2}S{sub 3}–CuS layers on glass substrates, by chemical bath deposition technique, and heating these multilayer 1 h at 350 °C and 400 mPa. The morphology and thickness of the CuInS{sub 2} thin films were analysed by scanning electron microscopy, showing particles with elongated shape and length about 40 nm, and thickness of 267 and 348 nm for samples from 15 and 24 h of deposition time in the chemical bath of In{sub 2}S{sub 3}, respectively. The energy band gap values of the films were around 1.4 eV, whereas the electrical conductivity showed values from 64.91 to 4.11 × 10{sup −3} Ω{sup −1} cm{sup −1} for the samples of 15 and 24 h of In{sub 2}S{sub 3} deposition bath, respectively. The obtained CuInS{sub 2} films showed appropriate values for their application as an absorbing layer in photovoltaic structures of the type: glass/SnO{sub 2}:F/CdS/Sb{sub 2}S{sub 3}/CuInS{sub 2}/PbS/C/Ag. The whole structure was obtained through chemical bath deposition technique. The solar cell corresponding to 15 h of In{sub 2}S{sub 3} deposition duration bath showed energy-conversion efficiency (η) of 0.53% with open circuit voltage (V{sub oc}) of 530 mV, short circuit current density (J{sub sc}) of 2.43 mA cm{sup −2}, and fill factor (FF) of 0.41. In the case of the structure with 24 h of deposition of In{sub 2}S{sub 3} bath, η = 0.43% was measured with the following parameters: V{sub oc} = 330 mV, J{sub sc} = 4.78 mA cm{sup −2} and FF = 0.27. - Highlights: • CuInS{sub 2} films were formed by chemical bath deposition followed by a heat treatment. • Prepared CuInS{sub 2} thin films can work as an effective absorbing layer in a solar cell. • A complete solar cell structure was made by a chemical bath deposition method.

  8. Soft x-ray photoemission investigation of the oxidation of CuInSe/sub 2/ thin films

    International Nuclear Information System (INIS)

    Zurcher, P.; Nelson, A.J.; Johnson, P.; Lapeyre, G.J.; Noufi, R.

    1987-01-01

    CuInSe/sub 2/ films are used as absorber layers in heterojunction thin film solar cells. It has been demonstrated that, depending on the stoichiometry, oxygen annealing can make CuInSe/sub 2/ films more p-type or even convert n-type films into p-type while subsequent reduction with hydrazine will reverse such processes. Using synchrotron radiation soft x-ray photoemission spectroscopy, the authors found associated with the hydrazine reduced films an In1+ state that converts into In3+ under the influence of oxygen at elevated sample temperatures. The samples investigated were grown in a way that the top several thousand Angstroms are increasingly Cu-poor and In-rich. It is this region which is sampled by the surface sensitive technique of photoemission. The Cu-poor/In-rich top regions will most likely have a large number of intrinsic In on Cu-site defects leaving the In in a 1+ state. All the oxidation and reduction results and the associated changes in majority carrier concentrations and type conversions can be understood in terms of oxygem/In/sub Cu/-defect interactions

  9. Secondary phase formation in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/SrTiO{sub 3} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.N.L.

    1996-06-01

    Studies of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) thin films and YBCO/STO superlattices has been performed. The dc magnetron sputtered YBCO single layer investigation concerned the dependence of the secondary phase formation and superconducting transport properties on sputtering target and ambient gas composition. YBCO/STO superlattices, grown by dc and rf magnetron sputtering, respectively, were analyzed with respect to microstructure and formation of secondary phases. The main characterization techniques used in this study have been x-ray diffraction to identify phases and to obtain orientational relationships, scanning electron microscopy to study surface morphology, transmission electron microscopy for microstructural characterization, and energy-dispersive x-ray spectroscopy for chemical characterization. With the aim to reduce or avoid the formation of copper-rich surface particles and still maintain satisfactory superconducting transport properties, YBCO films were deposited using copper-poor or yttrium-rich sputtering targets in an Ar:O{sub 2} or Ar:O{sub 2}:N{sub 2}O sputtering gas mixture. It was found that the use of yttrium-rich targets and N{sub 2}O in the sputtering gas is a reliable way to achieve smooth films without surface particles and with satisfactory superconducting properties, while the use of copper-poor targets and N{sub 2}O deteriorates those properties. Based on the previous results, YBCO/STO superlattices were grown using yttrium-rich YBCO targets and stoichiometric STO targets, respectively, in a Ar:O{sub 2}:N{sub 2}O sputtering gas mixture. The superlattices were found to have sharp interfaces and no indications of interface reactions were detected. 61 refs, 18 figs, 3 tabs

  10. Observation of distinct, temperature dependent flux noise near bicrystal grain boundaries in YBa2Cu3O7-x films

    DEFF Research Database (Denmark)

    Bukh, K. R.; Jacobsen, Claus Schelde; Hansen, Jørn Bindslev

    2000-01-01

    The characteristics of the magnetic flux noise in high temperature superconducting thin-films of yttrium-barium-copper-oxide (YBa2Cu3O7) in the vicinity of artificial grain boundaries have been studied by means of a low critical temperature superconducting quantum interference device (SQUID...

  11. Electrodeposited Cu2ZnSnS4 thin films

    CSIR Research Space (South Africa)

    Valdes, M

    2014-05-01

    Full Text Available Cu(sub2)ZnSnS(sub4)(CZTS) thin films have been prepared using Electrochemical Atomic Layer Deposition (EC-ALD)and also by one-step conventional constant potential electrodeposition. Optimal deposition conditionswere investigated using cyclic...

  12. Magnetoelectric effect in Cr2O3 thin films

    Science.gov (United States)

    He, Xi; Wang, Yi; Sahoo, Sarbeswar; Binek, Christian

    2008-03-01

    Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic compounds like Cr2O3 (max. αzz 4ps/m ) and also cross- coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. A straightforward approach is to increase the electric field at constant voltage by reducing the thickness of the ME material to thin films of a few nm. Since magnetism is known to be affected by geometrical confinement thickness dependence of the ME effect in thin film Cr2O3 is expected. We grow (111) textured Cr2O3 films with various thicknesses below 500 nm and study the ME effect for various ME annealing conditions as a function of temperature with the help of Kerr-magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh and Nicola A. Spaldin 2007 Nature Materials 6 21.

  13. Ab initio thermodynamics for the growth of ultra-thin Cu film on a perfect Mg O(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovskii, Yuri F. [Institute for Solid State Physics, University of Latvia, Kengaraga str. 8, Riga LV-1063 (Latvia)]. E-mail: quantzh@latnet.lv; Fuks, David [Materials Engineering Department, Ben-Gurion University of the Negev, POB 653, Beer-Sheva IL-84105 (Israel); Kotomin, Eugene A. [Institute for Solid State Physics, University of Latvia, Kengaraga str. 8, Riga LV-1063 (Latvia); Dorfman, Simon [Department of Physics, Israel Institute of Technology-Technion, Haifa IL-32000 (Israel)

    2005-12-15

    Controlled growth of thin metallic films on oxide substrates is important for numerous micro-and nano electronic applications. Our ab initio study is devoted to the periodic slab simulations for a series of ordered 2a Cu superlattices on the regular Mg O(001) substrate. Submonolayer and monolayer substrate Cu coverages were calculated using the Daft-Gaga method, as implemented into the Crystal-98 code. The results of ab initio calculations have been combined with thermodynamic theory which allows US to predict the growth mode of ultra-thin metal films (spinodal decomposition vs. nucleation-and-growth regime) as a function of the metal coverage and the temperature, and to estimate the metal density in clusters. We show that 3a cluster formation becomes predominant already at low Cu coverages, in agreement with the experiment.

  14. Ab initio thermodynamics for the growth of ultra-thin Cu film on a perfect Mg O(001) surface

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F.; Fuks, David; Kotomin, Eugene A.; Dorfman, Simon

    2005-01-01

    Controlled growth of thin metallic films on oxide substrates is important for numerous micro-and nano electronic applications. Our ab initio study is devoted to the periodic slab simulations for a series of ordered 2a Cu superlattices on the regular Mg O(001) substrate. Submonolayer and monolayer substrate Cu coverages were calculated using the Daft-Gaga method, as implemented into the Crystal-98 code. The results of ab initio calculations have been combined with thermodynamic theory which allows US to predict the growth mode of ultra-thin metal films (spinodal decomposition vs. nucleation-and-growth regime) as a function of the metal coverage and the temperature, and to estimate the metal density in clusters. We show that 3a cluster formation becomes predominant already at low Cu coverages, in agreement with the experiment

  15. Thickness-dependent radiative properties of Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Phelan, P.E.; Chen, G.; Tien, C.L.

    1991-01-01

    Some applications of high-temperature superconductors where their thermal radiative behavior is important, such as bolometers, optically-triggered switches and gates, and space-cooled electronics, required the superconductor to be in the form of a very thin film whose radiative behavior cannot be adequately represented by a semi-infinite analysis. Two properties of particular importance are the film absorptance and the combined film/substrate absorptance, which are crucial to the operation of many devices. This paper reports on calculations of the absorptance of superconducting-state Y-Ba-Cu-O films on MgO substrates which suggest that for film thicknesses less than about 50 nm, a decrease in the film thickness leads to an increase in both the film absorptance and the film/substrate absorptance. Furthermore, the film absorptance is maximum at some optimal value of film thickness. Assuming the film to be a smooth, continuous slab with a refractive index equal to that of the bulk Y-Ba-Cu-O is verified, at least in the normal state and for films as thin as 35 nm, by room-temperature reflectance and transmittance measurements

  16. Preparation of Copper Iodide (CuI) Thin Film by In-Situ Spraying and Its Properties

    International Nuclear Information System (INIS)

    Rahmi, G H; Pratiwi, P; Aimon, A H; Winata, T; Iskandar, F; Nuryadi, B W

    2016-01-01

    Perovskite based solar cells have attracted interest as low-cost and high-efficiency solar cells due to their great performance, with efficiency up to 20.1%. One type of hole transport material (HTM) used in perovskite based solar cells is copper iodide (CuI) thin film. CuI is inexpensive and has high mobility compared to other HTMs commonly used in perovskite based solar cells. However, diisopropylsulfide solvent, which is used to dissolve CuI in the preparation process, is a malodorous and toxic compound. Therefore, the objective of this research was to develop a synthesis method for CuI thin film with in-situ spraying, a low- cost, safe and easy fabrication method. As precursor solution, CuSO 45 H 2 O was dissolved in ammonia and KI aqueous solution. The precursor solution was then sprayed directly onto a glass substrate with appropriate temperature to form CuI film. The prepared thin films were characterized by X-ray diffractometer, UV-Vis spectrophotometer, scanning electron microscope and four-point probes to study their properties. (paper)

  17. Room temperature ferromagnetism in undoped and Ni doped In{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu-603104 (India)

    2015-06-24

    Undoped and Ni (5 at.%) doped In{sub 2}O{sub 3} thin films were deposited on glass substrate using electron beam evaporation technique and Ni doped In{sub 2}O{sub 3} thin films were annealed at 450 oC. A systematic study was carried out on the structural, chemical and magnetic properties of the as deposited and annealed thin films. X-ray diffraction analysis revealed that all the films were cubic in structure and exhibied ferromagnetism at room temperature. The undoped In{sub 2}O{sub 3} thin films exhibited a saturation magnetization of 24.01 emu/cm3. Ni doped In{sub 2}O{sub 3} thin films annealed at 450 oC showed a saturation magnetization of 53.81 emu/cm3.

  18. Fe3O4 thin films sputter deposited from iron oxide targets

    International Nuclear Information System (INIS)

    Peng, Yingguo; Park, Chandro; Laughlin, David E.

    2003-01-01

    Fe 3 O 4 thin films have been directly sputter deposited from a target consisting of a mixture of Fe 3 O 4 and Fe 2 O 3 onto Si and glass substrates. The magnetic properties and microstructures of the films have been characterized and correlated. The columnar growth of the Fe 3 O 4 grains was found to be initialized from the substrate surface without any critical thickness. Substrate bias was found to be a very effective means of improving the crystal quality and magnetic properties of the thin films. The crystallographic defects revealed by high resolution transmission electron microscopy seem to be a characteristic of the films prepared by this method

  19. Finite-size effects on the vortex-glass transition in thin YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Woeltgens, P.J.M.; Dekker, C.; Koch, R.H.; Hussey, B.W.; Gupta, A.

    1995-01-01

    Nonlinear current-voltage characteristics have been measured at high magnetic fields in YBa 2 Cu 3 O 7-δ films of a thickness t ranging from 3000 down to 16 A. Critical-scaling analyses of the data for the thinner films (t≤400 A) reveal deviations from the vortex-glass critical scaling appropriate for three-dimensional (3D) systems. This is argued to be a finite-size effect. At large current densities J, the vortices are probed at length scales smaller than the film thickness, i.e., 3D vortex-glass behavior is observed. At low J by contrast, the vortex excitations involve typical length scales exceeding the film thickness, resulting in 2D behavior. Further evidence for this picture is found directly from the 3D vortex-glass correlation length, which, upon approach of the glass transition temperature, appears to level off at the film thickness. The results indicate that a vortex-glass phase transition does occur at finite temperature in 3D systems, but not in 2D systems. In the latter an onset of 2D correlations occurs towards zero temperature. This is demonstrated in our thinnest film (16 A), which, in a magnetic field, displays a 2D vortex-glass correlation length which critically diverges at zero temperature

  20. Characterization of Alq3 thin films by a near-field microwave microprobe.

    Science.gov (United States)

    Hovsepyan, Artur; Lee, Huneung; Sargsyan, Tigran; Melikyan, Harutyun; Yoon, Youngwoon; Babajanyan, Arsen; Friedman, Barry; Lee, Kiejin

    2008-09-01

    We observed tris-8-hydroxyquinoline aluminum (Alq3) thin films dependence on substrate heating temperatures by using a near-field microwave microprobe (NFMM) and by optical absorption at wavelengths between 200 and 900 nm. The changes of absorption intensity at different substrate heating temperatures are correlated to the changes in the sheet resistance of Alq3 thin films.

  1. Structural properties of In2Se3 precursor layers deposited by spray pyrolysis and physical vapor deposition for CuInSe2 thin-film solar cell applications

    International Nuclear Information System (INIS)

    Reyes-Figueroa, P.; Painchaud, T.; Lepetit, T.; Harel, S.; Arzel, L.; Yi, Junsin; Barreau, N.; Velumani, S.

    2015-01-01

    The structural properties of In 2 Se 3 precursor thin films grown by chemical spray pyrolysis (CSP) and physical vapor deposition (PVD) methods were compared. This is to investigate the feasibility to substitute PVD process of CuInSe 2 (CISe) films by CSP films as precursor layer, thus decreasing the production cost by increasing material-utilization efficiency. Both films of 1 μm thickness were deposited at the same substrate temperature of 380 °C. X-ray diffraction and Raman spectra confirm the formation of γ-In 2 Se 3 crystalline phase for both films. The PVD and CSP films exhibited (110) and (006) preferred orientations, respectively. The PVD films showed a smaller full width at half maximum value (0.09°) compared with CSP layers (0.1°). Films with the same crystalline phase but with different orientations are normally used in the preparation of high quality CISe films by 3-stage process. Scanning electron microscope cross-section images showed an important difference in grain size with well-defined larger grains of size 1–2 μm in the PVD films as compared to CSP layers (600 nm). Another important characteristic that differentiates the two precursor films is the oxygen contamination. X-ray photoelectron spectroscopy showed the presence of oxygen in CSP films. The oxygen atoms could be bonded to indium by replacing Se vacancies, which are formed during CSP deposition. Taking account of the obtained results, such CSP films can be used as precursor layer in a PVD process in order to produce CISe absorber films. - Highlights: • To find the intricacies involved in spray pyrolysis (CSP) and physical vapor (PVD) deposition. • Comparison of CSP and PVD film formations — especially in structural properties. • Feasibility to substitute CSP (cheaper) films for PVD in the manufacturing process. • Decreasing the global production cost of Cu(In,Ga)Se 2 devices in the 3-stage process

  2. Current-limiting mechanisms in YBa2Cu3O7-δ thin layers and quasi-multilayers

    International Nuclear Information System (INIS)

    Haenisch, J.

    2004-01-01

    In this work, electrical transport properties and the maximum current carrying capability of YBa 2 Cu 3 O 7 -[δ] thin films and so called quasi-multilayers are investigated. These samples are prepared with pulsed laser deposition on single-crystalline substrates (SrTiO 3 ) as well as on biaxially textured Ni tapes. The critical current density of coated conductors is limited by small-angle grain boundaries in low magnetic fields, but by the intra-grain pinning properties in higher magnetic fields. Accordingly, these investigations are divided into two parts: In the first part, the limitation of the critical current density by grain-boundaries and grain boundary networks is investigated with the main focus on the influence of geometrical factors such as the conductor width or the grain aspect ratio. In the second part, a possible enhancement of the critical current density due to different doping types (atomar doping using Zn and precipitate doping using BaMO 3 where M is a transition metal) will be discussed. Here, not only the irreversibility field but also the pinning behaviour in very low magnetic fields is of interest to better understand the pinning mechanism of thin films. (Orig.)

  3. Photoconductivity of thin organic films

    International Nuclear Information System (INIS)

    Tkachenko, Nikolai V.; Chukharev, Vladimir; Kaplas, Petra; Tolkki, Antti; Efimov, Alexander; Haring, Kimmo; Viheriaelae, Jukka; Niemi, Tapio; Lemmetyinen, Helge

    2010-01-01

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene (PHT), fullerene (C 60 ), pyrelene tetracarboxylic diimide (PTCDI) and copper phthalocyanine (CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C 60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 x 10 3 Ω m and 3 x 10 4 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 x 10 8 Ω m in dark to 3.1 x 10 6 Ω m under the light.

  4. Antisolvent-assisted powder engineering for controlled growth of hybrid CH3NH3PbI3 perovskite thin films

    Directory of Open Access Journals (Sweden)

    Yong Chan Choi

    2017-02-01

    Full Text Available We develop antisolvent-assisted powder engineering for the controlled growth of hybrid inorganic-organic CH3NH3PbI3 (MAPbI3 perovskite thin films. The powders, which are used as the precursors for solution processing, are synthesized by pouring a MAPbI3 precursor solution into various antisolvents, such as dichloromethane, chloroform, diethyl ether, and toluene. Two types of powders having different colors are obtained, depending on the antisolvent used. The choice of the antisolvent used for synthesizing the powders strongly influences not only the phases of the powders but also the morphology and structure of the thin films subsequently fabricated by solution processing. This, in turn, affects the photovoltaic performance.

  5. Photoconductivity in BiFeO3 thin films

    Science.gov (United States)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  6. Diffusivity, solubility and thermodynamic modelling of diffusion growth of Ga"3"+-doped LiTaO_3 thin film for integrated optics

    International Nuclear Information System (INIS)

    Zhang, De-Long; Zhang, Qun; Zhang, Pei; Kang, Jian; Wong, Wing-Han; Yu, Dao-Yin

    2016-01-01

    Graphical abstract: Diffusion growth of Ga"3"+-doped LiTaO_3(LT) thin film was studied thermodynamically. Some Ga"3"+-doped LT thin films were grown on LT surface by in-diffusion of homogeneously coated Ga_2O_3 film at the temperature range of (1273 to 1473) K. The Ga"3"+ profile in the grown thin film was analyzed by secondary ion mass spectrometry. Form the measured Ga"3"+ profiles, some thermodynamic parameters were obtained. These include diffusivity, diffusion constant, chemical activation energy, solubility, solubility constant and enthalpy of solution. These parameters are crucial to design and growth of a Ga"3"+-doped LT thin film with desired Ga"3"+ profile for integrated optics application. A thermodynamic model is suggested for the growth and verified experimentally. - Highlights: • Diffusion growth of Ga"3"+-doped LiTaO_3 thin film were studied thermodynamically. • Diffusion constant is 1.41 · 10"−"6 m"2/s and activation energy is 237.2 kJ/mol. • Solubility constant is 22.9 · 10"2"6 ions/m"3 and enthalpy of solution is 28.9 kJ/mol. • Ga"3"+ dopant has small effect on LiTaO_3 refractive index. • Ga"3"+ growth can be described by a Fick-type equation with a constant diffusivity. - Abstract: A thermodynamic study was performed on diffusion growth of Ga"3"+-doped LiTaO_3(LT) thin film for integrated optics. Some Ga"3"+-doped LT thin films were grown on LT surface by in-diffusion of homogeneously coated Ga_2O_3 film at the temperature range of (1273 to 1473) K. After growth, the refractive indices at Ga"3"+-doped and un-doped surface parts were measured by prism coupling technique and Li composition there was evaluated from the measured refractive indices. The results show that Ga"3"+ dopant has small effect on the LT index. Li_2O out-diffusion is not measurable. The Ga"3"+ profile in the grown thin film was analysed by secondary ion mass spectrometry. It is found that the grown Ga"3"+ ions follow a complementary error function profile. A

  7. Epitaxial c-axis oriented BaTiO{sub 3} thin films on SrTiO{sub 3}-buffered Si(001) by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G., E-mail: ekerdt@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham B.; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Hu, Chengqing; Yu, Edward T. [Department of Electrical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Bruley, John [IBM Research Division, Yorktown Heights, New York 10593 (United States)

    2014-02-24

    Atomic layer deposition (ALD) of epitaxial c-axis oriented BaTiO{sub 3} (BTO) on Si(001) using a thin (1.6 nm) buffer layer of SrTiO{sub 3} (STO) grown by molecular beam epitaxy is reported. The ALD growth of crystalline BTO films at 225  °C used barium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and water as co-reactants. X-ray diffraction (XRD) reveals a high degree of crystallinity and c-axis orientation of as-deposited BTO films. Crystallinity is improved after vacuum annealing at 600  °C. Two-dimensional XRD confirms the tetragonal structure and orientation of 7–20-nm thick films. The effect of the annealing process on the BTO structure is discussed. A clean STO/Si interface is found using in-situ X-ray photoelectron spectroscopy and confirmed by cross-sectional scanning transmission electron microscopy. The capacitance-voltage characteristics of 7–20 nm-thick BTO films are examined and show an effective dielectric constant of ∼660 for the heterostructure.

  8. Pulsed laser deposition of Tl-Ca-Ba-Cu-O films

    International Nuclear Information System (INIS)

    Ianno, N.J.; Liou, S.H.; Woollam, J.A.; Thompson, D.; Johs, B.

    1990-01-01

    Pulsed laser deposition is a technique commonly used to deposit high quality thin films of high temperature superconductors. This paper discusses the results obtained when this technique is applied to the deposition of Tl-Ca-Ba-Cu-O thin films using a frequency doubled Nd:YAG laser operating at 532 nm and an excimer laser operating at 248 nm. Films with onset temperatures of 125 K and zero resistance temperatures of 110 K deposited on (100) oriented MgO from a composite Tl2Ca2Ba2Cu3Ox target were obtained at both wavelengths upon appropriate post deposition annealing. Films deposited at 532 nm exhibit a rough surface, while those deposited at 248 nm are smooth and homogeneous. Upon annealing, films deposited at both wavelengths are single phase Tl2Ca2Ba2Cu3Ox. 12 refs

  9. Preparation and characterization of RF magnetron sputtered CuO/CaTi{sub 4}O{sub 9} thin films with enhanced third-order nonlinear optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126.com; Hu, Guangcai; Hu, Xie; Chen, Xipeng; Li, Pengzhi; Xiang, Weidong, E-mail: xiangweidong001@126.com

    2017-04-15

    The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate in the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.

  10. Colloidal Precursors from 'Ball-Milling in Liquid Medium' Process for CuInSe{sub 2} Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jae Hoon; Kim, Seung Joo [Ajou University, Suwon (Korea, Republic of)

    2010-09-15

    CIS thin film can be fabricated by using the precursor obtained through ball-milling the elemental reagents in liquid media. The amorphous colloidal precursor with good dispersity was prepared in the medium that contains strong base and polar solvent (2 M ethylenediamine in DMF solution as used in this study). The 'ball-milling in liquid medium' method requires only elemental sources as starting materials and a proper solution so that it can be employed without additional processes for separation and purification. As a simple and less-toxic preparative route, this method would be practically available to prepare CIS-related solar cells. CuInSe{sub 2} (CIS) and related chalcopyrite compounds are very promising materials for thin film solar cells due to their favorable band gap, high optical absorption coefficient and long-term stability. CIS-based solar cells have shown the highest conversion efficiency reaching a value of 20%. However, the vacuum-based processes that are used to fabricate CIS thin-films have some drawbacks such as the complexity in process, high production cost and difficulty in scaling up. Recently, several research groups have proposed different non-vacuum deposition processes for CIS solar cell. For example, H. W. Hillhouse et al. prepared the CIS absorber layer by using 'nanocrystal ink method' in which a colloidal nanocrystal ink was obtained from reaction of CuCl, InCl{sub 3} and Se in oleylamine. D. B. Mitzi et al. used a solution-based precursor that was prepared by dissolution of Cu{sub 2}Se, In{sub 2}Se{sub 3}, Ga{sub 2}Se{sub 3} and Se in hydrazine to fabricate the Ga-containing absorber layer, Cu(In,Ga)Se{sub 2}.

  11. Preparation of highly oriented Al:ZnO and Cu/Al:ZnO thin films by sol-gel method and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaprasath, G.; Murugan, R. [School of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Mahalingam, T. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Hayakawa, Y. [Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011 (Japan); Ravi, G., E-mail: gravicrc@gmail.com [School of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2015-11-15

    Highly oriented thin films of Al doped ZnO (Al:ZnO) and Cu co-doped Al:ZnO (Cu/Al:ZnO) thin films were successfully deposited by sol–gel spin coating on glass substrates. The deposited films were characterized using X-ray diffraction analysis and found to exhibit hexagonal wurtzite structure with c-axis orientation. SEM images revealed that hexagonal rod shaped morphologies were grown perpendicular to the substrate surface due to repeated deposition process. High transmittance values were observed for pure ZnO compared to Al:ZnO and Cu/Al:ZnO thin films. The band gap widening is caused by the increase of carrier concentration, which is believed to be due to Burstein-Moss effect due to Al and Cu doping. PL spectra of Cu/Al:ZnO thin films indicate that the UV emission peaks slightly shifted towards lower energy side. XPS study was carried out for Zn{sub 0.80}Al{sub 0.10}Cu{sub 0.10}O thin films to analyze the binding energy of Al, Cu, Zn and O. Magnetic measurement studies exhibited ferromagnetic behavior at room temperature, which may be due to the increase in copper concentration in the doped films. The ferromagnetic behavior can be understood from the exchange coupling between localized ‘d’ spin of Cu ion mediated by free delocalized carriers. - Highlights: • High quality of Al:ZnO and Cu co-doped Al:ZnO thin films were fabricated by sol–gel method. • The XRD analyses revealed that the deposited thin films have hexagonal wurtzite structure. • XPS was carried out for Zn{sub 0.80}Al{sub 0.10}Cu{sub 0.10}O films to analyze the binding energy of Al, Cu, Zn and O. • SEM studies were made for Al:ZnO and Cu/Al:ZnO thin films. • RTFM was observed in Cu co-doped Al:ZnO thin films.

  12. Magnetron-sputter deposition of Fe3S4 thin films and their conversion into pyrite (FeS2) by thermal sulfurization for photovoltaic applications

    International Nuclear Information System (INIS)

    Liu Hongfei; Chi Dongzhi

    2012-01-01

    The authors report on the fabrication of FeS 2 (pyrite) thin films by sulfurizing Fe 3 S 4 that were deposited by direct current magnetron sputtering at room temperature. Under the selected sputtering conditions, Fe 3 S 4 nanocrystal films are obtained and the nanocrystals tend to locally cluster and closely pack into ricelike nanoparticles with an increase in film thickness. Meanwhile, the film tends to crack when the film thickness is increased over ∼1.3 μm. The film cracking can be effectively suppressed by an introduction of a 3-nm Cu intermediate layer prior to Fe 3 S 4 deposition. However, an introduction of a 3-nm Al intermediate layer tends to enhance the film cracking. By post-growth thermal sulfurization of the Fe 3 S 4 thin films in a tube-furnace, FeS 2 with high phase purity, as determined by using x ray diffraction, is obtained. Optical absorption spectroscopy was employed to characterize the resultant FeS 2 thin films, which revealed two absorption edges at 0.9 and 1.2 eV, respectively. These two absorption edges are assigned to the direct bandgap (0.9 eV) and the indirect allowed transitions (1.2 eV) of FeS 2 , respectively.

  13. Chemical surface treatment with toluene to enhance sensitivity of NO2 gas sensors based on CuPcTs/Alq3 thin films

    Directory of Open Access Journals (Sweden)

    Mahdi H. Suhail

    2017-09-01

    Full Text Available A nitrogen dioxide (NO2 gas sensor based on the blend of copper phthalocyanine-tetrasulfonic acid tetrasodium/tris-(8-hydroxyquinolinealuminum (CuPcTs/Alq3 thin films was fabricated. The effect of chemical surface treatment with toluene on the structural, surface morphology and device sensitivity has been examined. The X-ray diffraction (XRD patterns of as-deposited and toluene-treated films exhibit a broad hump peak at 2θ = 24°. The atomic force microscopy (AFM measurements show that the average particle diameter decreases with immersing time. The needle like shapes can be seen from scanning electron microscopy (SEM images for films treated with toluene for an immersing time of 60 min. Gas sensor characterizations demonstrate that all samples have superior NO2 gas sensitivity at a operating temperature of 373 K. The increase of the sensor sensitivity with increasing chemical treatment time up to 60 min was observed. All films show the stable and repeatable response patterns.

  14. Colloidal Precursors from 'Ball-Milling in Liquid Medium' Process for CuInSe2 Thin Film

    International Nuclear Information System (INIS)

    Chung, Jae Hoon; Kim, Seung Joo

    2010-01-01

    CIS thin film can be fabricated by using the precursor obtained through ball-milling the elemental reagents in liquid media. The amorphous colloidal precursor with good dispersity was prepared in the medium that contains strong base and polar solvent (2 M ethylenediamine in DMF solution as used in this study). The 'ball-milling in liquid medium' method requires only elemental sources as starting materials and a proper solution so that it can be employed without additional processes for separation and purification. As a simple and less-toxic preparative route, this method would be practically available to prepare CIS-related solar cells. CuInSe 2 (CIS) and related chalcopyrite compounds are very promising materials for thin film solar cells due to their favorable band gap, high optical absorption coefficient and long-term stability. CIS-based solar cells have shown the highest conversion efficiency reaching a value of 20%. However, the vacuum-based processes that are used to fabricate CIS thin-films have some drawbacks such as the complexity in process, high production cost and difficulty in scaling up. Recently, several research groups have proposed different non-vacuum deposition processes for CIS solar cell. For example, H. W. Hillhouse et al. prepared the CIS absorber layer by using 'nanocrystal ink method' in which a colloidal nanocrystal ink was obtained from reaction of CuCl, InCl 3 and Se in oleylamine. D. B. Mitzi et al. used a solution-based precursor that was prepared by dissolution of Cu 2 Se, In 2 Se 3 , Ga 2 Se 3 and Se in hydrazine to fabricate the Ga-containing absorber layer, Cu(In,Ga)Se 2

  15. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-01-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d 33 ) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO 3 thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO 3 thin films. • High magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO 3 thin films. • A notable piezoelectric constant d 33 ∼94 pm/V was found in BiFeO 3 thin films

  16. Preparation of CuAlO2 Thin Films by Sol-Gel Method Using Nitrate Solution Dip-Coating

    Directory of Open Access Journals (Sweden)

    Ehara Takashi

    2016-01-01

    Full Text Available CuAlO2 thin films are prepared by sol-gel dip-coating followed by annealing in nitrogen atmosphere using copper nitrate and aluminum nitrate as metal source materials. X-ray diffraction (XRD patterns show (003, (006 and (009 oriented peaks of CuAlO2 at annealing temperature of 800 – 1000°C. This result indicates that the CuAlO2 films prepared in the present work are c-axis oriented. XRD peak intensity increase with annealing temperature and becomes maximum at 850°C. The CuAlO2 XRD peak decreased at annealing temperature of 900°C with appearance of a peak of CuO, and then increased again with annealing temperature until 1000 °C. The films have bandgap of 3.4 eV at annealing temperature of 850°C in which the transparency becomes the highest. At the annealing temperature of 850°C, scanning electron microscope (SEM observation reveals that the films are consist of amorphous fraction and microcrystalline CuAlO2 fraction.

  17. Modified chemical synthesis of porous α-Sm{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhar, V.S.; Jagadale, A.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India); Gaikwad, N.S. [Rayat Shikshan Sanstha, Satara, (M.S.) 415 001 (India); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India)

    2014-08-15

    Highlights: • A novel chemical route to prepare α-Sm{sub 2}S{sub 3} thin films. • A porous honeycomb like morphology of the α-Sm{sub 2}S{sub 3} thin film. • An application of α-Sm{sub 2}S{sub 3} thin film toward its supercapacitive behaviour. - Abstract: The paper reports synthesis of porous α-Sm{sub 2}S{sub 3} thin films using modified chemical synthesis, also known as successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), wettability and ultraviolet–visible spectroscopy (UV–vis) techniques are used for the study of structural, elemental, morphological and optical properties of α-Sm{sub 2}S{sub 3} films. An orthorhombic crystal structure of α-Sm{sub 2}S{sub 3} is resulted from XRD study. The SEM and AFM observations showed highly porous α-Sm{sub 2}S{sub 3} film surface. An optical band gap of 2.50 eV is estimated from optical absorption spectrum. The porous α-Sm{sub 2}S{sub 3} thin film tuned for supercapacitive behaviour using cyclic voltammetry and galvanostatic charge discharge showed a specific capacitance and energy density of 294 Fg{sup –1} and 48.9 kW kg{sup –1}, respectively in 1 M LiClO{sub 4}–propylene carbonate electrolyte.

  18. Processing and properties of Pb(Mg(1/3)Nb(2/3))O3--PbTiO3 thin films by pulsed laser deposition

    Science.gov (United States)

    Tantigate, C.; Lee, J.; Safari, A.

    1995-03-01

    The objectives of this study were to prepare in situ Pb(Mg(1/3)Nb(2/3))O3 (PMN) and PMN-PT thin films by pulsed laser deposition and to investigate the electrical features of thin films for possible dynamic random access memory (DRAM) and microactuator applications. The impact of processing parameters such compositions, substrate temperature, and oxygen pressure on perovskite phase formation and dielectric characteristics were reported. It was found that the highest dielectric constant, measured at room temperature and 10 kHz, was attained from the PMN with 99% perovskite.

  19. Characteristics of CuInSe2 thin films grown by the selenization method

    International Nuclear Information System (INIS)

    Kim, Sang Deok; Kim, Hyeong Joon; Adurodija, Frederick Ojo; Yoon, Kyeong Hoon; Song, Jin Soo

    1999-01-01

    CuInSe 2 thin films were formed from a selenization of co-sputtered Cu-In alloy layers which consisted of only two phases, CuIn 2 and Cu 11 In 9 . A linear dependence of the Cu-In alloy film composition on the Cu/In sputtering power was found. The metallic layers were selenized in vacuum or at 1 atm. A small number of Cu-Se and In-Se compounds was observed during the early stage of selenization, and single-phase CuInSe 2 was more easily formed in vacuum than at atmospheric pressure. Therefore, CuInSe 2 films selenized in vacuum showed larger grain sizes, smoother surfaces, and denser microstructures than those selenized at 1 atm

  20. Silver loaded WO3−x/TiO2 composite multifunctional thin films

    International Nuclear Information System (INIS)

    Dunnill, Charles W.; Noimark, Sacha; Parkin, Ivan P.

    2012-01-01

    Multifunctional WO 3−x –TiO 2 composite thin films have been prepared by sol–gel synthesis and shown to be good visible light photocatalysts whilst retaining a desirable underlying blue colouration. The WO 3−x –TiO 2 composite thin films were further enhanced using silver nanoparticles synthesised in-situ on the surface from the photo-degradation of silver nitrate solution. Thin films were characterised using X-ray diffraction, Raman, Scanning electron microscopy and UV–visible spectroscopy and shown to photo degrade stearic acid, using white light λ = 420–800 nm. - Highlights: ► WO 3−X TiO 2 composite thin films were synthesised by sol–gel methods. ► Blue tinted glass is desirable for the value added glass industry. ► Silver nanoparticle island formation enhances the activity of the films. ► Blue tinted “value added” coated glass is now possible.

  1. Memristive properties of transparent oxide semiconducting (Ti,Cu)O x -gradient thin film

    Science.gov (United States)

    Domaradzki, Jarosław; Kotwica, Tomasz; Mazur, Michał; Kaczmarek, Danuta; Wojcieszak, Damian

    2018-01-01

    The paper presents the results of the analysis of memristive properties observed in (Ti,Cu)-oxide thin film with gradient distribution of elements, prepared using the multi-source reactive magnetron co-sputtering process. The performed electrical measurements showed the presence of pinched hysteresis loops in the voltage-current plane for direct and alternating current bipolar periodic signal stimulation. Investigations performed using a transmission electron microscope equipped with an energy dispersive spectrometer showed that the elemental composition at the cross section of the thin film was very well correlated with the gradient V-shaped profile of the powering of the magnetron source equipped with a Cu target. The prepared samples were transparent in the visible part of optical radiation. The obtained results showed that the prepared gradient (Ti,Cu)O x thin film could be an interesting alternative to the conventional multilayer stack construction of memristive devices, which makes them a promising material for manufacturing transparent memory devices for transparent electronics.

  2. Out-of-substrate plane orientation control of thin YBa{sub 2}Cu{sub 3}O {sub x} films on NdGaO{sub 3} tilted-axes substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, Peter B. [Institute of Physics and Technology RAS, Moscow 117218 (Russian Federation) and Department of Physics, Technical University of Denmark, Lyngby, DK-2800 (Denmark)]. E-mail: pbmozh@nm.ru; Mozhaeva, Julia E. [Institute of Physics and Technology RAS, Moscow 117218 (Russian Federation); Department of Physics, Technical University of Denmark, Lyngby, DK-2800 (Denmark); Bdikin, Igor K. [Institute of Solid State Physics RAS, Chernogolovka, Moscow distr., 142432 (Russian Federation); CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Kotelyanskii, Iosif M. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Lusanov, Valery A. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Hansen, Jorn Bindslev [Department of Physics, Technical University of Denmark, Lyngby, DK-2800 (Denmark); Jacobsen, Claus S. [Department of Physics, Technical University of Denmark, Lyngby, DK-2800 (Denmark); Kholkin, Andrey L. [CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)

    2006-02-01

    Epitaxial heterostructures YBa{sub 2}Cu{sub 3}O {sub x}(YBCO)/CeO{sub 2}/NdGaO{sub 3} were prepared on tilted-axes NdGaO{sub 3} substrates using laser ablation technique. Morphology, crystal structure and electrical properties of the obtained films were characterized. The seeding mechanisms are affected by the tilt angle, resulting in superior YBCO films on NdGaO{sub 3} substrates in an intermediate range of tilt angles of 6-14{sup o}. The introduction of CeO{sub 2} layer leads to change of the YBCO film orientation: at low deposition rate c-oriented films are formed, while at high deposition rates the film grows with c-axis tilted along the [1 1 0] NdGaO{sub 3} direction. Bi-epitaxial films and structures were prepared by removal of part of the CeO{sub 2} layer using ion-beam milling.

  3. Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material

    Science.gov (United States)

    Nandur, Abhishek; White, Bruce

    2014-03-01

    CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.

  4. Dielectric and piezoelectric properties of lead-free (Bi,Na)TiO3-based thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.; Bharadwaja, S. S. N.; Trolier-McKinstry, S.

    2010-02-01

    Dielectric and piezoelectric properties of morphotropic phase boundary (Bi,Na)TiO3-(Bi,K)TiO3-BaTiO3 epitaxial thin films deposited on SrRuO3 coated SrTiO3 substrates were reported. Thin films of 350 nm thickness exhibited small signal dielectric permittivity and loss tangent values of 750 and 0.15, respectively, at 1 kHz. Ferroelectric hysteresis measurements indicated a remanent polarization value of 30 μC/cm2 with a coercive field of 85-100 kV/cm. The thin film transverse piezoelectric coefficient (e31,f) of these films after poling at 600 kV/cm was found to be -2.2 C/m2. The results indicate that these BNT-based thin films are a potential candidate for lead-free piezoelectric devices.

  5. Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer

    Science.gov (United States)

    Lin, Yan-Cheng; Yang, Chung-Lin; Huang, Jing-Yi; Jain, Chao-Chi; Hwang, Jen-Dong; Chu, Hsu-Shen; Chen, Sheng-Chi; Chuang, Tung-Han

    2016-09-01

    A Bi0.5Sb1.5Te3 thermoelectric material electroplated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode at low temperatures of 448 K (175 °C) to 523 K (250 °C) using a 4- μm-thick In interlayer under an external pressure of 3 MPa. During the bonding process, the In thin film reacted with the Ag layer to form a double layer of Ag3In and Ag2In intermetallic compounds. No reaction occurred at the Bi0.5Sb1.5Te3/Ni interface, which resulted in low bonding strengths of about 3.2 MPa. The adhesion of the Bi0.5Sb1.5Te3/Ni interface was improved by precoating a 1- μm Sn film on the surface of the thermoelectric element and preheating it at 523 K (250 °C) for 3 minutes. In this case, the bonding strengths increased to a range of 9.1 to 11.5 MPa after bonding at 473 K (200 °C) for 5 to 60 minutes, and the shear-tested specimens fractured with cleavage characteristics in the interior of the thermoelectric material. The bonding at 448 K (175 °C) led to shear strengths ranging from 7.1 to 8.5 MPa for various bonding times between 5 and 60 minutes, which were further increased to the values of 10.4 to 11.7 MPa by increasing the bonding pressure to 9.8 MPa. The shear strengths of Bi0.5Sb1.5Te3/Cu joints bonded with the optimized conditions of the modified solid-liquid interdiffusion bonding process changed only slightly after long-term exposure at 473 K (200 °C) for 1000 hours.

  6. Dielectric properties of DC reactive magnetron sputtered Al2O3 thin films

    International Nuclear Information System (INIS)

    Prasanna, S.; Mohan Rao, G.; Jayakumar, S.; Kannan, M.D.; Ganesan, V.

    2012-01-01

    Alumina (Al 2 O 3 ) thin films were sputter deposited over well-cleaned glass and Si substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al 2 O 3 -Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed. - Highlights: ► Al 2 O 3 thin films were deposited by DC reactive magnetron sputtering. ► The films were found to be amorphous up to annealing temperature of 550 C. ► An increase in rms roughness of the films was observed with annealing. ► Al-Al 2 O 3 -Al thin film capacitors were fabricated and dielectric constant was 7.5. ► The activation energy decreased with increase in frequency.

  7. Effect of composition on properties of In2O3-Ga2O3 thin films

    Science.gov (United States)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  8. The influence of different locations of sputter guns on the morphological and structural properties of Cu–In–Ga precursors and Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Zhu, J., E-mail: jiezhu@ustb.edu.cn; He, Y.X.

    2014-01-01

    The influence of two different locations of sputter guns on the morphological and structural properties of Cu–In–Ga precursors and Cu(In,Ga)Se{sub 2} (CIGS) thin films was investigated. All the precursors contained cauliflower-like nodules, whereas smaller subnodules were observed on the background. All the precursors revealed apparent three-layered structures, and voids were observed at the CIGS/SLG interface of Sets 1 and 2 films rather than Set 3 film. EDS results indicated that all CIGS thin films were Cu-deficient. Based on the grazing incidence X-ray diffraction (GIXRD) patterns, as-selenized films showed peaks corresponding to the chalcopyrite-type CIGS structure. Depth-resolved Raman spectra showed the formation of a dominant CIGS phase inside the films for all the as-selenized samples investigated, and of an ordered vacancy compound (OVC) phase like Cu(In,Ga){sub 3}Se{sub 5} or Cu(In,Ga){sub 2}Se{sub 3.5} at the surface and/or CIGS/SLG interface region of Sets 2 and 3 films. No evidence was obtained on the presence of an OVC phase in Set 1 CIGS film, which may be speculated that long-time annealing is contributed to suppress the growth of OVC phases. The results of the present work suggest that the metallic precursors deposited with the upright-location sputter gun might be more appropriate to prepare CIGS thin films than those sputtered with the titled-location gun.

  9. Structural and optical properties of annealed and illuminated (Ag3AsS3)0.6(As2S3)0.4 thin films

    Science.gov (United States)

    Studenyak, I. P.; Neimet, Yu. Yu.; Rati, Y. Y.; Stanko, D.; Kranjčec, M.; Kökényesi, S.; Daróci, L.; Bohdan, R.

    2014-11-01

    (Ag3AsS3)0.6(As2S3)0.4 thin films were deposited upon a quartz substrate by rapid thermal evaporation. Structural studies of the as-deposited, annealed and illuminated films were performed using XRD, scanning electron and atomic force microscopies. Surfaces of all the films were found to be covered with Ag-rich crystalline micrometer sized cones. Thermal annealing leads to mechanical deformation of part of the cones and their detachment from the base film surface while the laser illumination leads to the new formations appearance on the surface of thin films. The spectroscopic studies of optical transmission spectra for as-deposited, annealed and illuminated thin films were carried out. The optical absorption spectra in the region of its exponential behaviour were analysed, the dispersion dependences of refractive index as well as their variation after annealing and illumination were investigated.

  10. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  11. Improvement in the electronic quality of pulsed laser deposited CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films via post-deposition elemental sulfur annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Beres, M., E-mail: matthewcberes@gmail.com [University of California, Department of Mechanical Engineering, 6141 Etcheverry Hall, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Yu, K.M., E-mail: kinmanyu@cityu.edu.hk [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Syzdek, J., E-mail: jego.mejl@gmail.com [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Bio-Logic USA, 9050 Executive Park Dr NW, Knoxville, TN 37923 (United States); Mao, S.S., E-mail: ssmao@me.berkeley.edu [University of California, Department of Mechanical Engineering, 6141 Etcheverry Hall, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States)

    2016-06-01

    We synthesized CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films on soda lime glass substrates using pulsed laser deposition and post-annealing under different conditions. Increasing substrate temperature during deposition and vacuum annealing after deposition both increased grain size but had negligible effect on the electronic properties of the films. As-deposited films demonstrated P-type conductivities with high carrier concentrations and low Hall mobilities, but annealing in elemental sulfur environment significantly improved the electronic properties of the films. We found that the incorporation of even small quantities of sulfur into the films reduced carrier concentrations by over three orders of magnitude and increased Hall mobilities by an order of magnitude. This resulted in films with resistivity ~ 5 Ω·cm suitable for photovoltaic applications. - Highlights: • CIGSe thin films were deposited by pulsed laser deposition. • Laser deposition parameters and annealing parameters were investigated. • As-deposited films demonstrated high hole concentrations and low Hall mobilities. • Elemental sulfur annealing significantly enhanced the electronic quality of films.

  12. Three-Dimensional Packing Structure and Electronic Properties of Biaxially Oriented Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2- b ]thiophene) Films

    KAUST Repository

    Cho, Eunkyung

    2012-04-11

    We use a systematic approach that combines experimental X-ray diffraction (XRD) and computational modeling based on molecular mechanics and two-dimensional XRD simulations to develop a detailed model of the molecular-scale packing structure of poly(2,5-bis (3-tetradecylthiophene-2-yl) thieno[3,2-b]thiophene) (PBTTT-C 14) films. Both uniaxially and biaxially aligned films are used in this comparison and lead to an improved understanding of the molecular-scale orientation and crystal structure. We then examine how individual polymer components (i.e., conjugated backbone and alkyl side chains) contribute to the complete diffraction pattern, and how modest changes to a particular component orientation (e.g., backbone or side-chain tilt) influence the diffraction pattern. The effects on the polymer crystal structure of varying the alkyl side-chain length from C 12 to C 14 and C 16 are also studied. The accurate determination of the three-dimensional polymer structure allows us to examine the PBTTT electronic band structure and intermolecular electronic couplings (transfer integrals) as a function of alkyl side-chain length. This combination of theoretical and experimental techniques proves to be an important tool to help establish the relationship between the structural and electronic properties of polymer thin films. © 2012 American Chemical Society.

  13. Growth of Sr1-xNdxCuOy thin films by rf-magnetron sputtering and pulsed-laser deposition

    International Nuclear Information System (INIS)

    Sugii, N.; Ichikawa, M.; Kuba, K.; Sakurai, T.; Iamamoto, K.; Yamauchi, H.

    1992-01-01

    This paper reports on Sr 1- x Nd x CuO y thin films grown on SrTiO 3 substrates by rf-magnetron sputtering and pulsed-laser deposition. The sputter-deposited film with x=0 has an infinite-layer structure whose lattice constants are: a=0.390 nm and c=0.347 nm. When x is larger than 0.1, the films contain a phase of the Sr 14 Cu 24 O 41 structure. The laser-deposited films of Sr 1- x Nd x CuO y with x ≥ 0.075 were single phase of the infinite-layer structure. The lattice parameter c decreased and the lattice parameter a increased, as the Nd content, x, increased. The films with x=0.10 and 0.125 exhibited superconducting onset temperatures around 26 K. Weak Meissner signals were observed for these films at temperatures below 30 K

  14. Tungsten oxide (WO3) thin films for application in advanced energy systems

    International Nuclear Information System (INIS)

    Gullapalli, S. K.; Vemuri, R. S.; Manciu, F. S.; Enriquez, J. L.; Ramana, C. V.

    2010-01-01

    Inherent processes in coal gasification plants produce hazardous hydrogen sulfide (H 2 S), which must be continuously and efficiently detected and removed before the fuel is used for power generation. An attempt has been made in this work to fabricate tungsten oxide (WO 3 ) thin films by radio-frequency reactive magnetron-sputter deposition. The impetus being the use of WO 3 films for H 2 S sensors in coal gasification plants. The effect of growth temperature, which is varied in the range of 30-500 deg. C, on the growth and microstructure of WO 3 thin films is investigated. Characterizations made using scanning electron microscopy (SEM) and x-ray diffraction (XRD) indicate that the effect of temperature is significant on the microstructure of WO 3 films. XRD and SEM results indicate that the WO 3 films grown at room temperature are amorphous, whereas films grown at higher temperatures are nanocrystalline. The average grain-size increases with increasing temperature. WO 3 films exhibit smooth morphology at growth temperatures ≤300 deg. C while relatively rough at >300 deg. C. The analyses indicate that the nanocrystalline WO 3 films grown at 100-300 deg. C could be the potential candidates for H 2 S sensor development for application in coal gasification systems.

  15. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Karuppasamy, A., E-mail: karuppasamy@psnacet.edu.in

    2015-12-30

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO{sub 3} (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO{sub 3}) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O{sub 2} atmosphere. Ti:WO{sub 3} thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10{sup −3}–5.0 × 10{sup −3} mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm{sup 2}) and tungsten (3 W/cm{sup 2}) were kept constant. Ti:WO{sub 3} films deposited at an oxygen pressure of 5 × 10{sup −3} mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm{sup 2}/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm{sup 2}, Qa: 17.72 mC/cm{sup 2}), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO{sub 3} films.

  16. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.

    2015-01-01

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO 3 (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO 3 ) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O 2 atmosphere. Ti:WO 3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10 −3 –5.0 × 10 −3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm 2 ) and tungsten (3 W/cm 2 ) were kept constant. Ti:WO 3 films deposited at an oxygen pressure of 5 × 10 −3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm 2 /C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm 2 , Qa: 17.72 mC/cm 2 ), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO 3 films.

  17. Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent

    International Nuclear Information System (INIS)

    Hao, Qiuyan; Chu, Yixia; Zheng, Xuerong; Liu, Zhenya; Liang, Liming; Qi, Jiakun; Zhang, Xin; Liu, Gang; Liu, Hui; Chen, Hongjian; Liu, Caichi

    2016-01-01

    Recently, planar perovskite solar cells based on CH 3 NH 3 PbI 3 have attracted many researcher's interest due to their unique advantages such as simple cell architecture, easy fabrication and potential multijunction construction comparing to the initial mesoporous structure. However, the preparation of planar perovskite films with high quality is still in challenge. In this paper, we developed a vapor-assisted solution process using a novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) instead of the traditional N, N-dimethylformamide (DMF) to construct a high-quality perovskite CH 3 NH 3 PbI 3 thin film with pure phase, high compactness, small surface roughness and controlled size. The phase evolution and growth mechanism of the perovskite films are also discussed. Utilizing the NEP of low volatility and moderate boiling point as solvent, we dried the PbI 2 -NEP precursor films at different temperature under vacuum and then obtained PbI 2 thin films with different crystalline degree from amorphous to highly crystalline. The perovskite films with crystal size ranged from hundreds of nanometers to several micrometers can be prepared by reacting the PbI 2 films of different crystalline degree with CH 3 NH 3 I vapor. Moreover, planar-structured solar cells combining the perovskite film with TiO 2 and spiro-OMeTAD as the electron and holes transporting layer achieves a power conversion efficiency of 10.2%. - Highlights: • A novel and green solvent of 1-Ethyl-2-pyrrolidone (NEP) was used to construct high-quality perovskite CH 3 NH 3 PbI 3 thin film. • The CH 3 NH 3 PbI 3 grain with different sizes ranged from hundreds of nanometers to several micrometers can be obtained. • Planar-structured perovskite CH 3 NH 3 PbI 3 solar cells using NEP as solvent achieves a power conversion efficiency of 10.2%.

  18. Microstructural properties of BaTiO{sub 3} ceramics and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M. [Posgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Apartado Postal 2861, 22800 Ensenada, Baja California (Mexico)

    2000-07-01

    A microstructural study of BaTiO{sub 3} ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO{sub 3} thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO{sub 3} ceramic samples and thin films, as deposited and after an annealing process. (Author)

  19. Effect of Cu addition on coercivity and interfacial state of Nd-Fe-B/Nd-rich thin films

    International Nuclear Information System (INIS)

    Matsuura, M; Sugimoto, S; Fukada, T; Tezuka, N; Goto, R

    2010-01-01

    This study provides the effect of Cu addition on coercivity (H cJ ) and interfacial microstructure in Nd-Fe-B/Nd-rich thin films. All films were deposited by using ultra high vacuum (UHV) magnetron sputtering, and the Nd-Fe-B layer was oxidized under several atmospheres with different oxygen content. Then, the films were annealed at 250-550 0 C under UHV. The films oxidized in low vacuum (10 -2 -10 -5 Pa) (under low oxygen state) exhibited the recovery of H cJ by the annealing at 450 0 C. On the contrary, the H cJ of the films oxidized in Ar (under high oxygen state) decreased with increasing annealing temperature. However, the H cJ increased drastically at the temperatures above 550 0 C. In addition, the Cu added films, which were annealed at temperatures above 350 0 C, showed higher coercivities than the films without Cu addition. The XRD analysis suggested the existence of C-Nd 2 O 3 phase in the Cu added films annealed at 550 0 C. It can be considered that the Cu addition decreases the eutectic temperature of Nd-rich phase and influences the interfacial state between Nd 2 Fe 14 B and Nd-rich phase.

  20. Oscillatory behavior of the magnetic properties of Nd–Fe–B films with Mo and Mo–Cu additions

    International Nuclear Information System (INIS)

    Urse, M.; Grigoras, M.; Lupu, N.; Borza, F.; Chiriac, H.

    2013-01-01

    A series of Ta/NdFeB/Ta thin films with Mo and Mo–Cu additions embedded by alloying and by stratification have been prepared by r.f. sputtering. The influence of additions, their embedding mode, and annealing temperature on the structural and magnetic behavior of Ta/NdFeB/Ta thin films is presented. The use of additions of Mo and Mo–Cu leads to refined grain structure and improvement in the hard magnetic characteristics of Ta/NdFeB/Ta thin films. The Ta/[NdFeBMo(540 nm)/Ta films and Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films present enhanced coercivities and M r /M s ratios in comparison with the Ta/NdFeB(540 nm)/Ta films. The stratification of Ta/NdFeB/Ta thin films with Mo–Cu interlayers leads to an oscillatory behavior of hard magnetic characteristics of the Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films, when the thickness, d, of Mo–Cu interlayers varies by increments of 1 nm. When the thickness of Mo–Cu interlayers varies by increments of 2 nm the oscillatory behavior of the magnetic characteristics is not revealed. For a thickness of the Mo–Cu interlayer of 3 nm in the Ta/[NdFeB(180 nm)/MoCu(3 nm)] × 3/Ta thin films annealed at 650 °C, the c-axis of part of the hard magnetic Nd 2 Fe 14 B grains is oriented out-of-plane

  1. Synthesis, characterization and antibacterial activity of some novel symmetrical n/sup 3/, n/sup 3/-bis(disubstituted)isophthalyl-bis(thioureas) and their Cu(II) and Ni(II) complexes

    International Nuclear Information System (INIS)

    Jamil, M.; Zubair, M.; Rasool, N.; Bukhari, I.H.; Farid, M.A.; Altaf, A.A.

    2013-01-01

    A series of some novel N/sup 3/,N/sup 3/-bis(disubstituted) isophthalyl-bis(thioureas) compounds with general formula (C/sub 6/H/sub 4/(CONHCSNHR)/sub 2/), where R = 4-C/sub 6/H/sub 4/COOH(L/sub 1/), 3-NO/sub 2/C/sub 6/H/sub 4/(L/sub 2/), 2-NO/sub 2/C/sub 6/H/sub 4/(L/sub 3/), 4-CH/sub 3/C/sub 6/H/sub 4/(L/sub 4/), 2-CH/sub 3/C/sub 6/H/sub 4/(L/sub 5/), 3-CH/sub 3/C/sub 6/H/sub 4/(L/sub 6/) and their Cu(II) and Ni(II) complexes have been synthesized. (L/sub 1/-L/sub 6/) have been prepared in good to excellent yields by reaction of isophthaloyl isothiocyanate with primary amines using dry acetone as solvent. The stoichiometric reaction between the metal (II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type (ML)2 (where M = Cu(II) and Ni(II). These compounds (L/sub 1/-L/sub 6/) and their metal (II) complexes have been characterized by elemental analyses, Infrared spectroscopy, /sup 1/H-NMR spectroscopy, magnetic moments, and electronic spectral measurements. These compounds (L/sub 1/-L/sub 6/) and their metal (II) complexes were also screened for their antibacterial activity against bacterial species, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Shigella sonnei, Salmonella typhi and Pseudomonas aeroginosa. Some compounds showed potential activity against a number of bacterial strains. The results of these studies also show the metal (II) complexes to be having stronger antibacterial activityl against one or more species as compared to the uncomplexed ligands. It was concluded that these compounds may be the potential source of active antibacterial agents. (author)

  2. Preparation of transparent Cu{sub 2}Y{sub 2}O{sub 5} thin films by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Te-Wei, E-mail: tewei@ntut.edu.tw; Chang, Chih-Hao; Yang, Li-Wei; Wang, Yung-Po

    2015-11-01

    Highlights: • Cu{sub 2}Y{sub 2}O{sub 5} thin films were prepared by RF magnetron sputtering. • Cu{sub 2}Y{sub 2}O{sub 5} thin films have high transmittance and antibacterial properties. • Mechanical properties of Cu{sub 2}Y{sub 2}O{sub 5} thin films were investigated. - Abstract: Cu{sub 2}Y{sub 2}O{sub 5} thin films were deposited on non-alkali glass substrates by RF magnetron sputtering. Its crystal structure, microstructure, optical property, mechanical property, and antibacterial activity were investigated by grazing-incidence X-ray diffraction, transmittance spectra, nanoindenter, and antibiotics test, respectively. A single-phase of Cu{sub 2}Y{sub 2}O{sub 5} was obtained while annealing at 700 °C in air and its optical transparency was >80% in the visible region. The hardness and elastic modulus of the film were 6.7 GPa and 82 GPa, respectively. Antibiotics testing result revealed that Cu{sub 2}Y{sub 2}O{sub 5} surface had a superior antibacterial performance even at a dark environment. Therefore, Cu{sub 2}Y{sub 2}O{sub 5} is a promising novel transparent antibacterial hard coating material.

  3. Preparation and Characterization of Cu(In,GaSe2 Thin Films by Selenization of Cu0.8Ga0.2 and In2Se3 Precursor Films

    Directory of Open Access Journals (Sweden)

    Jiang Liu

    2012-01-01

    Full Text Available Se-containing precursor films with two different compositions were prepared by magnetron sputtering from and targets, and then were selenized using Se vapor. The effects of precursor composition and selenization temperature on the film properties were investigated. The results show that Se phase plays a critical role in film growth and electrical properties of CIGS films. The Cu-rich films exhibit different surface morphology and better crystallinity, as compared to the Cu-poor films. All the CIGS films exhibit p-type conductivity. The resistivity of the Cu-rich films is about three orders of magnitude lower than that of the Cu-poor films, which is attributed to the presence of p-type highly conductive Se phase.

  4. Pressure controlled tunable magnetic, electrical and optical properties of (Cu, Li)-codoped ZnO thin films

    Science.gov (United States)

    Zhang, Liqiang; Lu, Bin; Ye, Zhizhen; Lu, Jianguo; Huang, Jingyun

    2013-09-01

    Zn0.989Cu0.01Li0.001O thin films have been deposited on c-plane sapphire substrates by pulsed laser deposition (PLD). The films deposited at 500 °C and the oxygen pressures (PO2) ranging from 0.04 to 40 Pa were of good crystallinity with a (0002) preferential orientation. Three conductivity regimes were observed for the films with varying the PO2. The n-type film obtained at 0.04 Pa had a low resistivity of 1.95×10-2 Ω cm, Hall mobility of 14.8 cm2 V-1 s-1, and carrier concentration of 2.16×1019 cm-3. The p-type Zn0.989Cu0.01Li0.001O film could achieve when oxygen ambient reached as high as 40 Pa and with a hole concentration of 1.12×1018 cm-3. Films grown at PO2 between 0.4 and 4 Pa commonly exhibited insulating behavior. All the Zn0.989Cu0.01Li0.001O films had a high transmittance above 80% in visible regions and the red-shift in optical band gap (Eg) happened as the PO2 increased. Magnetic measurements showed that only the film fabricated at 0.04 Pa with n-type conduction exhibited room temperature ferromagnetism (RTFM) of 0.25μB/Cu while others obtained at higher PO2 were paramagnetic. Oxygen vacancies (VO) are speculated that would play a crucial role for the ferromagnetic behavior observed.

  5. Properties of different temperature annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films prepared by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhou; Liu Lian; Yan Yong; Zhang Yanxia; Li Shasha; Yan Chuanpeng; Zhang Yong [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhao Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The Cu(In,Ga)Se{sub 2} and Cu(In,Ga)2Se{sub 3.5} films follow different process to form CIGS phase. Black-Right-Pointing-Pointer Composition loss of the annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films are different. Black-Right-Pointing-Pointer Hexagonal CuSe phase exhibits unique transport feature. Black-Right-Pointing-Pointer Conductivity of the CIGS films is affected by the 'variable range hopping' mechanism. - Abstract: We have investigated the effect of annealing temperature on structural, compositional, electrical properties of the one-step RF sputtered Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films. After the annealing at various temperatures, loss of Se element is significant for the Cu(In,Ga)Se{sub 2} films and meanwhile composition of the annealed Cu(In,Ga){sub 2}Se{sub 3.5} films keeps almost constant. The as-deposited Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films show amorphous structure and they follow different transformation process to form chalcopyrite structure. Electrical conductivity of the annealed CIGS films related to their chemical composition. Cu(In,Ga)Se{sub 2} films annealed at 150 Degree-Sign C show unique electron transport mechanism for the formation of hexagonal CuSe phase. Electrical conductivity of the chalcopyrite structure films are dominated by the 'variable range hopping' transport mechanism. The annealed Cu(In,Ga){sub 2}Se{sub 3.5} films present higher density of disorders than the annealed Cu(In,Ga)Se{sub 2} films for their significant Cu deficient composition.

  6. Oxygen vacancy induced room temperature ferromagnetism in (In1-xNix)2O3 thin films

    Science.gov (United States)

    Chakraborty, Deepannita; Kaleemulla, S.; Kuppan, M.; Rao, N. Madhusudhana; Krishnamoorthi, C.; Omkaram, I.; Reddy, D. Sreekantha; Rao, G. Venugopal

    2018-05-01

    Nickel doped indium oxide thin films (In1-xNix)2O3 at x = 0.00, 0.03, 0.05 and 0.07 were deposited onto glass substrates by electron beam evaporation technique. The deposited thin films were subjected to annealing in air at 250 °C, 350 °C and 450 °C for 2 h using high temperature furnace. A set of films were vacuum annealed at 450 °C to study the role of oxygen on magnetic properties of the (In1-xNix)2O3 thin films. The thin films were subjected to different characterization techniques to study their structural, chemical, surface, optical and magnetic properties. All the synthesized air annealed and vacuum annealed films exhibit body centered cubic structure without any secondary phases. No significant change in the diffraction peak position, either to lower or higher diffraction angles has been observed. The band gap of the films decreased from 3.73 eV to 3.63 eV with increase of annealing temperature from 250 °C to 450 °C, in the presence of air. From a slight decrease in strength of magnetization to a complete disappearance of hysteresis loop has been observed in pure In2O3 thin films with increasing the annealing temperature from 250 °C to 450 °C, in the presence of air. The (In1-xNix)2O3 thin films annealed under vacuum follow a trend of enhancement in the strength of magnetization to increase in temperature from 250 °C to 450 °C. The hysteresis loop does not disappear at 450 °C in (In1-xNix)2O3 thin films, as observed in the case of pure In2O3 thin films.

  7. Exponential temperature dependence of the critical transport current in Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Yom, S.S.; Hahn, T.S.; Kim, Y.H.; Chu, H.; Choi, S.S.

    1989-01-01

    We have measured the critical currents in rf-sputtered YBa 2 Cu 3 O/sub 7-x/ thin films deposited on polycrystalline yttria-stabilized zirconia substrates as a function of temperature down to 10 K. The dependence of the granular films at low temperature indicated exponential behavior which is similar to the superconductor-normal metal-superconductor (S-N-S) type tunneling junctions. For the films with a grain size of approximately 1 μm, we observed two exponential decay constants, which suggest that Josephson junctions limiting the transport critical current are possible both at the grain boundaries and at twin boundaries

  8. Growth and applications of superconducting Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Pinto, R.

    1991-01-01

    This paper attempt to highlight the important PVD techniques such as evaporation, sputtering, ion beam deposition and excimer laser ablation for the preparation of superconducting YBaCuO thin films. Since enormous amount of work has been published over the last few years, this review is not comprehensive even in PVD techniques. In the area of applications for electronics, thin film appear to be much more promising than bulk high T c superconductors. Already high J c values in the region of 4 x 10 6 A cm -2 have been realized in thin films. Resonators and transmission lines have been fabricated using 123 films showing a transmission loss significantly lower than that of copper at 77 degrees K at X-band frequencies. This review will discuss some of the important electronic applications feasible with 123 films

  9. Experimental study of Pulsed Laser Deposited Cu2ZnSnS 4 (CZTS) thin films for photovoltaic applications

    Science.gov (United States)

    Nandur, Abhishek S.

    Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.

  10. Mechanism of Crystallization and Implications for Charge Transport in Poly(3-ethylhexylthiophene) Thin Films

    KAUST Repository

    Duong, Duc T.

    2014-04-09

    In this work, crystallization kinetics and aggregate growth of poly(3-ethylhexylthiophene) (P3EHT) thin films are studied as a function of film thickness. X-ray diffraction and optical absorption show that individual aggregates and crystallites grow anisotropically and mostly along only two packing directions: the alkyl stacking and the polymer chain backbone direction. Further, it is also determined that crystallization kinetics is limited by the reorganization of polymer chains and depends strongly on the film thickness and average molecular weight. Time-dependent, field-effect hole mobilities in thin films reveal a percolation threshold for both low and high molecular weight P3EHT. Structural analysis reveals that charge percolation requires bridged aggregates separated by a distance of ≈2-3 nm, which is on the order of the polymer persistence length. These results thus highlight the importance of tie molecules and inter-aggregate distance in supporting charge percolation in semiconducting polymer thin films. The study as a whole also demonstrates that P3EHT is an ideal model system for polythiophenes and should prove to be useful for future investigations into crystallization kinetics. Recrystallization kinetics and its relationship to charge transport in poly(3-ethylhexylthiophene) (P3EHT) thin films are investigated using a combination of grazing incidence X-ray diffraction, optical absorption, and field-effect transistor measurements. These results show that thin film crystallization kinetics is limited by polymer chain reorganization and that charge percolation depends strongly on the edge-to-edge distance between aggregates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structure and optical properties of thin As{sub 2}S{sub 3}-In{sub 2}S{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, R; Pirov, J; Petkov, K [Institute of Optical Materials and Technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl.109, 1113 Sofia (Bulgaria); Tsankov, D, E-mail: rossen@clf.bas.bg [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St. bl.9, 1113 Sofia (Bulgaria)

    2011-08-03

    This paper deals with the optical properties of thin As{sub 2}S{sub 3}-In{sub 2}S{sub 3} films. The thin layers were deposited by thermal co-evaporation of As{sub 2}S{sub 3} and In{sub 2}S{sub 3}. The composition of the coatings was controlled by x-ray microanalysis; it was found to be close to the expected one. The refractive index n and optical band gap E{sub g}{sup opt} were calculated from the transmittance and reflectance spectra. The results showed that the refractive index of thin As-S films is not affected by the addition of 1 at% indium and it increases from 2.46 to 2.58 for thin film with 13 at% In. A decrease in the changes in the refractive index, {Delta}n, after exposure to light or annealing with addition of indium in arsenic sulfide is observed. To explain the influence of the indium on the photoinduced changes in the optical properties of thin As-S-In films, the glass structure was investigated by infrared spectroscopy. The calculated values of the optical constants were compared with those obtained from ellipsometric measurements.

  12. Magneto-optical properties of BiFeO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO 3 thin films. BiFeO 3 thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO 3 /air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO 3 thin films. The SPR reflectance curves obtained for prism/Au/BiFeO 3 /air structure were utilized to investigate the optical properties of BiFeO 3 thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO 3 film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO 3 film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO 3 film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T

  13. Growth of Highly Epitaxial YBa2Cu3O7-δ Films from a Simple Propionate-Based Solution

    DEFF Research Database (Denmark)

    Yue, Zhao; Torres, Pol; Tang, Xiao

    2015-01-01

    Intensive investigations have been conducted to develop epitaxial oxide thin films with superior electromagnetic performance by low-cost chemical solution deposition routes. In this paper, a novel propionate-based precursor solution without involving any other additive was proposed and employed...... to grow superconducting YBa2Cu3O7-δ (YBCO) films on LaAlO3 (LAO) single crystals. The precursor solutions are stable with a long shelf life of up to several months. Since the primary compositions are propionates after evaporating the solvent, the toxic reagents and evolved gases during solution synthesis...... and heat treatment can be eliminated completely. In this process, rapid pyrolysis and high conversation rate can also be achieved during growth of YBCO films in comparison with the conventional trifluoroacetate metal organic deposition routes. Remarkably, a 210 nm YBCO film exhibits high superconducting...

  14. Magnon dispersion in thin magnetic films

    International Nuclear Information System (INIS)

    Balashov, T; Wulfhekel, W; Buczek, P; Sandratskii, L; Ernst, A

    2014-01-01

    Although the dispersion of magnons has been measured in many bulk materials, few studies deal with the changes in the dispersion when the material is in the form of a thin film, a system that is of interest for applications. Here we review inelastic tunneling spectroscopy studies of magnon dispersion in Mn/Cu 3 Au(1 0 0) and present new studies on Co and Ni thin films on Cu(1 0 0). The dispersion in Mn and Co films closely follows the dispersion of bulk samples with negligible dependence on thickness. The lifetime of magnons depends slightly on film thickness, and decreases considerably as the magnon energy increases. In Ni/Cu(1 0 0) films the thickness dependence of dispersion is much more pronounced. The measurements indicate a considerable mode softening for thinner films. Magnon lifetimes decrease dramatically near the edge of the Brillouin zone due to a close proximity of the Stoner continuum. The experimental study is supported by first-principles calculations. (paper)

  15. Magnon dispersion in thin magnetic films.

    Science.gov (United States)

    Balashov, T; Buczek, P; Sandratskii, L; Ernst, A; Wulfhekel, W

    2014-10-01

    Although the dispersion of magnons has been measured in many bulk materials, few studies deal with the changes in the dispersion when the material is in the form of a thin film, a system that is of interest for applications. Here we review inelastic tunneling spectroscopy studies of magnon dispersion in Mn/Cu3Au(1 0 0) and present new studies on Co and Ni thin films on Cu(1 0 0). The dispersion in Mn and Co films closely follows the dispersion of bulk samples with negligible dependence on thickness. The lifetime of magnons depends slightly on film thickness, and decreases considerably as the magnon energy increases. In Ni/Cu(1 0 0) films the thickness dependence of dispersion is much more pronounced. The measurements indicate a considerable mode softening for thinner films. Magnon lifetimes decrease dramatically near the edge of the Brillouin zone due to a close proximity of the Stoner continuum. The experimental study is supported by first-principles calculations.

  16. Neuromorphic transistor achieved by redox reaction of WO3 thin film

    Science.gov (United States)

    Tsuchiya, Takashi; Jayabalan, Manikandan; Kawamura, Kinya; Takayanagi, Makoto; Higuchi, Tohru; Jayavel, Ramasamy; Terabe, Kazuya

    2018-04-01

    An all-solid-state neuromorphic transistor composed of a WO3 thin film and a proton-conducting electrolyte was fabricated for application to next-generation information and communication technology including artificial neural networks. The drain current exhibited a 4-order-of-magnitude increment by redox reaction of the WO3 thin film owing to proton migration. Learning and forgetting characteristics were well tuned by the gate control of WO3 redox reactions owing to the separation of the current reading path and pulse application path in the transistor structure. This technique should lead to the development of versatile and low-power-consumption neuromorphic devices.

  17. Synthesis and characterization of structural, morphological and photosensor properties of Cu0.1Zn0.9S thin film prepared by a facile chemical method

    Science.gov (United States)

    Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    The Cu0.1Zn0.9S thin film was grown by facile chemical bath deposition (CBD) method on glass substrates at 60°C. The structural, morphological, photosensor properties of the as-grown thin film has been investigated. The structural and phase confirmation of the as-grown thin film was carried out by X-ray diffraction (XRD) technique and Raman spectroscopy. The FE-SEM images showed that the thin films are well covered with material on an entire glass substrate. From the optical absorption spectrum, the direct band gap energy for the Cu0.1Zn0.9S thin film was found to be ˜3.16 eV at room temperature. The electrical properties were measured at room temperature in the voltage range ±2.5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜72 % for 260 W.

  18. An investigation on silar Cu(In1-xAlx)Se2 thin films

    International Nuclear Information System (INIS)

    Dhanam, M.; Kavitha, B.; Velumani, S.

    2010-01-01

    Cu(In 1-x Al x )Se 2 [CIAS] thin films were prepared for the first time by successive ionic layer adsorption and reaction [SILAR] method with two different dipping cycles. The thickness of the films was measured by gravimetric technique. The structural, morphological, compositional, optical transition and electrical investigation of SILAR CIAS thin films with respect to two different dipping cycles have been discussed in this paper.

  19. Synthesis and characterisation of Cu{sub 2}ZnSnSe{sub 4} thin films prepared via a vacuum evaporation-based route

    Energy Technology Data Exchange (ETDEWEB)

    Volobujeva, O., E-mail: v.olga@staff.ttu.ee; Bereznev, S.; Raudoja, J.; Otto, K.; Pilvet, M.; Mellikov, E.

    2013-05-01

    Different sequentially stacked binary chalcogenide layers (CuSe, ZnSe, and SnSe) deposited by vacuum evaporation onto molybdenum covered soda-lime glass substrates were used as precursors to form Cu{sub 2}ZnSnSe{sub 4} films. The influence of the stacked binary layer sequence, substrate temperature, both the duration and speed of deposition and the post deposition treatment atmosphere on the structural and the morphological parameters of the Cu{sub 2}ZnSnSe{sub 4} thin films was studied. Our results indicate the possibility of replacing the Se{sub 2} selenisation with a thermal treatment in an SnSe{sub 2} atmosphere to avoid the selenisation of the Mo substrate and MoSe{sub 2} formation. This SnSe{sub 2} treatment forms p-type Cu{sub 2}ZnSnSe{sub 4} films with an optical band-gap of 1.14 eV and a solar cell structure with an efficiency of up to 3%. - Highlights: ► Cu{sub 2}ZnSnSe{sub 4} thin films were grown using binary precursors and selenisation. ► Composition and morphology were studied in dependence of selenisation atmosphere. ► The use of SnSe{sub 2} selenisation allows to avoid Mo substrate selenisation. ► The high quality of films is indicated by the value of their E{sub g} = 1.14 eV. ► Cu{sub 2}ZnSnSe{sub 4} thin films were in p-type conductivity and were realized as solar cells.

  20. Giant Polarization Rotation in BiFeO3/SrTiO3 Thin Films.

    Science.gov (United States)

    Langner, M. C.; Chu, Y. H.; Martin, L. M.; Gajek, M.; Ramesh, R.; Orenstein, J.

    2008-03-01

    We use optical second harmonic generation to probe dynamics of the ferroelectric polarization in (111) oriented BiFeO3 thin films grown on SrTiO3 substrates. The second harmonic response indicates 3m point group symmetry and is consistent with a spontaneous polarization normal to the surface of the film. We measure large changes in amplitude and lowering of symmetry, consistent with polarization rotation, when modest electric fields are applied in the plane of the film. At room temperature the rotation is an order of magnitude larger than expected from reported values of the dielectric constant and increases further (as 1/T) as temperature is lowered. We propose a substrate interaction model to explain these results.

  1. Characterization of as-grown and Ge-ion implanted CuGaSe{sub 2} thin films prepared by the CCSVT technique

    Energy Technology Data Exchange (ETDEWEB)

    Doka Yamigno, Serge

    2006-08-15

    Single phase polycrystalline thin films of CuGaSe{sub 2} in the compositional range of 1.0=[Ga]/[Cu]=1.3, corresponding to a thickness ranging from 1.6 {mu}m to 1.9 {mu}m deposited onto plain or Mo-coated soda lime glass (SLG) were prepared and found to be polycrystalline with a strongly preferred <221> orientation. A combination of microstructural investigations of the films by TEM, EDX within the TEM and ERDA measurements has shown that CuGaSe{sub 2} thin films possess high crystalline bulk quality with Cu, Ga and Se homogeneously distributed within the CuGaSe{sub 2} bulk. One of the main result of this present work was found to be the accumulation of Ga in the region of the CuGaSe2/Mo interface and the dependence of the CuGaSe{sub 2} surface composition on the integral [Ga]/[Cu] ratio in the film, namely Ga- and Cu-poor, Se-rich surface for stoichiometric films; and Cu- poor, and Ga- and Se- rich surface for increasing [Ga]/[Cu] ratios. These observations were also supported by optical measurements carried out through photoluminescence and absorption measurements. In order to gain a better understanding of the influence of the extrinsic doping of the CuGaSe{sub 2} films and why many attempts towards the type inversion in the p-type CuGaSe2 compounds by varying the composition or by doping with extrinsic defects have failed, ion implantation was used to introduce Ge into CuGaSe{sub 2}. Photoluminescence of the Ge containing films has evidenced the presence of new defects such as donor levels in the band gap. Electron spin resonance measurements of the Ge- containing CuGaSe2 films has highlighted an additional ESR resonance observed at g=2.003 ascribed to donors. However, Curie paramagnetism up to room temperature for all the Ge implanted films, characteristic of localized states has been observed for this resonance. (orig.)

  2. Multiferroic BiFeO{sub 3} thin films: Structural and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Z. [Physics Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo (Egypt); Atta, A. [National Center for Radiation Research and Technology (NCRRT), Nasr City, Cairo (Egypt); Abbas, Y. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Sedeek, K.; Adam, A.; Abdeltwab, E. [Physics Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo (Egypt)

    2015-02-27

    BiFeO{sub 3} (BFO) film has been deposited on indium tin oxide (ITO) substrate by a simple sol–gel spin-coating technique. The crystal phase composition, surface morphology, topography and magnetization measurements of the BFO thin film were investigated using grazing incidence X-ray diffraction (GIXRD), scanning electronic microscope (SEM), atomic force microscope and vibrating sample magnetometer, respectively. GIXRD analysis revealed that the film was fully crystallized and no impure phase was observed. Cross-section SEM results indicated that compact and homogeneous BFO thin film was deposited on ITO with a thickness of about 180 nm. Moreover, most of A and E-symmetry normal modes of R3c BFO were assigned by Raman spectroscopy. We report here that the pure phase BFO film shows ferromagnetism at room temperature with remarkably high saturation magnetization of 63 kA m{sup −1}. Our results are discussed mainly in correlation with the condition of processing technique and destruction of the spiral spin cycloid at interface layers and grain boundaries. - Highlights: • Multiferroic BiFeO{sub 3} (BFO) thin film was prepared by sol–gel spin-coating method. • BFO film w asdeposited on indium tin oxide substrate with a thickness of 180 nm. • The film exhibits pure rhombohedral perovskite structure. • High saturation magnetization was recorded for our film at room temperature.

  3. Effects of annealing on the properties of atomic layer deposited Ru thin films deposited by NH{sub 3} and H{sub 2} as reactants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Joon; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr

    2016-08-01

    Atomic layer deposition (ALD) of Ru using a non-oxidizing reactant is indispensable considering its application as a seed layer for Cu electroplating and a bottom electrode for dynamic random access memory capacitors. In this study, ALD-Ru films were deposited using a sequential supply of dicarbonyl-bis(5-methyl-2,4-hexanediketonato) Ru(II) (C{sub 16}H{sub 22}O{sub 6}Ru) and potential non-oxidizing reducing agents, NH{sub 3} or H{sub 2}, as the reactants at a substrate temperature of 250 °C, and the effects of post-annealing in a H{sub 2} ambient on the film properties were investigated. The highly conformal deposition of Ru films was possible using the present reaction scheme but its resistivity was as high as ~ 750 μΩ-cm due to carbon incorporation into the film and the formation of an amorphous structure. Low temperature annealing at 300 °C at H{sub 2} ambient after deposition was found to improve the properties significantly in terms of the resistivity, impurities contents and crystallinity. For example, the film resistivity was decreased drastically to ~ 40 μΩ-cm with both the release of C in the film and crystallization after annealing based on secondary ion mass spectrometry and transmission electron microscopy, whereas perfect step coverage at a very small-sized dual trench (aspect ratio: ~ 3, the top opening size of 45 nm and bottom size of 20 nm) was maintained after annealing. - Highlights: • Ru thin films were deposited by atomic layer deposition (ALD) using NH{sub 3} and H{sub 2} molecules. • Effects of low temperature (300 °C) post-annealing on the film properties were investigated. • Post annealing improved the properties of ALD-Ru films. • Perfect step coverage of ALD-Ru was confirmed at trench structure (top opening width: 45 nm).

  4. Growth and characterization of chalcostibite CuSbSe2 thin films for photovoltaic application

    Science.gov (United States)

    Tiwari, Kunal J.; Vinod, Vijay; Subrahmanyam, A.; Malar, P.

    2017-10-01

    Bulk copper antimony selenide was synthesized using mechanical alloying from the elemental precursors. Phase formation in milled powders was studied using x-ray diffraction (XRD) and Raman spectroscopy studies. The synthesized bulk source after cold compaction was used as source material for thin film deposition by e-beam evaporation. Thin film deposition was carried out at various e-beam current values (Ib ∼30, 40 and 50 mA) and at a substrate temperature of 200 °C. Near stoichiometric CuSbSe2 thin films were obtained for Ib values closer to 50 mA and post annealing at a temperature of 380 °C for 1 h. Thin films deposited using above conditions were found to exhibit an absorption coefficient (α) values of >105 cm-1 and a band gap value ∼1.18 eV that is closer to the reported band gap for CuSbSe2 compound.

  5. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivas Puli, Venkata, E-mail: pvsri123@gmail.com [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Kumar Pradhan, Dhiren [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Gollapudi, Sreenivasulu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Coondoo, Indrani [Department of Materials and Ceramic and CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Panwar, Neeraj [Department of Physics, Central University of Rajasthan, Bandar Sindri, Kishangarh 305801, Rajasthan (India); Adireddy, Shiva; Chrisey, Douglas B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2014-11-15

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO{sub 3} (BFO) thin films have been deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d{sub 33}) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO{sub 3} thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO{sub 3} thin films. • High magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO{sub 3} thin films. • A notable piezoelectric constant d{sub 33} ∼94 pm/V was found in BiFeO{sub 3} thin films.

  6. Field-effect measurements of mobility and carrier concentration of Cu2S colloidal quantum dot thin films after ligand exchange

    International Nuclear Information System (INIS)

    Brewer, Adam S.; Arnold, Michael S.

    2014-01-01

    Colloidal quantum dots (CQDs) of copper sulfide (Cu 2 S), an earth-abundant semiconductor, have a number of intriguing applications that require knowledge of their electrical properties. Depending on stoichiometry, mobility, and surface treatment, applications include photoabsorbers for solar cells, tunable plasmonics, and counter-electrodes for polysulfate electrolytes. However, there have not been any direct measurements of electrical properties in Cu 2 S CQD thin films. Here, we exchange as synthesized dodecanethiol ligands with short ethanedithiol or ethylenediamine ligands to form thin films of coupled Cu 2 S CQDs. The mobility and carrier concentration were found to vary by ligand treatment from 10 −5 cm 2 /Vs and 10 19 holes/cm 3 for ethanedithiol ligands to 10 −3 cm 2 /Vs and 10 20 holes/cm 3 for ethylenediamine. These results are consistent with the carrier concentrations inferred from sub-bandgap surface-plasmon-resonances measured by infrared spectroscopy. These results will be useful when designing Cu 2 S materials for future applications. - Highlights: • Colloidal Cu2S quantum dots were synthesized and characterized. • Ligand exchange was performed to alter the Cu2S nanocrystal properties. • Ligand exchange was studied using photoluminescence and infrared spectroscopy. • Field effect mobility and carrier concentration were directly measured. • Carrier concentration was compared to estimates from surface plasmon resonances

  7. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    Science.gov (United States)

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  8. Reactive pulsed laser deposition of Cu2ZnSnS4 thin films in H2S

    International Nuclear Information System (INIS)

    Surgina, G.D.; Zenkevich, A.V.; Sipaylo, I.P.; Nevolin, V.N.; Drube, W.; Teterin, P.E.; Minnekaev, M.N.

    2013-01-01

    Cu 2 ZnSnS 4 (CZTS) thin films have been grown by reactive pulsed laser deposition in H 2 S atmosphere, combining the alternate ablation from the metallic (Cu) and alloyed (Zn x Sn) targets at room temperature. The morphological, structural and optical properties of as grown CZTS thin films with varying compositions as well as upon annealing in N 2 atmosphere are investigated by Rutherford backscattering spectrometry, X-ray diffraction, Raman spectroscopy and optical spectrophotometry. The chemical bonding in the “bulk” of the CZTS films is elucidated via hard X-ray photoemission spectroscopy measurements. The formation of the good quality stoichiometric polycrystalline CZTS films is demonstrated upon optimization of the growth parameters. - Highlights: ► The new method of Cu 2 ZnSnS 4 (CZTS) thin films growth in H 2 S was realized. ► CZTS films were grown by pulsed laser deposition from Cu and alloyed Zn–Sn targets. ► The effect of the processing parameters on the CZTS properties was investigated. ► The chemical bonding in the “bulk” of CZTS films was studied

  9. Species dependence of [64Cu]Cu-Bis(thiosemicarbazone) radiopharmaceutical binding to serum albumins

    International Nuclear Information System (INIS)

    Basken, Nathan E.; Mathias, Carla J.; Lipka, Alexander E.; Green, Mark A.

    2008-01-01

    Introduction: Interactions of three copper(II) bis(thiosemicarbazone) positron emission tomography radiopharmaceuticals with human serum albumin, and the serum albumins of four additional mammalian species, were evaluated. Methods: 64 Cu-labeled diacetyl bis(N 4 -methylthiosemicarbazonato)copper(II) (Cu-ATSM), pyruvaldehyde bis(N 4 -methylthiosemicarbazonato)copper(II) (Cu-PTSM) and ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) were synthesized and their binding to human, canine, rat, baboon and porcine serum albumins quantified by ultrafiltration. Protein binding was also measured for each tracer in human, porcine, rat and mouse serum. Results: The interaction of these neutral, lipophilic copper chelates with serum albumin is highly compound- and species-dependent. Cu-PTSM and Cu-ATSM exhibit particularly high affinity for human serum albumin (HSA), while the albumin binding of Cu-ETS is relatively insensitive to species. At HSA concentrations of 40 mg/ml, '% free' (non-albumin-bound) levels of radiopharmaceutical were 4.0±0.1%, 5.3±0.2% and 38.6±0.8% for Cu-PTSM, Cu-ATSM and Cu-ETS, respectively. Conclusions: Species-dependent variations in radiopharmaceutical binding to serum albumin may need to be considered when using animal models to predict the distribution and kinetics of these compounds in humans

  10. Effects of Chlorine Ions on the Dissolution Mechanism of Cu Thin Film in Phosphoric Acid Based Solution.

    Science.gov (United States)

    Seo, Bo-Hyun; Kim, Byoung O; Seo, Jong Hyun

    2015-10-01

    The dissolution mechanisms of Cu thin film were studied with a focus on the effect of chlorine ion concentrations in mixture solutions of phosphoric and nitric acid. The dissolution behaviors of Cu thin film were investigated by using potentio-dynamic curves and impedance spectroscopy with varying chlorine ion concentrations. The copper dissolution rate decreased and as a result of this change, CuCl, salt films formed on the Cu surface in the presence of chlorine ions in the mixture solution. Such behavior was interpreted as being competitive adsorption between chlorine and nitrate ions on the copper surface. The passive oxide film on the Cu surface was further investigated in detail using X-ray photoelectron spectroscopy in both the absence and presence of differing chlorine ion concentrations.

  11. Ferroelectric properties of NaNbO3-BaTiO3 thin films deposited on SrRuO3/(001)SrTiO3 substrate by pulsed laser deposition

    International Nuclear Information System (INIS)

    Yamazoe, Seiji; Oda, Shinya; Sakurai, Hiroyuki; Wada, Takahiro; Adachi, Hideaki

    2009-01-01

    (NaNbO 3 ) 1-x (BaTiO 3 ) x (NN-xBT) thin films with low BaTiO 3 (BT) concentrations x (x=0.05 and 0.10) were fabricated on SrRuO 3 /(001)SrTiO 3 (SRO)/(001)STO) substrate by pulsed laser deposition (PLD). X-ray diffraction pattern (XRD) and transmission electron diffraction pattern (TED) showed that NN-0.10BT thin film was epitaxially grown on SRO/(001)STO substrate with a crystallographic relationship of [001] NN-xBT parallel [001] STO . From reciprocal space maps, the lattice parameters of the out-of-plane direction of NN-xBT thin films became larger with an increase in BT concentration, although the lattice parameter of the in-plane was hardly changed by the BT concentration. The value of relative dielectric constant ε r of the NN-xBT thin films were increased with BT concentration. The ε r and the dielectric loss tanδ of NN-0.10BT were 1220 and 0.02 at 1 kHz, respectively. The P-E hysteresis loops of the NN-xBT thin films showed clear ferroelectricity. Although the value of remanent polarization P r decreased with the BT concentration, the behaviors of ε r , P r , and coercive electric field E c of the NN-xBT thin films against the BT concentration accorded with those of NN-xBT ceramics, in which NN-0.10BT ceramics exhibited the largest piezoelectric property. Therefore, the NN-0.10BT thin film is expected to show high piezoelectricity. (author)

  12. Study of epitaxial YBa2Cu3Ox films

    International Nuclear Information System (INIS)

    Lee, S.G.; Chi, C.C.; Koren, G.; Gupta, A.; Segmuller, A.

    1990-01-01

    In this paper, the authors present a systematic study of epitaxial YBa 2 Cu 3 O x films laser ablated on Y-cut LiNbO 3 substrates. X-ray diffraction pattern indicates that the c-axis is perpendicular to the substrate plane and the (110) direction of the film is parallel to the (110) of the substrate with two domains with the (110) as a mirror plane. Resistivity of the film shows a typical metallic behavior in the normal state with a sharp transition at 92K. The effects of oxygen deficiency on the resistivity are also studied. Oxygen content is controlled by annealing the sample either in low oxygen pressure or in vacuum and estimated from the c-axis lattice parameter determined by X-ray diffraction. As oxygen is depleted gradually, the film resistivity shows metallic, semiconducting, and eventually insulating behaviors. Superconducting percolation phenomenon is observed for the semiconducting sample at low temperatures

  13. Grain-size distributions and grain boundaries of chalcopyrite-type thin films

    International Nuclear Information System (INIS)

    Abou-Ras, D.; Schorr, S.; Schock, H.W.

    2007-01-01

    CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 and CuInS 2 thin-film solar absorbers in completed solar cells were studied in cross section by means of electronbackscatter diffraction. From the data acquired, grain-size distributions were extracted, and also the most frequent grain boundaries were determined. The grain-size distributions of all chalcopyrite-type thin films studied can be described well by lognormal distribution functions. The most frequent grainboundary types in these thin films are 60 - left angle 221 right angle tet and 71 - left angle 110 right angle tet (near) Σ3 twin boundaries. These results can be related directly to the importance of {112} tet planes during the topotactical growth of chalcopyrite-type thin films. Based on energetic considerations, it is assumed that the most frequent twin boundaries exhibit a 180 - left angle 221 right angle tet constellation. (orig.)

  14. Effect of double pinning mechanism in BSO-added GdBa2Cu3O7-x thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J. Y.; Jeon, H. K.; Kang, B. [Dept. of Physics, Chungbuk National University, Cheongju (Korea, Republic of); Lee, J. M.; Kang, W. N. [Dept. of Physics, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-09-15

    We investigated the effect of self-assembled BSO nano-defects as pinning centers in BSO-added GdBCO films when the thicknesses of films were varied. 3.5 vol. % BSO-added GdBCO films with varying thicknesses from 200 nm to 1000 nm were deposited on SrTiO3 (STO) substrate by using pulsed laser deposition (PLD) process. For the films with thicknesses of 400 nm and 600 nm, ‘anomaly shoulders’ in Jc - H characteristic curves were observed near the matching field. The anomaly shoulders appeared in the field dependence of Jc may be attributed to the existence of double pinning mechanisms in thin films. The fit to the pinning force density as a function of reduced field h (H/Hirr) using the Dew-Hughes’ scaling law shows that both the 400 nm- and the 600 nm-thick films have double pinning mechanisms while the other films have a single pinning mechanism. These results indicate that the self-assembled property of BSO result in different role as pinning centers with different thickness.

  15. Formation dynamics of FeN thin films on Cu(100)

    KAUST Repository

    Heryadi, Dodi; Schwingenschlö gl, Udo

    2012-01-01

    To investigate the structural and magnetic properties of thin films of FeN we have performed ab initio molecular dynamics simulations of their formation on Cu(100) substrates. The iron nitride layers exhibit a p4gm(2 × 2) reconstruction and order

  16. Optical properties of thin Cu films as a function of substrate temperature

    CERN Document Server

    Savaloni, H

    2003-01-01

    Copper films (250 nm) deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometry (single wavelength of 589.3 nm) and spectrophotometry in the spectral range of 200-2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu films to obtain the optical constants of the films, while ellipsometry measurement was carried out as an independent method. The influence of substrate temperature on the microstructure of thin metallic films [Structure Zone Model ] is well established. The Effective Medium Approximation analysis was used to establish the relationship between the Structure Zone Model and Effective Medium Approximation predictions. Good agreements between Structure Zone Model as a function of substrate temperature and the values of volume fraction of voids obtained from Effective Medium Temperature analysis, are obtained; by increasing the substrate temperature the separation of the metallic grains decrease hence t...

  17. Interface structure and electronic properties of SrTiO3 and YBa2Cu3O7-δ crystals and thin films

    International Nuclear Information System (INIS)

    Thiess, S.

    2007-01-01

    Two new extensions of the X-ray standing wave (XSW) technique, made possible by the intense highly collimated X-ray beams from undulators at the ESRF, are described in this thesis. First, the XSW method was applied in a structural study to solve the nucleation mechanism of the high temperature superconductor YBa 2 Cu 3 O 7-δ on the (001) surface of SrTiO 3 . Second, the valence electronic structures of SrTiO 3 and YBa 2 Cu 3 O 7-δ were investigated. Finally, recent developments in the field of photoelectron spectroscopy in the hard X-ray region are described. The X-ray standing wave method is used in combination with fluorescence, Auger or photoelectron spectroscopy and lends very high spatial resolution power to these analytical techniques. Previously, the XSW method has been used for structure determination of surfaces and interfaces. The currently available X-ray intensities permit extensions to the XSW technique. Two recently established applications, described in this thesis, are XSW real space imaging and XSW valence electronic structure analysis. XSW real space imaging was employed to analyse the atomic structure of 0.5 and 1.0 layers of YBa 2 Cu 3 O 7-δ deposited on SrTiO 3 (001). Three-dimensional images of the atomic distributions were reconstructed for each of the elements from experimentally determined Fourier components of the atomic distribution functions. The images confirmed the formation of a perovskite precursor phase prior to the formation of the YBa 2 Cu 3 O 7-δ phase during the growth of the first monolayer of the film. XSW valence electronic structure analysis applied to SrTiO 3 identified the valence band contributions arising from the strontium, titanium, and oxygen sites of the crystal lattice. Relations between the site-specific valence electronic structure and the lattice structure were established. The experimental results agree very well with predictions by state-of-the-art ab initio calculations. X-ray absorption cross sections for

  18. Investigation of CaTiO3:Pr3+ thin films deposited by radiofrequency reactive magnetron sputtering for electroluminescence application

    International Nuclear Information System (INIS)

    Sarakha, L; Bousquet, A; Tomasella, E; Boutinaud, P; Mahiou, R

    2010-01-01

    In this report we successfully deposited thin films of CaTiO 3 :Pr 3+ by radiofrequency magnetron sputtering. The films were studied and we tried to understand the evolution of their optical and electrical properties. We noticed that the annealing temperature and the deposition pressures have an important influence on these properties. Thin films with good optical and electrical properties have been obtained. These films are transparent and are characterized by an intense red photoluminescence and a low fixed charge density. They are well dedicated for electroluminescence purposes.

  19. Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure

    Science.gov (United States)

    Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui

    2018-05-01

    Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.

  20. Crystallized InBiS3 thin films with enhanced optoelectronic properties

    Science.gov (United States)

    Ali, N.; Hussain, Arshad; Ahmed, R.; Omar, M. Firdaus Bin; Sultan, M.; Fu, Yong Qing

    2018-04-01

    In this paper, a one-step thermal evaporation approach was used for fabrication of indium bismuth sulphide thin films, and the synergetic effects of co-evaporation of two sources (indium granules and Bi2S3 powders) were investigated using different characterization techniques. X-ray diffraction (XRD) analysis confirmed the crystalline orthorhombic structure for the post-annealed samples. Surface roughness and crystal size of the obtained film samples were increased with increasing annealing temperatures. Analysis using X-ray photoelectron spectroscopy showed the formation of the InBiS3 structure for the obtained films, which is also confirmed by the XRD results. The optical absorption coefficient value of the annealed samples was found to be in the order of 105 cm-1 in the visible region of the solar spectrum. The optical band gap energy and electrical resistivity of the fabricated samples were observed to decrease (from 2.2 to 1.3 eV, and from 0.3 to 0.01 Ω-cm, respectively) with increasing annealing temperatures (from 200 to 350 °C), indicating the suitability of the prepared InBiS3 thin films for solar cell applications.

  1. Silver loaded WO{sub 3-x}/TiO{sub 2} composite multifunctional thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dunnill, Charles W.; Noimark, Sacha; Parkin, Ivan P., E-mail: I.P.Parkin@ucl.ac.uk

    2012-06-30

    Multifunctional WO{sub 3-x}-TiO{sub 2} composite thin films have been prepared by sol-gel synthesis and shown to be good visible light photocatalysts whilst retaining a desirable underlying blue colouration. The WO{sub 3-x}-TiO{sub 2} composite thin films were further enhanced using silver nanoparticles synthesised in-situ on the surface from the photo-degradation of silver nitrate solution. Thin films were characterised using X-ray diffraction, Raman, Scanning electron microscopy and UV-visible spectroscopy and shown to photo degrade stearic acid, using white light {lambda} = 420-800 nm. - Highlights: Black-Right-Pointing-Pointer WO{sub 3-X} TiO{sub 2} composite thin films were synthesised by sol-gel methods. Black-Right-Pointing-Pointer Blue tinted glass is desirable for the value added glass industry. Black-Right-Pointing-Pointer Silver nanoparticle island formation enhances the activity of the films. Black-Right-Pointing-Pointer Blue tinted 'value added' coated glass is now possible.

  2. Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films

    Science.gov (United States)

    White, J. S.; Bator, M.; Hu, Y.; Luetkens, H.; Stahn, J.; Capelli, S.; Das, S.; Döbeli, M.; Lippert, Th.; Malik, V. K.; Martynczuk, J.; Wokaun, A.; Kenzelmann, M.; Niedermayer, Ch.; Schneider, C. W.

    2013-07-01

    Single phase and strained LuMnO3 thin films are discovered to display coexisting ferromagnetic and antiferromagnetic orders. A large moment ferromagnetism (≈1μB), which is absent in bulk samples, is shown to display a magnetic moment distribution that is peaked at the highly strained substrate-film interface. We further show that the strain-induced ferromagnetism and the antiferromagnetic order are coupled via an exchange field, therefore demonstrating strained rare-earth manganite thin films as promising candidate systems for new multifunctional devices.

  3. Investigation of the optical property and structure of WO3 thin films with different sputtering depositions

    Science.gov (United States)

    Chen, Hsi-Chao; Jan, Der-Jun; Chen, Chien-Han; Huang, Kuo-Ting; Lo, Yen-Ming; Chen, Sheng-Hui

    2011-09-01

    The purpose of this research was to compare the optical properties and structure of tungsten oxide (WO3) thin films that was deposited by different sputtering depositions. WO3 thin films deposited by two different depositions of direct current (DC) magnetron sputtering and pulsed DC sputtering. A 99.95% WO3 target was used as the starting material for these depositions. These WO3 thin films were deposited on the ITO glass, PET and silicon substrate by different ratios of oxygen and argon. A shadow moiré interferometer would be introduced to measure the residual stress for PET substrate. RF magnetron sputtering had the large residual stress than the other's depositions. A Raman spectrum could exhibit the phase of oxidation of WO3 thin film by different depositions. At the ratio of oxygen and argon was about 1:1, and the WO3 thin films had the best oxidation. However, it was important at the change of the transmittance (ΔT = Tbleached - Tcolored) between the coloring and bleaching for the smart window. Therefore, we also found the WO3 thin films had the large variation of transmittance between the coloring and bleaching at the gas ratios of oxygen and argon of 1:1.

  4. Reduction of secondary phases in Cu{sub 2}SnSe{sub 3} absorbers for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zeguo, E-mail: tangzg@fc.ritsumei.ac.jp [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga (Japan); Nukui, Yuki; Kosaka, Kiichi; Ashida, Naoki; Uegaki, Hikaru; Minemoto, Takashi [College of Science and Engineering, Ritsumeikan University, Shiga (Japan)

    2014-09-01

    Highlights: • Cu{sub 2}SnSe{sub 3} thin films for absorber of solar cell are fabricated by selenization of Cu–Sn precursors. • Secondary phase of Cu{sub 2–x}Se can be suppressed via using Se and SnSe mixture powders as Se source. • Selective etching of secondary phase of Cu{sub 2–x}Se is realized by potassium cyanide solution. • Cu{sub 2–x}Se rather than SnSe makes major contribution to the high carrier concentration of CTSe films. - Abstract: The creation of secondary phases, such as Cu{sub 2−x}Se and SnSe, and their influence on electrical properties of Cu{sub 2}SnSe{sub 3} (CTSe) thin films fabricated by selenization of Cu–Sn metal precursors are investigated. The Cu{sub 2−x}Se content in CTSe films is estimated via deconvolution of grazing incidence X-ray diffraction (GIXRD) patterns, and the results suggest that the Cu{sub 2−x}Se content increases with the increasing Cu/Sn ratio in metal precursors. We also found that using Se and SnSe mixture powders as Se source is an effective approach to suppress the creation of Cu{sub 2−x}Se secondary phase. Meanwhile, selective etching of Cu{sub 2−x}Se is realized by potassium cyanide (KCN) solution. Hall measurement results reveal that the secondary phase of Cu{sub 2−x}Se rather than SnSe makes major contribution to the high carrier concentration (larger than 10{sup 18} cm{sup −3}) of CTSe films. The approach to further decrease the carrier concentration in CTSe films is discussed.

  5. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

    Science.gov (United States)

    Jin, Chunyu; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-07

    Cu2ZnSnSe4 is a prospective material as an absorber in thin film solar cells due to its many advantages including direct band gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe nanoparticles have been synthesized by the hot-injection method using bis-(triethylsilyl)selenide [(Et3Si)2Se] as the selenium source for the first time. Energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase polycrystalline with their size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements ruled out the existence of secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied by Raman spectroscopy. UV-vis-NIR data indicate that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for photovoltaic applications.

  6. Photoluminescence in Spray Pyrolysis Deposited β-In2S3 Thin Films

    Science.gov (United States)

    Jayakrishnan, R.

    2018-04-01

    Spray pyrolysis deposited In2S3 thin films exhibit two prominent photoluminescent emissions. One of the emissions is green in color and centered at around ˜ 540 nm and the other is centered at around ˜ 690 nm and is red in color. The intensity of the green emission decreases when the films are subjected to annealing in air or vacuum. The intensity of red emission increases when films are air annealed and decreases when vacuum annealed. Vacuum annealing leads to an increase in work function whereas air annealing leads to a decrease in work function for this thin film system relative to the as deposited films indicating changes in space charge regions. Surface photovoltage analysis using a Kelvin probe leads to the conclusion that inversion of band bending occurs as a result of annealing. Correlating surface contact potential measurements using a Kelvin probe, x-ray photoelectron spectroscopy and photoluminescence, we conclude that the surface passivation plays a critical role in controlling the photoluminescence from the spray pyrolysis deposited for In2S3 thin films.

  7. Ba{sub y}Sr{sub 1−y}TiO{sub 3} buffer layers for strain tuning of infinite-layer Sr{sub 1−x}La{sub x}CuO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Keita, E-mail: sakuma.keita@d.mbox.nagoya-u.ac.jp; Ito, Masataka; He, Yilun; Hajiri, Tetsuya; Ueda, Kenji; Asano, Hidefumi

    2016-08-01

    We report on the precise tuning of lattice strain in an infinite-layer electron-doped high temperature superconductor Sr{sub 1−x}La{sub x}CuO{sub 2} (SLCO; a{sub SLCO} = 0.3949 nm for x = 0.1), which is a perovskite-related oxide, using perovskite BaTiO{sub 3}–SrTiO{sub 3} (BSTO; Ba{sub y}Sr{sub 1−y}TiO{sub 3}) buffer layers. The BSTO buffer layers formed on (001) (La{sub 0.18}Sr{sub 0.82})(Al{sub 0.59}Ta{sub 0.41})O{sub 3} substrates by magnetron sputtering were fully relaxed with high crystalline quality due to high oxygen partial pressure deposition and post annealing at 950 °C. The lattice constants of the BSTO buffer layers could be controlled in the range of 0.3926–0.3973 nm by changing the Ba content (y = 0.2–0.7). These BSTO buffer layers allow coherent growth of SLCO thin films, and a clear dependence of the superconducting transition temperature on the lattice strain was observed. The fabrication of these BSTO/superconductor heterostructures may provide novel devices composed of functional perovskite thin films, in addition to a general approach for the precise control of lattice strain in functional perovskite thin films. - Highlights: • Ba{sub y}Sr{sub 1−y}TiO{sub 3} buffer layers were developed for the strain tuning of perovskite-related oxides. • Strain effect in Sr{sub 1−x}La{sub x}CuO{sub 2} was investigated by using Ba{sub y}Sr{sub 1−y}TiO{sub 3} buffer layers. • Ba{sub y}Sr{sub 1−y}TiO{sub 3} buffer layers can be used to tune the strain in other perovskite oxides.

  8. Orientation control of chemical solution deposited LaNiO3 thin films

    International Nuclear Information System (INIS)

    Ueno, Kengo; Yamaguchi, Toshiaki; Sakamoto, Wataru; Yogo, Toshinobu; Kikuta, Koichi; Hirano, Shin-ichi

    2005-01-01

    High quality LaNiO 3 (LNO) thin films with preferred orientation could be synthesized on Pt/Ti/SiO 2 /Si substrates at 700 deg. C using the chemical solution deposition method. The homogeneous and stable LNO precursor solutions were prepared using lanthanum isopropoxide and nickel (II) acetylacetonate in a mixed solvent of absolute ethanol and 2-methoxyethanol. The oriented LNO thin films exhibit metallic electro-conduction, and their resistivity at room temperature is sufficiently low for making them an alternative electrode material for functional ceramic thin films

  9. Crystalline ordered states of CuIn1−xGaxSe2 (x = 0, 0.3, and 1.0) thin-films on different substrates investigated by Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Jeong, A.R.; Jo, W.; Song, M.; Yoon, S.

    2012-01-01

    Structural properties of Cu(In,Ga)Se 2 absorber layers have been examined for photovoltaic applications. Thin-films with three different chemical compositions, CuInSe 2 (CIS), Cu(In,Ga)Se 2 (CIGS) and CuGaSe 2 (CGS), were grown by co-evaporation on two kinds of substrates: Mo-coated soda-lime glass and bare soda-lime glass. Intriguing morphology and grain-growth behaviors were found in the surface of the films. X-ray diffraction of the films exhibited phase formation of the stoichiometric chalcopyrite phase of the materials while signs of secondary phases like Cu 2 Se and Cu–Se 2 were also observed. The optical transmittance of the films was measured to obtain their optical bandgaps, which were well matched with the bulk values of CIS, CIGS, and CGS, which are 1.1, 1.4, and 1.7 eV, respectively. Using Raman scattering spectroscopy, the A 1 mode was observed to shift from 177 cm −1 for CIS to 189 cm −1 for CGS as the Ga content increased. The films on Mo substrates are likely to have secondary phases, which is not the case for soda-lime glass. An indication of the formation of the CuAu structure is obtained from the CIS thin-films. - Highlights: ► We report structural and optical properties of CIGS films on different substrates. ► Various optical tools were used to characterize the CIGS films. ► Crystalline ordered states were examined by A1 mode of Raman spectra.

  10. Optical, structural and photocatalysis properties of Cu-doped TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bensouici, F., E-mail: fbensouici@yahoo.fr [Department of Physics, URMPE Unite, UMBB University, 35000 Boumerdes (Algeria); Bououdina, M.; Dakhel, A.A. [Department of Physics, College of Science, University of Bahrain, PO Box 32038 (Bahrain); Tala-Ighil, R.; Tounane, M.; Iratni, A. [Department of Physics, URMPE Unite, UMBB University, 35000 Boumerdes (Algeria); Souier, T. [Department of Physics, College of Science, Sultan Qaboos University, PO Box 36 (Oman); Liu, S.; Cai, W. [Key laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Technology, Center for Environmental and Energy Nanomaterials, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-02-15

    Highlights: • A simple chemical route to obtain thin layers of Cu doped TiO{sub 2}. • Detailed structure analysis was carried out by Rietveld refinements. • Forming the CuO phase decreases the efficiency photocatalysis of TiO{sub 2}. - Abstract: Pure and Cu{sup +2} doped TiO{sub 2} thin films have been successfully deposited onto glass substrate by sol–gel dip-coating. The films were annealed at 450 °C for 1 h and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM-EDX), atomic force microscopy (AFM), UV–vis spectrophotometer and photocatalytic degradation of methylene blue. XRD confirmed the presence of two phases at higher Cu concentration; TiO{sub 2} anatase and CuO. AFM analysis showed that the surface roughness increases within increasing Cu content as well as the presence of large aggregates at higher Cu content. SEM observations confirmed the granular structure of the films, and EDX analysis revealed a low solubility limit (effective doping) of Cu into TiO{sub 2} lattice. It was found that the optical band gap energy decreases with increasing Cu content. At constant irradiation time, the photo-degradation of methylene blue rate decreased with increasing concentration of Cu{sup +2}.

  11. Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting

    International Nuclear Information System (INIS)

    Fang, Yuanxing; Lee, Wei Cheat; Canciani, Giacomo E.; Draper, Thomas C.; Al-Bawi, Zainab F.; Bedi, Jasbir S.; Perry, Christopher C.; Chen, Qiao

    2015-01-01

    Graphical abstract: - Highlights: • A novel method combining electrospinning and electrophoretic deposition was established for the creation of nanostructured semiconductor thin films. • The created thin films displayed a high chemical stability with a controllable thickness. • The PEC water splitting performance of the thin films was optimized by fine-tuning the thickness of the films. • A maximum photoconversion efficiency was achieved by 18 μm nanofibrous thin films. - Abstract: Electrophoretic deposition (EPD) of ground electrospun WO 3 nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO 3 nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 μm.

  12. Characterization of 6,13-bis(triisopropylsilylethynyl) pentacene organic thin film transistors fabricated using pattern-induced confined structure

    International Nuclear Information System (INIS)

    Kim, Kyohyeok; Kwon, Namyong; Chung, Ilsub

    2014-01-01

    Bottom gate organic thin film transistors (OTFTs) were fabricated on polyethersulphone substrate using an ink jet printing method. 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene and poly-4-vinylphenol (PVP) were used as an active material and as a gate insulator, respectively. In an attempt to reduce the coffee stain effect, TIPS pentacene active layer was printed onto the pattern-induced confined structure (PICS) which had been obtained by orthogonally printing Ag electrodes on the pre-printed PVP layer. The resolution of Ag patterns was obtained by modifying the surface energy using UV irradiation and substrate temperature. The channel lengths of the aforementioned PICS OTFTs were in the range of 10 μm to 50 μm. The average mobility and on/off ratio of PICS OTFTs were 0.034 cm 2 /Vs and 10 3 , respectively. - Highlights: • Ink-jet printed bottom gate organic thin film transistor on plastic substrate • Ag lines orthogonally printed on pre-printed poly-4-vinylphenol lines • Pattern-induced confined structures obtained • UV irradiation affects the surface energy and the resolution of the Ag patterns

  13. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  14. Probing the phase diagram of cuprates with YBa2Cu3O7 -δ thin films and nanowires

    Science.gov (United States)

    Arpaia, Riccardo; Andersson, Eric; Trabaldo, Edoardo; Bauch, Thilo; Lombardi, Floriana

    2018-02-01

    We have grown and characterized 30-nm-thick YBa2Cu3O7 -δ (YBCO) films, deposited by pulsed laser deposition on both MgO (110) and SrTiO3 (001) substrates, which induce opposite strain to the superconducting layer. By carefully tuning the in situ post-annealing oxygen pressure, we achieved, in a reproducible way, films at different oxygen doping, spanning from the slightly overdoped down to the strongly underdoped region of the phase diagram. The transport properties of the films, investigated through resistance versus temperature measurements, are in perfect qualitative agreement with single crystals. Starting from these films, we have also successfully fabricated nanowires with widths down to 65 nm, at different oxygen doping. The nanostructures exhibit characteristic temperatures (as the critical temperature Tc and the pseudogap temperature T*) similar to those of the as-grown films and carry critical current densities Jc close to the critical depairing value, limited by vortex entry. This implies that the superconducting and the normal state properties of underdoped YBCO are preserved in our films, and they can be studied as a function of the dimensionality of the system, down to the nanoscale.

  15. Studying Selective Transparency in ZnS/ Cu/ ZnS Thin Films

    International Nuclear Information System (INIS)

    Ksibe, A.; Howari, H.; Diab, M.

    2009-01-01

    Dielectric/ Metal/ Dielectric (DMD) thin films deposited on glass offer of significant energy saving in buildings and can find other applications of advanced materials design. In an effort to reduce the complexity and cost production of DMD films, physical vapor deposition was used for the laboratory manufacture of ZnS/ Cu/ ZnS films on glass. ZnS was used because of its high refractive index, ease of deposition and low cost; Cu was used because of its low absorption in the visible spectrum and its thermal stability. The films produced were of good quality, with transmittance as high as 85%. The ZnS layers were found not only to antireflect the Ag layer, but also to stabilize the ZnS/ Cu/ ZnS films, improve its adherence on glass and increase the film thermal resistance up to 240 C. The influence of annealing on the optical properties was investigated. The experimental results show that the properties of the multilayers are improved with annealing in air. the change of maximum transmission indicates that, with the increase of annealing temperature, maximum transmittance was change. Multilayer films annealed at after 200 C, show a decrease in the maximum transmittance witch might be due to the diffused Cu atoms onto ZnS layer. (author)

  16. Reduction of crystallization temperature of the Nd-Fe-B thin films by Cu addition

    International Nuclear Information System (INIS)

    Ma Yungui; Yang Zheng; Matsumoto, M.; Morisako, A.; Takei, S.

    2004-01-01

    Nonmagnetic Cu element has been doped into the sputtered Nd-Fe-B thin films. It is found that the introduction of suitable amount of copper atoms could reduce the crystallization temperature of the 2:14:1 phase by near 100 deg. C, compared with that without Cu. For the 15 nm Nd 16 Fe 70.2 Cu 1.8 B 12 film deposited at 340 deg. C, perpendicular coercivity and remanent magnetization ratio of 350 kA/m and 0.96 have been successfully obtained. Cu addition would lead to the grain growth, but the average grain size in the films could be greatly decreased through lowering the deposition temperature. These results are compared with those found in the fabrication of FePtCu films

  17. Characteristics of CuInSe sub 2 thin films grown by the selenization method

    CERN Document Server

    Kim, S D; Adurodija, F O; Yoon, K H; Song, J S

    1999-01-01

    CuInSe sub 2 thin films were formed from a selenization of co-sputtered Cu-In alloy layers which consisted of only two phases, CuIn sub 2 and Cu sub 1 sub 1 In sub 9. A linear dependence of the Cu-In alloy film composition on the Cu/In sputtering power was found. The metallic layers were selenized in vacuum or at 1 atm. A small number of Cu-Se and In-Se compounds was observed during the early stage of selenization, and single-phase CuInSe sub 2 was more easily formed in vacuum than at atmospheric pressure. Therefore, CuInSe sub 2 films selenized in vacuum showed larger grain sizes, smoother surfaces, and denser microstructures than those selenized at 1 atm.

  18. Quasi-homoepitaxial growth of a-axis oriented PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta thick film on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystal

    CERN Document Server

    Sato, M; Morishita, T

    2003-01-01

    The structural characterizations of the quasi-homoepitaxial growth of a-axis oriented PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta thick film grown on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystal were investigated in comparison with those of the film grown on (001) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystal. The a-axis oriented PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta films, expected to be a barrier layer, were prepared using a dc-95 MHz hybrid plasma sputtering on (100) and (001) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystals that are superconducting ground planes. The atomic force microscopy image revealed that the surfaces of 700-nm-thick a-axis PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta films on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystals were smooth with a mean roughness of 2.8 nm. X-ray diffraction scans showed that a-axis PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta films deposited on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single cry...

  19. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films

    International Nuclear Information System (INIS)

    Sakr, G.B.; Yahia, I.S.; Fadel, M.; Fouad, S.S.; Romcevic, N.

    2010-01-01

    Research highlights: → The structural, optical dispersion parameters and the Raman spectroscopy have been studied for CuSe thin films. → X-ray diffraction results indicate the amorphous nature of the thermally evaporated CuSe thin films. → The refractive index shows an anomalous dispersion at the lower wavelength (absorption region) and a normal dispersion at the higher wavelengths (transparent region). → The refractive index dispersion obeys the single oscillator model proposed by Wemple and DiDomenico WDD model and the single oscillator parameters were determined. → The band gap of CuSe thin films was determined by three novel methods i.e. (relaxation time, real and imaginary dielectric constant and real and imaginary optical conductivity) which in a good agreement with the Tauc band gap value. - Abstract: The paper describes the structural and optical properties of CuSe thin films. X-ray diffraction pattern indicates that CuSe thin film has an amorphous structure. Transmittance T(λ) and reflectance R(λ) measurements in the wavelength range (300-1700 nm) were used to calculate the refractive index n(λ), the absorption index and the optical dispersion parameters according to Wemple and Didomenico WDD model. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. The optical bandgap has been estimated and confirmed by four different methods. The value for the direct bandgap for the as-deposited CuSe thin film approximately equals 2.7 eV. The Raman spectroscopy was used to identify and quantify the individual phases presented in the CuSe films.

  20. Structural characterization of PbTi03, Sm0.6Nd0.4NiO3 and NdMnO3 multifunctional Perovskite thin films

    Directory of Open Access Journals (Sweden)

    Rapenne L.

    2012-06-01

    Full Text Available Different multifunctional (PbTiO3, Sm0.6Nd0.4NiO3, NdMnO3 thin films were grown by metalorganic chemical vapor deposition (MOCVD technique on SrTiO3 and LaAlO3 substrates. TEM and X-ray diffraction measurements reveal that almost single crystalline thin films can be epitaxially grown on the top of substrates. The relationship between the crystallographic orientation of the films and those of the substrates were determined by reciprocal space mapping and TEM analyses. PbTi03 thin films appear to be under tensile or compressive strain according to the different mismatch of their cell parameter with those of the substrate. Relaxation mechanism as a function of the film thickness arises from coexistence of different type of domains and size and strain effect are analyzed. SmNiO3 thin films present diffuse scattering strikes and are less well organized when compared to PbTi03 thin films. Different domains are observed as well as an additional parasitic phase close to NiO. Its regular distribution can be associated to reduced transport properties. Preliminary observations on NdMnO3 thin films show that an amorphous phase is obtained during MOCVD that can be transformed in a single crystalline film by annealing. The films are under tensile or compressive strain according to the different mismatch of their cell parameter with those of the substrate. Magnetic properties are investigated.