WorldWideScience

Sample records for cu-cl thermochemical cycles

  1. The calculation of specific heats for some important solid components in hydrogen production process based on CuCl cycle

    Directory of Open Access Journals (Sweden)

    Avsec Jurij

    2014-01-01

    Full Text Available Hydrogen is one of the most promising energy sources of the future enabling direct production of power and heat in fuel cells, hydrogen engines or furnaces with hydrogen burners. One of the last remainder problems in hydrogen technology is how to produce a sufficient amount of cheap hydrogen. One of the best options is large scale thermochemical production of hydrogen in combination with nuclear power plant. copper-chlorine (CuCl cycle is the most promissible thermochemical cycle to produce cheap hydrogen.This paper focuses on a CuCl cycle, and the describes the models how to calculate thermodynamic properties. Unfortunately, for many components in CuCl cycle the thermochemical functions of state have never been measured. This is the reason that we have tried to calculate some very important thermophysical properties. This paper discusses the mathematical model for computing the thermodynamic properties for pure substances and their mixtures such as CuCl, HCl, Cu2OCl2 important in CuCl hydrogen production in their fluid and solid phase with an aid of statistical thermodynamics. For the solid phase, we have developed the mathematical model for the calculation of thermodynamic properties for polyatomic crystals. In this way, we have used Debye functions and Einstein function for acoustical modes and optical modes of vibrations to take into account vibration of atoms. The influence of intermolecular energy we have solved on the basis of Murnaghan equation of state and statistical thermodynamics.

  2. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  3. Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles

    International Nuclear Information System (INIS)

    Zamfirescu, C.; Dincer, I.; Naterer, G.F.

    2009-01-01

    This paper examines the relevant thermophysical properties of compounds of chlorine and copper that are found in thermochemical water splitting cycles. There are four variants of such Cu-Cl cycles that use heat and electricity to split the water molecule and produce H 2 and O 2 . Since the energy input is mainly in the form of thermal energy, the Cu-Cl water splitting cycle is much more efficient than water electrolysis, if the electricity generation efficiency for electrolysis is taken into account. A number of copper compounds (Cu 2 OCl 2 , CuO, CuCl 2 , CuCl) and other chemicals (Cu, HCl) are recycled within the plant, while the overall effect is splitting of the water molecule. The system includes a number of chemical reactors, heat exchangers, spray dryer and electrochemical cell. This paper identifies the available experimental data for properties of copper compounds relevant to the Cu-Cl cycle analysis and design. It also develops new regression formulas to correlate the properties, which include: specific heat, enthalpy, entropy, Gibbs free energy, density, formation enthalpy and free energy. No past literature data is available for the viscosity and thermal conductivity of molten CuCl, so estimates are provided. The properties are evaluated at 1 bar and a range of temperatures from ambient to 675-1000K, which are consistent with the operating conditions of the cycle. Updated calculations of chemical exergies are provided as follows: 21.08, 6.268, 82.474, and 75.0 kJ/mol for Cu 2 OCl 2 , CuO, CuCl 2 and CuCl, respectively. For molten CuCl, the estimated viscosity varies from 2.6 to 1.7mPa.s. (author)

  4. Thermoeconomic analysis of a copper-chlorine thermochemical cycle for nuclear-based hydrogen production

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Rosen, Marc A.

    2010-01-01

    Thermochemical water splitting with a copper-chlorine (Cu-Cl) cycle is a promising process that could be linked with nuclear reactors to decompose water into its constituents, oxygen and hydrogen, through intermediate copper and chlorine compounds. In this paper, a comprehensive exergoeconomic analysis of the Cu-Cl cycle is reported to evaluate the production costs as a function of the amount and quality of the energy used for hydrogen production, as well as the costs of the exergy losses and the exergoeconomic improvement potential of the equipment used in the process. An additional objective is to determine changes in the design parameters of the Cu-Cl cycle that improve the cost effectiveness of the overall system. (orig.)

  5. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    Fernandez Saavedra, R.

    2007-01-01

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  6. Catalyst Needs for Thermochemical Hydrogen Production Cycles

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Rollins, Harry W.; Burch, Kyle C.

    2007-01-01

    Thermochemical cycles can be used to split water through a series of chemical reactions where the net result is the production of hydrogen and oxygen at much lower temperatures than direct thermal decomposition. All chemicals within the cycle are fully recycled and the heat to drive the reactions, which tend to be endothermic, must be provided by a primary energy source. When the primary energy driver is nuclear heat, hydrogen can be generated without producing green-house gases, and can provide independence from our dwindling supplies of fossil fuels. A number of thermochemical cycles can be driven by the primary heat of nuclear reactors, especially a very high temperature reactor (VHTR). The sulfur-based family of thermochemical cycles, including the Sulfur- Iodine cycle (S-I), the Hybrid Sulfur cycle, and the Sulfur-Bromine Hybrid cycle, appears promising for producing hydrogen using nuclear heat. These cycles employ a high-temperature sulfuric acid decomposition reaction step. The reaction produces oxygen and generates SO 2 , which is used in other reaction steps of the cycles. The reaction takes place from 750 to 900 deg. C, or higher, and is facilitated by heterogeneous catalysts. The S-I cycle produces hydrogen by the catalytic decomposition of HI. The calcium-bromine cycle is also being considered as a nuclear powered thermochemical cycle. The various cycles all present requirements of high temperatures and harsh chemical reaction conditions which present significantly challenging environments for catalytic materials. This work will focus on the catalyst needs of thermochemical cycles that are candidates for being powered by nuclear reactors. Specific catalyst activity and stability testing results will be provided for the decomposition of sulfuric acid for the production of oxygen in the sulfur-based family of cycles and for the catalytic decomposition of hydro-iodic acid for the production of hydrogen in the S-I process. Sulfuric acid decomposition

  7. X-ray diffraction study of multiphase reverse reaction with molten CuCl and oxygen

    International Nuclear Information System (INIS)

    Marin, G.D.; Wang, Z.; Naterer, G.F.; Gabriel, K.

    2011-01-01

    Highlights: → This paper examines the reverse reactions associated with copper oxychloride decomposition in the copper-chlorine cycle of hydrogen production. → Experiments are designed to disperse oxygen gas into a molten CuCl bath to study its reaction at 450-500 o C and the composition of the products is quantified with X-ray diffraction measurements. → It is found that the optimal operating parameters for minimizing the reverse reaction lie in the pressure range of 1-2 bar and a temperature range of 500-525 o C. - Abstract: The thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production includes three chemical reactions of hydrolysis, decomposition and electrolysis. The decomposition of copper oxychloride for oxygen production establishes the high-temperature limit of the cycle. At 450-530 o C, copper oxychloride (Cu 2 OCl 2 ) decomposes to produce a molten salt of cuprous chloride (CuCl, copper I chloride) and oxygen gas. Minimization of the reverse reaction and undesirable products is critical for the proper operation of the Cu-Cl cycle. This paper examines the operating conditions that disfavor the reverse reaction of the oxygen production, and the parameters that maximize the extent of the forward reaction. Experiments were designed to disperse oxygen gas into a molten CuCl bath to study its reaction at 450-500 o C. The composition of the products was quantified with X-ray diffraction measurements. Experimental results indicate that a high decomposition extent of copper oxychloride is obtained at equilibrium when the temperature is higher than 500 o C, and the oxygen pressure is below 2 bar. The thermochemistry data of the reactants and products were also determined and reported. These thermodynamic data provide a key missing gap in the understanding of the Cu-Cl cycle of thermochemical hydrogen production. The data includes the standard formation entropy, enthalpy and Gibbs free energy at different temperatures. Also, in this paper, a

  8. Degradation of materials under conditions of thermochemical cycles for hydrogen production

    International Nuclear Information System (INIS)

    Klimas, S.J.; Searle, H.; Stolberg, L.

    2010-01-01

    A capsule method has been developed and employed to measure the degradation rates of selected materials under some of the most challenging conditions relevant to the sulphur-iodine (SI) and the copper-chlorine (Cu-Cl) thermochemical cycles for hydrogen production. The materials tested so far include metals and engineering alloys, structural and functional polymers, elastomers, carbon-based materials, ceramics and glasses, and composites. A number of characterization methods have been used to detect and quantify the degradation of the diverse materials and, when feasible, establish the mode of attack. The paper details the results of this ongoing experimental investigation. The investigation currently focuses on the copper-chlorine hybrid cycle. The environment representative of the conditions in the electrolyser subsystem was approximated with an aqueous solution of hydrochloric acid (13.6 mol/kg), copper(II) chloride (1.36 mol/kg) and copper(I) chloride (1.36 mol/kg) at 160°C and 2.5 MPa (absolute). The current (tentative) recommendations for the selection of the materials required for the construction of the electrolyser subsystem of the copper-chlorine hybrid cycle, and the associated rationale, are presented and discussed. (author)

  9. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    International Nuclear Information System (INIS)

    Ranganathan, S.; Easton, E.B.

    2009-01-01

    Sol-gel chemistry is becoming more popular for the synthesis of electrode materials. For example, the sol-gel reaction can be performed in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together via the ceramic binder, which can also promote ion transport. Furthermore, the CCE structure has a high active surface area and is chemical and thermally robust. We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments (cyclic voltammetry, electrochemical impedance spectroscopy) were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. Our initial results have shown that CCE-based electrodes vastly outperform a bare carbon electrode, and thus are highly promising and cost-effective electrode material. Subsequent experiments involved the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements will be presented. (author)

  10. ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

    2003-02-01

    OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

  11. Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles

    International Nuclear Information System (INIS)

    Brown, L.C.; Besenbruch, G.E.; Schultz, K.R.; Marshall, A.C.; Showalter, S.K.; Pickard, P.S.; Funk, J.F.

    2002-01-01

    The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high-temperature heat from an advanced nuclear power station in a thermochemical water-splitting cycle. We carried out a detailed literature search to create a searchable database with 115 cycles and 822 references. We developed screening criteria to reduce the list to 25 cycles. We used detailed evaluation to select two cycles that appear most promising, the Adiabatic UT-3 cycle and the Sulfur-Iodine cycle. We have selected the Sulfur-Iodine thermochemical water-splitting cycle for further development. We then assessed the suitability of various nuclear reactor types to the production of hydrogen from water using the Sulfur-Iodine cycle. A basic requirement is to deliver heat to the process interface heat exchanger at temperatures up to 900 deg. C. We considered nine categories of reactors: pressurized water-cooled, boiling water-cooled, organic-cooled, alkali metal-cooled, heavy metal-cooled, gas-cooled, molten salt-cooled, liquid-core and gas-core reactors. We developed requirements and criteria to carry out the assessment, considering design, safety, operational, economic and development issues. This assessment process led to our choice of the helium gas-cooled reactor for coupling to the Sulfur-Iodine cycle. In continuing work, we are investigating the improvements that have been proposed to the Sulfur-Iodine cycle and will generate an integrated flowsheet describing a hydrogen production plant powered by a high-temperature helium gas-cooled nuclear reactor. This will allow us to size process equipment and calculate hydrogen production efficiency and capital cost, and to estimate the cost of the hydrogen produced as a function of nuclear reactor cost. (authors)

  12. Methane-methanol cycle for the thermochemical production of hydrogen

    Science.gov (United States)

    Dreyfuss, Robert M.; Hickman, Robert G.

    1976-01-01

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal: CH.sub.4 + H.sub.2 O .fwdarw. CO + 3H.sub.2 (1) co + 2h.sub.2 .fwdarw. ch.sub.3 oh (2) ch.sub.3 oh + so.sub.2 + mo .fwdarw. mso.sub.4 + ch.sub.4 (3) mso.sub.4 .fwdarw. mo + so.sub.2 + 1/2o.sub.2 (4) the net reaction is the decomposition of water into hydrogen and oxygen.

  13. Solar hydrogen production with cerium oxides thermochemical cycle

    Science.gov (United States)

    Binotti, Marco; Di Marcoberardino, Gioele; Biassoni, Mauro; Manzolini, Giampaolo

    2017-06-01

    This paper discusses the hydrogen production using a solar driven thermochemical cycle. The thermochemical cycle is based on nonstoichiometric cerium oxides redox and the solar concentration system is a solar dish. Detailed optical and redox models were developed to optimize the hydrogen production performance as function of several design parameters (i.e. concentration ratio, reactor pressures and temperatures) The efficiency of the considered technology is compared against two commercially available technologies namely PV + electrolyzer and Dish Stirling + electrolyzer. Results show that solar-to-fuel efficiency of 21.2% can be achieved at design condition assuming a concentration ratio around 5000, reduction and oxidation temperatures of 1500°C and 1275 °C. When moving to annual performance, the annual yield of the considered approach can be as high as 16.7% which is about 43% higher than the best competitive technology. The higher performance implies that higher installation costs around 40% can be accepted for the innovative concept to achieve the same cost of hydrogen.

  14. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2007-12-28

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  15. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2008-08-06

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly y described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  16. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Werner, R.W.; Ribe, F.L.

    1981-01-01

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units

  17. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  18. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1980-01-01

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface

  19. Thermodynamic analysis of the use a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production

    International Nuclear Information System (INIS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    2008-01-01

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved 'steam' parameters (outlet temperatures up to 625degC and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600degC. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the 'nuclear' heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of

  20. Carbonate thermochemical cycle for the production of hydrogen

    Science.gov (United States)

    Collins, Jack L [Knoxville, TN; Dole, Leslie R [Knoxville, TN; Ferrada, Juan J [Knoxville, TN; Forsberg, Charles W [Oak Ridge, TN; Haire, Marvin J [Oak Ridge, TN; Hunt, Rodney D [Oak Ridge, TN; Lewis, Jr, Benjamin E [Knoxville, TN; Wymer, Raymond G [Oak Ridge, TN

    2010-02-23

    The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

  1. Natural gas usage as a heat source for integrated SMR and thermochemical hydrogen production technologies

    International Nuclear Information System (INIS)

    Jaber, O.; Naterer, G.F.; Dincer, I.

    2010-01-01

    This paper investigates various usages of natural gas (NG) as an energy source for different hydrogen production technologies. A comparison is made between the different methods of hydrogen production, based on the total amount of natural gas needed to produce a specific quantity of hydrogen, carbon dioxide emissions per mole of hydrogen produced, water requirements per mole of hydrogen produced, and a cost sensitivity analysis that takes into account the fuel cost, carbon dioxide capture cost and a carbon tax. The methods examined are the copper-chlorine (Cu-Cl) thermochemical cycle, steam methane reforming (SMR) and a modified sulfur-iodine (S-I) thermochemical cycle. Also, an integrated Cu-Cl/SMR plant is examined to show the unique advantages of modifying existing SMR plants with new hydrogen production technology. The analysis shows that the thermochemical Cu-Cl cycle out-performs the other conventional methods with respect to fuel requirements, carbon dioxide emissions and total cost of production. (author)

  2. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  3. Life cycle assessment of nuclear-based hydrogen production using thermochemical water decomposition: extension of previous work and future needs

    International Nuclear Information System (INIS)

    Lubis, L.I.; Dincer, I.; Rosen, M.A.

    2008-01-01

    An extension of a previous Life Cycle Assessment (LCA) of nuclear-based hydrogen production using thermochemical water decomposition is reported. The copper-chlorine thermochemical cycle is considered, and the environmental impacts of the nuclear and thermochemical plants are assessed, while future needs are identified. Environmental impacts are investigated using CML 2001 impact categories. The nuclear fuel cycle and construction of the hydrogen plant contribute significantly to total environmental impacts. The environmental impacts for the operation of the thermochemical hydrogen production plant contribute much less. Changes in the inventory of chemicals needed in the thermochemical plant do not affect significantly the total impacts. Improvement analysis suggests the development of more sustainable processes, particularly in the nuclear plant. Other important and necessary future extensions of the research reported are also provided. (author)

  4. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    Werner, R.W.

    1982-01-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H 2 SO 4 -H 2 O system

  5. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  6. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ribe, F.L.; Werner, R.W.

    1981-01-21

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li/sub 2/O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H/sub 2/ and O/sub 2/.

  7. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Ribe, F.L.; Werner, R.W.

    1981-01-01

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li 2 O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H 2 and O 2

  8. Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode.

    Science.gov (United States)

    Hou, Hongying; Yao, Yuan; Liu, Song; Duan, Jixiang; Liao, Qishu; Yu, Chengyi; Li, Dongdong; Dai, Zhipeng

    2017-07-01

    The wide applications of metal Cu inevitably resulted in a large quantity of waste Cu materials. In order to recover the useful Cu under the mild conditions and reduce the environmental emission, waste Cu scraps were recycled in the form of CuCl powders with high economic value added (EVA) via the facile hydrothermal route. The recycled CuCl powders were characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results suggested that the recycled CuCl powders consisted of many regular tetrahedron-like micro-particles. Furthermore, in order to reduce the cost of lithium ion battery (LIB) anode and build the connection of waste Cu scraps and LIB, the recycled CuCl powders were evaluated as the anode active material of LIB. As expected, the reversible discharge capacity was about 171.8mAh/g at 2.0C even after 50 cycles, implying the satisfactory cycle stability. Clearly, the satisfactory results may open a new avenue to develop the circular economy and the sustainable energy industry, which would be very important in terms of both the resource recovery and the environmental protection. Copyright © 2017. Published by Elsevier Ltd.

  9. Preliminary flow sheet and process design for ZnSe thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Otsuki, H. H.; Cox, K. E.

    1976-06-21

    A preliminary design of the ZnSe cycle for thermochemical hydrogen production has been prepared for use in deriving economic costs for hydrogen production. The process flowsheet identifies key equipment items as well as major streams. Flow and heat loads have been estimated based on one mole of hydrogen output. The thermal efficiency of this cycle depends on two factors: (1) the ability to perform the dissolution of ZnSO/sub 4/ and the hydrolysis of ZnSe with a minimum amount of aqueous HCl, and (2) the ability to match the process heat requirements with available heat from the exothermic steps in the cycle. Estimates of the cycle's thermal efficiency range from 34--57 percent depending upon the process heat utilization.

  10. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  11. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  12. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange

    2016-01-01

    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  13. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  14. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO sub 4 systems

    Energy Technology Data Exchange (ETDEWEB)

    Wentworth, W.E. (Houston Univ., TX (United States))

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  15. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  16. High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Carlos E; Reay, Andrew R.; Andazola, James C.; Naranjo, Gerald E.; Gelbard, Fred

    2005-09-01

    A series of three pressurized sulfuric acid decomposition tests were performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control, (3) obtain multiple measurements of conversion as a function of temperature within a single experiment, and (4) assess rapid quenching to minimize corrosion of metallic components by undecomposed acid. All four of these objectives were successfully accomplished. This report documents the completion of the NHI milestone on high pressure H{sub 2}SO{sub 4} decomposition tests for the Sulfur-Iodine (SI) thermochemical cycle project. All heated sections of the apparatus, (i.e. the boiler, decomposer, and condenser) were fabricated from Hastelloy C276. A ceramic acid injection tube and a ceramic-sheathed thermocouple were used to minimize corrosion of hot liquid acid on the boiler surfaces. Negligible fracturing of the platinum on zirconia catalyst was observed in the high temperature decomposer. Temperature measurements at the exit of the decomposer and at the entry of the condenser indicated that the hot acid vapors were rapidly quenched from about 400 C to less than 20 C within a 14 cm length of the flow path. Real-time gas flow rate measurements of the decomposition products provided a direct measurement of acid conversion. Pressure in the apparatus was preset by a pressure-relief valve that worked well at controlling the system pressure. However, these valves sometimes underwent abrupt transitions that resulted in rapidly varying gas flow rates with concomitant variations in the acid conversion fraction.

  17. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lany, Stephan [National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-21

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  18. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    Science.gov (United States)

    Lany, Stephan

    2018-02-01

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  19. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, O.H. (ed.)

    1982-02-09

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  20. Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions.

    Science.gov (United States)

    Khoo, H H; Koh, C Y; Shaik, M S; Sharratt, P N

    2013-09-01

    An investigation of the potential to efficiently convert lipid-depleted residual microalgae biomass using thermochemical (gasification at 850 °C, pyrolysis at 550 °C, and torrefaction at 300 °C) processes to produce bioenergy derivatives was made. Energy indicators are established to account for the amount of energy inputs that have to be supplied to the system in order to gain 1 MJ of bio-energy output. The paper seeks to address the difference between net energy input-output balances based on a life cycle approach, from "cradle-to-bioenergy co-products", vs. thermochemical processes alone. The experimental results showed the lowest results of Net Energy Balances (NEB) to be 0.57 MJ/MJ bio-oil via pyrolysis, and highest, 6.48 MJ/MJ for gas derived via torrefaction. With the complete life cycle process chain factored in, the energy balances of NEBLCA increased to 1.67 MJ/MJ (bio-oil) and 7.01 MJ/MJ (gas). Energy efficiencies and the life cycle CO2 emissions were also calculated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle

    Science.gov (United States)

    Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso

    2017-06-01

    The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.

  2. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  3. Thermodynamic of the associated cycle and application to the assembly of thermochemical iodine sulphur cycle and a nuclear engine for the hydrogen production

    International Nuclear Information System (INIS)

    Dumont, Y.

    2008-01-01

    This thesis is devoted to the design of an assembly of a hydrogen production process by the thermochemical iodine-sulphur cycle and a nuclear reactor. The suggested coupling network uses a power cycle which produces a work which is directly used for the heat pump running. The purpose of this thermodynamic cycle association is to recover the rejected energy at low temperature of a process to provide the energy needs of this same process at high temperature. This association is applied to the studied coupling. The construction of the energy distribution network is designed by the pinch analysis. In the case of a conventional coupling, the efficiency of hydrogen production is 22.0%. By integrating the associated cycles into the coupling, the efficiency of production is 42.6%. The exergetic efficiency, representative of the energy using quality, increases from 58.7% to 85.4%. (author) [fr

  4. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Science.gov (United States)

    Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech

    2017-11-01

    We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.

  5. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Directory of Open Access Journals (Sweden)

    Lei Qi

    2017-01-01

    Full Text Available We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750–1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5–6 times smaller than those of state-of-the-art molten salt systems.

  6. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  7. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  8. First Observation of Defined Structural Motifs in the Sulfur-Iodine Thermochemical Cycle and Their Role in Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Víctor H. Ramos-Sánchez

    2011-01-01

    Full Text Available The present paper investigates the ionic species coexisting in the HIx feed of the sulfur-iodine thermochemical cycle. For this purpose, Raman and inelastic neutron scattering as well as molecular modelling were applied to the study of the binary HI-H2O system and the ternary HI-I2-H2O and KI-I2-H2O systems. Raman spectra, obtained at 298 K, strongly suggest the coexistence of I3−, I−(I2, and I−(I22 species. Whereas on the other hand, inelastic neutron scattering spectra (20 K revealed, for the first time, evidence for the presence of discrete water structural motifs under specific conditions. Molecular modelling of two idealized structures has allowed us to establish a reasonable interpretation of the important structural motifs in these systems, in terms of the azeotrope of the HI-H2O system and the pseudoazeotrope of the HI-I2-H2O system.

  9. Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System

    Science.gov (United States)

    Hongmei Gu; Richard Bergman

    2016-01-01

    Expanding bioenergy production from woody biomass has the potential to decrease net greenhouse gas (GHG) emissions and improve the energy security of the United States. Science-based and internationally accepted life-cycle assessment (LCA) is an effective tool for policy makers to make scientifically informed decisions on expanding renewable energy production from...

  10. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    Science.gov (United States)

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermochemical production of hydrogen by a vanadium/chlorine cycle. I - An energy and exergy analysis of the process

    Science.gov (United States)

    Knoche, K. F.; Schuster, P.

    A detailed mass and energy balance account is given and discussed, setting out from the process flowsheeting initially developed, for a vanadium/chlorine water-splitting process for thermochemical hydrogen production that has been investigated both energetically and experimentally. The total process has been balanced and optimized on the basis of experimental results from the individual reactions. A steam powerplant for the production of the required electrical power is integrated into the thermochemical process. An overall plant efficiency of 42.5 percent is foreseen.

  12. Quadruple-layered perovskite (CuCl)Ca2NaNb4O13

    International Nuclear Information System (INIS)

    Kitada, A.; Tsujimoto, Y.; Yamamoto, T.; Kobayashi, Y.; Narumi, Y.; Kindo, K.; Aczel, A.A.; Luke, G.M.; Uemura, Y.J.; Kiuchi, Y.; Ueda, Y.; Yoshimura, K.; Ajiro, Y.; Kageyama, H.

    2012-01-01

    We will present the synthesis, structure and magnetic properties of a new quadruple-layered perovskite (CuCl)Ca 2 NaNb 4 O 13 . Through a topotactic ion-exchange reaction with CuCl 2 , the precursor RbCa 2 NaNb 4 O 13 presumably having an incoherent octahederal tliting changes into (CuCl)Ca 2 NaNb 4 O 13 with a 2a p ×2a p ×2c p superstructure (tetragonal; a=7.73232(5) Å, c=39.2156(4) Å). The well-defined superstructure for the ion-exchanged product should be stabilized by the inserted CuCl 4 O 2 octahedral layers that firmly connect with neighboring perovskite layers. Magnetic studies show the absence of long-range magnetic ordering down to 2 K despite strong in-plane interactions. Aleksandrov′s group theory and Rietveld refinement of synchrotron X-ray diffraction data suggest the structure to be of I4/mmm space group with in-phase tilting along the a and b axes, a two-tilt system (++0). - Graphical Abstract: We present a quadruple-layered copper oxyhalide (CuCl)Ca 2 NaNb 4 O 13 synthesized through a topotactic ion-exchange reaction of RbCa 2 NaNb 4 O 13 with CuCl 2 . The compound has a well-defined superstructure. Magnetic studies suggest the absence of magnetic order even at 2 K. Highlights: ► (CuCl)Ca 2 NaNb 4 O 13 was prepared by ion-exchange reaction of RbCa 2 NaNb 4 O 13 with CuCl 2 . ► Compound has a 2a p ×2a p ×2c p superstructure (tetragonal; a=7.73 Å, c=39.21 Å). ► Such a well-defined superstructure was not observed in the precursor compound. ► Aleksandrov′s theory and Rietveld study suggest a (++0) octahedral tilting (I4/mmm). ► Magnetic studies revealed the absence of magnetic order down to 2 K.

  13. Anomalous diamagnetism (high-temperature Meissner effect) in the compound CuCl

    International Nuclear Information System (INIS)

    Brandt, N.B.; Kuvshinnikov, S.V.; Rusakov, A.P.; Semenov, M.V.

    1978-06-01

    Polycrystaline CuCl samples under hydrostatic compression of approximately 5 kbar have been cooled rather rapidly (>20 degrees/min). Thereby, starting at approximately 170 K, repeated transitions from the weak diamagnetic state with chi approximately - (10 5 /10 6 ) to the diamagnetic state with a magnetic susceptibility here chi = -1 (Meissner effect) have been observed, in some cases with a simultaneous strong increase (some orders of magnitude) in electrical conductivity. At temperatures below approximately 100 K, CuCl is going to the stationary or quasi-stationary state with chi approximately -1 which is stable in this temperature range for at least some hours. (orig.) [de

  14. Fabrication of CuCl quantum dots and the size dependence of the biexciton binding energy

    CERN Document Server

    Park, S T; Kim, H Y; Kim, I G

    2000-01-01

    We fabricated CuCl quantum dots (QDs) in an aluminoborosilicate glass matrix. The photoluminescence of the CuCl QDs was surveyed by using the band-to-band excitation and the site selective luminescence methods. The excitation density dependence of the exciton and the biexciton luminescence was measured, and the saturation effects of the luminescence intensities were observed. The biexciton binding energies measured using the site selective luminescence method increased with decreasing QD size. The data were well fitted by a function resulting from the numerical matrix-diagonalization method.

  15. Thermochemical recuperative combined cycle with methane-steam reforming combustion; Tennengasu kaishitsu nensho ni yoru konbaindo saikuru hatsuden no kokoritsuka oyobi denryoku fuka heijunka taio

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, R.; Essaki, K.; Tsutsumi, A. [The University of Tokyo, Tokyo (Japan). Dept. of Chemical System Engineering; Kaganoi, S.; Kurimura, H. [Teikoku Sekiyu Co., Tokyo (Japan); Sasaki, T.; Ogawa, T. [Toshiba Co., Tokyo (Japan)

    2000-03-10

    Thermochemical recuperative combined cycles with methane-steam reforming are proposed for improving their thermal efficiency and for peak-load leveling. For targeting higher thermal efficiency, a cycle with methane-steam reforming reaction heated by gas turbine exhaust was analyzed. The inlet temperature of gas turbine was set at 1,350 degree C. Low-pressure steam extracted from a steam turbine is mixed with methane, and then this mixture is heated by part of the gas turbine exhaust to promote a reforming reaction. The rest of the exhaust heat is used to produce steam, which drives steam turbines to generate electricity. The effect of steam-to-methane ratio (S/C) on thermal efficiency of the cycle, as well as on methane conversion, is investigated by using the ASPEN Plus process simulator. The methane feed rate was fixed at constant and S/C ratio was varied from 2.25 to 4.75. Methane conversion shows an increasing trend toward the ratio and has a maximum value of 17.9 % at S/C=4.0. Thermal efficiency for the system is about 51 % higher than that calculated for a conventional 1,300 degree C class combined cycle under similar conditions. A thermochemical recuperative combined cycle is designed for peak-load leveling. In night-time operation from 20 : 00 to 8 : 00 it stores hydrogen produced by methane steam reforming at S/C=3.9 to save power generation. The gas turbine inlet temperature is 1,330 degree C. In daytime operation from 8 : 00 to 20 : 00 the chemically recuperated combined cycle operated at S/C=2.0 is driven by the mixture of a combined cycle operated at constant load with the same methane feed rate, whereas daytime operation generated power 1.26 times larger than that of the combined cycle. (author)

  16. The SGK1 Kinase Inhibitor SI113 Sensitizes Theranostic Effects of the 64CuCl2 in Human Glioblastoma Multiforme Cells

    Directory of Open Access Journals (Sweden)

    Giada Catalogna

    2017-08-01

    Full Text Available Background/Aims: The importance of copper in the metabolism of cancer cells has been widely studied in the last 20 years and a clear-cut association between copper levels and cancer deregulation has been established. Copper-64, emitting positrons and β-radiations, is indicated for the labeling of a large number of molecules suitable for radionuclide imaging as well as radionuclide therapy. Glioblastoma multiforme (GBM is the CNS tumor with the worse prognosis, characterized by high number of recurrences and strong resistance to chemo-radio therapy, strongly affecting patients survival. We have recently discovered and studied the small molecule SI113, as inhibitor of SGK1, a serine/threonine protein kinase, that affects several neoplastic phenotypes and signaling cascades. The SI113-dependent SGK1 inhibition induces cell death, blocks proliferation, perturbs cell cycle progression and restores chemo-radio sensibility by modulating SGK1-related substrates. In the present paper we aim to characterize the combined effects of 64CuCl2 and SI113 on human GBM cell lines with variable p53 expression. Methods: Cell viability, cell death and stress/authopagic related pathways were then analyzed by FACS and WB-based assays, after exposure to SI113 and/or 64CuCl2. Results: We demonstrate here, that i 64CuCl2 is able to induce a time and dose dependent modulation of cell viability (with different IC50 values in highly malignant gliomas and that the co-treatment with SI113 leads to ii additive/synergistic effects in terms of cell death; iii enhancement of the effects of ionizing radiations, probably by a TRC1 modulation; iv modulation of the autophagic response. Conclusions: Evidence reported here underlines the therapeutic potential of the combined treatment with SI113 and 64CuCl2 in GBM cells.

  17. Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions

    Directory of Open Access Journals (Sweden)

    Aldo Steinfeld

    2010-11-01

    Full Text Available This article provides a comprehensive overview of the work to date on the two‑step solar H2O and/or CO2 splitting thermochemical cycles with Zn/ZnO redox reactions to produce H2 and/or CO, i.e., synthesis gas—the precursor to renewable liquid hydrocarbon fuels. The two-step cycle encompasses: (1 The endothermic dissociation of ZnO to Zn and O2 using concentrated solar energy as the source for high-temperature process heat; and (2 the non-solar exothermic oxidation of Zn with H2O/CO2 to generate H2/CO, respectively; the resulting ZnO is then recycled to the first step. An outline of the underlying science and the technological advances in solar reactor engineering is provided along with life cycle and economic analyses.

  18. Synthesis of Cu2O, CuCl, and Cu2OCl2 nanoparticles by ultrafast ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 2. Synthesis of Cu2O, CuCl, and Cu2OCl2 nanoparticles by ultrafast laser ablation of copper in liquid media. Syed Hamad G Krishna Podagatlapalli Surya P Tewari S Venugopal Rao. Contributed Papers Volume 82 Issue 2 February 2014 ...

  19. Synthesis of CuCl/Boehmite adsorbents that exhibit high CO selectivity in CO/CO2 separation.

    Science.gov (United States)

    Cho, Kanghee; Kim, Jungsu; Beum, Hee Tae; Jung, Taesung; Han, Sang Sup

    2018-02-15

    We developed nanoporous adsorbent exhibiting unprecedented performance in separation of toxic carbon monoxide (CO). The adsorbent was prepared by dispersing CuCl on mesoporous boehmite via thermal monolayer dispersion route. A key point of the present synthesis is dispersing optimized amount of CuCl on the boehmite at a moderate temperature to maintain the characteristics of the boehmite. We performed a systematic study to reveal that a CuCl/boehmite composite (30wt% CuCl in total) thermally treated at 573K was the best optimized sample for CO separation. The CuCl/boehmite had a high capacity of CO adsorption (1.56mmolg -1 ) and an exceedingly low capacity of CO 2 adsorption (0.13mmolg -1 ) under 100kPa of each gas at 293K. The CO/CO 2 separation factor was 12.4. To the best of our knowledge, this value is the best on record. The achievement of this work is attributed to finding a new type of suitable supporting material: boehmite. The boehmite has a high affinity to CuCl, exhibits excellent dispersion of the CuCl, and achieves a superior CO adsorption capacity. However, it has a weak interaction with CO 2 . The CuCl/boehmite composite is a promising adsorbent for selective separation of CO from combustion exhaust and industrial off-gas streams. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Magnetic properties in a partially oxidized nanocomposite of Cu-CuCl

    International Nuclear Information System (INIS)

    Li Qi; Zhang Shiwei; Zhang Yan; Chen Chinping

    2006-01-01

    Magnetism of a very thin antiferromagnetic (AFM) surface CuO has been investigated with partially oxidized nanocomposites of Cu-CuCl, ∼200 nm. The samples are characterized by x-ray diffraction, x-ray photoelectron spectroscopy, x-ray-excited Auger electron spectroscopy, transmission electron microscopy and magnetic measurements. The characterizations indicate that the composites have a core-shell structure. Before oxidation, it is (Cu) core /(CuCl) shell , and after oxidation it is (Cu) core /(Cu 2 O+CuCl+minute CuO) shell . The magnetic measurements have revealed that a ferromagnetic (FM)-like open hysteresis exists at temperatures below the freezing point, T F . In the high field region, a paramagnetic (PM) response appears without showing any sign of saturation. Also, the field dependent magnetization (M-H) measurement is PM-like at T>T F . These interesting magnetic properties are shown to arise from the AFM CuO on the outer surface. They are attributed to the uncompensated surface spins of Cu 2+ and the effect of random surface potential. More interestingly, the magnetic susceptibility is greatly enhanced in the presence of Cl - anions at T F , according to the field-cooled/zero-field-cooled (FC/ZFC) measurements. This further supports the point that the disorder or frustration effect of the impurity would reduce the AFM ordering of CuO and increase the level of uncompensated spins

  1. Thermal activation in KrF laser ablation of CuCl

    Science.gov (United States)

    Kuper, S.; Brannon, J.

    1994-07-01

    248 nm excimer abaltion of carefully prepared CuCi samples is reported, and shown to occur by a predominantly thermal mechanism. Using a quartz-crystal microbalance (QCM) to monitor abaltion, a precise detailed plot of single-pulse mass removal versus incident fluence was obtained for fluences up to 150 mJ/sq cm. A two-parameter Arrhenius exponential function was found to fit the experimental abaltion data. Calculations of laser-induced surface heating were caried out by use of a finite-difference heating code, formulated in terms of enthalpy. Ablation was observed to commence at a fluence of 25 mJ/sq cm, where the calculated surface temperature is approximately 910 K-some 200 K above the melting point. Dynamic ablation was included in the finite-difference calculation by allowing the position of the CuCl surface Xi to vary in time. The best data fit is provided by the zeroth-order kinetic equation: d Xi/dt = (16 A/ns)exp(-38 kJ/mole)/RT(sub Xi) where T(sub Xi) is the surface temperature. A thermodynamic calculation shows the average heat of CuCl vaporization in the temperature range from 900 to 2000 K to be near the fit of value of 38 kJ/mole. From plots of the ablation depth versus time, the CuCl surface was estimated to recede during the ablation at rates up to 10 cm/s.

  2. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO{sub 4} systems. Final topical report, January 1, 1982--December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Wentworth, W.E. [Houston Univ., TX (United States)

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  3. Solid-state phase transitions in CuCl under hydrostatic pressures to 12.8 GPa

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Huang, C.Y.; Olsen, C.; Schmidt, L.C.

    1981-01-01

    The phase transitions in solid CuCl under hydrostatic conditions at pressures to 12.8 GPa are examined. The transition at 4.4 GPa from zinc-blende to tetragonal is observed. Our negative observations for the upper transition at 8.2 GPa and for the formation of an opaque phase due to the disproportionation reaction support the contention that pressure gradients are important in affecting the behavior of pure CuCl

  4. Thermodynamics and Efficiency of a CuCl(aq)/HCl(aq) Electrolyzer

    International Nuclear Information System (INIS)

    Hall, Derek M.; Akinfiev, Nikolay N.; LaRow, Eric G.; Schatz, Richard S.; Lvov, Serguei N.

    2014-01-01

    The high ionic strength and complex speciation of the anolyte solution within the CuCl(aq)/HCl(aq) electrolytic cell have impeded predictions of the energy requirements for the cell's electrolytic reaction at 25 °C and 1 bar. After collecting experimental open circuit potential (OCP) data and comparing the values obtained with predictions from prospective thermodynamic models, an approach to predict thermodynamic values and the overall efficiency was formulated. The compositions of the experimental measurements ranged from 2-2.5 mol of CuCl(aq) with 8-9 mol of HCl(aq) per kilogram of water in anolyte solution and 8-9 mol of HCl(aq) per kilogram of water in catholyte solution. From the OCP data, it was found that activity coefficient and speciation effects were critical in predicting the Gibbs energy, entropy and thermodynamic (intrinsic maximum) efficiency of the electrolytic cell. At equilibrium, all thermodynamic functions of the anolyte redox reactions were the same after activity coefficients and speciation effects were taken into account. The electrochemical reactions’ Gibbs energy and entropy were found to be 9700 J/mol and 2.18 J/(mol K) at 25 °C and 1 bar, which indicated that the reactions required a small amount of electrical and thermal energy to proceed. With thermodynamic values for the electrolytic reaction and experimental data from a CuCl(aq)/HCl(aq) electrolytic cell, the voltage, current, thermodynamic and overall efficiency were calculated. The overall efficiency ranged from 15 to 95% depending on the current density

  5. Spectral absorption shifts in CuCl vs pressure to 147 kbar

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Hudson, J.

    1981-02-01

    Measurements of the absorption of CuCl in the spectral region 200 to 800 nm are reported as a function of pressure to 147 kbar. In this region, phase transitions are identified with the abrupt changes of the absorption cutoff, the pressure dependence of the cutoff is determined, and a log-linear response is found for the absorption with photon energy. The measurements are compared with recent published data and indicate a new anomaly for the band gap in our sample at high pressures

  6. Monochiral helimagnetism in homochiral crystals of CsCuCl3

    Science.gov (United States)

    Kousaka, Y.; Koyama, T.; Ohishi, K.; Kakurai, K.; Hutanu, V.; Ohsumi, H.; Arima, T.; Tokuda, A.; Suzuki, M.; Kawamura, N.; Nakao, A.; Hanashima, T.; Suzuki, J.; Campo, J.; Miyamoto, Y.; Sera, A.; Inoue, K.; Akimitsu, J.

    2017-12-01

    We report a crystal growth method to obtain homochiral single crystals of CsCuCl3 and polarized neutron diffraction studies to examine the chiral helimagnetism of this compound. The homochiral crystals were grown by two-step crystallization. First, millimeter-sized seed crystals were synthesized by spontaneous crystallization with stirring. The handedness of the seed crystals was determined by x-ray diffraction. Then, centimeter-sized homochiral crystals were obtained from the selected homochiral seed crystals. The large homochiral crystals made it possible to perform polarized neutron diffraction. We clarified a strong correlation between the crystal and magnetic chiralities, which governs the nature of antisymmetric Dzyaloshinskii-Moriya interactions.

  7. Magnetic phase transition of CsCuCl3 in pulsed magnetic field

    International Nuclear Information System (INIS)

    Mino, Michinobu; Ubukata, Katsunori; Bokui, Takahiro; Arai, Masatoshi; Motokawa, Mitsuhiro; Tanaka, Hidekazu.

    1993-01-01

    Neutron diffraction measurements of a triangular lattice antiferromagnet CsCuCl 3 have been done in a pulsed high magnetic field up to 14T. The field applied parallel to the c-axis and it is observed that the reflection intensity at (1/3 1/3 0.085), which corresponds to the low field magnetic structure, abruptly decreases at Bc = 10T, where the magnetization shows a small jump. Above Bc, a new reflection at (1/3 1/3 0) appears. These results are consistent with a model that a new type of magnetic phase transition occurs due to the quantum effect. (author)

  8. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  9. Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Norman, J.H.; Besenbruch, G.E.; Brown, L.C.; O' Keefe, D.R.; Allen, C.L.

    1982-05-01

    The sulfur-iodine water-splitting cycle is characterized by the following three reactions: 2H/sub 2/O + SO/sub 2/ + I/sub 2/ ..-->.. H/sub 2/SO/sub 4/ + 2HI; H/sub 2/SO/sub 4/ ..-->.. H/sub 2/O + SO/sub 2/ + 1/2 O/sub 2/; and 2HI ..-->.. H/sub 2/ + I/sub 2/. This cycle was developed at General Atomic after several critical features in the above reactions were discovered. These involved phase separations, catalytic reactions, etc. Estimates of the energy efficiency of this economically reasonable advanced state-of-the-art processing unit produced sufficiently high values (to approx.47%) to warrant cycle development effort. The DOE contract was largely directed toward the engineering development of this cycle, including a small demonstration unit (CLCD), a bench-scale unit, engineering design, and costing. The work has resulted in a design that is projected to produce H/sub 2/ at prices not yet generally competitive with fossil-fuel-produced H/sub 2/ but are projected to be favorably competitive with respect to H/sub 2/ from fossil fuels in the future.

  10. Nuclear quadrupole resonance in CuCl2.2H2O

    International Nuclear Information System (INIS)

    Liu, Y.S.; Peixoto, L.T.

    1975-01-01

    The electric field gradient (EFG) at the Cl - site of CuCl 2 .2H 2 O has been calculated on the basis of a point charge model plus the contribution of the covalent bond between nearest copper and chlorine ions. In the calculations of the EFG at Cu ++ site, it has been included the contribution of the 3d 9 electrons in the valence shell of copper and neglected the effect of chemical bonding. After comparison with experimental NQR results, it has been discussed the shielding effect of the core electrons of both ions and established values for the so called Sternheimer factors. It has been presented a value for the ionicity of chlorine in the crystal and calculated the temperature dependence of the quadrupole splitting of the copper nucleus [pt

  11. Majorana spin liquid and dimensional reduction in Cs2CuCl4

    Science.gov (United States)

    Herfurth, Tim; Streib, Simon; Kopietz, Peter

    2013-11-01

    The low-temperature behavior of the magnetic insulator Cs2CuCl4 can be modeled by an anisotropic triangular lattice spin-1/2 Heisenberg antiferromagnet with two different exchange couplings J and J'≈J/3. We show that in a wide range of magnetic fields the experimentally observed field dependence of the crossover temperature Tc for spin-liquid behavior can be explained within a mean-field theory based on the representation of spin operators in terms of Majorana fermions. We also show that for small magnetic fields the specific heat and the spin susceptibility both exhibit a maximum as a function of temperature at Tc=J/2. In the spin-liquid regime, the Majorana fermions can only propagate along the direction of the strongest bond, in agreement with the dimensional reduction scenario advanced by Balents [Nature (London)NATUAS0028-083610.1038/nature08917 464, 199 (2010)].

  12. Degradation and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors

    International Nuclear Information System (INIS)

    Stanley, Jacob; Yu Jiang; Bridges, Frank; Carter, Sue A; Ruhlen, Laurel

    2010-01-01

    We report detailed degradation and rejuvenation studies of AC electroluminescence (EL) of the phosphor ZnS:Cu,Cl, aiming to better understand the physical mechanisms that control EL emission. We find that the AC EL emission spectra vary considerably with the AC driving frequency but all spectra can be fit to a sum of four Gaussians. During degradation, although there is a large overall decrease in amplitude, the shape of the emission spectra measured at a given AC frequency does not change. Annealing the samples after they are significantly degraded can rejuvenate the phosphors with a maximum rejuvenation occurring (for fixed annealing times) near 180 deg. C. Further, these test cells can be degraded and rejuvenated multiple times. However studies at slightly higher annealing temperatures (240 deg. C) show significant thermal degradation and, perhaps more importantly, a change in the spectral shape; this likely indicates that two distinct mechanisms are then operative. In extended x-ray absorption fine structure (EXAFS) experiments we find that the CuS nanoprecipitates in the ZnS host (∼75% of the Cu is in the CuS precipitates) do not change significantly after the 240 deg. C anneal; these experiments also provide a more detailed comparison of the local structure about Cu in pure CuS, and in ZnS:Cu,Cl. In addition, the EXAFS experiments also place an upper limit on the fraction of possible interstitial Cu sites, proposed as a blue emission center, at less than 10%. The combined experiments place strong constraints on the mechanisms for degradation and rejuvenation and suggest that EL degradation is most likely caused by either Cu or Cl diffusion under high E-fields, while thermal diffusion at slightly elevated temperatures without E-fields present, re-randomizes the (isolated) dopant distributions. Higher T anneals appear to damage the sharp tips on the precipitates.

  13. Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings

    International Nuclear Information System (INIS)

    Reyes Valle, C.; Villanueva Perales, A.L.; Vidal-Barrero, F.; Ollero, P.

    2015-01-01

    Highlights: • Assessment of economics and sustainability of thermochemical ethanol production. • Exploitation of excess CO 2 saving by either importing fossil energy or CO 2 trading. • Significant increase in alcohol production by replacing biomass with natural gas. • CO 2 emission trading is not cost-competitive versus import of fossil energy. • Lowest ethanol production cost for partial oxidation as reforming technology. - Abstract: In this work, two options are investigated to enhance the economics of the catalytic production of bioethanol from biomass gasification by exploiting the excess of CO 2 emission saving: (i) to import fossil energy, in the form of natural gas and electricity or (ii) to trade CO 2 emissions. To this end, an integrated life cycle and economic assessment is carried out for four process configurations, each using a different light hydrocarbon reforming technology: partial oxidation, steam methane reforming, tar reforming and autothermal reforming. The results show that for all process configurations the production of bioethanol and other alcohols significantly increases when natural gas displaces biomass, maintaining the total energy content of the feedstock. The economic advantage of the partial substitution of biomass by natural gas depends on their prices and this is explored by carrying out a sensitivity analysis, taking historical prices into account. It is also concluded that the trade of CO 2 emissions is not cost-competitive compared to the import of natural gas if the CO 2 emission price remains within historical European prices. The CO 2 emission price would have to double or even quadruple the highest CO 2 historical price for CO 2 emission trading to be a cost-competitive option

  14. Magnetic excitations and exchange interactions in the spin-gap system TlCuCl sub 3

    CERN Document Server

    Oosawa, A; Kato, T; Kakurai, K; Müller, M; Mikeska, H J

    2002-01-01

    The magnetic excitations from the gapped ground state in TlCuCl sub 3 have been investigated by means of inelastic neutron scattering experiments. The excitation data were collected along four different directions in the a sup * -c sup * plane. A well-defined single magnetic excitation mode was observed. The lowest excitation occurs at Q=(h,0,l) with integer h and odd l, as observed in KCuCl sub 3. The dispersion relations were analyzed by the cluster-series expansion up to the sixth order, so that the individual exchange interactions were evaluated. It was demonstrated that TlCuCl sub 3 is a strongly coupled spin-dimer system. (orig.)

  15. Fabrication of Cu2O nanoplates growing on the CuCl matrix and its photocatalytic activity.

    Science.gov (United States)

    Yang, Hui; Liu, Zhi-Hong

    2011-06-01

    Novel Cu2O-CuCl composite thin film constructed by Cu2O nanoplates growing on the CuCI matrix was prepared under facile hydrothermal conditions at 120 degrees C. The phases and morphologies of the as-prepared products were characterized by energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The result indicated that the thickness of Cu2O nanoplates was about 100 nm. Furthermore, the photocatalytic activity of the prepared Cu2O-CuCl composite thin film for the degradation of methyl orange was investigated by UV-vis spectrophotometer, demonstrating that it possessed the higher activity.

  16. Thermochemical Process Development Unit

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used to demonstrate and evaluate the thermochemical conversion of biomass to produce syngas or pyrolysis oil that can be further converted to fuels...

  17. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  18. Electrical Removal Behavior of Carbon Nanotube and Carbon Nanofiber Film in CuCl2 Solution: Kinetics and Thermodynamics Study

    Directory of Open Access Journals (Sweden)

    Yankun Zhan

    2011-01-01

    Full Text Available The kinetics, thermodynamics, and isotherms during electrical removal of Cu2+ by carbon nanotube and carbon nanofiber (CNT-CNF electrodes in CuCl2 solution were studied under different solution temperatures, initial Cu2+ concentrations, and applied voltages. The result shows that Langmuir isotherm can describe experimental data well, indicating monolayer adsorption, and higher Cu2+ removal and rate constant are achieved at higher voltage, lower initial Cu2+ concentration, and higher solution temperature. Meanwhile, the thermodynamics analyses indicate that the electrical removal of Cu2+ onto CNT-CNF electrodes is mainly driven by a physisorption process.

  19. Phonon renormalization at small q values in the high-temperature phase of CsCuCl sub 3

    CERN Document Server

    Foerster, U; Schotte, U; Stuhr, U

    1997-01-01

    The hexagonal perovskite CsCuCl sub 3 exhibits a structural phase transition from a dynamically disordered high-temperature phase to an ordered low-temperature phase due to the cooperative Jahn-Teller effect. The lattice dynamics of the high-temperature phase has been studied by inelastic neutron scattering experiments. The investigations concentrated on small wave vectors q, where for the first time renormalized phonons at q=0.02-0.05 A sup - sup 1 could be observed. The measurements confirm the predictions of a theoretical approach based on the coupling between dynamic reorientation processes and acoustic lattice waves (pseudo-spin phonon coupling). (author)

  20. Electrical properties and conduction mechanism of [C2H5NH3]2CuCl4 compound

    Science.gov (United States)

    Mohamed, C. Ben; Karoui, K.; Jomni, F.; Guidara, K.; Rhaiem, A. Ben

    2015-02-01

    The [(C2H5)NH3]2CuCl4 compound was prepared and characterized by several technique: the X-ray powder diffraction confirms the purity of the synthetized compound, the differential scanning calorimetric show several phase transitions at 236 K, 330 K, 357 K and 371 K, the dialectical properties confirms the ferroelectric-paraelectric phase transition at 238 K, which is reported by V. Kapustianyk et al. (2007) [1]. The two semi-circles observed in the complex impedance identify the presence of the grain interior and grain boundary contributions to the electrical response in this material. The equivalent circuit is modeled by a combination series of two parallel RP-CPE circuits. The temperature dependence of the alternative current conductivity (σg) and direct current conductivity (σdc) confirm the observed transitions in the calorimetric study. The (AC) electrical conduction in [(C2H5)NH3]2CuCl4 was studied by two processes that can be attributed to a hopping transport mechanism: the non-overlapping small polaron tunneling (NSPT) model in phase III and the correlated barrier hopping (CBH) model in phases I, II, IV, V and VI.

  1. Nonlinear magnetoelectric effect and magnetostriction in piezoelectric CsCuCl{sub 3} in paramagnetic and antiferromagnetic states

    Energy Technology Data Exchange (ETDEWEB)

    Kharkovskiy, A. I., E-mail: akharkovskiy@inbox.ru [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); L.F. Vereshchagin Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow (Russian Federation); Shaldin, Yu. V. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); Institute for Crystallography RAS, Lenin' s Avenue 59, 119333 Moscow (Russian Federation); Nizhankovskii, V. I. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland)

    2016-01-07

    The direct nonlinear magnetoelectric (ME) effect and the magnetostriction of piezoelectric CsCuCl{sub 3} single crystals were comprehensively studied over a wide temperature range in stationary magnetic fields of up to 14 T. The direct nonlinear ME effect measurements were also performed in pulsed magnetic fields up to 31 T, at liquid helium temperature in the antiferromagnetic (AF) state for the crystallographic direction in which effect has the maximum value. The nonlinear ME effect was quadratic in the paramagnetic state for the whole range of magnetic fields. In the AF state the phase transition between different configurations of spins manifested itself as plateau-like peculiarity on the nonlinear ME effect. The nonlinear ME effect was saturated by the phase transition to the spin-saturated paramagnetic state. Two contributions to the nonlinear ME effects in CsCuCl{sub 3} were extracted from the experimental data: the intrinsic ME effect originated from the magnetoelectric interactions, and the extrinsic one, which resulted from a magnetostriction-induced piezoelectric effect.

  2. Quasi-1D s=1/2 antiferromagnet Cs2CuCl4 in a magnetic field

    DEFF Research Database (Denmark)

    Coldea, R.; Tennant, D.A.; Cowley, R.A.

    1997-01-01

    Magnetic excitations of the quasi-1D S = 1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have beer measured as a function of magnetic field using neutron scattering. For T 3D incommensurate ordering. Fields greater than B-c = 1.66 T, but less...

  3. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  4. Ferroelastoelectric phase transition in (NH4)2CuCl4·2H2O single crystal

    International Nuclear Information System (INIS)

    Tylczyński, Zbigniew; Wiesner, Maciej

    2015-01-01

    The (NH 4 ) 2 CuCl 4 ·2H 2 O crystal exhibits anomalous thermal, piezoelectric, dielectric and elastic properties in the vicinity of the ferroelastoelectric phase transition at T C  = 200 K. Macroscopic order parameter is the h 36 component of the spontaneous piezoelectric tensor connecting polarisation P 3 and strain η 6 . The temperature change in h 36 component was proportional to (T C  − T) α , where α = 0.58 ± 0.05. Close to T C changes in dielectric permittivity were negligible. High value of ac conductivity in the high-temperature phase results from protons jumping between disordered ions NH 4 + and between molecules of crystallisation water. Only longitudinal ultrasonic waves exhibited an abrupt change upon the phase transition. The relaxation time of the order parameter was determined from anomalous changes in attenuation of the longitudinal waves. - Highlights: • Low-temperature phase shows higher-order ferroicity: ferroelastoelectricity. • Temperature change of spontaneous piezoelectricity was studied in the ordered phase. • Dispersion of complex dielectric constant was investigated in wide temperature range. • At high-temperature phase ac conductivity is caused by proton jumps. • Anomalies of ultrasonic waves at T C were analysed using phenomenological theory

  5. Assessment of a closed thermochemical energy storage using energy and exergy methods

    International Nuclear Information System (INIS)

    Abedin, Ali Haji; Rosen, Marc A.

    2012-01-01

    Highlights: ► Thermodynamics assessments are reported for a general closed thermochemical thermal energy storage system. ► Energy and exergy efficiencies of various processes in a closed thermochemical TES are evaluated and compared. ► Understanding is enhanced of thermochemical TES technologies and their potential implementations. ► Exergy analysis is observed to be useful when applied to thermochemical TES, with or in place of energy analysis. - Abstract: Thermal energy storage (TES) is an important technology for achieving more efficient and environmentally benign energy systems. Thermochemical TES is a type of TES with the potential for high energy density and is only recently being considered intensively. To improve understanding of thermochemical TES systems and their implementation, energy and exergy analyses are beneficial. Here, thermodynamics assessments are presented for a general closed thermochemical TES system, including assessments and comparisons of the efficiencies of the overall thermochemical TES cycle and its charging, storing and discharging processes. Locations and causes of thermodynamic losses in thermochemical TES systems are being specified using exergy analysis. The analytical methodology applied in this study identifies that energy and exergy efficiencies differ for thermochemical TESs, e.g. the energy efficiency for a case study is approximately 50% while the exergy efficiency is about 10%. Although the focus is to evaluate thermodynamic efficiencies, other design parameters such as cost, and environmental impact also need to be examined in assessing thermochemical storage. The efficiencies for thermochemical TES provided here should be helpful for designing these energy systems and enhancing their future prospects.

  6. Effect of bond randomness on magnetic states in ferromagnetic-antiferromagnetic alternating chains (CH3)2CHNH3CuCl3

    International Nuclear Information System (INIS)

    Yamada, I.; Manaka, H.

    2003-01-01

    The compound (CH 3 ) 2 CHNH 3 CuCl 3 consists of ferromagnetic and antiferromagnetic alternating Heisenberg chains with S=1/2; a pair of ferromagnetically coupled spins behaves as a spin with S=1. Consequently, it has the Haldane gap in its energy spectrum at T=0 K. We investigated an issue what will happen when Cl ions are randomly replaced by other kind of anions, for instance by Br ions. Performing experiments on single crystals of mixed compounds (CH 3 ) 2 CHNH 3 Cu(Cl x Br 1-x ) 3 in which Cl ions are randomly replaced by Br ions, we found that the energy gap disappeared over the region 0.44< x<0.87. The experimental data, which prove the disappearance of the energy gap, are presented and discussed

  7. Extension of a reactive distillation process design methodology: application to the hydrogen production through the Iodine-Sulfur thermochemical cycle; Generalisation d'une approche de conception de procedes de distillation reactive: application a la production d'hydrogene par le cycle thermochimique I-S

    Energy Technology Data Exchange (ETDEWEB)

    Belaissaoui, B

    2006-02-15

    Reactive distillation is a promising way to improve classical processes. This interest has been comforted by numerous successful applications involving reactive systems in liquid phase but never in vapour phase. In this context, general design tools have been developed for the analysis of reactive distillation processes whatever the reactive phase. A general model for open condensation and evaporation of vapour or liquid reactive systems in chemical equilibrium has been written and applied to extend the feasibility analysis, synthesis and design methods of the sequential design methodology of R. Thery (2002). The extended design methodology is applied to the industrial production of hydrogen through the iodine-sulphur thermochemical cycle by vapour phase reactive distillation. A column configuration is proposed with better performance formerly published configuration. (author)

  8. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  9. Spin dynamics in the high-field phase of quantum-critical S =1/2 TlCuCl sub 3

    CERN Document Server

    Rueegg, C; Furrer, A; Krämer, K; Güdel, H U; Vorderwisch, P; Mutka, H

    2002-01-01

    An external magnetic field suppresses the spin-energy gap in singlet ground state S=1/2 TlCuCl sub 3. The system becomes quantum-critical at H sub c approx 5.7 T, where the energy of the lowest Zeeman-split triplet excitation crosses the nonmagnetic ground state. Antiferromagnetic ordering is reported above H sub c , which underlines the three-dimensional nature of the observed quantum phase transition. The intrinsic parameters of S=1/2 TlCuCl sub 3 allow us to access the critical region microscopically by neutron scattering. A substantial study of the spin dynamics in the high-field phase of TlCuCl sub 3 at T=1.5 K up to H=12 T was performed for the first time. The results possibly indicate two dynamical regimes, which can be understood within characteristically renormalized triplet modes and a low-lying dynamics of potentially collective origin. (orig.)

  10. Multigenerational effects of copper nanomaterials (CuONMs) are different of those of CuCl2: exposure in the soil invertebrate Enchytraeus crypticus.

    Science.gov (United States)

    Bicho, Rita C; Santos, Fátima C F; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2017-08-16

    Nanomaterials (NMs) are recommended to be tested in longer term exposures. Multigenerational (MG) studies are scarce and particularly important because effects can be transferred to the next generation. The current risk assessment framework does not include MG effects and this is a caveat for persistent materials. Here, the effects of copper NMs (CuONMs) and copper salt (CuCl 2 ) were assessed in a MG exposure (4 generations in spiked soil + 2 generations in clean soil, F1 to F7 generations in total), with the standard soil model Enchytraeus crypticus, using relevant reproduction test effect concentrations (EC 10 , EC 50 ), monitoring survival and reproduction. This represented ca. 1 year continuous exposure tests. MG effects varied with effect concentration and test materials: CuONMs caused increased toxicity for EC 10 exposed organisms (EC 50 did not change), and transfer to clean media reset effects, whereas CuCl 2 reduced toxicity for EC 10 and EC 50 , but the transfer to clean media "revived" the initial effects, i.e. close to EC 50 levels in F7. Clearly CuONMs and CuCl 2 cause different mechanisms of toxicity or response in the long term, not predictable based on short term or one generation studies. The present contributes for the improvement of risk assessment, adding important information for the long term exposure and effects.

  11. A monomeric complex of ammonia and cuprous chloride: H3N⋯CuCl isolated and characterised by rotational spectroscopy and ab initio calculations.

    Science.gov (United States)

    Bittner, Dror M; Zaleski, Daniel P; Stephens, Susanna L; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2015-04-14

    The H3N⋯CuCl monomer has been generated and isolated in the gas phase through laser vaporisation of a copper sample in the presence of low concentrations of NH3 and CCl4 in argon. The resulting complex cools to a rotational temperature approaching 2 K during supersonic expansion of the gas sample and is characterised by broadband rotational spectroscopy between 7 and 18.5 GHz. The spectra of six isotopologues are measured and analysed to determine rotational, B0; centrifugal distortion, DJ, DJK; and nuclear quadrupole coupling constants of Cu, Cl, and (14)N nuclei, χaa (X). The geometry of the complex is C3v with the N, Cu, and Cl atoms located on the a inertial axis. Bond distances and the ∠(H -N⋯Cu) bond angle within the complex are precisely evaluated through fitting of geometrical parameters to the experimentally determined moments of inertia and through ab initio calculations at the CCSD(T)(F12*)/AVQZ level. The r(Cu -Cl), r(Cu -N), and ∠(H -N⋯Cu) parameters are, respectively, evaluated to be 2.0614(7) Å, 1.9182(13) Å, and 111.40(6)° in the r0 geometry, in good agreement with the ab initio calculations. Geometrical parameters evaluated for the isolated complex are compared with those established crystallographically for a solid-state sample of [Cu(NH3)Cl].

  12. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  13. Thermochemical transformations of anthracite fractions

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Privalov, V.E.; Stepanenko, atM.A.

    1979-08-01

    Research on the nature of thermochemical transformations of anthracite fractions and the possibility of increasing their activity and identifying conditions for their use in the electrode pitch process is described. From research done on different anthracite fractions processed at varying temperatures it was concluded that accumulations of condensates from heating anthracite fractions occur significantly slower in comparison with pitch. As a result the electrode pitch process is prolonged. Thermal treatment of an anthracite fraction causes the formation and accumulation of condensates and promotes thermochemical transformations. Lastly, the use of thermally treated anthracite fractions apparently intensifies the electrode pitch process and improves its quality. (16 refs.) (In Russian)

  14. CuCl-catalyzed aerobic oxidation of 2,3-allenols to 1,2-allenic ketones with 1:1 combination of phenanthroline and bipyridine as ligands

    Directory of Open Access Journals (Sweden)

    Shengming Ma

    2011-04-01

    Full Text Available A protocol has been developed to prepare 1,2-allenyl ketones using molecular oxygen in air or pure oxygen as the oxidant from 2,3-allenylic alcohols with moderate to good yields under mild conditions. In this reaction CuCl (20 mol % with 1,10-phenanthroline (10 mol % and bipyridine (10 mol % was used as the catalyst. It is interesting to observe that the use of the mixed ligands is important for the higher yields of this transformation: With the monoligand approach developed by Markó et al., the yields are relatively lower.

  15. Growth of (CH$_3$)$_2$NH$_2$CuCl$_3$ single crystals using evaporation method with different temperatures and solvents

    OpenAIRE

    Chen, L. M.; Tao, W.; Zhao, Z. Y.; Li, Q. J.; Ke, W. P.; Wang, X. M.; Liu, X. G.; Fan, C.; Sun, X. F.

    2013-01-01

    The bulk single crystals of of low-dimensional magnet (CH$_3$)$_2$NH$_2$CuCl$_3$ (DMACuCl$_3$ or MCCL) are grown by a slow evaporation method with different kinds of solvents, different degrees of super-saturation of solution and different temperatures of solution, respectively. Among three kinds of solvent, methanol, alcohol and water, alcohol is found to be the best one for growing MCCL crystals because of its structural similarity to the raw materials and suitable evaporation rate. The bes...

  16. Magnetic properties of a S = 1/2 zigzag spin chain compound (N sub 2 H sub 5)CuCl sub 3

    CERN Document Server

    Maeshima, N; Narumi, Y; Kindo, K; Kobayashi, T C; Okunishi, K

    2003-01-01

    We present a theoretical and experimental study of a quasi-one-dimensional zigzag antiferromagnet (N sub 2 H sub 5)CuCl sub 3 , which can be viewed as weakly coupled Heisenberg chains with a frustrated interaction. We first discuss generic features of the magnetic properties of the zigzag spin chain between the nearly single chain case and the nearly double chain case, on the basis of the finite temperature density-matrix renormalization group (DMRG) calculations. We next show the experimental results for the magnetic susceptibility and the high-field magnetization of a single crystal of (N sub 2 H sub 5)CuCl sub 3 above the Neel temperature T sub N = 1.55 K. By comparing the experimental data with the DMRG results carefully, we finally obtain the ratio of the nearest and next-nearest exchange couplings as J sub 1 /J sub 2 = 0.25 with J sub 2 /k sub B = 16.3 K. We also investigate the three-dimensional (3D) coupling J' effect by using mean-field theory combined with the DMRG calculations. The estimated value ...

  17. Effect of organic chain length on structure, electronic composition, lattice potential energy, and optical properties of 2D hybrid perovskites [(NH3)(CH2) n (NH3)]CuCl4, n = 2-9

    Science.gov (United States)

    Abdel-Aal, Seham K.; Kocher-Oberlehner, Gudrun; Ionov, Andrei; Mozhchil, R. N.

    2017-08-01

    Diammonium series of Cu hybrid perovskites of the formula [(NH3)(CH2) n (NH3)]CuCl4, n = 6-9 are prepared from an ethanolic solution in stoichiometric ratio 1:1 (organic/inorganic). Formation of the desired material was confirmed and characterizes by microchemical analysis, FTIR, XRD and XPS spectra. The structure consists of corner-shared octahedron [CuCl4]2- anion alternative by organic [(NH3)(CH2) n (NH3)]2+ cations. The organic and inorganic layers form infinite 2D sheet that are connected via NH···Cl hydrogen bond. The calculated lattice potential energy U pot (kJ/mol) and lattice enthalpy Δ H L (kJ/mol) are inversely proportional to the molecular volume V m (nm3) and organic chain length. Optical properties show strong absorption peak at UV-visible range. The band gap energy calculated using Kubelka-Munk equation shows the decrease of the energy gap as organic chain length increases. The introduction of bromide ion to [(NH3)(CH2) n (NH3)]CuCl2Br2 denoted 2C7CuCB hybrid has shifted the energy gap to lower values from 2.6 to 2.18 eV for 2C7CuCl (yellow) and 2C7CuCB (brown), respectively, at the same organic chain length. All elements of [(NH3)(CH2)9(NH3)]CuCl4 and [(NH3)(CH2)7(NH3)]CuCl2Br2 were found in XPS spectra, as well as valence band spectra.

  18. Thermochemical treatment of biogas digestate solids to produce organic fertilisers

    DEFF Research Database (Denmark)

    Pantelopoulos, Athanasios

    Anaerobic digestion of animal manures has been proposed as a process with twofold advantage. The production of biogas, a renewable source of energy, and the treatment of animal manures to increase their agronomic value and reduce their environmental impact. However, the residual of anaerobic...... in the N cycle in the solidssoil- plant system, 15N has been utilized at the second and third study. In conclusion, drying of digestate solids resulted in an end-product with increased stability and reduced mass/volume which can facilitate its storage and transportation. Nevertheless, dried digestate....... For a full utilization of acidification and drying as digestate solids treatment, a more systematic assessment of the effect of the thermochemical treatment on P availability is required. Moreover, the ameliorating properties of thermo-chemically treated solids should be assessed in comparison with known...

  19. 64Cu-ATSM Reflects pO2 Levels in Human Head and Neck Cancer Xenografts but Not in Colorectal Cancer Xenografts: Comparison with 64CuCl2

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper T.; Forman, Julie

    2016-01-01

    of 64Cu-ATSM and 64CuCl2 was found in the kidney, muscle, and liver of all animals, but 64CuCl2 showed a higher uptake 10–60 min after injection in both tumor models. Significant differences were also found for both tumor-to-muscle and tumor-to-liver ratios. The intratumoral distribution of 64Cu...... measurements, indicating that 64Cu-ATSM is a hypoxia-specific marker in this tumor type. However, data from colorectal cancer xenografts indicated that 64Cu-ATSM may not be a hypoxia marker in all tumor types....

  20. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3

    CERN Document Server

    Oosawa, A; Kakurai, K; Fujisawa, M; Tanaka, H

    2003-01-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3. Below the ordering temperature T sub N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  1. Existence of an isotropic point and birefringence dispersion study in (C2H5NH3)2CuCl4 crystal near its thermochromic phase transition

    Science.gov (United States)

    Fernandez, J.; Gomez Cuevas, A.; Arriandiaga, M. A.; Socias, C.; Tello, M. J.

    1985-04-01

    The anomalous optical dispersion and the existence of an isotropic point in the organic-inorganic double-halide (C2H5NH3)2CuCl4 crystal (in short EACuC) around its thermochromic low-temperature phase transition were investigated by means of birefringence, thermal expansion, and calorimetric measurements as well as by direct conoscopic and orthoscopic observations under polarized light. The birefringence dispersion data are analyzed using a simple two-oscillator model based on the optical band structure of EACuC. The model adjustable parameters are related with the oscillator strength and average positions, respectively. The thermal behavior of the involved parameters is compatible with the existence of the isotropic point below the thermochromic phase transition. These results, together with the optical extinction measurements and the domain pattern observations, suggest a complicated structural phase-transition sequence which is also discussed.

  2. Two Novel Tyrosinase Inhibitory Sesquiterpenes Induced by CuCl2 from a Marine-Derived Fungus Pestalotiopsis sp. Z233

    Directory of Open Access Journals (Sweden)

    Min Sun

    2013-08-01

    Full Text Available Two new sesquiterpenes, 1β,5α,6α,14-tetraacetoxy-9α-benzoyloxy-7β H-eudesman-2β,11-diol (1 and 4α,5α-diacetoxy-9α-benzoyloxy-7βH-eudesman-1β,2β,11, 14-tetraol (2, were produced as stress metabolites in the cultured mycelia of Pestalotiopsis sp. Z233 isolated from the algae Sargassum horneri in response to abiotic stress elicitation by CuCl2. Their structures were established by spectroscopic means. New compounds 1 and 2 showed tyrosinase inhibitory activities with IC50 value of 14.8 µM and 22.3 µM.

  3. Magnetic phase diagram of the randomized two dimensional Heisenberg antiferromagnet (QuinH)2CuCl4xBr4 (1 - x) . 2 H2O

    Science.gov (United States)

    Xiao, Fan; Williams, Rob; Lancaster, Tom; Landee, Christopher; Turnbull, Mark

    A family of randomized two-dimensional quantum Heisenberg antiferromagnets (2DQHAF) (QuinH)2CuCl4xBr4 (1 - x) . 2 H2O (QuinH=quinolinium) have been synthesized and characterized. In such systems, the original interaction in the square lattice parent compound (x = 0) is partially replaced by a different exchange strength. Zero-field muon spin relaxation (ZF μ+SR) experiments have revealed that the magnetic long range ordering can be strongly suppressed by the introduction of the second interaction and the ordering temperature TN drops sharply as x increases. No 3D long range ordered state was observed in the compounds with x > 0 . 25 and the system stays disordered down to the lowest accessible temperature. The structure, magnetic properties and the TN - x phase diagram of the family will be presented.

  4. CuCl-Catalyzed Hydroxylation of N-Heteroarylcarbazole Bromide: Approach for the Preparation of N-Heteroarylcarbazolyl Phenols and Its Application in the Synthesis of Phosphorescent Emitters.

    Science.gov (United States)

    Li, Guijie; Zhao, Xiangdong; Fang, Kun; Li, Jian; She, Yuanbin

    2017-08-18

    An efficient and practical CuCl-catalyzed hydroxylation of N-heteroarylcarbazole bromide for the preparation of N-heteroarylcarbazolyl phenols with a broad functional group scope and yield up to 98% was developed. It was found that both the ligand and base played critical roles in the functional group transformation and that different products could be generated by changing the base for some substrates. t-BuONa was demonstrated to be a better base for the catalytic system to avoid the formation of the ether byproduct. In addition, this approach was suitable for large-scale preparation and was successfully applied in the gram-scale synthesis of phosphorescent emitters PtNON and PdNON, demonstrating its practicability in organic synthesis methodology and materials science. Furthermore, the X-ray crystal diffraction, DFT calculations, and photophysical properties were also investigated for the metal complexes.

  5. Large-scale single-crystal growth of (CH3)2NH2CuCl3 for neutron scattering experiments

    Science.gov (United States)

    Park, Garam; Oh, In-Hwan; Park, J. M. Sungil; Park, Seong-Hun; Hong, Chang Seop; Lee, Kwang-Sei

    2016-05-01

    Neutron scattering studies on low-dimensional quantum spin systems require large-size single-crystals. Single-crystals of (CH3)2NH2CuCl3 showing low-dimensional magnetic behaviors were grown by a slow solvent evaporation method in a two-solvent system at different temperature settings. The best results were obtained for the bilayer solution of methanol and isopropanol with a molar ratio of 2:1 at 35 °C. The quality of the obtained single-crystals was tested by powder and single-crystal X-ray diffraction and single-crystal neutron diffraction. In addition, to confirm structural phase transitions (SPTs), thermal analysis and single-crystal X-ray diffraction at 300 K and 175 K, respectively, were conducted, confirming the presence of a SPT at Tup=288 K on heating and Tdown=285 K on cooling.

  6. Growth of (CH 3) 2NH 2CuCl 3 single crystals using evaporation method with different temperatures and solvents

    Science.gov (United States)

    Chen, L. M.; Tao, W.; Zhao, Z. Y.; Li, Q. J.; Ke, W. P.; Wang, X. M.; Liu, X. G.; Fan, C.; Sun, X. F.

    2010-10-01

    The bulk single crystals of low-dimensional magnet (CH 3) 2NH 2CuCl 3 (DMACuCl 3 or MCCL) are grown by a slow evaporation method with different kinds of solvents, different degrees of super-saturation of solution and different temperatures of solution, respectively. Among three kinds of solvent, methanol, alcohol and water, alcohol is found to be the best one for growing MCCL crystals because of its structural similarity to the raw materials and suitable evaporation rate. The best growth temperature is in the vicinity of 35 °C. The problem of the crystals deliquescing in air has been solved through recrystallization process. The crystals are characterized by means of X-ray diffraction, specific heat and magnetic susceptibility.

  7. Effect of atomic vibrations in XANES: polarization-dependent damping of the fine structure at the Cu K-edge of (creat)2CuCl4.

    Science.gov (United States)

    Šipr, Ondřej; Vackář, Jiří; Kuzmin, Alexei

    2016-11-01

    Polarization-dependent damping of the fine structure in the Cu K-edge spectrum of creatinium tetrachlorocuprate [(creat) 2 CuCl 4 ] in the X-ray absorption near-edge structure (XANES) region is shown to be due to atomic vibrations. These vibrations can be separated into two groups, depending on whether the respective atoms belong to the same molecular block; individual molecular blocks can be treated as semi-rigid entities while the mutual positions of these blocks are subject to large mean relative displacements. The effect of vibrations can be efficiently included in XANES calculations by using the same formula as for static systems but with a modified free-electron propagator which accounts for fluctuations in interatomic distances.

  8. Stage efficiency in the analysis of thermochemical water decomposition processes

    Science.gov (United States)

    Conger, W. L.; Funk, J. E.; Carty, R. H.; Soliman, M. A.; Cox, K. E.

    1976-01-01

    The procedure for analyzing thermochemical water-splitting processes using the figure of merit is expanded to include individual stage efficiencies and loss coefficients. The use of these quantities to establish the thermodynamic insufficiencies of each stage is shown. A number of processes are used to illustrate these concepts and procedures and to demonstrate the facility with which process steps contributing most to the cycle efficiency are found. The procedure allows attention to be directed to those steps of the process where the greatest increase in total cycle efficiency can be obtained.

  9. A monomeric complex of ammonia and cuprous chloride: H{sub 3}N⋯CuCl isolated and characterised by rotational spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Dror M.; Zaleski, Daniel P.; Stephens, Susanna L.; Walker, Nicholas R., E-mail: nick.walker@newcastle.ac.uk, E-mail: a.c.legon@bristol.ac.uk [School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne, Tyne and Wear NE1 7RU (United Kingdom); Tew, David P.; Legon, Anthony C., E-mail: nick.walker@newcastle.ac.uk, E-mail: a.c.legon@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)

    2015-04-14

    The H{sub 3}N⋯CuCl monomer has been generated and isolated in the gas phase through laser vaporisation of a copper sample in the presence of low concentrations of NH{sub 3} and CCl{sub 4} in argon. The resulting complex cools to a rotational temperature approaching 2 K during supersonic expansion of the gas sample and is characterised by broadband rotational spectroscopy between 7 and 18.5 GHz. The spectra of six isotopologues are measured and analysed to determine rotational, B{sub 0}; centrifugal distortion, D{sub J}, D{sub JK}; and nuclear quadrupole coupling constants of Cu, Cl, and {sup 14}N nuclei, χ{sub aa} (X). The geometry of the complex is C{sub 3v} with the N, Cu, and Cl atoms located on the a inertial axis. Bond distances and the ∠(H —N⋯Cu) bond angle within the complex are precisely evaluated through fitting of geometrical parameters to the experimentally determined moments of inertia and through ab initio calculations at the CCSD(T)(F12*)/AVQZ level. The r(Cu —Cl), r(Cu —N), and ∠(H —N⋯Cu) parameters are, respectively, evaluated to be 2.0614(7) Å, 1.9182(13) Å, and 111.40(6)° in the r{sub 0} geometry, in good agreement with the ab initio calculations. Geometrical parameters evaluated for the isolated complex are compared with those established crystallographically for a solid-state sample of [Cu(NH{sub 3})Cl].

  10. Magnetism of CuCl{sub 2}·2D{sub 2}O and CuCl{sub 2}·2H{sub 2}O, and of CuBr{sub 2}·6H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: gxdefo@wm.edu [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Hampton, A.S.; Van Dongen, M.J.; Komatsu, C.H.; Benday, N.S.; Davis, C.M. [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Hays, K.; Wagner, M.J. [Department of Chemistry, George Washington University, Washington, D.C. 20052 (United States)

    2017-07-15

    Highlights: • CuCl{sub 2}·2D{sub 2}O is examined magnetically and compared with CuCl{sub 2}·2H{sub 2}O. • Slightly lower magnetic characteristic temperatures occur for deuterated dihydrate. • The new compound CuBr{sub 2}·6H{sub 2}O is examined magnetically. • Unexpected relationships appears between magnetic behaviors of CuBr{sub 2}·6H{sub 2}O and CuBr{sub 2}. • Two alternative monoclinic unit cells can account for diffraction data on CuBr{sub 2}·6H{sub 2}O. - Abstract: The magnetic properties of little examined CuCl{sub 2}·2D{sub 2}O are studied and compared with those of CuCl{sub 2}·2H{sub 2}O. New CuBr{sub 2}·6H{sub 2}O is also examined. Susceptibility maxima appear for chlorides at 5.35 and 5.50 K, in the above order, with estimated antiferromagnetic ordering at 4.15 and 4.25 K. Curie-Weiss fits yield g of 2.210 and 2.205, and Weiss θ of −6.0 and −4.7 K, respectively, in χ{sub M} = C/(T − θ). One-dimensional Heisenberg model fits to susceptibilities, including interchain exchange in a mean-field approximation, are performed. Interchain exchange is significant but much weaker than intrachain. The bromide hexahydrate strongly differs magnetically from any chloride hydrate, but exhibits notable similarities and differences compared to previously studied CuBr{sub 2}. A broad susceptibility maximum occurs near 218 K, only 4% lower than for CuBr{sub 2}, but with almost twice the magnitude. Powder X-ray diffraction data for CuBr{sub 2}·6H{sub 2}O may be best accounted for by a monoclinic unit cell that is metrically orthorhombic. The volume per formula unit is consistent with trends in metal ionic radii. However, an alternative monoclinic cell with 5% smaller volume more readily rationalizes the magnetism.

  11. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  12. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  13. 64Cu-ATSM Reflects pO2 Levels in Human Head and Neck Cancer Xenografts but Not in Colorectal Cancer Xenografts: Comparison with 64CuCl2.

    Science.gov (United States)

    Li, Fan; Jørgensen, Jesper T; Forman, Julie; Hansen, Anders E; Kjaer, Andreas

    2016-03-01

    The hypoxia PET tracer (64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazonate) ((64)Cu-ATSM) has shown promising results in clinical studies. However, concerns have been raised with regard to the possible effect of copper metabolism and free copper on tumor uptake and thereby the robustness of (64)Cu-ATSM as a hypoxia marker. In this study, accumulation and distribution of (64)Cu-ATSM and (64)CuCl2 in tumor tissue were compared with partial pressure of oxygen (pO2) probe measurements. One-hour dynamic PET scans were performed on nude mice bearing subcutaneous human head and neck tumors (FaDu) and human colorectal tumors (HT29) after administration of either (64)Cu-ATSM or (64)CuCl2. Subsequently, tracks were generated and track markers were positioned in tumors to allow for registration of their exact location on the high-resolution CT scan. After completion of the CT scan, pO2 probe measurements were performed along each track. PET and CT images were coregistered and ROIs drawn on the basis of the location of track markers and pO2 probe measurement depth. A linear mixed model for repeated measures was applied for the comparison of PET tracer uptake to corresponding pO2 values. Comparable uptake of (64)Cu-ATSM and (64)CuCl2 was found in the kidney, muscle, and liver of all animals, but (64)CuCl2 showed a higher uptake 10-60 min after injection in both tumor models. Significant differences were also found for both tumor-to-muscle and tumor-to-liver ratios. The intratumoral distribution of (64)Cu-ATSM, but not (64)CuCl2, showed a significant negative relationship with pO2 measurements in FaDu tumors. However, this relationship was not found in HT29 tumors. (64)Cu-ATSM and (64)CuCl2 displayed different uptake in tumors. In human head and neck xenografts, (64)Cu-ATSM but not (64)CuCl2 reflected pO2 measurements, indicating that (64)Cu-ATSM is a hypoxia-specific marker in this tumor type. However, data from colorectal cancer xenografts indicated that (64)Cu-ATSM may not be

  14. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  15. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  16. High Efficiency Solar Thermochemical Reactor for Hydrogen Production.

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-09-30

    This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.

  17. Thermochemical evaluation and preparation of cesium uranates

    International Nuclear Information System (INIS)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku; Sato, Seichi; Ohashi, Hiroshi.

    1997-03-01

    Two kinds of cesium uranates, Cs 2 UO 4 and Cs 2 U 2 O 7 , which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U 3 O 8 and Cs 2 CO 3 for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs 2 UO 4 and Cs 2 U 2 O 7 were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs 2 UO 4 and Cs 2 U 2 O 7 were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  18. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  19. A hybrid thermochemical-electrolytic process for hydrogen production based on the Reverse Deacon Reaction

    International Nuclear Information System (INIS)

    Simpson, M.F.; Herrmann, S.D.; Boyle, B.D.

    2006-01-01

    Development has been initiated on a three-reaction, hybrid thermochemical-electrolytic process for splitting water into hydrogen and oxygen. This process can be run at 500 C, making it suitable for linking to nuclear reactors that run colder than the very highest temperature gas cooled reactors. This feature also makes the materials requirements less stringent than for high temperature cycles, many of which require temperatures in the range of 800-900 C. The process consists of three reactions - two thermochemical and one electrolytic. The thermochemical reactions sum to the reverse Deacon reaction. The electrolytic step involves the electrolysis of anhydrous HCl. The estimated energy savings for this process relative to electrolysis of water are in the vicinity of 15%, due to the low energy requirements of anhydrous HCl electrolysis. Preliminary experimental results indicate that a silicalite-supported catalyst for the reverse Deacon reaction has the potential of promoting fast reaction kinetics and long-term stability of the solids.

  20. SUNgas: Thermochemical Approaches to Solar Fuels

    Science.gov (United States)

    Davidson, Jane

    2013-04-01

    Solar energy offers an intelligent solution to reduce anthropogenic emissions of greenhouse gases and to meet an expanding global demand for energy. A transformative change from fossil to solar energy requires collection, storage, and transport of the earth's most abundant but diffuse and intermittent source of energy. One intriguing approach for harvest and storage of solar energy is production of clean fuels via high temperature thermochemical processes. Concentrated solar energy is the heat source and biomass or water and carbon dioxide are the feedstocks. Two routes to produce fuels using concentrated solar energy and a renewable feed stock will be discussed: gasification of biomass or other carbonaceous materials and metal oxide cycles to produce synthesis gas. The first and most near term route to solar fuels is to gasify biomass. With conventional gasification, air or oxygen is supplied at fuel-rich levels to combust some of the feedstock and in this manner generate the energy required for conversion to H2 and CO. The partial-combustion consumes up to 40% of the energetic value of the feedstock. With air combustion, the product gas is diluted by high levels of CO2 and N2. Using oxygen reduces the product dilution, but at the expense of adding an oxygen plant. Supplying the required heat with concentrated solar radiation eliminates the need for partial combustion of the biomass feedstock. As a result, the product gas has an energetic value greater than that of the feedstock and it is not contaminated by the byproducts of combustion. The second promising route to solar fuels splits water and carbon dioxide. Two-step metal-oxide redox cycles hold out great potential because they the temperature required to achieve a reasonable degree of dissociation is lower than direct thermal dissociation and O2 and the fuel are produced in separate steps. The 1^st step is the endothermic thermal dissociation of the metal oxide to the metal or lower-valence metal oxide. The 2

  1. Structure–property relations of orthorhombic [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 3}·2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Haussühl, Eiken, E-mail: haussuehl@kristall.uni-frankfurt.de [Institut für Geowissenschaften, Abt. Kristallographie, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main (Germany); Schreuer, Jürgen [Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum (Germany); Wiehl, Leonore; Paulsen, Natalia [Institut für Geowissenschaften, Abt. Kristallographie, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main (Germany)

    2014-04-01

    Large single crystals of orthorhombic [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 3}·2H{sub 2}O with dimensions up to 40×40×30 mm{sup 3} were grown from aqueous solutions. The elastic and piezoelastic coefficients were derived from ultrasonic resonance frequencies and their shifts upon variation of pressure, respectively, using the plate-resonance technique. Additionally, the coefficients of thermal expansion were determined between 95 K and 305 K by dilatometry. The elastic behaviour at ambient conditions is dominated by the 2-dimensional network of strong hydrogen bonds within the (001) plane leading to a corresponding pseudo-tetragonal anisotropy of the longitudinal elastic stiffness. The variation of elastic properties with pressure, however, as well as the thermal expansion shows strong deviations from the pseudo-tetragonal symmetry. These deviations are probably correlated with tilts of the elongated tri-nuclear betaine–CuCl{sub 2}–water complexes. Neither the thermal expansion nor the specific heat capacity gives any hint on a phase transition in the investigated temperature range. - Graphical abstract: Single crystal of orthorhombic [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 3}·2H{sub 2}O. - Highlights: • Large single crystals (40 ×40 ×30 mm{sup 3}) of [(CH{sub 3}){sub 3}NCH{sub 2}COO]{sub 2}(CuCl{sub 2}){sub 3}·2H{sub 2}O were grown. • The elastic and piezoelastic coefficients were derived from ultrasonic resonance frequencies. • Thermal expansion (95 K–305 K) and heat capacity (113 K–323 K) were determined. • The orthorhombic structure shows pseudo-tetragonal elastic anisotropy at ambient conditions. • The crystal structure is stable in the investigated range (1–1600 bar, 95–303 K)

  2. Thermochemical cycles for the heat and cold long-range transport. Final report of the PRI 9.2 Cold transport. Annual report of the PR 2-8; Cycles thermochimiques pour le transport de chaleur et de froid a longue distance. Rapport final du PRI 9.2. Transport de froid. Rapport annuel du PR 2-8

    Energy Technology Data Exchange (ETDEWEB)

    Luo, L.; Tondeur, D. [Laboratoire des Sciences du Genie Chimique (LSGC), 54 - Nancy (France); Mazet, N.; Neveu, P.; Stitou, D.; Spinner, B. [Institut de Science et de Genie des Materiaux et Procedes (IMP), 66 - Perpignan (France)

    2004-07-01

    This PRI deals with the use of thermochemical processes, based on solid-gas reversible transformation, to transfer heat of cold at long-range distance (> 10 km), in order to enhance the energy efficiency. Four main aspects have been studied to confirm the process feasibility: the process identification and the operating conditions, the selection of compatible reagents, the design of an auto-thermal reactor and the gas transport impact on the global performances. (A.L.B.)

  3. Magneto-acoustic study near the quantum critical point of the frustrated quantum antiferromagnet Cs{sub 2}CuCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Cong, P. T., E-mail: t.pham@hzdr.de [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Postulka, L.; Wolf, B.; Ritter, F.; Assmus, W.; Krellner, C.; Lang, M., E-mail: michael.lang@physik.uni-frankfurt.de [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Well, N. van [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2016-10-14

    Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs{sub 2}CuCl{sub 4} were performed for the longitudinal modes c{sub 11} and c{sub 33} in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at T{sub N}. Isothermal measurements at T < T{sub N} of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at B{sub s} ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature T{sub N}(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/k{sub B} ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.

  4. Combustion of thermochemically torrefied sugar cane bagasse.

    Science.gov (United States)

    Valix, M; Katyal, S; Cheung, W H

    2017-01-01

    This study compared the upgrading of sugar bagasse by thermochemical and dry torrefaction methods and their corresponding combustion behavior relative to raw bagasse. The combustion reactivities were examined by non-isothermal thermogravimetric analysis. Thermochemical torrefaction was carried out by chemical pre-treatment of bagasse with acid followed by heating at 160-300°C in nitrogen environment, while dry torrefaction followed the same heating treatment without the chemical pretreatment. The results showed thermochemical torrefaction generated chars with combustion properties that are closer to various ranks of coal, thus making it more suitable for co-firing applications. Thermochemical torrefaction also induced greater densification of bagasse with a 335% rise in bulk density to 340kg/m 3 , increased HHV mass and HHV volume , greater charring and aromatization and storage stability. These features demonstrate the potential of thermochemical torrefaction in addressing the practical challenges in using biomass such as bagasse as fuel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Thermochemical transformations of anthracene oil

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Privalov, V.E.; Stepanenko, M.A.

    1979-01-01

    The basic technological step in electrode pitch production is the thermal processing of the original pitch, combined in some cases with air treatment. The thermal process of electrode pitch production is outstandingly simple and economical, but offers little scope for regulating the product quality. When the coal tar regulating the product quality has been highly pyrolyzed, it becomes difficult to produce a medium electrode pitch in conformity with GOST 10200-73 as regards its content of substances insoluble in quinoline (..cap alpha../sub 1/-fraction). It is particularly difficult to make ptich with a softening point of 85 to 90/sup 0/C from highly pyrolyzed coal tar, since this involves a prolonged treatment which increases the ..cap alpha../sub 1/-fraction content. These difficulties, associated with persistent consumer demand for higher electrode pitch quality, have greatly activated the search for new methods of making electrode pitch. A survey of the Soviet and foreign literature shows that the investigations now in progress relate both to methods of developing new production techniques and to methods of adjusting the initial feedstock composition by the addition of high-boiling coal-tar fractions, pitch distillates, highly aromatized petroleum refinery products and so on. As a result of experiments it was found that: (1) When anthracene oil is heated, its contents of condensation products (..cap alpha../sub 1/- and ..cap alpha..-fractions) increase quite slowly compared with pitch; consequently the electrode pitch production process is prolonged by mixing the two feedstock materials. (2) When the anthracene oil is heat treated first, condensation products form and accumulate in it and its thermochemical transformation activity is enhanced. (3) The use of heat-treated anthracene oil will clearly intensify the electrode pitch production process and raise the product quality.

  6. Preliminary experimental results of barium chloride-ammonia reaction for using in a solar thermochemical cooling cycle; Resultados experimentales preliminares de la reaccion entre el cloruro de bario y el amoniaco para su utilizacion en un ciclo de refrigeracion solar termoquimico

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, C. O. B.; Mendez, E. R.; Pilatowsky, L. F.; Rivera, W. G.

    2004-07-01

    An experimental intermittent thermochemical refrigeration system operating with barium chloride-ammonia reaction is described. The barium chloride is used as absorbent and ammonia as refrigerant. The equipment components and the experimental preliminary results are also presented. The temperature range of the thermal fluid from 70 C to 95 C was established. The main results showed that the generation temperature oscillated from 53 C to 56 C for a condensation temperature of 23 C. The generation pressure range was from 10 to 11 bar. In the evaporating-absorption process, the evaporating temperature range was between 10 C and 0 C for a saturation pressure of 2.4 bar. The results showed also, the technical feasibility to operate this refrigeration system with low cost solar flat plate collectors in remote areas. (Author) CIEMAT (Centro de Investigaciones Energeticas, Mediambientales y Tecnologicas). The LCA is an environmental management methodology with which the environmental impacts associate to a system, process product are detected. The ISO standard 14040: 1997 contain the procedure to follow. life cycle of the plant is divided in 4 stages: extraction and transformation of raw materials; transport and installation; completion of the system to operate like a steam generator maintenance, and dismantling. As result, some improvements are recommended, mainly related to changes in the types of materials and the treatment of the emissions. (Author)

  7. On the feasibility of integrating thermochemical processes for the decomposition of water in coal gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Preti, U.; Colussi, I.; Fermeglia, A.M.; Gallo, V.; Groppi, G.; Kikic, I.; Pomodoro, C.; Schmid, C.

    1984-01-01

    Two distinct parts from the study presented in this report: their common purpose is to increase hydrogen production in coal gasification processes with non traditional methods. In the first part it has been analysed to produce hydrogen by means of thermochemical cycles of water decomposition and taking advantage of gasification gas heat evolved in the entrained-bed reactor, which operates at high temperature (1700 to 1800 K). The second part deals with the analysis of recovering hydrogen from hydrogen sulphide, which forms in coal gasification, by utilizing processes derived from the 'Mark-13' thermochemical cycle of water decomposition conceived at the Joint Research Centre at Ispra.

  8. Thermochemical evaluation and preparation of cesium uranates

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sato, Seichi; Ohashi, Hiroshi

    1997-03-01

    Two kinds of cesium uranates, Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}, which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U{sub 3}O{sub 8} and Cs{sub 2}CO{sub 3} for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  9. 2009 Thermochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  10. Biomass for thermochemical conversion: targets and challenges

    Directory of Open Access Journals (Sweden)

    Paul eTanger

    2013-07-01

    Full Text Available Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis as well as that of engineers (proximate and ultimate analysis. We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.

  11. Thermochemical heat storage - system design issues

    NARCIS (Netherlands)

    Jong, A.J. de; Trausel, F.; Finck, C.J.; Vliet, L.D. van; Cuypers, R.

    2014-01-01

    Thermochemical materials (TCMs) are a promising solution for seasonal heat storage, providing the possibility to store excess solar energy from the warm season for later use during the cold season, and with that all year long sustainable energy. With our fixed bed, vacuum reactors using zeolite as

  12. Biomass for thermochemical conversion: targets and challenges.

    Science.gov (United States)

    Tanger, Paul; Field, John L; Jahn, Courtney E; Defoort, Morgan W; Leach, Jan E

    2013-01-01

    Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.

  13. A study on the thermo-chemical is process

    International Nuclear Information System (INIS)

    Saburo Shimizu; Hayato Nakajima; Shinji Kubo; Kaoru Onuki; Gab-Jin Hwang; Shunichi Higashi; Shintaro Ishiyama; Masatoshi Futakawa; Ikuo Ioka; Yuji Kurata; Norio Akino; Makoto Sakurai

    2001-01-01

    The present status of R and D at Japan Atomic Energy Research Institute on thermo-chemical IS process for large-scale hydrogen production is described. Following the successful demonstration of continuous hydrogen production by the process in laboratory, studies are being carried out on three topics, which is scheduled until 2004. First, a new glass-made apparatus is now being assembled in order to demonstrate hydrogen production under more efficient conditions and to acquire knowledge of the closed-cycle operation technique. Second, a process improvement using membrane technologies is under study for the hydrogen production step. Thirdly, selection and/or development of construction materials for scale-up are under study, mainly from the viewpoint of corrosion resistance. (author)

  14. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    Galloway, T.R.; Werner, R.W.

    1980-01-01

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO 3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  15. Thermodynamic consideration on the constitution of multi-thermochemical water splitting process

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki

    1976-03-01

    The multi-thermochemical water splitting cycle comprises individual chemical reactions which are generalized as hydrolysis, hydrogen generation, oxygen generation and regeneration of the circulating materials. The circulating agents are required for the constitution of the cycle, but the guiding principle of selecting them is not available yet. In the present report, thermodynamic properties, especially Gibbs free energies for formation, of the agents are examined as a function of temperature. Oxides, sulfo-oxides, chlorides, bromides and iodides are chosen as the compounds. The chemical reactions for hydrolysis, hydrogen generation and oxygen generation are reviewed in detail. The general formulas for the three step splitting cycle are represented with discussion. (auth.)

  16. A web service infrastructure for thermochemical data.

    Science.gov (United States)

    Paolini, Christopher P; Bhattacharjee, Subrata

    2008-07-01

    W3C standardized Web Services are becoming an increasingly popular middleware technology used to facilitate the open exchange of chemical data. While several projects in existence use Web Services to wrap existing commercial and open-source tools that mine chemical structure data, no Web Service infrastructure has yet been developed to compute thermochemical properties of substances. This work presents an infrastructure of Web Services for thermochemical data retrieval. Several examples are presented to demonstrate how our Web Services can be called from Java, through JavaScript using an AJAX methodology, and within commonly used commercial applications such as Microsoft Excel and MATLAB for use in computational work. We illustrate how a JANAF table, widely used by chemists and engineers, can be quickly reproduced through our Web Service infrastructure.

  17. Electrochemical & Thermochemical Behavior of Cerium(IV) Oxide delta

    Science.gov (United States)

    Chueh, William C.

    reoxidized to form H2, CO, and/or CH4. Analysis of gas evolution rates confirms that the kinetics of ceria oxidation by H2O and CO2 are dominated by surface reactions, rather than by ambipolar oxygen diffusion. Temperature-programmed oxidation experiments revealed that, even under thermodynamically favored conditions, carbonaceous species do not form on the surface of neat ceria, thereby giving a high CO selectivity when dissociating CO2. A scaled-up ceria-based solar reactor was designed and tested to demonstrate the feasibility of solar fuel production via thermochemical cycling.

  18. Microencapsulation of salts for enhanced thermochemical storage materials

    NARCIS (Netherlands)

    Cuypers, R.; Jong, A.J. de; Eversdijk, J.; Spijker, J.C. van 't; Oversloot, H.P.; Ingenhut, B.L.J.; Cremers, R.K.H.; Papen-Botterhuis, N.E.

    2013-01-01

    Thermochemical storage is a new and emerging long-term thermal storage for residential use (cooling, heating & domestic hot water generation), offering high thermal storage density without the need for thermal insulation during storage (Fig. 1). However, existing materials for thermochemical storage

  19. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    Surface engineering by thermochemical processing is the intentional change of the composition of a material at elevated temperature with the purpose to improve materials performance. In thermochemical processing components from the starting material are essential in the development of the phases ...... hardening of titanium alloys, as well as thermo-reactive diffusion for extreme wear resistance...

  20. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  1. SYNTHESIS AND STRUCTURAL CHARACTERISTICS OF BIS(CITRATEGERMANATES(IV (Hbipy2[Ge(HCit2]•2H2O AND [CuCl(bipy2]2[Ge(HCit2]•8H2O

    Directory of Open Access Journals (Sweden)

    Inna Seifullina

    2016-12-01

    Full Text Available The crystalline compounds (Hbipy2[Ge(HCit2]·2H2O (1 and CuCl(bipy2]2[Ge(HCit2]·8H2O (2 (where H4Cit is citric acid, bipy is 2,2ʹ-bipyridine were obtained for the fi rst time and their structures were determined by the single-crystal X-ray diffraction method. Compounds were characterized by IR spectroscopy, thermogravimetric (TGA and elemental analyses. Both compounds are formed with complex bis(citrategermanate anion and protonated 2,2’-bipyridine or [Cu(bipy2Cl]+ as cations in compounds 1 and 2, respectively.

  2. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  3. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    International Nuclear Information System (INIS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  4. CHEETAH: A next generation thermochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L.; Souers, P.

    1994-11-01

    CHEETAH is an effort to bring the TIGER thermochemical code into the 1990s. A wide variety of improvements have been made in Version 1.0. We have improved the robustness and ease of use of TIGER. All of TIGER`s solvers have been replaced by new algorithms. We find that CHEETAH solves a wider variety of problems with no user intervention (e.g. no guesses for the C-J state) than TIGER did. CHEETAH has been made simpler to use than TIGER; typical use of the code occurs with the new standard run command. CHEETAH will make the use of thermochemical codes more attractive to practical explosive formulators. We have also made an extensive effort to improve over the results of TIGER. CHEETAH`s version of the BKW equation of state (BKWC) is able to accurately reproduce energies from cylinder tests; something that other BKW parameter sets have been unable to do. Calculations performed with BKWC execute very quickly; typical run times are under 10 seconds on a workstation. In the future we plan to improve the underlying science in CHEETAH. More accurate equations of state will be used in the gas and the condensed phase. A kinetics capability will be added to the code that will predict reaction zone thickness. Further ease of use features will eventually be added; an automatic formulator that adjusts concentrations to match desired properties is planned.

  5. Active thermochemical tables: water and water dimer.

    Science.gov (United States)

    Ruscic, Branko

    2013-11-21

    A new partition function for water dimer in the temperature range 200-500 K was developed by exploiting the equations of state for real water vapor, liquid water, and ice, and demonstrated to be significantly more accurate than any proposed so far in the literature. The new partition function allows the Active Thermochemical Tables (ATcT) approach to be applied on the available experimental and theoretical data relating to water dimer thermochemistry, leading to accurate water dimer enthalpies of formation of -499.115 ± 0.052 kJ mol(-1) at 298.15 K and -491.075 ± 0.080 kJ mol(-1) at 0 K. With the current ATcT enthalpy of formation of the water monomer, -241.831 ± 0.026 kJ mol(-1) at 298.15 K (-238.928 kJ mol(-1) at 0 K), this leads to the dimer bond dissociation enthalpy at 298.15 K of 15.454 ± 0.074 kJ mol(-1) and a 0 K bond dissociation energy of 13.220 ± 0.096 kJ mol(-1) (1105 ± 8 cm(-1)), the latter being in perfect agreement with recent experimental and theoretical determinations. The new partition function of water dimer allows the extraction and tabulation of heat capacity, entropy, enthalpy increment, reduced Gibbs energy, enthalpy of formation, and Gibbs energy of formation. Newly developed tabulations of analogous thermochemical properties for gas-phase water monomer and for water in condensed phases are also given, allowing the computations of accurate equilibria between the dimer and monomer in the 200-500 K range of temperatures.

  6. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ermanoski, I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. In this paper, the material and energy requirements in two-step solar-thermochemical cycles are considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  7. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  8. Interaction of Na, O2, CO2 and water on MnO(100): Modeling a complex mixed oxide system for thermochemical water splitting

    OpenAIRE

    Feng, Xu

    2015-01-01

    A catalytic route to hydrogen production via thermochemical water splitting is highly desirable because it directly converts thermal energy into stored chemical energy in the form of hydrogen and oxygen. Recently, the Davis group at Caltech reported an innovative low-temperature (max 850C) catalytic cycle for thermochemical water splitting based on sodium and manganese oxides (Xu, Bhawe and Davis, PNAS, 2012). The key steps are thought to be hydrogen evolution from a Na2CO3/MnO mixture, and o...

  9. Configuring the thermochemical hydrogen sulfuric acid process step for the Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1981-01-01

    This paper identifies the sulfuric acid step as the critical part of the thermochemical cycle in dictating the thermal demands and temperature requirements of the heat source. The General Atomic Sulfur-Iodine Cycle is coupled to a Tandem Mirror. The sulfuric acid decomposition process step is focused on specifically since this step can use the high efficiency electrical power of the direct converter together with the other thermal-produced electricity to Joule-heat a non-catalytic SO 3 decomposer to approximately 1250 0 K. This approach uses concepts originally suggested by Dick Werner and Oscar Krikorian. The blanket temperature can be lowered to about 900 0 K, greatly alleviating materials problems, the level of technology required, safety problems, and costs. A moderate degree of heat has been integrated to keep the cycle efficiency around 48%, but the number of heat exchangers has been limited in order to keep hydrogen production costs within reasonable bounds

  10. Double catalytic effect of (PhNH32CuCl4 in a novel, highly efficient synthesis of 2-oxo and thioxo-1,2,3,4-tetra-hydopyrimidines

    Directory of Open Access Journals (Sweden)

    Janković Nenad

    2015-01-01

    Full Text Available An innovative route for the construction of 2-oxo and thioxo-1,2,3,4-tetrahydropyrimidines was delineated through a multicomponent reaction under Biginelli conditions, starting from different aromatic aldehydes, β-ketoesters and urea or thiourea. Proper choice of copper complex (PhNH32CuCl4, as a novel homogeneous catalyst, enables facile, efficient, and inexpensive reaction under mild experimental conditions. Moreover, we present the first application of this complex salts in organic synthesis ever. The obtained products are of high purity, and can be easily isolated from the reaction mixture in good to excellent yields. Also, compared to the classical Biginelli reaction conditions, the present method has the advantages in higher yields and experimental and work-up simplicity. To illustrate the joint catalytic action of the Cu2+ and phenylammonium ions, two key steps of Biginelli reaction were examined using the M06 functional. [Projekat Ministarstva nauke Republike Srbije, br. 172011 i br. 172016

  11. Static Thermochemical Model of COREX Melter Gasifier

    Science.gov (United States)

    Srishilan, C.; Shukla, Ajay Kumar

    2018-02-01

    COREX is one of the commercial smelting reduction processes. It uses the finer size ore and semi-soft coal instead of metallurgical coke to produce hot metal from iron ore. The use of top gas with high calorific value as a by-product export gas makes the process economical and green. The predictive thermochemical model of the COREX process presented here enables rapid computation of process parameters such as (1) required amount of ore, coal, and flux; (2) amount of slag and gas generated; and (3) gas compositions (based on the raw material and desired hot metal quality). The model helps in predicting the variations in process parameters with respect to the (1) degree of metallization and (2) post-combustion ratio for given raw material conditions. In general reduction in coal, flux, and oxygen, the requirement is concomitant with an increase in the degree of metallization and post-combustion ratio. The model reported here has been benchmarked using industrial data obtained from the JSW Steel Plant, India.

  12. Thermochemical parameters of caffeine, theophylline, and xanthine

    Energy Technology Data Exchange (ETDEWEB)

    Ngo Tuan Cuong; Truong Ba Tai [Department of Chemistry, and Mathematical Modeling and Computational Science Center (LMCC), Katholieke Universiteit Leuven, B-3001 Leuven (Belgium); Vu Thi Thu Ha [Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Minh Tho Nguyen, E-mail: minh.nguyen@chem.kuleuven.b [Department of Chemistry, and Mathematical Modeling and Computational Science Center (LMCC), Katholieke Universiteit Leuven, B-3001 Leuven (Belgium)

    2010-04-15

    Thermochemical parameters of caffeine 1, theophylline 2, xanthine 3, uracil, and imidazole derivatives are determined by quantum chemical calculations. Using the composite G3B3 method, the standard heat of formation of caffeine in the gaseous phase amounts to DELTA{sub f}H{sub g}{sup 0}(1)=-243+-8kJ.mol{sup -1}, which lends a support for the recent experimental value of -237.0 +- 2.5 kcal . mol{sup -1}. We also obtain DELTA{sub f}H{sub g}{sup 0}(2)=-232+-8kJ.mol{sup -1}andDELTA{sub f}H{sub g}{sup 0}(3)=-209+-8kJ.mol{sup -1}. The adiabatic ionization energies are IE{sub a}(1) = 7.9 eV, IE{sub a}(2) = 8.1 eV, and IE{sub a}(3) = 8.5 eV using B3LYP calculations. The enhanced ability of caffeine to eject electron, as compared to the parent compounds and cyclic components, is of interest with regard to its potential use as a corrosion inhibitor.

  13. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-01-01

    Results are described of a study of the thermochemical stability of anhydrous phosphates and arsenates. The results of phase studies deal with compound formation and characterization, coexisting phases and limiting physical or chemical properties. The uranyl phosphates evolve oxygen at higher temperatures and the arsenates lose arsenic oxide vapour. These phenomena give the possibility to describe their thermodynamic stabilities. Thus oxygen pressures of uranyl phosphates have been measured using a static, non-isothermal method. Having made available the pure anhydrous compounds in the course of this investigation, molar thermodynamic quantities have been measured as well. These include standard enthalpies of formation from solution calorimetry and high-temperature heat-capacity functions derived from enthalpy increments measured. Some attention is given to compounds with uranium in valencies lower than six which have been met during the investigation. An evaluation is made of the thermodynamics of the compounds studied, to result in tabulized high-temperature thermodynamic functions. Relative stabilities within the systems are discussed and comparisons of the uranyl phosphates and the arsenates are made. (Auth.)

  14. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger

    International Nuclear Information System (INIS)

    Fopah-Lele, Armand; Rohde, Christian; Neumann, Karsten; Tietjen, Theo; Rönnebeck, Thomas; N'Tsoukpoe, Kokouvi Edem; Osterland, Thomas; Opel, Oliver

    2016-01-01

    A lab-scale thermochemical heat storage reactor was developed in the European project “thermal battery” to obtain information on the characteristics of a closed heat storage system, based on thermochemical reactions. The present type of storage is capable of re-using waste heat from cogeneration system to produce useful heat for space heating. The storage material used was SrBr 2 ·6H 2 O. Due to agglomeration or gel-like problems, a structural element was introduced to enhance vapour and heat transfer. Honeycomb heat exchanger was designed and tested. 13 dehydration-hydration cycles were studied under low-temperature conditions (material temperatures < 100 °C) for storage. Discharging was realized at water vapour pressure of about 42 mbar. Temperature evolution inside the reactor at different times and positions, chemical conversion, thermal power and overall efficiency were analysed for the selected cycles. Experimental system thermal capacity and efficiency of 65 kWh and 0.77 are respectively obtained with about 1 kg of SrBr 2 ·6H 2 O. Heat transfer fluid recovers heat at a short span of about 43 °C with an average of 22 °C during about 4 h, acceptable temperature for the human comfort (20 °C on day and 16 °C at night). System performances were obtained for a salt bed energy density of 213 kWh·m 3 . The overall heat transfer coefficient of the honeycomb heat exchanger has an average value of 147 W m −2  K −1 . Though promising results have been obtained, ameliorations need to be made, in order to make the closed thermochemical heat storage system competitive for space heating. - Highlights: • Lab-scale thermochemical heat storage is designed, constructed and tested. • The use of honeycomb heat exchanger as a heat and vapour process enhancement. • Closed system (1 kg SrBr 2 ·6H 2 O) able to give back 3/4 of initial thermal waste energy. • System storage capacity and thermal efficiency are respectively 65 kWh and 0.77.

  15. Thermochemical performance analysis of solar driven CO2 methane reforming

    International Nuclear Information System (INIS)

    Fuqiang, Wang; Jianyu, Tan; Huijian, Jin; Yu, Leng

    2015-01-01

    Increasing CO 2 emission problems create urgent challenges for alleviating global warming, and the capture of CO 2 has become an essential field of scientific research. In this study, a finite volume method (FVM) coupled with thermochemical kinetics was developed to analyze the solar driven CO 2 methane reforming process in a metallic foam reactor. The local thermal non-equilibrium (LTNE) model coupled with radiative heat transfer was developed to provide more temperature information. A joint inversion method based on chemical process software and the FVM coupled with thermochemical kinetics was developed to obtain the thermochemical reaction parameters and guarantee the calculation accuracy. The detailed thermal and thermochemical performance in the metal foam reactor was analyzed. In addition, the effects of heat flux distribution and porosity on the solar driven CO 2 methane reforming process were analyzed. The numerical results can serve as theoretical guidance for the solar driven CO 2 methane reforming application. - Highlights: • Solar driven CO 2 methane reforming process in metal foam reactor is analyzed. • FVM with chemical reactions was developed to analyze solar CO 2 methane reforming. • A joint inversion method was developed to obtain thermochemical reaction parameters. • Results can be a guidance for the solar driven CO 2 methane reforming application.

  16. Thermochemical energy storage : critical review and recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Haji Abedin, A.; Rosen, M.A. [University of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The global increase in energy demand and environmental concerns are promoting the use of more efficient and cleaner energy technologies. Examples include advanced systems for waste energy recovery and energy integration. Thermochemical thermal energy storage (TES) is an emerging method with the potential for high energy density storage. It is not yet commercial and research and development is needed to better understand and design the technology and to resolve other practical aspects before commercial implementation can occur. TES is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. This paper presented the principles of thermochemical TES and recent advances. Thermochemical TES was also critically assessed and compared with other TES types. The advantages and disadvantages of thermochemical TES were also considered as they relate to other TES types. It was concluded that thermochemical TES has the highest potential to achieve the required compact thermal energy storage where space is limited. 13 refs., 2 tabs., 1 fig.

  17. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  18. Thermochemical valorization and characterization of household biowaste.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Vekkos, K; Baratieri, M

    2017-12-01

    Valorization of municipal solid waste (MSW), by means of energy and material recovery, is considered to be a crucial step for sustainable waste management. A significant fraction of MSW is comprised from food waste, the treatment of which is still a challenge. Therefore, the conventional disposal of food waste in landfills is being gradually replaced by recycling aerobic treatment, anaerobic digestion and waste-to-energy. In principle, thermal processes like combustion and gasification are preferred for the recovery of energy due to the higher electrical efficiency and the significantly less time required for the process to be completed when compared to biological process, i.e. composting, anaerobic digestion and transesterification. Nonetheless, the high water content and the molecular structure of biowaste are constraining factors in regard to the application of thermal conversion pathways. Investigating alternative solutions for the pre-treatment and more energy efficient handling of this waste fraction may provide pathways for the optimization of the whole process. In this study, by means of utilizing drying/milling as an intermediate step, thermal treatment of household biowaste has become possible. Household biowaste has been thermally processed in a bench scale reactor by means of torrefaction, carbonization and high temperature pyrolysis. According to the operational conditions, fluctuating fractions of biochar, bio-oil (tar) and syngas were recovered. The thermochemical properties of the feedstock and products were analyzed by means of Simultaneous Thermal Analysis (STA), Ultimate and Proximate analysis and Attenuated Total Reflectance (ATR). The analysis of the products shows that torrefaction of dried household biowaste produces an energy dense fuel and high temperature pyrolysis produces a graphite-like material with relatively high yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Interaction of a pseudo-π C-C bond with cuprous and argentous chlorides: Cyclopropane⋯CuCl and cyclopropane⋯AgCl investigated by rotational spectroscopy and ab initio calculations.

    Science.gov (United States)

    Zaleski, Daniel P; Mullaney, John C; Bittner, Dror M; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2015-10-28

    Strongly bound complexes (CH2)3⋯MCl (M = Cu or Ag), formed by non-covalent interaction of cyclopropane and either cuprous chloride or argentous chloride, have been generated in the gas phase by means of the laser ablation of either copper or silver metal in the presence of supersonically expanded pulses of a gas mixture containing small amounts of cyclopropane and carbon tetrachloride in a large excess of argon. The rotational spectra of the complexes so formed were detected with a chirped-pulse, Fourier transform microwave spectrometer and analysed to give rotational constants and Cu and Cl nuclear quadrupole coupling constants for eight isotopologues of each of (CH2)3⋯CuCl and (CH2)3⋯AgCl. The geometry of each of these complexes was established unambiguously to have C(2v) symmetry, with the three C atoms coplanar, and with the MCl molecule lying along a median of the cyclopropane C3 triangle. This median coincides with the principal inertia axis a in each of the two complexes (CH2)3⋯MCl. The M atom interacts with the pseudo-π bond linking the pair of equivalent carbon atoms (F)C (F = front) nearest to it, so that M forms a non-covalent bond to one C-C edge of the cyclopropane molecule. The (CH2)3⋯MCl complexes have similar angular geometries to those of the hydrogen- and halogen-bonded analogues (CH2)3⋯HCl and (CH2)3⋯ClF, respectively. Quantitative details of the geometries were determined by interpretation of the observed rotational constants and gave results in good agreement with those from ab initio calculations carried out at the CCSD(T)(F12*)/aug-cc-pVTZ-F12 level of theory. Interesting geometrical features are the lengthening of the (F)C-(F)C bond and the shrinkage of the two equivalent (B)C-(F)C (B = back) bonds relative to the C-C bond in cyclopropane itself. The expansions of the (F)C-(F)C bond are 0.1024(9) Å and 0.0727(17) Å in (CH2)3⋯CuCl and (CH2)3⋯AgCl, respectively, according to the determined r0 geometries. The C-C bond

  20. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  1. A techno-economic review of thermochemical cellulosic biofuel pathways.

    Science.gov (United States)

    Brown, Tristan R

    2015-02-01

    Recent advances in the thermochemical processing of biomass have resulted in efforts to commercialize several cellulosic biofuel pathways. Until commercial-scale production is achieved, however, techno-economic analysis is a useful methodology for quantifying the economic competitiveness of these pathways with petroleum, providing one indication of their long-term feasibility under the U.S. revised Renewable Fuel Standard. This review paper covers techno-economic analyses of thermochemical cellulosic biofuel pathways in the open literature, discusses and compares their results, and recommends the adoption of additional analytical methodologies that will increase the value of future pathway analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2–CuCl2/γ-Al2O3 Nanocatalyst

    KAUST Repository

    Bruk, Lev

    2018-04-03

    The state of palladium and copper on the surface of the PdCl2–CuCl2/γ-Al2O3 nanocatalyst for the low-temperature oxidation of CO by molecular oxygen was studied by various spectroscopic techniques. Using X-ray absorption spectroscopy (XAS), powder X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), freshly prepared samples of the catalyst were studied. The same samples were also evaluated after interaction with CO, O2, and H2O vapor in various combinations. It was shown that copper exists in the form of Cu2Cl(OH)3 (paratacamite) nanophase on the surface of the catalyst. No palladium-containing crystalline phases were identified. Palladium coordination initially is comprised of four chlorine atoms. It was shown by XAS that this catalyst is not capable of oxidizing CO at room temperature in the absence of H2O and O2 over 12 h. Copper(II) and palladium(II) are reduced to Cu(I) and Pd(I,0) species, respectively, in the presence of CO and H2O vapor (without O2). It was found by DRIFTS that both linear (2114 cm−1, 1990 cm−1) and bridging (1928 cm−1) forms of coordinated CO were formed upon adsorption onto the catalyst surface. Moreover, the formation of CO2 was detected upon the interaction of the coordinated CO with oxygen. The kinetics of CO oxidation was studied at 18–38 °C at an atmospheric pressure for CO, O2, N2, and H2O (gas) mixtures in a flow reactor (steady state conditions).

  3. Spin Density Distribution in Open-Shell Transition Metal Systems: A Comparative Post-Hartree-Fock, Density Functional Theory, and Quantum Monte Carlo Study of the CuCl2 Molecule.

    Science.gov (United States)

    Caffarel, Michel; Giner, Emmanuel; Scemama, Anthony; Ramírez-Solís, Alejandro

    2014-12-09

    We present a comparative study of the spatial distribution of the spin density of the ground state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-Hartree-Fock wave function theory (WFT). A number of studies have shown that an accurate description of the electronic structure of the lowest-lying states of this molecule is particularly challenging due to the interplay between the strong dynamical correlation effects in the 3d shell and the delocalization of the 3d hole over the chlorine atoms. More generally, this problem is representative of the difficulties encountered when studying open-shell metal-containing molecular systems. Here, it is shown that qualitatively different results for the spin density distribution are obtained from the various quantum-mechanical approaches. At the DFT level, the spin density distribution is found to be very dependent on the functional employed. At the QMC level, Fixed-Node Diffusion Monte Carlo (FN-DMC) results are strongly dependent on the nodal structure of the trial wave function. Regarding wave function methods, most approaches not including a very high amount of dynamic correlation effects lead to a much too high localization of the spin density on the copper atom, in sharp contrast with DFT. To shed some light on these conflicting results Full CI-type (FCI) calculations using the 6-31G basis set and based on a selection process of the most important determinants, the so-called CIPSI approach (Configuration Interaction with Perturbative Selection done Iteratively) are performed. Quite remarkably, it is found that for this 63-electron molecule and a full CI space including about 10(18) determinants, the FCI limit can almost be reached. Putting all results together, a natural and coherent picture for the spin distribution is proposed.

  4. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    International Nuclear Information System (INIS)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-01

    Highlights: • Well to pump environmental assessment of two thermochemical processing pathways. • NER of 1.23 and GHG emissions of −11.4 g CO 2-eq (MJ) −1 for HTL pathway. • HTL represents promising conversion pathway based on use of wet biomass. • NER of 2.27 and GHG emissions of 210 g CO 2-eq (MJ) −1 for pyrolysis pathway. • Pyrolysis pathway: drying microalgae feedstock dominates environmental impact. - Abstract: Microalgae is being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the environmental impact of two different thermochemical conversion technologies for the microalgae-to-biofuel process through life cycle assessment. A system boundary of “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of −11.4 g CO 2-eq (MJ renewable diesel) −1 . Biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO 2-eq (MJ renewable diesel) −1 . The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying

  5. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.

    2016-01-01

    Salt hydrates have promising potential as heat storage materials by use of their hydration/dehydration reaction. These hydration/dehydration reactions are studied in this paper for CuCl2, CuSO4, MgCl2 and MgSO4. During a hydration/dehydration reaction, the salt shrinks and expands as a result of the

  6. Thermo-chemical behavior of a laboratory scale SO3 decomposer

    International Nuclear Information System (INIS)

    Kim, C.S.; Hong, S.D.; Kim, J.H.; Kim, Y.W.; Lee, W.J.

    2008-01-01

    A SO 3 decomposer is one of the major challenges to develop an iodine-sulfur cycle coupled with a very high temperature gas cooled reactor for massive hydrogen production. KAERI has developed a hybrid heat exchanger for the SO 3 decomposer that has printed circuits in the hot gas side and plate-fins in the process gas side. This design concept enables the effective heat transfer and can accommodate catalysts in the process gas side. KAERI has set up a plan to test its performance and integrity in a small-scale high pressure and temperature gas loop. In this study, its thermo-chemical behavior is analyzed by considering the following three conservations: mass, energy and chemical kinetics. Especially, the chemical kinetics includes two chemical reactions as thermal decomposition of SO 3 and de-hydrolysis of H 2 SO 4 . This analysis demonstrates the thermo-chemical behavior of a laboratory scale SO 3 decomposer which will be tested at various operating conditions. Various operating conditions include the inlet temperatures and the pressures of the process gas. (authors)

  7. Thermo-chemical sequestration of naphthalene using Borassus ...

    African Journals Online (AJOL)

    Thermo-chemical sequestration of naphthalene using Borassus flabellifer Shell activated carbon: Effect of influencing parameters, isotherm and kinetic study. ... the removal of naphthalene from aqueous solution using one of the simplest agricultural wastes, Borassus flabellifer Shell activated carbon (BFS-AC) by adsorption.

  8. Cascading pressure reactor and method for solar-thermochemical reactions

    Science.gov (United States)

    Ermanoski, Ivan

    2017-11-14

    Reactors and methods for solar thermochemical reactions are disclosed. The reactors and methods include a cascade of reduction chambers at successively lower pressures that leads to over an order of magnitude pressure decrease compared to a single-chambered design. The resulting efficiency gains are substantial, and represent an important step toward practical and efficient solar fuel production on a large scale.

  9. Thermochemical properties of the alkali hydroxides: A review

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Cordfunke, E.H.P.

    1989-01-01

    The formation of volatile alkali hydroxides as a result of high-temperature steam corrosion plays an important role in nuclear technology. For the modeling of the volatilization processes, reliable thermodynamic data are required. In the present paper recent physico-chemical experiments by the authors will be discussed and the thermochemical properties of the alkali hydroxide series will be evaluated. (orig.)

  10. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    Claudet, G.

    2005-01-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  11. Thermochemical conversion of waste tyres-a review.

    Science.gov (United States)

    Labaki, Madona; Jeguirim, Mejdi

    2017-04-01

    A review of the energy recovery from waste tyres is presented and focuses on the three thermochemical processes used to valorise waste tyres: pyrolysis, gasification, and combustion/incineration. After recalling the chemical composition of tyres, the thermogravimetric behaviours of tyres or their components under different atmospheres are described. Different kinetic studies on the thermochemical processes are treated. Then, the three processes were investigated, with a particular attention given to the gasification, due to the information unavailability on this process. Pyrolysis is a thermochemical conversion to produce a hydrocarbon rich gas mixture, condensable liquids or tars, and a carbon-rich solid residue. Gasification is a form of pyrolysis, carried out at higher temperatures and under given atmosphere (air, steam, oxygen, carbon dioxide, etc.) in order to yield mainly low molecular weight gaseous products. Combustion is a process that needs a fuel and an oxidizer with an ignition system to produce heat and/or steam. The effects of various process parameters such as temperature, heating rate, residence time, catalyst addition, etc. on the energy efficiency and the products yields and characteristics are mainly reviewed. These thermochemical processes are considered to be the more attractive and practicable methods for recovering energy and material from waste tyres. For the future, they are the main promising issue to treat and valorise used tyres. However, efforts should be done in developing more efficient technical systems.

  12. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    at the surface. Current research and innovation activities are used to exemplify thermochemical surface engineering and the interplay of science and innovation. The examples given encompass aspects of the synthesis of extremely porous materials, low temperature surface hardening of stainless steel, surface...

  13. The NAGRA/PSI thermochemical database: new developments

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, W.; Berner, U.; Thoenen, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Pearson, F.J.Jr. [Ground-Water Geochemistry, New Bern, NC (United States)

    2000-07-01

    The development of a high quality thermochemical database for performance assessment is a scientifically fascinating and demanding task, and is not simply collecting and recording numbers. The final product can by visualised as a complex building with different storeys representing different levels of complexity. The present status report illustrates the various building blocks which we believe are integral to such a database structure. (authors)

  14. The NAGRA/PSI thermochemical database: new developments

    International Nuclear Information System (INIS)

    Hummel, W.; Berner, U.; Thoenen, T.; Pearson, F.J.Jr.

    2000-01-01

    The development of a high quality thermochemical database for performance assessment is a scientifically fascinating and demanding task, and is not simply collecting and recording numbers. The final product can by visualised as a complex building with different storeys representing different levels of complexity. The present status report illustrates the various building blocks which we believe are integral to such a database structure. (authors)

  15. Molecular thermodynamics of metabolism: quantum thermochemical calculations for key metabolites.

    Science.gov (United States)

    Hadadi, N; Ataman, M; Hatzimanikatis, V; Panayiotou, C

    2015-04-28

    The present work is the first of a series of papers aiming at a coherent and unified development of the thermodynamics of metabolism and the rationalization of feasibility analysis of metabolic pathways. The focus in this part is on high-level quantum chemical calculations of the thermochemical quantities of relatively heavy metabolites such as amino acids/oligopeptides, nucleosides, saccharides and their derivatives in the ideal gas state. The results of this study will be combined with the corresponding hydration/solvation results in subsequent parts of this work in order to derive the desired thermochemical quantities in aqueous solutions. The above metabolites exist in a vast conformational/isomerization space including rotational conformers, tautomers or anomers exhibiting often multiple or cooperative intramolecular hydrogen bonding. We examine the challenges posed by these features for the reliable estimation of thermochemical quantities. We discuss conformer search, conformer distribution and averaging processes. We further consider neutral metabolites as well as protonated and deprotonated metabolites. In addition to the traditional presentation of gas-phase acidities, basicities and proton affinities, we also examine heats and free energies of ionic species. We obtain simple linear relations between the thermochemical quantities of ions and the formation quantities of their neutral counterparts. Furthermore, we compare our calculations with reliable experimental measurements and predictive calculations from the literature, when available. Finally, we discuss the next steps and perspectives for this work.

  16. Non-equilibrium thermochemical heat storage in porous media

    DEFF Research Database (Denmark)

    Nagel, T.; Shao, H.; Singh, Ashok

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also...

  17. Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Christiansen, Thomas

    2005-01-01

    ) precipitation of alloying element nitrides/carbides or by the development of a continuous layer of iron-based (carbo-) nitrides. The evolution of the microstructure during thermochemical treatments is not only determined by solid state diffusion, but in many cases also by the kinetics of the surface reactions...

  18. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  19. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Goodwin

    2008-12-31

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in

  20. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion.

    Science.gov (United States)

    Adams, J M M; Ross, A B; Anastasakis, K; Hodgson, E M; Gallagher, J A; Jones, J M; Donnison, I S

    2011-01-01

    To avoid negative impacts on food production, novel non-food biofuel feedstocks need to be identified and utilised. One option is to utilise marine biomass, notably fast-growing, large marine 'plants' such as the macroalgal kelps. This paper reports on the changing composition of Laminaria digitata throughout it growth cycle as determined by new technologies. The potential of Laminaria sp. as a feedstock for biofuel production and future biorefining possibilities was assessed through proximate and ultimate analysis, initial pyrolysis rates using thermo-gravimetric analysis (TGA), metals content and pyrolysis gas chromatography-mass spectrometry. Samples harvested in March contained the lowest proportion of carbohydrate and the highest ash and alkali metal content, whereas samples harvested in July contained the highest proportions of carbohydrate, lowest alkali metals and ash content. July was therefore considered the most suitable month for harvesting kelp biomass for thermochemical conversion to biofuels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia, E-mail: dgr@instec.cu, E-mail: lgarcia@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Ciencias y Tecnologias Aplicadas, La Habana (Cuba)

    2011-07-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  2. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    International Nuclear Information System (INIS)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia

    2011-01-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  3. Numerical investigation of a straw combustion boiler – Part I: Modelling of the thermo-chemical conversion of straw

    Directory of Open Access Journals (Sweden)

    Dernbecher Andrea

    2016-01-01

    Full Text Available In the framework of a European project, a straw combustion boiler in conjunction with an organic Rankine cycle is developed. One objective of the project is the enhancement of the combustion chamber by numerical methods. A comprehensive simulation of the combustion chamber is prepared, which contains the necessary submodels for the thermo-chemical conversion of straw and for the homogeneous gas phase reactions. Part I introduces the modelling approach for the thermal decomposition of the biomass inside the fuel bed, whereas part II deals with the simulation of the gas phase reactions in the freeboard.

  4. Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project

    Science.gov (United States)

    Karagiannakis, George; Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.; Tescari, Stefania; Singh, Abhishek; Roeb, Martin; Lange, Matthias; Marcher, Johnny; Jové, Aleix; Prieto, Cristina; Rattenbury, Michael; Chasiotis, Andreas

    2017-06-01

    The present work provides an overview of activities performed in the framework of the EU-funded collaborative project RESTRUCTURE, the main goal of which was to develop and validate a compact structured reactor/heat exchanger for thermochemical storage driven by 2-step high temperature redox metal oxide cycles. The starting point of development path included redox materials qualification via both theoretical and lab-scale experimental studies. Most favorable compositions were cobalt oxide/alumina composites. Preparation of small-scale structured bodies included various approaches, ranging from perforated pellets to more sophisticated honeycomb geometries, fabricated by extrusion and coating. Proof-of-concept of the proposed novel reactor/heat exchanger was successfully validated in small-scale structures and the next step included scaling up of redox honeycombs production. Significant challenges were identified for the case of extruded full-size bodies and the final qualified approach related to preparation of cordierite substrates coated with cobalt oxide. The successful experimental evaluation of the pilot reactor/heat exchanger system constructed motivated the preliminary techno-economic evaluation of the proposed novel thermochemical energy storage concept. Taking into account experimental results, available technologies and standard design aspects a model for a 70.5 MWe CSP plant was defined. Estimated LCOE costs were calculated to be in the range of reference values for Combined Cycle Power Plants operated by natural gas. One of main cost contributors was the storage system itself, partially due to relatively high cost of cobalt oxide. This highlighted the need to identify less costly and equally efficient to cobalt oxide redox materials.

  5. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  6. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  7. Interaction of stress and phase transformations during thermochemical surface engineering

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard

    dissolution. The present project is devoted to understanding the mutual interaction of stresses and phase transformations during thermochemical surface engineering by combining numerical modelling with experimental materials science. The modelling was done by combining solid mechanics with thermodynamics...... by chromium atoms, and the effect of composition-induced stress on surface concentration and diffusive flux. The effect of plasticity was also included. Temperature and concentration dependencies of mechanical and diffusion material properties were studied, and the effect of incorporation in the model...... examined. The effect of pre-stressing the sample was also tested, to investigate the effects of a residual stress-state that might be present from processing of the metal specimen. Controlled thermochemical treatment of austenitic stainless steel was investigated experimentally by in-diffusion of nitrogen...

  8. Thermochemical functionalisation of graphenes with minimal framework damage.

    Science.gov (United States)

    Hu, Sheng; Laker, Zachary P L; Leese, Hannah S; Rubio, Noelia; De Marco, Martina; Au, Heather; Skilbeck, Mark S; Wilson, Neil R; Shaffer, Milo S P

    2017-09-01

    Graphene and graphene nanoplatelets can be functionalised via a gas-phase thermochemical method; the approach is versatile, readily scalable, and avoids the introduction of additional defects by exploiting existing sites. Direct TEM imaging confirmed covalent modification of single layer graphene, without damaging the connectivity of the lattice, as supported by Raman spectrometry and AFM nano-indentation measurements of mechanical stiffness. The grafting methodology can also be applied to commercially-available bulk graphene nanoplatelets, as illustrated by the preparation of anionic, cationic, and non-ionic derivatives. Successful bulk functionalisation is evidenced by TGA, Raman, and XPS, as well as in dramatic changes in aqueous dispersability. Thermochemical functionalisation thus provides a facile approach to modify both graphene monolayers, and a wide range of graphene-related nanocarbons, using variants of simple CVD equipment.

  9. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    in determining crustal seismic discontinuities. In the second chapter, I deal about the possibility to disentangle the dynamic and isostatic contribution in shaping the Earth's surface topography. Dynamic topography is directly linked to mantle convection driven by mantle thermo-chemical anomalies, and can......A detailed knowledge of the Earth's thermal structure and chemical composition is fundamental in order to understand the processes driving the planet ormation and evolution. The inaccessibility of most of the Earth's interior makes the determination of its thermo-chemical conditions a challenging...... argue therefore that our understandings of the lithosphere density structure, needed to determine the isostatic topography, and of the mantle density and viscosity, required to compute the dynamic topography, are still too limited to allow a robust determination of mantle convection effects on the Earth...

  10. AB Initio Prediction of Thermochemical Parameters for Flame Species

    Science.gov (United States)

    1980-05-01

    values for the dissociation energy of methanol have been reported recently, Batt and McCulloch derived AHg,300 for methanol using thermochemical...1826 (1978). 30. L. Batt and R. D. McCulloch , "Pyrolysis of Dimethyl Peroxide", Int. J. Chemical Kinetics 8, 491 (1976). 31. G. F. Adams, "A Priori...Command ATTN: DRDTA-UL Warren , MI 48090 Commander US Army White Sands Missile Range ATTN: STEWS-VT White Sands Missile Range MM 88002 Commander

  11. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  12. Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses

    International Nuclear Information System (INIS)

    Michalsky, Ronald; Parman, Bryon J.; Amanor-Boadu, Vincent; Pfromm, Peter H.

    2012-01-01

    Ammonia is an important input into agriculture and is used widely as base chemical for the chemical industry. It has recently been proposed as a sustainable transportation fuel and convenient one-way hydrogen carrier. Employing typical meteorological data for Palmdale, CA, solar energy is considered here as an inexpensive and renewable energy alternative in the synthesis of NH 3 at ambient pressure and without natural gas. Thermodynamic process analysis shows that a molybdenum-based solar thermochemical NH 3 production cycle, conducted at or below 1500 K, combined with solar thermochemical H 2 production from water may operate at a net-efficiency ranging from 23 to 30% (lower heating value of NH 3 relative to the total energy input). Net present value optimization indicates ecologically and economically sustainable NH 3 synthesis at above about 160 tons NH 3 per day, dependent primarily on heliostat costs (varied between 90 and 164 dollars/m 2 ), NH 3 yields (ranging from 13.9 mol% to stoichiometric conversion of fixed and reduced nitrogen to NH 3 ), and the NH 3 sales price. Economically feasible production at an optimum plant capacity near 900 tons NH 3 per day is shown at relative conservative technical assumptions and at a reasonable NH 3 sales price of about 534 ± 28 dollars per ton NH 3 . -- Highlights: ► Conceptual reactant and process improvements of solar-driven NH 3 synthesis at 1 bar. ► Thermodynamic underpinnings of a Molybdenum reactant. ► Process analysis determining energy and materials requirements and the net-efficiency. ► Net present value analysis accounting for yield, investment, and sales price variations.

  13. Thermochemical treatment of radioactive waste by using powder metal fuels

    International Nuclear Information System (INIS)

    Dmitriev, S.A.; Ojovan, M.I.; Karlina, O.K.

    2001-01-01

    Full text: A thermochemical approach was suggested for treating and conditioning specific streams of radioactive wastes for example spent ion exchange resins, mixed, organic or chlorine-containing radioactive waste as well as in order to decontaminate heavily contaminated surfaces. Conventional treatment methods of such waste encounters serious problems concerning complete destruction of organic molecules and possible emissions of radionuclides, heavy metals and chemically hazardous species or in case of contaminated materials - complete removal of contamination from surface. The thermochemical treatment of radioactive waste uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. Thermochemical treatment technologies use the energy of chemical reactions in the mixture of waste with PMF to sustain both decomposition and synthesis processes as well as processes of isomorphic substitutions of hazardous elements into stable mineral forms. The composition of the PMF is designed in such a way as to minimise the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the mineral or glass like final products. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. Thermochemical treatment technologies are very efficient, easy to apply, they have low capital investment and can be used both at large and small facilities. An advantage of thermochemical technologies is their autonomy. Thus these technologies can be successfully applied in order to treat small amount of waste without usage of complex and expensive equipment. They can be used also in emergency situations. Currently the thermochemical treatment technologies were developed and demonstrated to be feasible as follows: 1. Decontamination of surfaces; 2. Processing of organic waste; 3. Vitrification of dusty

  14. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)

    1996-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  15. Thermochemical Heat Storage: from Reaction Storage Density to System Storage Density

    NARCIS (Netherlands)

    Jong, A.J. de; Vliet, L.D. van; Hoegaerts, C.L.G.; Roelands, C.P.M.; Cuypers, R.

    2016-01-01

    Long-term and compact storage of solar energy is crucial for the eventual transition to a 100% renewable energy economy. For this, thermochemical materials provide a promising solution. The compactness of a long-term storage system is determined by the thermochemical reaction, operating conditions,

  16. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment

    Science.gov (United States)

    Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale

    2011-01-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...

  17. Thermochemical data for reactor materials and fission products: The ECN database

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1993-02-01

    The activities of the authors regarding the compilation of a database of thermochemical properties for reactor materials and fission products is reviewed. The evaluation procedures and techniques are outlined and examples are given. In addition, examples of the use of thermochemical data for the application in the field of Nuclear Technology are given. (orig.)

  18. Preparation and Characterization of Sodium Sulfide Hydrates for Application in Thermochemical Storage Systems

    NARCIS (Netherlands)

    Roelands, C.P.M.; Cuypers, R.; Kruit, K.D.; Oversloot, H.P.; Jong, A.J. de; Duvalois, W.; Vliet, L. van; Hoegaerts, C.L.G.

    2015-01-01

    Bottlenecks for realizing a commercial system for thermochemical heat storage (TCS) with hygroscopic salts are the chemical, physical and mechanical stability of the salt under operation conditions. Hence, improved knowledge of thermochemical materials (TCMs) is critical to spur progress in TCS

  19. Generation of H_2 and CO by solar thermochemical splitting of H_2O and CO_2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H_2 and CO by splitting H_2O and CO_2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H_2O or CO_2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H_2O or CO_2. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln_1_−_xA_xMn_1_−_yM_yO_3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H_2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y_0_._5Sr_0_._5MnO_3 which releases 483 µmol/g of O_2 at 1673 K and produces 757 µmol/g of CO from CO_2 at 1173 K. The production of H_2 from H_2O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H_2 based on the Mn_3O_4/NaMnO_2 cycle briefly. - Graphical abstract: Ln_0_._5A_0_._5Mn_1_−_xM_xO_3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO_2 and H_2O for the generation of CO and H_2. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO_2 and H_2O. • In Ln_1_−_xA_xMnO_3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H_2O splitting is also achieved by the use of the Mn_3O_4-sodium carbonate system. • Thermochemical splitting of CO_2 and H_2O using

  20. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Ability of thermochemical calculation to treat organic peroxides

    Science.gov (United States)

    Osmont, Antoine; Baudin, Gérard; Genetier, Marc

    2017-06-01

    Since 3 years, the CEA Gramat is developing a new thermochemical code, called SIAME, funded by DGA to help French defense industry at conceiving new explosives compositions. It enables the calculation of CJ detonation and deflagration points and combustion of explosives. The accuracy of the code has been checked on several compositions containing PETN, RDX, HMX, TNT, NTO. The error on the velocity of detonation is 3%. To enlarge the domain of validity of the code, organic peroxides have been considered. It is known that thermochemical simulation is in failure regarding compounds as simple as hydrogen peroxide. The computed velocity of detonation is 5720 m/s when shock planar impact gives 6150 m/s. The same discrepancy is found for TATP, with a calculated value at 5870 m/s when 5290 has been measured. Detonation velocity of TATP has been measured at two different densities. These velocities agree with other published values. A closer look at the enthalpy of formation of TATP has revealed that it comes from an article of 1932. Ab initio computations have given a totally different value, leading to better agreement with experiment.

  2. Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance.

    Science.gov (United States)

    Steckenmesser, Daniel; Vogel, Christian; Adam, Christian; Steffens, Diedrich

    2017-04-01

    Sewage sludge has one of the highest phosphorus (P) recovery potentials of all waste materials. Therefore, P-recycling from sewage sludge could contribute to closing the P-cycle. Recently, various thermal processes for P-recovery have been developed, but there is still a demand for information on the effect of different process parameters (e.g. additives and temperature) on P-speciation and especially on the fertilization performance. In the present study, two common methods (low-temperature conversion at 400-500°C and thermochemical treatment at 950°C) were investigated and combined to produce highly bioavailable P-fertilizers from two different types of sewage sludge based on chemical phosphorus precipitation (Chem-P) and enhanced biological phosphorus removal (Bio-P). The results of P-fractionation, X-ray diffraction analysis, and pot experiments with maize showed that Bio-P sludges attain high P-plant-availability after treatment at low temperatures (400°C). In contrast, Chem-P sludges can adequately be treated at higher temperatures under reductive conditions with sodium additives to form highly bioavailable calcium-sodium-phosphate. Additionally, also highly heavy-metal contaminated sludges can be thermochemically treated at high temperatures to achieve the legal requirements for fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Towards the renewal of the NEA Thermochemical Database

    International Nuclear Information System (INIS)

    Ragoussi, Maria-Eleni; Costa, Davide; Bossant, Manuel

    2015-01-01

    The Thermochemical Database (TDB) Project was created three decades ago as a joint undertaking of the NEA Radioactive Waste Management Committee and the NEA Data Bank. The project involves the collection of high-quality and traceable thermochemical data for a set of elements (mainly minor actinides and fission products) relevant to geophysical modelling of deep geological repositories. Funding comes from 15 participating organisations, primarily national nuclear waste authorities and research institutions. The quantities that are stored in the TDB database are: the standard molar Gibbs energy and enthalpy of formation, the standard molar entropy and, when available, the heat capacity at constant pressure, together with their uncertainty intervals. Reaction data are also provided: equilibrium constant of reaction, molar Gibbs energy of reaction, molar enthalpy of reaction and molar entropy of reaction. Data assessment is carried out by teams of expert reviewers through an in-depth analysis of the available scientific literature, following strict guidelines defined by the NEA to ensure the accuracy and self-consistency of the adopted datasets. Thermochemical data that has been evaluated and selected over the years have been published in the 13 volumes of the Chemical Thermodynamics series. They are also stored in a database that is updated each time the study of a new element is completed. The TDB selected data are made available to external third parties through the NEA web site where data extracted from the database can be displayed and downloaded as plain text files. Following recent recommendations of the Task Force on the Future Programme of the NEA Data Bank to enhance scientific expertise and user services, a renewal of the software managing the TDB database is being undertaken. The software currently used was designed 20 years ago and is becoming obsolete. Redesigning the application will provide an opportunity to correct current shortcomings and to develop

  4. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Haro, Pedro; Aracil, Cristina; Vidal-Barrero, Fernando; Ollero, Pedro

    2015-01-01

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  5. Synthesis, structure and spectroscopic investigations of two new organic-inorganic hybrids NH{sub 3}(C{sub 6}H{sub 4}){sub 2}NH{sub 3}CuCl{sub 4} and NH{sub 3}(C{sub 6}H{sub 4}){sub 2}NH{sub 3}HgCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Belhouchet, M; Wamani, W; Mhiri, T, E-mail: belhouchet2002@yahoo.fr [Laboratoire de l' Etat Solide, Departement de Chimie, Faculte des Sciences de Sfax, B. P.1171, 3000 Sfax (Tunisia)

    2010-11-15

    Two metal organic-inorganic hybrid compounds, NH{sub 3}(C{sub 6}H{sub 4}){sub 2}NH{sub 3}CuCl{sub 4}, 1, and NH{sub 3}(C{sub 6}H{sub 4}){sub 2}NH{sub 3}HgCl{sub 4}, 2, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The two compounds crystallize in the monoclinic space groups P2{sub 1}/c and C2/c, respectively, with a = 14.3774 (7), b = 7.3472 (4), c = 7.1669 (3), {beta} = 96.589 (3){sup 0}, Z = 2 and R1 = 0.037 for 1, and a = 6.2986 (4), b = 18.2911 (12), c = 28.5854 (17), {beta} = 91.836 (2){sup 0}, Z = 8 and R1 = 0.049 for 2. The organic-inorganic layered perovskite structure of compound 1 features well-ordered sheets of corner-sharing distorted CuCl{sub 6} octahedra, due to the presence of Jahn-Teller effect in the d{sup 9} electronic system of Cu(II), separated by layers of benzidinium cations. The structure of compound 2 consists of anionic parallel layers built up from discrete tetrahedral HgCl{sub 4}{sup 2}- species, alternating with layers of organic molecules [NH{sub 3}(C{sub 6}H{sub 4}){sub 2}NH{sub 3}]{sup 2+}. The structures of the two compounds are stabilized by an extensive network of N-H...C1 hydrogen bonds. These compounds are also investigated by IR spectroscopy.

  6. Blanket materials for fusion reactors: comparisons of thermochemical performance

    International Nuclear Information System (INIS)

    Johnson, C.E.; Fischer, A.K.; Tetenbaum, M.

    1984-01-01

    Thermodynamic calculations have been made to predict the thermochemical performance of the fusion reactor breeder materials, Li 2 O, LiAlO 2 , and Li 4 SiO 4 in the temperature range 900 to 1300 0 K and in the oxygen activity range 10 -25 to 10 -5 . Except for a portion of these ranges, the performance of LiAlO 2 is predicted to be better than that of Li 2 O and Li 4 SiO 4 . The protium purge technique for enhancing tritium release is explored for the Li 2 O system; it appears advantageous at higher temperatures but should be used cautiously at lower temperatures. Oxygen activity is an important variable in these systems and must be considered in executing and interpreting measurements on rates of tritium release, the form of released tritium, diffusion of tritiated species and their identities, retention of tritium in the condensed phase, and solubility of hydrogen isotope gases

  7. THERMOCHEMICAL CALCULATIONS USING SERVICEORIENTED ARCHITECTURE IN THE WEB SERVICE FORM

    Directory of Open Access Journals (Sweden)

    Pavel Horovčák

    2018-02-01

    Full Text Available The subject of this article is the service-oriented architecture utilization in the design and implementation of a web service that is intended to perform selected thermochemical calculations for chemical reactions. Computing functions allow the chemical reaction calculations, such as molar heat capacity, enthalpy, entropy and Gibbs free energy. In the next part, there is a description of each function, the method of service calling in the client application and the structure specification of outputs and error states of the service. In addition to computing functions, the web service also has a group of three information functions that characterize the purpose of the web service and its parameters, provide in tabular form a list of all web service functions and a list of all error states of the web service. The final section describes the presentation web service application with a demonstration of the specific calculations, the possibilities of using the service, and a further solution treatment.

  8. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...... case, the probabilistic design of the pultrusion process, which has not been considered until now, is performed. The effect of statistical variations in the material (i.e. fiber and resin) and resin kinetic properties, as well as process parameters such as pulling speed and inlet temperature...... on the product quality (degree of cure) are examined by means of Monte Carlo Simulation (MCS) with Latin Hypercube Sampling (LHS) technique. The variations in the activation energy as well as the density of the resin are found to have a strong influence on the centerline degree of cure at the exit whereas...

  9. Characteristics of thermochemical treated EN10090 X50 steel

    International Nuclear Information System (INIS)

    Schmitz, S.; Graf, K.; Scheid, A.; Moreno, A.

    2014-01-01

    EN10090 X50 steel is commonly used for engine valves to withstand severe operation conditions involving high temperature and corrosion from fuel and combustion gas. Usually, to enhance wear performance, valves undergo nitriding thermochemical treatment by salt baths. The aim of this work is to produce diffusion layers at least 20μm thick with hardness higher than 700HV by plasma surface treatment with no continuous compounds layer using nitrogen and methane based atmospheres. Samples were characterized by laser Confocal and scanning electron microscopy, X-ray diffraction and Vickers hardness. Salt bath treatment induced formation of undesirable compounds layer at the surface and a diffusion layer thicker than 40μm, with hardness arising 1280HV 0,010 . Plasma surface treatment produced diffusion layer thicker than 40μm with no continuous compounds layer and mean hardness varying from 750 to 960HV 0,010 . (author)

  10. Environmental requirements in thermochemical and biochemical conversion of biomass

    International Nuclear Information System (INIS)

    Frings, R.M.; Mackie, K.L.; Hunter, I.R.

    1992-01-01

    Many biological and thermochemical processing options exist for the conversion of biomass to fuels. Commercially, these options are assessed in terms of fuel product yield and quality. However, attention must also be paid to the environmental aspects of each technology so that any commercial plant can meet the increasingly stringent environmental legislation in the world today. The environmental aspects of biological conversion (biogasification and bioliquefaction) and thermal conversion (high pressure liquefaction, flash pyrolysis, and gasification) are reviewed. Biological conversion processes are likely to generate waste streams which are more treatable than those from thermal conversion processes but the available data for thermal liquefaction are very limited. Close attention to waste minimisation is recommended and processing options that greatly reduce or eliminate waste streams have been identified. Product upgrading and its effect on wastewater quality also requires attention. Emphasis in further research studies needs to be placed on providing authentic waste streams for environmental assessment. (author)

  11. Positronium hydride defects in thermochemically reduced alkaline-Earth oxides

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1997-01-01

    Thermochemical reduction of both hydrogen-doped MgO and CaO single crystals results in large concentrations of hydride (H - ) ions. In MgO crystals, positron lifetime and Doppler broadening experiments show that positrons are trapped at H - centers forming positronium hydride molecules [e + - H - ]. A value of 640 ps is obtained for the lifetime of the PsH states located in an anion vacancy In MgO positrons are also trapped at H 2- sites at low temperatures. The H 2- ions were induced in the crystals by blue light illumination. The formation of PsH states in CaO could not be conclusively established. (orig.)

  12. Nagra thermochemical data base. II. Supplement data 05/92

    International Nuclear Information System (INIS)

    Pearson, F.J.; Berner, U.; Hummel, W.

    1992-05-01

    Chemical thermodynamic data for aqueous species, minerals, and gases are required by Nagra for geochemical modelling. The Nagra thermochemical data base contains core and supplemental data. Core data for well-characterised entities were individually carefully selected and given by Pearson and Berner (1991). Supplemental data are for less common entities and for elements principally of safety assessment concern. They were selected in groups from other data bases for geochemical modelling and did not receive individual scrutiny. This report gives tables with the Nagra thermochemical data as of 5/92. It includes the core data described in the earlier report with supplemental data for the elements aluminium, silicon, iron, and manganese, the actinides thorium, uranium, neptunium, plutonium, and americium, and elements found as fission or activation products in nuclear waste, including nickel, zirconium, niobium, molybdenum, technetium, palladium, tin, selenium and iodine. Aqueous complexes of four representative organic anions are also included. The sources of these supplemental data are described in the text. Other compilations of data were examined during the selection on the supplemental data. These included the data bases used at the Paul Scherrer Institut with the geochemical programs MINEQL as of 3/91, PHREEQE as of 4/91, and the HATCHES 3.0 data base. This report also gives tables comparing selected data in these three data bases with values from the Nagra data base. This data base has not yet been tested for a full range of nuclear waste management applications, although such work is in progress. It should thus be regarded as a reference fixed point for quality assurance purpose and not critically reviewed standard. (author) tabs., refs

  13. Estimation of thermochemical behavior of spallation products in mercury target

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H 2 O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH + , BeO + and Be 2+ under the condition of less than 10 -8 of the Be mole fraction in the cooling water. (author)

  14. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  15. A pilot test plan of the thermochemical water-splitting iodine-sulfur process

    International Nuclear Information System (INIS)

    Kubo, Shinji; Kasahara, Seiji; Okuda, Hiroyuki; Terada, Atsuhiko; Tanaka, Nobuyuki; Inaba, Yoshitomo; Ohashi, Hirofumi; Inagaki, Yoshiyuki; Onuki, Kaoru; Hino, Ryutaro

    2004-01-01

    Research and development (R and D) of hydrogen production systems using high-temperature gas-cooled reactors (HTGR) are being conducted by the Japan Atomic Research Institute (JAERI). To develop the systems, superior hydrogen production methods are essential. The thermochemical hydrogen production cycle, the IS (iodine-sulfur) process, is a prospective candidate, in which heat supplied by HTGR can be consumed for the thermal driving load. With this attractive feature, JAERI will conduct pilot-scale tests, aiming to establish technical bases for practical plant designs using HTGR. The hydrogen will be produced at a maximum rate of 30 m 3 /h, continuously using high-temperature helium gas supplied by a helium gas loop, with an electric heater of about 400 kW. The plant will employ an advanced hydroiodic acid-processing device for efficient hydrogen production, and the usefulness of the device was confirmed from mass and heat balance analysis. Through design works and the hydrogen production tests, valuable data for construction and operation will be acquired to evaluate detailed process performance for practical systems. After completing the pilot-scale tests, JAERI will move onto the next R and D step, which will be demonstrations of the IS process to which heat is supplied from a high-temperature engineering test reactor (HTTR)

  16. Thermo-chemical production of hydrogen from water by metal oxides fixed on ceramic substrates

    International Nuclear Information System (INIS)

    Roeb, M.; Monnerie, N.; Schmitz, M.; Sattler, C.; Konstandopoulos, A.G.; Agrafiotis, C.; Zaspalis, V.T.; Nalbandian, L.; Steele, A.; Stobbe, P.

    2006-01-01

    In the European project HYDROSOL a simple two-step thermo-chemical cycle process has been developed and investigated. It is based on metal oxide redox pair systems, which can split water molecules by abstracting oxygen atoms and reversibly incorporating them into their lattice. If concentrated solar radiation is used as the heat source one has a promising method in hand to produce hydrogen without any environmentally critical emissions. The basic idea is to combine a support capable of achieving high temperatures when heated by concentrated solar radiation, with a redox pair system suitable for water dissociation and at the same time for regeneration at these temperatures, so that complete operation of the whole process could be achieved by a single solar energy converter. The feasibility of the process has proven possible in a mini-plant scale using concentrated sunlight provided by the solar furnace in Cologne. Suitable redox materials as coatings and a dedicated receiver-reactor have been developed to produce hydrogen with significant conversions by repeating several subsequent water splitting and regeneration steps. In a design study a possible way of operating the process in commercial scale is demonstrated. (authors)

  17. A high-temperature fusion blanket design for thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Maya, I.; Battagalia, J.; Cheng, E.

    1983-01-01

    This paper presents the conceptual design of a technically viable fusion blanket having the capability to supply high-temperature process heat for the production of hydrogen via a modification of the General Atomic sulfur-iodine thermochemical water splitting cycle. To avoid the necessity of an expensive catalyst, and to allow the use of higher pressures and thus obtain a more compact, less expensive chemical plant, process heat temperatures above 1000 0 C are preferred. The present blanket supplies 30% of its energy at 1250 0 C by flowing 50 atm helium across nonstress-bearing blocks of silicon carbide. The remaining 70% of the blanket energy is delivered at 700 0 C by a separate helium circuit cooling the Li 17 Pb 83 tritium breeder contained in Nb-1Zr tubes. The design attains a tritium breeding ratio of 1.1, and the two-coolant stream arrangement greatly reduces the tritium activity in the high-temperature loop. The swelling-tolerant pressure-containing Inconel 718 structure is maintained below 500 0 C by careful thermal hydraulics design and coolant channel routing. Only state-of-the-art materials are employed in the mechanical design and special attention has been afforded to the concerns of materials compatibility and irradiation-induced changes in material properties

  18. Thermochemical Erosion Modeling of the 25-MM M242/M791 Gun System

    National Research Council Canada - National Science Library

    Sopok, Samuel

    1997-01-01

    The MACE gun barrel thermochemical erosion modeling code addresses wall degradations due to transformations, chemical reactions, and cracking coupled with pure mechanical erosion for the 25-mm M242/M791 gun system...

  19. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables).

    Energy Technology Data Exchange (ETDEWEB)

    Burcat, A.; Ruscic, B.; Chemistry; Technion - Israel Inst. of Tech.

    2005-07-29

    The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available on the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.

  20. Ammonia Based Solar Thermochemical Energy Storage System for Direct Production of High Temperature Supercritical Steam

    OpenAIRE

    CHEN, CHEN

    2017-01-01

    In the field of solar thermochemical energy storage, ammonia synthesis/dissociation is feasible for practical use in the concentrating solar power industry. In ammonia-based solar thermochemical energy storage systems, the stored energy is released when the hydrogen (H2) and nitrogen (N2) react exothermically to synthesize ammonia (NH3), providing thermal energy to a power block for electricity generation. But ammonia synthesis has not yet been shown to reach temperatures consistent with the ...

  1. The influence of thermochemical convection on the fixity of mantle plumes

    Science.gov (United States)

    McNamara, Allen K.; Zhong, Shijie

    2004-05-01

    A general feature of both isochemical and thermochemical studies of mantle convection is that horizontal plume velocities tend to be smaller than typical convective velocities, however, it is not clear which system leads to a greater fixity of mantle plumes. We perform two- and three-dimensional numerical calculations and compare both thermochemical and isochemical cases with similar convective vigor to determine whether presence of a dense component in the mantle can lead to smaller ratios of horizontal plume velocity to surface velocity. We investigate different viscosity and density contrasts between chemical components in the thermochemical calculations, and we perform isochemical calculations with both free-slip and no-slip bottom boundary conditions. We then compare both visually and quantitatively the results of the thermochemical and isochemical calculations to determine which leads to greater plume fixity. We find that horizontal plume velocities for thermochemical calculations are similar to those from isochemical calculations with no-slip bottom boundary conditions. In addition, we find that plumes tend to be more fixed for isochemical cases with free-slip bottom boundary conditions for two-dimensional calculations, however, in three dimensions, we find that plume fixity is similar to that observed in thermochemical calculations.

  2. Thermochemical Properties, Reaction Paths and Kinetic Mechanism for Sulfur-Chloro Hydrocarbon Combustion: Part I: Thermochemistry and Pyrolysis of Chlorosulfides

    National Research Council Canada - National Science Library

    Montgomery, Christopher J; Bockelie, Michael J; Sarofim, Adel F; Lee, Jongwoo; Bozzelli, Joseph W

    2003-01-01

    Almost no data exists in the literature on thermochemical properties enthalpy of formation, entropy or heat capacities for chlorinated sulfur hydrocarbons and oxygenated intermediates in atmospheric...

  3. Testing of an advanced thermochemical conversion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  4. Environmental impacts of thermochemical biomass conversion. Final report

    International Nuclear Information System (INIS)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W.

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given

  5. Thermochemical data acquisition - Reactor safety programme 1988-1991

    International Nuclear Information System (INIS)

    Ball, R.G.J.; Rand, M.H.; Cordfunke, E.H.P.; Konings, R.J.M.

    1991-10-01

    Thermochemical data are required for specific fission product and reactor materials compounds in order to quantify the consequences of a severe accident within a light water reactor. Approximately 40 important compounds/systems have been identified for study for which thermodynamic data did not exist or were inadequate. Work is described on the analysis of approximately half of these systems. Experimental studies have been undertaken to determine the thermodynamic quantities of the following compounds : Cs 2 MoO 4 , CsBO 2 , Cs 2 RuO 4 , Cs 2 RuO 4 , Cs 2 Mno 4 , Cs 2 CrO 4 , Cs 2 TeO 3 ,Cs 2 Te, InI, InI 3 , In 2 I 6 , In 2 Te, Cd(OH) 2 , Cd(OH) 2 , TeO(OH) 2 ,CdI 2 , Cd 2 I 4 , Cs 2 CdI 4 , CsCdI 3 , Cs 2 CdI 4 , Cs 3 PO 4 and Cd-In-Ag. Critical assessments have been made on the following systems : In-I, In-Te, Cd-I, Sr-B-O and Ba-B-O. The thermodynamic quantities of these compounds have been calculated over the temperature range from 298 to 3000 K. The adoption of these data within appropriate modelling codes will allow the fission product species and transport to be predicted with greater confidence, thus providing more accurate assessments of the consequences of severe reactor accidents

  6. Environmental impacts of thermochemical biomass conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

  7. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  8. Thermochemical study of cyanopyrazines: Experimental and theoretical approaches

    International Nuclear Information System (INIS)

    Miranda, Margarida S.; Morais, Victor M.F.; Matos, M. Agostinha R.

    2006-01-01

    The standard (p - bar =0.1MPa) molar energy of combustion, at T=298.15K, of crystalline 2,3-dicyanopyrazine was measured by static bomb calorimetry, in oxygen atmosphere. The standard molar enthalpy of sublimation, at T=298.15K, was obtained by Calvet Microcalorimetry, allowing the calculation of the standard molar enthalpy of formation of the compound, in the gas phase, at T=298.15K: Δ f H m - bar (g)=(518.7+/-3.4)kJ.mol -1 . In addition, the geometries of all cyanopyrazines were obtained using density functional theory with the B3LYP functional and two basis sets: 6-31G* and 6-311G**. These calculations were then used for a better understanding of the relation between structure and energetics of the cyanopyrazine systems. These calculations also reproduce measured standard molar enthalpies of formation with some accuracy and do provide estimates of this thermochemical parameter for those compounds that could not be studied experimentally, namely the tri- and tetracyanopyrazines: the strong electron withdrawing cyano group on the pyrazine ring makes cyanopyrazines highly destabilized compounds

  9. Thermochemical calculations for the urania-cesium iodide reaction

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1992-05-01

    Thermochemical calculations using the currently available data of ΔG 0 f (standard free energy of formation) were performed for the phase equilibria in the system U-Cs-O-I-Mo. Iodine pressures, oxygen pressures and oxygen potential ΔG-bar(O 2 ) were calculated at temperatures 300deg ∼ 1100degC for the onset of the reaction between CsI and hyperstoichiometric UO 2 to form gaseous iodine and Cs 2 U 4 O 12 or Cs 2 UO 4 . The calculated threshold ΔG-bar(O 2 )-values for the UO 2+X -CsI reaction in the presence or absence of molybdenum were in accord with a set of our experimental data at 800degC within the range of scatter in the calculated values. The computer code PURPLE was developed to calculate the phase equilibria relevant to the understanding of the UO 2+X -CsI reaction in the context of the system U-Cs-O-I-Mo. (author)

  10. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  11. Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure

    Science.gov (United States)

    Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Permeable manure storage covers can reduce NH3 emissions, however performance can decline as they degrade. Thermochemical conversion of biomass through pyrolysis and steam treatment could incre...

  12. Copper(I) halide complexes with 1,3-propanebis(diphenylphosphine) and heterocyclic thione ligands: crystal and electronic structures (DFT) of [CuCl(pymtH)(dppp)], [CuBr(pymtH)(dppp)], and [Cu(mu-I)(dppp)](2).

    Science.gov (United States)

    Aslanidis, Paraskevas; Cox, Philip J; Divanidis, Savvas; Tsipis, Athanassios C

    2002-12-16

    Reaction of copper(I) chloride or bromide with equimolar amounts of the diphos ligand 1,3-propanebis(diphenylphosphine) and a heterocyclic thione (L) in acetonitrile/methanol solvent afforded mononuclear complexes of the type [CuX(dppp)(L)] with the diphosphine ligand acting as a chelating ligand. In contrast, copper(I) iodide under the same conditions gave the dimeric complex [Cu(mu-I)(dppp)](2), which contains doubly bridging iodo ligands. The structures of three complexes, namely, [CuCl(pymtH)(dppp)], [CuCl(pymtH)(dppp)], and [Cu(mu-I)(dppp)](2), have been established by single-crystal X-ray diffraction. Density functional calculations at the B3LYP level of theory provided a satisfactory description of the structural, bonding, electronic, and related properties of the [CuX(PH(3))(2)] and [CuX(1,3-pdp)] (1,3-pdp = 1,3-propane-di-phosphine) complexes and their dimers along with their associations with the pyrimidine-2-thione (pymtH) ligand. The interaction of the pymtH ligand with the Cu(I) metal center in these complexes corresponds to loose associations, the computed interaction energies predicted to be about 20 kcal/mol for all complexes in the series. The bonding mechanism of the thione ligand with the Cu(I) metal centers involves both a sigma-dative and pi-back-bonding components. The coordination of the pymtH ligand is further stabilized by X...H-N bond formation being more pronounced in the chloro than in the iodo derivatives. The Cu-X bond was also found to be a composite bond involving sigma- and pi-dative bonding components. Most important is the presence of pi-type MOs delocalized over the entire four-membered Cu(mu-X)(2)Cu ring, which supports a ring current and could probably account for the nearly equivalent Cu-X bonds in the rhombus. Moreover, all [Cu(mu-X)(PH(3))(2)](2) dimers exhibit a sigma-type MO corresponding to weak Cu.Cu interactions supporting through-ring intermetallic interactions, which seems to be responsible for the stabilization of

  13. Study on structural design technique of silicon carbide applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Takegami, Hiroaki; Terada, Atsuhiko; Inagaki, Yoshiyuki; Ishikura, Syuichi

    2011-03-01

    The IS process is the hydrogen production method which used the thermochemical reaction cycle of sulfuric acid and iodyne. Therefore, the design to endure the high temperature and moreover corrode-able environment is required to the equipment. Specifically, the sulfuric acid decomposer which is one of the main equipment of the IS process is the equipment to heat with hot helium and for the sulfuric acid of 90 wt% to evaporate. Moreover, it is the important equipment to supply the SO 3 decomposer which is the following process, resolving the part of sulfuric acid vapor into SO 3 with. The heat exchanger that sulfuric acid evaporates must be made pressure-resistant structure because it has the high-pressure helium of 4 MPa and the material that the high temperature and the corrosion environment of equal to or more than 700degC can be endured must be used. As the material, it is selected from the corrosion experiment and so on when SiC which is carbonization silicone ceramics is the most excellent material. However, even if it damages the ceramic block which is a heat exchanger because it becomes the structure which is stored in pressure-resistant metallic container, fluid such as sulfuric acid becomes the structure which doesn't leak out outside. However, the structure design technique to have been unified when using ceramics as the structure part isn't serviced as the standard. This report is the one which was studied about the structural design technique to have taken the material strength characteristic of the ceramics into consideration, refer to existing structural design standard. (author)

  14. Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Ma, Lanxin; Leng, Yu

    2015-01-01

    Highlights: • Effects of key factors on chemical reaction for solar methane reforming are studied. • MCRT and FVM method coupled with UDFs is used to establish numerical model. • Heat and mass transfer model coupled with thermochemical reaction is established. • LTNE model coupled with P1 approximation is used for porous matrix solar reactor. • A formula between H 2 production and conductivity of porous matrix is put forward. - Abstract: With the aid of solar energy, methane reforming process can save up to 20% of the total methane consumption. Monte Carlo Ray Tracing (MCRT) method and Finite Volume Method (FVM) combined method are developed to establish the heat and mass transfer model coupled with thermochemical reaction kinetics for porous medium solar thermochemical reactor. In order to provide more temperature information, local thermal non-equilibrium (LTNE) model coupled with P1 approximation is established to investigate the thermal performance of porous medium solar thermochemical reaction. Effects of radiative heat loss and thermal conductivity of porous matrix on temperature distribution and thermochemical reaction for solar driven steam methane reforming process are numerically studied. Besides, the relationship between hydrogen production and thermal conductivity of porous matrix are analyzed. The results illustrate that hydrogen production shows a 3 order polynomial relation with thermal conductivity of porous matrix

  15. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.

    Science.gov (United States)

    Tortoza, Mariana S; Humphries, Terry D; Sheppard, Drew A; Paskevicius, Mark; Rowles, Matthew R; Sofianos, M Veronica; Aguey-Zinsou, Kondo-Francois; Buckley, Craig E

    2018-01-24

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (ΔH des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (ΔS des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ΔH des of 74.06 kJ mol -1 H 2 and ΔS des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

  16. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality

    Science.gov (United States)

    Jiang, Lei; Worden, Richard H.; Yang, Changbing

    2018-02-01

    Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.

  17. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  18. Effects of thermochemical pretreatment on the biodegradability of sludge from a biological wastewater treatment system

    Directory of Open Access Journals (Sweden)

    Ick-Tae Yeom

    2010-07-01

    Full Text Available The effects of thermochemical pretreatment on the sludge biodegradability were examined. Two types of tests were conducted: aerobic biodegradation and denitrification using thermochemically pretreated sludge as carbon source. In the aerobic biodegradation tests, the biodegradation efficiency for the sludge pretreated at 60, 70, 80 and 90oC (pH 11 was 1.4-2.2 times higher than that for the untreated sludge. The biodegradation efficiency for the supernatant was also about 1.9 times higher than that for the particulates. The biodegradation enhancement for the thermochemically pretreated sludge was demonstrated in denitrification tests. The supernatant showed its potential as a carbon source for the denitrification process.

  19. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  20. Generation of H{sub 2} and CO by solar thermochemical splitting of H{sub 2}O and CO{sub 2} by employing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita

    2016-10-15

    Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles

  1. Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  2. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  3. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    Science.gov (United States)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  4. Characterization of Thermochemically Surface-Hardened Titanium by Light Optical Microscopy

    DEFF Research Database (Denmark)

    Gammeltoft-Hansen, Niklas; Munch, Steffen S.; Jellesen, Morten Stendahl

    2017-01-01

    Thermochemically treated titanium grades 2 and 5 were investigated by light optical microscopy and hardness indentation. Gaseous oxidation in oxygen and N2O containing atmospheres resulted in a diffusion zone of oxygen in solid solution in titanium with a hardness up to 1000 HV. A surface scale...

  5. Thermochemical stability and friction properties of soft organosilica networks for solid lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Dral, A. Petra; van den Nieuwenhuijzen, Karin J.H.; Lette, Walter; Schipper, Dik J.; ten Elshof, Johan E.

    2018-01-01

    In view of their possible application as high temperature solid lubricants, the tribological and thermochemical properties of several organosilica networks were investigated over a range of temperatures between 25 and 580 °C. Organosilica networks, obtained from monomers with terminal and bridging

  6. Experimental investigation and thermochemical assessment of the system Cu-O

    International Nuclear Information System (INIS)

    Boudene, A.; Hack, K.; Mohammad, A.; Neuschuetz, D.; Zimmermann, E.

    1992-01-01

    Experimental investigations of the thermochemical properties of the phases in the system copper-oxygen by means of DTA/TG and EMF measurements are reported. The own results together with critically selected data from the literature are used for a complete assessment of the Gibbs-energies of all phases (based on the Standard-Element Reference State, SER). (orig.) [de

  7. A review on the properties of salt hydrates for thermochemical storage

    NARCIS (Netherlands)

    Trausel, F.; Jong, A.J. de; Cuypers, R.

    2014-01-01

    Solar energy is capable of supplying enough energy to answer the total demand of energy in dwellings. However, because of the discrepancy between energy supply and energy demand, an efficient way of storing thermal energy is crucial. Thermochemical storage of heat in salt hydrates provides an

  8. Improving Students' Chemical Literacy Levels on Thermochemical and Thermodynamics Concepts through a Context-Based Approach

    Science.gov (United States)

    Cigdemoglu, Ceyhan; Geban, Omer

    2015-01-01

    The aim of this study was to delve into the effect of context-based approach (CBA) over traditional instruction (TI) on students' chemical literacy level related to thermochemical and thermodynamics concepts. Four eleventh-grade classes with 118 students in total taught by two teachers from a public high school in 2012 fall semester were enrolled…

  9. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    Science.gov (United States)

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  10. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  11. Recommended Ideal-Gas Thermochemical Functions for Heavy Water and its Substituent Isotopologues

    Czech Academy of Sciences Publication Activity Database

    Simkó, I.; Furtenbacher, T.; Hrubý, Jan; Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Gamache, R. R.; Szidarovszky, T.; Dénes, N.; Császár, A. G.

    2017-01-01

    Roč. 46, č. 2 (2017), č. článku 023104. ISSN 0047-2689 R&D Projects: GA ČR GA16-02647S Institutional support: RVO:61388998 Keywords : heavy water * ideal-gas thermochemical functions * partition function Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 4.204, year: 2016

  12. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass

    Science.gov (United States)

    Zhaojiang Wang; Menghua Qin; J.Y. Zhu; Guoyu Tian; Zongquan. Li

    2013-01-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical–biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by...

  13. Evolution of the continental upper mantle : numerical modelling of thermo-chemical convection including partial melting

    NARCIS (Netherlands)

    de Smet, J.H.

    1999-01-01

    This thesis elaborates on the evolution of the continental upper mantle based on numerical modelling results. The descriptive and explanatory basis is formed by a numerical thermo-chemical convection model. The model evolution starts in the early Archaean about 4 billion years ago. The model follows

  14. Evolution of the continental upper mantle : numerical modelling of thermo-chemical convection including partial melting

    NARCIS (Netherlands)

    Smet, J.H. de

    1999-01-01

    This thesis elaborates on the evolution of the continental upper mantle based on numerical modelling results. The descriptive and explanatory basis is formed by a numerical thermo-chemical convection model. The model evolution starts in the early Archaean about 4 billion years ago. The model

  15. Pentafluorophenylammonium triflate-CuCl2: A mild, efficient and ...

    Indian Academy of Sciences (India)

    agents in the treatment of tuberculosis.11 There are seve- ral methods for the synthesis of 4(3H)-quinazolinones using DDQ/DMF,12 Ga(OTf)3,13 Yb(OTf)3,14 I2/KI,15. TBAB,16 Sc(OTf)3,17 P-toluenesulphunic acid/DDQ,18. NaHSO3,19 and SnCl4.4H2O,20 as catalysts. However, most of these procedures have significant ...

  16. Interface Superconductivity in Graphite- and CuCl-Based Heterostructures

    Science.gov (United States)

    2015-01-22

    PAULO -BRAZIL 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AIR FORCE OFFICE OF SCIENTIFIC...Campinas-UNICAMP. Adress: Rua Sergio Buarque de Holanda, 777, cidade Universitária Zeferino Vaz, Campinas-São Paulo -Brazil (zip code: 13083-859) Grant...Brandt et al., JETP Lett. 27, 37 (1978). [4] A. L. Gentile , Appl. Phys. Lett. 9, 237 (1966). [5] C. Dikavar et al., Solid State Comm. 34, 385 (1980

  17. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh [Southern Research Inst., Durham, NC (United States); Muto, Andrew [Southern Research Inst., Durham, NC (United States)

    2017-08-30

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precision Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat

  18. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    Science.gov (United States)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    ) upwelling of the ambient material in the vicinity of the dense material (mechanism of selective withdrawal (Lister, 1989)), and (iii) cold downwellings sliding along the bottom boundary, and forcing the dense material upwards. The objective of this study is to compare the efficiency of entrainment by each of these mechanisms, and its dependence on the density and viscosity anomaly of the dense material with respect to the ambient mantle. To perform this study, we have developed a two-dimensional FEM code to model thermal convection in a hollow cylinder domain with presence of chemical heterogeneities, and using a realistic viscosity profile. We present the results of the simulations that demonstrate the entrainment mechanisms described above. In addition, we perfom numerical experiments in a Cartesian box domain, where the bottom right boundary of the box is deformed to resemble the geometry of an LLSVP edge. In some of the experiments, the bottom left part of the boundary is moving towards the right boundary, simulating a slab sliding along the core-mantle boundary towards an LLSVP. These experiments allow a detailed study of the process of entrainment, and its role in the thermochemical evolution of the Earth.

  19. Material Analysis of Coated Siliconized Silicon Carbide (SiSiC Honeycomb Structures for Thermochemical Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2013-01-01

    Full Text Available In the present work, thermochemical water splitting with siliconized silicon carbide (SiSiC honeycombs coated with a zinc ferrite redox material was investigated. The small scale coated monoliths were tested in a laboratory test-rig and characterized by X-ray diffractometry (XRD and Scanning Electron Microscopy (SEM with corresponding micro analysis after testing in order to characterize the changes in morphology and composition. Comparison of several treated monoliths revealed the formation of various reaction products such as SiO2, zircon (ZrSiO4, iron silicide (FeSi and hercynite (FeAl2O4 indicating the occurrence of various side reactions between the different phases of the coating as well as between the coating and the SiSiC substrate. The investigations showed that the ferrite is mainly reduced through reaction with silicon (Si, which is present in the SiSiC matrix, and silicon carbide (SiC. These results led to the formulation of a new redox mechanism for this system in which Zn-ferrite is reduced through Si forming silicon dioxide (SiO2 and through SiC forming SiO2 and carbon monoxide. A decline of hydrogen production within the first 20 cycles is suggested to be due to the growth of a silicon dioxide and zircon layer which acts as a diffusion barrier for the reacting specie.

  20. Techno-Economic Analysis of a Concentrating Solar Power Plant Using Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage

    Science.gov (United States)

    Lopes, Mariana

    Concentrating Solar Power (CSP) plant technology can produce reliable and dispatchable electric power from an intermittent solar resource. Recent advances in thermochemical energy storage (TCES) can offer further improvements to increase off-sun operating hours, improve system efficiency, and the reduce cost of delivered electricity. This work describes a 111.7 MWe CSP plant with TCES using a mixed ionic-electronic conducting metal oxide, CAM28, as both the heat transfer and thermal energy storage media. Turbine inlet temperatures reach 1200 °C in the combined cycle power block. A techno-economic model of the CSP system is developed to evaluate design considerations to meet targets for low-cost and renewable power with 6-14 hours of dispatchable storage for off-sun power generation. Hourly solar insolation data is used for Barstow, California, USA. Baseline design parameters include a 6-hour storage capacity and a 1.8 solar multiple. Sensitivity analyses are performed to evaluate the effect of engineering parameters on total installed cost, generation capacity, and levelized cost of electricity (LCOE). Calculated results indicate a full-scale 111.7 MWe system at 274 million in installed cost can generate 507 GWh per year at a levelized cost of 0.071 per kWh. Expected improvements to design, performance, and costs illustrate options to reduce energy costs to less than $0.06 per kWh.

  1. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany

    International Nuclear Information System (INIS)

    Henssler, Martin

    2015-01-01

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO 2eq -reduction compared to the fossil reference fuel (83.8 g CO 2eq /MJ fuel /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO 2eq -savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H 2 ) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V registered -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H 2 ). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H 2 -production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO 2eq -saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO 2eq -saving is between 72 (H 2 ) and 95 % (Fischer-Tropsch-diesel or -gasoline). When the production costs of the

  2. Efficiency potential of solar thermochemical reactor concepts with ecological and economic performance analysis of solar fuel production

    OpenAIRE

    Falter, Christoph

    2017-01-01

    The alternative fuel production pathway by solar thermochemical splitting of water and carbon dioxide into hydrogen and carbon monoxide by redox reactions of a metal oxide, and their subsequent conversion into liquid fuels by Fischer-Tropsch synthesis, is investigated. These fuels could provide a means to completely decarbonize the transport sector and thus to significantly reduce its climate impact. A generic model is developed for the description of solar thermochemical reactors including h...

  3. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [University of South Carolina, Columbia; McMurray, Jake W [ORNL; Simunovic, Srdjan [ORNL

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  4. Development of a Thermo-chemical Non-equilibrium Solver for Hypervelocity Flows

    Science.gov (United States)

    Balasubramanian, R.; Anandhanarayanan, K.

    2015-04-01

    In the present study, a three dimensional flowsolver is indigenously developed to numerically simulate hypervelocity thermal and chemical non equilibrium reactive air flow past flight vehicles. The two-temperature, five species, seventeen reactions, thermo-chemical non equilibrium, non-ionizing, air-chemistry model of Park is implemented in a compressible viscous code CERANS and solved in the finite volume framework. The energy relaxation is addressed by a conservation equation for the vibrational energy of the gas mixture resulting in the evaluation of its vibrational temperature. The AUSM-PW+ numerical flux function has been used for modeling the convective fluxes and a central differencing approximation is used for modeling the diffusive fluxes. The flowsolver had been validated for specifically chosen test cases with inherent flow complexities of non-ionizing hypervelocity thermochemical nonequilibrium flows and results obtained are in good agreement with results available in open literature.

  5. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  6. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2012-10-01

    Full Text Available Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.

  7. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...... in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid....

  8. Essential scientific mapping of the value chain of thermochemical converted second-generation bio-fuels

    OpenAIRE

    Zhang, Xiaolei

    2016-01-01

    As the largest contributor to renewable energy, biomass (especially lignocellulosic biomass) has significant potential to address atmospheric emission and energy shortage issues. The bio-fuels derived from lignocellulosic biomass are popularly referred to as second-generation bio-fuels. To date, several thermochemical conversion pathways for the production of second-generation bio-fuels have shown commercial promise; however, most of these remain at various pre-commercial stages. In view of t...

  9. Catalytic solar thermochemical processing for enhance heat transfer and emission-free production of hydrogen

    OpenAIRE

    Ibrik, Karim; Al-Meer, Mariam; Ozalp, Nesrin

    2012-01-01

    Solar thermochemical processing offers production of many commodities via reduced or completely eliminated emission footprint. Although solar reactor design and flow configuration play key role in process efficiency, use of right catalyst further enhances the overall efficiency. Our research efforts to explain the physical phenomenon behind the increase of the overall efficiency via catalyst addition showed that there is a direct effect on the heat transfer which in turn effects methane decom...

  10. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons

    Science.gov (United States)

    Dubois, Vincent; Pineau, Nicolas

    2016-01-01

    We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.

  11. Definitive Ideal-Gas Thermochemical Functions of the (H2O)-O-16 Molecule

    Czech Academy of Sciences Publication Activity Database

    Furtenbacher, T.; Szidarovszky, T.; Hrubý, Jan; Kyuberis, A. A.; Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Császár, A. G.

    2016-01-01

    Roč. 45, č. 4 (2016), č. článku 043104. ISSN 0047-2689 R&D Projects: GA ČR(CZ) GA16-02647S Institutional support: RVO:61388998 Keywords : ideal-gas thermochemical quantities * ortho- and para-H2 16O * partition function Subject RIV: BJ - Thermodynamics Impact factor: 4.204, year: 2016 http://aip.scitation.org/doi/pdf/10.1063/1.4967723

  12. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruscic, Branko

    2015-07-16

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C–H, C–C, C–O, and O–H bond dissociation enthalpies at 298.15 K (BDE298) and bond dissociation energies at 0 K (D0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CHn, n = 4–0 species (methane, methyl, methylene, methylidyne, and carbon atom), C2Hn, n = 6–0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHn, n = 4–0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO2 and H2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species.

  13. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  14. Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids.

    Science.gov (United States)

    Beridze, George; Kowalski, Piotr M

    2014-12-18

    Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

  15. Menstrual Cycle

    Science.gov (United States)

    ... To receive General email updates Enter email Submit Menstrual Cycle The menstrual cycle is the hormonal process ... Preventing problems with your menstrual cycle View more Menstrual Cycle resources Related information Endometriosis Infertility Polycystic ovary ...

  16. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar

    2009-09-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years’ effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400°C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  17. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2015-06-15

    Phase I concludes with significant progress made towards the SunShot ELEMENTS goals of high energy density, high power density, and high temperature by virtue of a SrO/SrCO3 based material. A detailed exploration of sintering inhibitors has been conducted and relatively stable materials supported by YSZ or SrZO3 have been identified as the leading candidates. In 15 cycle runs using a 3 hour carbonation duration, several materials demonstrated energy densities of roughly 1500 MJ/m3 or greater. The peak power density for the most productive materials consistently exceeded 40 MW/m3—an order of magnitude greater than the SOPO milestone. The team currently has a material demonstrating nearly 1000 MJ/m3 after 100 abbreviated (1 hour carbonation) cycles. A subsequent 8 hour carbonation after the 100 cycle test exhibited over 1500 MJ/m3, which is evidence that the material still has capacity for high storage albeit with slower kinetics. Kinetic carbonation experiments have shown three distinct periods: induction, kinetically-controlled, and finally a diffusion-controlled period. In contrast to thermodynamic equilibrium prediction, higher carbonation temperatures lead to greater conversions over a 1 hour periods, as diffusion of CO2 is more rapid at higher temperatures. A polynomial expression was fit to describe the temperature dependence of the linear kinetically-controlled regime, which does not obey a traditional Arrhenius relationship. Temperature and CO2 partial pressure effects on the induction period were also investigated. The CO2 partial pressure has a strong effect on the reaction progress at high temperatures but is insignificant at temperatures under 900°C. Tomography data for porous SrO/SrCO3 structures at initial stage and after multiple carbonation/decomposition cycles have been obtained. Both 2D slices and 3D reconstructed representations have

  18. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  19. Hydrogen cycle employing calcium-bromine and electrolysis

    International Nuclear Information System (INIS)

    Doctor, R. D.; Marshall, C. L.; Wade, D. C.

    2002-01-01

    The Secure Transportable Autonomous Reactor (STAR) project is part of the U.S. Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) to develop Generation IV nuclear reactors that will supply high-temperature heat at over 800 C. The NERI project goal is to develop an economical, proliferation-resistant, sustainable, nuclear-based energy supply system based on a modular-sized fast reactor that is passively safe and cooled with heavy liquid metal. STAR consists of: (1) A combined thermochemical water-splitting cycle to generate hydrogen, (2) A steam turbine cycle to generate electricity, and (3) An optional capability to produce potable water from brackish or salt water. However, there has been limited reporting on critical elements of the thermochemical cycle: (1) establishing chemical reaction kinetics and operating pressures and (2) addressing materials issues for hydrogen production. This paper reviews the thermodynamic basis for a three-stage Calcium-Bromine water-splitting cycle based on the University of Tokyo Cycle No.3 [UT-3] and discusses the further chemistry work that is required to develop an economical process including modifying UT-3 to incorporate HBr dissociation

  20. Evaluation of chemical, thermobaric and thermochemical pre-treatment on anaerobic digestion of high-fat cattle slaughterhouse waste.

    Science.gov (United States)

    Harris, Peter W; Schmidt, Thomas; McCabe, Bernadette K

    2017-11-01

    This work aimed to enhance the anaerobic digestion of fat-rich dissolved air flotation (DAF) sludge through chemical, thermobaric, and thermochemical pre-treatment methods. Soluble chemical oxygen demand was enhanced from 16.3% in the control to 20.84% (thermobaric), 40.82% (chemical), and 50.7% (thermochemical). Pre-treatment altered volatile fatty acid concentration by -64% (thermobaric), 127% (chemical) and 228% (thermochemical). Early inhibition was reduced by 20% in the thermochemical group, and 100% in the thermobaric group. Specific methane production was enhanced by 3.28% (chemical), 8.32% (thermobaric), and 8.49% (thermochemical) as a result of pre-treatment. Under batch digestion, thermobaric pre-treatment demonstrated the greatest improvement in methane yield with respect to degree of pre-treatment applied. Thermobaric pre-treatment was also the most viable for implementation at slaughterhouses, with potential for heat-exchange to reduce pre-treatment cost. Further investigation into long-term impact of pre-treatments in semi-continuous digestion experiments will provide additional evaluation of appropriate pre-treatment options for high-fat slaughterhouse wastewater. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Overview of recent advances in thermo-chemical conversion of biomass

    International Nuclear Information System (INIS)

    Zhang Linghong; Xu Chunbao; Champagne, Pascale

    2010-01-01

    Energy from biomass, bioenergy, is a perspective source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Biomass can be combusted directly to generate heat and electricity, and by means of thermo-chemical and bio-chemical processes it can be converted into bio-fuels in the forms of solid (e.g., charcoal), liquid (e.g., bio-oils, methanol and ethanol), and gas (e.g., methane and hydrogen), which can be used further for heat and power generation. This paper provides an overview of the principles, reactions, and applications of four fundamental thermo-chemical processes (combustion, pyrolysis, gasification, and liquefaction) for bioenergy production, as well as recent developments in these technologies. Some advanced thermo-chemical processes, including co-firing/co-combustion of biomass with coal or natural gas, fast pyrolysis, plasma gasification and supercritical water gasification, are introduced. The advantages and disadvantages, potential for future applications and challenges of these processes are discussed. The co-firing of biomass and coal is the easiest and most economical approach for the generation of bioenergy on a large-sale. Fast pyrolysis has attracted attention as it is to date the only industrially available technology for the production of bio-oils. Plasma techniques, due to their high destruction and reduction efficiencies for any form of waste, have great application potential for hazardous waste treatment. Supercritical water gasification is a promising approach for hydrogen generation from biomass feedstocks, especially those with high moisture contents.

  2. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel

    Science.gov (United States)

    Piro, M. H. A.; Banfield, J.; Clarno, K. T.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2013-10-01

    Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)-1. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  3. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  4. Influence of steel composition and plastic deformation on the surface properties induced by low temperature thermochemical processing

    DEFF Research Database (Denmark)

    Bottoli, Federico

    products. The activities carried out encompass the study and the characterization of the following aspects: ‐ Influence of plastic deformation prior to the low-temperature thermochemical process ‐ Influence of initial phase composition on the properties and morphology of thenitrided/nitrocarburized surface......Low-temperature thermochemical surface hardening by nitriding, carburizing and nitrocarburizing is used to improve the performance of stainless steels with respect to wear, fatigue and corrosion resistance.The dissolution of nitrogen and/or carbon atoms in the materials surface leads...... with the improvement of these properties, the corrosion resistance of the stainless steel is fully maintained or even enhanced. Despite low-temperature thermochemical processing of austenitic stainless steels has been widely studied in literature, other stainless steel classes and the influence of steel´s initial...

  5. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2009-07-01

    Full Text Available A review was conducted on the use of thermochemical biomass gasification for producing biofuels, biopower and chemicals. The upstream processes for gasification are similar to other biomass processing methods. However, challenges remain in the gasification and downstream processing for viable commercial applications. The challenges with gasification are to understand the effects of operating conditions on gasification reactions for reliably predicting and optimizing the product compositions, and for obtaining maximal efficiencies. Product gases can be converted to biofuels and chemicals such as Fischer-Tropsch fuels, green gasoline, hydrogen, dimethyl ether, ethanol, methanol, and higher alcohols. Processes and challenges for these conversions are also summarized.

  6. PWR fuel physico chemistry. Improvements of the Sage code to compute thermochemical balance in PWR fuel

    International Nuclear Information System (INIS)

    Garcia, P.; Baron, D.; Piron, J.P.

    1993-02-01

    A physicochemical survey of high burnup fuel has been undertaken in the context of a 3-party action (CEA Cadarache - EDF/DER - FRAMATOME). One of the tasks involved consists in adapting the SAGE code for assessment of the thermochemical equilibria of fission products in solution in the fuel matrix. This paper describes the first stage of this task. Even if other improvements are planned, the oxid oxygen potentials are yet properly reproduced for the simulated burnup. (authors). 63 figs., 4 tabs., 41 refs

  7. Interest of thermochemical data bases linked to complex equilibria calculation codes for practical applications

    International Nuclear Information System (INIS)

    Cenerino, G.; Marbeuf, A.; Vahlas, C.

    1992-01-01

    Since 1974, Thermodata has been working on developing an Integrated Information System in Inorganic Chemistry. A major effort was carried on the thermochemical data assessment of both pure substances and multicomponent solution phases. The available data bases are connected to powerful calculation codes (GEMINI = Gibbs Energy Minimizer), which allow to determine the thermodynamical equilibrium state in multicomponent systems. The high interest of such an approach is illustrated by recent applications in as various fields as semi-conductors, chemical vapor deposition, hard alloys and nuclear safety. (author). 26 refs., 6 figs

  8. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  9. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Vincent, E-mail: vincent-jp.dubois@cea.fr; Pineau, Nicolas [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-01-07

    We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.

  10. Positron bound states on hydride ions in thermochemically reduced MgO single crystals

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1996-01-01

    Positron-lifetime and Doppler-broadening techniques were used to unambiguously identify positronium hydrides in thermochemically reduced MgO crystals at low temperatures. Positrons trapped at H - ions, forming PsH, yield a lifetime of (640±40) ps, independent of temperature. Complementary evidence for this identification was provided by Doppler-broadening experiments, in which positrons were trapped at H 2- sites at low temperatures. The H 2- ions were formed via H - +e - →H 2- by the capturing of an electron released from Fe + impurity under blue-light stimulation. copyright 1996 The American Physical Society

  11. US work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 deg. C

    International Nuclear Information System (INIS)

    Petri, M.C.; Yyldyz, B.; Klickman, A.E.

    2006-01-01

    Hydrogen demand is increasing, but there are few options for affordable hydrogen production free of greenhouse gas emissions. Nuclear power is one of the most promising options. Most research is focused on high-temperature electrolytic and thermochemical processes for nuclear-generated hydrogen, but it will be many years before very high temperature reactors become commercially available. For light water reactors or supercritical reactors, low-temperature water electrolysis is a currently available technology for hydrogen production. Higher efficiencies may be gained through thermo-electrochemical hydrogen production cycles, but there are only a limited number that have heat requirements consistent with the lower temperatures of light-water reactor technology. Indeed, active research is ongoing for only three such cycles in the USA. Reductions in electricity and system costs would be needed (or the imposition of a carbon tax) for low-temperature water electrolysis to compete with today's costs for steam methane reformation. The interactions between hydrogen and electricity markets and hydrogen and electricity producers are complex and will evolve as the markets evolve. (author)

  12. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  13. Sr- and Mn-doped LaAlO3-δ for solar thermochemical H2 and CO production

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Miller, Elizabeth C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arifin, Darwin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coker, Eric N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Hayre, Ryan [Colorado School of Mines, Golden, CO (United States). Metallurgical and Materials Engineering; Chueh, William C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Tong, Jianhua [Colorado School of Mines, Golden, CO (United States). Metallurgical and Materials Engineering

    2013-01-01

    The increasing global appetite for energy within the transportation sector will inevitably result in the combustion of more fossil fuel. A renewable-derived approach to carbon-neutral synthetic fuels is therefore needed to offset the negative impacts of this trend, which include climate change. In this communication we report the use of nonstoichiometric perovskite oxides in two-step, solar-thermochemical water or carbon dioxide splitting cycles. We find that LaAlO3 doped with Mn and Sr will efficiently split both gases. Moreover the H2 yields are 9× greater, and the CO yields 6× greater, than those produced by the current state-of-the-art material, ceria, when reduced at 1350 °C and re-oxidized at 1000 °C. The temperature at which O2 begins to evolve from the perovskite is fully 300 °C below that of ceria. The materials are also very robust, maintaining their redox activity over at least 80 CO2 splitting cycles. This discovery has profound implications for the development of concentrated solar fuel technologies.

  14. Thermochemical compatibility of ytterbia–(hafnia/silica) multilayers for environmental barrier coatings

    International Nuclear Information System (INIS)

    Poerschke, D.L.; Van Sluytman, J.S.; Wong, K.B.; Levi, C.G.

    2013-01-01

    Environmental barrier coating (EBC) systems consisting of multiple layers tailored to address individual protection needs may offer improved performance relative to conventional architectures. If the requirements of thermochemical and thermomechanical compatibility are met, the deposition of a segmented thermal barrier coating on a dense rare earth silicate EBC could provide additional thermal protection and resistance to attack by molten deposits. The thermochemical compatibility between silicates in the YbO 1.5 –SiO 2 system and phases in the YbO 1.5 –HfO 2 system was investigated by equilibrating powder compacts of selected ternary compositions; diffusion couples were used to simulate interactions at the layer interfaces in the proposed architectures. The deduced 1500 °C ternary isothermal section reveals that the ordered δ-Yb 4 Hf 3 O 12 and H 3 –Yb 6 HfO 11 phases are only compatible with ytterbium monosilicate (Yb 2 SiO 5 ) EBC. Implementation of these hafnates in contact with ytterbium disilicate (Yb 2 Si 2 O 7 ) leads to interfacial reactions that facilitate layer debonding. The results provide criteria to guide the design of future thermal/environmental barrier coating architectures

  15. Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide.

    Science.gov (United States)

    Cataldo, Franco

    2013-01-01

    Neat ethyl oleate was ozonized in a bubble reactor and the progress of the ozonolysis was followed by infrared (FT-IR) spectroscopy and by the differential scanning calorimetry (DSC). The ozonolysis was conducted till a molar ratio O3/C=C≈1 when the exothermal reaction spontaneously went to completion. A specific thermochemical calculation on ethyl oleate ozonation has been made to determine the theoretical heat of the ozonization reaction using the group increment approach. A linear relationship was found both in the integrated absorptivity of the ozonide infrared band at 1110 cm(-1) and the ozonolysis time as well as the thermal decomposition enthalpy of the ozonides and peroxides formed as a result of the ozonation. The DSC decomposition temperature of ozonated ethyl oleate occurs with an exothermal peak at about 150-155 °C with a decomposition enthalpy of 243.0 kJ/mol at molar ratio O3/C=C≈1. It is shown that the decomposition enthalpy of ozonized ethyl oleate is a constant value (≈243 kJ/mol) at any stage of the O3/C=C once an adequate normalization of the decomposition enthalpy for the amount of the adsorbed ozone is taken into consideration. The decomposition enthalpy of ozonized ethyl oleate was also calculated using a simplified thermochemical model, obtaining a result in reasonable agreement with the experimental value. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  17. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method.

    Science.gov (United States)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-13

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg(-1) Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  18. Uncertainty quantification of crustal scale thermo-chemical properties in Southeast Australia

    Science.gov (United States)

    Mather, B.; Moresi, L. N.; Rayner, P. J.

    2017-12-01

    The thermo-chemical properties of the crust are essential to understanding the mechanical and thermal state of the lithosphere. The uncertainties associated with these parameters are connected to the available geophysical observations and a priori information to constrain the objective function. Often, it is computationally efficient to reduce the parameter space by mapping large portions of the crust into lithologies that have assumed homogeneity. However, the boundaries of these lithologies are, in themselves, uncertain and should also be included in the inverse problem. We assimilate geological uncertainties from an a priori geological model of Southeast Australia with geophysical uncertainties from S-wave tomography and 174 heat flow observations within an adjoint inversion framework. This reduces the computational cost of inverting high dimensional probability spaces, compared to probabilistic inversion techniques that operate in the `forward' mode, but at the sacrifice of uncertainty and covariance information. We overcome this restriction using a sensitivity analysis, that perturbs our observations and a priori information within their probability distributions, to estimate the posterior uncertainty of thermo-chemical parameters in the crust.

  19. Study of the Effect of Molten Copper Chloride Immersion Test on Alloys with High Nickel Content with and without Surface Coatings

    Science.gov (United States)

    Siantar, Edwin

    The demand for hydrogen as a clean energy carrier has increased greatly. The Cu-Cl cycle is a promising thermochemical cycle that is currently being developed to be the large-scale method of hydrogen production. The lifetime of materials for the pipes transporting molten CuCl is an important parameter for an economic design of a commercial thermochemical Cu-Cl hydrogen plant. This research is an examination of candidate materials following an immersion test in molten CuCl at 500 °C for 100 h. Two alloys, Ni based super-alloy (Inconel 625) and super austenitic stainless steel (AL6XN) were selected as the base metal. There were two types of coating applied to improve the corrosion resistance of the base metals during molten CuCl exposure. A metallic of Diamalloy 4006 and two ceramic of yttria stabilized zirconia and alumina coatings were applied to the base metal using thermal spray methods. An immersion apparatus was designed and constructed to perform an immersion test that has a condition similar to those in a hydrogen plant. After the immersion test, the materials were evaluated using an electrochemical method in combination with ex-situ surface analysis. The surface condition including elemental composition, film structure and resistivity of the materials were examined and compared. The majority of the coatings were damaged and fell off. Cracks were found in the original coated specimens indicating the sample geometry may have affected the integrity of the sprayed coating. When the coating cracked, it provided a pathway for the molten CuCl to go under the coating and react with the surface underneath the coating. Copper deposits and iron chloride that were found on the sample surfaces suggest that there were corrosion reactions that involved the metal dissolution and reduction of copper during immersion test. The results also suggest that Inconel 625 performed better than stainless steel AL6XN. Both Diamalloy 4006 and YSZ (ZrO2 18TiO2 10Y2O3) coatings seemed to

  20. FY 1974 report on the results of the Sunshine Project. R and D of the hydrogen production technology by the thermochemical method; 1974 nendo netsukagakuho ni yoru suiso seizo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-28

    In relation to the R and D of the hydrogen production technology by the thermochemical method, the paper summed up the results of the research conducted in FY 1974. The items for study are as follows. (1) Basic model making for process simulator. (2) Type of facility on the assumption of pilot plant size, and rough selection of equipment structural materials. (3) Extraction of engineering study subjects and working-out of study plans. In (1), the basic model of simulator was established, case studies of various Fe-Cl cycles were made, and a calculation method for the balance of the whole process was established. In (2), it was concluded that in the normal pressure reaction experiment, the oxygen emits extremely little in amount in Mark 9 No. 2 reaction, and therefore, it is very doubtful whether the closed cycle will be completed using this reaction. It was also found out that No. 3 reaction is low in reaction completion degree and it is the problem in point of thermal economy. Accordingly, possibilities of reaction were reviewed, and 6 cycles were found as Fe-Cl cycle. For these reaction cycles, a process flow sheet was made. Comparative studies among processes were conducted, and the cycle structural elementary reaction in Fe-Cl process was specified. (NEDO)

  1. A 2D nickel-based energetic MOFs incorporating 3,5-diamino-1,2,4-triazole and malonic acid: Synthesis, crystal structure and thermochemical study

    International Nuclear Information System (INIS)

    Yang, Qi; Song, Xiaxia; Ge, Jing; Zhao, Guowei; Zhang, Wendou; Xie, Gang; Chen, Sanping; Gao, Shengli

    2016-01-01

    Highlights: • An energetic MOFs with dinuclear nickel unit has been synthesized and characterized. • The Arrhenius equation, derived from kinetics analysis, is ln k = 55.89 − 332.01 × 10 3 /RT. • The standard molar enthalpy of formation of the compound is determined by a thermochemical cycle. • The molar heat capacity at T = 298.15 K is determined to be 1.42 ± 0.11 J · K −1 · g −1 . - Abstract: A new energetic MOFs, {[Ni 2 (C 2 H 5 N 5 ) 2 (C 3 H 2 O 4 ) 2 (H 2 O)]·3H 2 O} n (Hdatrz (C 2 H 5 N 5 ) = 3,5-diamino-1,2,4-triazole, H 2 mal (C 3 H 4 O 4 ) = malonic acid), has been synthesized and characterized by element analysis, chemical analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analysis confirmed that the compound featured a 2D layer structure with dinuclear Ni(II) unit. Thermal analysis demonstrated that the compound after dehydration have good thermostability with decomposition temperature up to 633 K. The non-isothermal kinetics for the compound was studied by Kissinger’s and Ozawa’s methods. The Arrhenius equation of initial thermal decomposition process of compound can be expressed as ln k = 55.89 − 332.01 × 10 3 /RT. Furthermore, a reasonable thermochemical cycle was designed based on the preparation reaction of the compound, and standard molar enthalpy of dissolution of reactants and products were measured by RD496-2000 calorimeter. Finally, the standard molar enthalpy of formation of the compound was determined to be −(2766.3 ± 2.3) kJ · mol −1 in accordance with Hess’s law. In addition, the specific heat capacity of the compound at T = 298.15 K was determined to be 1.42 ± 0.11 J · K −1 · g −1 by RD496-2000 calorimeter.

  2. On the thermo-chemical origin of the stratified region at the top of the Earth's core

    Science.gov (United States)

    Nakagawa, Takashi

    2018-03-01

    I developed a combined model of the thermal and chemical evolution of the Earth's core and investigated its influence on a thermochemically stable region beneath the core-mantle boundary (CMB). The chemical effects of the growing stable region are caused by the equilibrium chemical reaction between silicate and the metallic core. The thermal effects can be characterized by the growth of the sub-isentropic shell, which may have a rapid growth rate compared to that of the chemically stable region. When the present-day CMB heat flow was varied, the origin of the stable region changed from chemical to thermochemical to purely thermal because the rapid growth of the sub-isentropic shell can replace the chemically stable region. Physically reasonable values of the present-day CMB heat flow that can maintain the geodynamo action over 4 billion years should be between 8 and 11 TW. To constrain the thickness of the thermochemically stable region beneath the CMB, the chemical diffusivity is important and should be ∼O(10-8) m2/s to obtain a thickness of the thermochemically stable region beneath the CMB consistent with that inferred from geomagnetic secular variations (140 km). However, the strength of the stable region found in this study is too high to be consistent with the constraint on the stability of the stable region inferred from geomagnetic secular variations.

  3. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  4. Radiation thermo-chemical models of protoplanetary discs - III. Impact of inner rims on spectral energy distributions

    NARCIS (Netherlands)

    Thi, W. -F.; Woitke, P.; Kamp, I.

    We study the hydrostatic density structure of the inner disc rim around Herbig Ae stars using the thermo-chemical hydrostatic code prodimo. We compare the spectral energy distributions (SEDs) and images from our hydrostatic disc models to that from prescribed density structure discs. The 2D

  5. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid.

    Science.gov (United States)

    Nam, Seong-Nam; Jeong, Seongkyeong; Lim, Hojoo

    2014-01-30

    In this study, we have investigated the feasibility of using a thermochemical technique on ∼17% chrysotile-containing roofing sheet or slate (ACS), in which 5N sulfuric acid-digestive destruction was incorporated with 10-24-h heating at 100°C. The X-ray diffraction (XRD) and the polarized light microscopy (PLM) results have clearly shown that raw chrysotile asbestos was converted to non-asbestiform material with no crystallinity by the low temperature thermochemical treatment. As an alternative to the use of pricey sulfuric acid, waste sulfuric acid discharged from a semiconductor manufacturing process was reused for the asbestos-fracturing purpose, and it was found that similar removals could be obtained under the same experimental conditions, promising the practical applicability of thermochemical treatment of ACWs. A thermodynamic understanding based on the extraction rates of magnesium and silica from a chrysotile structure has revealed that the destruction of chrysotile by acid-digestion is greatly influenced by the reaction temperatures, showing a 80.3-fold increase in the reaction rate by raising the temperature by 30-100°C. The overall destruction is dependent upon the breaking-up of the silicon-oxide layer - a rate-limiting step. This study is meaningful in showing that the low temperature thermochemical treatment is feasible as an ACW-treatment method. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Thermochemical properties

    International Nuclear Information System (INIS)

    Brewer, L.; Lamoreaux, R.H.; California Univ., Berkeley

    1980-01-01

    A critical review of thermodynamic properties of Mo-compounds is presented. Binary Mo-compounds, elemental Mo and binary Mo-alloys are considered. The thermodynamic properties include heat capacity enthalpy, gibbs free energy, entropy, vapor pressure, partial free energy of solution. Many values are given in the table form and some values are given in the text. The data used and the procedures applied to test the data are indicated in the text

  7. Materials development for thermochemical cycles: sulfuric acid vaporizer. Semiannual technical report, October 1, 1977--March 31, 1978

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1978-01-01

    Installation of a sulfuric acid corrosion test facility has been completed and is described. The facility is to be used for testing of potential materials for containment and heat exchange of a sulfuric acid vaporizer at temperatures up to 725 0 K and boiling pressures of >20 atm (2 MPa). Materials that are ready for test are Duriron, Durichlor 51, single crystal Si, hot-pressed Si 3 N 4 (Noralide NC-132), and hot-pressed SiC (Crystar HD-435), and tests are expected to get underway in April pending Hazards Control approval

  8. Energy system evaluation of thermo-chemical biofuel production : Process development by integration of power cycles and sustainable electricity

    OpenAIRE

    Bojler Görling, Martin

    2012-01-01

    Fossil fuels dominate the world energy supply today and the transport sector is no exception. Renewable alternatives must therefore be introduced to replace fossil fuels and their emissions, without sacrificing our standard of living. There is a good potential for biofuels but process improvements are essential, to ensure efficient use of a limited amount of biomass and better compete with fossil alternatives. The general aim of this research is therefore to investigate how to improve efficie...

  9. Global thermochemical imaging of the lithosphere using satellite and terrestrial observations

    Science.gov (United States)

    Fullea, Javier; Lebedev, Sergei; Martinec, Zdenek; Celli, Nicolas

    2017-04-01

    Conventional methods of seismic tomography, topography, gravity and electromagnetic data analysis and geodynamic modelling constrain distributions of seismic velocity, density, electrical conductivity, and viscosity at depth, all depending on temperature and composition of the rocks within the Earth. However, modelling and interpretation of multiple data sets provide a multifaceted image of the true thermochemical structure of the Earth that needs to be appropriately and consistently integrated. A simple combination of gravity, electromagnetic, geodynamics, petrological and seismic models alone is insufficient due to the non-uniqueness and different sensitivities of these models, and the internal consistency relationships that must connect all the intermediate parameters describing the Earth involved. Thermodynamic and petrological links between seismic velocities, density, electrical conductivity, viscosity, melt, water, temperature, pressure and composition within the Earth can now be modelled accurately using new methods of computational petrology and data from laboratory experiments. The growth of very large terrestrial and satellite (e.g., Swarm and GOCE ESA missions) geophysical data sets over the last few years, together with the advancement of petrological and geophysical modelling techniques, now present an opportunity for global, thermochemical and deformation 3D imaging of the lithosphere and underlying upper mantle with unprecedented resolution. This project combines state-of-the-art seismic waveform tomography (using both surface and body waves), newly available global gravity satellite data (geoid and gravity anomalies and new gradiometric measurements from ESA's GOCE mission) and surface heat flow and elevation within a self-consistent thermodynamic framework. The aim is to develop a method for detailed and robust global thermochemical image of the lithosphere and underlying upper mantle. In a preliminary study, we convert a state-of-the-art global

  10. Thermochemical Properties of Group IVB and VB Transition Metal Alloys with Platinum Group Metals: Acid - Stabilization.

    Science.gov (United States)

    Cima, Michael John

    Solid-state galvanic cell measurements and oxide equilibration experiments are used to derive thermochemical quantities for a variety of acid-base stabilized alloys such as Nb-Pd, Nb-Rh, Ti-Pd, and Ti-Rh. The experiments have effectively resulted in the titration of palladium by niobium metal. The excess partial molar Gibbs energy of niobium at infinite dilution was determined to be -62 kcal/mole at 1000^circ C and the Gibbs energy of formation of {rm NbPd}_{3.55} is -42 kcal/mole. These results and those for the other systems are used to assess the importance of crystal field effects in the context of the generalized Lewis acid-base theory.

  11. Thermo-economic evaluation and optimization of the thermo-chemical conversion of biomass into methanol

    International Nuclear Information System (INIS)

    Peduzzi, Emanuela; Tock, Laurence; Boissonnet, Guillaume; Maréchal, François

    2013-01-01

    In a carbon and resources constrained world, thermo-chemical conversion of lignocellulosic biomass into fuels and chemicals is regarded as a promising alternative to fossil resources derived products. Methanol is one potential product which can be used for the synthesis of various chemicals or as a fuel in fuel cells and internal combustion engines. This study focuses on the evaluation and optimization of the thermodynamic and economic performance of methanol production from biomass by applying process integration and optimization techniques. Results reveal the importance of the energy integration and in particular of the cogeneration of electricity for the efficient use of biomass. - Highlights: • A thermo-economic model for biomass conversion into methanol is developed. • Process integration and multi-objective optimization techniques are applied. • Results reveal the importance of energy integration for electricity co-generation

  12. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  13. A general model for techno-economic analysis of CSP plants with thermochemical energy storage systems

    Science.gov (United States)

    Peng, Xinyue; Maravelias, Christos T.; Root, Thatcher W.

    2017-06-01

    Thermochemical energy storage (TCES), with high energy density and wide operating temperature range, presents a potential solution for CSP plant energy storage. We develop a general optimization based process model for CSP plants employing a wide range of TCES systems which allows us to assess the plant economic feasibility and energy efficiency. The proposed model is applied to a 100 MW CSP plant employing ammonia or methane TCES systems. The methane TCES system with underground gas storage appears to be the most promising option, achieving a 14% LCOE reduction over the current two-tank molten-salt CSP plants. For general TCES systems, gas storage is identified as the main cost driver, while the main energy driver is the compressor electricity consumption. The impacts of separation and different reaction parameters are also analyzed. This study demonstrates that the realization of TCES systems for CSP plants is contingent upon low storage cost and a reversible reaction with proper reaction properties.

  14. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    Science.gov (United States)

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Onboard Hydrogen Generation for a Spark Ignition Engine via Thermochemical Recuperation

    Science.gov (United States)

    Silva, Isaac Alexander

    A method of exhaust heat recovery from a spark-ignition internal combustion engine was explored, utilizing a steam reforming thermochemical reactor to produce a hydrogen-rich effluent, which was then consumed in the engine. The effects of hydrogen in the combustion process have been studied extensively, and it has been shown that an extension of the lean stability limit is possible through hydrogen enrichment. The system efficiency and the extension of the operational range of an internal combustion engine were explored through the use of a methane fueled naturally aspirated single cylinder engine co-fueled with syngas produced with an on board methane steam reformer. It was demonstrated that an extension of the lean stability limit is possible using this system.

  16. The uranium-carbon and plutonium-carbon systems. A thermochemical assessment

    International Nuclear Information System (INIS)

    1963-01-01

    A fair amount of thermochemical data has been accumulated on the compounds in the uranium-carbon system. The main difficulties involved appear to be the sluggishness of the reaction of these carbides and the lack of information on the true equilibrium diagram. The information assessed in this report is accurate to, say ± 5 kcal on the average. This is in fact satisfactory for quite a number of calculations of equilibria involving uranium and carbon. It is not accurate enough for more ambitious calculations such as that of the equilibrium diagram. Present assessment has also made clear the gaps that still exist. It appears that it is mainly the non-stoichiometric parts of the diagram that need extensive further studies; this would also assist in increasing the accuracy of the known data. 66 refs, 6 figs, 15 tabs

  17. Thermochemical investigation into coordination ability of zinc and cadmium alkyl compounds in solutions

    International Nuclear Information System (INIS)

    Aleksandrov, Yu.A.; Fedostseva, G.A.; Tsvetkov, V.G.; Lebedev, S.A.; Kozyrkin, B.I.

    1983-01-01

    Enthalpies of zinc alkyl compounds mixing, as well as those of dimethyl cadmium mixing with hexane, previously used as a solvent during the study of liquid-phase autooxidation of Me 2 Cd and Me 2 Zn, and with a series of organic bases at 298 K and at components ratio 1:1 or 1:2, are determined. Using calorimetric method dimethyl cadmium association in liquid state has been evaluated. Coordination ability of zinc alkyl compounds is higher than for the corresponding cadmium compounds. With the increase of alkyl radical length the electron seeking ability of zinc compounds decreases. On the basis of thermochemical data relative stability of coordination compounds of zinc and cadmium alkyl compounds with certain alkyl compounds of group 6 elements is evaluated: it has the maximum value for sulfur compounds

  18. A Perspective on Thermochemical and Electrochemical Processes for Titanium Metal Production

    Science.gov (United States)

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Zheng, Shili; Xia, Yang; Free, Michael

    2017-10-01

    Titanium metal is produced commercially by the costly and energy-intensive Kroll process, which is highly matured and optimized. In the last several decades, many new methods have been proposed to reduce the production cost of Ti metal and thus widen its applications. These new methods can be categorized into two main groups: thermochemical and electrochemical methods. Even though detailed operations for different processes vary, the various processes in each category share the same principles. This article outlines the differences and the challenges between different processes on the basis of these shared principles, with an emphasis on the developmental processes. Although several of these new processes are at the laboratory or pilot-plant development stage, it is recognized that systematic fundamental research and open scientific exchanges are still sorely needed in this area to improve the new technologies.

  19. Design consideration on hydrogen production demonstration plant of thermochemical IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Sakaba, Nariaki; Onuki, Kaoru; Hino, Ryutaro

    2009-03-01

    Preliminary design study was carried out on the hydrogen production demonstration plant of thermochemical IS process. In the pilot test, hydrogen production will be examined under prototypical condition using an apparatus made of industrial materials, which is driven by the sensible heat of helium gas heated by an electric heater that simulates the High Temperature Engineering Test Reactor (HTTR). Tentative system condition was defined considering the HTTR specification and the experience on the construction and the operation of the mock-up test facility using methane reforming for hydrogen production. The process condition and the system flow diagram were discussed to meet the system condition. Based on the defined process condition, types of the main components were discussed taking the corrosion resistance of the structural materials into consideration. Applicable rules and regulations were also surveyed regarding the plant construction and operation. (author)

  20. Thermochemical study of 1-acetyl vinyl p-nitrobenzoate: vinyl bond enthalpy in captodative olefins.

    Science.gov (United States)

    Rojas, Aarón; Valdés-Ordoñez, Alejandro; Martínez-Herrera, Melchor; Torres, Luis Alfonso; Campos, Myriam; Hernández-Obregón, Javier; Herrera, Rafael; Tamariz, Joaquín

    2015-05-21

    Captodative olefins are highly reactive and selective substrates in Diels-Alder and 1,3-dipolar cycloadditions. Seeking an explanation of this fact based on molecular energetics, the thermochemical analysis of 1-acetyl vinyl p-nitrobenzoate, a captodative olefin, has been performed using semi-micro-combustion calorimetry, effusion measurements through a quartz crystal microbalance, and differential scanning calorimetry. The molar standard combustion energy and enthalpy as well as the molar standard formation enthalpy are reported along with sublimation and melting enthalpies. From these data, experimental formation enthalpy of the gas-phase is derived and compared with the theoretical value calculated through the density functional theory procedure. The olefinic bond enthalpy is also computed from experimental data, and the relevance of the results is discussed.

  1. Thermochemical, structural and electronic properties of amorphous oxides, nitrides and sulfides

    Science.gov (United States)

    Zawadzki, Pawel; Lany, Stephan

    2015-03-01

    Amorphous thin films materials become increasingly important components of many functional devices such as thin film displays, photovoltaic cells or thin film transistors. Due to lack of grain boundaries, they have superior uniformity and smoothest, flexibility and corrosion resistance. Amorphous thin films are typically prepared using physical vapor deposition (PVD) techniques at temperatures well below the melting point of deposited material (<0.2Tm). Computational models of amorphous structures, however, are almost elusively constructed from a high temperature equilibrated crystal melt using simulated annealing (SA) protocol. To account for low temperature growth conditions of amorphous thin films we recently developed a new simulation technique. The method, kinetically limited minimization (KLM), starts from a randomly initialized structure and minimizes the total energy in a number of local structural perturbation-relaxation events. We apply KLM to model amorphous structures of 20 binary oxides, nitrides and sulfides and compare their thermochemical, structural and electronic properties.

  2. Protons in neutron-irradiated and thermochemically reduced MgO crystals doped with lithium impurities

    International Nuclear Information System (INIS)

    Gonzalez, R.; Pareja, R.; Chen, Y.

    1992-01-01

    H - (hydride) ions have been observed in lithium-doped MgO crystals which have been neutron irradiated or thermochemically reduced (TCR). Infrared-absorption measurements have been used to identify the local modes of the H - ions in these crystals. The concentration of the H - ions in the neutron-irradiated crystals is found to be far less than that found in the TCR crystals. The thermal stability of H - and oxygen vacancies in both oxidizing and reducing atmospheres are investigated. The emergence of sharp structures due to OH - ions is attributed to the displacements of substitutional Li + ions, leaving behind unperturbed OH - ions, via a mechanism of rapid radiation-induced diffusion during irradiation in a reactor. Results of neutron-irradiated MgO:Li, which had previously been oxidized at high temperature, are also presented

  3. Systems for storage and retrieval of thermochemical data and calculation of phase diagrams

    International Nuclear Information System (INIS)

    Kaufman, L.; Nesor, H.

    1976-01-01

    The systems developed by National Physical Laboratory and ManLabs have been coupled to provide a Metallurgical Thermochemical Data Bank for storage and retrieval of data and calculation of binary and ternary phase diagrams. Approximately two thousand sets for pure elements and compounds are stored providing thermodynamic functions and differences for specific reactions in numerical form. Vapor pressure data for gaseous products and solubility data for gases in metals and dilute alloys covering the Henrian range can be retrieved. Similar data for dilute solutions of metals in pure metals and binary alloys is also accessible. The system can also be used to compute all of the forty-five binary systems composed of the metals iron, chromium, nickel, cobalt, aluminum, niobium, molybdenum, titanium, carbon, and tungsten. This facility is available through explicit descriptions of solution and compound phases generated in terms of lattice stability, solution and compound phase parameter which are employed to calculate the phase diagrams and thermochemical properties of the binary systems. The system can be used for calculation of the one hundred twenty possible ternary systems composed of these metals over a wide range of temperature. The system operates on data supplied by the user so that other inorganic, ceramic, and metallic combinations can be considered. The ManLabs-NPL MATERIALS DATABANK is accessible via TSO (time sharing option) through standard teletype terminals which can be connected into the main computer by telephone anywhere in the U. S. and Canada. Users can employ almost any commercial terminal to gain access to the system and interact with the DATABANK

  4. Nutrient digestion and performance by lambs and steers fed thermochemically treated crop residues.

    Science.gov (United States)

    Sewell, J R; Berger, L L; Nash, T G; Cecava, M J; Doane, P H; Dunn, J L; Dyer, M K; Pyatt, N A

    2009-03-01

    Five studies were conducted to determine nutrient digestibility and performance of lambs and steers fed thermochemically treated crop residues and distillers dried grains with solubles (DDGS) as a corn replacement pellet (CRP; 75% residue:25% DDGS, DM basis). Fifteen Hampshire, Suffolk, or Dorset wethers (BW 33.3 +/- 5.0 kg) were utilized to evaluate nutrient digestibility of the unprocessed native (NAT) and CRP [Exp. 1: wheat straw (WS); Exp. 2: corn stover (CS); Exp. 3: switchgrass (SWG) and corn fiber:wheat chaff (CFWC)] when limit fed (Exp. 1 and 2: 1.8% of BW daily; Exp. 3: 2.5% of BW daily) compared with a 60% corn diet. In Exp. 4, 56 individually fed Dorset-cross wether lambs (BW 32.0 +/- 1.4 kg) were utilized to compare performance and digestibility of WS, wheat chaff (WC), corn fiber (CF), a 3:1 blend of corn fiber:wheat straw (CFWS), a 3:1 blend of CFWC, and SWG-CRP fed for ad libitum intake compared with a 45% corn diet. In Exp. 5, 32 individually fed Holstein steers (BW 185.2 +/- 0.9 kg) were used to evaluate performance and digestibility of diets containing corn, WS-CRP, CFWC-CRP, or NAT-WS fed for ad libitum intake. Crop residues were processed with 5% calcium oxide (DM basis) and 35% water in a double-shaft enclosed mixer (Readco Kurimoto Continuous Processor, York, PA) and subsequently pelleted with DDGS to form CRP. Feeding lambs WS-CRP (Exp. 1) or CS-CRP (Exp. 2) increased digestion of DM, NDF, and ADF compared with NAT (P crop residues are thermochemically processed. Processed crop residues may be fed in combination with DDGS to partially replace corn in ruminant diets.

  5. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  6. In vitro thermal profile suitability assessment of acids and bases for thermochemical ablation: underlying principles.

    Science.gov (United States)

    Freeman, Laura A; Anwer, Bilal; Brady, Ryan P; Smith, Benjamin C; Edelman, Theresa L; Misselt, Andrew J; Cressman, Erik N K

    2010-03-01

    To measure and compare temperature changes in a recently developed gel phantom for thermochemical ablation as a function of reagent strength and concentration with several acids and bases. Aliquots (0.5-1 mL) of hydrochloric acid or acetic acid and sodium hydroxide or aqueous ammonia were injected for 5 seconds into a hydrophobic gel phantom. Stepwise increments in concentration were used to survey the temperature changes caused by these reactions. Injections were performed in triplicate, measured with a thermocouple probe, and plotted as functions of concentration and time. Maximum temperatures were reached almost immediately in all cases, reaching 75 degrees C-110 degrees C at the higher concentrations. The highest temperatures were seen with hydrochloric acid and either base. More concentrated solutions of sodium hydroxide tended to mix incompletely, such that experiments at 9 M and higher were difficult to perform consistently. Higher concentrations for any reagent resulted in higher temperatures. Stronger acid and base combinations resulted in higher temperatures versus weak acid and base combinations at the same concentration. Maximum temperatures obtained are in a range known to cause tissue coagulation, and all combinations tested therefore appeared suitable for further investigation in thermochemical ablation. Because of the loss of the reaction chamber shape at higher concentrations of stronger agents, the phantom does not allow complete characterization under these circumstances. Adequate mixing of reagents to maximize heating potential and avoid systemic exposure to unreacted acid and base must be addressed if the method is to be safely employed in tissues. In addition, understanding factors that control lesion shape in a more realistic tissue model will be critical. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  7. Research and development on chemical reactors made of industrial structural materials and hydriodic acid concentration technique for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Kubo, Shinji; Iwatsuki, Jin; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Onuki, Kaoru

    2015-10-01

    Japan Atomic Energy Agency has been conducting a study on IS process for thermochemical hydrogen production in order to develop massive hydrogen production technology for hydrogen society. Integrity of the chemical reactors and concentration technology of hydrogen iodide in HIx solution were studied. In the former study, the chemical reactors were trial-fabricated using industrial materials. A test of 30 times of thermal cycle test under circulating condition of the Bunsen reaction solution showed integrity of the Bunsen reactor made of fluororesin lined steel. Also, 100 hours of reaction tests showed integrity of the sulfuric acid decomposer made of silicon carbide and of the hydrogen iodide decomposer made of Hastelloy C-276. In the latter study, concerning electro-electrodialysis using cation-exchange membrane, sulfuric acid in the anolyte had little influence on the concentration performance. These results suggest the purification system of HIx solution can be simplified. Based on the Nernst-Planck equation and the Smoluchowski equation, proton transport number, water permeance, and IR drop of the cation exchange membrane were formulated. The derived equations enable quantitative estimation for the performance indexes of Nafion ® membrane and, also, of ETFE-St membranes made by radiation-induced graft polymerization method. (author)

  8. Thermochemical transformations in the twelve-salt six-component reciprocal system Na,K,Ca,Ba//F,SO4,WO4

    International Nuclear Information System (INIS)

    Gryzlova, E.S.; Kozyreva, N.A.

    2008-01-01

    Thermochemical characterization of the twelve-salt system Na,K,Ca,Ba//F,SO 4 ,WO 4 (a 4//3 system) and the four nine-salt five-component reciprocal subsystems is presented. A comparison of thermochemical relationships is carried out for these nine-salt systems, and the internal structural thermochemical transformations of exchange-reaction stages between all these systems are considered. The effect of a reaction stage on the final product yield is considered for sample chemical reactions. The thermochemical structure of basal tetrahedra of the singular star in the twelve-salt system is studied, and relationships are derived between various models of the system (salt-node indices in the matrix, reaction stages, geometrical figures) and chemical processes that occur in the system. These relationships can be used in experimental design [ru

  9. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi.

    Science.gov (United States)

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2011-09-28

    The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.

  10. Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth.

    Science.gov (United States)

    Yeo, Junyeob; Kim, Gunho; Hong, Sukjoon; Lee, Jinhwan; Kwon, Jinhyeong; Lee, Habeom; Park, Heeseung; Manoroktul, Wanit; Lee, Ming-Tsang; Lee, Bong Jae; Grigoropoulos, Costas P; Ko, Seung Hwan

    2014-12-29

    A single nanowire resistive nano-heater (RNH) is fabricated, and it is demonstrated that the RNH can induce highly localized temperature fields, which can trigger highly localized thermo-chemical reactions to grow hierarchical nanowires directly at the desired specific spot such as ZnO nanowire branch growth on a single Ag nanowire. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermodynamic comparison of two processes of hydrogen production: steam methane reforming-A solar thermochemical process

    International Nuclear Information System (INIS)

    Gomri, Rabah; Boumaza, Mourad

    2006-01-01

    Hydrogen is mainly employed like primary product, for the synthesis of ammonia. The ammonia is synthesized by chemically combining hydrogen and nitrogen under pressure, in the presence of a catalyst. This ammonia is used, for the production of the nitrate fertilizers. Nowadays hydrogen gains more attention mainly because, it is regarded as a future significant fuel by much of experts. The widespread use of hydrogen as source of energy could help to reduce the concern concerning the safety of energy, the total change of climate and the quality of air. Hydrogen is presented then as an excellent alternate initially and as substitute thereafter. It can play a role even more significant than conventional energies. Indeed, it has the advantage of being nonpolluting and it can use the same means of transport as conventional energies. For Algeria, it proves of importance capital. It not only makes it possible to increase and diversify its energy reserves and its exports but also to provide for its energy needs which become increasingly significant. Although hydrogen can be produced starting from a large variety of resources using a range of various technologies, the natural gas is generally preferred and will remain in the near future the principal primary product for the manufacture of hydrogen. Currently the most effective means of production of hydrogen is the Steam Reforming of Natural Gas (SMR). This process is seen as a one of principal technologies for the production of hydrogen. The disadvantages of this process it's that it consumes a great quantity of primary energy and that it releases in the atmosphere the gases that contribute to the warming of the plane. Among the alternatives processes of hydrogen production one can quote solar thermochemical processes. In this study, an exergetic analysis of the process of hydrogen production based on Zn/ZnO redox reactions is presented. In the first part of this study, an exergetic analysis is made for a temperature of the

  12. Multiscale modeling and experimental interpretation of perovskite oxide materials in thermochemical energy storage and conversion for application in concentrating solar power

    Science.gov (United States)

    Albrecht, Kevin J.

    Decarbonization of the electric grid is fundamentally limited by the intermittency of renewable resources such as wind and solar. Therefore, energy storage will play a significant role in the future of grid-scale energy generation to overcome the intermittency issues. For this reason, concentrating solar power (CSP) plants have been a renewable energy generation technology of interest due to their ability to participate in cost effective and efficient thermal energy storage. However, the ability to dynamically dispatch a CSP plant to meet energy demands is currently limited by the large quantities of sensible thermal energy storage material needed in a molten salt plant. Perovskite oxides have been suggested as a thermochemical energy storage material to enhance the energy storage capabilities of particle-based CSP plants, which combine sensible and chemical modes of energy storage. In this dissertation, computational models are used to establish the thermochemical energy storage potential of select perovskite compositions, identify system configurations that promote high values of energy storage and solar-to-electric efficiency, assess the kinetic and transport limitation of the chemical mode of energy storage, and create receiver and reoxidation reactor models capable of aiding in component design. A methodology for determining perovskite thermochemical energy storage potential is developed based on point defect models to represent perovskite non-stoichiometry as a function of temperature and gas phase oxygen partial pressure. The thermodynamic parameters necessary for the model are extracted from non-stoichiometry measurements by fitting the model using an optimization routine. The procedure is demonstrated for Ca0.9Sr0.1MnO 3-d which displayed combined energy storage values of 705.7 kJ/kg -1 by cycling between 773 K and 0.21 bar oxygen to 1173 K and 10 -4 bar oxygen. Thermodynamic system-level models capable of exploiting perovskite redox chemistry for energy

  13. Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment

    International Nuclear Information System (INIS)

    Vautard, F.; Ozcan, S.; Paulauskas, F.; Spruiell, J.E.; Meyer, H.; Lance, M.J.

    2012-01-01

    Highlights: ► Continuous thermo-chemical surface treatment used to functionalize different types of carbon fibers. ► Surface density of functional groups directly correlated to the size of the surface microstructure. ► Preferential creation of hydroxyls and carboxylic acids confirmed regardless of the type of carbon fiber. ► Effective surface treatment regardless of the fiber surface microstructure. ► Potential alternative to electro-chemical surface treatment. - Abstract: Carbon fibers made of textile and aerospace grade polyacrylonitrile precursor fibers were surface treated by a continuous gas phase thermochemical treatment. The surface chemistry generated by the surface treatment was characterized by X-ray photoelectron spectroscopy. The surface and the average entire microstructure of the fibers were characterized by Raman spectroscopy and X-ray diffraction, respectively. Depending on the grade of the precursor, the final surface concentration of oxygen was comprised between 14% and 24%, whereas the typical commercial electrochemical surface treatments led to concentrations of around 8% with the same fibers. The final concentration of oxygen was directly correlated to the size of the crystallites which was a function of the grade of the polyacrylonitrile precursor and to the corresponding surface microstructure. The thermochemical surface treatment enabled a better control of the nature of the oxygen-containing functionalities as well. Whatever the grade of the precursor, desired hydroxyl groups and carboxylic acid functionalities were preferably generated, which is observed to be difficult with electrochemical surface treatments.

  14. Evaluation of the performance of MP4-based procedures for a wide range of thermochemical and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Li-Juan; Wan, Wenchao; Karton, Amir, E-mail: amir.karton@uwa.edu.au

    2016-11-30

    We evaluate the performance of standard and modified MPn procedures for a wide set of thermochemical and kinetic properties, including atomization energies, structural isomerization energies, conformational energies, and reaction barrier heights. The reference data are obtained at the CCSD(T)/CBS level by means of the Wn thermochemical protocols. We find that none of the MPn-based procedures show acceptable performance for the challenging W4-11 and BH76 databases. For the other thermochemical/kinetic databases, the MP2.5 and MP3.5 procedures provide the most attractive accuracy-to-computational cost ratios. The MP2.5 procedure results in a weighted-total-root-mean-square deviation (WTRMSD) of 3.4 kJ/mol, whilst the computationally more expensive MP3.5 procedure results in a WTRMSD of 1.9 kJ/mol (the same WTRMSD obtained for the CCSD(T) method in conjunction with a triple-zeta basis set). We also assess the performance of the computationally economical CCSD(T)/CBS(MP2) method, which provides the best overall performance for all the considered databases, including W4-11 and BH76.

  15. Thermochemical micro imprinting of single-crystal diamond surface using a nickel mold under high-pressure conditions

    International Nuclear Information System (INIS)

    Imoto, Yuji; Yan, Jiwang

    2017-01-01

    Graphical abstract: A Ni mold and thermochemically imprinted microstructures on diamond. - Highlights: • A thermochemical method for micro machining/patterning of diamond is proposed. • Various kinds of microstructures were imprinted on diamond using a Ni mold. • A graphite layer is formed during imprinting which can be removed by acid. • The processing depth depends strongly on pressure and temperature. - Abstract: Single-crystal diamond is an important material for cutting tools, micro electro mechanical systems, optical devices, and semiconductor substrates. However, the techniques for producing microstructures on diamond surface with high efficiency and accuracy have not been established. This paper proposes a thermochemical imprinting method for transferring microstructures from a nickel (Ni) mold onto single-crystal diamond surface. The Ni mold was micro-structured by a nanoindenter and then pressed against the diamond surface under high temperature and pressure in argon atmosphere. Results show that microstructures on the Ni mold were successfully transferred onto the diamond surface, and their depth increased with both pressure and temperature. Laser micro-Raman spectroscopy, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses indicate that a graphite layer was formed over the contact area between diamond and Ni during pressing, and after washing by a mixed acid, the graphite layer could be completely removed. This study demonstrated the feasibility of a cost-efficient fabrication method for large-area microstructures on single-crystal diamond.

  16. Thermochemical properties of some alkaline-earth silicates and zirconates. Fission product behaviour during molten core-concrete interactions

    International Nuclear Information System (INIS)

    Huntelaar, M.E.

    1996-01-01

    This thesis aims to make a contribution to a better understanding of the chemical processes occurring during an ex-vessel MCCI accident with a western-type of nuclear reactor. Chosen is for a detailed thermochemical study of the silicates and zirconates of barium and strontium. In Chapter one a short introduction in the history of (research in) nuclear safety is given, followed by the state-of-the-art of molten core-concrete interactions in Chapter two. In both Chapters the role of chemical thermodynamics on this particular subject is dealt with. The experimental work on the silicates and zirconates of barium and strontium performed for this thesis, is described in the Chapters three, four, five, six, and parts of eight. In Chapter three the basis for all thermochemical measurements, the sample preparation is given. Because the sample preparation effects the accuracy of the thermodynamic measurements, a great deal of effort is spent in optimizing the synthesis of the silicates which resulted in the TEOS-method widely employed here. In the next Chapters the different thermochemical techniques used, are described: The low-temperature heat capacity measurements and the enthalpy increment measurements in Chapter four, the enthalpy-of-solution measurements in Chapter five, and measurements to determine the crystal structures in Chapter six. (orig.)

  17. Thermochemical properties of some alkaline-earth silicates and zirconates. Fission product behaviour during molten core-concrete interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huntelaar, M.E.

    1996-06-19

    This thesis aims to make a contribution to a better understanding of the chemical processes occurring during an ex-vessel MCCI accident with a western-type of nuclear reactor. Chosen is for a detailed thermochemical study of the silicates and zirconates of barium and strontium. In Chapter one a short introduction in the history of (research in) nuclear safety is given, followed by the state-of-the-art of molten core-concrete interactions in Chapter two. In both Chapters the role of chemical thermodynamics on this particular subject is dealt with. The experimental work on the silicates and zirconates of barium and strontium performed for this thesis, is described in the Chapters three, four, five, six, and parts of eight. In Chapter three the basis for all thermochemical measurements, the sample preparation is given. Because the sample preparation effects the accuracy of the thermodynamic measurements, a great deal of effort is spent in optimizing the synthesis of the silicates which resulted in the TEOS-method widely employed here. In the next Chapters the different thermochemical techniques used, are described: The low-temperature heat capacity measurements and the enthalpy increment measurements in Chapter four, the enthalpy-of-solution measurements in Chapter five, and measurements to determine the crystal structures in Chapter six. (orig.).

  18. Thermochemical conversion of Phellinus pomaceus via supercritical fluid extraction and pyrolysis processes

    International Nuclear Information System (INIS)

    Durak, Halil

    2015-01-01

    Highlights: • Phellinus pomaceus were converted to liquid and gas products. • Supercritical fluid extraction and pyrolysis processes were used in this research. • 60, 72 and 90 different types of compounds were identified by GC–MS. - Abstract: Thermochemical conversion processes such as supercritical fluid extraction and pyrolysis are used for producing biofuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250–400 °C temperature range under high pressure (4–5 MPa). Pyrolysis method is the process of decomposition of the organic materials with heat in the inert atmosphere or vacuum nature between high temperatures (350–800 °C). Two thermochemical processes, supercritical fluid extraction and slow pyrolysis, were used to produce bio-oils and biochars from Phellinus pomaceus. Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 270 and 290 °C. Pyrolysis experiments were performed in a fixed-bed tubular reactor without and with same catalysts used in liquefaction at the temperatures of 400, 500 and 600 °C with constant heating rate (40 °C/min). The effects of process variables including temperature and catalyst on product yields were investigated. Product yields and composition of bio-oils were evaluated and compared for supercritical fluid extraction and pyrolysis. The produced liquids at 290 °C in supercritical liquefaction and at 500 °C in pyrolysis were analyzed and characterized by elemental, GC–MS and FT-IR. 60 and 72 different types of compounds that were identified by GC–MS obtained in acetone and ethanol respectively whereas pyrolysis liquids had 90 different types of compounds. Bio-oils from supercritical liquefaction

  19. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  20. Are the lessons of the techno-economic studies on the sulphur-iodine cycle applicable to the other cycles?

    International Nuclear Information System (INIS)

    Werkoff, F.; Mansilla, C.

    2007-01-01

    Further advances in nuclear energy system design can broaden the opportunities for the use of nuclear energy. To explore these opportunities, several countries are involved in a forum on the development of next generation nuclear energy systems known as 'Generation IV'. Six concepts have been chosen by the forum, to be studied. The Very High Temperature Reactor (VHTR) offers perspectives for producing electricity and hydrogen with high efficiencies. Nuclear production of hydrogen by thermochemical means is one of the prime candidates for powering the hydrogen economy without producing green house gases. Among them, the Sulphur-Iodine (S-I) thermochemical cycle appeared well fitted with the VHTR, due to the temperature needed for the decomposition of the sulphuric acid. It was invented in the 1970's and it benefits from a revival of interest in the framework of Generation IV. In the last past years, assessments of the S-I process, coupled with a VHTR have been carried out. It appeared that these assessments have to be considered, looking with a particular care to the recommendations of the Generation IV crosscutting economics group [1]: a Generation IV system will: 1. Have a clear life-cost advantage over other energy systems. 2. Have a level of financial risk comparable to other energy projects. The experience gained from techno-economic studies [2, 3] which consider the S-I cycle, indicates that the choice of alternatives cycles to the S-I one must be driven by the characteristic of a previously selected nuclear reactor, mainly the temperature at the nuclear core outlet. Moreover, the net efficiency of the thermochemical cycle must be higher than a reference value defined from the alkaline electrolysis fed by the electricity produced from the selected reactor. Besides, the technical feasibility of the thermochemical processes is not yet established and the production cost of hydrogen from these processes is the result of the sum of several cost factors which are

  1. Phosphorus cycle - possibilities for its rebuilding.

    Science.gov (United States)

    Gorazda, Katarzyna; Wzorek, Zbigniew; Tarko, Barbara; Nowak, Anna K; Kulczycka, Joanna; Henclik, Anna

    2013-01-01

    The rebuilding of the phosphorus cycle can be performed with the use of both biotechnology and chemical technology. This paper presents a review of the phosphorus cycle and the different approaches that can be taken to the recovery of phosphorus from phosphate-rich waste. Critical issues in the phosphorus cycle are also discussed. Methods for the recovery of phosphorus form sewage sludge ash are widely explored and divided into two groups: wet extraction methods and thermochemical methods. Laboratory-scale methods are described, as well as proposed industrial technologies, with particular regard to the possibilities for their implementation in Poland. Phosphorus recovery methods from SSA (sewage sludge ash) in our country seems to be promising due to the increasing number of sewage sludge incineration plants, which could easily supply ash to future recovery installations. For the effective recovery of P from sewage sludge ash, it is essential to make the right choice in determining the appropriate method to use with respect to the particular properties of the ash composition available. A patented method of phosphorus recovery by acid extraction methods, developed by Cracow University of Technology, results in an efficiency of 80-96% for phosphorus recovery. 3000 to 4000 tons of phosphorus per year can be recycled and introduced back into the environment, that covers around 7% of the total amount of phosphorus ore imported into Poland between 2008 and 2009.

  2. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  3. Development of hydraulic analysis code for optimizing thermo-chemical is process reactors

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Hino, Ryutaro; Hirayama, Toshio; Nakajima, Norihiro; Sugiyama, Hitoshi

    2007-01-01

    The Japan Atomic Energy Agency has been conducting study on thermochemical IS process for water splitting hydrogen production. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h, is being designed conceptually as the next step of the IS process development. In design of the IS pilot plant, it is important to make chemical reactors compact with high performance from the viewpoint of plant cost reduction. A new hydraulic analytical code has been developed for optimizing mixing performance of multi-phase flow involving chemical reactions especially in the Bunsen reactor. Complex flow pattern with gas-liquid chemical interaction involving flow instability will be characterized in the Bunsen reactor. Preliminary analytical results obtained with above mentioned code, especially flow patterns induced by swirling flow agreed well with that measured by water experiments, which showed vortex breakdown pattern in a simplified Bunsen reactor. (author)

  4. Thermochemical Conversion of Sugarcane Bagasse into Bio-Crude Oils by Fluidized-Bed Pyrolysis Technology

    Science.gov (United States)

    Islam, Mohammad Rofiqul; Haniu, Hiroyuki; Islam, Mohammad Nurul; Uddin, Md. Shazib

    Thermochemical conversion of sugarcane bagasse into bio-crude oils by fluidized-bed reactor has been taken into consideration in this study. The bagasse in particle form was pyrolyzed in an externally heated 7cm diameter and 37.5cm high fluidized-bed reactor with nitrogen as a carrier gas. The reactor chamber and gas-preheater were heated by means of a renewable energy biomass source cylindrical heater. At a reactor bed temperature of 450°C for a feed particle size of 420-600µm and at a gas flow rate of 30 l/min, an oil yield of 48wt% of dry feed was obtained. The pyrolysis process temperature was found to have influenced on the product yields. Characterization of the whole pyrolysis liquids obtained at optimum operating conditions has been carried out including physical properties, elemental analyses, GCV, FT-IR, and 1H NMR analysis. The results show that pyrolysis of sugarcane bagasse waste is a good option for producing bio-crude oils to be used as alternative to petroleum fuels and valuable chemical feedstocks.

  5. Thermochemical Properties of Hydrophilic Polymers from Cashew and Khaya Exudates and Their Implications on Drug Delivery

    Science.gov (United States)

    Bhatia, Partap G.; Tytler, Babajide A.; Adikwu, Michael U.

    2016-01-01

    Characterization of a polymer is essential for determining its suitability for a particular purpose. Thermochemical properties of cashew gum (CSG) extracted from exudates of Anacardium occidentale L. and khaya gum (KYG) extracted from exudates of Khaya senegalensis were determined and compared with those of acacia gum BP (ACG). The polymers were subjected to different thermal and chemical analyses. Exudates of CSG contained higher amount of hydrophilic polymer. The pH of 2% w/v gum dispersions was in the order KYG < CSG < ACG. Calcium was the predominant ion in CSG while potassium was predominant in KYG. The FTIR spectra of CSG and KYG were similar and slightly different from that of ACG. Acacia and khaya gums exhibited the same thermal behaviour which is different from that of CSG. X-ray diffraction revealed that the three gums are the same type of polymer, the major difference being the concentration of metal ions. This work suggests the application of cashew gum for formulation of basic and oxidizable drugs while using khaya gum for acidic drugs. PMID:27990303

  6. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    Science.gov (United States)

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  7. Study of thermochemical nonequilibrium flow in the radiative shock layer of the simulated atmosphere of Titan

    International Nuclear Information System (INIS)

    Koffi-Kpante, Kossi

    1996-01-01

    Inviscid flow of the N 2 -CH 4 -Ar gas mixture in thermochemical nonequilibrium has been studied. We have specially modelled the thermal and the chemical processes, such as vibrational excitation, dissociation, ionization and radiation which can occur in the hypersonic flows. Different vibrational models are tested and the effects of kinetic-vibration coupling modeling are studied on the flow-field properties. Therefore, the intensity of spontaneous emission of CN molecule from B 2 Σ + → X 2 Σ + electronic transition of the violet band, where Δν = 0 is computed. So, comparison is made between experimental and numerical results on: 1) The spontaneous emission of CN, 2) the rotational temperature of CN B state and 3) the vibrational temperature of CN B state. Because of the profiles of the measured intensity and the disagreement between numerical results and measurements, especially on the spontaneous emission and in the thermodynamic size, the inviscid flow and the unsteady boundary layer interaction study is made. Last, the thermal and the chemical processes models described in the first part of this thesis are used to compute the inviscid nonequilibrium flow around the Huygens probe. The equations system has been solved with a finite volume method, in with the fluxes have been split with Van-Leer methods. (author) [fr

  8. Thermochemical hydrogen sensor based on Pt-coated nanofiber catalyst deposited on pyramidally textured thermoelectric film

    Science.gov (United States)

    Kim, Seil; Song, Yoseb; Lee, Young-In; Choa, Yong-Ho

    2017-09-01

    The hydrogen gas-sensing performance has been systemically investigated of a new type of thermochemical hydrogen (TCH) sensor, composed of pyramidally textured thermoelectric (TE) film and catalytic Pt-coated nanofibers (NFs) deposited over the TE film. The TE film was composed of stoichiometric Bi2Te3, synthesized by means of cost-effective electrochemical deposition onto a textured silicon wafer. The resulting pyramidally textured TE film played a critical role in maximizing hydrogen gas flow around the overlying Pt NFs, which were synthesized by means of electrospinning followed by sputtering and acted as a heating catalyst. The optimal temperature increase of the Pt NFs was determined by means of optimizations of the electrospinning and sputtering durations. The output voltage signal of the optimized TCH sensor based on Pt NFs was 17.5 times higher than that of a Pt thin film coated directly onto the pyramidal TE material by using the same sputtering duration, under the fixed conditions of 3 vol% H2 in air at room temperature. This observation can be explained by the increased surface area of (111) planes accessible on the Pt-coated NFs. The best response time and recovery time observed for the optimized TCH sensor based on Pt-coated NFs were respectively 17 and 2 s under the same conditions. We believe that this type of TCH sensor can be widely used for supersensitive hydrogen gas detection by employing small-size Pt NFs and various chalcogenide thin films with high thermoelectric performance.

  9. Thermochemical data acquisition: technical progress report, 1 January - 30 June 1990

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Newland, M.S.; Ogden, J.S.; Potter, P.E.

    1990-07-01

    Thermochemical data are being determined for a number of compounds of fission products and reactor materials. The compounds selected for this experimental study were chosen where thermodynamic data did not exist or were inadequate, based on the assessment and recommendations of a specialists' meeting. The vaporisation behaviour of indium telluride, indium (III) iodide, caesium molybdate, cadmium iodide and a caesium-cadmium-iodine ternary salt have been studied by mass spectrometry and matrix isolation-infrared spectroscopy. The resulting vapour species have been identified, and thermodynamic quantities have been calculated for the following molecules: In 2 Te, In 2 I 6 , InI 3 , InI and Cs 2 MoO 4 . The vaporisation behaviour of Ag-In-Cd control rod alloy has been studied by simultaneous differential thermal analysis and thermogravimetry; observations are consistent with theoretical predictions for the non-ideal Ag-In system. Critical assessment of the cadmium-hydrogen-iodine-oxygen system have also begun. (author)

  10. Thermochemical Stability and Friction Properties of Soft Organosilica Networks for Solid Lubrication

    Directory of Open Access Journals (Sweden)

    Pablo Gonzalez Rodriguez

    2018-01-01

    Full Text Available In view of their possible application as high temperature solid lubricants, the tribological and thermochemical properties of several organosilica networks were investigated over a range of temperatures between 25 and 580 °C. Organosilica networks, obtained from monomers with terminal and bridging organic groups, were synthesized by a sol-gel process. The influence of carbon content, crosslink density, rotational freedom of incorporated hydrocarbon groups, and network connectivity on the high temperature friction properties of the polymer was studied for condensed materials from silicon alkoxide precursors with terminating organic groups, i.e., methyltrimethoxysilane, propyltrimethoxysilane, diisopropyldimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane and 4-biphenylyltriethoxysilane networks, as well as precursors with organic bridging groups between Si centers, i.e., 1,4-bis(triethoxysilylbenzene and 4,4′-bis(triethoxysilyl-1,1′-biphenyl. Pin-on-disc measurements were performed using all selected solid lubricants. It was found that materials obtained from phenyltrimethoxysilane and cyclohexyltrimethoxysilane precursors showed softening above 120 °C and performed best in terms of friction reduction, reaching friction coefficients as low as 0.01. This value is lower than that of graphite films (0.050 ± 0.005, a common bench mark for solid lubricants.

  11. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  12. Thermochemical plots using JCZS2i piece-wise curve fits.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David L.; Schoof, Justin C.; Hobbs, Michael L.

    2013-10-01

    This report presents plots of specific heat, enthalpy, entropy, and Gibbs free energy for 1439 species in the JCZS2i database. Included in this set of species are 496 condensed-phase species and 943 gas-phase species. The gas phase species contain 80 anions and 112 cations for a total of 192 ions. The JCZS2i database is used in conjunction with the TIGER thermochemical code to predict thermodynamic states from ambient conditions to high temperatures and pressures. Predictions from the TIGER code using the JCZS2i database can be used in shock physics codes where temperatures may be as high as 20,000 K and ions may be present. Such high temperatures were not considered in the original JCZS database, and extrapolations made for these temperatures were unrealistic. For example, specific heat would sometimes go negative at high temperatures which fails the definition of specific heat. The JCZS2i database is a new version of the JCZS database that is being created to address these inaccuracies. The purpose of the current report is to visualize the high temperature extrapolations to insure that the specific heat, enthalpy, entropy, and Gibbs free energy predictions are reasonable up to 20,000 K.

  13. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Directory of Open Access Journals (Sweden)

    Mendu Venugopal

    2011-10-01

    Full Text Available Abstract Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.

  14. Economics and synergies of electrolytic and thermochemical methods of environmentally benign hydrogen production

    International Nuclear Information System (INIS)

    Naterer, G.F.

    2010-01-01

    Most of the world's hydrogen (about 97%) is currently derived from fossil fuels. For reduction of greenhouse gases, improvement of urban air quality, and energy security, among other reasons, carbon-free sources of hydrogen production are crucial to hydrogen becoming a significant energy carrier. Nuclear hydrogen production is a promising carbon-free alternative for large-scale, low-cost production of hydrogen in the future. Two nuclear technologies, applied in tandem, have a promising potential to generate hydrogen economically without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles and economics of producing hydrogen, from a Canadian perspective. Together they can serve a unique potential for both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Hydrogen production has a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming). (orig.)

  15. Improved persistent luminescence of CaTiO3:Pr by fluorine substitution and thermochemical treatment

    International Nuclear Information System (INIS)

    Yoon, Songhak; Otal, Eugenio H.; Maegli, Alexandra E.; Karvonen, Lassi; Matam, Santhosh K.; Ebbinghaus, Stefan G.; Walfort, Bernhard; Hagemann, Hans; Pokrant, Simone; Weidenkaff, Anke

    2014-01-01

    Highlights: • Synthesis of fluorine-substituted CaTiO 3 :Pr phosphors. • Rietveld refinement of CaTi(O,F) 3 :Pr phosphors. • Afterglow intensity improvement of ca. 450% compared to CaTiO 3 :Pr. - Abstract: Fluorine-substituted CaTiO 3 :Pr phosphors were prepared by a solid-state reaction. Rietveld refinements of powder X-ray diffraction patterns revealed that increasing fluorine-substitution leads to the gradual shrinkage of the unit-cell. Enhanced afterglow intensities were observed with fluorine-substitution. Furthermore, the effect of annealing atmosphere was investigated by thermochemical treatment in different atmospheres (Ar, air and NH 3 ). UV–Vis diffuse reflectance spectra and photoluminescence excitation spectra revealed that Pr 4+ in the pristine CaTi(O,F) 3 :Pr phosphor was partially reduced to Pr 3+ under NH 3 flow leading to an intensity improvement of ca. 450% compared to CaTiO 3 :Pr. The substantial improvement of afterglow intensity by fluorine substitution and annealing in NH 3 is considered to be connected with the generation of oxygen vacancies and the partial reduction of Pr 4+ to Pr 3+

  16. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zulfiqar; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Butt, Faheem K.; Tahir, Muhammad; Tanveer, M.; Aslam, Imran; Rizwan, Muhammad; Idrees, Faryal; Khalid, Syed [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Butt, Sajid [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-11-15

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximately of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.

  17. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    Science.gov (United States)

    Meshoulam, Alexander; Ellis, Geoffrey S.; Ahmad, Ward Said; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Liu, Jinzhong; Gilhooly, William P.; Aizenshtat, Zeev; Amrani, Alon

    2016-01-01

    The sulfur isotopic fractionation associated with the formation of organic sulfur compounds (OSCs) during thermochemical sulfate reduction (TSR) was studied using gold-tube pyrolysis experiments to simulate TSR. The reactants used included n-hexadecane (n-C16) as a model organic compound with sulfate, sulfite, or elemental sulfur as the sulfur source. At the end of each experiment, the S-isotopic composition and concentration of remaining sulfate, H2S, benzothiophene, dibenzothiophene, and 2-phenylthiophene (PT) were measured. The observed S-isotopic fractionations between sulfate and BT, DBT, and H2S in experimental simulations of TSR correlate well with a multi-stage model of the overall TSR process. Large kinetic isotope fractionations occur during the first, uncatalyzed stage of TSR, 12.4‰ for H2S and as much as 22.2‰ for BT. The fractionations decrease as the H2S concentration increases and the reaction enters the second, catalyzed stage. Once all of the oxidizable hydrocarbons have been consumed, sulfate reduction ceases and equilibrium partitioning then dictates the fractionation between H2S and sulfate (∼17‰).

  18. Thermochemical measurements and assessment of the phase diagrams in the system Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Boudene, A.; Mohammad, A.

    1996-01-01

    The aim of this project was to provide a self-consistent set of Gibbs energy data for all phases in the system Y-Ba-Cu-O. Experimental thermochemical investigations by differential thermal analysis (DTA), thermogravimetry (TG), electromotive force measurements (EMF), oxygen coulometric titration (OCT), drop and solution calorimetry, and conventional phase analysis (annealing, quenching, and X-ray diffraction [XRD]) as well as ab initio calculations of interaction energies for the 123 phase have been carried out. The experimental information (phase equilibria, heat capacity, enthalpies of formation, oxygen partial pressures, and so forth) has been used in computer-based assessments of the Gibbs energies. These data have been employed to generate phase diagrams by way of equilibrium computations. All binary and ternary subsystems have been fully assessed. For the quaternary system a dataset covering the subsolidus range has been derived. Applications of the data to practical questions, such as the production of 123 superconductors by an MOCVD process, the producibility of metallic precursors, and the oxidation of a copper-enriched stoichiometric oxide precursor, are demonstrated

  19. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment.

    Science.gov (United States)

    Havukainen, Jouni; Nguyen, Mai Thanh; Hermann, Ludwig; Horttanainen, Mika; Mikkilä, Mirja; Deviatkin, Ivan; Linnanen, Lassi

    2016-03-01

    All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  1. Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Gyeong; Hur, Bo-Young; Lee, Dong-Geun; Lee, Yong-Tai; Yaskiv, O.

    2011-01-01

    The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to 100um. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

  2. Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body

    Science.gov (United States)

    Golabek, G. J.; Emsenhuber, A.; Jutzi, M.; Asphaug, E. I.; Gerya, T. V.

    2018-02-01

    Giant impacts have been suggested to explain various characteristics of terrestrial planets and their moons. However, so far in most models only the immediate effects of the collisions have been considered, while the long-term interior evolution of the impacted planets was not studied. Here we present a new approach, combining 3-D shock physics collision calculations with 3-D thermochemical interior evolution models. We apply the combined methods to a demonstration example of a giant impact on a Mars-sized body, using typical collisional parameters from previous studies. While the material parameters (equation of state, rheology model) used in the impact simulations can have some effect on the long-term evolution, we find that the impact angle is the most crucial parameter for the resulting spatial distribution of the newly formed crust. The results indicate that a dichotomous crustal pattern can form after a head-on collision, while this is not the case when considering a more likely grazing collision. Our results underline that end-to-end 3-D calculations of the entire process are required to study in the future the effects of large-scale impacts on the evolution of planetary interiors.

  3. Visualizing Lignin Coalescence and Migration Through Maize Cell Walls Following Thermochemical Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Donohoe, B. S.; Decker, S. R.; Tucker, M. P.; Himmel, M. E.; Vinzant, T. B.

    2008-12-01

    Plant cell walls are composed primarily of cellulose, hemicelluloses, lignins, and pectins. Of these components, lignins exhibit unique chemistry and physiological functions. Although lignins can be used as a product feedstock or as a fuel, lignins are also generally seen as a barrier to efficient enzymatic breakdown of biomass to sugars. Indeed, many pretreatment strategies focus on removing a significant fraction of lignin from biomass to better enable saccharification. In order to better understand the fate of biomass lignins that remain with the solids following dilute acid pretreatment, we undertook a structural investigation to track lignins on and in biomass cell walls. SEM and TEM imaging revealed a range of droplet morphologies that appear on and within cell walls of pretreated biomass; as well as the specific ultrastructural regions that accumulate the droplets. These droplets were shown to contain lignin by FTIR, NMR, antibody labeling, and cytochemical staining. We provide evidence supporting the idea that thermochemical pretreatments reaching temperatures above the range for lignin phase transition cause lignins to coalesce into larger molten bodies that migrate within and out of the cell wall, and can redeposit on the surface of plant cell walls. This decompartmentalization and relocalization of lignins is likely to be at least as important as lignin removal in the quest to improve the digestibility of biomass for sugars and fuels production.

  4. Numerical investigations of the aperture size effect for maintaining a constant temperature in a novel sulfur-ammonia water splitting cycle application

    Directory of Open Access Journals (Sweden)

    Sarwar Jawad

    2017-01-01

    Full Text Available Solar-driven thermochemical water splitting cycle is a promising, energy efficient and environmentally friendly approach to produce hydrogen. In this paper, numerical work has been undertaken using a cylindrical solar receiver to investigate fixed and variable aperture sizes to maintain constant steady-state temperature over a day for thermochemical part of a novel hybrid photo-thermochemical sulfur-ammonia cycle. A previously developed and validated optical model in commercial software, TracePro® is used to simulate the light sources of 10, 15, and 28 kW. The sunlight intensity variations for the designated reference day for this study is selected as July 1, 2011, at 39.74 N, 105.18 W and at an elevation of 1829 m. A developed and validated finite volume based coupled Monte Carlo, Heat Transfer model is used to calculate the steady-state temperatures in the receiver by utilizing the output of the optical model. The simulations are performed at different aperture diameters from 2 to 14 cm to quantify the effect of fixed aperture size on the steady-state temperatures of the receiver. Furthermore, simulations to maintain steady-state temperatures of 673, 823, and 1123 K for different sub-cycles of the selected cycle via variable aperture has been performed and compared with selected fixed apertures. It is found that the variable apertures can maintain desired constant temperatures over the day for each thermochemical sub-cycle. The comparison of overall power consumption and savings for fixed and variable apertures has also been investigated and reported.

  5. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    Science.gov (United States)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  6. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces.

    Science.gov (United States)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B; Bedeaux, Dick

    2016-04-20

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager's reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  7. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces

    Science.gov (United States)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick

    2016-04-01

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  8. Evaluation of the Relative Merits of Herbaceous and Woody Crops for Use in Tunable Thermochemical Processing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon-Hyun [Ceres, Inc., Thousand Oaks, CA (United States); Martinalbo, Ilya [Choren USA, LLC, Houston, TX (United States)

    2011-12-01

    This report summarizes the work and findings of the grant work conducted from January 2009 until September 2011 under the collaboration between Ceres, Inc. and Choren USA, LLC. This DOE-funded project involves a head-to-head comparison of two types of dedicated energy crops in the context of a commercial gasification conversion process. The main goal of the project was to gain a better understanding of the differences in feedstock composition between herbaceous and woody species, and how these differences may impact a commercial gasification process. In this work, switchgrass was employed as a model herbaceous energy crop, and willow as a model short-rotation woody crop. Both crops are species native to the U.S. with significant potential to contribute to U.S. goals for renewable liquid fuel production, as outlined in the DOE Billion Ton Update (http://www1.eere.energy.gov/biomass/billion_ton_update.html, 2011). In some areas of the U.S., switching between woody and herbaceous feedstocks or blending of the two may be necessary to keep a large-scale gasifier operating near capacity year round. Based on laboratory tests and process simulations it has been successfully shown that suitable high yielding switchgrass and willow varieties exist that meet the feedstock specifications for large scale entrained flow biomass gasification. This data provides the foundation for better understanding how to use both materials in thermochemical processes. It has been shown that both switchgrass and willow varieties have comparable ranges of higher heating value, BTU content and indistinguishable hydrogen/carbon ratios. Benefits of switchgrass, and other herbaceous feedstocks, include its low moisture content, which reduce energy inputs and costs for drying feedstock. Compared to the typical feedstock currently being used in the Carbo-V® process, switchgrass has a higher ash content, combined with a lower ash melting temperature. Whether or not this may cause inefficiencies in the

  9. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  10. Microstructure and phase morphology during thermochemical processing of {alpha}{sub 2}-based titanium aluminide castings

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, M. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering; Apgar, L.S. [Dayton Univ., OH (United States). Graduate Materials Engineering; Eylon, D. [Dayton Univ., OH (United States). Graduate Materials Engineering; Weiss, I. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering

    1995-12-31

    Changes in the microstructure, volume fraction and distribution of phases during different stages of thermochemical processing of Ti-25Al-10Nb-3V-1Mo (at.%) castings were investigated. Up to 14.5 at.% (0.35 wt.%) of hydrogen was introduced into the material by gas charging at temperatures between 650 and 980 C for times up to 20 h. The material was subsequently dehydrogenated by vacuum annealing at 650 C for 48 h. Investment cast Ti-25Al-10Nb-3V-1Mo alloy, hot isostatically pressed (HIP) at 1175 C at 260 MPa for 6 h, was used as the starting material. The microstructure of the as-HIP material consists of {alpha}{sub 2}, B2 and orthorhombic phases. The {alpha}{sub 2} phase exists in equiaxed, Widmanstaeten and cellular morphologies. The B2 phase is observed mainly along {alpha}{sub 2}/{alpha}{sub 2} boundaries. Some {alpha}{sub 2} Widmanstaeten also contain very fine orthorhombic phase in a plate-like morphology. Hydrogenation of the material modified the microstructure; however, the morphology of the {alpha}{sub 2} and B2 phases did not change. Furthermore, hydride precipitation and a higher volume fraction of the orthorhombic phase were observed compared with the as-HIP material. Following dehydrogenation, the hydrogen level in the material was found to be less than 0.1 at.% (0.0025wt.%). Transmission electron microscopy of the dehydrogenated material did not reveal the presence of hydride precipitates; however, the high volume fraction of the orthorhombic phase was found to persist following dehydrogenation. (orig.)

  11. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments

    Science.gov (United States)

    Zhang, T.; Ellis, G.S.; Walters, C.C.; Kelemen, S.R.; Wang, K.-s.; Tang, Y.

    2008-01-01

    A series of gold tube hydrous pyrolysis experiments was conducted in order to investigate the effect of thermochemical sulfate reduction (TSR) on gas generation, residual saturated hydrocarbon compositional alteration, and solid pyrobitumen formation. The intensity of TSR significantly depends on the H2O/MgSO4 mole ratio, the smaller the ratio, the stronger the oxidizing conditions. Under highly oxidizing conditions (MgSO4/hydrocarbon wt/wt 20/1 and hydrocarbon/H2O wt/wt 1/1), large amounts of H2S and CO2 are generated indicating that hydrocarbon oxidation coupled with sulfate reduction is the dominant reaction. Starting with a mixture of C21-C35 n-alkanes, these hydrocarbons are consumed totally at temperatures below the onset of hydrocarbon thermal cracking in the absence of TSR (400 ??C). Moreover, once the longer chain length hydrocarbons are oxidized, secondarily formed hydrocarbons, even methane, are oxidized to CO2. Using whole crude oils as the starting reactants, the TSR reaction dramatically lowers the stability of hydrocarbons leading to increases in gas dryness and gas/oil ratio. While their concentrations decrease, the relative distributions of n-alkanes do not change appreciably from the original composition, and consequently, are non-diagnostic for TSR. However, distinct molecular changes related to TSR are observed, Pr/n-C17 and Ph/n-C18 ratios decrease at a faster rate under TSR compared to thermal chemical alteration (TCA) alone. TSR promotes aromatization and the incorporation of sulfur and oxygen into hydrocarbons leading to a decrease in the saturate to aromatic ratio in the residual oil and in the generation of sulfur and oxygen rich pyrobitumen. These experimental findings could provide useful geochemical signatures to identify TSR in settings where TSR has occurred in natural systems. ?? 2008 Elsevier Ltd. All rights reserved.

  12. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions

    International Nuclear Information System (INIS)

    Xie, Mengxing; Chen, Wei; Xu, Zhaoyi; Zheng, Shourong; Zhu, Dongqiang

    2014-01-01

    The main objective of this study was to understand the key factors and mechanisms controlling adsorption of sulfonamides to biochars. Batch adsorption experiments were performed for sulfamethoxazole and sulfapyridine to three pine-wood biochars prepared under different thermochemical conditions: pyrolysis at 400 °C (C400) and 500 °C (C500), and pyrolysis at 500 °C followed with hydrogenation (C500-H). For both sulfonamides, the adsorbent surface area-normalized adsorption was stronger to C500 than to C400. This is attributable to the enhanced π–π electron-donor–acceptor interaction with the carbon surface of C500 due to the higher degree of graphitization. Despite the relatively large difference in surface O-functionality content between C500 (12.2%) and C500-H (6.6%), the two biochars exhibited nearly identical adsorbent surface area-normalized adsorption, indicating negligible role of surface O-functionalities in the adsorption to these adsorbents. Effects of solution chemistry conditions (pH, Cu 2+ , and dissolved soil humic acid) on adsorption were examined. -- Highlights: • Adsorption to biochars is dominated by π–π electron-donor–acceptor (EDA) interaction. • Graphitic surfaces of biochars are predominant adsorption sites. • Surface O-functionalities of biochars play minor roles in adsorption. • Adsorption affinities are markedly affected by Cu ions and humic acids. -- Adsorption of sulfonamides to biochars is dominated by π–π electron-donor–acceptor (EDA) interaction with the graphitic surface

  13. Experiments on fragmentation and thermo-chemical exchanges during planetary core formation

    Science.gov (United States)

    Wacheul, Jean-Baptiste; Le Bars, Michael

    2018-03-01

    The initial thermo-chemical state of telluric planets was largely controlled by mixing following the collision of differentiated proto-planets. Up to now, most models of planet formation simply assume that the iron core of the impactors immediately broke up to form an "iron rain" within a large-scale magma ocean, leading to the rapid equilibration of the whole metal with the whole mantle. Only recent studies have focused on resolving the fluid mechanics of the problem, with the aim to define more relevant diffusion-advection models of thermal and chemical exchanges within and between the two fluids. Furthermore, the influence of the viscosity ratio on this dynamical process is generally neglected, whilst it is known to play a role in the breakup of the initial iron diapirs and in the shape of the resulting droplets. Here we report the results of analog laboratory experiments matching the dynamical regime of the geophysical configuration. High speed video recording allows us to describe and characterize the fluid dynamics of the system, and temperature measurements allow us to quantify the diffusive exchanges integrated during the fall of the liquid metal. We find that the early representation of this flow as an iron rain is far from the experimental results. The equilibration coefficient at a given depth depends both on the initial size of the metal diapir and on the viscosity of the ambient fluid, whereas the falling speed is only controlled by the initial size. Various scalings for the diffusive exchanges coming from the literature are tested. We find good agreement with the turbulent thermal model developed by Deguen et al. (2014).

  14. Thermochemical Fragment Energy Method for Biomolecules: Application to a Collagen Model Peptide.

    Science.gov (United States)

    Suárez, Ernesto; Díaz, Natalia; Suárez, Dimas

    2009-06-09

    Herein, we first review different methodologies that have been proposed for computing the quantum mechanical (QM) energy and other molecular properties of large systems through a linear combination of subsystem (fragment) energies, which can be computed using conventional QM packages. Particularly, we emphasize the similarities among the different methods that can be considered as variants of the multibody expansion technique. Nevertheless, on the basis of thermochemical arguments, we propose yet another variant of the fragment energy methods, which could be useful for, and readily applicable to, biomolecules using either QM or hybrid quantum mechanical/molecular mechanics methods. The proposed computational scheme is applied to investigate the stability of a triple-helical collagen model peptide. To better address the actual applicability of the fragment QM method and to properly compare with experimental data, we compute average energies by carrying out single-point fragment QM calculations on structures generated by a classical molecular dynamics simulation. The QM calculations are done using a density functional level of theory combined with an implicit solvent model. Other free-energy terms such as attractive dispersion interactions or thermal contributions are included using molecular mechanics. The importance of correcting both the intermolecular and intramolecular basis set superposition error (BSSE) in the QM calculations is also discussed in detail. On the basis of the favorable comparison of our fragment-based energies with experimental data and former theoretical results, we conclude that the fragment QM energy strategy could be an interesting addition to the multimethod toolbox for biomolecular simulations in order to investigate those situations (e.g., interactions with metal clusters) that are beyond the range of applicability of common molecular mechanics methods.

  15. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  16. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexi...

  17. CYCLE CONTROL

    African Journals Online (AJOL)

    changed to gestodene. Although large- scale comparative trials are needed to confirm this finding, evidence suggests that cycle control with gestodene is better than for monophasic preparations containing desogestrel, norgestimate or levonorgestrel,10 as well as for levonorg- estrel-or norethisterone-containing triphasics.

  18. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  19. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  20. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.

    Science.gov (United States)

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S

    2014-07-21

    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.

  1. Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Harry; Kozlov, Aleksandr

    2014-03-31

    Gas Technology Institute (GTI) evaluated the technical and economic feasibility of utilizing a non-catalytic ThermoChemical Recuperation System (TCRS) to recover a significant amount of energy from the waste gases of natural gas fired steel reheat furnaces. The project was related to DOE-AMO’s (formerly known as ITP) one of the technical areas of interest: Technologies to improve energy efficiency and reduce the carbon footprint of equipment currently used in energy-intensive industries such as iron and steel, and reduce by at least 30% energy consumption and carbon dioxide emission compared to the conventional technologies. ThermoChemical Recuperation (TCR) is a technique that recovers sensible heat in the exhaust gas from an industrial process, furnace, engine etc., when a hydrocarbon fuel is used for combustion. TCR enables waste heat recovery by both combustion air preheat and hydrocarbon fuel (natural gas, for example) reforming into a higher calorific fuel. The reforming process uses hot flue gas components (H2O and CO2) or steam to convert the fuel into a combustible mixture of hydrogen (H2), carbon monoxide (CO), and some unreformed hydrocarbons (CnHm). Reforming of natural gas with recycled exhaust gas or steam can significantly reduce fuel consumption, CO2 emissions and cost as well as increase process thermal efficiency. The calorific content of the fuel can be increased by up to ~28% with the TCR process if the original source fuel is natural gas. In addition, the fuel is preheated during the TCR process adding sensible heat to the fuel. The Research and Development work by GTI was proposed to be carried out in three Phases (Project Objectives). • Phase I: Develop a feasibility study consisting of a benefits-derived economic evaluation of a ThermoChemical Recuperation (TCR) concept with respect to high temperature reheat furnace applications within the steel industry (and cross-cutting industries). This will establish the design parameters and

  2. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    International Nuclear Information System (INIS)

    Clausen, Lasse R.

    2015-01-01

    In a “conventional” thermochemical biorefinery, carbon is emitted from the plant in the form of CO 2 to make the synthesis gas from the gasifier suitable for fuel production. The alternative to this carbon removal is to add hydrogen to the plant. By adding hydrogen, it is possible to more than double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to the biorefinery and also the oxygen for the gasifier. This paper presents the design and thermodynamic analysis of two biorefineries integrating water electrolysis for the production of methanol. In both plants, torrefied woody biomass is supplied to an entrained flow gasifier, but in one of the plants, the torrefaction process occurs on-site, as it is integrated with the entrained flow gasification process. The analysis shows that the biorefinery with integrated torrefaction has a higher biomass to methanol energy ratio (136% vs. 101%) as well as higher total energy efficiency (62% vs. 56%). By comparing with two identical biorefineries without electrolysis, it is concluded that the biorefinery with integrated torrefaction benefits most from the integration of electrolysis. - Highlights: • Two thermochemical biorefineries are designed and analyzed by thermodynamic modeling. • Integration of water electrolysis in a thermochemical biorefinery is investigated. • Biomass to biofuel energy efficiencies of 101–136% are achieved. • Biomass + net electricity to biofuel energy efficiencies of 56–62% are achieved. • The pros and cons of integrated torrefaction and electrolysis are described

  3. See Also:physica status solidi (a)physica status solidi (c)Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGet Sample CopyFree Online Trial -->Recommend to Your LibrarianSave Title to My ProfileSet E-Mail Alert language="javascript">var homepagelinks = new Array(new Array("Journal Home","/cgi-bin/jhome/40001185",""),new Array("Issues","/cgi-bin/jtoc/40001185/",""),new Array("Early View","/cgi-bin/jeview/40001185/",""),new Array("News","/cgi-bin/jabout/40001185/news/index.html",""),new Array("Reviews","/cgi-bin/jabout/40001185/reviews.html",""),new Array("Read Cover Story","/cgi-bin/jabout/40001185/cover/2232/current.html","e"),new Array("","","s"),new Array("Product Information","/cgi-bin/jabout/40001185/2232_info.html",""),new Array("Editorial Board","/cgi-bin/jabout/40001185/edbd.html",""),new Array("For Authors","/cgi-bin/jabout/40001185/authors.html",""),new Array("For Referees","/cgi-bin/jabout/40001185/refserv.html",""),new Array("Subscribe","http://jws-edcv.wiley.com/jcatalog/JournalsCatalogOrder/JournalOrder?PRINT_ISSN=0370-1972",""),new Array("Contact","/cgi-bin/jabout/40001185/contact.html",""),new Array("Online Submission","http://www.manuscriptxpress.org/osm/",""),new Array("","","x"));writeJournalLinks("", "40001185"); Previous Issue | Next Issue >Volume 241, Issue12 (October 2004)Articles in the Current Issue:Rapid Research NoteDielectric and optical studies of phase transitions in [(CH3)2NH2]5Cd2CuCl11 crystal

    Science.gov (United States)

    Elyashevskyy, Yu.; Dacko, S.; Kosturek, B.; Czapla, Z.; Kapustyanik, V. B.

    2004-10-01

    Single crystals of [(CH3)2 NH2]5Cd2CuCl11 have been grown and their dielectric and optical properties have been studied. Electric permittivity, losses and linear optic birefringence measurements have shown that the obtained new crystal is isomorphous with the original one - [(CH3)2 NH2]5Cd3Cl11. Phase transitions were observed at 175 K (continuous) and 120 K (first order). It means that partial replacing of cadmium atoms by copper ones does not change the structure and the heavy Cd2CuCl11-2 anions do not influence significantly the interaction of dimethylammonium cations.

  4. Theoretical study of the thermochemical properties of gaseous iodine compounds: incidences in atmospheric chemistry and nuclear safety

    International Nuclear Information System (INIS)

    Louis, F.; Fortin, C.; Cornet, M.; Khanniche, S.; Skoviera, J.; Cantrel, L.; Cernusak, I.

    2015-07-01

    Thermochemical properties (ΔfH 0 298K , S 0 298K et C p = f(T)) have been determined for a series of gaseous iodine-containing compounds by using quantum chemistry tools. Different levels of theory have been employed in this work in order to predict geometrical parameters and the energetics including spin-orbit coupling. The use of the B3LYP functional for the geometry optimization followed by a calculation of the total electronic energies using the Dual Level method allows to her standard enthalpies of formation at 298 K in good agreement with the available literature data. (authors)

  5. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    OpenAIRE

    Clausen, Lasse Røngaard

    2015-01-01

    In a "conventional" thermochemical biorefinery, carbon is emitted from the plant in the form of CO2 to make the synthesis gas from the gasifier suitable for fuel production. The alternative to this carbon removal is to add hydrogen to the plant. By adding hydrogen, it is possible to more than double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to ...

  6. Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Howard [Advanced Cooling Technologies, Inc, Lancaster, PA (United States); Chen, Chien-Hua [Advanced Cooling Technologies, Inc, Lancaster, PA (United States)

    2014-08-27

    The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements in this program.

  7. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  8. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I.

    Science.gov (United States)

    Keshavarz, Mohammad Hossein; Motamedoshariati, Hadi; Moghayadnia, Reza; Nazari, Hamid Reza; Azarniamehraban, Jamshid

    2009-12-30

    In this paper a new simple user-friendly computer code, in Visual Basic, has been introduced to evaluate detonation performance of high explosives and their thermochemical properties. The code is based on recently developed methods to obtain thermochemical and performance parameters of energetic materials, which can complement the computer outputs of the other thermodynamic chemical equilibrium codes. It can predict various important properties of high explosive including velocity of detonation, detonation pressure, heat of detonation, detonation temperature, Gurney velocity, adiabatic exponent and specific impulse of high explosives. It can also predict detonation performance of aluminized explosives that can have non-ideal behaviors. This code has been validated with well-known and standard explosives and compared the predicted results, where the predictions of desired properties were possible, with outputs of some computer codes. A large amount of data for detonation performance on different classes of explosives from C-NO(2), O-NO(2) and N-NO(2) energetic groups have also been generated and compared with well-known complex code BKW.

  9. Numerical modelling of a 100-Wh lab-scale thermochemical heat storage system for concentrating solar power plants

    Science.gov (United States)

    de Miguel, Sandra Álvarez; Bellan, Selvan; de María, J. M. García; González-Aguilar, José; Romero, Manuel

    2016-05-01

    Dispatchable electricity generation on demand is a fundamental issue for commercial deployment of Concentrated Solar Power (CSP) plants. One of the promising routes to overcome the intermittence of the solar resource is the use of thermochemical energy storage systems based on redox reactions of metal oxides. Different metal oxides might potential candidates as storing material depending on the foreseen working temperature range. In the framework of the FP7 European project TCSPower, a particle-based reactor is used to analyze this type of materials. The lab-scale thermochemical reactor is initially tested using an inert material (alumina particles) instead of reactants in order to study its thermal performance. Thermocouples installed inside the system at various positions monitor the experiments. A three dimensional numerical model is developed to investigate the flow and heat transfer in the reactor. The governing equations - mass, momentum and energy conservation - are solved by the finite element method in the commercial software COMSOL Multiphysics. Simulations are performed for the experimental conditions. Experimentally measured and numerically predicted temperature profiles at various locations inside the system are compared and presented in this paper.

  10. Perspectives of advanced thermal management in solar thermochemical syngas production using a counter-flow solid-solid heat exchanger

    Science.gov (United States)

    Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert

    2017-06-01

    A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

  11. Technology for a Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.

    2016-10-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  12. The thermochemical, two-phase dynamics of subduction zones: results from new, fully coupled models

    Science.gov (United States)

    Rees Jones, D. W.; Katz, R. F.; May, D.; Tian, M.; Rudge, J. F.

    2017-12-01

    Subduction zones are responsible for most of Earth's subaerial volcanism. However, previous geodynamic modelling of subduction zones has largely neglected magmatism. We previously showed that magmatism has a significant thermal impact, by advecting sensible heat into the lithosphere beneath arc volcanos [1]. Inclusion of this effect helps reconcile subduction zone models with petrological and heat flow observations. Many important questions remain, including how magma-mantle dynamics of subduction zones affects the position of arc volcanos and the character of their lavas. In this presentation, we employ a fully coupled, thermochemical, two-phase flow theory to investigate the dynamics of subduction zones. We present the first results from our new software (SubFUSc), which solves the coupled equations governing conservation of mass, momentum, energy and chemical species. The presence and migration of partial melts affect permeability and mantle viscosity (both directly and through their thermal impact); these, in turn, feed back on the magma-mantle flow. Thus our fully coupled modelling improves upon previous two-phase models that decoupled the governing equations and fixed the thermal structure [2]. To capture phase change, we use a novel, simplified model of the mantle melting in the presence of volatile species. As in the natural system, volatiles are associated with low-degree melting at temperatures beneath the anhydrous solidus; dehydration reactions in the slab supply volatiles into the wedge, triggering silicic melting. We simulate the migration of melts under buoyancy forces and dynamic pressure gradients. We thereby demonstrate the dynamical controls on the pattern of subduction-zone volcanism (particularly its location, magnitude, and chemical composition). We build on our previous study of the thermal consequences of magma genesis and segregation. We address the question of what controls the location of arc volcanoes themselves [3]. [1] Rees Jones, D. W

  13. Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ma, Qisheng; Amrani, Alon; Tang, Yongchun

    2012-01-01

    To determine kinetic parameters of sulfate reduction by hydrocarbons (HC) without the initial presence of low valence sulfur, we carried out a series of isothermal gold-tube hydrous-pyrolysis experiments at 320, 340, and 360 °C under a constant confined pressure of 24.1 MPa. The reactants used consisted of saturated HC (sulfur-free) and CaSO4 in an aqueous solution buffered to three different pH conditions without the addition of elemental sulfur (S8) or H2S as initiators. H2S produced in the course of reaction was proportional to the extent of the reduction of CaSO4 that was initially the only sulfur-containing reactant. Our results show that the in situ pH of the aqueous solution (herein, in situ pH refers to the calculated pH value of the aqueous solution at certain experimental conditions) can significantly affect the rate of the thermochemical sulfate reduction (TSR) reaction. A substantial increase in the TSR reaction rate was observed with a decrease in the in situ pH. Our experimental results show that uncatalyzed TSR is a first-order reaction. The temperature dependence of experimentally measured H2S yields from sulfate reduction was fit with the Arrhenius equation. The determined activation energy for HC (sulfur-free) reacting with View the MathML sourceHSO4− in our experiments is 246.6 kJ/mol at pH values ranging from 3.0 to 3.5, which is slightly higher than the theoretical value of 227.0 kJ/mol using ab initio quantum chemical calculations on a similar reaction. Although the availability of reactive sulfate significantly affects the rate of reaction, a consistent rate constant was determined by accounting for the HSO4− ion concentration. Our experimental and theoretical approach to the determination of the kinetics of TSR is further validated by a reevaluation of several published experimental TSR datasets without the initial presence of native sulfur or H2S. When the effect of reactive sulfate concentration is appropriately accounted for, the

  14. Mantle thermochemical plumes and their influence on the formation of highlands

    Science.gov (United States)

    Kirdyashkin, A. G.; Kirdyashkin, A. A.

    2015-07-01

    The structure of a thermochemical plume conduit rising from the core-mantle boundary and reaching the maximal height when its rising (melting of a plume conduit) terminates is considered in this paper. The relative thermal power of plumes not reaching the surface is Ka ball-like roof of the plume and the rate of rising of day surface above the plume on time are presented. Due to the influence of superlithostatic pressure on the plume roof, the day surface rises above the plume. The elevation of the day surface formed above the plume was calculated for various times in dependence on the horizontal coordinate. With decreasing viscosity of the lithosphere above the plume roof and depth of the plume roof, the rate of rising of the day surface increases, and the time necessary for reaching of the maximal surface elevation decreases. The maximal elevation of the highland above the plume was estimated. The surface elevations formed under the influence of two or three plumes that did not reach the surface were estimated for various times. Based on the suggested model of the formation of elevations above the plume, it is concluded that large highlands (mountain ridges and plateaus) can be formed under the influence of plume clusters that do not reach the day surface. The estimates of the rate of rising of the day surface above the plume obtained in this study are in a good agreement with the geological data on the rates of rising of Tibet and the Caucasus. The rising of a temperature front above the plume roof reaching the maximal rising height is considered. The dependences of the height and rate of rising of a temperature front above the plume roof on time were obtained. The local increase of a specific heat flux in the highland formed above the plume may show that the maximal height of rising of a surface above the plume was gained. Based on the analysis of the heat transfer, the association between the activity of plume clusters that do not reach the surface and the

  15. Design and economic analysis of a macroalgae-to-butanol process via a thermochemical route

    International Nuclear Information System (INIS)

    Okoli, Chinedu O.; Adams, Thomas A.; Brigljević, Boris; Liu, Jay J.

    2016-01-01

    Highlights: • Novel macroalgae-to-butanol plants are designed and assessed for U.S. and S. Korea. • The lowest MBSP of 1.97 $/L was obtained for the S. Korean natural gas import plant. • S. Korean plant with no fossil utilities had lowest CO 2 avoided cost of 620 $/tCO 2 e. • Macroalgae-to-butanol plants CO 2 avoided costs are competitive with other biofuels. • CO 2 avoided costs of assessed plants are most sensitive to changes in gasoline price. - Abstract: In this work, a first of its kind assessment of butanol production from macroalgae through a thermochemical route is carried out. Different process configurations were designed and simulated in Aspen Plus to quantify their mass and energy balances. Furthermore, economic and environmental metrics such as the minimum butanol selling price (MBSP), and cost of CO 2 equivalent emissions (CO 2 e) avoided were used to assess the potential of the different configurations under different market scenarios, with comparisons carried out amongst the configurations as well as against standard literature references of similar processes. Finally, a sensitivity analysis was used to assess the impact that changes in key parameters have on the considered metrics. The results show that configurations which import natural gas and electricity as utility sources alongside the macroalgae feedstock offer the lowest MBSP, however they do poorly when cost of CO 2 e avoided is considered. On the other hand, the configurations which utilize only macroalgae offer the best potential for cost of CO 2 e avoided but have the poorest values for MBSP. In addition, the cost of CO 2 e avoided obtained for the best configurations are in line with literature references. However, the MBSP values are higher than literature references for butanol derived from cellulosic feedstock primarily due to the high ash content in seaweed. The sensitivity analyses results show that changes in gasoline prices have a very significant effect on the plant

  16. Global warming potential of the sulfur-iodine process using life cycle assessment methodology

    International Nuclear Information System (INIS)

    Lattin, William C.; Utgikar, Vivek P.

    2009-01-01

    A life cycle assessment (LCA) of one proposed method of hydrogen production - thermochemical water-splitting using the sulfur-iodine cycle couple with a very high-temperature nuclear reactor - is presented in this paper. Thermochemical water-splitting theoretically offers a higher overall efficiency than high-temperature electrolysis of water because heat from the nuclear reactor is provided directly to the hydrogen generation process, instead of using the intermediate step of generating electricity. The primary heat source for the S-I cycle is an advanced nuclear reactor operating at temperatures corresponding to those required by the sulfur-iodine process. This LCA examines the environmental impact of the combined advanced nuclear and hydrogen generation plants and focuses on quantifying the emissions of carbon dioxide per kilogram of hydrogen produced. The results are presented in terms of global warming potential (GWP). The GWP of the system is 2500 g carbon dioxide-equivalent (CO 2 -eq) per kilogram of hydrogen produced. The GWP of this process is approximately one-sixth of that for hydrogen production by steam reforming of natural gas, and is comparable to producing hydrogen from wind- or hydro-electric conventional electrolysis. (author)

  17. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    Artiklens formål er at diskutere oplevede kvaliteter og adfærdsaspekter af mobilitet med udgangspunkt i spørgsmålet om cykling i byer og relationen mellem design og adfærd. Artiklen tager afsæt i et studie forløb der involverede studerende fra Urban Design, Industriel Design Arkitektskolen Aarhus...... og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  18. Safe cycling!

    CERN Document Server

    Anaïs Schaeffer

    2012-01-01

    The HSE Unit will be running a cycling safety campaign at the entrances to CERN's restaurants on 14, 15 and 16 May. Pop along to see if they can persuade you to get back in the saddle!   With summer on its way, you might feel like getting your bike out of winter storage. Well, the HSE Unit has come up with some original ideas to remind you of some of the most basic safety rules. This year, the prevention campaign will be focussing on three themes: "Cyclists and their equipment", "The bicycle on the road", and "Other road users". This is an opportunity to think about the condition of your bike as well as how you ride it. From 14 to 16 May, representatives of the Swiss Office of Accident Prevention and the Touring Club Suisse will join members of the HSE Unit at the entrances to CERN's restaurants to give you advice on safe cycling (see box). They will also be organising three activity stands where you can test your knowle...

  19. High temperature corrosion in the thermochemical hydrogen production from nuclear heat

    International Nuclear Information System (INIS)

    Coen-Porisini, F.; Imarisio, G.

    1976-01-01

    In the production of hydrogen by water decomposition utilizing nuclear heat, a multistep process has to be employed. Water and the intermediate chemical products reach in chemical cycles giving hydrogen and oxygen with regeneration of the primary products used. Three cycles are examined, characterized by the presence of halide compounds and particularly hydracids at temperatures up to 800 0 C. Corrosion tests were carried out in hydrobromic acid, hydrochloric acid, ferric chloride solutions, and hydriodic acid

  20. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass

    Science.gov (United States)

    Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung

    2013-01-01

    Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...

  1. Meeting to discuss the CEC contract on thermochemical data acquisition, Winfrith Technology Centre/University of Southampton 2-3 July 1990

    International Nuclear Information System (INIS)

    Dickinson, S.

    1990-07-01

    Thermochemical data are being determined for a number of compounds of fission product and reactor materials in a joint contract between Reactor Services, Winfrith, Reactor Chemistry Department, Harwell and ECN Petten. This report describes the meeting which was arranged to discuss progress in the first six months of this contract. (author)

  2. Experimental investigation on thermochemical sulfate reduction by H2S initiation

    Science.gov (United States)

    Zhang, T.; Amrani, A.; Ellis, G.S.; Ma, Q.; Tang, Y.

    2008-01-01

    Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 ??C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ???3-3.5). However, sulfate reduction at pH ???5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and HSO4- occurs at pH ???3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc. 82, 1911-1916). Quantification of labile organosulfur compounds (LSC), such as thiols

  3. Your Menstrual Cycle

    Science.gov (United States)

    ... during your menstrual cycle What happens during your menstrual cycle The menstrual cycle includes not just your period, but the ... tool is based on a sample 28-day menstrual cycle, but every woman is different in how ...

  4. Thermochemical method for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Gorceix, Ouro Preto, MG (Brazil)]|[PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, based on NGS (Nitrogen Generating System) technology, was adapted for cleaning contaminated sand and recovering of spilled oil. NGS is a thermochemical method first developed for removal of paraffin deposits in production and export pipelines. The method is based on a strongly exothermic redox chemical reaction between two salts catalyzed in acidic pH. The reaction products are harmless to the environment and consist of nitrogen, sodium chloride, water and heat. By combining simultaneous effects of the treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand. After treatment, removed oil can be securely returned to refining process. The method has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in place right after a contamination event. (author)

  5. Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2015-01-01

    double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to the biorefinery and also the oxygen for the gasifier. This paper presents the design and thermodynamic...... analysis of two biorefineries integrating water electrolysis for the production of methanol. In both plants, torrefied woody biomass is supplied to an entrained flow gasifier, but in one of the plants, the torrefaction process occurs on-site, as it is integrated with the entrained flow gasification process......In a "conventional" thermochemical biorefinery, carbon is emitted from the plant in the form of CO2 to make the synthesis gas from the gasifier suitable for fuel production. The alternative to this carbon removal is to add hydrogen to the plant. By adding hydrogen, it is possible to more than...

  6. Combining mineral physics with seismic observations: What can we deduce about the thermochemical structure of the Earth's deep interior?

    Science.gov (United States)

    Cobden, L. J.

    2017-12-01

    Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.

  7. Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2017-01-01

    A novel system concept is presented for the thermochemical conversion of very wet biomasses such as sewage sludge and manure. The system integrates steam drying, solid oxide electrolysis cells (SOEC) and gasification for the production of synthetic natural gas (SNG). The system is analyzed...... by thermodynamic modelling and the analysis shows that the system can handle mechanically dried biomasses with a water content of 70 wt% and an ash content of up to 50 wt% (dry basis). A high tolerable ash content is an advantage because very wet biomasses, such as sewage sludge and manure, have a high ash content....... The analysis shows that the total efficiency of the novel system is 69–70% depending on the biomass ash content, while the biomass to SNG energy ratio is 165%, which is near the theoretical maximum because electrolytic hydrogen is supplied to the synthesis gas. It is proposed to combine the novel system...

  8. Thermochemical equilibrium calculations of high-temperature O2 generation on the early Earth: Giant asteroid impacts on land

    Directory of Open Access Journals (Sweden)

    PAVLE I. PREMOVIC

    2003-02-01

    Full Text Available Earth’s atmosphere is composed primarily of N2 and O2. The origin of free O2 in the early Earth’s atmosphere is still subject of considerable debate.1 Theoretical models suggest that the initial form of free O2 in the atmosphere has been oceanic H2O. Recent computation modelling has suggested that a superheated (ca. 2000 K H2O vapor atmosphere of 1.4x1021 kg (the present mass of the oceans lasting for about 3000 y could probably have been formed on Earth by an enormous (ca. 1028 J asteroid impact. In this report, the occurrence of the thermochemical dissociation of the vapor, creating a primitive oxygenic (ca. 0.1 of the present level (PAL of free O2 atmosphere.

  9. Investigations on thermochemical energy storage based on manganese-iron oxide in a lab-scale reactor

    Science.gov (United States)

    Wokon, Michael; Bauer, Thomas; Linder, Marc

    2017-06-01

    Thermochemical energy storage based on reversible redox reactions of metal oxides constitutes a promising concept to store thermal energy at high temperatures, which renders those storage materials specifically attractive for the implementation in solar tower plants. Only a few experimental studies on lab-scale storage reactors working with metal oxides have been reported. Therefore, an investigation of granular metal oxides in a packed bed storage reactor is presented with regard to thermal storage characteristics and prevalent limitations influencing thermal charging and discharging. Pure manganese oxide and manganese-iron oxide with a Mn/Fe molar ratio of 2:1 are compared as potential storage materials. The main advantages of the binary oxide are derived from the experimental results. Moreover, heat transfer between solid and gas has been identified to be the main limiting factor for the onward reactions of manganese-iron oxide under the applied experimental conditions.

  10. Thermochemical stability of Li-Cu-O ternary compounds stable at room temperature analyzed by experimental and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Lepple, Maren [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics; Technische Univ. Darmstadt (Germany). Eduard-Zintl-Inst. of Inorganic and Physical Chemistry; Rohrer, Jochen; Albe, Karsten [Technische Univ. Darmstadt (Germany). Fachgebiet Materialmodellierung; Adam, Robert; Rafaja, David [Technical Univ. Freiberg (Germany). Inst. of Materials Science; Cupid, Damian M. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics; Austrian Institute of Technology GmbH, Vienna (Austria). Center for Low-Emission Transport TECHbase; Seifert, Hans J. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics

    2017-11-15

    Compounds in the Li-Cu-O system are of technological interest due to their electrochemical properties which make them attractive as electrode materials, i.e., in future lithium ion batteries. In order to select promising compositions for such applications reliable thermochemical data are a prerequisite. Although various groups have investigated individual ternary phases using different experimental setups, up to now, no systematic study of all relevant phases is available in the literature. In this study, we combine drop solution calorimetry with density function theory calculations to systematically investigate the thermodynamic properties of ternary Li-Cu-O phases. In particular, we present a consistently determined set of enthalpies of formation, Gibbs energies and heat capacities for LiCuO, Li{sub 2}CuO{sub 2} and LiCu{sub 2}O{sub 2} and compare our results with existing literature.

  11. A review of producing hard coatings by means of duplex treatments using an electroplated coating–thermochemical treatment combination

    Directory of Open Access Journals (Sweden)

    Héctor Cifuentes Aya

    2011-09-01

    Direct deposition by physical vapour deposition (PVD, used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

  12. Static analysis of the thermochemical hydrogen production IS process for assessment of the operation parameters and the chemical properties

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Onuki, Kaoru; Nomura, Mikihiro; Nakao, Shin-ichi

    2006-01-01

    A sensitivity analysis of the operation parameters and the chemical properties in the thermochemical hydrogen production IS process (iodine-sulfur process) was carried out for a static flow sheet. These parameters were evaluated by hydrogen production thermal efficiency, the mass flow rate or heat exchange based on the heat/mass balance. The most important parameters were the concentration of HI after electro-electrodialysis (EED) and the apparent transport number of protons of the cation exchange membrane in the EED cell. HI concentration operation should be operated carefully because the parameters for optimum thermal efficiency and for the optimum flow rate and heat exchange were different. For the chemical properties, composition at the inlet of the HI decomposition procedure and HI x pseudo-azeotropic composition had great effects. The HI concentration after the EED should be optimized for each composition. The order of priority for the assessment of the operation parameters and chemical properties was determined by the evaluation. (author)

  13. The influence of gas–solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Nagel, T.; Shao, H.; Roßkopf, C.; Linder, M.; Wörner, A.; Kolditz, O.

    2014-01-01

    Highlights: • Detailed analysis of cyclic and monotonic loading of thermochemical heat stores. • Fully coupled reactive heat and mass transport. • Reaction kinetics can be simplified in systems limited by heat transport. • Operating lines valid during monotonic and cyclic loading. • Local integral degree of conversion to capture heterogeneous material usage. - Abstract: Thermochemical reactions can be employed in heat storage devices. The choice of suitable reactive material pairs involves a thorough kinetic characterisation by, e.g., extensive thermogravimetric measurements. Before testing a material on a reactor level, simulations with models based on the Theory of Porous Media can be used to establish its suitability. The extent to which the accuracy of the kinetic model influences the results of such simulations is unknown yet fundamental to the validity of simulations based on chemical models of differing complexity. In this article we therefore compared simulation results on the reactor level based on an advanced kinetic characterisation of a calcium oxide/hydroxide system to those obtained by a simplified kinetic model. Since energy storage is often used for short term load buffering, the internal reactor behaviour is analysed under cyclic partial loading and unloading in addition to full monotonic charge/discharge operation. It was found that the predictions by both models were very similar qualitatively and quantitatively in terms of thermal power characteristics, conversion profiles, temperature output, reaction duration and pumping powers. Major differences were, however, observed for the reaction rate profiles themselves. We conclude that for systems not limited by kinetics the simplified model seems sufficient to estimate the reactor behaviour. The degree of material usage within the reactor was further shown to strongly vary under cyclic loading conditions and should be considered when designing systems for certain operating regimes

  14. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany; Ganzheitliche Analyse thermochemischer Verfahren bei der Nutzung fester Biomasse zur Kraftstoffproduktion in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Henssler, Martin

    2015-04-28

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO{sub 2eq}-reduction compared to the fossil reference fuel (83.8 g CO{sub 2eq}/MJ{sub fuel} /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO{sub 2eq}-savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H{sub 2}) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V {sup registered} -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H{sub 2}). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H{sub 2}-production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO{sub 2eq}-saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO{sub 2eq}-saving is between 72 (H{sub 2}) and 95 % (Fischer

  15. Synthesis of Cu2O, CuCl, and Cu2OCl2 nanoparticles by ultrafast ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... 800 nm and ∼2 ps laser pulses. Cu2O NPs exhibited two-photon absorption at lower peak intensities while three-photon absorption was observed at higher peak intensities. Other samples exhibited two-photon absorption at all peak intensities. Keywords. Picosecond; laser ablation; copper complex; ...

  16. Synthesis of Cu 2 O, CuCl, and Cu2OCl 2 nanoparticles by ultrafast ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... We have also performed nonlinear optical studies of colloidal nanoparticles using Z-scan technique at 800 nm and ∼2 ps laser pulses. Cu2O NPs exhibited two-photon absorption at lower peak intensities while three-photon absorption was observed at higher peak intensities. Other samples exhibited ...

  17. Synthesis of Cu2O, CuCl, and Cu2OCl2 nanoparticles by ultrafast ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... combined with the highest degree of occupation and safety since fabricated NPs will be in colloidal form. Moreover ... crystal planes. Figure 1d represents the EDAX spectrum of CL-2 and spectrum demon- strates the presence of Cu and chloride peaks. Inset of figure 1d (top part) represents the UV–Vis ...

  18. QUINAZOLINE-7,10-DIONE DERIVATIVES WITH CuCl2 ...

    African Journals Online (AJOL)

    Economic generation of bioactive compounds have major concerned in modern organic chemistry [1]. In this regard, development of novel compounds and especially diverse small molecule scaffolds caused higher attention of medicinal and biological chemists [2-4]. This has attributed to the growing requirement in ...

  19. Methods for estimating the enthalpy of formation of inorganic compounds; thermochemical and crystallographic investigations of uranyl salts of group VI elements

    International Nuclear Information System (INIS)

    Brandenburg, N.P.

    1978-01-01

    The first part of this thesis is concerned with parameter methods for estimating the standard enthalpy of formation, ΔH 0 sub(f), of inorganic compounds. In this type of method the estimate is a function of parameters, assigned to cation and anion, respectively. The usefulness of a new estimation method is illustrated in the case of uranyl sulphide. In the second part of this thesis crystallographic and thermochemical properties of uranyl salts of group VI elements are described. Crystal structures are given for β-UO 2 SO 4 , UO 2 SeO 3 , and α-UO 2 SeO 4 . Thermochemical measurements have been restricted to the determination of ΔH 0 sub(f)(UO 2 SO 3 ) and ΔH 0 sub(f)(UO 2 TeO 3 ) by means of isoperibol solution calorimetry. (Auth.)

  20. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    Energy Technology Data Exchange (ETDEWEB)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  1. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    unit toincrease the overall energy conversion efficiency.The dynamic model of the plant is coupled with a one-dimensional model of the once-through boilerfed by the exhaust thermal power of the gas turbine. The heat exchanger model uses a distributedcross-flow physical topology and local correlations......This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... for single- and two-phase heat transfer coefficients.The results indicate that severe load changes (0.4–1.0 MWs-1) can lead to exceedance of thetemperature limit of fluid decomposition for a period of 10 min. Ramp rates lower than 0.3MWs-1 areacceptable considering the stability of the electric grid...

  2. Thermochemical Energy Storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor

    OpenAIRE

    Schmidt, Matthias; Andrea, Gutierrez; Linder, Marc

    2017-01-01

    The reversible reaction of calcium hydroxide (Ca(OH)2) to calcium oxide (CaO) and water vapor is well known in the context of thermochemical energy storage. Cheap material costs, a theoretically very high energy density and the potentially wide temperature range of the reaction imply that the storage system could be beneficial for many high temperature processes. For example the system could be applied to store and reutilize industrial waste heat or as an alternative storage solution in futur...

  3. A review of thermo-chemical conversion of biomass into biofuels-focusing on gas cleaning and up-grading process steps

    OpenAIRE

    Brandin, Jan; Hulteberg, Christian; Kusar, Henrik

    2017-01-01

    It is not easy to replace fossil-based fuels in the transport sector, however, an appealing solution is to use biomass and waste for the production of renewable alternatives. Thermochemical conversion of biomass for production of synthetic transport fuels by the use of gasification is a promising way to meet these goals. One of the key challenges in using gasification systems with biomass and waste as feedstock is the upgrading of the raw gas produced in the gasifier. These materials replacin...

  4. Feasibility and comparative studies of thermochemical liquefaction of Camellia oleifera cake in different supercritical organic solvents for producing bio-oil

    International Nuclear Information System (INIS)

    Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Li, Ping; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

    2015-01-01

    Highlights: • Thermochemical liquefaction of COC was a prominent process for producing bio-oil. • Type of solvent affected the yield and composition of bio-oil considerably. • Liquefaction of COC in SCEL at 300 °C was preferred for producing bio-oil. - Abstract: Thermochemical liquefaction of Camellia oleifera cake (COC) for producing bio-oil was conducted in supercritical methanol (SCML), ethanol (SCEL) and acetone (SCAL), respectively. GC–MS, elemental analysis and ICP-OES were used to characterize properties of bio-oil. Results showed that thermochemical liquefaction of COC was a prominent process for generating bio-oil. Increase of temperature was beneficial to the increase of bio-oil yield, and yield of bio-oil followed the sequence of SCAL > SCEL > SCML. In spite of the highest bio-oil yield, the lowest calorific value and highest contents of Zn, Pb, Cd, Ni, Fe, Mn, and Cr were found in bio-oil from SCAL. Though SCML has very similar bio-oil composition and calorific value with SCEL, higher bio-oil yield and lower contents of heavy metals could be obtained with SCEL, especially in bio-oil from SCEL at 300 °C. Moreover, the origin of ethanol could make the bio-oil product totally renewable. Therefore, liquefaction of COC in SCEL at 300 °C could have great potential in generating bio-oil

  5. Thermochemical data and additivity group values for ten species of o-xylene low-temperature oxidation mechanism.

    Science.gov (United States)

    Canneaux, Sébastien; Vandeputte, Romain; Hammaecher, Catherine; Louis, Florent; Ribaucour, Marc

    2012-01-12

    o-Xylene could be a good candidate to represent the family of aromatic hydrocarbons in a surrogate fuel. This study uses computational chemistry to calculate standard enthalpies of formation at 298 K, Δ(f)H°(298 K), standard entropies at 298 K, S°(298 K), and standard heat capacities C(p)°(T) over the temperature range 300 K to 1500 K for ten target species present in the low-temperature oxidation mechanism of o-xylene: o-xylene (1), 2-methylbenzyl radical (2), 2-methylbenzylperoxy radical (3), 2-methylbenzyl hydroperoxide (4), 2-(hydroperoxymethyl)benzyl radical (5), 2-(hydroperoxymethyl)benzaldehyde (6), 1-ethyl-2-methylbenzene (7), 2,3-dimethylphenol (8), 2-hydroxybenzaldehyde (9), and 3-hydroxybenzaldehyde (10). Δ(f)H°(298 K) values are weighted averages across the values calculated using five isodesmic reactions and five composite calculation methods: CBS-QB3, G3B3, G3MP2, G3, and G4. The uncertainty in Δ(f)H°(298 K) is also evaluated. S°(298 K) and C(p)°(T) values are calculated at B3LYP/6-311G(d,p) level of theory from molecular properties and statistical thermodynamics through evaluation of translational, rotational, vibrational, and electronic partition functions. S°(298 K) and C(p)°(300 K) values are evaluated using the rigid-rotor-harmonic-oscillator model. C(p)°(T) values at T ≥ 400 K are calculated by treating separately internal rotation contributions and translational, external rotational, vibrational, and electronic contributions. The thermochemical properties of six target species are used to develop six new additivity groups taking into account the interaction between two substituents in ortho (ORT/CH2OOH/ME, ORT/ET/ME, ORT/CHO/OH, ORT/CHO/CH2OOH) or meta (MET/CHO/OH) positions, and the interaction between three substituents (ME/ME/OH123) located one beside the other (positions numbered 1, 2, 3) for two- or three-substituted benzenic species. Two other additivity groups are also developed using the thermochemical properties of

  6. Thermochemical parameters of minerals from oxygen-buffered hydrothermal equilibrium data: Method, application to annite and almandine

    Science.gov (United States)

    Zen, E.-A.

    1973-01-01

    Reversed univariant hydrothermal phase-equilibrium reactions, in which a redox reaction occurs and is controlled by oxygen buffers, can be used to extract thermochemical data on minerals. The dominant gaseous species present, even for relatively oxidizing buffers such as the QFM buffer, are H2O and H2; the main problem is to calculate the chemical potentials of these components in a binary mixture. The mixing of these two species in the gas phase was assumed by Eugster and Wones (1962) to be ideal; this assumption allows calculation of the chemical potentials of the two components in a binary gas mixture, using data in the literature. A simple-mixture model of nonideal mixing, such as that proposed by Shaw (1967), can also be combined with the equations of state for oxygen buffers to permit derivation of the chemical potentials of the two components. The two mixing models yield closely comparable results for the more oxidizing buffers such as the QFM buffer. For reducing buffers such as IQF, the nonideal-mixing correction can be significant and the Shaw model is better. The procedure of calculation of mineralogical thermochemical data, in reactions where hydrogen and H2O simultaneously appear, is applied to the experimental data on annite, given by Wones et al. (1971), and on almandine, given by Hsu (1968). For annite the results are: Standard entropy of formation from the elements, Sf0 (298, 1)=-283.35??2.2 gb/gf, S0 (298, 1) =+92.5 gb/gf. Gf0 (298, 1)=-1148.2??6 kcal, and Hf0 (298, 1)=-1232.7??7 kcal. For almandine, the calculation takes into account the mutual solution of FeAl2O4 (Hc) in magnetite and of Fe3O4 (Mt) in hercynite and the temperature dependence of this solid solution, as given by Turnock and Eugster (1962); the calculations assume a regular-solution model for this binary spinel system. The standard entropy of formation of almandine, Sf,A0 (298, 1) is -272.33??3 gb/gf. The third law entropy, S0 (298, 1) is +68.3??3 gb/gf, a value much less than the

  7. Failure Analysis and Thermochemical Surface Engineering of Bearings in the Wind Turbine Drivetrain

    DEFF Research Database (Denmark)

    West, Ole H.E.; Dahl, Kristian Vinter; Christiansen, Thomas Lundin

    backscatter diffraction (EBSD) and ion channelling contrast imaging (ICCI) were used. The gap between RLM and SEM (providing a good overview over the crack morphology) and TEM (providing very detailed information but from a very limited part of the sample) could be covered by the use of EBSD and ICCI...... charged rollers to reproduce WEC formation. The influence of different hoop stress levels was studied. The fracture surfaces as well as formed WECs were investigated. A detrimental effect of higher hoop stress levels on roller lifetime was found and based on the analysis of the formed WECs an incremental...... increase of WEA formation with each cycle was suggested. By X-ray diffraction stress analysis the nonuniform build-up of compressive stresses under testing was identified. Deep nitriding is considered as a potential remedy against WEC failure. Therefore nitriding experiments were conducted to study...

  8. Thermochemical sulfate reduction in deep petroleum reservoirs: a molecular approach; Thermoreduction des sulfates dans les reservoirs petroliers: approche moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanin, S.

    2002-11-01

    The thermochemical sulfate reduction (TSR) is a set of chemical reactions leading to hydrocarbon oxidation and production of carbon dioxide and sour gas (H{sub 2}S) which is observed in deep petroleum reservoirs enriched in anhydrites (calcium sulfate). Molecular and isotopic studies have been conducted on several crude oil samples to determine which types of compounds could have been produced during TSR. Actually, we have shown that the main molecules formed by TSR were organo-sulfur compounds. Indeed, sulfur isotopic measurements. of alkyl-di-benzothiophenes, di-aryl-disulfides and thia-diamondoids (identified by NMR or synthesis of standards) shows that they are formed during TSR as their value approach that of the sulfur of the anhydrite. Moreover, thia-diamondoids are apparently exclusively formed during this phenomenon and can thus be considered as true molecular markers of TSR. In a second part, we have investigated with laboratory experiments the formation mechanism of the molecules produced during TSR. A first model has shown that sulfur incorporation into the organic matter occurred with mineral sulfur species of low oxidation degree. The use of {sup 34}S allowed to show that the sulfates reduction occurred during these simulations. At least, some experiments on polycyclic hydrocarbons, sulfurized or not, allowed to establish that thia-diamondoids could be formed by acid-catalysed rearrangements at high temperatures in a similar way as the diamondoids. (author)

  9. Effect of NiO/SiO2 on thermo-chemical conversion of waste cooking oil to hydrocarbons.

    Science.gov (United States)

    Sani, J; Sokoto, A M; Tambuwal, A D; Garba, N A

    2017-05-01

    Increase in organic waste generation, dwindling nature of global oil reserves coupled with environmental challenges caused by waste oil disposal and burning of fossil fuels necessitated the need for alternative energy resources. Waste cooking oil obtained from the frying fish outlet was analyzed for its physicochemical properties using ASTM D-975 methods. Acid and Iodine values of the oil were 30.43 ± 0.32 mgKOH/g and 57.08 ± 0.43 mgI 2 /100 g respectively. Thermo-chemical conversion of the oil using NiO/SiO 2 at different reaction conditions (pressure, temperature, and catalyst concentration) at a residence time of 3 h yielded 33.63% hydrocarbons. Hydro-catalytic pyrolysis of waste cooking oil at 400 °C, H 2 pressure of 15 bars, and catalyst to oil ratio of 0.25 g/100 cm 3 resulted in highest hydrocarbon yield (41.98%). The fuel properties of the product were: cetane number (71.16), high heating value (41.43 MJ/kg), kinematic viscosity (2.01 mm 2 /s), density (0.94 g/ml), saponification value (185.1 ± 3.96 mgKOH/g), and iodine value (20.57 ± 0.20 I 2 /100 g) respectively. These results show that the NiO/SiO 2 could be a suitable catalyst for conversion of waste vegetable oil to hydrocarbons.

  10. Effect of NiO/SiO2 on thermo-chemical conversion of waste cooking oil to hydrocarbons

    Directory of Open Access Journals (Sweden)

    J. Sani

    2017-05-01

    Full Text Available Increase in organic waste generation, dwindling nature of global oil reserves coupled with environmental challenges caused by waste oil disposal and burning of fossil fuels necessitated the need for alternative energy resources. Waste cooking oil obtained from the frying fish outlet was analyzed for its physicochemical properties using ASTM D-975 methods. Acid and Iodine values of the oil were 30.43 ± 0.32 mgKOH/g and 57.08 ± 0.43 mgI2/100 g respectively. Thermo-chemical conversion of the oil using NiO/SiO2 at different reaction conditions (pressure, temperature, and catalyst concentration at a residence time of 3 h yielded 33.63% hydrocarbons. Hydro-catalytic pyrolysis of waste cooking oil at 400 °C, H2 pressure of 15 bars, and catalyst to oil ratio of 0.25 g/100 cm3 resulted in highest hydrocarbon yield (41.98%. The fuel properties of the product were: cetane number (71.16, high heating value (41.43 MJ/kg, kinematic viscosity (2.01 mm2/s, density (0.94 g/ml, saponification value (185.1 ± 3.96 mgKOH/g, and iodine value (20.57 ± 0.20 I2/100 g respectively. These results show that the NiO/SiO2 could be a suitable catalyst for conversion of waste vegetable oil to hydrocarbons.

  11. Investigation on thermochemical behavior of co-pyrolysis between oil-palm solid wastes and paper sludge.

    Science.gov (United States)

    Lin, Yousheng; Ma, Xiaoqian; Yu, Zhaosheng; Cao, Yawen

    2014-08-01

    The pyrolysis characteristics of oil-palm solid wastes, paper sludge and their blends were studied via thermogravimetric analysis. Blends ranging from 10 wt.% to 90 wt.% on dosage ratio were prepared to investigate their co-pyrolysis behavior and kinetics. There was a synergistic interaction at low temperature during co-pyrolysis between oil-palm solid wastes and paper sludge. The synergistic interaction would improve thermochemical pyrolysis reactivity of the blends, which could be attributed to the hydrogenation role and the potential mineral catalytic effects on paper sludge pyrolysis. The value of average activation energy obtained by Starink and Friedmen methods did not gradually decline with the increasing proportion of oil-palm solid wastes in the blends. The lowest average activation energy was achieved when the percentage of oil-palm solid wastes was 70%, which was 152 kJ/mol by Starink and 149 kJ/mol by Friedmen, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis

    International Nuclear Information System (INIS)

    Tock, Laurence; Gassner, Martin; Marechal, Francois

    2010-01-01

    A detailed thermo-economic model combining thermodynamics with economic analysis and considering different technological alternatives for the thermochemical production of liquid fuels from lignocellulosic biomass is presented. Energetic and economic models for the production of Fischer-Tropsch fuel (FT), methanol (MeOH) and dimethyl ether (DME) by means of biomass drying with steam or flue gas, directly or indirectly heated fluidized bed or entrained flow gasification, hot or cold gas cleaning, fuel synthesis and upgrading are reviewed and developed. The process is integrated and the optimal utility system is computed. The competitiveness of the different process options is compared systematically with regard to energetic, economic and environmental considerations. At several examples, it is highlighted that process integration is a key element that allows for considerably increasing the performance by optimal utility integration and energy conversion. The performance computations of some exemplary technology scenarios of integrated plants yield overall energy efficiencies of 59.8% (crude FT-fuel), 52.5% (MeOH) and 53.5% (DME), and production costs of 89, 128 and 113 Euro MWh -1 on fuel basis. The applied process design approach allows to evaluate the economic competitiveness compared to fossil fuels, to study the influence of the biomass and electricity price and to project for different plant capacities. Process integration reveals in particular potential energy savings and waste heat valorization. Based on this work, the most promising options for the polygeneration of fuel, power and heat will be determined in a future thermo-economic optimization.

  13. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  14. High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power, CRADA Number: CRD-14-554

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-05

    As part of a Federal Opportunity Announcement (FOA) Award, the project will be led by Colorado School of Mines (CSM) to explore and demonstrate the efficacy of highly reducible, redox-stable oxides to provide efficient thermochemical energy storage for heat release at temperatures of 900 degrees Celcius or more. NREL will support the material development for its application in a concentrating solar power (CSP) plant. In the project, NREL will provide its inventive system design, chemical looping for CSP, and use it as a platform to accommodate the chemical processes using a cost effective perovskite materials identified by CSM. NREL will design a 5-10kW particle receiver for perovskite reduction to store solar energy and help the development of a fluidized-bed reoxidation reactor and system integration. NREL will develop the demonstration receiver for on-sun test in the 5-10 kWt range in NREL's high flux solar furnace. NREL will assist in system analysis and provide techno-economic inputs for the overall system configuration.

  15. Improved persistent luminescence of CaTiO{sub 3}:Pr by fluorine substitution and thermochemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Songhak, E-mail: songhak.yoon@empa.ch [Laboratory for Solid State Chemistry and Catalysis, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Otal, Eugenio H.; Maegli, Alexandra E.; Karvonen, Lassi; Matam, Santhosh K. [Laboratory for Solid State Chemistry and Catalysis, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Ebbinghaus, Stefan G. [Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle/Saale (Germany); Walfort, Bernhard [LumiNova AG, Speicherstrasse 60A, CH-9053 Teufen (Switzerland); Hagemann, Hans [Department of Physical Chemistry, University of Geneva, Quai E. Ansermet 30, CH-1211 Geneva 4 (Switzerland); Pokrant, Simone [Laboratory for Solid State Chemistry and Catalysis, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Weidenkaff, Anke [Laboratory for Solid State Chemistry and Catalysis, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Institute for Materials Science, University of Stuttgart, Heisenbergstrasse 3, 70569 Stuttgart (Germany)

    2014-11-15

    Highlights: • Synthesis of fluorine-substituted CaTiO{sub 3}:Pr phosphors. • Rietveld refinement of CaTi(O,F){sub 3}:Pr phosphors. • Afterglow intensity improvement of ca. 450% compared to CaTiO{sub 3}:Pr. - Abstract: Fluorine-substituted CaTiO{sub 3}:Pr phosphors were prepared by a solid-state reaction. Rietveld refinements of powder X-ray diffraction patterns revealed that increasing fluorine-substitution leads to the gradual shrinkage of the unit-cell. Enhanced afterglow intensities were observed with fluorine-substitution. Furthermore, the effect of annealing atmosphere was investigated by thermochemical treatment in different atmospheres (Ar, air and NH{sub 3}). UV–Vis diffuse reflectance spectra and photoluminescence excitation spectra revealed that Pr{sup 4+} in the pristine CaTi(O,F){sub 3}:Pr phosphor was partially reduced to Pr{sup 3+} under NH{sub 3} flow leading to an intensity improvement of ca. 450% compared to CaTiO{sub 3}:Pr. The substantial improvement of afterglow intensity by fluorine substitution and annealing in NH{sub 3} is considered to be connected with the generation of oxygen vacancies and the partial reduction of Pr{sup 4+} to Pr{sup 3+}.

  16. Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder

    International Nuclear Information System (INIS)

    Bohlouli-Zanjani, Golnaz; Wen, John Z.; Hu, Anming; Persic, John; Ringuette, Sophie; Zhou, Y. Norman

    2013-01-01

    Highlights: • First study on the copper modified powder-type Al nanoparticle and NiO nanowire composites. • Experimental findings were unique in identifying the AlNi formation and comparing with the Al/CuO thermite. • Potential applications in material joining and bonding. - Abstract: Thermo-chemical properties of the Al nanoparticle and NiO nanowire composites modified by the micro-sized copper additive were investigated experimentally. Their onset temperatures of ignition and energy release data per mass were characterized using differential thermal analysis measurements. These microstructures and chemical compositions of reaction products were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The fuel-rich Al/NiO/Cu composites produced two types of metallic spheres. Copper spheres were formed from melting and solidification of the copper additive, while AlNi composite spheres were identified by the energy dispersive X-ray spectroscopy and X-ray diffraction analyses. It was found that the amount of the copper additive did not significantly influence the onset temperature of thermite peaks, but caused a dramatic change in energy release. The aforementioned ignition and energetic properties were compared with these from the Al nanoparticle and CuO nanowire composites

  17. Thermochemical methods for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Jose Bonifacio, Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Nitrogen Generating System (SGN in Portuguese) is a thermochemical method first developed for cleaning and removal of paraffin deposits in production and export pipelines. SGN is based on a redox chemical reaction between two salts which is catalyzed in acidic pH. The reaction is strongly exothermic and its products are nitrogen, sodium chloride, water and heat. All reaction products are harmless to the environment. In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, developed at PETROBRAS Research Center (CENPES), was based on SGN technology which has been adapted for cleaning contaminated sand and recovering of spilled oil. By combining simultaneous effects of the SGN treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand and removed oil can be securely returned to refining process. SGN technology has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in loco right after a contamination event. (author)

  18. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Density functional investigation of the thermophysical and thermochemical properties of talc [Mg3Si4O10(OH)2

    Science.gov (United States)

    Ulian, Gianfranco; Valdrè, Giovanni

    2015-02-01

    The knowledge of the P, T behavior of talc is very important in mineralogical-petrological and geophysical research fields because talc can be considered a hydrous phase that can recycle water into the Earth's mantle and also an important mineral in both industrial and technological applications. However, very few works have been presented to fully characterize the thermodynamic properties of this mineral, especially at atomic scale. In a previous work, we modeled the structural and mechanical properties of talc using the B3LYP-D* hybrid density functional, which included a correction for the dispersive forces and all-electron Gaussian-type orbital basis sets. The results were in good agreement with single-crystal X-ray and neutron diffraction experimental data. Here, we extend the investigation to the thermochemical and thermophysical properties of talc using the same density functional approach and the quasi-harmonic approximation, providing the thermal equation of state, the heat capacity and the entropy of the mineral at different P, T conditions.

  20. Study of water nature in some crystallohydrates of pentasubstituted alkali metal salts of borotungstic acid using thermochemical method

    International Nuclear Information System (INIS)

    Kosmodem'yanskaya, G.V.; Sadykova, M.M.; Spitsyn, V.I.

    1977-01-01

    Kinetics of the dehydration process has been studied and heat of dehydration has been determined for salts 2.5Li 2 O x 0.5B 2 O 3 x 12.0WO 3 x 28.5H 2 O; 2.5Na 2 Ox0.5B 2 O 3 x 12.0WO 3 x 17.5H 2 O; 2.5K 2 O x 0.5B 2 O 3 x12.0WO 3 x 16.5H 2 O; 2.5Cs 2 O x 0.5B 2 O 3 x 12.0WO 3 x6.7H 2 O. Dehydration has been conducted in vacuum at 25-50 deg C. The study of the dehydration process has been performed thermochemically in a differential calorimeter. It has been shown that heat of dehydration depends on the nature of the cation. Lithium salt with a cation of a small radius has the highest heat of dehydration (6.4+-0.2 kcal/mol H 2 O). Cesium salt is dehydrated almost completely. A considerable part of water in crystallohydrates has a salting character. Kinetics of the dehydration process is described by the equation of the monomolecular reaction

  1. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    International Nuclear Information System (INIS)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ΔG/sub f, 298/ 0 of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs

  3. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ..delta..G/sub f, 298//sup 0/ of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs.

  4. Comparison of second-generation processes for the conversion of sugarcane bagasse to liquid biofuels in terms of energy efficiency, pinch point analysis and Life Cycle Analysis

    International Nuclear Information System (INIS)

    Petersen, A.M.; Melamu, Rethabi; Knoetze, J.H.; Görgens, J.F.

    2015-01-01

    Highlights: • Process evaluation of thermochemical and biological routes for bagasse to fuels. • Pinch point analysis increases overall efficiencies by reducing utility consumption. • Advanced biological route increased efficiency and local environmental impacts. • Thermochemical routes have the highest efficiencies and low life cycle impacts. - Abstract: Three alternative processes for the production of liquid transportation biofuels from sugar cane bagasse were compared, on the perspective of energy efficiencies using process modelling, Process Environmental Assessments and Life Cycle Assessment. Bio-ethanol via two biological processes was considered, i.e. Separate Hydrolysis and Fermentation (Process 1) and Simultaneous Saccharification and Fermentation (Process 2), in comparison to Gasification and Fischer Tropsch synthesis for the production of synthetic fuels (Process 3). The energy efficiency of each process scenario was maximised by pinch point analysis for heat integration. The more advanced bio-ethanol process was Process 2 and it had a higher energy efficiency at 42.3%. Heat integration was critical for the Process 3, whereby the energy efficiency was increased from 51.6% to 55.7%. For both the Process Environmental and Life Cycle Assessment, Process 3 had the least potential for detrimental environmental impacts, due to its relatively high energy efficiency. Process 2 had the greatest Process Environmental Impact due to the intensive use of processing chemicals. Regarding the Life Cycle Assessments, Process 1 was the most severe due to its low energy efficiency

  5. Innovation and Business Cycles

    OpenAIRE

    Festré, Agnès

    2002-01-01

    The main purpose of this chapter is to assess the originality of Schumpeter's theory of business cycles. The first section outlines the distinctive features of Schumpeter's approach to business cycles and economic dynamics. Section two looks at the mechanisms constituting the cycle in Schumpeter's two major contributions on this subject, the Theory of Economic Development (1911) and Business Cycles (1939).

  6. The fuel cycle

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the fuel cycle is presented. The following fuel cycle steps are described: (1) Front of the fuel cycle (Mining and milling; Treatment; Refining, conversion and enrichment; Fuel fabrication); (2) Use of fuel in nuclear reactors; (3) Back end of the fuel cycle (Interim storage of spent fuel; spent fuel reprocessing; Final disposal of spent fuel)

  7. Integrated biomass pyrolysis with organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Syahputra, A. W.

    2018-02-01

    The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.

  8. Proliferation in cycle

    Energy Technology Data Exchange (ETDEWEB)

    Piao Yunsong [College of Physical Sciences, Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: yspiao@gucas.ac.cn

    2009-06-15

    In the contracting phase with w{approx_equal}0, the scale invariant spectrum of curvature perturbation is given by the increasing mode of metric perturbation. In this Letter, it is found that if the contracting phase with w{approx_equal}0 is included in each cycle of a cycle universe, since the metric perturbation is amplified on super horizon scale cycle by cycle, after each cycle the universe will be inevitably separated into many parts independent of one another, each of which corresponds to a new universe and evolves up to next cycle, and then is separated again. In this sense, a cyclic multiverse scenario is actually presented, in which the universe proliferates cycle by cycle. We estimate the number of new universes proliferated in each cycle, and discuss the implications of this result.

  9. Effects of ultrasonic and thermo-chemical pre-treatments on methane production from fat, oil and grease (FOG) and synthetic kitchen waste (KW) in anaerobic co-digestion.

    Science.gov (United States)

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2013-02-01

    The effects of ultrasonic and thermo-chemical pre-treatments on the methane production potential of anaerobic co-digestion with synthetic kitchen waste (KW) or fat, oil and grease (FOG) were investigated. Non-linear regressions were fitted to accurately assess and compare the methane production from co-digestion under the various pre-treatment conditions and to achieve representative simulations and predictions. Ultrasonic pre-treatment was not found to improve methane production effectively from either FOG co-digestion or KW co-digestions. Thermo-chemical pre-treatment could increase methane production yields from both FOG and KW co-digestions. COD solubilization was found to effectively represent the effects of pre-treatment. A comprehensive evaluation indicated that the thermo-chemical pre-treatments of pH=10, 55°C and pH=8, 55°C provided the best conditions to increase methane production from FOG and KW co-digestions, respectively. The most effective enhancement of biogas production (288±0.85mLCH(4)/g TVS) was achieved from thermo-chemically pre-treated FOG co-digestion, which was 9.9±1.5% higher than FOG co-digestion without thermo-chemical pre-treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Changtao; Li, Shuyuan [China Univ. of Petroleum, Beijing (China); Song, He [Research Institute of Petroleum Engineering of CNPC, Tianjin (China)

    2014-07-15

    Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and MgSO{sub 4} at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, S{sub 1}, N{sub 1}S{sub 1}, O{sub 1}S{sub 1} and O{sub 2}S{sub 1}, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the S{sub 1} class species was dominant. The most abundant S{sub 1} class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without MgSO{sub 4}. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and MgSO{sub 4} are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.

  11. Geochemical databases. Part 1. Pmatch: a program to manage thermochemical data. Part 2. The experimental validation of geochemical computer models

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.; Avis, J.D.; Nilsson, K.; Skytte Jensen, B.

    1993-01-01

    This work is carried out under cost-sharing contract with European Atomic Energy Community in the framework of its programme on Management and Storage of Radioactive Wastes. Part 1: PMATCH, A Program to Manage Thermochemical Data, describes the development and use of a computer program, by means of which new thermodynamic data from literature may be referenced to a common frame and thereby become internally consistent with an existing database. The report presents the relevant thermodynamic expressions and their use in the program is discussed. When there is not sufficient thermodynamic data available to describe a species behaviour under all conceivable conditions, the problems arising are thoroughly discussed and the available data is handled by approximating expressions. Part II: The Experimental Validation of Geochemical Computer models are the results of experimental investigations of the equilibria established in aqueous suspensions of mixtures of carbonate minerals (Calcium, magnesium, manganese and europium carbonates) compared with theoretical calculations made by means of the geochemical JENSEN program. The study revealed that the geochemical computer program worked well, and that its database was of sufficient validity. However, it was observed that experimental difficulties could hardly be avoided, when as here a gaseous component took part in the equilibria. Whereas the magnesium and calcium carbonates did not demonstrate mutual solid solubility, this produced abnormal effects when manganese and calcium carbonates were mixed resulting in a diminished solubility of both manganese and calcium. With tracer amounts of europium added to a suspension of calcite in sodium carbonate solutions long term experiments revealed a transition after 1-2 months, whereby the tracer became more strongly adsorbed onto calcite. The transition is interpreted as the nucleation and formation of a surface phase incorporating the 'species' NaEu(Co 3 ) 2

  12. Cycling in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Alexis Zander

    2013-01-01

    Full Text Available Introduction. Cycling can be an enjoyable way to meet physical activity recommendations and is suitable for older people; however cycling participation by older Australians is low. This qualitative study explored motivators, enablers, and barriers to cycling among older people through an age-targeted cycling promotion program. Methods. Seventeen adults who aged 50–75 years participated in a 12-week cycling promotion program which included a cycling skills course, mentor, and resource pack. Semistructured interviews at the beginning and end of the program explored motivators, enablers, and barriers to cycling. Results. Fitness and recreation were the primary motivators for cycling. The biggest barrier was fear of cars and traffic, and the cycling skills course was the most important enabler for improving participants’ confidence. Reported outcomes from cycling included improved quality of life (better mental health, social benefit, and empowerment and improved physical health. Conclusions. A simple cycling program increased cycling participation among older people. This work confirms the importance of improving confidence in this age group through a skills course, mentors, and maps and highlights additional strategies for promoting cycling, such as ongoing improvement to infrastructure and advertising.

  13. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  14. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  15. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    of the marine nitrogen cycle and its influence on atmospheric CO 2 , in: The Ocean Carbon Cycle and Climate, edited by: Follows, M., and Oguz, T., Kluwer Academic, Dordrecht, 97-148, 2004. ISBN 1402020864. Citation Naqvi, Syed. 2006. "Marine nitrogen cycle...]. cycle> All text is available under the terms of the Creative Commons Attribution-Share Alike license. Please see the Encyclopedia of Earth's website for Terms of Use information. Supported...

  16. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  17. Life Cycle Management

    DEFF Research Database (Denmark)

    Bey, Niki

    2017-01-01

    This chapter gives an overview of Life Cycle Management (LCM)—a discipline that deals with the managerial tasks related to practicing sustainable development in an organisation . Just as Life Cycle Assessment, LCM advocates the life cycle perspective , and it applies this perspective in decision...

  18. Cycling To Awareness.

    Science.gov (United States)

    Kozak, Stan

    1999-01-01

    Encourages environmental and outdoor educators to promote bicycling. In the community and the curriculum, cycling connects environmental issues, health and fitness, law and citizenship, appropriate technology, and the joy of being outdoors. Describes the Ontario Cycling Association's cycling strategy and its four components: school cycling…

  19. A life cycle assessment of options for producing synthetic fuel via pyrolysis.

    Science.gov (United States)

    Vienescu, D N; Wang, J; Le Gresley, A; Nixon, J D

    2018-02-01

    The aim of this study was to investigate the sustainability of producing synthetic fuels from biomass using thermochemical processing and different upgrading pathways. Life cycle assessment (LCA) models consisting of biomass collection, transportation, pre-treatment, pyrolysis and upgrading stages were developed. To reveal the environmental impacts associated with greater post-processing to achieve higher quality fuels, six different bio-oil upgrading scenarios were analysed and included esterification, ketonisation, hydrotreating and hydrocracking. Furthermore, to take into account the possible ranges in LCA inventory data, expected, optimistic and pessimistic values for producing and upgrading pyrolysis oils were evaluated. We found that the expected carbon dioxide equivalent emissions could be as high as 6000 gCO 2e /kg of upgraded fuel, which is greater than the emissions arising from the use of diesel fuel. Other environmental impacts occurring from the fuel production process are outlined, such as resource depletion, acidification and eutrophication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Structures, Thermochemical Properties, and Bonding of Mixed Alkaline-Earth-Metal Silicon Trimers Si3M(+/0/-) with M = Be, Mg, Ca.

    Science.gov (United States)

    Hang, Tran Dieu; Hung, Huynh Minh; Nguyen, Huyen Thi; Nguyen, Minh Tho

    2015-06-18

    The ground state geometries, electronic structures, and thermochemical properties of binary alkaline-earth-metal silicon clusters Si3M with M = Be, Mg, Ca in neutral, cationic, and anionic states were investigated using quantum chemical computations. Lowest-lying isomers of the clusters were determined on the basis of the composite G4 energies. Along with total atomization energies, thermochemical parameters were determined for the first time by means of the G4 and coupled-cluster theory with complete basis set CCSD(T)/CBS approaches. The most favored equilibrium formation sequences for Si3M clusters emerge as follows: all Si3M(+/0/-) clusters are formed by attaching the M atom into the corresponding cation, neutral and anion silicon trimer Si3(+/0/-), except for the Si3Mg(+) and Si3Ca(+) where the metal cations are bound to the neutral Si3. The resulting mixed tetramers exhibit geometrical and electronic features similar to those of the pure silicon tetramer Si4(+/0/-). Electron localization function (ELF) and ring current analyses point out that the σ-aromatic character of silicon tetramer remains unchanged upon substituting one Si atom by one alkaline-earth-metal atom.

  1. Thermochemical and kinetic aspects of the sulfurization of Cu–Sb and Cu–Bi thin films

    International Nuclear Information System (INIS)

    Colombara, Diego; Peter, Laurence M.; Rogers, Keith D.; Hutchings, Kyle

    2012-01-01

    CuSbS 2 and Cu 3 BiS 3 are being investigated as part of a search for new absorber materials for photovoltaic devices. Thin films of these chalcogenides were produced by conversion of stacked and co-electroplated metal precursor layers in the presence of elemental sulfur vapour. Ex-situ XRD and SEM/EDS analyses of the processed samples were employed to study the reaction sequence with the aim of achieving compact layer morphologies. A new “Time-Temperature-Reaction” (TTR) diagram and modified Pilling–Bedworth coefficients have been introduced for the description and interpretation of the reaction kinetics. For equal processing times, the minimum temperature required for CuSbS 2 to appear is substantially lower than for Cu 3 BiS 3 , suggesting that interdiffusion across the interfaces between the binary sulfides is a key step in the formation of the ternary compounds. The effects of the heating rate and sulfur partial pressure on the phase evolution as well as the potential losses of Sb and Bi during the processes have been investigated experimentally and the results related to the equilibrium pressure diagrams obtained via thermochemical computation. - Graphical Abstract: Example of 3D plot showing the equilibrium pressure surfaces of species potentially escaping from chalcogenide films as a function of temperature and sulfur partial pressure. Bi (g) , Bi 2(g) , and BiS (g) are the gaseous species in equilibrium with solid Bi 2 S 3(s) considered in this specific example. The pressure threshold plane corresponds to the pressure limit above which the elemental losses from 1 μm thick films exceeds 10% of the original content per cm 2 area of film and dm 3 capacity of sulfurization furnace under static atmosphere conditions. The sulfurization temperature/sulfur partial pressure boundaries required to minimise the elemental losses below a given value can be easily read from the 2D projection of the intersection curves into the T-p S2 plane. Highlights:

  2. Development of new duplex treatments on 100Cr6steel combining Thermochemical Treatments, Laser Shock Peening and Physical Vapour Deposition

    International Nuclear Information System (INIS)

    Osés, J.; Fuentes, G. G.; Santo Domingo, S.; Miguel, I.; Gimeno, S.; Carreras, L.; Peyre, P.; Gorny, C.

    2017-01-01

    100Cr6 steel (AISI 52100) is one of the most used steel grades in the manufacturing of through hardening bearings mainly due to its properties: controlled impurities during steel making process, high hardenability and well known mechanical properties such as wear and fatigue resistance on clean environments. These characteristics play an important role on the performance of a bearing together with the bearing design, loads and environment. However, there is an increasing set of demanding applications where the above mentioned steel does not fulfil the required needs and thus, bearing manufacturers continuously work on the development of technologies to improve the bearing performance. Nowadays thermochemical treatments (TCT), such as carbonitriding are being applied to this steel in order to enhance the performance of such pieces in contaminated environment, where particles can produce defects on the raceway, increasing the onset of defects that eventually lead to premature fail. These treatments induce the formation of carbides and nitrides which are directly related to the enhancement of the wear resistance and also to increasing the amount of Retained Austenite (RA) in the surface which may have a beneficial effect as it delays the crack propagation on subsurface regions, then increasing bearing fatigue life. In this work, different TCTs have been applied to 100Cr6 steel flat samples. Using a tribometer (ball-on-disc configuration) and a grinding machine, surface and in-depth wear resistance measurements have been carried out, obtaining wear resistance profiles that have been correlated with the microstructure, microhardness profiles and RA content. The most promising TCT has been combined either with Laser Shock Peening (LSP) treatments or carbonaceous Physical Vapour Deposition (PVD) coatings with the aim of improving not only the wear resistance but also the CoF of the duplex treated sample. The results obtained on flat samples are promising; the combination

  3. The Solar Cycle

    Directory of Open Access Journals (Sweden)

    David H. Hathaway

    2015-09-01

    Full Text Available The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev–Ohl (even-odd Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  4. Driving and engine cycles

    CERN Document Server

    Giakoumis, Evangelos G

    2017-01-01

    This book presents in detail the most important driving and engine cycles used for the certification and testing of new vehicles and engines around the world. It covers chassis and engine-dynamometer cycles for passenger cars, light-duty vans, heavy-duty engines, non-road engines and motorcycles, offering detailed historical information and critical review. The book also provides detailed examples from SI and diesel engines and vehicles operating during various cycles, with a focus on how the engine behaves during transients and how this is reflected in emitted pollutants, CO2 and after-treatment systems operation. It describes the measurement methods for the testing of new vehicles and essential information on the procedure for creating a driving cycle. Lastly, it presents detailed technical specifications on the most important chassis-dynamometer cycles around the world, together with a direct comparison of those cycles.

  5. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Penn, W.J.

    1979-05-01

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  6. Measuring Business Cycle Time

    OpenAIRE

    Stock, James H.

    1987-01-01

    The business cycle analysis of Arthur F. Burns and Wesley C. Mitchell and the National Bureau of Economic Research presumed that aggregate economic variables evolve on a time scale defined by business cycle turning points rather than by months or quarters. Do macroeconomic variables appear to evolve on an economic rather than a calendar time scale? Evidence presented here suggests that they do. However, the estimated economic time scales are only weakly related to business cycle time scales, ...

  7. Life Cycle Assessment On Environment

    International Nuclear Information System (INIS)

    Kim, Sang Yong

    1998-04-01

    This book deals with history of life cycle assessment, methodology of life cycle assessment, software system and database, simplification, application of life cycle assessment, life cycle design, calculation of cost of life cycle, application of public policy over life cycle, prospect in Europe, materials in life cycle assessment, application of life cycle assessment in business, system analysis, assessment of value as a state of influence valuation, application of LCA for management situation of solidity waste and view for the future.

  8. The Oxygen Cycle.

    Science.gov (United States)

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  9. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  10. The carbon cycle revisited

    Science.gov (United States)

    Bolin, Bert; Fung, Inez

    1992-01-01

    Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.

  11. Seeing the Carbon Cycle

    Science.gov (United States)

    Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert

    2006-01-01

    In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…

  12. Teaching the Krebs Cycle.

    Science.gov (United States)

    Akeroyd, F. Michael

    1983-01-01

    Outlines a simple but rigorous treatment of the Krebs Cycle suitable for A-level Biology students. The importance of the addition of water molecules in various stages of the cycle is stressed as well as the removal of hydrogen atoms by the oxidizing enzymes. (JN)

  13. Power Plant Cycling Costs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  14. Life cycle management (LCM)

    DEFF Research Database (Denmark)

    Remmen, Arne; Thrane, Mikkel

    2004-01-01

    The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels.......The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels....

  15. Predicting the Sunspot Cycle

    Science.gov (United States)

    Hathaway, David H.

    2009-01-01

    The 11-year sunspot cycle was discovered by an amateur astronomer in 1844. Visual and photographic observations of sunspots have been made by both amateurs and professionals over the last 400 years. These observations provide key statistical information about the sunspot cycle that do allow for predictions of future activity. However, sunspots and the sunspot cycle are magnetic in nature. For the last 100 years these magnetic measurements have been acquired and used exclusively by professional astronomers to gain new information about the nature of the solar activity cycle. Recently, magnetic dynamo models have evolved to the stage where they can assimilate past data and provide predictions. With the advent of the Internet and open data policies, amateurs now have equal access to the same data used by professionals and equal opportunities to contribute (but, alas, without pay). This talk will describe some of the more useful prediction techniques and reveal what they say about the intensity of the upcoming sunspot cycle.

  16. Two Quantum Polytropic Cycles

    Science.gov (United States)

    Arias-Hernández, L. A.; Morales-Serrano, A. F.

    2002-11-01

    In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.

  17. Fuel cycle management

    International Nuclear Information System (INIS)

    Herbin, H.C.

    1977-01-01

    The fuel cycle management is more and more dependent on the management of the generation means among the power plants tied to the grid. This is due mainly because of the importance taken by the nuclear power plants within the power system. The main task of the fuel cycle management is to define the refuelling pattern of the new and irradiated fuel assemblies to load in the core as a function of: 1) the differences which exist between the actual conditions of the core and what was expected for the present cycle, 2) the operating constraints and the reactor availability, 3) the technical requirements in safety and the technological limits of the fuel, 4) the economics. Three levels of fuel cycle management can be considered: 1) a long term management: determination of enrichments and expected cycle lengths, 2) a mid term management whose aim corresponds to the evaluation of the batch to load within the core as a function of both: the next cycle length to achieve and the integrated power history of all the cycles up to the present one, 3) a short term management which deals with the updating of the loaded fuel utilisations to take into account the operation perturbations, or with the alteration of the loading pattern of the next batch to respect unexpected conditions. (orig.) [de

  18. Future fuel cycles

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1980-01-01

    A fuel cycle must offer both financial and resource savings if it is to be considered for introduction into Ontario's nuclear system. The most promising alternative CANDU fuel cycles are examined in the context of both of these factors over a wide range of installed capacity growth rates and economic assumptions, in order to determine which fuel cycle, or cycles, should be introduced, and when. It is concluded that the optimum path for the long term begins with the prompt introduction of the low-enriched-uranium fuel cycle. For a wide range of conditions, this cycle remains the optimum throughout the very long term. Conditions of rapid nuclear growth and very high uranium price escalation rates warrant the supersedure of the low-enriched-uranium cycle by either a plutonium-topped thorium cycle or plutonium recycle, beginning between 2010 and 2025. It is also found that the uranium resource position is sound in terms of both known resources and production capability. Moreover, introduction of the low-enriched-uranium fuel cycle and 1250 MWe reactor units will assure the economic viability of nuclear power until at least 2020, even if uranium prices increase at a rate of 3.5% above inflation. The interrelationship between these two conclusions lies in the tremendous incentive for exploration which will occur if the real uranium price escalation rate is high. From a competitive viewpoint, nuclear power can withstand increases in the price of uranium. However, such increases will likely further expand the resource base, making nuclear an even more reliable energy source. (auth)

  19. Novel Fabrication of Biodegradable Superabsorbent Microspheres with Diffusion Barrier through Thermo-Chemical Modification and Their Potential Agriculture Applications for Water Holding and Sustained Release of Fertilizer.

    Science.gov (United States)

    Feng, Diejing; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-07-26

    Synergistic utilization of water and fertilizer has vital contribution to the modern production of agriculture. This work reports on a simple and facile strategy to prepare biodegradable yeast/sodium alginate/poly(vinyl alcohol) superabsorbent microspheres with a diffusion barrier merit by thermo-chemical modification route. The integrated performances, including water absorbency, water retention, water evaporation ratio, leaching loss control, sustained-release behaviors, and degradation in soil, were systematically investigated. The results revealed that the modified microspheres were a triumphant water and fertilizer manager to effectively hold water and control the unexpected leakage of fertilizer for sustained release. Therefore, this work provides a promising approach to ameliorate the utilization efficiency of water and fertilizer in potential agriculture applications.

  20. Valorization of agroindustrial solid residues and residues from biofuel production chains by thermochemical conversion: a review, citing Brazil as a case study

    Directory of Open Access Journals (Sweden)

    E. Virmond

    2013-06-01

    Full Text Available Besides high industrial development, Brazil is also an agribusiness country. Each year about 330 million metrics tons (Mg of biomass residues are generated, requiring tremendous effort to develop biomass systems in which production, conversion and utilization of bio-based products are carried out efficiently and under environmentally sustainable conditions. For the production of biofuels, organic chemicals and materials, it is envisaged to follow a biorefinery model which includes modern and proven green chemical technologies such as bioprocessing, pyrolysis, gasification, Fischer-Tropsch synthesis and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This paper presents promising options for valorization of Brazilian agroindustrial biomass sources and residues originating from the biofuel production chains as renewable energy sources and addresses the main aspects of the thermochemical technologies which have been applied.

  1. Regularities of thermochemical characteristics of 1-1, 2-1, 3-1 electrolyte solutions in dimethyl sulfoxide-water and propylene carbonate water mixtures

    International Nuclear Information System (INIS)

    Vorob'ev, A.F.; Monaenkova, A.S.; AlekseeV, G.I.

    1987-01-01

    In an air-tight tilting calorimeter with an isothermal casing enthalpies of praseodymium chloride solution in water, dimethyl sulfoxide (DMSO) - water mixtures, contaning 3.86 and 18.53 mol.% DMSO, and propylene carbonate (PC) - water mixtures, containing 1.85 and 3.23 mol.% PC are measured. The enthalpies of praseodymium chloride solution in the given mixtures in case of infinite solution dilution are determined. Solvation enthalpies of praseodymium and neodymium chlorides, as well as alkali earth metal and magnesium chlorides in water and DMSO - water and PC - water mixtures are calculated. Regularities in thermochemical characteristics of solutions of the given salts in DMSO - water and PC - water mixtures are discussed

  2. Evaluating Indicators and Life Cycle Inventories for Processes in Early Stages of Technical Readiness

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Raymond [U.S. Environmental Protection Agency (EPA); Ruiz-Mercado, Gerardo [U.S. Environmental Protection Agency (EPA)

    2017-11-01

    This presentation examines different methods for analyzing manufacturing processes in the early stages of technical readiness. Before developers know much detail about their processes, it is valuable to apply various assessments to evaluate their performance. One type of assessment evaluates performance indicators to describe how closely processes approach desirable objectives. Another type of assessment determines the life cycle inventories (LCI) of inputs and outputs for processes, where for a functional unit of product, the user evaluates the resources used and the releases to the environment. These results can be compared to similar processes or combined with the LCI of other processes to examine up-and down-stream chemicals. The inventory also provides a listing of the up-stream chemicals, which permits study of the whole life cycle. Performance indicators are evaluated in this presentation with the U.S. Environmental Protection Agency's GREENSCOPE (Gauging Reaction Effectiveness for ENvironmental Sustainability with a multi-Objective Process Evaluator) methodology, which evaluates processes in four areas: Environment, Energy, Economics, and Efficiency. The method develops relative scores for indicators that allow comparisons across various technologies. In this contribution, two conversion pathways for producing cellulosic ethanol from biomass, via thermochemical and biochemical routes, are studied. The information developed from the indicators and LCI can be used to inform the process design and the potential life cycle effects of up- and down-stream chemicals.

  3. High-temperature isothermal chemical cycling for solar-driven fuel production.

    Science.gov (United States)

    Hao, Yong; Yang, Chih-Kai; Haile, Sossina M

    2013-10-28

    The possibility of producing chemical fuel (hydrogen) from the solar-thermal energy input using an isothermal cycling strategy is explored. The canonical thermochemical reactive oxide, ceria, is reduced under high temperature and inert sweep gas, and in the second step oxidized by H2O at the same temperature. The process takes advantage of the oxygen chemical potential difference between the inert sweep gas and high-temperature steam, the latter becoming more oxidizing with increasing temperature as a result of thermolysis. The isothermal operation relieves the need to achieve high solid-state heat recovery for high system efficiency, as is required in a conventional two-temperature process. Thermodynamic analysis underscores the importance of gas-phase heat recovery in the isothermal approach and suggests that attractive efficiencies may be practically achievable on the system level. However, with ceria as the reactive oxide, the isothermal approach is not viable at temperatures much below 1400 °C irrespective of heat recovery. Experimental investigations show that an isothermal cycle performed at 1500 °C can yield fuel at a rate of ~9.2 ml g(-1) h(-1), while providing exceptional system simplification relative to two-temperature cycling.

  4. Enhanced Thermochemical Stability of CH3NH3PbI3Perovskite Films on Zinc Oxides via New Precursors and Surface Engineering.

    Science.gov (United States)

    Qin, Fei; Meng, Wei; Fan, Jiacheng; Ge, Chang; Luo, Bangwu; Ge, Ru; Hu, Lin; Jiang, Fangyuan; Liu, Tiefeng; Jiang, Youyu; Zhou, Yinhua

    2017-08-09

    Hydroxyl groups on the surface of ZnO films lead to the chemical decomposition of CH 3 NH 3 PbI 3 perovskite films during thermal annealing, which limits the application of ZnO as a facile electron-transporting layer (ETL) in perovskite solar cells. In this work, we report a new recipe that leads to substantially reduced hydroxyl groups on the surface of the resulting ZnO films by employing polyethylenimine (PEI) to replace generally used ethanolamine in the precursor solutions. Films derived from the PEI-containing precursors are denoted as P-ZnO and those from the ethanolamine-containing precursors as E-ZnO. Besides the fewer hydroxyl groups that alleviate the thermochemical decomposition of CH 3 NH 3 PbI 3 perovskite films, P-ZnO also provides a template for the fixation of fullerene ([6,6]-phenyl-C61-butyric acid methyl ester, PCBM) owing to its nitrogen-rich surface that can interact with PCBM. The fullerene was used to block the direct contact between P-ZnO and CH 3 NH 3 PbI 3 films and therefore further enhance the thermochemical stability of perovskite films. As a result, perovskite solar cells based on the P-ZnO/PCBM ETL yield an optimal power conversion efficiency (PCE) of 15.38%. We also adopt P-ZnO as the ETL for organic solar cells that yield a remarkable PCE of 10.5% based on the PBDB-T:ITIC photoactive layer.

  5. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere

    Science.gov (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Johnston, David T.

    2018-02-01

    Ultramafic-hosted hydrothermal systems - characterized by ongoing serpentinization reactions - exert an important influence on the global sulfur cycle. Extensive water-rock interaction causes elemental exchange between seawater and the oceanic lithosphere, effectively removing sulfate from seawater through both abiogenic and biogenic processes. Here, we use bulk rock multiple sulfur isotope signatures (32S, 33S, 34S) and in situ sulfide analyses together with petrographic observations to track the sulfur cycling processes and the hydrothermal evolution of ancient peridotite-hosted hydrothermal systems. We investigate serpentinized peridotites from the Northern Apennine ophiolite in Italy and the Santa Elena ophiolite in Costa Rica and compare those with the Iberian Margin (Ocean Drilling Program (ODP) Leg 149 and 173) and the 15°20‧N Fracture Zone along the Mid-Atlantic Ridge (ODP Leg 209). In situ measurements of sulfides in the Northern Apennine serpentinites preserve a large range in δ34Ssulfide of -33.8 to +13.3‰ with significant heterogeneities within single sulfide grains and depending on mineralogy. Detailed mineralogical investigation and comparison with bulk rock Δ33Ssulfide and in situ δ34Ssulfide data implies a thermal evolution of the system from high temperatures (∼350 °C) that allowed thermochemical sulfate reduction and input of hydrothermal sulfide to lower temperatures (peridotites preserve distinct signatures for fluid circulation at high temperatures with both closed system thermochemical sulfate reduction and input of mafic-derived sulfur. In addition, the peridotites provide strong evidence that low Ca2+ concentrations in peridotite-hosted systems can limit sulfate removal during anhydrite precipitation at temperatures above 150 °C. This may play a central role for the availability of sulfate to microbial communities within these systems. Overall, the combined application of in situ and bulk rock multiple sulfur isotope measurements

  6. Product Life Cycle Planning

    National Research Council Canada - National Science Library

    Walaszek, Jeffrey

    2003-01-01

    .... This phase of work was undertaken to: (1) provide guidelines, technical support, and planning approaches for researchers that result in realistic life cycle plans for products emerging from the RSM...

  7. Cycles in graphs

    CERN Document Server

    Alspach, BR

    1985-01-01

    This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.

  8. Fuel cycle studies

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Programs are being conducted in the following areas: advanced solvent extraction techniques, accident consequences, fuel cycles for nonproliferation, pyrochemical and dry processes, waste encapsulation, radionuclide transport in geologic media, hull treatment, and analytical support for LWBR

  9. Educational Business Cycles

    DEFF Research Database (Denmark)

    Tepe, Markus; Vanhuysse, Pieter

    2009-01-01

    Strong institutional constraints and better-informed voters may lead re-election seeking incumbents to shift the use of political business cycle mechanisms away from monetary and fiscal policy towards other policy domains that are more easily manipulable, targetable, and timeable. We investigate...... teacher employment patterns at the state level in Germany and find strong evidence of cycling mechanisms, in the form of electioneering and honeymooning. Against a backdrop of a continuously shrinking total teachers' pool, German state-level incumbents accelerate the hiring of new teachers during election...... periods and partly reverse this during politically safer points in the electoral cycle. Cycles are mediated by issue salience: heightened attention to German public schooling after the notorious PISA-2000 tests further strengthens the manipulation of new teacher hiring for electoral purposes....

  10. Educational Business Cycles

    DEFF Research Database (Denmark)

    Tepe, Markus; Vanhuysse, Pieter

    Strong institutional constraints and better-informed voters may lead re-election seeking incumbents to shift the use of political business cycle mechanisms away from monetary and fiscal policy towards other policy domains that are more easily manipulable, targetable, and timeable. We investigate...... teacher employment patterns at the state level in Germany and find strong evidence of cycling mechanisms, in the form of electioneering and honeymooning. Against a backdrop of a continuously shrinking total teachers' pool, German state-level incumbents accelerate the hiring of new teachers during election...... periods and partly reverse this during politically safer points in the electoral cycle. Cycles are mediated by issue salience: heightened attention to German public schooling after the notorious PISA-2000 tests further strengthens the manipulation of new teacher hiring for electoral purposes....

  11. Traffic Signal Cycle Lengths

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Traffic signal location list for the town of Chapel Hill. This data set includes light cycle information as well as as intersection information.The Town of Chapel...

  12. IFR fuel cycle

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Lineberry, M.J.; Phipps, R.D.

    1992-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation

  13. The global carbon cycle

    International Nuclear Information System (INIS)

    Maier-Reimer, E.

    1991-01-01

    Basic concepts of the global carbon cycle on earth are described; by careful analyses of isotopic ratios, emission history and oceanic ventilation rates are derived, which provide crucial tests for constraining and calibrating models. Effects of deforestation, fertilizing, fossil fuel burning, soil erosion, etc. are quantified and compared, and the oceanic carbon process is evaluated. Oceanic and terrestrial biosphere modifications are discussed and a carbon cycle model is proposed

  14. Solar Cycle Predictions

    Science.gov (United States)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  15. Quantifying the Adaptive Cycle.

    Directory of Open Access Journals (Sweden)

    David G Angeler

    Full Text Available The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011 data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  16. Quantifying the adaptive cycle

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  17. Rapid Cycling and Its Treatment

    Science.gov (United States)

    ... Important security updates for DBSAlliance.org. Read more... Rapid Cycling and its Treatment What is bipolar disorder? ... Guide to Depression and Manic Depression . What is rapid cycling? Rapid cycling is defined as four or ...

  18. The Effect of Cycling Intensity on Cycling Economy During Seated and Standing Cycling.

    Science.gov (United States)

    Arkesteijn, Marco; Jobson, Simon; Hopker, James; Passfield, Louis

    2016-10-01

    Previous research has shown that cycling in a standing position reduces cycling economy compared with seated cycling. It is unknown whether the cycling intensity moderates the reduction in cycling economy while standing. The aim was to determine whether the negative effect of standing on cycling economy would be decreased at a higher intensity. Ten cyclists cycled in 8 different conditions. Each condition was either at an intensity of 50% or 70% of maximal aerobic power at a gradient of 4% or 8% and in the seated or standing cycling position. Cycling economy and muscle activation level of 8 leg muscles were recorded. There was an interaction between cycling intensity and position for cycling economy (P = .03), the overall activation of the leg muscles (P = .02), and the activation of the lower leg muscles (P = .05). The interaction showed decreased cycling economy when standing compared with seated cycling, but the difference was reduced at higher intensity. The overall activation of the leg muscles and the lower leg muscles, respectively, increased and decreased, but the differences between standing and seated cycling were reduced at higher intensity. Cycling economy was lower during standing cycling than seated cycling, but the difference in economy diminishes when cycling intensity increases. Activation of the lower leg muscles did not explain the lower cycling economy while standing. The increased overall activation, therefore, suggests that increased activation of the upper leg muscles explains part of the lower cycling economy while standing.

  19. Historicising the Hydrosocial Cycle

    Directory of Open Access Journals (Sweden)

    Jeremy J. Schmidt

    2014-02-01

    Full Text Available This paper examines the historical claims made in support of the hydrosocial cycle. In particular, it considers how arguments advancing the hydrosocial cycle make historical claims regarding modernist conceptions of what water is (i.e. H2O and its fit with society. The paper gives special emphasis to the society/nature dualism and to the notion of agency as key sites of contest in arguments regarding the hydrosocial cycle. It finds that, while several versions of the hydrosocial cycle seek to advance a political ecology more sensitive to non-human actions, these same accounts often do not address the robust account of non-human agency in the historical record. Evidence is presented regarding water’s agency amongst late 19th and early 20th century architects of key water management norms in the United States. This evidence troubles accounts of the hydrosocial cycle that critique the US experience and suggests new directions for rethinking the role of historical and institutional norms in water policy.

  20. CO2 cycle

    Science.gov (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.

    2017-01-01

    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.