WorldWideScience

Sample records for cu-al alloys prepared

  1. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.

    2000-01-01

    Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial and tempo......Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  2. Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming

    Energy Technology Data Exchange (ETDEWEB)

    Tang Huaguo [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Cheng Zhiqiang [College of Resources and Environment, Jilin Agricultural University, Changchun 130118 (China); Liu Jianwei [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ma Xianfeng, E-mail: xfma@ciac.jl.cn [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer A high strength aluminum alloy of Al-2 wt.%Mg-2 wt.%Cu has been prepared by mechanical alloying and press-forming. Black-Right-Pointing-Pointer The alloy only consists of solid solution {alpha}-Al. Black-Right-Pointing-Pointer The grains size of {alpha}-Al was about 300 nm-5 {mu}m. Black-Right-Pointing-Pointer The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al-2 wt.%Mg-2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution {alpha}-Al. Microstructure characterizations revealed that the grain size of {alpha}-Al was about 300 nm-5 {mu}m. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  3. Investigation of new type Cu-Hf-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Nagy, E; Ronto, V; Solyom, J; Roosz, A

    2009-01-01

    In the last years new type Cu-Hf-Al ternary alloys were developed with high glass forming ability and ductility. The addition of Al to Cu-Hf alloys results in improvements in glass formation, thermal stability and mechanical properties of these alloys. We have investigated new Cu-based bulk amorphous alloys in Cu-Hf-Al ternary system. The alloys with Cu 49 Hf 42 Al 9 , Cu 46 Hf 45 Al 9 , Cu 50 Hf 42.5 Al 7.5 and Cu 50 Hf 45 Al 5 compositions were prepared by arc melting. The samples were made by centrifugal casting and were investigated by X-ray diffraction method. Thermodynamic properties were examined by differential scanning calorimetry and the structure of the crystallising phases by scanning electron microscopy. The determination of liquidus temperatures of alloys were measured by differential thermal analysis.

  4. Mechanical properties of Al-Cu alloy-SiC composites

    Science.gov (United States)

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-01

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  5. Mechanical properties of Al-Cu alloy-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Anggara, B. S., E-mail: anggorobs1960@yahoo.com [Jurusan Fisika, FMIPA Universitas Negeri Jakarta, Indonesia 13220 and PPS Ilmu Material, Department Fisika, FMIPA, Universitas Indonesia (Indonesia); Handoko, E. [Jurusan Fisika, FMIPA Universitas Negeri Jakarta, 13220 (Indonesia); Soegijono, B. [PPS Ilmu Material, Department Fisika, FMIPA, Universitas Indonesia (Indonesia)

    2014-09-25

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  6. Microhardness variation and related microstructure in Al-Cu alloys prepared by HF induction melting and RF sputtering

    Science.gov (United States)

    Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.

    2009-03-01

    The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.

  7. The electrochemical properties of melt-spun Al-Si-Cu alloys

    International Nuclear Information System (INIS)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing; Sun Zhanbo; Song Xiaoping; Yang Sen; Wang Liqun

    2011-01-01

    Highlights: → Non-equilibrium Al 75-X Si 25 Cu X alloys exhibit high lithiation storages. → The lithiation mechanism is different from melt-spun Al-Si-Mn system. → The structural evolution is mitigated in the non-equilibrium alloys. → Volume variation is alleviated due to the co-existence of Al 2 Cu, α-Si and α-Al. - Abstract: Melt spinning was used to prepare Al 75-X Si 25 Cu X (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al 2 Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al 74 Si 25 Cu 1 and Al 71 Si 25 Cu 4 anodes exhibited initial discharge specific capacities of 1539 mAh g -1 , 1324 mAh g -1 and reversible capacities above 472 mAh g -1 , 508 mAh g -1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al 2 Cu for the present alloys.

  8. The electrochemical properties of melt-spun Al-Si-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun Zhanbo, E-mail: szb@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Song Xiaoping; Yang Sen; Wang Liqun [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-10-03

    Highlights: {yields} Non-equilibrium Al{sub 75-X}Si{sub 25}Cu{sub X} alloys exhibit high lithiation storages. {yields} The lithiation mechanism is different from melt-spun Al-Si-Mn system. {yields} The structural evolution is mitigated in the non-equilibrium alloys. {yields} Volume variation is alleviated due to the co-existence of Al{sub 2}Cu, {alpha}-Si and {alpha}-Al. - Abstract: Melt spinning was used to prepare Al{sub 75-X}Si{sub 25}Cu{sub X} (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, {alpha}-Si and Al{sub 2}Cu co-existed in the alloys. Nano-scaled {alpha}-Al grains, as the matrix, formed in the as-quenched ribbons. The Al{sub 74}Si{sub 25}Cu{sub 1} and Al{sub 71}Si{sub 25}Cu{sub 4} anodes exhibited initial discharge specific capacities of 1539 mAh g{sup -1}, 1324 mAh g{sup -1} and reversible capacities above 472 mAh g{sup -1}, 508 mAh g{sup -1} at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled {alpha}-Al, {alpha}-Si, and Al{sub 2}Cu for the present alloys.

  9. Coupled growth of Al-Al2Cu eutectics in Al-Cu-Ag alloys

    International Nuclear Information System (INIS)

    Hecht, U; Witusiewicz, V; Drevermann, A

    2012-01-01

    Coupled eutectic growth of Al and Al 2 Cu was investigated in univariant Al-Cu-Ag alloys during solidification with planar and cellular morphology. Experiments reveal the dynamic selection of small spacings, below the minimum undercooling spacing and show that distinct morphological features pertain to nearly isotropic or anisotropic Al-Al 2 Cu interfaces.

  10. Cu-segregation at the Q'/α-Al interface in Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Teguri, Daisuke; Uetani, Yasuhiro; Sato, Tatsuo; Ikeno, Susumu

    2002-01-01

    Cu segregation was detected at the Q ' /α-Al interface in an Al-Mg-Si-Cu alloy by energy-filtered transmission electron microscopy. By contrast, in a Cu-free Al-Mg-Si alloy no segregation was observed at the interface between the matrix and Type-C precipitate

  11. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  12. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  13. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    Science.gov (United States)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  14. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    OpenAIRE

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these allo...

  15. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Andrea Školáková

    2017-11-01

    Full Text Available In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  16. Phase transformation and microstructure study of the as-cast Cu-rich Cu-Al-Mn ternary alloys

    Directory of Open Access Journals (Sweden)

    Holjevac-Grgurić T.

    2017-01-01

    Full Text Available Four Cu-rich alloys from the ternary Cu-Al-Mn system were prepared in the electric-arc furnace and casted in cylindrical moulds with dimensions: f=8 mm and length 12 mm. Microstructural investigations of the prepared samples were performed by using optical microscopy (OM and scanning electron microscopy, equipped by energy dispersive spectroscopy (SEM-EDS. Assignation of crystalline phases was confirmed by XRD analysis. Phase transition temperatures were determined using simultaneous thermal analyzer STA DSC/TG. Phase equilibria calculation of the ternary Cu-Al-Mn system was performed using optimized thermodynamic parameters from literature. Microstructure and phase transitions of the prepared as-cast alloys were investigated and experimental results were compared with the results of thermodynamic calculations.

  17. Fragility and structure of Al-Cu alloy melts

    International Nuclear Information System (INIS)

    Lv Xiaoqian; Bian Xiufang; Mao Tan; Li Zhenkuan; Guo Jing; Zhao Yan

    2007-01-01

    The dynamic viscosity measurements are performed for Al-Cu alloy melts with different compositions using an oscillating-cup viscometer. The results show that the viscosities of Al-Cu alloy melts increase with the copper content increasing, and also have a correlation with the correlation radius of clusters, which is measured by the high-temperature X-ray diffractometer. It has also been found that the fragilities of superheated melts (M) of hypereutectic Al-Cu alloys increase with the copper content increasing. There exists a relationship between the fragility and the structure in Al-Cu alloy melts. The value of the M reflects the variation of activation energy for viscous flow

  18. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Liang, Shuhua, E-mail: liangxaut@gmail.com; Yang, Qing; Wang, Xianhui

    2016-11-30

    Highlights: • Nano- or micro-scale fractal dendritic copper (FDC) was synthesized by electroless immersing of Cu-Al alloys in CuCl{sub 2} + HCl. • FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. • Nanoscale Cu{sub 2}O was found at the edge of FDC. Nanoporous copper (NPC) can also be obtained by using Cu{sub 17}Al{sub 83} alloy. • The potential difference between CuAl{sub 2} and α-Al phase and the replacement reaction in multiphase solution are key factors. - Abstract: Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. Compared to Cu{sub 40}Al{sub 60} and Cu{sub 45}Al{sub 55} alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu{sub 17}Al{sub 83} alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu{sub 2}O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu{sub 17}Al{sub 83} alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl{sub 2} intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  19. Effect of processing variables on microstructure and properties of two Al-Li-Cu-Mg-Zr alloys

    International Nuclear Information System (INIS)

    Palmer, I.G.; Lewis, R.E.; Crooks, D.D.

    1984-01-01

    Two Al-Li-Cu-Mg-Zr alloys have been prepared in the form of both powder metallurgy (PM) and ingot metallurgy (IM) alloys. The compositions were selected to meet certain program goals based on the results of an alloy development phase, the details of which have been previously published. The target compositions were Al-3Li-1.5Cu-1Mg-0.2Zr and Al-3Cu-2Li-1Mg-0.2Zr. The PM alloys were prepared from chill cast remelt stock by centrifugal atomization in helium, followed by screening, degassing, and extrusion. The IM alloys were prepared by direct chill (DC) casting, homogenization and extrusion. Full details of the production of the alloys are given. The effects of various processing conditions on microstructure and properties were evaluated, including different heat treatments and stretching conditions. These effects are described in detail with particular emphasis on a comparison of the PM and IM alloys. 10 references

  20. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Science.gov (United States)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is , and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  1. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  2. Al-Si/Al2O3 in situ composite prepared by displacement reaction of CuO/Al system

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2010-02-01

    Full Text Available Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al. The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350 ℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/Al system was studied by using of differential scanning calorimetry(DSC and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu2O and Al2O3 at the melting temperature of the matrix alloy, and second, Cu2O reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750–780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.

  3. Study On Nanohardness Of Phases Occurring In ZnAl22Cu3 And ZnAl40Cu3 Alloys

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2015-06-01

    Full Text Available Zn-Al alloys are mainly used due to their high tribological and damping properties. A very important issue is determination of the hardness of the phases present in the Zn-Al-Cu alloys. Unfortunately, in literature there is lack of studies on the hardness of the phases present in the alloys Zn-Al-Cu. The aim of this research was to determine the hardness of the phases present in the ZnAl22Cu3Si and ZnAl40Cu3Si alloys. The scope of the research included examination of the structure, chemical composition of selected micro-regions and hardness of phases present in the examined alloys. The research carried out has shown, that CuZn4 phase is characterized by a similar hardness as the hardness of the interdendritic areas. The phases present in the structure of ZnAl40Cu3 and ZnAl22Cu3 alloys after soaking at the temperature of 185 °C are characterized by lower hardness than the phase present in the structure of the as-cast alloys.

  4. The effect of zinc on the microstructure and phase transformations of casting Al-Cu alloys

    Directory of Open Access Journals (Sweden)

    Manasijević Ivana I.

    2016-01-01

    Full Text Available Copper is one of the main alloying elements for aluminum casting alloys. As an alloying element, copper significantly increases the tensile strength and toughness of alloys based on aluminum. The copper content in the industrial casting aluminum alloys ranges from 3,5 to 11 wt.%. However, despite the positive effect on the mechanical properties, copper has a negative influence on the corrosion resistance of aluminum and its alloys. In order to further improve the properties of Al-Cu alloys they are additional alloyed with elements such as zinc, magnesium and others. In this work experimental and analytical examination of the impact of zinc on the microstructure and phase transformations of Al-Cu alloys was carried out. In order to determine the effect of the addition of zinc to the structure and phase transformations of Al-Cu alloys two alloys of Al-Cu-Zn system with selected compositions were prepared and then examined using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDX. The experimental results were compared with the results of thermodynamic calculations of phase equilibria.

  5. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  6. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  7. Tem Observation Of Precipitate Structures In Al-Zn-Mg Alloys With Additions Of Cu/Ag

    Directory of Open Access Journals (Sweden)

    Watanabe K.

    2015-06-01

    Full Text Available Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2at.% and the same as, respectively. Ag or Cu added alloy showed higher maximum hardness than base alloy. The particle shape and rod shape precipitates were observed in all alloys peak-aged at 423K. According to addition of Ag or Cu, the number density of the precipitates increased higher than that of base alloy.

  8. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  9. Evaluation of mechanical alloying to obtain Cu-Al-Nb shape memory alloy

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Amorim da Silva

    2005-06-01

    Full Text Available The technical viability of preparing a Cu-Al-Nb shape memory alloy by high energy ball milling in a planetary mill has been evaluated. The alloy Cu-13Al-2Nb (wt. (% was prepared by mixing pure elemental powders. A ball-to-powder weight ratio of 6:1 and rotation rate of 150 rpm in argon atmosphere were the main processing parameters. The milling time ranged from 1 to 65 hours. Changes in microstructure as a function of milling time were investigated, using X-ray diffraction analysis and scanning electron microscopy. To investigate the viability of producing sintered parts from milled powders, the conventional powder metallurgy route was used. The milled powders were compacted in a cylindrical die at 900 MPa. Sintering was carried out in argon atmosphere at 850 °C for 6 hours. This study has shown that high energy ball milling, combined with pressing and sintering, can be used to promote the formation of a copper-aluminum solid solution and achieve final sintered densities of 91% of the theoretical density.

  10. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  11. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    result of the presence of both Mg and Cu. These alloy types display excellent strength values at both low and high temperatures. Additions of Zr, Ni, Mn and Sc would be expected to maintain the performance of these alloys at still higher temperatures. Six alloys were prepared using 0.2 wt% Ti grain-refined 354 alloy, comprising alloy R (354 + 0.25wt% Zr) considered as the base or reference alloy, and five others, viz., alloys S, T, U, V, and Z containing various amounts of Ni, Mn, Sc and Zr, added individually or in combination. For comparison purposes, another alloy L was prepared from 398 (Al-16%Si) alloy, reported to give excellent high temperature properties, to which the same levels of Zr and Sc additions were made, as in alloy Z. Tensile test bars were prepared from the different 354 alloys using an ASTM B-108 permanent mold. The test bars were solution heat treated using a one-step or a multi-step solution heat treatment, followed by quenching in warm water, and then artificial aging employing different aging treatments (T5, T6, T62 and T7). The one-step (or SHT 1) solution treatment consisted of 5 h 495 °C) and the multi-step (or SHT 2) solution treatment comprised 5 h 495°C + 2 h 515°C + 2 h 530°C. Thermal analysis of the various 354 alloy melts was carried out to determine the sequence of reactions and phases formed during solidification under close-to-equilibrium cooling conditions. The main reactions observed comprised formation of the alpha-Al dendritic network at 598°C followed by precipitation of the Al-Si eutectic and post-eutectic beta-Al5FeSi phase at 560°C; Mg2Si phase and transformation of the beta-phase into pi-Al8Mg 3FeSi6 phase at 540°C and 525°C; and lastly, precipitation of Al2Cu and Q-Al5Mg8Cu2Si 6 almost simultaneously at 498°C and 488°C. Larger sizes of AlFeNi and AlCuNi phase particles were observed in T alloy with its higher Ni content of 4 wt%, when compared to those seen in S alloy at 2% Ni content. Mn addition in Alloy U helps

  12. Study of properties of Cu-Y and Cu-Y-Al system alloys

    International Nuclear Information System (INIS)

    Shparo, N.B.; Nikolaev, A.K.; Rozenberg, V.M.

    1978-01-01

    Investigated were the strength properties of alloys Cu(0-1.2)% Y and Cu-(10-0.5)% Al-(0-0.5)% Y after being treated under various heat conditions and tested at temperatures of 20, 400 and 600 deg C. Yttrium additions raise the temperature of recrystallization of copper and of copper-aluminium alloys. Small additions of yttrium (0.05%) increase considerably strength of Cu-Al alloys without increasing their electric resistance. Optimum properties are attained after hardening, deformation and ageing at 400 deg C

  13. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    OpenAIRE

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hystere...

  14. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  15. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Manna, I.; Chattopadhyay, P.P.; Banhart, F.; Fecht, H.J.

    2004-01-01

    Mechanical alloying of Al 65 Cu 35-x Zr x (x=5, 15 and 25 at.% Zr) elemental powder blends by planetary ball milling up to 50 h yields amorphous and/or nanocrystalline products. Microstructure of the milled product at different stages of milling has been characterized by X-ray diffraction, (XRD) high-resolution transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Among the different alloys synthesized by mechanical alloying, Al 65 Cu 20 Zr 15 yields a predominantly amorphous product, while the other two alloys develop a composite microstructure comprising nanocrystalline and amorphous solid solutions in Al 65 Cu 10 Zr 25 and nano-intermetallic phase/compound in Al 65 Cu 30 Zr 5 , respectively. The genesis of solid-state amorphization in Al 65 Cu 20 Zr 15 and Al 65 Cu 10 Zr 25 is investigated

  16. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder

    International Nuclear Information System (INIS)

    Li, Chunli; Zhang, Ping; Jiang, Zhiyu

    2015-01-01

    As a promising anode material for lithium ion battery, nano-Cu coated porous Si powder was fabricated through two stages: first, preparation of porous nano Si fibers by acid-etching Al-Si alloy powder; second, modified by nano-Cu particles using an electroless plating method. The nano-Cu particles on the surface of nano-Si fibers, not only increase the conductivity of material, but also inhibit the fuse process between nano Si fibers during charge/discharge cycling process, resulting in increased cycling stability of the material. In 1 M LiPF 6 /EC: DMC (1:1) + 1.5 wt% VC solution at current density of 200 mA g −1 , the 150th discharge capacity of nano-Cu coated porous Si electrode was 1651 mAh g −1 with coulombic efficiency of 99%. As anode material for lithium ion battery, nano-Cu coated porous Si nano fiber material is easier to prepare, costs less, and produces higher performance, representing a promising approach for high energy lithium ion battery application

  17. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  18. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  19. Stability of Cu-Precipitates in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Torsten E. M. Staab

    2018-06-01

    Full Text Available We present first principle calculations on formation and binding energies for Cu and Zn as solute atoms forming small clusters up to nine atoms in Al-Cu and Al-Zn alloys. We employ a density-functional approach implemented using projector-augmented waves and plane wave expansions. We find that some structures, in which Cu atoms are closely packed on {100}-planes, turn out to be extraordinary stable. We compare the results with existing numerical or experimental data when possible. We find that Cu atoms precipitating in the form of two-dimensional platelets on {100}-planes in the fcc aluminum are more stable than three-dimensional structures consisting of the same number of Cu-atoms. The preference turns out to be opposite for Zn in Al. Both observations are in agreement with experimental observations.

  20. Quality analysis of the Al-Si-Cu alloy castings

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. Method was developed for analysis of the casting defects images obtained with the X-ray detector analysis of the elements made from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type as well as the method for classification of casting defects using the artificial intelligence tools, including the neural networks; the developed method was implemented as software programs for quality control. Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. The computer system, in which the artificial neural networks as well as the automatic image analysis methods were used makes automatic classification possible of defects occurring in castings from the Al-Si-Cu alloys, assisting and automating in this way the decisions about rejection of castings which do not meet the defined quality requirements, and therefore ensuring simultaneously the repeatability and objectivity of assessment of the metallurgical quality of these alloys.

  1. Nanocrystalline (Fe{sub 60}Al{sub 40}){sub 80}Cu{sub 20} alloy prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Krifa, M.; Mhadhbi, M. [Laboratoire de Chimie Inorganique, 99/UR/12-22, FSS – Université de Sfax, B.P. 1171, Sfax 3018 (Tunisia); Escoda, L.; Güell, J.M. [Dept. de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Suñol, J.J., E-mail: joanjosep.sunyol@udg.edu [Dept. de Fisica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Llorca-Isern, N.; Artieda-Guzmán, C. [Dept. CMEM, Universitat de Barcelona, Martí Franques 1, 08028 Barcelona (Spain); Khitouni, M. [Laboratoire de Chimie Inorganique, 99/UR/12-22, FSS – Université de Sfax, B.P. 1171, Sfax 3018 (Tunisia)

    2013-03-25

    Highlights: ► Nanocrystalline Fe(Al, Cu) powdered alloy (10 nm) has been synthesized by MA. ► Decreasing the crystallite size increases coercivity and squareness ratio. ► As low crystallites size stronger hard ferromagnetic material results. -- Abstract: A nanostructured disordered Fe(Al, Cu) solid solution was obtained from prealloyed FeAl and elemental Cu powders using a high-energy ball mill. The transformations occurring in the material during milling were studied with the use of X-ray diffraction. The transformation of the phase depends upon the milling time. With the increase of milling time all Cu atoms became dissolved in the bcc Fe and the final product of the MA process was the nanocrystalline Fe(Al, Cu) solid solution with a mean crystallite size of 10 nm. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. Magnetic properties were also investigated and were related to the microstructural changes. The system showed hard magnetic behavior.

  2. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Wang, E.R.; Hui, X.D.; Chen, G.L.

    2011-01-01

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 o C, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al 2 Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al 15 (Fe,Mn) 3 Si 2 ), exist in blocky and dendrite forms. Tiny blocky Al 2 Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  3. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    Science.gov (United States)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  4. Local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys investigated by EXAFS method

    International Nuclear Information System (INIS)

    Antonowicz, J.; Pietnoczka, A.; Zalewski, W.; Bacewicz, R.; Stoica, M.; Georgarakis, K.; Yavari, A.R.

    2011-01-01

    Research highlights: → Coordination number, interatomic distances and mean square atomic displacement in Zr-Cu and Zr-Cu-Al glasses. → Icosahedral symmetry in local atomic structure. → Deviation from random mixing behavior resulting from Al addition. - Abstract: We report on extended X-ray absorption fine structure (EXAFS) study of rapidly quenched Zr-Cu and Zr-Cu-Al glassy alloys. The local atomic order around Zr and Cu atoms was investigated. From the EXAFS data fitting the values of coordination number, interatomic distances and mean square atomic displacement were obtained for wide range of compositions. It was found that icosahedral symmetry rather than that of corresponding crystalline analogs dominates in the local atomic structure of Zr-Cu and Zr-Cu-Al amorphous alloys. Judging from bonding preferences we conclude that addition of Al as an alloying element results in considerable deviation from random mixing behavior observed in binary Zr-Cu alloys.

  5. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  6. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Westin, R

    1963-06-15

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed.

  7. The Paramagnetism of Small Amounts of Mn Dissolved in Cu-Al and Cu-Ge Alloys

    International Nuclear Information System (INIS)

    Myers, H.P.; Westin, R.

    1963-06-01

    Previous measurements of the valency of Mn in Cu-Zn alloys have been confirmed by measurements with the isoelectronic Cu-Al and Cu-Ge alloys as matrices for Mn. The valency, having the value i in pure copper, decreases slightly with increasing electron to atom ratio attaining the values 0. 9 and 0. 8 at the limiting composition in the Al and Ge alloys respectively. The apparent size of Mn in these alloys is discussed

  8. Phase diagrams of aluminium alloys of Al-Cu-Mg, Al-Mg-Si-Cu, and Al-Mg-Li system

    International Nuclear Information System (INIS)

    Ber, L.B.; Kaputkin, E.Ya.

    2001-01-01

    Isothermal diagrams of phase transformations (DPT) and temperature-time charts (TTC) of variation of electric conductivity and of mechanical features at tension were plotted following thermal treatment according to the pattern of direct hardening and ageing and according to the pattern of normal aging for D16 commercial alloy, Al-Cu-Mg model alloy of the same system, AD37 commercial alloys of Al-Mg-Si-Cu and 1424 one of Al-Li-Mg system. Phase transformations were studied by means of fluorescence electron microscopy, micro-X-ray spectral analysis, X-ray phase analysis of single crystals and polycrystals and differential scanning calorimetry. For every alloy comparison of TTC and DPT enables to clarity the mechanism of phase composition effect on features and to optimize conditions of hardening cooling and ageing [ru

  9. Electrical resistivity of Al-Cu liquid binary alloy

    Science.gov (United States)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  10. Ductile shape memory alloys of the Cu-Al-Mn system

    International Nuclear Information System (INIS)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1995-01-01

    Cu-Al-Mn shape memory alloys with enhanced ductility have been developed by decreasing the degree of order in the β parent phase. Cu-Al-Mn alloys with Al contents lower than 18% exhibit good ductility with elongations of about 15% and excellent cold-workability arising from a lower degree of order in the Heusler (L21) β 1 parent phase, without any loss in their shape memory behavior. In this paper the mechanical and shape memory characteristics, such as the cold-workability, the Ms temperatures, the shape memory effect and the pseudo-elasticity of such ductile Cu-Al-Mn alloys are presented. (orig.)

  11. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  12. Preparation of Zr50Al15-xNi10Cu25Yx amorphous powders by mechanical alloying and thermodynamic calculation

    International Nuclear Information System (INIS)

    Long, Woyun; Li, Jing; Lu, Anxian

    2013-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr 50 Al 15 Ni 10 Cu 25 Y alloy. Thermodynamic calculation of equivalent free energy shows that Zr 50 Al 13.8 Ni 10 Cu 25 Y 1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments. (author)

  13. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Yi, E-mail: yimonmy@sina.com; Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-06-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al{sub 3}Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al{sub 3}Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al{sub 3}Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1{sub 2} Al{sub 3}Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1{sub 2} and DO{sub 22} Al{sub 3}Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005.

  14. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    International Nuclear Information System (INIS)

    Meng, Yi; Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-01-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al 3 Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al 3 Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al 3 Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1 2 Al 3 Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1 2 and DO 22 Al 3 Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005

  15. Diffusivities and atomic mobilities in Cu-rich fcc Al-Cu-Mn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming; Du, Yong; Cui, Senlin; Xu, Honghui; Liu, Shuhong [Central South Univ., Changsha (China). State Key Laboratory of Powder Metallurgy; Zhang, Lijun [Bochum Univ. (DE). Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)

    2012-07-15

    Via solid-solid diffusion couples, electron probe microanalysis and the Whittle and Green method, interdiffusivities in fcc Al-Cu-Mn alloys at 1 123 K were measured. The reliability of the obtained diffusivities is validated by comparing the computed diffusivities with literature data plus constraints among the diffusivities. Through assessments of experimentally determined diffusion coefficients by means of a diffusion-controlled transformations simulation package, the atomic mobilities of Al, Cu, and Mn in fcc Al-Cu-Mn alloys are obtained. Comprehensive comparisons between the model-predicted and the experimental data indicate that the presently obtained atomic mobilities can reproduce most of the diffusivities, concentration profiles, and diffusion paths reasonably. (orig.)

  16. Microstructural characterization of dispersion-strengthened Cu-Ti-Al alloys obtained by reaction milling

    International Nuclear Information System (INIS)

    Espinoza, Rodrigo A.; Palma, Rodrigo H.; Sepulveda, Aquiles O.; Fuenzalida, Victor; Solorzano, Guillermo; Craievich, Aldo; Smith, David J.; Fujita, Takeshi; Lopez, Marta

    2007-01-01

    The microstructure, electrical conductivity and hot softening resistance of two alloys (G-10 and H-20), projected to attain Cu-2.5 vol.% TiC-2.5 vol.% Al 2 O 3 nominal composition, and prepared by reaction milling and hot extrusion, were studied. The alloys were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and several chemical analysis techniques. The first alloy, G-10, showed the formation of Al 2 O 3 nanodispersoids and the presence of particles from non-reacted raw materials (graphite, Ti and Al). A second alloy, H-20, was prepared employing different fabrication conditions. This alloy exhibited a homogeneous distribution of Al 2 O 3 and Ti-Al-Fe nanoparticles, with the microstructure being stable after annealing and hot compression tests. These nanoparticles acted as effective pinning sites for dislocation slip and grain growth. The room-temperature hardness of the H-20 consolidated material (330 HV) was approximately maintained after annealing for 1 h at 1173 K; the electrical conductivity was 60% IACS (International Annealing Copper Standard)

  17. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Wang, Kunchan; Xia, Ming; Xiao, Tao; Lei, Ting; Yan, Weishan

    2017-01-01

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  18. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kunchan; Xia, Ming [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Weishan [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-01-15

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  19. Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karakoese, Ercan [Erciyes University, Institute of Science and Technology, Department of Physics, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Erciyes University, Faculty of Arts and Sciences, Department of Physics, 38039 Kayseri (Turkey)

    2009-12-15

    The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. The resulting conventional cast and melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry and microhardness techniques. The X-ray diffraction analysis indicated that ingot samples were {alpha}-Al, intermetallic Al{sub 3}Ni and Al{sub 2}Cu phases. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. Al-10Ni-5.6Cu ribbons reveal a very fine cellular structure with intermetallic Al{sub 3}Ni particles. Moreover, at high solidification rates the melt-spun ribbons have a polygonal structure dispersed in a supersaturated aluminum matrix. The differential scanning calorimetry measurements revealed that exothermic reaction was between 290 deg. C and 440 deg. C which are more pronounced in the ternary Al-10Ni-5.6Cu alloy.

  20. Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2009-01-01

    The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. The resulting conventional cast and melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry and microhardness techniques. The X-ray diffraction analysis indicated that ingot samples were α-Al, intermetallic Al 3 Ni and Al 2 Cu phases. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. Al-10Ni-5.6Cu ribbons reveal a very fine cellular structure with intermetallic Al 3 Ni particles. Moreover, at high solidification rates the melt-spun ribbons have a polygonal structure dispersed in a supersaturated aluminum matrix. The differential scanning calorimetry measurements revealed that exothermic reaction was between 290 deg. C and 440 deg. C which are more pronounced in the ternary Al-10Ni-5.6Cu alloy.

  1. Bulk amorphous alloys: Preparation and properties of (Mg0.98Al0.02)x(Cu0.75Y0.25)100

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, Allan Schrøder; Ohnuma, M.

    2000-01-01

    New bulk amorphous quaternary alloys of the composition (Mg1-xAlx)(60)Cu30Y10 (x = 0 - 0.17) were recently reported by the authors and preliminary results of the influence of Al content on the ability to form a bulk amorphous phase were presented. In the present note we extend this work to look...... for the influence of the Mg-Al content on the glass forming ability by studying a range of compositions, (Mg0.98Al0.02)(x)(Cu0.75Y0.25)(100-x) for x = 60 - 80 at.%. As previously, the alloys were prepared by a relatively simple technique, i.e. rapid cooling of the melt in a wedge-shaped copper mould. This method...... provides a range of cooling rates within a single ingot during the solidification that link the slowly and rapidly cooled microstructure for each alloy composition. Hence, the maximum thickness of the amorphous part of the cast material will be a measure of the glass forming ability (GFA) of the particular...

  2. The quasicrystalline phase formation in Al-Cu-Cr alloys produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sviridova, T.A.; Shevchukov, A.P.; Shelekhov, E.V. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation); Diakonov, D.L. [Bardin Central Research Institute for the Iron and Steel Industry, Moscow 105005 (Russian Federation); Tcherdyntsev, V.V.; Kaloshkin, S.D. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation)

    2011-06-15

    Research highlights: > Formation of decagonal quasicrystalline phase in Al-Cu-Cr alloys. > Obtained decagonal phase belongs to D{sub 3} family of decagonal quasicrystals. > Decagonal phase has 1.26 nm periodicity along 10-fold axis. > Alloys were produced by combination of mechanical alloying and subsequent annealing. > Phase composition of as-milled powders depending on annealing temperature. - Abstract: Almost single-phase decagonal quasicrystal with periodicity of 1.26 nm along 10-fold axis was produced in Al{sub 69}Cu{sub 21}Cr{sub 10} and Al{sub 72.5}Cu{sub 16.5}Cr{sub 11} alloys using combination of mechanical alloying (MA) and subsequent annealing. Phase transformations of as-milled powders depending on annealing temperature in the range of 200-800 deg. C are examined. Since the transformations can be explained based on kinetic and thermodynamic reasons it seems that applied technique (short preliminary MA followed by the annealing) permits to produce the equilibrium phases rather than metastable ones.

  3. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    Science.gov (United States)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  4. The effect of Cu addition and milling contaminations on the microstructure evolution of ball milled Al-Pb alloy during sintering

    International Nuclear Information System (INIS)

    Zhu, M.; Ouyang, L.Z.; Wu, Z.F.; Zeng, M.Q.; Li, Y.Y.; Zou, J.

    2006-01-01

    Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl 2 and Cu 9 Al 4 phases formed in the milling process, and the amount of CuAl 2 phase increased while the Cu 9 Al 4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al 7 Cu 2 Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase

  5. Effects of Eutectic Si and Secondary Dendrite Arm Spacing on the Mechanical Properties of Al-Si-Cu Cast Alloys

    International Nuclear Information System (INIS)

    Lee, Kyungmin; Kim, Yumi; Kim, Youngman; Hong, Sungkil; Choi, Seweon; Kim, Youngchan; Kang, Changseok

    2014-01-01

    The present study aims at investigating the effects of eutectic Si and Secondary dendrite arm spacing (SDAS) on mechanical properties of Al-Si-Cu alloy. Heat treatment and controlling of solidification rate affect to microstructure of Al-Si-Cu alloy. Al-Si-Cu alloy was dissolved in an electric furnace. The alloy cast in STD61 mold which had been pre-heated to 95 ℃ and 200 ℃. Eutectic Si and SDAS were finer as cooling rate increased. Image analysis technique has been utilized to examine the microstructure. Microstructure observation results showed that T6 heat treatment has a strong influence eutectic Si particle morphology. The mechanical properties, such as tensile strength, yield strength, elongation, were improved by ASTM E8 standard. Tensile properties of the Al-Si-Cu alloys prepared by different cooling rates were the same as each other by T6 heat treatment.

  6. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  7. Elemental separation in nanocrystalline Cu-Al alloys

    Science.gov (United States)

    Wang, Y. B.; Liao, X. Z.; Zhao, Y. H.; Cooley, J. C.; Horita, Z.; Zhu, Y. T.

    2013-06-01

    Nanocrystallization by high-energy severe plastic deformation has been reported to increase the solubility of alloy systems and even to mix immiscible elements to form non-equilibrium solid solutions. In this letter, we report an opposite phenomenon—nanocrystallization of a Cu-Al single-phase solid solution by high-pressure torsion separated Al from the Cu matrix when the grain sizes are refined to tens of nanometers. The Al phase was found to form at the grain boundaries of nanocrystalline Cu. The level of the separation increases with decreasing grain size, which suggests that the elemental separation was caused by the grain size effect.

  8. Directional solidification of Zn-Al-Cu eutectic alloy by the vertical Bridgman method

    Directory of Open Access Journals (Sweden)

    Büyük U.

    2015-01-01

    Full Text Available In the present work, the effect of growth rate and temperature gradient on microstructure and mechanical properties of Zn-7wt.%Al-4wt.%Cu eutectic alloy has been investigated. Alloys prepared under steady-state conditions by vacuumed hot filing furnace. Then, the alloys were directionally solidified upward with different growth rates (V=11.62-230.77 mm/s at a constant temperature gradient (G=7.17 K/mm and with different temperature gradients (G=7.17-11.04 K/mm at a constant growth rate (V=11.62 mm/s by a Bridgman furnace. The microstructures were observed to be lamellae of Zn, Al and broken lamellae CuZn4 phases from quenched samples. The values of eutectic spacing, microhardness and ultimate tensile strength of alloys were measured. The dependency of the microstructure and mechanical properties on growth rate and temperature gradient were investigated using regression analysis.

  9. Wetting phenomena of Al-Cu alloys on sapphire below 800 deg. C

    International Nuclear Information System (INIS)

    Klinter, Andreas J.; Leon-Patino, Carlos A.; Drew, Robin A.L.

    2010-01-01

    Using a modified dispensed drop method, a decrease in contact angle on sapphire from pure aluminum to low-copper-containing Al alloys (7-12 wt.%) was found; with higher copper additions θ transitions to the non-wetting regime. Atomic force microscopy on long-term samples showed a significantly increased surface roughness beneath the drop. Using high-resolution transmission electron microscopy, the reaction product at the interface was identified as CuAl 2 O 4 for Al-7Cu and Al 2 O 3 for an Al-99.99 drop. X-ray photoelectron spectroscopy further confirmed the formation of CuAl 2 O 4 under CuAl 2 drops. Spinel formation is caused by reaction of the alloy with residual oxygen in the furnace that is transported along the interface as modeled by thermodynamic simulations. The formation of CuAl 2 O 4 causes the reduced σ sl and hence the improved wettability of sapphire by low-copper-containing alloys compared to pure aluminum. The main reason for the increase in θ with higher copper contents is the increasing σ lv of the alloy.

  10. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  11. Formation of Al70Cu20Fe10 icosahedral quasicrystal by mechanically alloyed method

    International Nuclear Information System (INIS)

    Yin Shilong; Bian Qing; Qian Liying; Zhang Aimei

    2007-01-01

    The structural evolutions of the mechanically alloyed ternary Al 70 Cu 20 Fe 10 powders with the milling time and the annealing treatment have been studied by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and X-ray absorption fine-structure spectroscopy (XAFS) techniques. Results show that an Al 2 Cu compound forms with short-time milling, while a Cu 9 Al 4 compound forms with long-time milling. Fe can react with Al-Cu alloy by annealing treatment. Al 7 Cu 2 Fe compound with tetragonal structure or Al (Cu, Fe) solid solution with cubic structure may form at lower temperature, while a quasicrystal phase of Al 65 Cu 20 Fe 15 alloy may form at higher temperature

  12. On the mechanical behavior of a cryomilled Al-Ti-Cu alloy

    International Nuclear Information System (INIS)

    Han, Bing Q.; Lavernia, Enrique J.; Mohamed, Farghalli A.

    2003-01-01

    The mechanical behavior of a cryomilled Al10Ti2Cu that was later extruded was investigated in compression. The data obtained show that the strength of the extruded alloy parallel to the extrusion axis is higher than that normal to the axis. Also, a comparison between the compression behavior of the alloy and its tensile behavior reveals that there is a small asymmetry of yield strength with respect to deformation mode. Examination of the microstructure of the cryomilled alloy by means of transmission electron microscopy (TEM) indicates the presence of two phases: approximately 90% nanostructured Al(Cu) phase containing a dispersion of Al 3 Ti and 10% coarse-grained Al(Cu) phase. TEM observations indicate that as a result of the extrusion process, the larger (softer) grains of the Al(Cu) phase experience severe deformation, resulting in the development of mechanical fibering. It is suggested that the presence of coarse-grained Al(Cu) 'islands' in the matrix of the nanostructured phase and their change during extrusion into elongated bands may be responsible for the anisotropy of the mechanical properties of the extruded cryomilled Al10Ti2Cu

  13. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    Science.gov (United States)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  14. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    OpenAIRE

    Pavel Novák; Alena Michalcová; Milena Voděrová; Ivo Marek; Dalibor Vojtěch

    2013-01-01

    Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning) or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis) was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by...

  15. Wetting phenomena of Al-Cu alloys on sapphire below 800 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Klinter, Andreas J., E-mail: andreas.klinter@mail.mcgill.ca [Mining and Materials Engineering, McGill University, M.H. Wong Building, 3610 University Street, Montreal, QC, H3A 2B2 (Canada); Leon-Patino, Carlos A. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Apdo. Postal 888, CP 58000 Morelia, Michoacan (Mexico); Drew, Robin A.L. [Faculty of Engineering and Computer Science, Concordia University, 1455 Maisonneuve Blvd, EV 2.169, Montreal, QC, H3G 1M8 (Canada)

    2010-02-15

    Using a modified dispensed drop method, a decrease in contact angle on sapphire from pure aluminum to low-copper-containing Al alloys (7-12 wt.%) was found; with higher copper additions {theta} transitions to the non-wetting regime. Atomic force microscopy on long-term samples showed a significantly increased surface roughness beneath the drop. Using high-resolution transmission electron microscopy, the reaction product at the interface was identified as CuAl{sub 2}O{sub 4} for Al-7Cu and Al{sub 2}O{sub 3} for an Al-99.99 drop. X-ray photoelectron spectroscopy further confirmed the formation of CuAl{sub 2}O{sub 4} under CuAl{sub 2} drops. Spinel formation is caused by reaction of the alloy with residual oxygen in the furnace that is transported along the interface as modeled by thermodynamic simulations. The formation of CuAl{sub 2}O{sub 4} causes the reduced {sigma}{sub sl} and hence the improved wettability of sapphire by low-copper-containing alloys compared to pure aluminum. The main reason for the increase in {theta} with higher copper contents is the increasing {sigma}{sub lv} of the alloy.

  16. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

    Science.gov (United States)

    Çadırlı, Emin

    2013-05-01

    Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

  17. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  18. Role of aluminium concentration on the structure behaviour of Cu-Al alloys

    International Nuclear Information System (INIS)

    Nassar, A.M.; Taha, A.S.; Ragab, K.A.; El-Mossalamy, S.

    1988-06-01

    Effect of Al(5, 10, 15 and 20)% on the structure behaviour of Cu-Al alloys was investigated by both microhardness measurements and optical microscopic investigations. Pure Cu was used for comparison. The analysis of the hardness-temperature curve shows a type of dependence which obeys an empirical exponential law, but consists of several distinguishable regions. For Cu 20% Al, one region is observed, and two regions for pure Cu, while for alloys of 5 and 10% Al concentration three regions were observed. The activation energy varies between 0.03 and 0.9 ev. for these regions, depending on the Al-concentration as well as the annealing temperature. The recrystallization temperature was found to increase with increasing Al-concentration. It was also observed that Cu-20% Al alloy is very hard and brittle owing to the formation of γ2 phase, and also to phase separation as being detected from optical microscopic investigations. (author). 22 refs, 3 figs

  19. Synthesis and Characterization of Nanocrystalline Al-20 at. % Cu Powders Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Molka Ben Makhlouf

    2016-06-01

    Full Text Available Mechanical alloying is a powder processing technique used to process materials farther from equilibrium state. This technique is mainly used to process difficult-to-alloy materials in which the solid solubility is limited and to process materials where nonequilibrium phases cannot be produced at room temperature through conventional processing techniques. This work deals with the microstructural properties of the Al-20 at. % Cu alloy prepared by high-energy ball milling of elemental aluminum and copper powders. The ball milling of powders was carried out in a planetary mill in order to obtain a nanostructured Al-20 at. % Cu alloy. The obtained powders were characterized using scanning electron microscopy (SEM, differential scanning calorimetry (DSC and X-ray diffraction (XRD. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite sizes, microstrains and lattice parameters are determined.

  20. Structure and mechanical properties of nanostructured Al-0.3%Cu alloy

    DEFF Research Database (Denmark)

    Wakeel, Aneela; Huang, Tianlin; Wu, Guilin

    2014-01-01

    An Al-0.3%Cu alloy has been produced using extremely high purity (99.9996%) Al and OFHC Cu.The alloy was cold rolled to 98% thickness reduction, forming a stable lamellar structure that has a lamellar boundary spacing of about 200nm and a tensile strength of 225MPa. During recovery annealing at t...

  1. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  2. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    Science.gov (United States)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  3. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  4. Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys

    Science.gov (United States)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1996-08-01

    Ductile shape memory (SM) alloys of the Cu-AI-Mn system have been developed by controlling the degree of order in the β phase. Additions of Mn to the binary Cu-Al alloy stabilize the β phase and widen the single-phase region to lower temperature and lower Al contents. It is shown that Cu-Al-Mn alloys with low Al contents have either the disordered A2 structure or the ordered L21 structure with a lower degree of order and that they exhibit excellent ductility. The disordered A2 phase martensitically transforms to the disordered Al phase with a high density of twins. The martensite phase formed from the ordered L21 phase has the 18R structure. The SM effect accompanies both the A2 → Al and L21 → 18R martensitic transformations. These alloys exhibit 15 pct strain to failure, 60 to 90 pct rolling reduction without cracking, and 80 to 90 pct recovery from bend test in the martensitic condition. Experimental results on the microstructure, crystal structure, mechanical properties, and shape memory behavior in the ductile Cu-AI-Mn alloys are presented and discussed.

  5. Precipitation and strengthening phenomena in Al-Si-Ge and Al-Cu-Si-Ge alloys

    International Nuclear Information System (INIS)

    Mitlin, D.; Morris, J.W.; Dahmen, U.; Radmilovic, V.

    2000-01-01

    The objective of this work was to determine whether Al rich Al-Si-Ge and 2000 type Al-Cu-Si-Ge alloys have sufficient hardness to be useful for structural applications. It is shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. However, Al-Cu-Si-Ge displayed a uniquely fast aging response, a high peak hardness and a good stability during prolonged aging. The high hardness of the Cu containing alloy is due to the dense and uniform distribution of fine θ' precipitates (metastable Al 2 Cu) which are heterogeneously nucleated on the Si-Ge particles. High resolution TEM demonstrated that in both alloys all the Si-Ge precipitates start out, and remain multiply twinned throughout the aging treatment. Since the twinned section of the precipitate does not maintain a low index interface with the matrix, the Si-Ge precipitates are equiaxed in morphology. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  6. Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys

    Directory of Open Access Journals (Sweden)

    Pratiwi Diah Kusuma

    2017-01-01

    Full Text Available Al-Zn-Cu-Mg is heat treatable alloy that can be used in many hightech applications, such as aerospace and military. The main objective of this study is to investigate the influence of ageing process in microstrucure behaviour of Al-9Zn-5Cu-4Mg cast alloy by performing SEM analysis and its correlation with hardness tests of as-cast Al-9Zn-5Cu-4Mg alloy and heat treated Al-9Zn-5Cu-4Mg cast alloy. The results show the deployment of precipitation spread over the dendrite and also the presence of second phases Mg3Zn3Al2 , Cu2FeAl7 , CuAl2, and CuMgAl2 in as-cast Al-9Zn-5Cu-4Mg alloy. The presence of all these second phases are affecting to the toughness of aluminium alloy and the presence of MgZn2 leads the impairment of hardness value of heat-treated Al-9Zn-5Cu-5Mg cast alloy.

  7. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    International Nuclear Information System (INIS)

    Albuquerque, Victor Hugo C. de; Melo, Tadeu Antonio de A; Gomes, Rodinei M.; Lima, Severino Jackson G. de; Tavares, Joao Manuel R.S.

    2010-01-01

    Research highlights: → This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. → The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. → Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. → First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. → The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  8. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Victor Hugo C. de, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Melo, Tadeu Antonio de A, E-mail: tadeu@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Gomes, Rodinei M., E-mail: gomes@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Lima, Severino Jackson G. de, E-mail: jackson@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica (DEMec)/Instituto de Engenharia Mecanica e Gestao Industrial INEGI, Rua Dr. Roberto Frias, S/N 4200-465 Porto (Portugal)

    2010-11-25

    Research highlights: {yields} This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. {yields} The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. {yields} Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. {yields} First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. {yields} The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  9. Chemical and electrical characterisation of the segregation of Al from a CuAl alloy (90%:10% wt) with thermal anneal

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, C., E-mail: conor.byrne2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Brady, A.; Walsh, L.; McCoy, A.P.; Bogan, J. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); McGlynn, E. [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Rajani, K.V. [School of Electronic Engineering, Dublin City University, Dublin 9 (Ireland); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-01-29

    A copper–aluminium (CuAl) alloy (90%:10% wt) has been investigated in relation to segregation of the alloying element Al, from the alloy bulk during vacuum anneal treatments. X-ray photoelectron spectroscopy (XPS) measurements were used to track the surface enrichment of Al segregating from the alloy bulk during in situ ultra-high vacuum anneals. Secondary ion mass spectroscopy (SIMS) indicates a build-up of Al at the surface of the annealed alloy relative to the bulk composition. Metal oxide semiconductor (MOS) CuAl/SiO{sub 2}/Si structures show a shift in flatband voltage upon thermal anneal consistent with the segregation of the Al to the alloy/SiO{sub 2} interface. Electrical four point probe measurements indicate that the segregation of Al from the alloy bulk following thermal annealing results in a decrease in film resistivity. X-ray diffraction data shows evidence for significant changes in crystal structure upon annealing, providing further evidence for expulsion of Al from the alloy bulk. - Highlights: • CuAl alloy (90%:Al 10% wt) deposited and vacuum annealed • XPS and SIMS data show segregation of Al from the alloy bulk. • Chemical changes seen indicate the reduction of Cu oxide and growth of Al Oxide. • Electrical measurements indicate a chemical change at the metal/SiO{sub 2} interface. • All data consistent with Cu diffusion barrier layer formed.

  10. Superplastic formability of Al-Cu-Li alloy Weldalite (TM) 049

    Science.gov (United States)

    Ma, Bao-Tong; Pickens, Joseph R.

    1991-01-01

    Extensive research during the past decade shows that several aluminum lithium alloys can be processed to attain a microstructure that enables superplasticity. The high tensile stress of Al-Cu-Li alloy Weldalite (TM) 049 in the T4 and T6 tempers offers tremendous potential for attaining exceptional post-SPF (superplastic formability) properties. The used SPF material is Weldalite, which was shown to induce SPF behavior in other Al-Cu-Li alloys. The superplastic behavior and resulting post-SPF mechanical properties of this alloy, which was designed to be the next major structural alloy for space applications, were evaluated. The results indicate that Weldalite alloy does indeed exhibit excellent superplasticity over a wide range of temperatures and strain rates and excellent post-SPF tensile strength at various potential service temperatures.

  11. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  12. Characterization of Al-Cu-Mg-Ag Alloy RX226-T8 Plate

    Science.gov (United States)

    Lach, Cynthia L.; Domack, Marcia S.

    2003-01-01

    Aluminum-copper-magnesium-silver (Al-Cu-Mg-Ag) alloys that were developed for thermal stability also offer attractive ambient temperature strength-toughness combinations, and therefore, can be considered for a broad range of airframe structural applications. The current study evaluated Al-Cu-Mg-Ag alloy RX226-T8 in plate gages and compared performance with sheet gage alloys of similar composition. Uniaxial tensile properties, plane strain initiation fracture toughness, and plane stress tearing resistance of RX226-T8 were examined at ambient temperature as a function of orientation and thickness location in the plate. Properties were measured near the surface and at the mid-plane of the plate. Tensile strengths were essentially isotropic, with variations in yield and ultimate tensile strengths of less than 2% as a function of orientation and through-thickness location. However, ductility varied by more than 15% with orientation. Fracture toughness was generally higher at the mid-plane and greater for the L-T orientation, although the differences were small near the surface of the plate. Metallurgical analysis indicated that the microstructure was primarily recrystallized with weak texture and was uniform through the plate with the exception of a fine-grained layer near the surface of the plate. Scanning electron microscope analysis revealed Al-Cu-Mg second phase particles which varied in composition and were primarily located on grain boundaries parallel to the rolling direction. Fractography of toughness specimens for both plate locations and orientations revealed that fracture occurred predominantly by transgranular microvoid coalescence. Introduction High-strength, low-density Al-Cu-Mg-Ag alloys were initially developed to replace conventional 2000 (Al-Cu-Mg) and 7000 (Al-Zn-Cu-Mg) series aluminum alloys for aircraft structural applications [1]. During the High Speed Civil Transport (HSCT) program, improvements in thermal stability were demonstrated for candidate

  13. Study of the properties of internal oxidized Cu - Al - Ti - Hf alloys

    International Nuclear Information System (INIS)

    Solopov, V.I.; Daneliya, E.P.; Daneliya, G.V.; Lebasova, O.P.

    1982-01-01

    Investigation results of mechanical properties and electric conductivity of rods of internally oxidized alloys Cu-Al-Ti-Hf depending on chemical composition, varying in the limits ensuring the formation of disperse enough and evenly distributed over the volume oxide phase. (0-1%Al, 0-0.5%Ti, 0-0.3%Hf, the restcopper), in the process of internal oxidation are presented. Internally oxidized alloys Cu-Al-Ti-Hf have increased strength properties with insignificant increase of specific electric resistance as compared with the known internally oxidized alloys Cu-Al. At that, the best combination of physicomechanical properties is achieved at small contents of titanium (0.01-0.05%) and hafnium (0.01-0.1%)

  14. Severe plastic deformation of copper and Al-Cu alloy using multiple channel-die compression

    International Nuclear Information System (INIS)

    Parimi, A.K.; Robi, P.S.; Dwivedy, S.K.

    2011-01-01

    Research highlights: → SPD of copper and Al-Cu alloy by multiple channel-die compression tests.→ Extensive grain refinement resulting in nano-sized grains after SPD. → Investigation of micro-structure using optical microscope and SEM. → Shear band formation as the failure mechanism in the two phase Al-Cu alloy. → Difficulty in obtaining SPD for Al-Cu alloy in this method. -- Abstract: Severe plastic deformation studies of copper and Al-Cu alloy by multiple channel-die compression tests were investigated. The materials were tested under plane strain condition by maintaining a constant strain rate of 0.001/s. Extensive grain refinement was observed resulting in nano-sized grains after severe plastic deformation with concomitant increase in flow stress and hardness. The microstructural investigation of the severely deformed materials was investigated using optical microscope and scanning electron microscope. Shear band formation was identified as the failure mechanism in the two phase Al-Cu alloy. The results indicate difficulty in obtaining severe plastic deformation for alloys having two phase micro-structure.

  15. L10 ordered structures in Al-Cu-(Mg) alloys at the early stages of elevated temperature aging

    Energy Technology Data Exchange (ETDEWEB)

    Fuzhong, X.; Mingpu, W.

    2016-07-01

    This study concerns the precipitation structures of Al-3Cu and Al-3Cu-1.78Mg (wt. %) alloys at the early stages of elevated temperature aging. The Al-3Cu and Al-3Cu-1.78 Mg alloys were solution treated at 540 °C and 500 °C for 2 h, respectively, and then aged at 190 °C for 2 min. The precipitation structures in aged Al-3Cu-(1.78Mg) alloys were characterized by Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HTREM). 001 zone axis Selected area electron diffraction patterns indicate that L10 ordered structures are formed in the two aged alloys. HRTEM experiments reveal the partial dislocations on the interfaces of L10 ordered structures. From comparing experimental results with that in the literature, it is concluded that the L10 ordered structures in aged Al-3Cu alloy consist of Al and Cu atoms, and they are comprised by Al, Cu and Mg atoms together in the aged Al-3Cu-1.78Mg alloy. On the basis of precipitate growing thermodynamics, it is thought the L10 ordered structures act as nuclei for GP zones in Al-Cu-(Mg) alloys during aging. (Author)

  16. L10 ordered structures in Al-Cu-(Mg) alloys at the early stages of elevated temperature aging

    International Nuclear Information System (INIS)

    Fuzhong, X.; Mingpu, W.

    2016-01-01

    This study concerns the precipitation structures of Al-3Cu and Al-3Cu-1.78Mg (wt. %) alloys at the early stages of elevated temperature aging. The Al-3Cu and Al-3Cu-1.78 Mg alloys were solution treated at 540 °C and 500 °C for 2 h, respectively, and then aged at 190 °C for 2 min. The precipitation structures in aged Al-3Cu-(1.78Mg) alloys were characterized by Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HTREM). 001 zone axis Selected area electron diffraction patterns indicate that L10 ordered structures are formed in the two aged alloys. HRTEM experiments reveal the partial dislocations on the interfaces of L10 ordered structures. From comparing experimental results with that in the literature, it is concluded that the L10 ordered structures in aged Al-3Cu alloy consist of Al and Cu atoms, and they are comprised by Al, Cu and Mg atoms together in the aged Al-3Cu-1.78Mg alloy. On the basis of precipitate growing thermodynamics, it is thought the L10 ordered structures act as nuclei for GP zones in Al-Cu-(Mg) alloys during aging. (Author)

  17. Grain refining of Al-4.5Cu alloy by adding an Al-30TiC master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuaki [Toyota Motor Corp., Shizuoka (Japan). Materials Engineering Div. III; Flemings, M.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering

    1998-06-01

    A particulate Al-30 wt pct TiC composite was employed as a grain refiner for the Al-4.5 wt pct Cu alloy. The composite contains submicron TiC particles. The addition of the TiC grain refiner to the metal alloy in the amount of 0.1 Ti wt pct effected a remarkable reduction in the average grain size in Al-4.5 wt pct Cu alloy castings. With the content of over 0.2 Ti wt pct, the grain refiner maintained its refining effectiveness even after a 3,600-second holding time at 973 K. The TiC particles in the resulting castings were free of interfacial phases. It is concluded that the TiC are the nucleating agents and that they are resistant to the fading effect encountered with most grain refiners.

  18. Mercury embrittlement of Cu-Al alloys under cyclic loading

    Science.gov (United States)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  19. The roles of Al2Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al-Cu alloys immersed in H2SO4

    International Nuclear Information System (INIS)

    Osorio, Wislei R.; Spinelli, Jose E.; Freire, Celia M.A.; Cardona, Margarita B.; Garcia, Amauri

    2007-01-01

    Al-Cu alloys castings can exhibit different corrosion responses at different locations due to copper content and to the resulting differences on microstructural features and on Al 2 Cu fractions. The aim of this study was to investigate the influence of Al 2 Cu intermetallic particles associated to the dendritic arm spacings on the general corrosion resistance of three different hypoeutectic Al-Cu alloys samples in sulfuric acid solution. The cast samples were produced using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The typical microstructural pattern was examined by using electronic microscopy techniques. In order to evaluate the surface corrosion behavior of such Al-Cu alloys, corrosion tests were performed in a 0.5 M sulfuric acid solution at 25 deg. C by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. An equivalent circuit was also used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that Al 2 Cu has a less noble corrosion potential than that of the Al-rich phase. Despite that, dendrite fineness has proved to be more influent on corrosion resistance than the increase on alloy copper content with the consequent increase on Al 2 Cu fraction

  20. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  1. Particle Based Alloying by Accumulative Roll Bonding in the System Al-Cu

    Directory of Open Access Journals (Sweden)

    Mathias Göken

    2011-11-01

    Full Text Available The formation of alloys by particle reinforcement during accumulative roll bonding (ARB, and subsequent annealing, is introduced on the basis of the binary alloy system Al-Cu, where strength and electrical conductivity are examined in different microstructural states. An ultimate tensile strength (UTS of 430 MPa for Al with 1.4 vol.% Cu was reached after three ARB cycles, which almost equals UTS of the commercially available Al-Cu alloy AA2017A with a similar copper content. Regarding electrical conductivity, the UFG structure had no significant influence. Alloying of aluminum with copper leads to a linear decrease in conductivity of 0.78 µΩ∙cm/at.% following the Nordheim rule. On the copper-rich side, alloying with aluminum leads to a slight strengthening, but drastically reduces conductivity. A linear decrease of electrical conductivity of 1.19 µΩ∙cm/at.% was obtained.

  2. Simultaneous increase in strength and ductility by decreasing interface energy between Zn and Al phases in cast Al-Zn-Cu alloy.

    Science.gov (United States)

    Han, Seung Zeon; Choi, Eun-Ae; Park, Hyun Woong; Lim, Sung Hwan; Lee, Jehyun; Ahn, Jee Hyuk; Hwang, Nong-Moon; Kim, Kwangho

    2017-09-22

    Cast-Al alloys that include a high amount of the second element in their matrix have comparatively high strength but low ductility because of the high volume fraction of strengthening phases or undesirable inclusions. Al-Zn alloys that have more than 30 wt% Zn have a tensile strength below 300 MPa, with elongation under 5% in the as-cast state. However, we found that after substitution of 2% Zn by Cu, the tensile strength of as-cast Al-Zn-Cu alloys was 25% higher and ductility was four times higher than for the corresponding Al-35% Zn alloy. Additionally, for the Al-43% Zn alloy with 2% Cu after 1 h solution treatment at 400 °C and water quenching, the tensile strength unexpectedly reached values close to 600 MPa. For the Al-33% Zn alloy with 2% Cu, the tensile strength was 500 MPa with 8% ductility. The unusual trends of the mechanical properties of Al-Zn alloys with Cu addition observed during processing from casting to the subsequent solution treatment were attributed to the precipitation of Zn in the Al matrix. The interface energy between the Zn particles and the Al matrix decreased when using a solution of Cu in Zn.

  3. Production and mechanical properties of Ti-5Al-2.5Fe-xCu alloys for biomedical applications.

    Science.gov (United States)

    Yamanoglu, Ridvan; Efendi, Erdinc; Kolayli, Fetiye; Uzuner, Huseyin; Daoud, Ismail

    2018-01-30

    In this study, the mechanical, antibacterial properties and cell toxicity response of Ti-5Al2.5Fe alloy with different copper contents were investigated. The alloys were prepared by high-energy ball milling using elemental Ti, Al, Fe, and Cu powders and consolidated by a uniaxial vacuum hot press. Staphylococcus aureus strain ATCC 29213 and Escherichia coli strain ATCC 25922 were used to determine the antibacterial properties of the sintered alloys. The in vitro cytotoxicity of the samples was evaluated with HeLa (ATTC, CCL-2) cells using thiazolyl blue tetrazolium bromide. The mechanical behavior of the samples was determined as a function of hardness and bending tests and analyzed by scanning electron microscopy, energy dispersive x-ray spectroscopy, optical microscopy and x-ray diffraction (XRD). The results showed that the Cu content significantly improved the antibacterial properties. Cu addition prevented the formation of E. coli and S. aureus colonies on the surface of the samples. All samples exhibited very good cell biocompatibility. The alloys with different copper contents showed different mechanical properties, and the results were correlated by microstructural and XRD analyses in detail. Our results showed that Cu has a great effect on the Ti5Al2.5Fe alloy and the alloy is suitable for biomedical applications with enhanced antibacterial activity.

  4. The Mechanical Properties of AlSi17Cu5 Cast Alloy after Overheating and Modification of CuP Master Alloy

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2013-09-01

    Full Text Available The paper presents the results of studies on the effect of the AlSi17Cu5 alloy overheating to atemperature of 920°C and modification with phosphorus (CuP10 on the resultingmechanical (HB, Rm, R0.2 and plastic (A5 and Z properties. It has been shown that, so-called, "timethermal treatment" (TTT of an alloy in the liquid state, consisting inoverheating the metal to about 250°C above Tliq,holding at this temperature by 30 minutes improvesthe mechanical properties. It has also been found that overheating of alloy above Tliq.enhances the process of modification, resulting in the formation of fine-grain structure. The primary silicon crystals uniformly distributed in the eutectic and characteristics ofthe α(Al solution supersaturated with alloying elements present in the starting alloy composition (Cu, Fe provide not only an increase of strength at ambient temperature but also at elevated temperature (250°C.

  5. Solidification of Al-Sn-Cu Based Immiscible Alloys under Intense Shearing

    Science.gov (United States)

    Kotadia, H. R.; Doernberg, E.; Patel, J. B.; Fan, Z.; Schmid-Fetzer, R.

    2009-09-01

    The growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.

  6. Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al-Si-Cu-Mg alloys in 0.05 M NaCl

    International Nuclear Information System (INIS)

    Vieira, A.C.; Pinto, A.M.; Rocha, L.A.; Mischler, S.

    2011-01-01

    Research highlights: → Influence of the size distribution of Al-Cu phases on the electrochemical behaviour of well defined alloys under controlled mass transport conditions (RDE). → Oxygen reduction occurs only the Al 2 Cu phases. → Thinner Al-Cu grains the oxygen reduction current deviates at high rotation rates from the Levich behaviour. - Abstract: The electrochemical behaviour of age-hardened Al-Si-Cu-Mg alloys was investigated in a 0.05 M NaCl solution under controlled mass transport conditions using a rotating disk electrode. This work aimed at getting better understanding of the effect of the alloy microstructure, in particular the size distribution of Al 2 Cu phase, on the corrosion behaviour of the alloy. Three different size distributions of the Al 2 Cu phase were obtained through appropriate heat treatments. The cathodic reduction of oxygen was found to occur mainly on the Al 2 Cu phases acting as preferential cathodes. Small sized Al 2 Cu phases were found to promote at high rotation rates a transition from a 4 electron to a 2 electron dominated oxygen reduction mechanisms.

  7. Control of segregation in squeeze cast Al-4.5Cu binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, G. [Oxford Univ. (United Kingdom). Dept. of Materials; Gallerneault, M. [Alcan International Ltd., Kingston, ON (Canada); Cantor, B. [Oxford Univ. (United Kingdom). Dept. of Materials

    1997-10-01

    The high pressure applied in squeeze casting allows Al alloys of wrought composition to be cast to near net-shape, although their long freezing range leads to the segregation of alloying elements. In this paper we present results on the squeeze casting and gravity casting of a model Al-4.5 wt%Cu alloy. Squeeze cast Al-4.5Cu has a normal segregation pattern with eutectic macrosegregates towards the centre of the billet, whereas gravity cast material has a typical inverse segregation pattern. Normal segregation in squeeze cast Al-4.5Cu is due to large temperature gradients during solidification. Segregation can be minimized by releasing the applied pressure during solidification to allow backflow of the interdendritic fluid, or by the addition of grain refiner to remove the large columnar dendritic growth structure. (orig.)

  8. Thermal stability of Al-Cu-Fe quasicrystals prepared by SHS method

    Directory of Open Access Journals (Sweden)

    Pavel Novak

    2013-02-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  9. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    Directory of Open Access Journals (Sweden)

    Pavel Novák

    2013-04-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  10. Crystallization behavior and the thermal properties of Zr63Al7.5Cu17.5Ni10B2 bulk amorphous alloy

    International Nuclear Information System (INIS)

    Jang, J.S.C.; Chang, L.J.; Jiang, Y.T.; Wong, P.W.

    2003-01-01

    The ribbons of amorphous Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys with 0.1 mm thickness were prepared by melt spinning method. The thermal properties and micro structural development during the annealing of amorphous alloy have been investigated by a combination of differential thermal analysis, differential scanning calorimetry, high-temperature optical microscope, X-ray diffractometry and TEM. The glass transition temperature for the Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys are measured about 645 K (372 C). This alloy also obtains a large temperature interval ΔT x about 63 K. Meanwhile, the calculated T rg for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy presents the value of 0.57. The activation energy of crystallization for the alloy Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 was about 370± 10 kJ/mole as determined by the Kissinger and Avrami plot, respectively. These values are about 20% higher than the activation energy of crystallization for the Zr 65 Al 7.5 Cu 17.5 Ni 10 alloy (314 kJ/mol.). This implies that the boron additions exhibit the effect of improving the thermal stability for the Zr-based alloy. The average value of the Avrami exponent n were calculated to be 1.75±0.15 for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy. This indicates that this alloy presents a crystallization process with decreasing nucleation rate. (orig.)

  11. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    International Nuclear Information System (INIS)

    Groebner, J.; Rokhlin, L.L.; Dobatkina, T.V.; Schmid-Fetzer, R.

    2007-01-01

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges

  12. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, J. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany); Rokhlin, L.L. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Dobatkina, T.V. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Schmid-Fetzer, R. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany)]. E-mail: schmid-fetzer@tu-clausthal.de

    2007-05-16

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges.

  13. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    International Nuclear Information System (INIS)

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-01

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: ► The microstructure of Cu-Al alloy is modified in the Ag presence. ► (α + γ) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. ► Ag-rich phase modifies the magnetic characteristics of Cu–Al–Mn alloy.

  14. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    A study on the inhibition of Al-Cu-Ni alloy in simulated sea-water environment was investigated using Sodium Chromate as inhibitor. The inhibitor concentration was varied as control, 0.25, 0.5, 1.0, 1.5 and 2.0 Molar. Al-Cu-Ni alloy was sand cast into cylindrical bars of 20 mm x 300 mm dimension. The corrosion of the ...

  15. Effect of tellurium on machinability and mechanical property of CuAlMnZn shape memory alloy

    International Nuclear Information System (INIS)

    Liu Na; Li Zhou; Xu Genying; Feng Ze; Gong Shu; Zhu Lilong; Liang Shuquan

    2011-01-01

    Highlights: → A novel free-machining Cu-7.5Al-9.7Mn-3.4Zn-0.3Te (wt.%) shape memory alloy has been developed. → The size of dispersed particles with richer Te is 2-5 μm. → The CuAlMnZnTe alloy has good machinability which approached that of BZn15-24-1.5 due to the addition of Te. → Its shape memory property keeps the same as that of CuAlMnZn alloy with free Te. → The CuAlMnZn shape memory alloy with and without Te both have good ductile as annealed at 700 deg. C for 15 min. - Abstract: The microstructure transition, shape memory effect, machinability and mechanical property of the CuAlMnZn alloy with and without Te have been studied using X-ray diffraction analysis, chips observation and scanning electron microscopy (SEM), tensile strength test and differential scanning calorimeter (DSC), and semi-quantitative shape memory effect (SME) test. The particles with richer Te dispersedly distributed in grain interior and boundary with size of 2-5 μm. After the addition of Te, the CuAlMnZnTe alloy machinability has been effectively increased to approach that of BZn15-24-1.5 and its shape memory property remains the same as the one of CuAlMnZn alloy. The CuAlMnZn shape memory alloys with and without Te both have good ductility as annealed at 700 deg. C for 15 min.

  16. Microstructures and Properties Evolution of Al-Cu-Mn Alloy with Addition of Vanadium

    Directory of Open Access Journals (Sweden)

    Fansheng Meng

    2016-12-01

    Full Text Available The effect of the vanadium addition on the microstructure, the precipitation behavior, and the mechanical properties of the Al-5.0Cu-0.4Mn alloy has been studied. The as-cast Al-5.0Cu-0.4Mn alloy was produced by squeeze casting and the heat treatment was carried out following the standard T6 treatment. It is shown that, with the addition of V, grain refinement of aluminum occurred. During heat treatment, the addition of V accelerates the precipitation kinetics of θ′ (Al2Cu phase along the grain boundaries, and promotes the growth rate of the θ′ in the α(Al matrix. Meanwhile, the addition of V retards the precipitation of T (Al20Cu2Mn3 phase. The tensile strength of the Al-5.0Cu-0.4Mn alloy increases with the increase of V content, which can be explained by combined effects of the solid solution strengthening and precipitate strengthening. However, excessively high V addition deteriorates the mechanical properties by forming brittle coarse intermetallic phases.

  17. Fatigue and creep deformed microstructures of aged alloys based on Al-4% Cu-0.3% Mg

    International Nuclear Information System (INIS)

    Reddy, A. Somi

    2008-01-01

    The addition of 0.4 wt.% of silver or cadmium to the alloy Al-4% Cu-0.3% Mg which has a high Cu:Mg ratio, changes the nature, morphology and dispersion of the precipitates that forms on age hardening at medium temperatures such as 150-200 o C. Fatigue and creep tests were carried out on alloys aged to peak strength at 170 o C. The tensile properties of the alloys aged at 170 o C increased in the order Al-4% Cu, Al-4% Cu-0.3% Mg, Al-4% Cu-0.3% Mg-0.4% Cd, and Al-4% Cu-0.3% Mg-0.4% Ag. Despite differences in their microstructures and tensile properties, the fatigue performance of the alloys was relatively unaffected. Fatigue behaviour was similar in each case and the alloys showed identical fatigue limits. Major differences were observed in the creep performance of the alloys creep tested at 150 o C in the peak strength condition age hardened at 170 o C. Creep performance of the alloys increased in the order of their tensile properties. The purpose of the present work was to discuss the fatigue and creep deformed microstructure of these alloys

  18. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  19. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  20. Effect of Recrystallization and Natural Aging on Mechanical Properties of Al-Zn-Mg-Cu-Sc Alloys

    International Nuclear Information System (INIS)

    Yu, Min Kyu; Hong, Soon Hyung; Kwon, Oh Yeol; Lee, Yong Yeon

    2015-01-01

    In this study, the recrystallization volume fraction of the Al-Zn-Mg-Cu-Sc alloy after solid solution heat treatment varied with different temperatures (445℃ - 465℃). The highest elongation of the Al-Zn-Mg-Cu-Sc alloy was obtained at 465℃. Further, the hardness and strength of the solid solution heat treated Al-Zn-Mg-Cu-Sc alloy increased at room temperature due to G.P zone precipitates. The results confirmed that we can obtain advanced mechanical properties for the Al-Zn-Mg-Cu-Sc alloy from solid solution heat treatment and natural aging.

  1. Microstructure and corrosion resistance of Sm-containing Al-Mn-Si-Fe-Cu alloy

    Directory of Open Access Journals (Sweden)

    Han Yuyin

    2017-12-01

    Full Text Available Optimizing alloy composition is an effective way to improve physical and chemical properties of automobile heat exchanger materials.A Sm-containing Al-Mn-Si-Fe-Cu alloy was investigated through transmission electron microscopy,scanning electron microscopy,and electrochemical measurement.Experimental results indicated that main phases distributed in the alloy wereα-Al(Mn,FeSi,Al2Sm and Al10Cu7Sm2.Alloying with Sm element could refine the precipitated α-Al(Mn,FeSi phase.Polarization testing results indicated that the corrosion surfacewas mainly composed of pitting pits and corrosion products.Sea water acetic acid test(SWAAT showed that corrosion loss increased first and then slowed downwith increase of the corrosion time.

  2. Derivative thermo analysis of the near eutectic Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-12-01

    Full Text Available For determining of the dependence between cooling Speer, chemical composition and structure of the Al–Si–Cu aluminium cast alloy the thermo-analysis was carried out, using the UMSA device (Universal Metallurgical Simulator and Analyzer, next the optical and electron scanning microscopy was used for investigation of the structure, phase and chemical composition of the AC-AlSi7Cu3Mg grade Al cast alloy also using the EDS microanalysis as well the EBSD technique.

  3. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin [Division of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Shin, So-Ra; Park, Jong-Wan, E-mail: jwpark@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-15

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H{sub 2} plasma, while Al was deposited using trimethylaluminum as the precursor and H{sub 2} plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO{sub 2} dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects.

  4. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    International Nuclear Information System (INIS)

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin; Shin, So-Ra; Park, Jong-Wan

    2014-01-01

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H 2 plasma, while Al was deposited using trimethylaluminum as the precursor and H 2 plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO 2 dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects

  5. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  6. Evaluation of the microstructure of Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 4

    Science.gov (United States)

    Pickens, Joseph R.; Kumar, K. S.; Brown, S. A.; Gayle, Frank W.

    1991-01-01

    Weldalite (trademark) 049 is an Al-Cu-Li-Ag-Mg alloy designed to have ultrahigh strength and to serve in aerospace applications. The alloy displays significantly higher strength than competitive alloys in both naturally aged and artificially aged tempers. The strengthening phases in such tempers have been identified to, in part, explain the mechanical properties attained. In general, the alloy is strengthened by delta prime Al3Li and Guinier-Preston (GP) zones in the naturally aged tempers. In artificially aged tempers in slightly underaged conditions, strengthening is provided by several phases including GP zones, theta prime Al2Cu, S prime Al2CuMg, T(sub 1) Al2CuLi, and possibly a new phase. In the peak strength artificially aged tempers, T(sub 1) is the predominant strengthening phase.

  7. Differential Scanning Calorimetry and Thermodynamic Predictions—A Comparative Study of Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Gernot K.-H. Kolb

    2016-08-01

    Full Text Available Al-Zn-Mg-Cu alloys are widely used in aircraft applications because of their superior mechanical properties and strength/weight ratios. Commercial Al-Zn-Mg-Cu alloys have been intensively studied over the last few decades. However, well-considered thermodynamic calculations, via the CALPHAD approach, on a variation of alloying elements can guide the fine-tuning of known alloy systems and the development of optimized heat treatments. In this study, a comparison was made of the solidus temperatures of different Al-Zn-Mg-Cu alloys determined from thermodynamic predictions and differential scanning calorimetry (DSC measurements. A variation of the main alloying elements Zn, Mg, and Cu generated 38 experimentally produced alloys. An experimental determination of the solidus temperature via DSC was carried out according to a user-defined method, because the broad melting interval present in Al-Zn-Mg-Cu alloys does not allow the use of the classical onset method for pure substances. The software algorithms implemented in FactSage®, Pandat™, and MatCalc with corresponding commercially available databases were deployed for thermodynamic predictions. Based on these investigations, the predictive power of the commercially available CALPHAD databases and software packages was critically reviewed.

  8. Structure and phase composition of Al-Ce-Cu system alloys in range of quasi-binary Al-Al8CeCu4 section

    International Nuclear Information System (INIS)

    Belov, N.A.; Khvan, A.V.

    2007-01-01

    The phase diagram of the Al-Cu-Ce system in the quasibinary section area of Al-Al 8 CeCu 4 has been investigated by metallographic, thermal, micro-X-ray spectral and X-ray structural analyses. The parameters of the eutectic reaction L→(Al)+CeCu 4 Al 8 : T=610 Deg C were found out; the composition was 14% Cu and 7% Ce. This eutectics is of a disperse structure and the ternary compound contained is capable of fragmentation and spheroidizing in the heating process (starting from 540 Deg C). It was demonstrated that the area of optimal (Al)+CeCu 4 Al 8 eutectics-based alloy compositions was within the narrow limits. That is related to the fact that at a comparatively little variation of the Cu:Ce=2 ratio solidus sharply decreases and, as a result, the crystallization interval considerably extends [ru

  9. Hot mechanical behaviour of dispersion strengthened Cu alloys

    International Nuclear Information System (INIS)

    Garcia G, Jose; Espinoza G, Rodrigo; Palma H, Rodrigo; Sepulveda O, Aquiles

    2003-01-01

    This work is part of a research project which objective is the improvement of the high-temperature mechanical properties of copper, without an important decrease of the electrical or thermal conduction properties. The general hypothesis is that this will be done by the incorporation of nanometric ceramic dispersoids for hindering the dislocation and grain boundaries movement. In this context, the object of the present work is the study of the resistance to hot deformation of dispersion-strengthened copper alloys which have prepared by reactive milling. Two different alloys, Cu-2,39wt.%Ti-0.56wt.%C and Cu-1.18wt.%Al, were prepared so as obtain a copper matrix reinforced with nanometric TiC y Al 2 O 3 particles with a nominal total amount of 5 vol.%. The particles were developed by an in-situ formation process during milling. The materials were prepared in an attritor mill, and consolidated by extrusion at 750 o C, with an area reduction rate of 10:1. The resistance to hot deformation was evaluated by hot compression tests at 500 and 850 o C, at initial strain rates of 10 -3 and 10 -4 s-1. To evaluate the material softening due temperature, annealing at 400, 650 y 900 o C during 1h were applied; after that, hardness was measured at room temperature. Both studies alloys presented a higher resistance to hot deformation than pure copper, with or without milling. Moreover, the Cu-Ti-C alloy presented a mechanical resistance higher than that of the Cu-Al one. Both alloys presented strain-stress compression curves with a typical hot-work shape: an initial maximum followed by a stationary plateau. The Cu-Ti-C alloy had a higher hardness and did not present a hardness decay even after annealings at the higher temperature imposed (900 o C), while the Cu-Al alloy did exhibit a strong decay of hardness after the annealing at 900 o C. The best behaviour exhibited by the Cu-Ti C alloy, was attributed to the formation of a major quantity of dispersoids that in the Cu-Al alloy. In

  10. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    Science.gov (United States)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  11. High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys

    Science.gov (United States)

    An, X. H.; Han, W. Z.; Huang, C. X.; Zhang, P.; Yang, G.; Wu, S. D.; Zhang, Z. F.

    2008-05-01

    Lack of plasticity is the main drawback for nearly all ultrafine-grained (UFG) materials, which restricts their practical applications. Bulk UFG Cu-Al alloys have been fabricated by using equal channel angular pressing technique. Its ductility was improved to exceed the criteria for structural utility while maintaining a high strength by designing the microstructure via alloying. Factors resulting in the simultaneously enhanced strength and ductility of UFG Cu-Al alloys are the formation of deformation twins and their extensive intersections facilitating accumulation of dislocations.

  12. Pitting corrosion of Al and Al-Cu alloys by ClO4- ions in neutral sulphate solutions

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Abd El Rehim, Sayed S.; Moussa, S.O.; Ellithy, Abdallah S.

    2008-01-01

    The influence of various concentrations of NaClO 4 , as a pitting corrosion agent, on the corrosion behaviour of pure Al, and two Al-Cu alloys, namely (Al + 2.5 wt% Cu) and (Al + 7 wt% Cu) alloys in 1.0 M Na 2 SO 4 solution was investigated by potentiodynamic polarization and potentiostatic techniques at 25 deg. C. Measurements were conducted under the influence of various experimental conditions, complemented by ex situ energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) examinations of the electrode surface. In free perchlorate sulphate solutions, for the three Al samples, the anodic polarization exhibits an active/passive transition. The active dissolution region involves an anodic peak (peak A) which is assigned to the formation of Al 2 O 3 passive film on the electrode surface. The passive region extends up to 1500 mV with almost constant current density (j pass ) without exhibiting a critical breakdown potential or showing any evidence of pitting attack. For the three Al samples, addition of ClO 4 - ions to the sulphate solution stimulates their active anodic dissolution and tends to induce pitting corrosion within the oxide passive region. Pitting corrosion was confirmed by SEM examination of the electrode surface. The pitting potential decreases with increasing ClO 4 - ion concentration indicating a decrease in pitting corrosion resistance. The susceptibility of the three Al samples towards pitting corrosion decreases in the order: Al > (Al + 2.5 wt% Cu) alloy > (Al + 7 wt% Cu) alloy. Potentiostatic measurements showed that the rate of pitting initiation increases with increasing ClO 4 - ion concentration and applied step anodic potential, while it decreases with increasing %Cu in the Al samples. The inhibitive effect of SO 4 2- ions was also discussed

  13. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: A study on the inhibition of Al-Cu-Ni alloy in simulated ... which the percentage of Copper, and Nickel were kept .... proceed based on equation of reaction in eqn (4). Al .... Sodium-Modified A356.0-Type Al-Si-Mg Alloy in Simulated.

  14. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    Sutou, Y.; Kainuma, R.; Ishida, K.

    1999-01-01

    The effect of alloying elements on the M s temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu 73 -Al 17 -Mn 10 alloy stabilized the martensite (6M) phase increasing the M s temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the M s temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  15. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  16. Construction and evaluation of multi-component Zn-Al based bearing alloys (Zn-Al-Si, Zn-Al-Cu)

    International Nuclear Information System (INIS)

    Shahmiri, M.; Shahin, K.

    2001-01-01

    Zn-Al based alloys, with excellent mechanical properties, are finding increasing applications in various industries, especially bearing and bushing fields. Observed dimensional instabilities, in their multicomponent systems, (e. g. Zn-Al-Si and, Zn-Al Si-Cu), is believed to be as the result of some kinds of phase transformation, due to the temperature variations, while in service. Profound understanding of the phase transformations due to the temperature variation, requires detailed evaluations of the isothermal sections of the multi-components phase diagrams of Zn-Al-Si and, Zn-Al-Si-Cu alloy systems. In the present article, the isothermal sections of the aforementioned ternary and quaternary systems in the solid state regions have been investigated and observed phase transitions have been critically evaluated

  17. Thermomechanical Treatments on High Strength Al-Zn-Mg(-Cu) Alloys

    National Research Council Canada - National Science Library

    Di Russo, E; Conserva, M; Gatto, F

    1974-01-01

    An investigation was carried out to determine the metallurgical properties of Al-Zn-Mg and Al-Zn-Mg-Cu alloy products processed according to newly developed Final Thermomechanical Treatments (FTMT) of T-AHA type...

  18. Influence of Mn on the tensile properties of SSM-HPDC Al-Cu-Mg-Ag alloy A201

    CSIR Research Space (South Africa)

    Müller, H

    2011-03-01

    Full Text Available A201 aluminium alloy is a high strength casting alloy with a nominal composition of Al-4.6Cu-0.3Mg-0.6Ag. It is strengthened by the O(Al2Cu) phase and the ’(Al2Cu) phase during heat treatment. Further strengthening of this alloy system can...

  19. Investigation of Microstructure in Solid State Welded Al-Cu-Li alloy

    Directory of Open Access Journals (Sweden)

    No Kookil

    2016-01-01

    Full Text Available Al-Li alloys have been extensively used in aerospace vehicle structure since the presence of lithium increases the modulus and reduce the density of the alloy. Especially the third generation Al-Cu-Li alloy shows enhanced fracture toughness at cryogenic temperatures so that the alloy has been used on the fuel tank of space launchers, like Super Lightweight External Tank of the Space Shuttle. Since the commercial size of the plate cannot accommodate the large tank size of the launcher, joining several pieces is required. However, lithium is highly reactive and its compounds can decompose with heat from conventional fusion welding and form different types of gases which result in formation of defects. In this study, the microstructure change is investigated after solid state welding process to join the Al-Cu-Li sheets with optical and transmission electron microscopic analysis of precipitates.

  20. Kinematic viscosity of liquid Al-Cu alloys

    International Nuclear Information System (INIS)

    Konstantinova, N Yu; Popel, P S

    2008-01-01

    Temperature dependences of kinematic viscosity n of liquid Al 100-x -Cu x alloys (x = 0.0, 10.0, 17.1, 25.0, 32.2, 40.0 and 50.0 at.%) were measured. A technique based on registration of the period and the decrement of damping of rotating oscillations of a cylindrical crucible with a melt was used. Viscosity was calculated in low viscous liquids approximation. Measurements were carried out in vacuum in crucibles of BeO with a temperature step of 30 deg. C and isothermal expositions of 10 to 15 minutes during both heating up to 1100-1250 deg. C and subsequent cooling. We have discovered branching of heating and cooling curves v(T) (hysteresis of viscosity) below temperatures depending on the copper content: 950 deg. C at 10 and 17.1 at.% Cu, 1050 deg. C at 25 and 40 at.% Cu, 850 deg. C at 32.2 at.% Cu. For samples with 10 and 17.1 at.% Cu the cooling curve 'returns' to the heating one near 700 deg. C. An abnormally high spreading of results at repeated decrement measurements was fixed at heating of the alloy containing 50 at.% Cu above 1000 deg. C. During subsequent cooling the effect disappeared. Isotherms of kinematic viscosity have been fitted for several temperatures

  1. Similar and dissimilar friction welding of Zr-Cu-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Shin, Hyung-Seop; Park, Jung-Soo; Jung, Yoon-Chul; Ahn, Jung-Ho; Yokoyama, Yoshihiko; Inoue, Akihisa

    2009-01-01

    The friction welding of three kinds of Zr-Cu-Al bulk glassy alloys (BGAs) which show eutectic or hypoeutectic compositions to similar and dissimilar BGAs and crystalline metals has been tried. The shape and volume of the protrusion formed at the weld interface were investigated. In order to characterize the friction welded interface, micrographic observation and X-ray diffraction analysis on the weld cross-section were carried out. A successful joining of Zr-Cu-Al bulk glassy alloys to similar and dissimilar BGAs was achieved without occurrence of crystallizations at the weld interface through the precise control of friction conditions. In addition, the joining of Zr 50 Cu 40 Al 10 BGA to crystalline alloys was tried, but it was only successful for specific material combinations. The residual strength after welding of dissimilar BGAs was evaluated by the four-point bending test.

  2. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  3. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    Science.gov (United States)

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  4. Low Cycle Mechanical and Fatigue Properties of AlZnMgCu Alloy

    Directory of Open Access Journals (Sweden)

    Pysz S.

    2016-03-01

    Full Text Available The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075 was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.

  5. The roles of Al{sub 2}Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al-Cu alloys immersed in H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Spinelli, Jose E. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Freire, Celia M.A. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Cardona, Margarita B. [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Garcia, Amauri [Department of Materials Engineering, State University of Campinas, UNICAMP, P.O. Box 6122, 13083-970 Campinas, SP (Brazil)]. E-mail: amaurig@fem.unicamp.br

    2007-09-27

    Al-Cu alloys castings can exhibit different corrosion responses at different locations due to copper content and to the resulting differences on microstructural features and on Al{sub 2}Cu fractions. The aim of this study was to investigate the influence of Al{sub 2}Cu intermetallic particles associated to the dendritic arm spacings on the general corrosion resistance of three different hypoeutectic Al-Cu alloys samples in sulfuric acid solution. The cast samples were produced using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The typical microstructural pattern was examined by using electronic microscopy techniques. In order to evaluate the surface corrosion behavior of such Al-Cu alloys, corrosion tests were performed in a 0.5 M sulfuric acid solution at 25 deg. C by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. An equivalent circuit was also used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that Al{sub 2}Cu has a less noble corrosion potential than that of the Al-rich phase. Despite that, dendrite fineness has proved to be more influent on corrosion resistance than the increase on alloy copper content with the consequent increase on Al{sub 2}Cu fraction.

  6. Microstructure of AlSi17Cu5 alloy after overheating over liquidus temperature

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2015-01-01

    Full Text Available The paper presents microstructure tests of alloy AlSi17Cu5. In order to disintegrate the primary grain of silicon the so-called time-temperature transformation TTT was applied which was based on overheating the liquid alloy way over the temperature Tliq., soaking in it for 30 minutes and casting it to a casting mould. It was found that such process causes the achievement of fine-crystalline structure and primary silicon crystals take up the form of pentahedra or frustums of pyramids. With the use of X-ray microanalysis and X-ray diffraction analysis the presence of intermetallic phases Al2Cu, Al4Cu9 which are the ingredients of eutectics α - AlCu - β and phase Al9Fe2Si which is a part of eutectic α - AlFeSi - β was confirmed.

  7. Age hardening of a sintered Al-Cu-Mg-Si-(Sn) alloy

    International Nuclear Information System (INIS)

    Kent, D.; Schaffer, G.B.; Drennan, J.

    2005-01-01

    The age hardening response of a sintered Al-3.8 wt% Cu-1.0 wt% Mg-0.70 wt% Si alloy with and without 0.1 wt% Sn was investigated. The sequence of precipitation was characterised using transmission electron microscopy. The ageing response of the sintered Al-Cu-Mg-Si-(Sn) alloy is similar to that of cognate wrought 2xxx series alloys. Peak hardness was associated with a fine, uniform dispersion of lath shaped precipitates, believed to be either the β'or Q' phase, oriented along α directions and θ' plates lying on {0 0 1} α planes. Natural ageing also resulted in comparable behaviour to that observed in wrought alloys. Porosity in the powder metallurgy alloys did not significantly affect the kinetics of precipitation during artificial ageing. Trace levels of tin, used to aid sintering, slightly reduced the hardening response of the alloy. However, this was compensated for by significant improvements in density and hardness

  8. L10 ordered structures in Al-Cu-(Mg alloys at the early stages of elevated temperature aging

    Directory of Open Access Journals (Sweden)

    Fuzhong, Xia

    2016-09-01

    Full Text Available This study concerns the precipitation structures of Al-3Cu and Al-3Cu-1.78Mg (wt. % alloys at the early stages of elevated temperature aging. The Al-3Cu and Al-3Cu-1.78 Mg alloys were solution treated at 540 °C and 500 °C for 2 h, respectively, and then aged at 190 °C for 2 min. The precipitation structures in aged Al-3Cu-(1.78Mg alloys were characterized by Transmission Electron Microscopy (TEM and High Resolution Transmission Electron Microscopy (HTREM. 001 zone axis Selected area electron diffraction patterns indicate that L10 ordered structures are formed in the two aged alloys. HRTEM experiments reveal the partial dislocations on the interfaces of L10 ordered structures. From comparing experimental results with that in the literature, it is concluded that the L10 ordered structures in aged Al-3Cu alloy consist of Al and Cu atoms, and they are comprised by Al, Cu and Mg atoms together in the aged Al-3Cu-1.78Mg alloy. On the basis of precipitate growing thermodynamics, it is thought the L10 ordered structures act as nuclei for GP zones in Al-Cu-(Mg alloys during aging.En este trabajo se estudian las estructuras de precipitación en Al-3Cu y Al-3Cu-1,78Mg (% en peso en los estados iniciales de envejecimiento a temperatura elevada. Las aleaciones Al-3Cu y Al-3Cu-1.78 Mg fueron sometidas a un tratamiento térmico de solución de 2 h a 540 °C y 500 °C, respectivamente, y posteriormente envejecidas 2 min a 190 °C. Las estructuras de precipitación en Al-3Cu-(1.78Mg envejecido fueron caracterizadas por microscopía electrónica de transmisión (TEM y por microscopía electrónica de transmisión de alta resolución (HTREM. Los diagramas de difracción de electrones de área seleccionada indican que se forman estructuras ordenadas L10 en las dos aleaciones envejecidas. Experimentos de HRTEM revelan la presencia de dislocaciones parciales en las intercaras de las estructuras L10 ordenadas. Comparando estos resultados experimentales con la

  9. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  10. Gibbsian and radiation-induced segregation in Cu--Li and Al--Li alloys

    International Nuclear Information System (INIS)

    Gruen, D.M.; Krauss, A.R.; Susman, S.; Venugopalan, M.; Ron, M.

    1983-01-01

    Previous experiments on segregation in dilute alloys of lithium in aluminum have demonstrated rapid enrichment of lithium in the uppermost monolayer, as well as a slower buildup in the subsurface region as a result of radiation-induced segregation effects during sputtering. Surface and subsurface enrichment of lithium in copper and aluminum alloys has been observed by secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), and x-ray photoemission spectroscopy (XPS). The activation energies for lithium diffusion in Cu and Al have been measured and segregation kinetics are compared for dilute alloys of Li in Cu and Al, and a high lithium content copper alloy. The results are interpreted in terms of both Gibbsian and radiation-induced segregation effects

  11. Recovery of the mechanical properties on the Al-4wt%Cu alloy

    International Nuclear Information System (INIS)

    Chemingui, M; Kassis, K; Khitouni, M; Masmoudi, J; Kolsi, A W

    2010-01-01

    The recovery of the mechanical properties on the Al-4%wtCu alloy was investigated by indentation after cold rolling. The microstructural evolution was performed using optical and scanning electron microscopies. The annealing at 200 deg. C of the quenched and rolled alloy gives higher mechanical qualities. At temperatures up to 200 deg. C, the alloy has no softening by recovery, but on the contrary a hardening behaviour was observed. This later is attributed to the presence of the intermediate θ'' and θ' phases. Nevertheless, the ageing in high temperature product the coalescence of iron particles and of Al 2 Cu precipitates. These phases are essentially localized in the grain boundaries, which caused the damage of the alloy.

  12. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. HRTEM characterization of melt-spun Al-Si-Cu-Mg alloys solidified at different rates

    International Nuclear Information System (INIS)

    Alfonso, Ismeli; Maldonado, Cuauhtemoc; Medina, Ariosto; Gonzalez, Gonzalo; Bejar, Luis

    2006-01-01

    Six quaternary alloys Al-6Si-3Cu-xMg (x = 0.59, 3.80 and 6.78 wt.%) were produced by melt spinning using two different tangential speeds of the copper wheel (30 and 45 ms -1 ), and characterized using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and microhardness. At 30 ms -1 , XRD and TEM investigations revealed the presence of Al 2 Cu (θ) for the alloy with 0.59%Mg and Al 5 Cu 2 Mg 8 Si 6 (Q) for the alloys with 3.80 and 6.78%Mg. The increase in microhardness of the alloys with higher Mg content is attributed to the presence of nanosized a-Al particles and a higher content of Q nanoparticles. At 45 ms -1 the alloying element content in solid solution is increased due to the fact that the quantity of free second phases (θ and Q nanoparticles) has decreased. For this rotation speed, amorphous regions of α -Al were observed, increasing microhardness compared to the 30 ms -1 ribbons

  14. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  15. Low Temperature Mechanical Properties of Scandium-Modified Al-Zn-Mg-Cu Alloys

    National Research Council Canada - National Science Library

    Senkov, O

    2002-01-01

    Tensile properties of three wrought alloys, (1) Al-10Zn-3Mg-1.2Cu-0.15Zr, (2) Al-10Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc, and (3) Al-12Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc were studied in T6 and T7 conditions at 298K and 77K...

  16. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    International Nuclear Information System (INIS)

    Du, Jiandi; Ding, Dongyan; Xu, Zhou; Zhang, Junchao; Zhang, Wenlong; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-01-01

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al 8 Cu 4 Ce phase, Al 6 Cu 6 La phase and Al 6 (Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  17. Generalized planar fault energies and twinning in Cu-Al alloys

    Science.gov (United States)

    Kibey, S.; Liu, J. B.; Johnson, D. D.; Sehitoglu, H.

    2006-11-01

    We report ab initio density functional theory calculations of generalized planar fault energies of fcc Cu -xAl (x =0, 5.0, and 8.3at.%) alloys. We investigate the effects of substitutional solute Al on the unstable intrinsic γus and twin γut stacking fault energies (SFEs). Our results reveal an increased tendency of Cu-Al to deform preferentially by twinning with increasing Al content, consistent with experiment. We attribute this mechanical behavior to appreciable lowering of the twinning barrier γut, along with the stable intrinsic and twin SFEs.

  18. Li-atoms-induced structure changes of Guinier–Preston–Bagaryatsky zones in AlCuLiMg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Duan, S.Y.; Le, Z.; Chen, Z.K.; Gao, Z. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, J.H., E-mail: jhchen123@hnu.edu.cn [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Advanced Research Center, Central South University, Changsha 410083 (China); Ming, W.Q.; Li, S.Y.; Wu, C.L. [Center for High-Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Yan, N. [Advanced Research Center, Central South University, Changsha 410083 (China)

    2016-11-15

    Guinier–Preston–Bagaryatsky (GPB) zones are the well-known strengthening precipitates of AlCuMg alloys formed upon thermal ageing. Here we report that when formed in AlCuLiMg alloys the GPB zones can change significantly in morphology and structure. It is shown that though they do still consist of Al, Cu and Mg elements fundamentally, the GPB zones in AlCuLiMg alloys have a rather different structure due to a featured Li-segregation at their interfaces with the matrix and possible Li-replacement of partial Mg atoms in the structure. As such the Li-containing GPB zones often develop from one-dimensional to quasi-two-dimensional precipitates. - Highlights: • We observe Guinier–Preston–Bagaryatsky zone variants in AlCuLiMg alloys. • We obtain atomic-resolution images of the precipitates and model their structures. • Li-atoms play a key role in modifying the structure of these precipitate variants.

  19. Electrodeposition of Cu-In alloys for preparing CuInS sub 2 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, J; Ortega, J [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1990-01-01

    Copper-indium alloys were prepared by electroplating from citric acid (C{sub 6}H{sub 8}O{sub 7}.H{sub 2}O) baths onto Ti substrate. Formation of the alloys was carried out by direct codeposition of the elements and by sequential electrodeposition of copper and indium. Studies of the alloy formation by electrochemical measurements and X-ray diffraction were performed. The presence of Cu{sub 7}In{sub 4} in direct deposit as well as in sequentially electrodeposited material was observed during the alloy formation. The as-deposited layers were heated in H{sub 2}S. X-ray diffraction showed the annealed layers to be CuInS{sub 2} with the chalcopyrite structure, where the CuIn{sub 5}S{sub 8} phase was included during the annealing process. Photoelectrochemical characterization of the samples allowed us to determine the photoconductivity which is related with the Cu/In ratio in the samples. The energy gap for CuInS{sub 2} photoelectrodes in polysulphide solution was 1.57 Ev. (orig.).

  20. The response of macrophages to a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Anzel, Ivan; Lojen, Gorazd

    2010-09-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.

  1. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg) alloys

    OpenAIRE

    M. Kaczorowski; A. Krzyńska

    2007-01-01

    The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg) type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening ...

  2. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    Science.gov (United States)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  3. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  4. Influence of Solution Heat Treatment on Structure and Mechanical Properties of ZnAl22Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-09-01

    Full Text Available The influence of solution heat treatment at 385°C over 10 h with cooling in water on the structure, hardness and strength of the ZnAl22Cu3 eutectoid alloy is presented in the paper. The eutectoid ZnAl22Cu3 alloy is characterized by a dendritic structure. Dendrites are composed of a supersaturated solid solution of Al in Zn. In the interdendritic spaces a eutectoid mixture is present, with an absence of the ε (CuZn4 phase. Solution heat treatment of the ZnAl22Cu3 alloy causes the occurrence of precipitates rich in Zn and Cu, possibly ε phase. Solution heat treatment at 385°C initially causes a significant decrease of the alloy hardness, although longer solution heat treatment causes a significant increase of the hardness as compared to the as-cast alloy.

  5. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    Science.gov (United States)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  6. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiandi [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Zhou; Zhang, Junchao; Zhang, Wenlong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Chen, Renzong; Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2017-01-15

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  7. Study of the evolution of the microstructure and hardness of Cu-Al and Cu-Al-Ti alloys during their production by reactive milling and extrusion

    International Nuclear Information System (INIS)

    Figueroa, F; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    The microstructure and hardness of two alloys produced by reactive milling of elementary powders for 10, 20 and 30 hours and later hot extrusion were studied: a Cu-5 vol.% Al 2 O 3 binary and another Cu-2.5 vol.%TiC-2.5 vol.% Al 2 O 3 ternary. The microstructure of the alloys was characterized with a transmission electron microscope (TEM), X-ray diffraction (XRD) and different methods of chemical analysis. Then their hardness was evaluated before and after annealing at 873 K. The extruded binary alloy showed a micrometric grain structure, with nanometric subgrains (100 nm), together with the formation of nanometric dispersoids of semi-coherent Al 2 0 3 with the Cu matrix. The ternary alloy showed a microstructure very similar to the binary alloy, except that it also showed the formation of nanometric TiC dispersoids. The nanoparticles acted effectively as anchoring points for the movement of dislocations and grain growth. The microstructure was observed to be stable after annealing treatments for all the alloys. The milled ternary alloy was 32% harder (290 HV) than the hardest binary alloy (milled for 30 hours) (au)

  8. Phase relationship in AL-Cu-Sc alloys at 450-500 deg C

    International Nuclear Information System (INIS)

    Kharakterova, M.L.

    1991-01-01

    Al-Cu-Sc alloys containing up to 40% Cu and up to 6% Sc at 450 deg C and 500 deg C are studied using light microscopy, X-ray-spectral microanalysis, X-ray diffraction analysis, scanning electron microscopy, measurement of microhardness and electric resistance. It is determined, that in equilibrium with aluminium solid solution under the given temperature ther are Al 3 Sc, CuAl 2 phases of the respective binary systems and W (ScCu 6.6-4 Al 5.4-8 ) ternary phase. Isothermal cross sections of Al-Cu-Sc system at 450 and 500 deg C are plotted. Microhardness of equilibrium phases is measured. Combined solubility of copper and scandium in aluminium is determined

  9. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  10. Synthesis and mechanical properties of conventionally cast icosahedral particle-reinforced Al-Mn(-Cu)-Be-Si alloys

    International Nuclear Information System (INIS)

    Fleury, E.; Chang, H.J.; Kim, D.H.; Kim, D.H.; Kim, W.T.

    2005-01-01

    The microstructure of the Al-Mn(-Cu)-Be-Si alloys analyzed by X-ray diffraction and TEM consisted of icosahedral (i) quasicrystal particles embedded in α Al matrix. The conjoint addition of Si and Be elements enabled the i-phase formation in diameter 10 mm specimens prepared by conventional casting technique. The size, volume fraction and stability of the i-phase were found to be dependent on the Mn content. The addition of 2 at.% Cu did not affect the formation and stability of the i-phase but contributed significantly to the enhancement of the mechanical properties. (orig.)

  11. Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys

    International Nuclear Information System (INIS)

    Chemin, Aline; Marques, Denys; Bisanha, Leandro; Motheo, Artur de Jesus; Bose Filho, Waldek Wladimir; Ruchert, Cassius Olivio Figueiredo

    2014-01-01

    Highlights: • The corrosion on new aerospace aluminum alloy is studied. • Al 7 Cu 2 Fe precipitate was detected in the 7475-T7351 and 7081 T73511 alloy by scanning electron microscopy. • Al 7 Cu 2 Fe particles have different morphologies depending on the forming process. • Corrosion pitting occurs around Al 7 Cu 2 Fe precipitates in 7475-T7351 and 7081-T73511 alloys. - Abstract: The development of aluminum alloys of the Al–Zn–Mg–Cu system is the primary factor that enabled the evolution of aircraft. However, it has been shown that these alloys tend to undergo pitting corrosion due to the presence of elements such as iron, copper and silicon. Thus, the purpose of this study is to evaluate the behavior of the Al 7 Cu 2 Fe precipitate in 7475-T7351 and 7081-T73511 alloys based on microstructural characterization and polarization tests. The corrosion and pitting potentials were found to be very similar, and matrix dissolution occurred around the Al 7 Cu 2 Fe precipitate in both alloys, revealing the anodic behavior of the matrix

  12. Preparation of high-strength Al-Mg-Si-Cu-Fe alloy via heat treatment and rolling

    Science.gov (United States)

    Liu, Chong-yu; Yu, Peng-fei; Wang, Xiao-ying; Ma, Ming-zhen; Liu, Ri-ping

    2014-07-01

    An Al-Mg-Si-Cu-Fe alloy was solid-solution treated at 560°C for 3 h and then cooled by water quenching or furnace cooling. The alloy samples which underwent cooling by these two methods were rolled at different temperatures. The microstructure and mechanical properties of the rolled alloys were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and tensile testing. For the water-quenched alloys, the peak tensile strength and elongation occurred at a rolling temperature of 180°C. For the furnace-cooled alloys, the tensile strength decreased initially, until the rolling temperature of 420°C, and then increased; the elongation increased consistently with increasing rolling temperature. The effects of grain boundary hardening and dislocation hardening on the mechanical properties of these rolled alloys decreased with increases in rolling temperature. The mechanical properties of the 180°C rolling water-quenched alloy were also improved by the presence of β″ phase. Above 420°C, the effect of solid-solution hardening on the mechanical properties of the rolled alloys increased with increases in rolling temperature.

  13. Matrix effects in ion-induced emission as observed in Ne collisions with Cu-Mg and Cu-Al alloys

    Science.gov (United States)

    Ferrante, J.; Pepper, S. V.

    1983-01-01

    Ion induced Auger electron emission is used to study the surfaces of Al, Mg, Cu - 10 at. % Al, Cu - 19.6 at. % Al, and Cu - 7.4 at. % Mg. A neon (Ne) ion beam whose energy is varied from 0.5 to 3 keV is directed at the surface. Excitation of the lighter Ne occurs by the promotion mechanism of Barat and Lichten in asymmetric collisions with Al or Mg atoms. Two principal Auger peaks are observed in the Ne spectrum: one at 22 eV and one at 25 eV. Strong matrix effects are observed in the alloys as a function of energy in which the population of the second peak is greatly enhanced relative to the first over the pure materials. For the pure material over this energy range this ratio is 1.0. For the alloys it can rise to the electronic structure of alloys and to other surface tools such as secondary ion mass spectroscopy.

  14. Preparation of a high strength Al–Cu–Mg alloy by mechanical alloying and press-forming

    International Nuclear Information System (INIS)

    Tang Huaguo; Cheng Zhiqiang; Liu Jianwei; Ma Xianfeng

    2012-01-01

    Highlights: ► A high strength aluminum alloy of Al–2 wt.%Mg–2 wt.%Cu has been prepared by mechanical alloying and press-forming. ► The alloy only consists of solid solution α-Al. ► The grains size of α-Al was about 300 nm–5 μm. ► The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al–2 wt.%Mg–2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution α-Al. Microstructure characterizations revealed that the grain size of α-Al was about 300 nm–5 μm. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  15. Porous anodic film formation on an Al-3.5 wt% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Paez, M.A.; Bustos, O.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Wood, G.C.

    2000-03-01

    Anodic film growth has been undertaken on an electropolished Al-3.5 wt % Cu alloy to determine the influence of copper in solid solution on the anodizing behavior. At the commencement of anodizing of the electropolished alloy, in the presence of interfacial enrichment of copper, Al{sup 3+} and Cu{sup 2+} ions egress and O{sup 2{minus}} ion ingress proceed; film growth occurs at the alloy/film interface though O{sup 2{minus}} ion ingress, with outwardly mobile Al{sup 3+} and Cu{sup 2+} ions ejected at the film/electrolyte interface, and field-assisted dissolution proceeding at the bases of pores. Oxidation of copper, in the presence of the enriched layer, is also associated with O{sub 2} gas generation, leading to development of oxygen-filled voids. As a result of significant pressures in the voids, film rupture proceeds, with electrolyte access to the alloy, dissolution of the enriched interfacial layer and re-anodizing. The consequence of such processes in the development of anodic films of increased porosity and reduced efficiency of film formation compared with anodizing of superpure aluminum under similar conditions.

  16. Moessbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Rapp, O.; Srinivas, V.; Saida, J.; Inoue, A.

    2002-01-01

    The alloy Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 in the amorphous and icosahedral states, and the bulk amorphous alloy Zr 65 Al 7.5 Ni 10 Cu 7.5 Ag 10 , have been studied with 57 Fe Moessbauer spectroscopy, electrical resistance and magnetoresistance techniques. The average quadrupole splitting in both alloys decreases with temperature as T 3/2 . The average quadrupole splitting in the icosahedral alloy is the largest ever reported for a metallic system. The lattice vibrations of the Fe atoms in the amorphous and icosahedral alloys are well described by a simple Debye model, with the characteristic Moessbauer temperatures of 379(29) and 439(28) K, respectively. Amorphous alloys Zr 65 Al 7. )5Ni 10 Cu 7.5 Ag 10 and Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 have been found to be superconducting with the transition temperature, T c , of about 1.7 K. The magnitude of Tc and the critical field slope at Tc are in agreement with previous work on Zr-based amorphous superconductors, while the low-temperature normal state resistivity is larger than typical results for binary and ternary Zr-based alloys. The resistivity of icosahedral Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 is larger than that for the amorphous ribbon of the same composition, as inferred both from direct measurements on the ribbons and from the observed magnetoresistance. However the icosahedral sample is non-superconducting in the measurement range down to 1.5 K. The results for the resistivity and the superconducting T c both suggest a stronger electronic disorder in the icosahedral phase than in the amorphous phase. (author)

  17. Microstructure and mechanical properties of Al-Cu-Mg-Mn-Zr alloy with trace amounts of Ag

    International Nuclear Information System (INIS)

    Liu Xiaoyan; Pan Qinglin; Lu Congge; He Yunbin; Li Wenbin; Liang Wenjie

    2009-01-01

    The microstructure and mechanical properties of Al-Cu-Mg-(Ag)-Mn-Zr alloys were studied by means of tensile testing, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that small additions of Ag to Al-Cu-Mg-Mn-Zr alloy can accelerate the hardening effect of the aged alloy and reduce the time to peak-aged. The mechanical properties can be improved both at room temperature and at elevated temperatures, which is attributed to the fine and uniform plate-like Ω precipitates. Meanwhile the ductility of the studied alloys remains at relatively high level. The major strengthening phases of the Ag-free alloy are θ' and less S', while that of Al-Cu-Mg-Mn-Zr alloy containing trace amounts of Ag are Ω and less θ'.

  18. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.

    Science.gov (United States)

    Guo, Sai; Lu, Yanjin; Wu, Songquan; Liu, Lingling; He, Mengjiao; Zhao, Chaoqian; Gan, Yiliang; Lin, Junjie; Luo, Jiasi; Xu, Xiongcheng; Lin, Jinxin

    2017-03-01

    In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti 2 Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Misoriented dislocation substructures and the fracture of polycrystalline Cu-Al alloys

    Science.gov (United States)

    Koneva, N. A.; Trishkina, L. I.; Cherkasova, T. V.; Kozlov, E. V.

    2016-10-01

    The evolution of the dislocation substructure in polycrystalline Cu-Al alloys with various grain sizes is studied during deformation to failure. A relation between the fracture of the alloys and the forming misorientation dislocation substructures is revealed. Microcracks in the alloy are found to form along grain boundaries and the boundaries of misoriented dislocation cells and microtwins.

  20. L-J phase in a Cu2.2Mn0.8Al alloy

    Science.gov (United States)

    Jeng, S. C.; Liu, T. F.

    1995-06-01

    A new type of precipitate (designated L-J phase) with two variants was observed within the (DO3 + L21) matrix in a Cu2.2Mn0.8Al alloy. Transmission electron microscopy examinations indicated that the L-J phase has an orthorhombic structure with lattice parameters a = 0.413 nm, b = 0.254 nm and c = 0.728 nm. The orientation relationship between the L-J phase and the matrix is (100)L-J//(011) m , (010)L-J//(111) m and (001)L-J//(211) m . The rotation axis and rotation angle between two variants of the L-J phase are [021] and 90 deg. The L-J phase has never been observed in various Cu-Al, Cu-Mn, and Cu-Al-Mn alloy systems before.

  1. Evaluation of Cracking Causes of AlSi5Cu3 Alloy Castings

    Directory of Open Access Journals (Sweden)

    Eperješi Š.

    2014-10-01

    Full Text Available Recently, the castings made from aluminum-silicon alloys by pressure die casting are increasingly used in the automotive industry. In practice, on these castings are high demands, mainly demands on quality of their structure, operating life and safety ensuring of their utilization. The AlSi5Cu3 alloy castings are widely used for production of car components. After the prescribed tests, the cracks and low mechanical properties have been identified for several castings of this alloy, which were produced by low pressure casting into a metal mould and subsequent they were heat treated. Therefore, analyses of the castings were realized to determine the causes of these defects. Evaluation of structure of the AlSi5Cu3 alloy and causes of failure were the subjects of investigation presented in this article.

  2. Heterogeneous coarsening of Pb phase and the effect of Cu addition on it in a nanophase composite of Al-10 wt%Pb alloy prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Zhu, M.; Liu, X.; Wu, Z.F.; Ouyang, L.Z.; Zeng, M.Q.

    2009-01-01

    A nanophase composite of Al-10 wt%Pb alloy was prepared by mechanical alloying. The coarsening behavior of Pb phase in the composite during heating process was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nanoindentation test. The present work shows that the Pb phase grew substantially and had two different size distributions when the heating temperature was above 823 K. The different size distributions of Pb phase were owing to different grain size ranges of Al matrix in different regions, which led to the different growth rates of the Pb phase in those regions. It has been proposed that the different size ranges of Al grain appeared upon heating were originated from a statistical size distribution of Al grains in the as-milled powder. With the addition of a small amount of Cu, the heterogeneous growth of Pb phase can be suppressed, and the coarsening of Pb phase shows two distinct rates. This indicates that the coarsening is mainly governed by grain boundary diffusion and lattice diffusion of Al matrix in the initial stage and the later one, respectively

  3. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    Science.gov (United States)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  4. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents

    International Nuclear Information System (INIS)

    Guo, M.X.; Zhang, Y.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z.

    2016-01-01

    The non-isothermal precipitation behaviors of Al–Mg–Si–Cu alloys with different Zn contents were investigated by differential scanning calorimetry (DSC) analysis, hardness measurement and high resolution transmission electron microscope characterization. The results show that Zn addition has a significant effect on the GP zone dissolution and precipitation of Al-Mg-Si-Cu alloys. And their activation energies change with the changes of Zn content and aging conditions. Precipitation kinetics can be improved by adding 0.5 wt% or 3.0 wt%Zn, while be suppressed after adding 1.5 wt%Zn. The Mg-Si precipitates (GP zones and β″) are still the main precipitates in the Al-Mg-Si-Cu alloys after heated up to 250 °C, and no Mg-Zn precipitates are observed in the Zn-added alloy due to the occurrence of Mg-Zn precipitates reversion. The measured age-hardening responses of the alloys are corresponding to the predicted results by the established precipitation kinetic equations. Additionally, a double-hump phenomenon of hardness appears in the artificial aging of pre-aged alloy with 3.0 wt% Zn addition, which resulted from the formation of pre-β″ and β″ precipitates. Finally, the precipitation mechanism of Al-Mg-Si-Cu alloys with different Zn contents was proposed based on the microstructure evolution and interaction forces between Mg, Si and Zn atoms.

  5. Quasicrystalline and crystalline phases in Al65Cu20(Fe, Cr)15 alloys

    International Nuclear Information System (INIS)

    Liu, W.; Koester, U.; Mueller, F.; Rosenberg, M.

    1992-01-01

    Two types of icosahedral quasicrystals are observed in Al 65 Cu 20 Fe 15-x Cr x (0 ≤ x ≤ 15) alloys, the face-centred AlCuFe-type icosahedral phase with dissoluted Cr and the primitive AlCuCr-type icosahedral phase with dissoluted Fe. In the vicinity of Al 65 Cu 20 Fe 8 Cr 7 a stable decagonal phase (a=0.45 nm and c=1.23 nm) forms competitively with the icosahedral quasicrystals. All these three quasicrystalline phases can be regarded as Hume-Rothery phases stabilized by the energy band factor. The density is measured to be 4.57, 4.44, and 4.11 g/cm 3 for the icosahedral Al 65 Cu 20 Fe 15 , the decagonal Al 65 Cu 20 Fe 8 Cr 7 , and the icosahedral Al 65 Cu 20 Cr 15 alloys, respectively. Depending on the composition in the range between Al 65 Cu 20 Fe 8 Cr 7 and Al 65 Cu 20 Cr 15 , several crystalline phases are observed during the transormation of the AlCuCr-type icosahedral phase: the 1/1-3/2-type orthorhombic (o) and the 1/0-3/2-type tetragonal (t) approximants of the decagonal phase, a hexagonal (h) phase, as well as a long-range vacancy ordered τ 3 -phase derived from a CsCl-type structure with a=0.2923 nm. The structures of all the crystalline phases are closely related to those of the icosahedral (i) and decagonal (d) quasicrystals, which leads to a definite orientation relationship as follows: i5 parallel d10 parallel o[100] parallel t[100] parallel h[001] parallel τ 3 [110]. (orig.)

  6. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery

    Science.gov (United States)

    Rohatgi, Aashish; Vecchio, Kenneth S.; Gray, George T.

    2001-01-01

    The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ˜78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ˜75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ˜1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.

  7. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  8. Grain Refinement of an Al-2 wt%Cu Alloy by Al3Ti1B Master Alloy and Ultrasonic Treatment

    International Nuclear Information System (INIS)

    Wang, E Q; Wang, G; Dargusch, M S; StJohn, D H; Qian, M; Eskin, D G

    2016-01-01

    Both inoculation by AlTiB master alloys and Ultrasonic Treatment (UT) are effective methods of refining the grain size of aluminium alloys. The present study investigates the influence of UT on the grain refinement of an Al-2 wt% Cu alloy with a range of Al3TilB master alloy additions. When the alloy contains the smallest amount of added master alloy, UT caused significant additional grain refinement compared with that provided by the master alloy only. However, the influence of UT on grain size reduces with increasing addition of the master alloy. Plotting the grain size data versus the inverse of the growth restriction factor (Q) reveals that the application of UT causes both an increase in the number of potentially active nuclei and a decrease in the size of the nucleation free zone due to a reduction in the temperature gradient throughout the melt. Both these factors promote the formation of a fine equiaxed grain structure. (paper)

  9. Influence of secondary ageing temperature on hardening and residual elastic stresses in AlMgSi and AlMgSiCu alloys

    International Nuclear Information System (INIS)

    Milosavlevich, A.Ya.; Shiyachki-Zheravchich; Rogulin, M.Ya.; Milenkovich, V.M.; Prokich-Tsvetkovich, R.M.

    1993-01-01

    The investigations were conducted on samples of AlMgSi and AlMgSiCu alloys quenched, aged and cold worked with 20, 40, 60 and 85 % reduction in area. Secondary ageing was carried out at 200 and 250 deg C. Residual stresses wee determined by X-ray diffraction method. It was shown that cold deformation effect on hardness and residual stresses is dependent on alloy composition. The hardening due to secondary ageing is more pronounced for AlMgSi alloy at 200 deg C and for AlMgSiCu alloy at 250 deg C. Positive residual stresses increase with secondary ageing temperature

  10. Stress evolution during and after sputter deposition of thin Cu Al alloy films

    Science.gov (United States)

    Pletea, M.; Wendrock, H.; Kaltofen, R.; Schmidt, O. G.; Koch, R.

    2008-06-01

    The stress evolution during and after sputter deposition of thin Cu-Al alloy films containing 1 and 2 at.% Al onto oxidized Si(100) substrates has been studied up to thicknesses of 300 nm by means of in situ substrate curvature measurements. In order to correlate stress and morphology, the microstructure was investigated by focused ion beam microscopy, scanning electron microscopy, and atomic force microscopy. The evolution of the stress and microstructure of the Cu-Al alloy films is similar to that for sputtered pure Cu films. Film growth proceeds in the Volmer-Weber mode, typical for high mobility metals. It is characterized by nucleation, island, percolation, and channel stages before the films become continuous, as well as lateral grain growth in the compact films. With increasing Al content the overall atom mobility and, thus, the average grain size of the alloy films are reduced. Increase of the sputter pressure from 0.5 to 2 Pa leads to films with larger grain size, rougher surface morphology and higher electrical resistivity.

  11. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  12. Effect of Thermomagnetic Treatment on Structure and Properties of Cu-Al-Mn Alloy.

    Science.gov (United States)

    Titenko, A N; Demchenko, L D; Perekos, A O; Gerasimov, O Yu

    2017-12-01

    The paper studies the influence of magnetic field on magnetic and mechanical properties of Cu-Mn-Al alloy under annealing. The comparative analysis of the magnetic field orientation impact on solid solution decomposition processes in a fixed annealing procedure is held using the methods of low-field magnetic susceptibility, specific magnetization, and microhardness test. The paper highlights changes in the magnetic and mechanical properties of Cu-Al-Mn alloy as the result of change in a critical size of forming precipitated ferromagnetic phase and determines correlation in the behavior of magnetic and mechanical properties of the alloy, depending on a critical nucleus size of forming precipitated ferromagnetic phase.

  13. Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys

    Science.gov (United States)

    Gable, B. M.; Shiflet, G. J.; Starke, E. A.

    2006-04-01

    The coarsening resistance and thermal stability of several Ω plate-dominated microstructures were controlled through altering the chemistry and thermomechanical processing of various Al-Cu-Mg-Ag alloys. Quantitative comparisons of Ω nucleation density, particle size, and thermal stability were used to illustrate the effects of alloy composition and processing conditions. The long-term stability of Ω plates was found to coincide with relatively high levels of silver and moderate magnesium additions, with the latter limiting the competition for solute with S-phase precipitation. This analysis revealed that certain microstructures initially dominated by Ω precipitation were found to remain stable through long-term isothermal and double-aging heat treatments, which represents significant improvement over the previous generation of Al-Cu-Mg-Ag alloys, in which Ω plates dissolved sacrificially after long aging times. The quantitative precipitate data, in conjunction with a thermodynamic database for the aluminum-rich corner of the Al-Cu-Mg-Ag quaternary system, were used to estimate the chemistry of the α/Ω-interphase boundary. These calculations suggest that silver is the limiting species at the α/Ω interfacial layer and that Ω plates form with varying interfacial chemistries during the early stages of artificial aging, which is directly related to the overall stability of certain plates.

  14. Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining

    Science.gov (United States)

    Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan

    2017-05-01

    An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.

  15. Comparative analysis of Nb and Ti addition in the Cu-11,8%wt.Al-0,5%wt.Be e Cu-11,8%wt.Al-3,0%wt.Ni shape memory alloy

    International Nuclear Information System (INIS)

    Silva Junior, M.Q. da; Oliveira, G.D. de

    2014-01-01

    The system of the Cu-Al alloys shape memory alloy have been the subject of many studies due to a wide range of possible applications and relatively low cost, and the chemical composition of the main factors that determine the properties of these properties. This work analyzed the influence of Nb and Ti elements in Cu-11,8Al-0,5Be and Cu-11,8Al-3,0Ni alloy. The alloys are obtained by melting and passed through homogenizing heat treatment followed by water quenching at 30°C. The samples were characterized by Microscopy Optical, X-ray Diffraction and Microhardness testing. The alloys showed fine precipitates of second phase homogeneously distributed in the matrix that provides improvement in the properties of these alloys. (author)

  16. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys

    International Nuclear Information System (INIS)

    Asghar, Z.; Requena, G.; Boller, E.

    2011-01-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of α-Al matrix and a rigid long-range 3-D network of Al 7 Cu 4 Ni, Al 4 Cu 2 Mg 8 Si 7 , Al 2 Cu, Al 15 Si 2 (FeMn) 3 and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 deg. C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ∼15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si.

  17. Phase stability of CuAlMn shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Novák, Václav

    2004-01-01

    Roč. 378, - (2004), s. 216-221 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z1010914 Keywords : CuAlMn * shape memory alloys * martensitic transformation * - stress -strain tests * tension-compression cycling * history dependent phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.445, year: 2004

  18. Characterization of Dispersion Strengthened Copper Alloy Prepared by Internal Oxidation Combined with Mechanical Alloying

    Science.gov (United States)

    Zhao, Ziqian; Xiao, Zhu; Li, Zhou; Zhu, Mengnan; Yang, Ziqi

    2017-11-01

    Cu-3.6 vol.% Al2O3 dispersion strengthened alloy was prepared by mechanical alloying (MA) of internal oxidation Cu-Al powders. The lattice parameter of Cu matrix decreased with milling time for powders milled in argon, while the abnormal increase of lattice parameter occurred in the air resulting from mechanochemical reactions. With a quantitative analysis, the combined method makes residual aluminum oxidized completely within 10-20 h while mechanical alloying method alone needs longer than 40 h. Lamellar structure formed and the thickness of lamellar structure decreased with milling time. The size of Al2O3 particles decreased from 46 to 22 nm after 40 h milling. After reduction, core-shell structure was found in MAed powders milled in the air. The compacted alloy produced by MAed powders milled in the argon had an average hardness and electrical conductivity of 172.2 HV and 82.1% IACS while the unmilled alloy's were 119.8 HV and 74.1% IACS due to the Al2O3 particles refinement and residual aluminum in situ oxidization.

  19. Microstructure and mechanical properties of AC AlSi9CuX alloys

    OpenAIRE

    L.A. Dobrzański; R. Maniara; M. Krupiński; J.H. Sokołowski

    2007-01-01

    Purpose: In order to gain a better understanding of how to control the as-cast microstructure, it is important to understand the evaluation of microstructure during solidification and understanding how influence the changes of chemical concentration on this microstructure and mechanical properties. In this research, the effect of Cu content on the microstructure and mechanical properties of AC AlSi9CuX series alloys has been investigated.Design/methodology/approach: The experimental alloy ...

  20. An Influence of Ageing on the Structure, Corrosion Resistance and Hardness of High Aluminum ZnAl40Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-03-01

    Full Text Available Zn-Al-Cu alloys are used primarily because of their tribological properties as an alternative material for bronze, cast iron and aluminum alloy bearings and as a construction material. Particularly interesting are high aluminum zinc alloys. Monoeutectic zinc and aluminum alloys are characterized by the highest hardness, tensile strength and wear resistance of all of the zinc alloys. A significant problem with the use of the Zn-Al-Cu alloys is their insufficient resistance to electrochemical corrosion. Properties of Zn-Al-Cu alloys can be improved by heat treatment. The purpose of examination was to determine the effect of heat treatment (aging at various temperatures on the microstructure and corrosion resistance of the ZnAl40Cu3 alloy. The scope of the examination included: structural examinations, determination of hardness using Brinell’s method and corrosion resistance examinations. Ageing at higher temperatures causes a creation of areas where is an eutectoid mixture. The study showed that ageing causes a decrease in hardness of ZnAl40Cu3 alloy. This decrease is even greater, when the temperature of ageing is lower. The studies have shown a significant influence of ageing on the corrosion resistance of the alloy ZnAl40Cu3. Maximum corrosion resistance were characterized by the sample after ageing at higher temperatures.

  1. Improved resistive switching phenomena and mechanism using Cu-Al alloy in a new Cu:AlO{sub x}/TaO{sub x}/TiN structure

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Maikap, S., E-mail: sidhu@mail.cgu.edu.tw [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Sreekanth, G.; Dutta, M.; Jana, D. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Chen, Y.Y.; Yang, J.R. [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2015-07-15

    Highlights: • Cu:AlO{sub x} alloy is used for the first time to have defective TaO{sub x} film. • A relation in between formation voltage and RESET current has been developed. • A switching mechanism based on a thinner with dense Cu filament is demonstrated. • Good uniformity with yield of >90% and long cycles using 1 ms pulse are obtained. - Abstract: Improved resistive switching phenomena such as device-to-device uniformity, lower formation voltage (2.8 V) and RESET current, >500 program/erase cycles, longer read endurance of >10{sup 6} cycles with a program/erase pulse width of 1 μs, and data retention of >225 h under a low current compliance of 300 μA have been discussed by using Cu-Al alloy in Cu:AlO{sub x}/TaO{sub x}/TiN conductive bridging resistive random access memory (CBRAM) device for the first time. The switching mechanism is based on a thinner with dense Cu filament formation/dissolution through the defects in the Cu:AlO{sub x}/TaO{sub x}/TiN structure owing to enhance memory characteristics. These characteristics have been confirmed by measuring randomly picked 100 devices having via-hole size of 0.4 × 0.4 μm{sup 2}. The Cu-Al alloy becomes Cu:AlO{sub x} buffer layer and Ta{sub 2}O{sub 5} becomes TaO{sub x} switching layer owing to Gibbs free energy dependency. All layers and elements are observed by high-resolution transmission electron microscope (HRTEM) image and energy dispersive X-ray spectroscopy (EDX). By developing a numerical equation in between RESET current and formation voltage, it is found that a higher rate of Cu migration is observed owing to both the defective switching layer and larger size, which results a lower formation voltage and RESET current of the Cu:AlO{sub x}/TaO{sub x}/TiN structure, as compared to Cu/Ta{sub 2}O{sub 5}/TiN under external positive bias on the Cu electrode. This simple Cu:AlO{sub x}/TaO{sub x}/TiN CBRAM device is useful for future nanoscale non-volatile memory application.

  2. Effect of Cu{sup 2+}/Al{sup 3+} mole ratio on structure of Cu-Al bimetallic nanoparticles prepared by radiation induced method

    Energy Technology Data Exchange (ETDEWEB)

    Abedini, Alam; Larki, Farhad; Saion, Elias; Noroozi, Monir [Putra Malaysia Univ., Serdang, Selangor (Malaysia). Dept. of Physics

    2013-07-15

    Cu-Al bimetallic nanoparticles were synthesized by gamma irradiation technique in aqueous solutions containing metal chlorides as precursors, polyvinyl alcohol (PVA) as a capping agent, isopropanol as a radical scavenger, and distilled water as a solvent. The Cu-Al bimetallic nanoparticles were characterized by transmission electron microscopy (TEM), UV-visible absorption spectrometry, powder X-ray diffractometer (XRD), and Energy-dispersive X-ray spectroscopy (EDX). The TEM, XRD, EDX, and absorption analyses confirmed the formation of core-shell structure of Cu-Al bimetallic nanoparticles at lower Cu{sup 2+}/Al{sup 3+} mole ratio, and the formation of Cu-Al alloy nanoparticles at higher Cu{sup 2+}/Al{sup 3+} mole ratio. The TEM analysis for particle size and size distribution revealed that the average particle size of Cu-Al bimetallic nanoparticles decreased with the increase of absorbed dose. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation. (orig.)

  3. Mechanical properties of Fe-Mn-Cu-Al alloy systems and optimization of their composition

    International Nuclear Information System (INIS)

    Tkachenko, I.F.; Baranov, A.A.

    1981-01-01

    Studied is the separate and combined effect of Cu and Al on mechanical properties of the Fe-Mn-Al-Cu system alloys using a simplex- lattice method of experiment planning. Heat treated specimens in the form of plates have been subjected to mechanical tests. It is shown that mechanical properties of studied alloys change sufficiently in the result of tempering in heterogeneous (α+γ) region. Studied alloys have the most favourable conbination of characteristics of strength, plasticity and impact strength after tempering at 630 deg C during 2 hours. Diagrams are obtained which characterizes dependence of mechanical properties of alloys on their composition. They permit to select optimum compositions of alloys with the necessary combination of strength, plasticity and impact strength [ru

  4. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production

    Science.gov (United States)

    Wang, Leilei; Zhang, Fan; Miao, Dinghao; Zhang, Lei; Ren, Tiezhen; Hui, Xidong; He, Zhanbing

    2017-03-01

    Candidates of precious metal catalysts, prepared in a facile and environmental way and showing high catalytic performances at low temperatures, are always highly desired by industry. In this work, large-scale Cu-Fe-Al-O nanosheets were synthesized by facile dealloying of Al-Cu-Fe alloys in NaOH solution. The composition, microscopic morphology, and crystal structure were respectively investigated using wavelength-dispersive x-ray spectroscopy with an electron probe microanalyzer, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. Furthermore, we found that the 2D Cu-Fe-Al-O nanosheets gave excellent catalytic performances in hydrogen production by methanol steam reforming at relatively low temperatures, e.g. 513 K.

  5. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg alloys

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2007-04-01

    Full Text Available The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening heat treatment. The age hardened specimens were evaluated using tensile test, hardness measurements and impact test. Moreover, the structure investigation were carried out using either conventional light Metallography and scanning (SEM and transmission (TEM electron microscopy. The two last methods were used for fractography observations and precipitation process observations respectively. It was concluded that the changes in chemical composition which can reach even 2,5wt.% cause essential differences of the structure and mechanical properties of the alloys. As followed from quantitative evaluation and as could be predicted theoretically, copper and silicon mostly influenced the mechanical properties of AlSi5Cu3(Mg type cast alloys. Moreover it was showed that the total concentration of alloying elements accelerated and intensifies the process of decomposition of supersaturated solid solution. The increase of Cu and Mg concentration increased the density of precipitates. It increases of strength properties of the alloys which are accompanied with decreasing in ductility.

  6. Examination of the anisotropy of the wetting behaviour of liquid Al-Cu alloys on single crystalline oriented Al{sub 2}O{sub 3}-substrates; Untersuchung der Anisotropie im Benetzungsverhalten fluessiger Al-Cu Legierungen auf einkristallinen orientierten Al{sub 2}O{sub 3}-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Julianna

    2011-02-04

    The wetting behaviour of liquid Al-Cu alloys and pure metals on oriented single crystalline Al{sub 2}O{sub 3}-substrates was examined, utilising the sessile drop technique. Measurements were performed at moderate temperatures of 1100 C, where the alloys are liquid. Different Al{sub 2}O{sub 3}-surfaces were studied, which are terminated by the crystallographic planes (0001), (11 anti 20), and (1 anti 102), also called C-, A-, and R-surfaces. After deposition, pure Cu-droplets show an exponential increase of the wetting angle to a value of about 115 for all investigated Al{sub 2}O{sub 3}-surfaces. The timescale of this increase is of the order of 100 s. The effect of surface- and interfacial energies on the wetting angle is discussed considering Young's equation. The most probable reason for its time-dependence seems to be an increase of the interfacial energy due to deoxidation of the droplet. Therefore it is reasonable to regard the isotropic contact angle value as the intrinsic one of the Cu/Al{sub 2}O{sub 3} system. In contrast, the wetting angle of pure Al metal with the different Al{sub 2}O{sub 3}-substrates shows a qualitatively different behaviour. In this system, it rises from about 90 to 115 roughly for C-substrates, twice as fast as in the Cu case but to a comparable value. On the other substrates a wetting angle of about 90 establishes immediately, and no pronounced time dependence is obvious. In order to study changes in the wetting behaviour of Al-Cu-alloys, which is isotropic for Cu and anisotropic for Al-rich alloys, contact angles of Al{sub 50}Cu{sub 50}, Al{sub 30}Cu{sub 70} und Al{sub 17}Cu{sub 83} on Al{sub 2}O{sub 3} were determined. For each alloy composition the wetting angle is about 120 after 300 s. The initial values on distinct surfaces hardly differ and become non-wetting with increasing Cu-content. Hence, anisotropy decreases. To determine the work of adhesion of the solid-liquid interface, the temperature- and composition

  7. Superelastic behavior and damping capacity of CuAlBe alloys

    International Nuclear Information System (INIS)

    Montecinos, Susana; Moroni, Maria Ofelia; Sepulveda, Aquiles

    2006-01-01

    Shape memory alloys (SMAs) showing the superelastic effect, dissipate energy through hysteretic cycles up to large strain amplitudes, without remnant strains after unloading. This effect is associated with a reversible stress-induced martensitic transformation. In this paper, the behavior of copper-based SMAs is examined, with the perspective of potential applications in seismic-energy dissipative devices. In particular, two different compositions of CuAlBe are characterized using chemical analysis, differential scanning calorimetry (DSC), light and scanning electron microscopy and X-rays diffraction. Mechanical and hysteretic damping properties are determined from cyclic tensile and tension-compression tests, for different strain amplitudes and frequencies. Both alloys show superelastic behavior, although hysteresis loops differ, due to differences in the composition and transformation phase temperatures. Equivalent damping up to 5% was obtained for the largest strain imposed. Frequency, in the range of interest for seismic applications, had a small influence on the damping values. It is concluded that alloy Cu-11.8 wt.% Al-0.5 wt.% Be best exhibited properties for the application intended

  8. Glass forming ability and mechanical properties of the NiZrTiSi amorphous alloys modified with Al, Cu and Nb additions

    International Nuclear Information System (INIS)

    Czeppe, Tomasz; Ochin, Patrick; Sypien, Anna

    2007-01-01

    The composition of the amorphous alloy Ni 59 Zr 20 Ti 16 Si 5 was modified with 2-9 at.% additions of Cu, Al and Nb. The ribbons and the bars 2.7 mm in diameter were prepared by melt spinning and injection casting from the alloys of the compositions: Ni 56 Zr 18 Ti 16 Si 5 Al 3 Cu 2 , Ni 56 Zr 18 Ti 13 Al 6 Si 5 Cu 2 , Ni 56 Zr 16 Ti 12 Nb 9 Al 3 Cu 2 Si 2 and Ni 56 Zr 16 Ti 12 Nb 6 Al 6 Cu 2 Si 2 . All ribbons were amorphous up to the resolution of the X-ray diffraction and conventional transmission electron microscopy, however rods were partially crystalline. Increase of Al content lowered and Nb content slightly increased crystallization start temperature T x and glass transition temperature T g . The influence of composition changes on the overcooled liquid range ΔT was more complicated. The increase of Nb and decrease of Ti and Zr content led to the remarkable increase of the liquidus temperature T l . As a result GFA calculated as T g /T l was lowered to the values about 0.63 for 6 and 9 at.% Nb addition. The activation energies for primary crystallization in alloy with 6 at.% Al and 6 at.% of Nb, were determined. The changes of tensile test strength and microhardness with Al and Nb additions showed hardening effect caused by Nb additions and increase in fracture strength with increasing Al content

  9. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  10. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest

    International Nuclear Information System (INIS)

    Santana M, J.S.

    2003-01-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  11. Physical properties of Zr50Cu40-xAl10Pdx bulk glassy alloys

    International Nuclear Information System (INIS)

    Wencka, M.; Jagodic, M.; Gradisek, A.; Kocjan, A.; Jaglicic, Z.; McGuiness, P.J.; Apih, T.; Yokoyama, Y.; Dolinsek, J.

    2010-01-01

    It was shown recently (Yokoyama et al. ) that the addition of a small amount of Pd to the Zr 50 Cu 40 Al 10 bulk glassy alloy (BGA) has a beneficial effect on fatigue-strength enhancement, where the composition Zr 50 Cu 37 Al 10 Pd 3 behaved in a resonant-like way by showing the highest fatigue limit of 1050 MPa and the minimum Vickers hardness. We performed a study of the magnetic properties, the specific heat, the electrical resistivity and the hydrogen-diffusion constant for a series of compositions Zr 50 Cu 40-x Al 10 Pd x (x = 0-7 at.%), in order to determine their physical properties and to check for the influence of the Pd content on these properties. The Zr 50 Cu 40-x Al 10 Pd x BGAs are nonmagnetic, conducting alloys, where the Pauli spin susceptibility of the conduction electrons is the only source of paramagnetism. The low-temperature specific heat indicates an enhancement of the conduction-electron effective mass m* below 5 K, suggesting that the Zr 50 Cu 40-x Al 10 Pd x BGAs are not free-electron-like compounds. The electrical resistivities of the Zr 50 Cu 40-x Al 10 Pd x BGAs amount to about 200 μΩ cm and show a small, negative temperature coefficient (NTC) with an increase from 300 to 2 K of 4%. The hydrogen self-diffusion constant D in hydrogen-loaded samples shows classical over-barrier-hopping temperature dependence and is of comparable magnitude to the related icosahedral and amorphous Zr 69.5 Cu 12 Ni 11 Al 7.5 hydrogen-storage alloys. No correlation between the investigated physical parameters and the Pd content of the samples could be observed.

  12. Fracture behaviour of Cu-Al-Ni shape memory alloys obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P. P.; Perez-Saez, R. B.; Recarte, V.; San Juan, J.M.; Ruano, O. A.; No, M. L.

    2001-01-01

    Polycrystalline Cu-Al-Ni shape memory alloys have been scarcely employed for technological applications due to their high brittleness. The development of a new elaboration technique based on powder metallurgy has recently overcome this problem, through the improvement of the ductility of the produced alloys without affecting its shape memory properties. The fracture behaviour of an alloy obtained using the elaboration technique has been studied by means of Scanning Electron Microscopy and mechanical testing. The results show a ductile fracture with a maximum strain close to 13%, which is the best fracture behaviour obtained for Cu-Al-Ni polycrystals. The microstructure of such alloys ha been studied by means of Transmission Electron Microscopy, showing a poligonyzed structure in which martensite plated passing through the subboundaries easily. (Author) 19 refs

  13. A first-principles study of the structural, mechanical and electronic properties of precipitates of Al2Cu in Al-Cu alloys.

    Science.gov (United States)

    Ouyang, Y F; Chen, H M; Tao, X M; Gao, F; Peng, Q; Du, Y

    2018-01-03

    The properties of precipitates are important in understanding the strengthening mechanism via precipitation during heat treatment and the aging process in Al-Cu based alloys, where the formation of precipitates is sensitive to temperature and pressure. Here we report a first-principles investigation of the effect of temperature and pressure on the structural stability, elastic constants and formation free energy for precipitates of Al 2 Cu, as well as their mechanical properties. Based on the formation enthalpy of Guinier-Preston (GP(I)) zones, the size of the GP(I) zone is predicted to be about 1.4 nm in diameter, which is in good agreement with experimental observations. The formation enthalpies of the precipitates are all negative, suggesting that they are all thermodynamically stable. The present calculations reveal that entropy plays an important role in stabilizing θ-Al 2 Cu compared with θ C '-Al 2 Cu. The formation free energies of θ''-Al 3 Cu, θ C '-Al 2 Cu, θ D '-Al 5 Cu 3 and θ t '-Al 11 Cu 7 increase with temperature, while those of θ'-Al 2 Cu, θ O '-Al 2 Cu and θ-Al 2 Cu decrease. The same trend is observed with the effect of pressure. The calculated elastic constants for the considered precipitation phases indicate that they are all mechanically stable and anisotropic, except θ C '-Al 2 Cu. θ D '-Al 5 Cu 3 has the highest Vicker's hardness. The electronic structures are also calculated to gain insight into the bonding characteristics. The present results can help in understanding the formation of precipitates by different treatment processes.

  14. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  15. Effect of γ-IRRADIATION on the Mechanical Properties of Al-Cu Alloy

    Science.gov (United States)

    Abo-Elsoud, M.; Ismail, H.; Sobhy, Maged S.

    SEM observations and Vickers hardness tests were performed to identify the irradiation effects. γ-irradiation effect during the aging hardening process can be explained depending on the composition of the alloy and is used to derive quantitative information on the kinetics of the transformation precipitates. Increasing the Cu content of an Al-Cu alloy can improve the aging hardness. The present results of the hardness behavior, with SEM observations of surveillance specimens at different doses, suggest that the radiation-induced defects are probably complex valence-solute clusters. These clusters act as nuclei for the precipitation of θ-Al2Cu type. This can be effectively utilized to study the systematics of nucleation of precipitates at vacancy-type defects. γ-irradiation probably plays the key role in defects responsible for material strengthening and embrittlement.

  16. Nanoparticles from Cu-Zn-Al shape memory alloys physically synthesized by ion milling deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pavon, Luis Alberto Lopez [Universidad Autonoma de Nuevo Leon (UANL), Nuevo Leon (Mexico); Cuellara, Enrique Lopez; Castro, Alejandro Torres; Cruza, Azael Martinez de la [Universidad Autonoma de Nuevo Leon (CIIDIT/UANL), Nuevo Leon (Mexico). Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia; Ballesteros, Carmen [Universidad Carlos III de Madrid, Madrid (Spain). Departamento de Fisica; Araujo, Carlos Jose de [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Departamento de Engenharia Mecanica

    2012-05-15

    In this research, an ion milling equipment was used to elaborate nanoparticles from Cu-Zn-Al alloys with shape memory effect. Two different compositions were used, target A: 75.22Cu-17.12Zn-7.66Al at % with an Ms of -9 deg C and target B: 76.18Cu-15.84Zn-7.98Al with an Ms of 20 degree C. Nanoparticles were characterized by High Resolution Transmission Electron Microscopy, Electron Diffraction and Energy Dispersive X-ray Spectroscopy. The obtained nanoparticles showed a small dispersion, with a size range of 3.2-3.5 nm. Their crystal structure is in good agreement with the bulk martensitic structure of the targets. In this sense, results on morphology, composition and crystal structure have indicated that it is possible to produce nanoparticles of CuZnAl shape memory alloys with martensitic structure in a single process using Ion Milling. (author)

  17. Nanoparticles from Cu-Zn-Al shape memory alloys physically synthesized by ion milling deposition

    International Nuclear Information System (INIS)

    Pavon, Luis Alberto Lopez; Cuellara, Enrique Lopez; Castro, Alejandro Torres; Cruza, Azael Martinez de la; Ballesteros, Carmen; Araujo, Carlos Jose de

    2012-01-01

    In this research, an ion milling equipment was used to elaborate nanoparticles from Cu-Zn-Al alloys with shape memory effect. Two different compositions were used, target A: 75.22Cu-17.12Zn-7.66Al at % with an Ms of -9 deg C and target B: 76.18Cu-15.84Zn-7.98Al with an Ms of 20 degree C. Nanoparticles were characterized by High Resolution Transmission Electron Microscopy, Electron Diffraction and Energy Dispersive X-ray Spectroscopy. The obtained nanoparticles showed a small dispersion, with a size range of 3.2-3.5 nm. Their crystal structure is in good agreement with the bulk martensitic structure of the targets. In this sense, results on morphology, composition and crystal structure have indicated that it is possible to produce nanoparticles of CuZnAl shape memory alloys with martensitic structure in a single process using Ion Milling. (author)

  18. Effects of solution heat treatment on the microstructure and hardness of Mg-5Li-3Al-2Zn-2Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiqing; An Jiangmin; Qu Zhikun [Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China); Wu Ruizhi, E-mail: Ruizhiwu2006@yahoo.com [Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China); Zhang Jinghuai; Zhang Milin [Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China)

    2010-10-15

    The microstructure and hardness of Mg-5Li-3Al-2Zn-2Cu alloy were investigated both in the as-cast condition and after solution heat treatment at 330-390 deg. C for 5 h. The as-cast alloy contains a microstructure consisting of {alpha}-Mg matrix, AlLi phase, AlCuMg phase and Al{sub 2}Cu phase. After the solution heat treament, the AlLi phase was dissolved into the matrix, however, the AlCuMg and Al{sub 2}Cu phases were not dissolved. With the increase of solution temperature, almost all the AlLi phase was dissolved, and the effects of solution strengthening of Al and Li atoms in the alloy increase, which results in the gradual increase of the Brinell hardness of the solution-treated alloy.

  19. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys.

    Science.gov (United States)

    Basak, C B; Babu, N Hari

    2017-07-18

    High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.

  20. Structural evolutions of the mechanically alloyed Al70Cu20Fe10 ...

    Indian Academy of Sciences (India)

    The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The -phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation ...

  1. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Man, Jin; Jing, Li; Jie, Shao Guang

    2007-01-01

    The effects of Cu addition on the microstructure and thermal stability of 6082 Al-Mg-Si alloys were investigated. The results show the Q' precipitates are formed when aged at 170 o C for 4 h in 6082 alloy with 0.6% Cu addition. The hardness value of the alloy with 0.6% Cu is always distinctly higher than that of the alloy without Cu during isothermal treatment at 250 o C. Based on the TEM and three-dimensional atom probe (3DAP) results, the thermal stability of the 6082 alloys with Cu addition is discussed with respect to the distribution of Cu

  2. AlSi17Cu5Mg alloy as future material for castings of pistons for internal combustion engines

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2015-07-01

    Full Text Available The paper presents chosen properties and microstructure of AlSi17Cu5Mg alloy as future material for casting pistons in automotive industry. Tests were conducted to elaborate technology of preparation, assessment of crystallisation parameters and shaping the primary structure of the silumin with the aim to improve the working parameters and the functioning efficiency in cylinder-piston system. Refinement of Si crystals, achieved due to overheating above the temperature Tliq. causes that the alloy reaches satisfactory properties in working chamber of the engine are optimised. Such condition of material characteristics causes that hypereutectic silumins, for chosen applications in transport, may serve as an alternative to Al - Si alloys of hypoeutectic and near - eutectic type.

  3. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  4. Cast AlSi9Cu4 alloy with hybride strenghtened by Fe{sub x}Al{sub y}-Al{sub 2}O{sub 3} composite powder

    Energy Technology Data Exchange (ETDEWEB)

    Piatkowski, J [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland); Formanek, B, E-mail: jaroslaw.piatkowski@polsl.pl, E-mail: boleslaw.formanek@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The main objective of the study was to develop a technology of dispersion strenghtened hypoeutectic Al-Si alloy. The article presented the materials and technology conception for producing aluminium matrix composite AlSi9Cu4Fe alloy with hybride reinforcement of Al{sub x}Fe{sub y} intermetallic and aluminium oxide powders. Composite powder obtained in mechanical agllomerisation mixture of elemental powders. Changes in the structure were confirmed by TA and ATD thermal analyses plotting the solidification curves, which showed a decrease in temperature T{sub liq} compared to the unmodified alloy and an exothermic effect originating from the crystallisation of eutectics with alloying elements. The examinations carried out by SEM and BSE as well as the determination of local chemical composition by EDX technique have characterised the structure of the alloy as containing some binary Al-Si-Al-Cu and Al-Fe eutectics and multicomponent eutectics.

  5. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  6. Coincidence Doppler broadening and 3DAP study of the pre-precipitation stage of an Al-Li-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Honma, T.; Yanagita, S.; Hono, K.; Nagai, Y.; Hasegawa, M.

    2004-01-01

    Pre-precipitation solute clustering in Al-Li-Cu-Mg-Ag and Al-Cu-Mg-Ag alloys has been investigated by coincidence Doppler broadening (CDB) spectroscopy of positron annihilation and three-dimensional atom probe (3DAP) analysis. Although Ag-Mg co-clusters form in the Al-Cu-Mg-Ag alloy in the early stage of aging, no evidence for the co-cluster formation was obtained from the Li containing alloy using 3DAP. While CDB spectra indicated that vacancies are associated with Ag after aging for 15 s in the Al-Cu-Mg-Ag alloy, vacancy-Ag association is suppressed in the Li containing alloy. Based on the 3DAP and CDB results, the reasons for the completely different clustering behaviors observed in these two similar alloys are discussed

  7. TEM microstructural characterization of melt-spun aged Al-6Si-3Cu-xMg alloys

    International Nuclear Information System (INIS)

    Lopez, Ismeli Alfonso; Zepeda, Cuauhtemoc Maldonado; Gonzalez Reyes, Jose Gonzalo; Flores, Ariosto Medina; Rodriguez, Juan Serrato; Gomez, Luis Bejar

    2007-01-01

    Three Al-6Si-3Cu-xMg alloys (x = 0.59, 3.80 and 6.78 wt.%) were produced using melt-spinning. As-melt-spun ribbons were aged at 150, 180 and 210 deg. C for times between 0.05 and 100 h. Microstructural changes were examined using transmission electron microscopy (TEM) and microhardness was measured. TEM analysis of the as-melt-spun alloys revealed 5 nm nanoparticles and larger particles (50 nm) composed of Al 2 Cu (θ) for the 0.59% Mg alloy and Al 5 Cu 2 Mg 8 Si 6 (Q) for 3.80% and 6.78% Mg alloys. Silicon solid solubility was extended to 9.0 at.% and Mg in solid solution reached 6.7 at.%. After aging treatments the 6.78% Mg alloy exhibited the most significant increase in microhardness, reaching 260 kg/mm 2 . TEM analysis of aged specimens also showed θ and Q phase (5-20 nm nanoparticles and 35-40 nm particles). The combination of the volume fraction and size of the particles plays an important role in microhardness variation

  8. Mechanical spectroscopy study of the Cu36Zr59Al5 and Cu54Zr40Al6 amorphous alloys

    Directory of Open Access Journals (Sweden)

    Paulo Wilmar Barbosa Marques

    2012-12-01

    Full Text Available A mechanical spectroscopy study of Cu-Zr-Al bulk metallic glasses, was performed with two types of equipment: a Kê-type inverted torsion pendulum and an acoustic elastometer, working in the frequency ranges of Hz and kHz, respectively, with a heating rate of 1 K/min. The analysis of the anelastic relaxation shows similar spectra for both types of equipment resulting in internal friction patterns that vary with temperature and are not reproducible at each thermal cycle. The normalized of the square of the frequency changes from the first to later measurement cycles. These results indicate that the specimens of Cu-Zr-Al alloys were changing by mechanical relaxation, owing to the motion of atoms or clusters in the glassy state and possible "defects" produced during the processing of alloys.

  9. GRAIN-REFINEMENT AND THE RELATED PHENOMENA IN QUATERNARY Cu-Al-Ni-Ti SHAPE MEMORY ALLOYS

    OpenAIRE

    Sugimoto , K.; Kamei , K.; Matsumoto , H.; Komatsu , S.; Akamatsu , K.; Sugimoto , T.

    1982-01-01

    It was reported that the addition of a small amount of titanium (0.5 - 3.99%) to a Cu-13.93%Al-3.36%Ni ternary alloy resulted in a remarkable grain-refining. The original grain-size of about 750 microns under hot-rolled and quenched conditions of the ternary alloy was reduced to that of the order of about 100 microns by addition of tiatanium. It was suggested that several technical improvements of the mechanical properties of Cu-Al-Ni shape memory alloys, such as better formability, less crac...

  10. Hot cracks formation nature in welds Al-Mg-Li and Al-Cu-Li alloy systems

    International Nuclear Information System (INIS)

    Ryazantsev, V.I.; Fedoseev, V.A.

    1997-01-01

    Mechanism of cleavage formation in alloy systems Al-Mg-Li and Al-Cu-Li welds at thermal test is proposed. This mechanism is connected with stitching spacing and stretching in direction of main deformation of intermetallic compounds inclusions and with active gases movement into the liquid phase [ru

  11. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    Science.gov (United States)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  12. Hardening mechanisms of spray formed Al-Zn-Mg-Cu alloys with scandium and other elemental additions

    International Nuclear Information System (INIS)

    Sharma, M.M.; Amateau, M.F.; Eden, T.J.

    2006-01-01

    The hardening mechanisms in spray formed Al-Zn-Mg-Cu alloys with additions of chromium, zinc and scandium were studied. The microstructure of the spray formed alloys was analyzed by transmission electron microscopy. A range of tensile strengths were achieved, and varied based on elemental additions, and second phase particle strengthening. To explain the significantly higher strength in one alloy with scandium, theoretical results due to the yield stress of Al-Zn-Mg-Cu alloys as a function of volume fraction and precipitate particle size, were compared to experimental data. Both the possibilities of coherency and order strengthening are examined. The significant additional hardening achieved in the alloy with scandium is attributed to small ordered particles of Al 3 Sc, which precipitated during aging

  13. Effect of Cu addition on microstructure and corrosion behavior of spray-deposited Zn–30Al alloy

    International Nuclear Information System (INIS)

    Wang Feng; Xiong Baiqing; Zhang Yongan; Liu Hongwei; Li Zhihui; Li Xiwu; Qu Chu

    2012-01-01

    Highlights: ► Zn–30Al–xCu alloys were synthesized by the spray atomization and deposition technique. ► Immersion test and electrochemical measurements have been used to estimate the corrosion rate and the behavior. ► The result indicates that the 1 wt.% Cu addition displays superior corrosion resistance. - Abstract: In this study, one binary Zn–30Al and three ternary Zn–30Al–Cu alloys were synthesized by the spray atomization and deposition technique. The microstructures of the spray-deposited alloys were investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD). Immersion test, potentiodynamic polarization and electrochemical impedance measurements have been used to estimate the corrosion rate and the behavior. The results indicate that the 1 wt.% Cu addition to spray-deposited Zn–30Al alloy does not make significant change in microstructure. However, with the 2, 4 wt.% Cu additions to the alloy, some ε-CuZn 4 compounds with particle or irregular shapes were observed on the grain boundaries in the microstructures. Immersion test and electrochemical measurements confirmed that the 1 wt.% Cu addition displays superior corrosion resistance, whereas the 2, 4 wt.% Cu additions have a baneful effect on the corrosion behavior.

  14. Microstructure And Mechanical Properties Of An Al-Zn-Mg-Cu Alloy Produced By Gravity Casting Process

    Directory of Open Access Journals (Sweden)

    Saikawa S.

    2015-06-01

    Full Text Available High-strength aluminum alloy are widely used for structural components in aerospace, transportation and racing car applications. The objective of this study is to enhance the strength of the Al-Zn-Mg-Cu alloy used for gravity casting process. All alloys cast into stepped-form sand mold (Sand-mold Casting; SC and Y-block shaped metal mold(Permanent mold Casting; PC C and then two –step aged at 398-423 K after solution treated at 743 K for 36 ks. The tensile strength and total elongation of the two-step aged SC alloys were 353-387 MPa and about 0.4% respectively. This low tensile properties of the SC alloys might be caused by remaining of undissolved crystallized phase such as Al2CuM, MgZn2 and Al-Fe-Cu system compounds. However, good tensile properties were obtained from PC alloys, tensile strength and 0.2% proof stress and elongation were 503-537 MPa, 474-519 MPa and 1.3-3.3%.

  15. Preparation of Zr50Al15− xNi10Cu25Yx amorphous powders by ...

    Indian Academy of Sciences (India)

    The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr50Al15Ni10Cu25 alloy. Thermodynamic calculation of equivalent free energy shows that Zr50Al13.8Ni10Cu25Y1.2 alloy has the ...

  16. The defect structures and mechanical properties of Cu and Cu–Al alloys processed by split Hopkinson pressure bar

    International Nuclear Information System (INIS)

    Tao, Jingmei; Yang, Kai; Xiong, Haiwu; Wu, Xiaoxiang; Zhu, Xinkun; Wen, Cuie

    2013-01-01

    Pure Cu, Cu-5 at%Al, Cu-10 at%Al and Cu-15 at%Al with different stacking fault energy (SFE) of 78, 37, 7 and 5 mJ/m 2 , respectively, were processed through split Hopkinson pressure bar (SHPB) with the strain rate of 10 3 /sec. The influence of high strain rate on the evolution of microstructures and mechanical properties of Cu and Cu–Al alloys was investigated. X-ray diffraction measurements indicate that, the microstructures of Cu and Cu–Al alloys have been refined to the nano scale after deformed by SHPB, and with decreasing SFE, the average grain size decreases gradually from 72 to 40 nm, while the dislocation density increases from 0.55×10 14 to 4.4×10 14 m −2 and the twin density increases from 0.04% to 1.07%. The formation of deformation twins is an additional factor that contributes to the microhardness and strength of Cu and Cu–Al alloys except the solid solution strengthening effect. Cu-15 at%Al has the biggest strain hardening rate at larger strains due to its lowest SFE which results in the highest twin density. The results confirm that lower SFE improves both strength and strain hardening rate of materials

  17. The impact of major alloying elements and refiner on the SDAS of Al-Si-Cu alloy; Der Einfluss von Hauptlegierungselementen und Kornfeinern auf den sekundaeren Dendritenarmabstand der Al-Si-Cu-Legierung

    Energy Technology Data Exchange (ETDEWEB)

    Djurdjevic, Mile; Byczynski, Glenn [Nemak Europe GmbH, Frankfurt am Main (Germany). Frankfurt Airport Center 1; Pavlovic, Jelena [Magdeburg Univ. (Germany). Inst. fuer Fertigungstechnik und Qualitaetssicherung

    2009-02-15

    This paper investigates the effect of some major alloying elements (silicon and copper) and the effect of grain refiner (titanium boride) on the size of the secondary dendrite arm spacing (SDAS) in series of Al-Si-Cu alloys. It has been shown that both silicon and copper have significant influence on this solidification parameter. The addition of grain refining master alloys to aluminium alloys is common practice in many commercial foundries aiming to reduce the grain size of Al-Si alloys. However, it was shown in the present paper that master alloy based on TiB had an unexpected impact on the SDAS, decreasing the size of SDAS. In addition, there is a minimum of SDAS corresponding to the presence of 0.12 wt% of titanium in Al-Si alloy. Such findings could have important implications for Al-Si alloys in particular, due to their wide spread applications in the automotive industry. (orig.)

  18. Influence of thermo-derivative analysis conditions on microstructure of the Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2011-04-01

    Full Text Available Microstructure change of the metals and alloys as a result of variable crystallisation conditions also by mind of cooling rate changeinfluence the mechanical properties. In this work there are presented the interdependences between the cooling rate, chemical compositionand microstructure of the cast aluminium alloy Al–Si–Cu as a result of the thermo-derivative analysis, using the UMSA (UniversalMetallurgical Simulator and Analyzer device. An important tool for the microstructure evaluation of the Al type AC-AlSi7Cu3Mg alloywas the light and electron scanning microscopy technique.

  19. Theoretical prediction of the electronic transport properties of the Al-Cu alloys based on the first-principle calculation and Boltzmann transport equation

    Science.gov (United States)

    Choi, Garam; Lee, Won Bo

    Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.

  20. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al–Cu–Mn casting alloy

    International Nuclear Information System (INIS)

    Chen Zhongwei; Chen Pei; Li Shishun

    2012-01-01

    Highlights: ► Rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 twin phase in an Al–Cu–Mn casting alloy. ► Patterns of the particles of the Al 20 Cu 2 Mn 3 phase in Al–Cu–Mn free Ce alloy are more diverse. ► The symmetry of neighboring components of twins is characterized by glide reflection and reflection. ► The twins of Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn casting alloys. - Abstract: Effects of Ce addition on microstructure of Al 20 Cu 2 Mn 3 twin phase and mechanical properties of an Al–Cu–Mn casting alloy were investigated by transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy and tensile test. The results show that rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn alloy. Compared with the Ce containing alloy, patterns of particles of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn free Ce alloy are more diverse. The symmetry of neighboring components of twins is characterized by glide reflection and reflection. In addition, twins of the Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn alloy.

  1. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2017-11-01

    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  2. The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lipeng [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Zhang, Zhiqing; Sanders, Robert E.; Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Yang, Guang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Centre for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-03-11

    The natural aging and artificial aging behaviours of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions were investigated using Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterisation. Excess Si and Cu additions enhanced the alloy hardening ability during natural (NA) and artificial aging (AA). Alloys with low Cu and high Si contents exhibited higher precipitation hardening than alloys rich in Mg during artificial aging. In contrast, the alloys with high amounts of Cu were less dependent on the Mg/Si ratio during precipitation hardening due to their similar aging kinetics. The main precipitate phases that contributed to the peak-aging hardness were the L, Q′ and β″ phases. In the over-aging conditions, the alloys rich in Mg and Cu had finer and more numerous precipitates than their Si-rich equivalents due to the preferential precipitation of the L phase. The combination of excess Mg and high Cu resulted in an alloy with a relatively low hardness in T4 temper and a relatively higher hardness after the paint baking cycle. Thus, this alloy has good potential for use in auto body panel applications.

  3. Phase relationships in the Al-rich region of the Al-Cu-Er system

    International Nuclear Information System (INIS)

    Zhang Ligang; Masset, Patrick J.; Cao Fuyong; Meng Fangui; Liu Libin; Jin Zhanpeng

    2011-01-01

    Research highlights: → One ternary phase τ 1 -Al 8 Cu 4 Er in Al-rich region with a composition of 59.4-60.4 at.% Al, 32.2-33.8 at.% Cu, and 6.4-7.7 at.% Er is observed in both as-cast and annealed alloys. At 673 K, the binary Al 3 Er phase dissolves about 3.51 at.% Cu. → The calculated solidification paths (based on the CALPHAD method) of as-cast alloys are in agreement with the experimental results. → It can be found that the resultant thermodynamic database can be applied to case studies of as-cast alloys, showing that the literature thermodynamic description of the Al-Cu-Er system is reliable as a working basis for computer-assisted alloy design. - Abstract: The Al-rich region of the ternary Al-Cu-Er system is investigated using the method of X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy. Phase equilibria in the Al-rich region of the Al-Cu-Er system at 673 K have been obtained, and the microstructures of as-cast alloys in the Al-rich region are also investigated. One ternary phase τ 1 -Al 8 Cu 4 Er with a composition of 59.4-60.4 at.% Al, 32.2-33.8 at.% Cu, and 6.4-7.7 at.% Er is observed in both as-cast and annealed alloys. At 673 K, the binary Al 3 Er phase dissolves about 3.51 at.% Cu. The calculated solidification paths (based on the CALPHAD method) of as-cast alloys are in agreement with the experimental results.

  4. Structure and Mechanical Properties of AlSiCuMg Alloy after Thermo Processing

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2015-03-01

    Full Text Available In the dissertation it has been shown, that so called „time-thermal treatment” (TTT of the alloy in liquid state, as overheating the metal with around 250°C above the Tliq. and detaining it in this temperature for around 30 minutes, improves the mechanical properties (HB, Rm, R0,2. It was ascertained, that overheating the AlSi17Cu5Mg alloy aids the modification, resulting with microcrystalline structure. Uniform arrangement of the Si primeval crystals in the warp, and α(Al solution type, supersaturated with alloying elements present in the base content (Cu, Mg assures not only increased durability in the ambient temperature, but also at elevated temperature (250°C, what is an advantage, especially due to the use in car industry.

  5. Evaluation of Synthesizing Al2O3 Nano Particles in Copper Matrix by Mechanical Alloying of Cu-1% Al and Copper Oxide

    Directory of Open Access Journals (Sweden)

    S. Safi

    2017-06-01

    Full Text Available Strengthening of copper matrix by dispersion of metallic oxides particles as an efficient way to increase strength without losing thermal and electrical conductivities has been recognized for many years. Such a composite can withstand high temperatures and keep its properties. Such copper alloys have many applications especially in high temperature including resistance welding electrodes, electrical motors and switches. In the present work, at first, the Cu-1%Al solid solution was prepared by the mechanical alloying process via 48 hours of milling. Subsequently, 0.66 gr of copper oxide was added to Cu-1%Al solid solution and mechanically milled for different milling times of 0,16, 32, 48 hours. The milled powder mixtures were investigated by X-Ray Diffraction and scanning electron microscopy techniques. The lattice parameter of Cu increased at first, but then decreased at longer milling times. The internal strain increased and the average Cu crystal size decreased during milling process.The particle size decreased during the whole process. With increasing annealing temprature from 450°C to 750°C, the microhardness values of samples decreased at the beginning but then increased. From these results, it can be concluded that nanosize aluminaparticles are formed in the copper matrix.

  6. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    Science.gov (United States)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-08-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  7. Influence of heat treatment on microstructure and tensile properties of a cast Al-Cu-Si-Mn alloy

    Directory of Open Access Journals (Sweden)

    Liu Zhixue

    2013-11-01

    Full Text Available Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength Al-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the Al-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of α phase, undissolved θ phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of α phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%.

  8. Electron irradiation effect on short-range ordering in Cu-Al and Ag-Al alloys

    International Nuclear Information System (INIS)

    Kulish, N.P.; Mel'nikova, N.A.; Petrenko, P.V.; Ryabishchuk, A.L.; Tatarov, A.A.

    1990-01-01

    Method of X-ray diffuse scattering is used to study short-range order variation in Cu-Al and Ag-Al alloys under radiation effect and the following heat treatment. Irradiation was carried out at -40 deg C by 1.6 MeV electrons, fluence of 5x10 7 cm -2 and 0.5 MeV gamma-rays, the dose being 10 7 pH

  9. Diffusion-induced quadrupole relaxation of 27Al nuclei in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at high temperatures

    International Nuclear Information System (INIS)

    Bottyan, L.; Beke, D.L.; Tompa, K.

    1983-01-01

    The temperature dependence of the laboratory frame spin-lattice relaxation time of 27 Al nuclei is measured in 5N Al and in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at 5.7 and 9.7 MHz resonance frequencies. The relaxation in pure aluminium is found to be purely due to the conduction electrons. An excess T 1 -relaxation contribution is detected in all Al-3d alloys investigated above 670 K. The excess relaxation rate is proportional to the impurity content and the temperature dependence of the excess contribution is of Arrhenius-type with an activation energy of (1.3 +- 0.3) eV for all of the investigated alloys. The relaxation contribution is found to be quadrupolar in origin and is caused by the relative diffusional jumps of solute atoms and Al atoms relatively far from the impurity. (author)

  10. Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys

    Science.gov (United States)

    Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio

    Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.

  11. Comparative analysis of Nb and Ti addition in the Cu-11,8%wt.Al-0,5%wt.Be e Cu-11,8%wt.Al-3,0%wt.Ni shape memory alloy; Analise comparativa da adicao de NB e TI nas ligas Cu-11,8Al-0,5Be e Cu-11,8Al-3,0Ni passiveis do efeito memoria de forma

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, M.Q. da; Oliveira, G.D. de, E-mail: manoel.quirino@ufersa.edu.br [Universidade Federal Rural do Semi-Arido (UFERSA), Mossoro, RN (Brazil)

    2014-07-01

    The system of the Cu-Al alloys shape memory alloy have been the subject of many studies due to a wide range of possible applications and relatively low cost, and the chemical composition of the main factors that determine the properties of these properties. This work analyzed the influence of Nb and Ti elements in Cu-11,8Al-0,5Be and Cu-11,8Al-3,0Ni alloy. The alloys are obtained by melting and passed through homogenizing heat treatment followed by water quenching at 30°C. The samples were characterized by Microscopy Optical, X-ray Diffraction and Microhardness testing. The alloys showed fine precipitates of second phase homogeneously distributed in the matrix that provides improvement in the properties of these alloys. (author)

  12. Effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Liu, Xiao Yan; Pan, Qing Lin; Lu, Zhi Lun; Cao, Su Fang; He, Yun Bin; Li, Wen Bin

    2010-01-01

    The effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy were studied by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), differential scanning calorimeter (DSC), transmission electron microscopy (TEM) and tensile test, respectively. The results show that the mechanical property increases and then decreases with increasing the solution temperature. And the residual phases are dissolved into the matrix gradually, the number fraction of the precipitation and the size of recrystallized grains increase. Compared to the solution temperature, the solution holding time has less effect on the microstructure and the mechanical properties of Al-Cu-Mg-Ag alloy. The overburnt temperature of Al-Cu-Mg-Ag alloy is 525 o C. The yield strength and the elongation get the best when the alloy is solution treated at 515 o C for 1.5 h, is 504 MPa and 12.2% respectively. The fracture mechanism of the samples is ductile fracture.

  13. An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments

    International Nuclear Information System (INIS)

    Traldi, S. M.; Rossi, J. L.; Costa, I.

    2003-01-01

    Al-Si-Cu hypereutectic alloys produced by spray forming are mostly used in the automotive industry, especially for cylinder liners. they the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties- mainly wear resistance at high temperatures. The corrosion s resistance of these alloys in fuels, particularly alcoholic media, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation hove been used to evaluate the corrosion resistance of a hyper eutectic Al-Si-Cu alloy in alcoholic environments. the EIS tests carried out in pure ethanol, and ethanol with small additions (1 mM) of acid an chloride to investigate the effect of these contaminants on corrosion resistance. The corrosion resistance of a grey cast iron has also been evaluated in pure ethanol for comparison. The Al-Si-Cu alloy showed high corrosion resistance in pure ethanol, far superior to that of grey cast iron in the same medium. (Author) 13 refs

  14. Thermodynamic properties of Al-Mn, Al-Cu, and Al-Fe-Cu melts and their relations to liquid and quasicrystal structure

    International Nuclear Information System (INIS)

    Zaitsev, A I; Zaitseva, N E; Shimko, R Yu; Arutyunyan, N A; Dunaev, S F; Kraposhin, V S; Lam, Ha Thanh

    2008-01-01

    Thermodynamic properties of molten Al-Mn, Al-Cu and Al-Fe-Cu alloys in a wide temperature range of 1123-1878 K and the whole range of concentrations have been studied using the integral effusion method and Knudsen mass spectrometry. Thermodynamic functions of melts were described by the associated solution model. The possibility of icosahedral quasicrystal (i-QC) precipitation from liquid Al-Mn and Al-Cu-Fe alloys was found to be a consequence of the existence in liquid associates (clusters). A geometric model is suggested for the structure of associates in liquid

  15. Effect of Low Cu Amounts and Pre-Deformation on the Precipitation in Al-Mg-Si Alloys

    Science.gov (United States)

    Saito, Takeshi; Muraishi, Shinji; Marioara, Calin D.; Holmestad, Randi

    Transmission electron microscopy (TEM) studies were performed on two Al-Mg-Si alloys with low Cu additions (0.01 and 0.10 wt%) in order to investigate the effect of Cu and 10% pre-deformation on precipitate microstructure and its connection to mechanical properties. After 300 minutes aging at 190°C, fine microstructures associated with high hardness were observed in the alloy with 0.10% Cu. Pre-deformation led to heterogeneous distributions of precipitates along dislocations, causing microstructure coarsening. This effect was less pronounced in the alloy with the higher Cu amount.

  16. Wetting behavior of molten In-Sn alloy on bulk amorphous and crystalline Cu40Zr44Al8Ag8

    International Nuclear Information System (INIS)

    Ma, G. F.; Zhang, H. F.; Li, H.; Hu, Z. Q.

    2007-01-01

    Using the sessile-drop method, the wettability of the molten In-Sn alloy on bulk amorphous and crystalline Cu 40 Zr 44 Al 8 Ag 8 alloy was studied at different temperatures. It was found that the equilibrium contact angle of In-Sn alloy melt on bulk amorphous substrate was smaller than that of the crystalline one. An intermetallic compound existed at the interface of In-Sn alloy on amorphous Cu 40 Zr 44 Al 8 Ag 8 , while no intermediate reaction layer was formed at the interface of In-Sn alloy on crystalline Cu 40 Zr 44 Al 8 Ag 8 in the temperature range studied

  17. Ostwald ripening of Pb nanocrystalline phase in mechanically milled Al-Pb alloys and the influence of Cu additive

    International Nuclear Information System (INIS)

    Wu, Z.F.; Zeng, M.Q.; Ouyang, L.Z.; Zhang, X.P.; Zhu, M.

    2005-01-01

    The coarsening behavior of nanosized Pb phase in both Al-10%Pb and Al-10%Pb-4.5%Cu alloys has been studied by X-ray diffraction and transmission electron microscopy analysis. The coarsening of Pb nanophase in Al-Pb alloys still follows the classical ripening theory (the LSW theory) and the addition of Cu decreases the coarsening rate of Pb nanophase

  18. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Gu, E-mail: jglee88@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Lee, Gyoung-Ja; Park, Jin-Ju [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of); Lee, Min-Ku, E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of)

    2017-05-15

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  19. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    International Nuclear Information System (INIS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-01-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  20. On the thermal degradation of the two way memory effect in Cu-Al-Be alloys

    International Nuclear Information System (INIS)

    Flores-Zuniga, H.; Rios-Jara, D.

    1994-01-01

    The mechanisms associated to such a degradation of the Two Way Shape Memory Effect (TWSME) are still being discussed. In Cu-Al-Ni alloys two different steps, with different rates of degradation of the TWSME, were observed on aging at temperatures between 200 and 220 C. The first step was associated with the annihilation of the dislocations created during the training process. The second step was attributed to an oriented bainitic type precipitation. In Cu-Zn-Al alloys, the observed degradation of the TWSME with aging at temperatures between 100 and 140 C, was also associated with two mechanisms: first to the annihilation of dislocations and next to the precipitation of an α phase. In the present work, the same type of study was performed for Cu-Al-Be alloys. However, in-situ transmission electron microscopy (TEM) observations of the effect of temperature were included, which revealed the actual mechanisms driving the TWSME degradation process

  1. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  2. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest; Fusion y caracterizacion de una aleacion Cu-Zn-Al-Ni de interes nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Santana M, J.S

    2003-07-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  3. Influence of Homogenization on Microstructural Response and Mechanical Property of Al-Cu-Mn Alloy.

    Science.gov (United States)

    Wang, Jian; Lu, Yalin; Zhou, Dongshuai; Sun, Lingyan; Li, Renxing; Xu, Wenting

    2018-05-29

    The evolution of the microstructures and properties of large direct chill (DC)-cast Al-Cu-Mn alloy ingots during homogenization was investigated. The results revealed that the Al-Cu-Mn alloy ingots had severe microsegregation and the main secondary phase was Al₂Cu, with minimal Al₇Cu₂Fe phase. Numerous primary eutectic phases existed in the grain boundary and the main elements were segregated at the interfaces along the interdendritic region. The grain boundaries became discontinuous, residual phases were effectively dissolved into the matrix, and the segregation degree of all elements was reduced dramatically during homogenization. In addition, the homogenized alloys exhibited improved microstructures with finer grain size, higher number density of dislocation networks, higher density of uniformly distributed θ' or θ phase (Al₂Cu), and higher volume fraction of high-angle grain boundaries compared to the nonhomogenized samples. After the optimal homogenization scheme treated at 535 °C for 10 h, the tensile strength and elongation% were about 24 MPa, 20.5 MPa, and 1.3% higher than those of the specimen without homogenization treatment.

  4. Producing a particle-reinforced AlCuMgMn alloy by means of mechanical alloying; Herstellung einer partikelverstaerkten AlCuMgMn-Legierung durch mechanisches Legieren

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, D.; Wielage, B. [TU Chemnitz, Institut fuer Werkstoffwissenschaft und Werkstofftechnik (Germany); Siebeck, S.

    2012-07-15

    High-energy ball milling (HEM) with subsequent consolidation is a suitable method to produce particle-reinforced aluminium materials. The task of HEM is to distribute the reinforcement particles as homogeneously as possible. A further application of HEM is mechanical alloying (MA). This paper deals with the combination of both applications. Pure metallic powders (Al, Cu, Mg, Mn) were milled together with SiC particles up to 10 h. The composition of the metallic powder corresponds to that of the alloy AA2017 (3.9% Cu, 0.7% Mg, 0.6% Mn). In previous experiments [1], this alloy was used in the form of atomized powder. The changes in microstructure during the formation of the composite powder have been studied by light microscopy, SEM, EDXS and XRD. The results show that the production of composite powders in a single step is possible. This not only allows the economical production of such powders, but also facilitates the use of alloy compositions that are not producible via the melting route, or only producible with difficulty via the melting route. It's possible to produce tailor-made-alloys. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Wen, Y.R.; Li, Y.P.; Hirata, A.; Zhang, Y.; Fujita, T.; Furuhara, T.; Liu, C.T.; Chiba, A.; Chen, M.W.

    2013-01-01

    We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe–Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe–Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core–shell nanoprecipitates with a Cu-rich core and a B2 Ni–Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core–shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe–Cu alloys. Reinforcement of the B2 Ni–Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core–shell nanoprecipitates

  6. Design and characterization of FeCrNiCoAlCu and FeCrNiCo(AlCu){sub 0,5} multicomponent alloys; Previsao e caracterizacao de ligas multicomponentes FeCrNiCoAlCu e FeCrNiCo(AlCu){sub 0,5}

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, Carlos; Artacho, Victor Falcao [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais

    2014-07-01

    High entropy alloys using multi-element main quasi-equivalent atomic proportions and generally forms single-phase solid solution and has the ability to enhance levels of strain hardening combined with high levels of plastic deformation at room temperature. In this work two high-entropy alloys with almost similar composition were studied and the factors influencing the formation of solid solution phases (δ atomic radius difference, ΔH{sub mix} mixing enthalpy, ΔS{sub mix} mixing entropy) were evaluated. The microstructure as-cast and the compositions of phases in the two alloys were analyzed by SEM and XRD. The mechanical characterization was realized by measurements of microhardness and cold compression test. The results showed that FeCrNiCo(AlCu){sub 0,5} and FeCrNiCoAlCu alloys with δ equal to 5,7 and 4,9, respectively, form alloys with solid solutions of high entropy. However, the presence of FC and BCCC structures greatly influence the mechanical properties. (author)

  7. Shape memory effect and microstructures of sputter-deposited Cu-Al-Ni films

    International Nuclear Information System (INIS)

    Minemura, T.; Andoh, H.; Kita, Y.; Ikuta, I.

    1985-01-01

    The shape memory effect has been found in many alloy systems which exhibit a thermoelastic martensite transformation. Cu-Al-Ni alloys exhibit an excellent shape memory effect in single crystalline states, but they have not yet been commercially used due to their brittle fracture along the grain boundaries in polycrystalline states. This letter reports the shape memory effect and microstructures of the sputter-deposited Cu-Al-Ni films. Cu-14%Al-4%Ni alloy ingot was prepared. A target for sputter deposition was cut from the ingot. Aluminium foils (20 μm thick) were used for the substrates of sputter deposition. The microstructures and crystal structures of the films were investigated by transmission electron microscopy (TEM) and X-ray diffraction using CuKα radiation, respectively. The effect of the sputtering conditions such as substrate temperature, partial pressure of argon gas, and the sputtering power on the structures of sputter-deposited Cu-14%Al-4%Ni films were investigated by X-ray diffraction. Results are shown and discussed. Photographs demonstrate shape memory behaviour of Cu-14%Al-4%Ni films sputter-deposited on aluminium foils from (a) liquid nitrogen temperature to (d) room temperature. (author)

  8. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys

    International Nuclear Information System (INIS)

    Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C.

    2007-01-01

    High-entropy alloys are newly developed alloys that are composed, by definition, of at least five principal elements with concentrations in the range of 5-35 at.%. Therefore, the alloying behavior of any given principal element is significantly affected by all the other principal elements present. In order to elucidate this further, the influence of iron, silver and gold addition on the microstructure and hardness of AlCoCrCuNi-based equimolar alloys has been examined. The as-cast AlCoCrCuNi base alloy is found to have a dendritic structure, of which only solid solution FCC and BCC phases can be observed. The BCC dendrite has a chemical composition close to that of the nominal alloy, with a deficiency in copper however, which is found to segregate and form a FCC Cu-rich interdendrite. The microstructure of the iron containing alloys is similar to that of the base alloy. It is found that both of these aforementioned alloys have hardnesses of about 420 HV, which is equated to their similar microstructures. The as-cast ingot forms two layers of distinct composition with the addition of silver. These layers, which are gold and silver in color, are determined to have a hypoeutectic Ag-Cu composition and a multielement mixture of the other principal elements, respectively. This indicates the chemical incompatibility of silver with the other principal elements. The hardnesses of the gold (104 HV) and silver layers (451 HV) are the lowest and highest of the alloy systems studied. This is attributed to the hypoeutectic Ag-Cu composition of the former and the reduced copper content of the latter. Only multielement mixtures, i.e. without copper segregation, form in the gold containing alloy. Thus, it may be said that gold acts as a 'mixing agent' between copper and the other elements. Although several of the atom pairs in the gold containing alloy have positive enthalpies, thermodynamic considerations show that the high entropy contribution is sufficient to counterbalance

  9. Driving forces of redistribution of elements during quasicrystalline phase formation under heating of mechanically alloyed Al65Cu23Fe12 powder

    Science.gov (United States)

    Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.

    2008-02-01

    Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.

  10. High resolution transmission electron microscopy study on the development of nanostructured precipitates in Al-Cu obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Villalba, L.S., E-mail: luzgomez@geo.ucm.es [Materials Science and Engineering Department, Universidad Carlos III de Madrid, Leganes, Madrid (Spain); Instituto de Geociencias-(CSIC-UCM), Madrid (Spain); Delgado, M.L.; Ruiz-Navas, E.M. [Materials Science and Engineering Department, Universidad Carlos III de Madrid, Leganes, Madrid (Spain)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer Development of defect structures and nanoprecipitates after 10 h of mechanical alloying in Al-Cu system. Black-Right-Pointing-Pointer Defects act as nucleation sites of the {epsilon}Al{sub 2}Cu{sub 3} phase. Black-Right-Pointing-Pointer Incoherent and semicoherent precipitates are identified by TEM-HRTEM. Black-Right-Pointing-Pointer Moire patterns are associated to the {epsilon}Al{sub 2}Cu{sub 3} phase. - Abstract: Aluminum alloy 2014 is used to obtain nanostructured powders via mechanical alloying. The evolution of the diffusion processes is observed by the development of defect structures and nanoprecipitates after 10 h of milling. The characterization includes analytical and high resolution transmission electron microscopy. Dislocations associated with different Al/Cu ratio affect the material. These defects act as nucleation sites where precipitates of the {epsilon}Al{sub 2}Cu{sub 3} hexagonal phase have been identified. Moire fringes show the interference of {l_brace}1 1 1{r_brace}{sub Al} with {l_brace}10{sup -}10{r_brace}{sub {epsilon}Al{sub 2Cu{sub 3}}} glide planes and locally small shifts of 1/3{l_brace}1 1 1{r_brace}{sub Al} and 1/3{l_brace}10{sup -}10{r_brace}{sub {epsilon}Al{sub 2Cu{sub 3}}}. Changes in the Al/Cu ratio lead to the formation of other solid solutions identified in the Cu rich area and could correspond to transition phases.

  11. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy

    Science.gov (United States)

    Li, Yukun; Du, Xiaodong; Zhang, Ya; Zhang, Zhen; Fu, Junwei; Zhou, Shi'ang; Wu, Yucheng

    2018-02-01

    In the present study, the effects of Mg, Cu, Sc and Zr combined additions on the microstructure and mechanical properties of hypoeutectic Al-Si cast alloy were systematically investigated. Characterization techniques such as optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), electron back-scatter diffraction (EBSD), atomic force microscopy (AFM), transmission electron microscope (TEM), Brinell hardness tester and universal testing machine were employed to analyze the microstructure and mechanical properties. The results showed that Sc served as modifier on the microstructure of Al-3Si-0.45Mg-0.45Cu-0.2Zr alloys, including modification of eutectic Si and grains. Extraordinarily, grain refinement was found to be related to the primary particles, which exhibited a close orientation to matrix. After T6 heat treatment, the grain structures were composed of nano-scaled secondary Al3(Sc, Zr) precipitates and spherical eutectic Si. Combined with T6 heat treatment, the highest hardness, yield strength, ultimate tensile strength and elongation were achieved in 0.56 wt.% Sc-modified alloy. Interestingly, the strength and ductility had a similar tendency. This paper demonstrated that combined additions of Mg, Cu, Sc and Zr could significantly improve the microstructure and performance of the hypoeutectic Al-Si cast alloy.

  12. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  13. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  14. Interfacial phase formation of Al-Cu bimetal by solid-liquid casting method

    Directory of Open Access Journals (Sweden)

    Ying Fu

    2017-05-01

    Full Text Available The solid-liquid method was used to prepare the continuous casting of copper cladding aluminium by liquid aluminum alloy and solid copper, and the interfacial phase formation of Al-Cu bimetal at different pouring temperatures (700, 750, 800 oC was investigated by means of metallograph, scanning electron microscopy (SEM and energy dispersive spectrometry (EDS methods. The results showed that the pouring temperature of aluminum melt had an important influence on the element diffusion of Cu from the solid Cu to Al alloy melt and the reactions between Al and Cu, as well as the morphology of the Al-Cu interface. When the pouring temperature was 800 oC, there were abundant Al-Cu intermetallic compounds (IMCs near the interface. However, a lower pouring temperature (700 oC resulted in the formation of cavities which was detrimental to the bonding and mechanical properties. Under the conditions in this study, the good metallurgical bonding of Al-Cu was achieved at a pouring temperature of 750 oC.

  15. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    Science.gov (United States)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  16. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A.

    2004-01-01

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement

  17. Sintering of powders obtained by mechanical alloying of Cu-1.2 Al w%, Cu-2.3 Ti w% and Cu-2.7 V w%

    International Nuclear Information System (INIS)

    Rivas, C; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    This work studies the effect of compacting pressure, temperature and sintering time on density and microstructure after sintering mechanically alloyed powders of Cu-1.2 Al w%, Cu- 2.3 Ti w% and Cu-2.7 V w%. The alloys were manufactured from elementary powders of Cu, Ti, Al and V, by reactive milling. The powders were compacted and sintered under reducer atmosphere. For each alloy, the final density and resulting microstructure of 8 different compacting and sintering conditions were studied, where the following parameters were considered: (1) Compacting pressure (200 MPa and 400 MPa), (2) Sintering temperature (850 o C and 950 o C), (3) Sintering time (1h and 4h). Adjustments were made using lineal regression to describe the effect of the variation of pressure, temperature and time on the density of the materials obtained, and the morphology of the residual porosity was described by observation under an optic microscope. The final maximum density obtained was, in ascending order: Cu-V, 66% of the theoretical density, TD; Cu-Ti, 65% TD and Cu-Al, 77% TD. The reactive milling process produced flake-shaped particles, hardened by deformation, which made the alloys have a final density that was much less than the sintered pure copper (density 87% TD). This is because the hardened powder resists deformation during compacting, which creates less points of contact between particles, slows down sintering, and yields a lower density. The alloying element influenced the size of the particle obtained during the milling, which is attributed to the different milling mediums (toluene for Ti and V, methanol for Al) and to the different hardness of each ceramic when forming in the copper during milling. The bigger the particle size, the greater the green density, the lesser the densification, and the greater the final density, in accordance with the theory. For the three alloys, the increased compacting pressure gives greater green density, greater densification and a final greater

  18. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  19. Time Temperature-Precipitation Behavior in An Al-Cu-Li Alloy 2195

    Science.gov (United States)

    Chen, P. S.; Bhat, B. N.

    1999-01-01

    Al-Cu-Li alloy 2195, with its combination of good cryogenic properties, low density, and high modulus, has been selected by NASA to be the main structural alloy of the Super Light Weight Tank (SLWT) for the Space Shuttle. Alloy 2195 is strengthened by an aging treatment that precipitates a particular precipitate, labeled as T1(Al2CuLi). Other phases, such as GP zone, (theta)', (theta)", theta, (delta)', S' are also present in this alloy when artificially aged. Cryogenic strength and fracture toughness are critical to the -SLWT application, since the SLWT will house liquid oxygen and hydrogen. Motivation for the Time-Temperature-Precipitation (TTP) study at lower temperature (lower than 350 F) comes in part from a recent study by Chen, The study found that the cryogenic fracture toughness of alloy 2195 is greatly influenced by the phases present in the matrix and subgrain boundaries. Therefore, the understanding of TTP behavior can help develop a guideline to select appropriate heat treatment conditions for the desirable applications. The study of TTP behavior at higher temperature (400 to 1000 F) was prompted by the fact that the SLWT requires a welded construction. Heat conduction from the weld pool affects the microstructure in the heat-affected zone (HAZ), which leads to changes in the mechanical properties. Furthermore, the SLWT may need repair welding for more than one time and any additional thermal cycles will increase precipitate instability and promote phase transformation. As a result considerable changes in HAZ microstructure and mechanical properties are expected during the construction of the SLWT. Therefore, the TTP diagrams can serve to understand the thermal history of the alloy by analyzing the welded microstructure. In the case welding, the effects of thermal cycles on the microstructure and mechanical properties can be predicted with the aid of the TTP diagrams. The 2195 alloy (nominally Al + 4 pct Cu + 1 pct Li + 0.3 pct Ag + 0.3 pct Mg + 0

  20. Effect of Cu content on the microstructure evolution and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys

    Science.gov (United States)

    Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al

    2017-10-01

    Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.

  1. Study of Cu-Al-Zn alloys hardness temperature dependence

    International Nuclear Information System (INIS)

    Kurmanova, D.T.; Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    In the paper the results of studies for the Cu-Al-Zn ternary alloys hardness temperature dependence are presented. The method of 'hot hardness' has been used during study of the solid state phase transformations and under determination of the hot stability boundaries. Due to the samples brittleness a hardness temperature dependence definition is possible only from 350-400 deg. C. Sensitivity of the 'hot hardness' method is decreasing within high plasticity range, so the measurements have been carried out only up to 700-800 deg. C. It is shown, that the alloys hardness dependence character from temperature is close to exponential one within the certain structure modification existence domain

  2. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    Science.gov (United States)

    Ganz, P. R.; Schaadt, D. M.

    2011-12-01

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  3. Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys

    Directory of Open Access Journals (Sweden)

    J.B. Ferguson

    2016-02-01

    Full Text Available Because the mechanical performance of precipitation-hardened alloys can be significantly altered with temperature changes, understanding and predicting the effects of temperatures on various mechanical properties for these alloys are important. In the present work, an analytical model has been developed to predict the elastic modulus, the yield stress, the failure stress, and the failure strain taking into consideration the effect of temperatures for precipitation-hardenable Al-Mg-Cu-Si Alloys (Al-A319 alloys. In addition, other important mechanical properties of Al-A319 alloys including the strain hardening exponent, the strength coefficient, and the ductility parameter can be estimated using the current model. It is demonstrated that the prediction results based on the proposed model are in good agreement with those obtained experimentally in Al-A319 alloys in the as-cast condition and after W and T7 heat treatments.

  4. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  5. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Science.gov (United States)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  6. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  7. Improved Stress Corrosion Cracking Resistance and Strength of a Two-Step Aged Al-Zn-Mg-Cu Alloy Using Taguchi Method

    Science.gov (United States)

    Lin, Lianghua; Liu, Zhiyi; Ying, Puyou; Liu, Meng

    2015-12-01

    Multi-step heat treatment effectively enhances the stress corrosion cracking (SCC) resistance but usually degrades the mechanical properties of Al-Zn-Mg-Cu alloys. With the aim to enhance SCC resistance as well as strength of Al-Zn-Mg-Cu alloys, we have optimized the process parameters during two-step aging of Al-6.1Zn-2.8Mg-1.9Cu alloy by Taguchi's L9 orthogonal array. In this work, analysis of variance (ANOVA) was performed to find out the significant heat treatment parameters. The slow strain rate testing combined with scanning electron microscope and transmission electron microscope was employed to study the SCC behaviors of Al-Zn-Mg-Cu alloy. Results showed that the contour map produced by ANOVA offered a reliable reference for selection of optimum heat treatment parameters. By using this method, a desired combination of mechanical performances and SCC resistance was obtained.

  8. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    Directory of Open Access Journals (Sweden)

    He Kezhun

    2011-08-01

    Full Text Available Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si particle, eutectic Si, Al7Cu4Ni, Al5Cu2Mg8Si6, Al15(Cr, Fe, Ni, Cu4Si2 and Al2Cu. The Al2Cu phase dissolves completely after being solution treated for 2 h at 500℃, while the eutectic Si, Al5Cu2Mg8Si6 and Al15(Cr, Fe, Ni, Cu4Si2 phases are insoluble. In addition, the Al7Cu4Ni phase is substituted by the Al3CuNi phase. The α-aluminum dendrite network disappears when the solution temperature is increased to 530℃. Incipient melting of the Al2Cu-rich eutectic mixture occurrs at 520℃, and melting of the Al5Cu2Mg8Si6 and Al3CuNi phases is observed at a solution temperature of 530℃. The void formation of the structure and deterioration of the mechanical properties are found in samples solution treated at 530℃.

  9. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  10. On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy

    International Nuclear Information System (INIS)

    Mondal, Chandan; Mukhopadhyay, A.K.

    2005-01-01

    Aluminum alloys, encompassed by AA 7055 alloy composition, having the nominal zinc content (i.e. 8 wt.%) but varying copper and magnesium contents across the alloy composition range were examined in the as-cast form by a combination of light microscopy, scanning electron microscopy (SEM), electron probe micro analysis (EPMA) and X-ray diffraction (XRD). It is observed that for all compositions, the second phases based on η(MgZn 2 ), T(Al 2 Mg 3 Zn 3 ) and S(Al 2 CuMg) are present. The T phase dissolves copper up to 28 wt.%, whilst the S phase shows metastable solubility of zinc that may range up to 30 wt.%. In alloys with magnesium at the lower limit and the copper contents approaching the upper limit of the alloy composition, the θ phase (Al 2 Cu) of the constituent binary Al-Cu system is further observed. The θ phase (Al 2 Cu) does not dissolve either zinc or magnesium. Below the nominal composition, the alloys could be homogenized substantially using a commercially viable homogenization treatment leaving small amounts of undissolved S phase that does not contain any zinc

  11. Observations of a Cast Cu-Cr-Zr Alloy

    Science.gov (United States)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  12. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    Science.gov (United States)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  13. Electronic states of the θ' phase in Cu-Al alloys as compared to C16-CuAl2: Cu Lα emission excited directly by undulator radiation

    Science.gov (United States)

    Dallera, C.; de Michelis, B.; Puppin, E.; Braicovich, L.; Brookes, N. B.

    1996-01-01

    The electronic states of the θ' phase formed by thermal aging in the Al-Cu (0.5 at. %) alloy are compared with those in C16-CuAl2, which is the final phase separated at equilibrium. This is done by means of Cu Lα fluorescence spectroscopy. The high brilliance of undulator radiation used as an excitation source is exploited. The spectra are taken using the first harmonic of the undulator at 1.7 keV, with a full width half maximum of ~250 eV. A narrowing of around 0.5 eV of the Cu Lα spectra in the θ' phase is found. This is explained in terms of the differences in the Cu 3d-Cu 3d interaction in the two phases and of the hybridization between Cu 3d and the nearly free-electron-like electrons. The results demonstrate the future possibilities of fluorescence spectroscopy of minority species in inhomogeneous systems.

  14. Effects of boron and aging on mechanical properties and martensitic temperatures in Cu-Zn-Al shape-memory alloys

    International Nuclear Information System (INIS)

    Han, Y.S.; Kim, Y.G.

    1987-01-01

    This work is concerned with the effects of added boron (0.1 w/o) on mechanical properties and martensitic transformation temperatures (Ms) of the Cu - 14.0 Zn - 8.5. Al shape memory alloy. The composition was designed to have Ms temperature in the vicinity of 100 0 C. The influence of applying step quenching on the variation in Ms temperatures has been studied in boron-free Cu - 14.0 Zn - 8.5 Al and boron-containing Cu - 14.0 Zn 8.5 Al - 0.1 B alloys. Aging kinetics and transformation temperatures have been determined by electrical resistivity measurements

  15. Effect of iron content on the structure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25} and (AlTi){sub 60-x}Ni{sub 20}Cu{sub 20}Fe{sub x} (x=15, 20) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fazakas, É., E-mail: eva.fazakas@bayzoltan.hu [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525, P.O.B. 49 (Hungary); Bay Zoltán Nonprofit Ltd., For Applied Research H-1116 Budapest, Fehérvári út 130 (Hungary); Zadorozhnyy, V. [National University of Science and Technology «MISIS», Leninsky prosp., 4, Moscow 119049 (Russian Federation); Louzguine-Luzgin, D.V. [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2015-12-15

    Highlights: • Three new refractory alloys namely: Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20}, were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}C{sub u25} Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys are relatively hard and ductile. Being heat treated at 973 K the Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  16. Prediction of hardness of the Zn-Al-Cu alloys of agreement by composition in weight; Prediccion de la dureza de la aleacion Zn-Al-Cu de acuerdo a su composicion en peso

    Energy Technology Data Exchange (ETDEWEB)

    Villegas-Cardenas, Jose David; Camarillo-Villegas, Alejandra; Juanico-Loran, Antonio [Universidad Politecnica del Valle de Mexico, Tultitlan, Estado de Mexico (Mexico)]. E-mails: jdvc76@yahoo.com.mx; v_c_a_77@hotmail.com; ajuanico@yahoo.com.mx; Espinosa-Rojas, Raul [Universidad Autonoma Metropolitana, Unidad Azcapotzalco (Mexico)]. E-mail: rer21@hotmail.com; Camacho-Olguin, Carlos [Universidad Politecnica del Valle de Mexico, Tultitlan, Estado de Mexico (Mexico)]. E-mail: ccamacho@upvm.edu.mx

    2013-07-15

    Ten alloys Zn-Al-Cu were developed in two parts, in agreement to two zones presented in the isopleth diagrams (Villas et al., 1995). The percentage of Cu and Al was systematically varied. Subsequently, hardness measurements were performed. These measurements allowed establishing two equations that predict the hardness with an error lower than 5%. With these equations, it is possible to obtain alloys that replace Al base alloys by a Zn base alloy, having the same hardness. This implicates also the elimination of the volumetric change in the presence of e phase. [Spanish] Se desarrollaron diez aleaciones Zn-Al-Cu divididas en dos partes, de acuerdo a dos zonas presentadas en los diagramas isopleticos de Hans (Villas et al., 1995). Se incremento el porcentaje de Cu y Al paulatinamente. Posteriormente se desarrollaron pruebas de macrodureza y de ese analisis se obtuvieron dos ecuaciones que permiten pronosticar y disenar aleaciones de una dureza determinada de acuerdo a su porcentaje en peso de cada elemento, con un error menor que 5%. Como se demuestra en este trabajo, con estas ecuaciones es posible desarrollar aleaciones sustitutas base aluminio por una aleacion base zinc o viceversa, teniendo la misma dureza para cada tipo de aleacion y eliminando el problema del cambio volumetrico debido a la presencia de la fase e.

  17. Ageing effects in a Cu-Al-Ni shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Daříček, Tomáš; Lašek, Jiří; Zárubová, Niva; Novák, Václav; Bartuška, Pavel

    2001-01-01

    Roč. 11, - (2001), s. Pr8-179-Pr8-184 ISSN 1155-4339 R&D Projects: GA AV ČR IAA1010909; GA AV ČR IAA1010817 Institutional research plan: CEZ:AV0Z1010914 Keywords : Cu-Al-Ni alloy * shape memory * martensitic transformation * resistometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.401, year: 2001

  18. Modified Welding Technique of a Hypo-Eutectic Al-Cu Alloy for Higher Mechanical Properties

    Science.gov (United States)

    Ghosh, B. R.; Gupta, R. K.; Biju, S.; Sinha, P. P.

    GTAW process is used for welding of pressure vessels made of hypo-eutectic Al-Cu alloy AA2219 containing 6.3% Cu. As welded Yield strength of the alloy was found to be in the range of 140-150 MPa, using conventional single pass GTAW technique on both AC and DCSP modes. Interestingly, it was also found that weld-strength decreased with increase in thickness of the weld coupons. Welding metallurgy of AA2219 Al alloy was critically reviewed and factors responsible for lower properties were identified. Multipass GTAW on DCSP mode was postulated to improve the weld strength of this alloy. A systematic experimentation using 12 mm thick plates was carried out and YS of 200 MPa has been achieved in the as welded condition. Thorough characterization including optical and electron microscopy was conducted to validate the metallurgical phenomena attributable to improvement in weld strength. This paper presents the conceptual understanding of welding metallurgy of AA2219 alloy and validation by experiments, which could lead to better weld properties using multipass GTAW on DCSP mode.

  19. The effect of Cu on mechanical and precipitation properties of Al-Zn-Mg alloys

    International Nuclear Information System (INIS)

    Chinh, N.Q.; Lendvai, J.; Ping, D.H.; Hono, K.

    2004-01-01

    The effect of Cu on the mechanical and precipitation properties of a high strength Al-2.4 at.% Zn-2.1 at.% Mg alloy was investigated by compression and indentation tests, as well as by differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and three-dimensional atom probe field ion microscopy (3DAPFIM). The addition of 0.5 at.% Cu introduces significant changes in the precipitation process and consequently in the age-hardening behavior of the alloy. Microstructural measurements reveal that the addition of Cu changes the density of GP zones, but it also changes partly the shape and composition of the particles. Mechanical and microstructural results together lead to the conclusion that clustering of solute atoms and vacancies during or immediately after water quenching plays an important role in the nucleation of intermediate phase precipitates in one-step aging and the addition of Cu to ternary Al-Zn-Mg leads to changes also in the initial clustering process

  20. Mechanical properties and microstructure of laser treated Al-Cu-Mg alloys

    NARCIS (Netherlands)

    Hosson, J.Th.M. De; Noordhuis, J.

    1993-01-01

    The mechanical properties and microstructural features of Al-Cu-Mg alloys were investigated, as exposed to laser treatments at various scan velocities. As far as the mechanical property is concerned a striking observation is a minimum in the hardness value at a laser scan velocity of 1/2 cm/s.

  1. Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy

    Directory of Open Access Journals (Sweden)

    Xiang Qingchun

    2011-02-01

    Full Text Available The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated. The experimental results show that when the minor elements of scandium and zirconium are simultaneously added into the Al-4Cu-1.5Mg alloy, the as-cast microstructure of the alloy is effectively modified and the grains of the alloy are greatly refined. The coarse dendrites in the microstructure of the alloy without Sc and Zr additions are refined to the uniform and fine equiaxed grains. As the additions of Sc and Zr are 0.4% and 0.2%, respectively, the tensile strength, yield strength and elongation of the alloy are relatively better, which are 275.0 MPa, 176.0 MPa and 8.0% respectively. The tensile strength is increased by 55.3%, and the elongation is nearly raised three times, compared with those of the alloy without Sc and Zr additions.

  2. The formation of quasicrystal phase in Al-Cu-Fe system by mechanical alloying

    OpenAIRE

    Travessa, Dilermando Nagle; Cardoso, Kátia Regina; Wolf, Witor; Jorge Junior, Alberto Moreira; Botta, Walter José

    2012-01-01

    In order to obtain quasicrystalline (QC) phase by mechanical alloying (MA) in the Al-Cu-Fe system, mixtures of elementary Al, Cu and Fe in the proportion of 65-20-15 (at. %) were produced by high energy ball milling (HEBM). A very high energy type mill (spex) and short milling times (up to 5 hours) were employed. The resulting powders were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). QC phase was not directly formed ...

  3. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting

    Science.gov (United States)

    Zhang, Hu; Zhu, Haihong; Nie, Xiaojia; Qi, Ting; Hu, Zhiheng; Zeng, Xiaoyan

    2016-04-01

    The proposed paper illustrates the fabrication and heat treatment of high strength Al-Cu-Mg alloy produced by selective laser melting (SLM) process. Al-Cu-Mg alloy is one of the heat treatable aluminum alloys regarded as difficult to fusion weld. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, 3D Al-Cu-Mg parts with relative high density of 99.8% are produced by SLM from gas atomized powders. Room temperature tensile tests reveal a remarkable mechanical behavior: the samples show yield and tensile strengths of about 276 MPa and 402 MPa, respectively, along with fracture strain of 6%. The effect of solution treatment on microstructure and related tensile properties is examined and the results demonstrate that the mechanical behavior of the SLMed Al-Cu-Mg samples can be greatly enhanced through proper heat treatment. After T4 solution treatment at 540°C, under the effect of precipitation strengthening, the tensile strength and the yield strength increase to 532 MPa and 338 MPa, respectively, and the elongation increases to 13%.

  4. Effect Of Compaction Pressure And Sintering Temperature On The Liquid Phase Sintering Behavior Of Al-Cu-Zn Alloy

    Directory of Open Access Journals (Sweden)

    Lee S.H.

    2015-06-01

    Full Text Available The liquid phase sintering characteristics of Al-Cu-Zn alloy were investigated with respect to various powder metallurgy processing conditions. Powders of each alloying elements were blended to form Al-6Cu-5Zn composition and compacted with pressures of 200, 400, and 600 MPa. The sintering process was performed at various temperatures of 410, 560, and 615°C in N2 gas atmosphere. Density and micro-Vickers hardness measurements were conducted at different processing stages, and transverse rupture strength of sintered materials was examined for each condition, respectively. The microstructure was characterized using optical microscope and scanning electron microscopy. The effect of Zn addition on the liquid phase sintering behavior during P/M process of the Al-Cu-Zn alloy was also discussed in detail.

  5. Investigations into the corrosion resistance of copper aluminium alloys. Effect of phosphorus as corrosion resistant third alloying element in the ternary system CuAl20P1

    International Nuclear Information System (INIS)

    Allwardt, A.

    1997-01-01

    The effect of phosphorus on the corrosion resistance of Al-bronzes is studied in detail in this work. A literature review showed that there are a lot of things known about the microstructure and the mechanical properties of Al-bronzes. In spite of their corrosion resistance the corrosion properties and the structure of the protective oxide films of Al-bronzes were seldom a matter of interest. Systematic studies of the influence of different alloying elements on the oxide film and the corrosion properties are rare. Therefore, it is not possible to predict the corrosion resistance of Al-bronzes, made by alloying particular elements. The high corrosion resistance of the new alloy CuAl 20 P 1 was the reason to investigate the influence of phosphorus on the corrosion properties of Al-bronzes in more detail. A systematic study of the microstructure and the corrosion properties of Cu, CuP x , CuAl 20 and CuAl 20 P x offers an insight into the effect of aluminium and phosphorus on the formation of the oxide film on Al-bronzes. It was found that there exists a critical amount of 1 at.-% of phosphorus. Above and below this amount the corrosion resistance becomes worse. This behaviour could be explained by XPS-and electrochemical measurements. Although there are still some questions about the influence of phosphorus on the corrosion resistance of Al-bronzes, this work has produced some important results, which in the future may be helpful to develop new high corrosion resistant Al-bronzes more efficiently: - on clean surface Al-bronze, the oxidation of Al and Cu takes place simultaneously, - Al promotes the formation of Cu 2 O but impedes the formation of Cu(II)-oxide/-hydride in neutral solutions, - P impedes the formation of Cu 2 O and as a consequence promotes the formation of aluminium oxide. This results in a higher amount of Al in the oxide film on the surface of the alloy, which leads to a better corrosion resistance. (author) figs., tabs., 106 refs

  6. Effect of Mn on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy

    Directory of Open Access Journals (Sweden)

    Zhao Zhihao

    2012-11-01

    Full Text Available In order to improve the performances of the Al-Mg-Si-Cu-Cr-V alloy, various amounts of Mn (0-0.9wt.% were added. The effect of this Mn on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys in different states, especially after hot extrution and solid solution treatment, was systematically studied using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and mechanical tests at room temperature. The results show that 0.2wt.% Mn can both refine the as-cast microstructure of the alloy and strengthen the extrusion+T6 state alloy without damaging the plasticity badly due to the formation of Al15(FeMn3Si2 and Al15Mn3Si2 dispersoids. Compared with the extrusion+T6 state alloy without Mn addition, the ultimate tensile strength and yield strength of the alloy with 0.2wt.% Mn addition are increased from 416.9 MPa to 431.4 MPa, 360.8 MPa to 372 MPa, respectively. The elongation of the extrusion+T6 state alloy does not show obvious change when the Mn addition is less than 0.5wt.%, and for the alloy with 0.2wt.% Mn addition its elongation is still as high as 15.6%. However, when over 0.7wt.% Mn is added to the alloy, some coarse, stable and refractory AlVMn and Al(VMnSi phases form. These coarse phases can reduce the effect of Mn on the inhibition of re-crystallization; and they retain the angular morphology permanently after the subsequent deformation process and heat treatment. This damages the mechanical properties of the alloy.

  7. Effect of Ternary Addition of Iron on Shape Memory Characteristics of Cu-Al Alloys

    Science.gov (United States)

    Raju, T. N.; Sampath, V.

    2011-07-01

    The effect of alloying Cu-Al alloys with Fe on their transformation temperatures and shape memory properties was investigated by differential scanning calorimetry and bend test. It was found that the minor additions of iron resulted in change of transformation temperatures and led to excellent shape memory properties of the alloys. Since the transformation temperatures are high, they are an ideal choice for high-temperature applications.

  8. The role of anodic dissolution in the stress corrosion cracking of Al-Li-Cu alloy 2090

    International Nuclear Information System (INIS)

    Buchheit, R.G. Jr.; Wall, F.D.; Stoner, G.E.; Moran, J.P.

    1991-01-01

    The short-transverse (S-T) stress corrosion cracking (SCC) behavior of Al-Li-CU alloy 2090 was studied using a static load SCC test technique. Time to failure was measured as a function of applied potential in several different environments. Rapid SCC failures ( br, T1 applied br, matrix where potentials refer to the breakaway potentials of the subgrain boundary T 1 (Al 2 CuLi) phase and the α-Al matrix phase. E br values were measured using potentiodynamic polarization of bulk materials intended to simulate the individual phases found in the subgrain boundary region. Results strongly suggest an anodic dissolution based SCC mechanism for this alloy where selective dissolution of T 1 on the subgrain boundary is a critical step. The unusual pre-exposure embrittlement phenomenon demonstrated by Al- Li alloys is also shown to be consistent with these simple SCC criteria. 21 refs., 9 figs., 6 tabs

  9. The Effect of Technological Parameters on the Microstructure and Mechanical Properties of AlSi17Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Jaroslaw PIĄTKOWSKI

    2016-09-01

    Full Text Available The mechanical properties (HB, HV, R0.2, Rm and plastic properties (A5, Z of AlSi17Cu4 alloy when exposed to chosen technological processes, such as modification, overheating and rapid cooling, are presented in this paper. The best combination of properties was noticed in alloy overheated for 40 minutes at 920 oC and casted into a metallic mould submerged in liquid nitrogen. Moreover, the technological stability and homogeneity of alloys were evaluated based on spread of results, expressed by standard deviation. It was proven, based on microstructure analysis, that the best effect of refinement was achieved by intensive cooling of alloy preceded by its overheating. The XRD analysis indicated that the intermetallic phases, mainly θ(Al2Cu and γ1(Al4Cu9 caused hardening of the solution, improvement in mechanical properties and technological stability.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.8490

  10. Elemental investigation of (Al-Cu) alloys and some geological samples using neutron activation and XRF analysis techniques

    International Nuclear Information System (INIS)

    Hammad, E.A.M.

    2012-01-01

    Neutron activation analysis (NAA) using k 0 - standardization (k 0 -NAA) is well known method for multi-elemental analysis. The method is used to analyze different samples belonging to different fields. In addition, X- ray fluorescence (XRF) is also used for multi-elemental analysis. XRF complements NAA methods. Both methods were used for investigation of some iron ores and aluminum- cupper alloy (Al-Cu) samples. Elemental concentration of Iron ores and Al-Cu alloy samples were determined by k 0 - NAA and XRF methods. The iron ore samples were collected from Wadi Kareim and Umm Nar sites (the Eastern desert of Egypt). Six and two samples representing the ores of Wadi Kareim and Umm Nar, respectively altogether with the standard samples consisting of Fe, Au , Zr and W and the certified reference sample IAEA Soil-7 were irradiated in one of the irradiated boxes at the Second Egyptian Research Reactor (ETRR- 2). The induced activities were counted using an efficiency calibrated HPGe detector systems. The neutron spectrum parameters α and f characterizing the neutron irradiation position that are needed in applying k 0 -NAA method were determined using the activation product of Zr , Au, Fe and W and found α≅ - 0.048 ±0.002 and f ≅ 38± k 0 -NAA method was applied to determine the elemental concentrations in the two iron ore samples. The concentrations determined were found to vary erratically form one sample to another. The results were discussed and compared with similar results in literature. The accuracy of the k 0 - NAA method was checked by determining the elemental concentration in the IAEA-Soil 7 reference sample. The obtained results are compared with the recommended values. Good agreements were found within 10 %. Short time neutron activation analysis (STNAA) was carried out to determine concentration of major elements in Al-Cu alloy samples. Three (Al-Cu) alloys samples with different concentrations of Cu (2, 3.5 and 5 %) altogether. Au standard sample

  11. The Influence of Alloy Composition on the Hot Tear Susceptibility of the Al-Zn-Mg-Cu Alloy System

    International Nuclear Information System (INIS)

    Kim, Jee-Hun; Jo, Jae-Sub; Sim, Woo-Jeong; Im, Hang-Joon

    2012-01-01

    Hot tearing was the most significant casting defect when the castability evaluation of the Al- Zn-Mg-Cu alloy system was conducted. It was related to the solidification range of the alloy. Therefore, the hot tear susceptibility of the AA7075 alloy, whose solidification range is the widest, was evaluated. The hot tear susceptibility was evaluated by using a mold for a hot tearing test designed to create the condition for the occurrence of hot tear in 8 steps. According to the tearing location and shape, a hot tear susceptibility index (HTS) score was measured. The solidification range of each alloy and hot tear susceptibility was compared and thereafter the microstructure of a near tear defect was observed. As a result, the HTS of the AA7075 alloy was found to be 67. Also, the HTS in relation to a change in Zn, Mg, Cu composition showed a difference of about 6-11% compared to the AA7075 alloy.

  12. Effect of mushy state rolling on age-hardening and tensile behavior of Al-4.5Cu alloy and in situ Al-4.5Cu-5TiB2 composite

    International Nuclear Information System (INIS)

    Siddhalingeshwar, I.G.; Herbert, M.A.; Chakraborty, M.; Mitra, R.

    2011-01-01

    Research highlights: → Mushy state rolling of composites reduces peak-aging times to ∼7.5-10% of that of as-cast alloy. → Uniform Cu atom distribution achieved in matrices by mushy state rolling enhances aging kinetics. → Uniform precipitate distribution obtained by mushy state rolling leads to higher microhardness. → Peak-age tensile strength and strain hardening rates are found to increase on mushy state rolling. - Abstract: The effect of mushy state rolling on aging kinetics of stir-cast Al-4.5Cu alloy and in situ Al-4.5Cu-5TiB 2 composite and their tensile behavior in solution-treated (495 deg. C) or differently aged (170 deg. C) conditions, has been investigated. As-cast or pre-hot rolled alloy and composite samples were subjected to single or multiple mushy state roll passes to 5% thickness reduction at temperatures for 20% liquid content. Peak-aging times of mushy state rolled composite matrices have been found as ∼7.5-10% of that of as-cast alloy. Such enhancement in aging kinetics is attributed to homogeneity in Cu atom distribution as well as increase in matrix dislocation density due to thermal expansion coefficient mismatch between Al and TiB 2 , matrix grain refinement and particle redistribution, achieved by mushy state rolling. Uniform precipitate distribution in mushy state rolled composite matrices leads to greater peak-age microhardness with higher yield and ultimate tensile strengths than those in as-cast alloy and composite.

  13. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  14. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  15. Fabrication of a Porous Metal via Selective Phase Dissolution in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Juan Vargas-Martínez

    2018-05-01

    Full Text Available Through free corrosion, a new low cost porous material was successfully fabricated by removing a single phase of a binary aluminum-copper alloy. This selective phase dissolution was carried out an Al-Al2Cu eutectic alloy of the Al-Cu binary system and additionally for two hypereutectic compositions. The porosity of the material depends on the microstructure formed upon solidification. For this reason, several solidification methods were studied to define the most convenient in terms of uniformity and refinement of the average pore and ligament sizes. The samples were corroded in a 10% v/v NaOH aqueous solution, which demonstrated to be the most convenient in terms of time involved and resulting porosity conditions after the corrosion process. The porosity was measured through analysis of secondary electron images. The effectiveness of the process was verified using X-ray diffraction, which showed that, under the proposed methodology, there was complete removal of one of the phases, namely the aluminum one.

  16. The effect of zinc on the microstructure and phase transformations of casting Al-Cu alloys

    OpenAIRE

    Manasijević Ivana I.; Štrbac Nada D.; Živković Dragana T.; Balanović Ljubiša T.; Minić Duško M.; Manasijević Dragan M.

    2016-01-01

    Copper is one of the main alloying elements for aluminum casting alloys. As an alloying element, copper significantly increases the tensile strength and toughness of alloys based on aluminum. The copper content in the industrial casting aluminum alloys ranges from 3,5 to 11 wt.%. However, despite the positive effect on the mechanical properties, copper has a negative influence on the corrosion resistance of aluminum and its alloys. In order to further improve the properties of Al-Cu alloys th...

  17. Unusual hardening behaviour in heavily cryo-rolled Cu-Al-Zn alloys during annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.L. [Faculty of Science, Kunming University of Science and Technology, Kunming 650500 (China); Ren, S.Y. [Ningbo Powerway Alloy Material Co., Ltd, Ningbo 315135 (China); Zeng, S.D. [Yunnan Institute of Measuring and Testing Technology, Kunming 650228 (China); Zhu, X.K., E-mail: xk_zhu@hotmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China)

    2016-04-06

    Three nanostructured Cu-Al-Zn alloys were produced via rolling at the liquid nitrogen temperature. The deformed Cu alloys were then annealed at 150–300 °C for 1 h. The two alloys with high solute content and thus with low stacking fault energy exhibit unusual annealing hardening, namely, an increase in hardness and strength and a decrease in tensile elongation after annealing at 150 and 200 °C. From X-ray diffraction (XRD) analysis and microstructural observations by transmission electron microscopy (TEM), it is found that microstrain and dislocation density decrease after annealing at 200 °C because of the recovery of dislocations and the lattice parameter decreases due to solute segregation. Meanwhile, the twin density of the two Cu alloys increases and grain size remains basically unchanged. It is shown that the formation of annealing twins and stacking faults and the segregation of solute atoms may be the main causes of unusual annealing hardening.

  18. Electrical resistivity of nanocrystals in Fe-Al-Ga-P-B-Si-Cu alloy

    International Nuclear Information System (INIS)

    Pekala, K.; Jaskiewicz, P.; Nowinski, J.L.; Pekala, M.

    2003-01-01

    In new supercooled Fe 74 Al 4 Ga 2 P 11 B 4 Si 4 Cu 1 alloy the 10 nm size α-Fe(Si) nanocrystals are precipitated. Thermal stability is analyzed by the electron transport and magnetization measurements. Temperature variation of electrical resistivity of nanocrystals is determined and discussed for alloys with different initial crystalline fraction. Possible mechanism inhibiting the grain growth is presented

  19. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Science.gov (United States)

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-01-01

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus. PMID:28972546

  20. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Directory of Open Access Journals (Sweden)

    Pavel Krakhmalev

    2017-10-01

    Full Text Available The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  1. Liquid demixing and microstructure formation in ternary Al-Sn-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, D.; Groebner, J. [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Strasse 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, R. [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Strasse 42, D-38678 Clausthal-Zellerfeld (Germany)], E-mail: schmid-fetzer@tu-clausthal.de

    2008-07-25

    The complex features of the Al-Sn-Cu phase diagram, dominated by ternary liquid demixing, are revealed by a combination of thermodynamic modeling and experimental studies. Nine ternary alloys were selected to cover all essential features involving the liquidus surface and the invariant solidification reactions. These were analyzed by differential thermal analysis as well as microstructural and local chemical analysis of solidified microstructures. Three different monotectic invariant reactions occur in this system. Small changes in alloy composition may produce distinctly different microstructures with primary crystallization and secondary demixing or vice versa.

  2. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  3. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    Science.gov (United States)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  4. /Cu-Al System

    Science.gov (United States)

    Kish, Orel; Froumin, Natalya; Aizenshtein, Michael; Frage, Nachum

    2014-05-01

    Wettability and interfacial interaction of the Ta2O5/Cu-Al system were studied. Pure Cu does not wet the Ta2O5 substrate, and improved spreading is achieved when relatively a high fraction of the active element (~40 at.% Al) was added. The Al2O3 and AlTaO4 phases were observed at the Ta2O5/Cu-Al interface. A thermodynamic evaluation allowed us to suggest that the lack of wetting bellow 40 at.% Al is due to the presence of a native oxide, which covers the drop. The conditions of the native oxide decomposition and the formation of the volatile Al2O suboxide strongly depend on the vacuum level during sessile drop experiments and the composition of the Cu-Al alloy. In our case, Al contents greater than 40% provides thermodynamic conditions for the formation of Al2O (as a result of Al reaction with Al2O3) and the drop spreading. It was suggested that the final contact angle in the Ta2O5/Cu-Al system (50°) is determined by Ta adsorption on the newly formed alumina interlayer.

  5. Precipitation kinetics of Al-1.12 Mg{sub 2}Si-0.35 Si and Al-1.07 Mg{sub 2}Si-0.33 Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Gaffar, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)]. E-mail: mgaafar@aucegypt.edu; Mostafa, M.S. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Zeid, E.F. Abo [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2007-02-21

    The kinetics of hardening precipitates of Al-1.12 wt.% Mg{sub 2}Si-0.35 wt.% Si (excess Si) and Al-1.07 wt.% Mg{sub 2}Si-0.33 wt.% Cu (balanced + Cu) alloys have been investigated by means of differential scanning calorimetry and hardness measurements. The excess Si enhances the precipitation kinetics and improves the strength of the material. On the other hand, however addition of Cu assist formation of the Q' phase which positively changed the alloy strength. The high binding energy between vacancies and solute atoms (Si and Mg) enhances the combination of Si, Mg and vacancies to form Si-Mg-vacancy clusters. These clusters act as nucleation sites for GP-zones. The coexistence of the {beta}'- and Q'-precipitates in the balanced + Cu alloy results in a higher peak age hardening compared to the alloy with Si in excess.

  6. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy

    International Nuclear Information System (INIS)

    Bobbili, Ravindranadh; Paman, Ashish; Madhu, V.

    2016-01-01

    The purpose of the current study is to perform quasi static and high strain rate tensile tests on Al-4.8Cu-1.2Mg alloy under different strain rates ranging from 0.01–3500/s and also at temperatures of 25,100, 200 and 300 °C. The combined effect of strain rate, temperature and stress triaxiality on the material behavior is studied by testing both smooth and notched specimens. Johnson–Cook (J–C) constitutive and fracture models are established based on high strain rate tensile data obtained from Split hopkinson tension bar (SHTB) and quasi-static tests. By modifying the strain hardening and strain rate hardening terms in the Johnson–Cook (J–C) constitutive model, a new J–C constitutive model of Al-4.8Cu-1.2Mg alloy was obtained. The improved Johnson–Cook constitutive model matched the experiment results very well. With the Johnson–Cook constitutive and fracture models, numerical simulations of tensile tests at different conditions for Al-4.8Cu-1.2Mg alloy were conducted. Numerical simulations are performed using a non-linear explicit finite element code autodyn. Good agreement is obtained between the numerical simulation results and the experiment results. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  7. Effect of Process Parameters on Fatigue and Fracture Behavior of Al-Cu-Mg Alloy after Creep Aging

    Directory of Open Access Journals (Sweden)

    Lihua Zhan

    2018-04-01

    Full Text Available A set of creep aging tests at different aging temperatures and stress levels were carried out for Al-Cu-Mg alloy, and the effects of creep aging on strength and fatigue fracture behavior were studied through tensile tests and fatigue crack propagation tests. The microstructures were further analyzed by using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The results show that temperature and stress can obviously affect the creep behavior, mechanical properties, and fatigue life of Al-Cu-Mg alloy. As the aging temperature increases, the fatigue life of alloy first increases, and then decreases. The microstructure also displays a transition from the Guinier-Preston-Bagaryatsky (GPB zones to the precipitation of S phase in the grain interior. However, the precipitation phases grow up and become coarse at excessive temperatures. Increasing stress can narrow the precipitation-free zone (PFZ at the grain boundary and improve the fatigue life, but overhigh stress can produce the opposite result. In summary, the fatigue life of Al-Cu-Mg alloy can be improved by fine-dispersive precipitation phases and a narrow PFZ in a suitable creep aging process.

  8. Distribution of distances between dislocations in different types of dislocation substructures in deformed Cu-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Trishkina, L., E-mail: trishkina.53@mail.ru; Zboykova, N.; Koneva, N., E-mail: koneva@tsuab.ru; Kozlov, E. [Tomsk State University of Architecture and Building, 2 Solyanaya St., Tomsk, 634003 (Russian Federation); Cherkasova, T. [Tomsk State University of Architecture and Building, 2 Solyanaya St., Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 50 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocation chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.

  9. Distribution of distances between dislocations in different types of dislocation substructures in deformed Cu-Al alloys

    Science.gov (United States)

    Trishkina, L.; Cherkasova, T.; Zboykova, N.; Koneva, N.; Kozlov, E.

    2016-01-01

    The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocation chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.

  10. Ion scattering studies of ordered alloy surfaces: CuAu(1 0 0) and NiAl

    International Nuclear Information System (INIS)

    Beikler, R.; Taglauer, E.

    2000-01-01

    The composition and structure of alloy surfaces can differ from the corresponding bulk properties due to segregation and relaxation effects. We studied the (1 0 0) surface of the ordered alloy CuAu and amorphous Ni and Al by low-energy Ne + and Na + ion scattering. The interpretation of the experimental results is supported by numerical simulations using the MARLOWE code. In the CuAu system a certain geometry was found to be very sensitive to Au presence in the 2nd layer. Comparison with MARLOWE results also allows to study variations in the ion yields arising from neutralization effects. By trajectory analysis ion survival probabilities are estimated for Ni and Al

  11. Mechanism of abnormally slow crystal growth of CuZr alloy

    International Nuclear Information System (INIS)

    Yan, X. Q.; Lü, Y. J.

    2015-01-01

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. We find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed

  12. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  13. Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu-Al-Ni-Mn alloy

    International Nuclear Information System (INIS)

    Xiao Zhu; Li Zhou; Fang Mei; Xiong Shiyun; Sheng Xiaofei; Zhou Mengqi

    2008-01-01

    The fabrication conditions of Cu-Al-Ni-Mn alloy powder by mechanical alloying and powder metallurgy have been systematically studied. The mechanically alloyed powder (MAed powder) was fabricated at a speed between 100 rpm and 300 rpm for various milling times with and without process control agent (PCA). With an increasing of milling time, the size of crystallite grain decreases. Only the Cu diffraction pattern appear as the rotation speed is up to 300 rpm for 25 h. The elemental powders with PCA agglomerate slightly, but the degree of alloying is lower than that without PCA. The shape memory recovery of the quenched sample hot-extruded at extrusion rate of 50:1 is measured to be 100% recovered in 250 deg. C oil bath for 40 s after deformed to 4.0%. After aging at 120 deg. C for 10 days, the shape memory recovery of the alloy remains 98%

  14. Stability of an amorphous alloy of the Mm-Al-Ni-Cu system

    Directory of Open Access Journals (Sweden)

    Carlos Triveño Rios

    2012-10-01

    Full Text Available An investigation was made of the stability of melt-spun ribbons of Mm55Al25Ni10Cu10 (Mm = Mischmetal amorphous alloy. The structural transformations that occurred during heating were studied using a combination of X-ray diffraction (XRD and differential scanning calorimetry (DSC. Crystallization took place through a multi-stage process. The first stage of transformation corresponded to the formation of a metastable phase followed by cfc-Al precipitation, while in the second stage, exothermic transformations led to the formation of complex and unidentified Mm(Cu, Ni and MmAl(Cu, Ni phases. The transformation curves recorded from isothermal treatments at 226 °C and 232 °C indicated that crystallization occurred through nucleation and growth, with diffusion-controlled growth occurring in the first crystallization stage. The supercooled liquid region, ∆Tx, at 40 K/min was ~80 K. This value was obtained by the substitution of Mm (=Ce + La + Nd + Pr for La or Ce, saving chemical element-related costs.

  15. Microstructure and Tensile Properties of Sn-1Ag-0.5Cu Solder Alloy Bearing Al for Electronics Applications

    Science.gov (United States)

    Shnawah, Dhafer Abdul-Ameer; Said, Suhana Binti Mohd; Sabri, Mohd Faizul Mohd; Badruddin, Irfan Anjum; Hoe, Teh Guan; Che, Fa Xing; Abood, Adnan Naama

    2012-08-01

    This work investigates the effects of 0.1 wt.% and 0.5 wt.% Al additions on bulk alloy microstructure and tensile properties as well as on the thermal behavior of Sn-1Ag-0.5Cu (SAC105) lead-free solder alloy. The addition of 0.1 wt.% Al reduces the amount of Ag3Sn intermetallic compound (IMC) particles and leads to the formation of larger ternary Sn-Ag-Al IMC particles. However, the addition of 0.5 wt.% Al suppresses the formation of Ag3Sn IMC particles and leads to a large amount of fine Al-Ag IMC particles. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions suppress the formation of Cu6Sn5 IMC particles and lead to the formation of larger Al-Cu IMC particles. The 0.1 wt.% Al-added solder shows a microstructure with coarse β-Sn dendrites. However, the addition of 0.5 wt.% Al has a great effect on suppressing the undercooling and refinement of the β-Sn dendrites. In addition to coarse β-Sn dendrites, the formation of large Sn-Ag-Al and Al-Cu IMC particles significantly reduces the elastic modulus and yield strength for the SAC105 alloy containing 0.1 wt.% Al. On the other hand, the fine β-Sn dendrite and the second-phase dispersion strengthening mechanism through the formation of fine Al-Ag IMC particles significantly increases the elastic modulus and yield strength of the SAC105 alloy containing 0.5 wt.% Al. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions worsen the elongation. However, the reduction in elongation is much stronger, and brittle fracture occurs instead of ductile fracture, with 0.5 wt.% Al addition. The two additions of Al increase both solidus and liquidus temperatures. With 0.5 wt.% Al addition the pasty range is significantly reduced and the differential scanning calorimetry (DSC) endotherm curve gradually shifts from a dual to a single endothermic peak.

  16. Dislocation Substructures Formed After Fracture of Deformed Polycrystalline Cu-Al Alloys

    Science.gov (United States)

    Koneva, N. A.; Trishkina, L. I.; Cherkasova, T. V.

    2017-08-01

    The paper deals with the dislocation substructure of polycrystalline FCC alloys modified by plastic deformation at a distance from the area of the specimen fracture. Observations are performed using the transmission electron microscopy. Cu-Al alloys with grain size ranging from 10 to 240 μm are studied in this paper. The parameters of the dislocation substructure are measured and their variation is determined by the increasing distance from the fracture area. It is shown how the grain size influences these processes. The different dislocation substructures which determine the specimen fracture at a mesocscale level are found herein.

  17. Correlation between electron work functions of multiphase Cu-8Mn-8Al and de-alloying corrosion

    Science.gov (United States)

    Punburi, P.; Tareelap, N.; Srisukhumbowornchai, N.; Euaruksakul, C.; Yordsri, V.

    2018-05-01

    Low energy electron emission microscopy (LEEM) was used to measure local transition energy that was directly correlated to electron work function (EWF) of multiphase manganese-aluminum bronze alloys. We developed color mapping to distinguish the EWF of multiple phases and clarified that the EWF were in the following order: EWF of α > EWF of β > EWF of κ (EWFα > EWFβ > EWFκ). De-alloying corrosion took place due to the micro-galvanic cell at grain boundaries before it propagated into the β phase that had lower EWF than the α phase. The α phase was a stable phase because it contained high Cu while the β phase contained high Al and Mn. In addition, XRD analysis showed that the texture coefficient of the β phase revealed that almost all of the grains had (2 2 0) orientation, the lowest EWF compared to (1 1 1) and (2 0 0). Furthermore, transmission electron microscopy illustrated that there were fine Cu3Mn2Al precipitates in the Cu2MnAl matrix of the β phase. These precipitates formed micro-galvanic cells which played an important role in accelerating de-alloying corrosion.

  18. Compressive Deformation Behavior of Open-Cell Cu-Zn-Al Alloy Foam Made Through P/M Route Using Mechanically Alloyed Powder

    Science.gov (United States)

    Barnwal, Ajay Kumar; Mondal, D. P.; Kumar, Rajeev; Prasanth, N.; Dasgupta, R.

    2018-03-01

    Cu-Zn-Al foams of varying porosity fractions using mechanical alloyed powder have been made through powder metallurgy route. Here, NH4 (HCO3) was used as a space holder. Mechanically alloyed Cu-Zn-Al is made using a planetary ball mill taking the ratio of Cu/Zn/Al = 70:25:5 (by weight ratio). The ball/powder ratios were varied in the four ranges 10:1, 15:1, 20:1, and 25:1. Green compacts of milled powder and space holder samples were sintered at three stages at three different temperatures 350, 550, and 850 °C for 1 h at each stage. The crystalline size and particle size as a function of ball/powder ratios were examined. The compressive deformation responses of foams are varied with relative density and the ball/powder ratio. The plateau stress and energy absorption of these foams increase with an increase in relative density but decreases with increase in ball/powder ratio, even though crystalline size decreases. This has further been explained on the basis of particle morphology as a function of ball/powder ratio.

  19. Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

    Science.gov (United States)

    Sharma, Ashutosh; Roh, Myung Hwan; Jung, Jae Pil

    2016-08-01

    The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.

  20. Development of medical guide wire of Cu-Al-Mn-base superelastic alloy with functionally graded characteristics.

    Science.gov (United States)

    Sutou, Yuji; Omori, Toshihiro; Furukawa, Akihisa; Takahashi, Yukinori; Kainuma, Ryosuke; Yamauchi, Kiyoshi; Yamashita, Shuzo; Ishida, Kiyohito

    2004-04-15

    A new type of medical guide wire with functionally graded hardness from the tip to the end was developed with the use of Cu-Al-Mn-based alloys. The superelasticity (SE) of the Cu-Al-Mn-based alloys in the tip is drastically improved by controlling the grain size, whereas the end of the wire is hardened using bainitic transformation by aging at around 200-400 degrees C. Therefore, the tip of the guide wire shows a superelasticity and its end has high stiffness. This guide wire with functionally graded characteristics shows excellent pushability and torquability, superior to that of the Ni-Ti guide wire. Copyright 2004 Wiley Periodicals, Inc.

  1. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Safaa N. Saud

    2017-01-01

    Full Text Available The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery, and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  2. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys.

    Science.gov (United States)

    Saud, Safaa N; Hamzah, E; Bakhsheshi-Rad, H R; Abubakar, T

    2017-01-01

    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  3. Effects of deep cryogenic treatment on the solid-state phase transformation of Cu-Al alloy in cooling process

    Science.gov (United States)

    Wang, Yuhui; Liao, Bo; Liu, Jianhua; Chen, Shuqing; Feng, Yu; Zhang, Yanyan; Zhang, Ruijun

    2012-07-01

    The solid-state phase transformation temperature and duration of deep cryogenic treated and untreated Cu-Al alloys in cooling process were measured by differential scanning calorimetry measurement. The solid-state phase transformation activation energy and Avrami exponent were calculated according to these measurements. The effects of deep cryogenic treatment on the solid-state phase transformation were investigated based on the measurement and calculation as well as the observation of alloy's microstructure. The results show that deep cryogenic treatment can increase the solid-phase transformation activation energy and shorten the phase transformation duration, which is helpful to the formation of fine grains in Cu-Al alloy.

  4. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.

    Science.gov (United States)

    Wang, Song; Ma, Zheng; Liao, Zhenhua; Song, Jian; Yang, Ke; Liu, Weiqiang

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti-5Cu and Ti-6Al-4V-5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO2 counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti2Cu intermetallic compounds appeared in both Ti-5Cu and Ti-6Al-4V-5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti-5Cu and Ti-6Al-4V-5Cu alloys due to the precipitation of Ti2Cu. The results also indicated that both CP-Ti and Ti-5Cu behaved better wear resistance than Ti-6Al-4V and Ti-6Al-4V-5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti-5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti-6Al-4V and Ti-6Al-4V-5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Influence of Sludge Particles on the Fatigue Behavior of Al-Si-Cu Secondary Aluminium Casting Alloys

    Directory of Open Access Journals (Sweden)

    Lorella Ceschini

    2018-04-01

    Full Text Available Al-Si-Cu alloys are the most widely used materials for high-pressure die casting processes. In such alloys, Fe content is generally high to avoid die soldering issues, but it is considered an impurity since it generates acicular intermetallics (β-Fe which are detrimental to the mechanical behavior of the alloys. Mn and Cr may act as modifiers, leading to the formation of other Fe-bearing particles which are characterized by less harmful morphologies, and which tend to settle on the bottom of furnaces and crucibles (usually referred to as sludge. This work is aimed at evaluating the influence of sludge intermetallics on the fatigue behavior of A380 Al-Si-Cu alloy. Four alloys were produced by adding different Fe, Mn and Cr contents to A380 alloy; samples were remelted by directional solidification equipment to obtain a fixed secondary dendrite arm spacing (SDAS value (~10 μm, then subjected to hot isostatic pressing (HIP. Rotating bending fatigue tests showed that, at room temperature, sludge particles play a detrimental role on fatigue behavior of T6 alloys, diminishing fatigue strength. At elevated temperatures (200 °C and after overaging, the influence of sludge is less relevant, probably due to a softening of the α-Al matrix and a reduction of stress concentration related to Fe-bearing intermetallics.

  6. Impact of ac/dc spark anodizing on the corrosion resistance of Al-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Alsrayheen, Enam, E-mail: ealsrayh@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); McLeod, Eric, E-mail: hmolero@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Rateick, Richard, E-mail: richard.rateick@honeywell.com [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Molero, Hebert, E-mail: Eric.McLeod@stmu.ab.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Birss, Viola, E-mail: birss@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada)

    2011-07-01

    An ac/dc spark anodization method was used to deposit an oxide film (6 {+-} 3 {mu}m in thickness) on the Al-Cu alloy AA2219. The oxide films were formed at 10 mA/cm{sup 2} for 30 min in an alkaline silicate solution, showing three main stages of growth. Scanning electron microscopy and electron microprobe analysis revealed that the oxide films are not uniform and consist of three main layers, an inner Al-rich barrier layer ({approx}1 {mu}m), an intermediate Al-Si mixed oxide layer ({approx}2 {+-} 1 {mu}m), and an outer porous Si-rich layer ({approx}3 {+-} 3 {mu}m). In addition, microscopic analysis showed that the Al{sub 2}Cu intermetallics present in the alloy have not been excessively oxidized during the anodization process and thus are retained beneath the oxide film, as desired. The coating passivity and corrosion resistance, evaluated using linear sweep voltammetry (LSV) in pH 7 borate buffer solution and electrochemical impedance spectroscopy (EIS) in 0.86 M NaCl solution, respectively, were both significantly improved after spark-anodization.

  7. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  8. Effect of Rapid Solidification and Addition of Cu3P on the Mechanical Properties of Hypereutectic Al-Si Alloys

    OpenAIRE

    Suárez-Rosales,Miguel Ángel; Pinto-Segura,Raúl; Palacios-Beas,Elia Guadalupe; Hernández-Herrera,Alfredo; Chávez-Alcalá,José Federico

    2016-01-01

    The combined processes; rapid solidification, addition of Cu3P compound and heat treatments to improve the mechanical properties of the hypereutectic Al-13Si, Al-20Si and Al-20Si-1.5Fe-0.7Mn alloys (in wt. %) was studied. Optical microscopy and scanning electron microscopy were used to characterize the microstructures. The mechanical properties were evaluated by tensile tests. It was found that the cooling rate (20-50°C/s) used to solidify the alloys plus the addition of Cu3P compound favored...

  9. The Refining Mechanism of Super Gravity on the Solidification Structure of Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Yuhou Yang

    2016-12-01

    Full Text Available There is far less study of the refining effect of super gravity fields on solidification structures of metals than of the effects of electrical currents, magnetic and ultrasonic fields. Moreover, the refining mechanisms of super gravity are far from clear. This study applied a super gravity field to Al-Cu alloys to investigate its effect on refining their structures and the mechanism of interaction. The experimental results showed that the solidification structure of Al-Cu alloys can be greatly refined by a super gravity field. The major refining effect was mainly achieved when super gravity was applied at the initial solidification stage; only slight refinement could be obtained towards the end of solidification. No refinement was obtained by the super gravity treatment on pure liquid or solid stages. The effectiveness of super gravity results from its promoting the multiplication of crystal nuclei, which we call “Heavy Crystal Rain”, thereby greatly strengthening the migration of crystal nuclei within the alloy. Increasing the solute Cu content can increase nucleation density and restrict the growth of crystals, which further increases the refining effect of super gravity. Within this paper, we also discuss the motile behavior of crystals in a field of super gravity.

  10. Influence of heat treatment on corrosion behaviour of Al-Zn-Mg-Cu-Zr-Sc alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Y.P.; Liu, X.Y.; He, Y.B. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Pan, Q.L. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Materials Science and Engineering, Ministry of Education, Changsha 410083 (China); Li, W.B. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); School of Civil Engineering, Hunan City University, Yiyang 413000 (China)

    2012-05-15

    Corrosion behaviour of different tempers (namely NA, UA, PA and OA) of Al-Zn-Mg-Cu-Zr-Sc alloy was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), optical microscopy (OM) and transmission electron microscopy (TEM). Over aged (OA) can decrease the susceptibility to exfoliation due to the discontinuous distribution of the {eta} precipitates at the grain boundaries, cause a negative shift of the corrosion potential (E{sub corr}), and lead to the prolonging of the time of the appearance of two time constants in impedance diagrams. In addition, Al-Zn-Mg-Cu-Zr-Sc alloy with over aged treatment has an enhanced resistance to exfoliation corrosion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Effect of TiC nano-particles on the mechanical properties of an Al-5Cu alloy after various heat treatments

    Science.gov (United States)

    Zhang, Qingquan; Zhang, Wei; Tian, Weisi; Zhao, Qinglong

    2017-12-01

    In this paper, the effects of TiC nano-particles on the mechanical properties of Al-5Cu alloy were investigated. Adding TiC nano-particles can effectively refine grain size and secondary dendritic arm. The ultimate tensile strength, yield strength and elongation of the Al-5Cu alloy in each of the three states (i.e. as-cast, solid-solution state and T6 state) were also improved by adding TiC nano-particles. Moreover, the elastic-plastic plane-strain fracture toughness (K J) and work of fracture ( wof) of Al-5Cu containing TiC were significantly higher than those of Al-5Cu without TiC after aging for 10 h. The addition of TiC nano-particles also led to finer and denser ‧ precipitates.

  12. Heat treatment of the EN AC-AlSi9Cu3(Fe alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-04-01

    Full Text Available Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron the silumins can be characterized by high mechanical properties. Additionally, they feature good casting properties, good machinability and good thermal conductivity. i.e. properties as required for machinery components operating in high temperatures and at considerable loads. Mechanical properties of the silumins can be upgraded, implementing suitably selected heat treatment. In the paper is presented an effect of modification and heat treatment processes on mechanical properties of the EN AC-AlSi9Cu3(Fe alloy. Investigated alloy has undergone typical processes of modification and refining, and next heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results concern registered melting and solidification curves from the ATD method and strength tests. On base of the performed tests one has determined range of the heat treatment parameters which would assure obtainment of the best possible mechanical properties of the EN AC-AlSi9Cu3(Fe alloy.

  13. Effect Of SiC Particles On Sinterability Of Al-Zn-Mg-Cu P/M Alloy

    Directory of Open Access Journals (Sweden)

    Rudianto H.

    2015-06-01

    Full Text Available Premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder was analyzed as matrix in this research. Gas atomized powder Al-9Si with 20% volume fraction of SiC particles was used as reinforcement and added into the alloy with varied concentration. Mix powders were compacted by dual action press with compaction pressure of 700 MPa. High volume fraction of SiC particles gave lower green density due to resistance of SiC particles to plastic deformation during compaction process and resulted voids between particles and this might reduce sinterability of this mix powder. Sintering was carried out under ultra high purity nitrogen gas from 565°-580°C for 1 hour. High content of premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder gave better sintering density and reached up to 98% relative. Void between particles, oxide layer on aluminum powder and lower wettability between matrix and reinforcement particles lead to uncompleted liquid phase sintering, and resulted on lower sintering density and mechanical properties on powder with high content of SiC particles. Mix powder with wt90% of Alumix 431D and wt10% of Al-9Si-vf20SiC powder gave higher tensile strength compare to another mix powder for 270 MPa. From chemical compositions, sintering precipitates might form after sintering such as MgZn2, CuAl2 and Mg2Si. X-ray diffraction, DSC-TGA, and SEM were used to characterize these materials.

  14. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  15. The influence of remelting on the properties of AlSi6Cu4 alloy modified by antimony

    Directory of Open Access Journals (Sweden)

    D. Medlen

    2012-01-01

    Full Text Available The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eutectic phase particle shape and improve the mechanical properties of the final cast products and Al-Si alloys cast properties.

  16. First stage of the structural evolution of austenite in Cu-Al-Ni shape memory alloys

    International Nuclear Information System (INIS)

    Pelosin, V.; Gerland, M.; Riviere, A.

    2001-01-01

    Two shape memory Cu-Al-Ni alloys, a polycrystal and a single crystal, exhibiting a martensitic transformation close to 130 C (in the as-quenched state) have been studied. Specimens have been quenched after heat treatment at 850 C. The structural evolutions of the high temperature phase (austenite) have been studied for thermal treatments performed below 200 C. Investigations have been carried out using electrical resistivity measurements, TEM (transmission electron microscopy) observations and X-ray diffraction analysis. The main structural modifications are observed in the polycrystalline alloy and concern first, the reordering process of the austenite structure (B2→L2 1 ), and second, the precipitation of the (Cu 9 Al 4 ) γ 2 phase. In the single crystal alloy, the evolutions are very slight and localized on the structural defects. Particular attention is paid to the role of the quenched-in vacancy elimination on the observed mechanisms. In addition, the incidence of the structural evolution on the transformation temperatures is also discussed. (orig.)

  17. Topological model of austenite-martensite interfaces in Cu-Al-Ni alloy

    Czech Academy of Sciences Publication Activity Database

    Ostapovets, Andriy; Zárubová, Niva; Paidar, Václav

    2012-01-01

    Roč. 122, č. 3 (2012), s. 493-496 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : CuAlNi * alloy * experimental data * in-situ * topological models * transmission electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  18. Development of Cu-Hf-Al ternary systems and tungsten wire/particle reinforced Cu48Hf43Al9 bulk metallic glass composites for strengthening

    International Nuclear Information System (INIS)

    Park, Joyoung; An, Jihye; Choi-Yim, Haein

    2010-01-01

    Stable bulk glass forming alloys can be developed over a wide range of compositions in Cu-Hf-Al ternary systems starting from the Cu 49 Hf 42 Al 9 bulk metallic glass. Ternary Cu-Hf-Al alloys can be cast directly from the melt into copper molds to form fully amorphous strips with thicknesses of 1 to 6 mm. The maximum critical diameter of the new Cu-Hf-Al ternary alloy was 6 mm. X-ray diffraction patterns were used to confirm the amorphous nature of the ternary Cu-Hf-Al alloys. To increase the toughness of these metallic glasses, we reinforced the Cu 48 Hf 43 Al 9 bulk metallic glass-forming liquid with a 50% volume fraction of tungsten particles and an 80% volume fraction of tungsten wires with diameters of 242.4 μm. Composites with a critical diameter of 7 mm and length 70 mm were synthesized. The structure of the composites was confirmed by using X-ray diffraction (XRD), and the scanning electron microscopy (SEM). The mechanical properties of the composites were studied in compression tests. The thermal stability and the crystallization processes of the Cu-Hf-Al alloys and composites were investigated by using differential scanning calorimetry (DSC). Values of the glass transition temperature (T g ), the crystallization temperature (T x ), and the supercooled liquid region (ΔT = T x - T g ) are given in this paper.

  19. Magnetic properties and EXAFS study of nanocrystalline Fe2Mn0.5Cu0.5Al synthesized using mechanical alloying technique

    International Nuclear Information System (INIS)

    Nanto, Dwi; Yang, Dong-Seok; Yu, Seong-Cho

    2014-01-01

    Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has been synthesized by the mechanical alloying technique and studied as a function of milling time. Alloy nature of Fe 2 Mn 0.5 Cu 0.5 Al was observed in a sample milled for 96 h. The magnetic saturation is 4.0 μ B /f.u., which coincidently follows Slater–Pauling rule at 5 K. Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has enhanced saturate magnetization compared to any other fabrication of Fe 2 MnAl reported. Cu element plays an important role in site competes with other elements and may result in the enhancement of saturate magnetization. In accordance to the magnetic results and EXAFS pattern, it was revealed that the dynamics of magnetic properties were confirmed as structural changes of nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al

  20. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  1. Kinetics of bainite precipitation in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Motta, M.B.J.L. [Departamento de Ciências Exatas e da Terra, UNIFESP, Diadema, SP (Brazil); Adorno, A.T.; Santos, C.M.A. [Departamento de Físico-Química, IQ-UNESP, Araraquara, SP (Brazil); Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [Departamento de Ciências Exatas e da Terra, UNIFESP, Diadema, SP (Brazil)

    2017-02-15

    In this work the kinetics of bainite precipitation in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy was studied using measurements of microhardness change with aging time, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analyses, measurements of magnetization change with applied field and high-resolution transmission electron microscopy (HRTEM). The results showed that the bainite precipitation is responsible for the hardness increase in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy. The activation energy value obtained for the bainite precipitation is lower than that found in the literature. This was attributed to the presence of Ag dissolved in matrix and the occurrence of the Cu{sub 3}Al(DO{sub 3}) → Cu{sub 2}AlMn(L2{sub 1}) ordering reaction together with the bainite precipitation. - Highlights: • The activation energy for the bainite precipitation in the Cu{sub 69.3}Al{sub 18.8}Mn{sub 10.3}Ag{sub 1.6} alloy is around 33 kJ/mol. • During bainite precipitation the Cu{sub 2}AlMn phase formation occurs. • The Cu{sub 3}Al(DO{sub 3}) → Cu{sub 2}AlMn(L2{sub 1}) ordering reaction interferes in the activation energy value.

  2. Electromigration in Cu(Al) and Cu(Mn) damascene lines

    Science.gov (United States)

    Hu, C.-K.; Ohm, J.; Gignac, L. M.; Breslin, C. M.; Mittal, S.; Bonilla, G.; Edelstein, D.; Rosenberg, R.; Choi, S.; An, J. J.; Simon, A. H.; Angyal, M. S.; Clevenger, L.; Maniscalco, J.; Nogami, T.; Penny, C.; Kim, B. Y.

    2012-05-01

    The effects of impurities, Mn or Al, on interface and grain boundary electromigration (EM) in Cu damascene lines were investigated. The addition of Mn or Al solute caused a reduction in diffusivity at the Cu/dielectric cap interface and the EM activation energies for both Cu-alloys were found to increase by about 0.2 eV as compared to pure Cu. Mn mitigated and Al enhanced Cu grain boundary diffusion; however, no significant mitigation in Cu grain boundary diffusion was observed in low Mn concentration samples. The activation energies for Cu grain boundary diffusion were found to be 0.74 ± 0.05 eV and 0.77 ± 0.05 eV for 1.5 μm wide polycrystalline lines with pure Cu and Cu (0.5 at. % Mn) seeds, respectively. The effective charge number in Cu grain boundaries Z*GB was estimated from drift velocity and was found to be about -0.4. A significant enhancement in EM lifetimes for Cu(Al) or low Mn concentration bamboo-polycrystalline and near-bamboo grain structures was observed but not for polycrystalline-only alloy lines. These results indicated that the existence of bamboo grains in bamboo-polycrystalline lines played a critical role in slowing down the EM-induced void growth rate. The bamboo grains act as Cu diffusion blocking boundaries for grain boundary mass flow, thus generating a mechanical stress-induced back flow counterbalancing the EM force, which is the equality known as the "Blech short length effect."

  3. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  4. A comparative study of ternary Al-Sn-Cu immiscible alloys prepared by conventional casting and casting under high-intensity ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kotadia, H.R., E-mail: hiren.kotadia@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Das, A. [Materials Research Centre, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Doernberg, E.; Schmid-Fetzer, R. [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Systematic investigation on the solidification microstructure of ternary Al-Sn-Cu immiscible system aided by computational thermodynamics calculations. Black-Right-Pointing-Pointer Comparative study of conventional casting and casting under high-intensity ultrasonic irradiation. Black-Right-Pointing-Pointer Demonstrated the high effectiveness of ultrasound exposure during solidification. Black-Right-Pointing-Pointer Effect of cavitation on nucleation and the relative effects of cavitation and acoustic streaming on the dispersion of Sn-rich liquid phases have been explained from the experimental observation. Cavitation was found to promote fragmentation and dispersion of Sn-rich liquid leading to homogeneous dispersion of refined Sn phase. Microstructural modification was found to be contributed by cavitation and associated shockwave generation while bulk fluid flow under acoustic streaming was found to be less effective on the microstructure evolution. Black-Right-Pointing-Pointer Globular and highly refined {alpha}-Al formed near the radiator through enhanced heterogeneous nucleation in contrast to dendritic {alpha}-Al observed in conventional solidification. - Abstract: A comparative study on the microstructure of four ternary Al-Sn-Cu immiscible alloys, guided by the recent thermodynamic assessment of the system, was carried out with specific focus on the soft Sn particulate distribution in hard Al-rich matrix in the presence and absence of ultrasonic irradiation during solidification. The results clearly demonstrate high effectiveness of ultrasonication in promoting significantly refined and homogeneously dispersed microstructure, probably aided by enhanced nucleation and droplet fragmentation under cavitation. While conventional solidification produced highly segregated Sn phase at the centre and bottom of Sn-rich alloy ingots, ultrasonic treatment produced effective dispersion irrespective of the alloy constitution in

  5. Origin of the modified orientation relationship for S(S'')-phase in Al-Mg-Cu alloys

    International Nuclear Information System (INIS)

    Kovarik, L.; Miller, M.K.; Court, S.A.; Mills, M.J.

    2006-01-01

    The formation of S-phase with a modified orientation relationship (OR) has been previously observed in several Al-Cu-Mg alloys. In this paper, high-resolution transmission electron microscopy and Z-contrast imaging have been used to study the origin of the modified OR in an alloy with low Cu/Mg ratio and small Si addition. Based on the observations, and supported by ab initio simulations, the formation is governed by coherency at the (0 2 1) S //(0 1 4) Al S-phase/matrix interface, which is shown to coexist with the more commonly reported (0 0 1) S //(0 2 1) Al interface. This new (0 2 1) S //(0 1 4) Al S-phase/matrix interface explanation is compared with previously published explanations based on the invariant line concept and establishment of a different S-phase/matrix interface. Energy dispersive X-ray spectroscopy and atom probe tomography indicate that the S-phase is slightly enriched in Si. The role of Si as well as the overall alloy composition is discussed. Because of the similarities between our results and the early work of Bagaryatsky, the S''-phase notation is adopted for this early-forming, strained version of the S-phase

  6. The Influence of Cu Addition on Dispersoid Formation and Mechanical Properties of Al-Mn-Mg 3004 Alloy

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-03-01

    Full Text Available The effect of Cu addition on dispersoid precipitation, mechanical properties and creep resistance was investigated in an Al-Mn-Mg 3004 alloy. The addition of Cu promoted dispersoid precipitation by increasing the number density and decreasing the size of dispersoids. Metastable β′-Mg2Si and Q-AlCuMgSi precipitates were observed during the heating process and both could provide favorable nucleation sites for dispersoid precipitation. The addition of Cu improved the thermal stability of dispersoids during a long-term thermal holding at 350 °C for 500 h. Results of mechanical testing show that the addition of Cu remarkably improved the hardness at room temperature, as well as the yield strength and creep resistance at 300 °C, which was mainly attributed to dispersoid strengthening and Cu solid solution strengthening. The yield strength contribution at 300 °C was quantitatively evaluated based on the dispersoid, solid solution and matrix contributions. It was confirmed that dispersoid strengthening is the main strengthening mechanism in the experimental alloys.

  7. Assessment of AlSi21CuNi Alloy’s Quality with Use of ATND Method

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2013-12-01

    Full Text Available Majority of combustion engines is produced (poured from Al-Si alloys with low thermal expansion coefficient, so called piston silumins. Hypereutectic alloys normally contain coarse, primary angular Si particles together with eutectic Si phase. The structure and mechanical properties of these alloys are highly dependent upon cooling rate, composition, modification and heat-treatment operations. In the paper one depicts use of the ATND method (thermal-voltage-derivative analysis and regression analysis to assessment of quality of the AlSi21CuNi alloy modified with Cu-P on stage of its preparation, in aspect of obtained mechanical properties (R0,02, Rm, A5, HB. Obtained dependencies enable prediction of mechanical properties of the investigated alloy in laboratory conditions, using values of characteristic points from curves of the ATND method.

  8. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  9. Fabrication of Nb_3Al superconductor by the optimized mechanical alloying method with low temperature

    International Nuclear Information System (INIS)

    Zhang, Y.; Lin, W.J.; Xu, L.Y.; Yang, D.W.; Chen, Y.L.; Li, P.Y.; Pan, X.F.; Yan, G.; Zhao, Y.

    2016-01-01

    Highlights: • Due to a much better strain tolerance than Nb_3Sn, Nb_3Al has been considered as an excellent candidate for making high field magnets. At present, the Nb_3Al superconducting wires were prepared mainly by the Jelly-roll method combined with a rapid heating and quenching (RHQ) heat treatment at around 2000 °C. In this study, Nb_3Al superconductor with T_c of 15.6 K is directly prepared with a mechanical alloying method followed by a low temperature annealing at 800 to 900 °C. Our results hint the possibility that Nb_3Al superconducting wire with high performance can be prepared below the melting point of Cu (1080 °C) by a conventional powder in tube (PIT) method, thus effectively avoiding high temperature heat treatment and RHQ device. - Abstract: Mechanical alloying was used to synthesize Nb_3Al superconductor successfully, and the process was optimization under various preparation conditions. In the current study, Nb_3Al superconductor with T_c of 15.6 K was directly prepared from high quality Nb (Al) solid solution by mechanical alloying method and heat treatment at a low temperature of 800 to 900 °C. The results showed that Nb_3Al superconducting wire with high performance could be prepared after heat treatment below the melting point of Cu (1080°C) and using Nb (Al) solid solution and conventional powder in tube (PIT) method, thus effectively avoiding ultra-high temperature heat treatment and special rapid heating and quenching(RHQ) device.

  10. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    Science.gov (United States)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  11. Microscopy modifications in an aged Cu-Al-Ni-Mn alloy

    International Nuclear Information System (INIS)

    Gama, J.L.L.; Ferreira, R.A.S.

    2010-01-01

    An Cu-12Al-4Ni-3Mn shape memory alloy have been manufactured using an induction furnace of 24 KVA. After melting, chemical analyse was performed by X-ray fluorescence (XRF). The phase transformation of this alloy was studied in the different sequences produced during thermomechanic treatments. After homogenization, the ingot was solution treated at 850 deg C. At 750 deg C samples were submitted to a reduction by rolling to about 30% in thickness, followed by water quenching. In sequence, the ingot was cold-rolled at different thicknesses. In deformed state, sample of this alloy was submitted to the thermal analyse-DTA for identification of the phase transformation domains. For each identified domain, ageing was carried out, at different times, to evaluate the presence of the different phases. Samples were characterized ray-X diffraction. The results showed that the microstructural evolutions are of a complex nature. At 425 deg C temperature both recrystallization and precipitation of different phases were simultaneously observed. (author)

  12. Effect of solution heat treatment time on a rheocast Al-Zn-Mg-Cu alloy

    CSIR Research Space (South Africa)

    Mazibuko, NE

    2011-06-01

    Full Text Available During rheo-high pressure die casting (R-HPDC) of Al-Zn-Mg-Cu alloys a coarse eutectic phase is formed. This eutectic phase is difficult to take into solution because of its size and it would require longer solution heat treatment times...

  13. Influences of hydrostatic pressure during casting and Pd content on as-cast phase in Zr-Al-Ni-Cu-Pd bulk alloys

    International Nuclear Information System (INIS)

    Kato, Hidemi; Inoue, Akihisa; Saida, Junji

    2004-01-01

    The influences of sample diameter (D), Pd content (x), and hydrostatic pressure (P) in a chamber during casting on the structure of as cast Zr 65 Al 7.5 Ni 10 Cu 17.5-x Pd x (x=10,17.5 at.%) bulk alloys were investigated. Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 and Zr 65 Al 7.5 Ni 10 Pd 17.5 alloys (D=3 mm) cast in a vacuum chamber (P∼4.0x10 -3 Pa) were mainly of the tetragonal-Zr 2 Ni equilibrium phase and nanosize icosahedral primary phase, respectively, while the same alloys cast in inert argon gas at atmospheric pressure (P∼0.1 MPa) were of the single glassy phase. Due to the higher cooling rate obtained by decreasing the sample diameter (D=2 mm) even in the vacuum chamber, the Zr 65 Al 7.5 Ni 10 Pd 17.5 alloy was still of the icosahedral phase, while the Zr 65 Al 7.5 Ni 10 Cu 7.5 Pd 10 alloy froze into a single glassy phase. These results indicate that the temperature- and time- transformation curves for the icosahedral and subsequent equilibrium phase formations in the alloy system shifts to a shorter time side with decreasing P, and the pressure sensitivity of the icosahedral phase formation increases with x

  14. Characterization of a hot-rolled Cu--Al--Ni--Ti shape memory alloy

    International Nuclear Information System (INIS)

    Segui, C.; Pons, J.; Cesari, E.

    1999-01-01

    The changes in the martensitic transformation of a Cu-Al-Ni-Ti alloy hot-rolled at different temperatures have been studied in detail, covering different aspects such as ageing in the parent phase at temperatures ranging between 250 and 350 o C, stabilisation of the martensite and betatization of the previously hot-rolled specimens. Besides the evolution of transformation temperatures upon different thermal treatments, special attention has been paid to the changes in mechanical properties of the alloy, such as elastic modulus and internal friction. These results are analysed in relation to the microstructural changes as observed by transmission electron microscopy. (orig.)

  15. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  16. Influence of aging at 200 C on the corrosion resistance of Al-Li and AI-Li-Cu alloys

    International Nuclear Information System (INIS)

    Kumai, C.; Kusinski, J.; Devine, T.M.

    1989-01-01

    This paper presents an investigation of the influence of heat treatment on the microstructure and corrosion resistance of an aluminum lithium alloy and two aluminum-lithium-copper alloys. Aging the Al-Li alloy resulted in the precipitation of δ with precipitate-free zone (PFZ) formation along the grain boundaries. The intragranular precipitation of δ did not influence either the morphology of pitting or the magnitude of the pitting potential. Pits appeared to consist of aggregates of submicron-sized cuboidal volumes. Their faceted shape suggests the strong influence of crystallographic factors. Anodic polarization of the Al-Li-Cu alloy is the T8 condition in aqueous solutions containing chloride ions resulted in blistering of the passive film and the formation of pits that were hemispherical in shape. Aging the Al-Li-Cu resulted in the precipitation of Cu-rich phases with PFZ formation along the grain and subgrain boundaries. Energy dispersive x-ray (EDX) microchemical analyses indicated the PFZ was depleted of copper. Anodic polarization of aged samples in chloride ion media resulted in localized attack along the subgrain and grain boundaries. Such attack did not occur in solutions free of chloride ions. The electrochemical tests and microchemical analyses suggest that the boundary corrosion was caused by the pitting corrosion of copper-depleted zones

  17. Strain and strain-rate hardening characteristics of a superplastic Al-Li-Cu-Zr alloy

    International Nuclear Information System (INIS)

    Ash, B.A.; Hamilton, C.H.

    1988-01-01

    A number of alloys based on the composition of Al-Li-Zr have been shown to be superplastic under at least one of two different microstructural conditions: 1. fully recrystallized to a fine, stable grain size, and 2. warm- or cold-worked and unrecrystallized prior to superplastic deformation. For the latter case, static recrystallization was impaired by the presence of fine Al 3 Zr particles, and dynamic recrystallization was observed to occur during superplastic deformation in which the heavily worked microstructure evolved into a fine grained fully recrystallized microstructure. This process is observed in other Al alloys as well, such as the Al-Cu-Zr alloys (Supral alloys), Al-Zn-Mg-Zr alloys, Al-Mn-Zr alloys, and Al-Mg-Mn alloys where the dynamic recrystallization has been suggested to be a continuous reaction in which recrystallization occurs by a gradual and homogeneous process during deformation rather than by the more common nucleation and growth process. Experimental observations of continuous recrystallization show development of a subgrain structure which coarsens continuously while deformation proceeds, with a concurrent increase in the misorientation angle between adjacent subgrains which ultimately approaches that of a high-angle boundary, characteristic of a fully- recrystallized microstructure. During the first 50 to 300% deformation, the microstructure evolves from the heavily worked to a fully recrystallized microstructure after which the fully recrystallized microstructure apparently exhibits the typical micro-grain superplastic characteristics. Superplasticity under continuous dynamic recrystallization is of interest both from scientific and technological standpoints since the rates at which superplastic deformation can be obtained are often higher than those for the fully recrystallized microstructures

  18. Development of Sn-Ag-Cu-X Solders for Electronic Assembly by Micro-Alloying with Al

    Science.gov (United States)

    Boesenberg, Adam J.; Anderson, Iver E.; Harringa, Joel L.

    2012-07-01

    Of Pb-free solder choices, an array of solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic ( T eut = 217°C) composition have emerged with potential for broad use, including ball grid array (BGA) joints that cool slowly. This work investigated minor substitutional additions of Al (0.05Al), but the suppression effect faded for >0.20Al. Undercooling suppression did not correlate specifically with blade suppression since it became significant at 0.10Al and increased continuously with greater Al to 0.25Al. Surprisingly, an intermediate range of Al content (0.10 wt.% to 0.20 wt.% Al) promoted formation of significant populations of 2- μm to 5- μm faceted Cu-Al particles, identified as Cu33Al17, that clustered at the top of the solder joint matrix and exhibited extraordinary hardness. Clustering of Cu33Al17 was attributed to its buoyancy, from a lower density than Sn liquid, and its early position in the nucleation sequence within the solder matrix, permitting unrestricted migration to the top interface. Joint microstructures and implications for the full nucleation sequence for these SAC + Al solder joints are discussed, along with possible benefits from the clustered particles for improved thermal cycling resistance.

  19. The formation of quasicrystal phase in Al-Cu-Fe system by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Dilermando Nagle Travessa

    2012-10-01

    Full Text Available In order to obtain quasicrystalline (QC phase by mechanical alloying (MA in the Al-Cu-Fe system, mixtures of elementary Al, Cu and Fe in the proportion of 65-20-15 (at. % were produced by high energy ball milling (HEBM. A very high energy type mill (spex and short milling times (up to 5 hours were employed. The resulting powders were characterized by X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopy (SEM. QC phase was not directly formed by milling under the conditions employed in this work. However, phase transformations identified by DSC analysis reveals that annealing after HEBM possibly results in the formation of the ψ QC phase.

  20. Assessment of retrogression and re-aging treatment on microstructural and mechanical properties of Al-Zn-Mg-Cu P/M alloy

    Energy Technology Data Exchange (ETDEWEB)

    Naeem, Haider T. [School of Materials Engineering, Universiti Malaysia Perlis, Taman Muhibbah, 02600 Jejawi, Perlis (Malaysia); College of Engineering, Al-Muthanna University, South Baghdad (Iraq); Mohammad, Kahtan S.; Hussin, Kamarudin; Tan, T. Qing; Idris, M. Sobri [School of Materials Engineering, Universiti Malaysia Perlis, Taman Muhibbah, 02600 Jejawi, Perlis (Malaysia)

    2015-05-15

    In order to understand the importance of the retrogression and re-aging as a heat treatment for improving microstructural and mechanical properties of the Al-Zn-Mg-Cu powder metallurgy alloys, Al-Zn-Mg-Cu-Fe-Cr alloys were fabricated from the elemental powders. Green compacts are compressed under compaction pressure about 370 MPa. The sintering process carried out for the samples of aluminum alloys at temperature was 650°C under argon atmosphere for two hours. The sintered compacts were subjected into homogenizing condition at 470°C for 1.5 hours and then aged at 120°C for 24 hours (T6 temper) after that it carried out the retrogressed at 180°C for 30 min., and then re-aged at 120°C for 24 hours (RRA). Observations microstructures were examined using optical, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction. Density and porosity content was conducted for the samples of alloys. The result showing that the highest Vickers hardness exhibited for an Al-Zn-Mg-Cu alloy after underwent the retrogression and reaging treatment. Increasing in hardness was because of the precipitation hardening through precipitate the (Mg Zn) and (Mg{sub 2}Zn{sub 11}) phases during matrix of aluminum-alloy.

  1. Assessment of retrogression and re-aging treatment on microstructural and mechanical properties of Al-Zn-Mg-Cu P/M alloy

    International Nuclear Information System (INIS)

    Naeem, Haider T.; Mohammad, Kahtan S.; Hussin, Kamarudin; Tan, T. Qing; Idris, M. Sobri

    2015-01-01

    In order to understand the importance of the retrogression and re-aging as a heat treatment for improving microstructural and mechanical properties of the Al-Zn-Mg-Cu powder metallurgy alloys, Al-Zn-Mg-Cu-Fe-Cr alloys were fabricated from the elemental powders. Green compacts are compressed under compaction pressure about 370 MPa. The sintering process carried out for the samples of aluminum alloys at temperature was 650°C under argon atmosphere for two hours. The sintered compacts were subjected into homogenizing condition at 470°C for 1.5 hours and then aged at 120°C for 24 hours (T6 temper) after that it carried out the retrogressed at 180°C for 30 min., and then re-aged at 120°C for 24 hours (RRA). Observations microstructures were examined using optical, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction. Density and porosity content was conducted for the samples of alloys. The result showing that the highest Vickers hardness exhibited for an Al-Zn-Mg-Cu alloy after underwent the retrogression and reaging treatment. Increasing in hardness was because of the precipitation hardening through precipitate the (Mg Zn) and (Mg 2 Zn 11 ) phases during matrix of aluminum-alloy

  2. Structure of as cast L12 compounds in Al3Zr-base alloys containing Cu and Mn

    International Nuclear Information System (INIS)

    Virk, I.S.; Varin, R.A.

    1991-01-01

    It was first shown that the low symmetry, tetragonal DO 23 crystal structure of Al 3 Zr intermetallic can be changed to the related cubic L1 2 crystal structure by alloying with Ni (Al 5 NiZr 2 ) and Cu(Al 5 CuZr 2 ). It has been reported that previous work has successfully modified Al 3 Zr with Fe, Cu, Cr and Ni obtaining nearly single phase materials with L1 2 structure. However, they only studied the microstructure and mechanical properties of Fe - modified intermetallic (Al-6at% Fe-25at% Zr). The purpose of the paper is to describe and interpret experimental observations on the microstructure of Al 5 CuZr 2 and Al 66 Mn 9 Zr 25 (at.%) modifications of base Al 3 Zr intermetallic. The one modified with Mn has not been reported in literature although its Al 3 Ti - base counterpart has recently been successfully produced (3, 4)

  3. Evolution of Iron-containing Compounds in Al-Cu Alloys during Heat Treatment

    Directory of Open Access Journals (Sweden)

    Liu Kun

    2016-01-01

    Full Text Available The evolution of iron-containing compounds in Al-Cu 206 cast alloy during solution treatment has been investigated. Results show that platelet β-Fe and Chinese script α-Fe are the two iron-containing compounds in as-cast condition. Little change is observed on β-Fe during solution treatment. However, fine blocky post β-Fe begins to form on α-Fe when solution treated at 520°C for 8hrs. When soaking time is extended to 24 hrs, α–Fe is found to decompose to fine branches while post β-Fe present as clusters on these branches. Al-Cu-Mg-Si Q phase is observed to form at the edge of decomposed α-Fe, possibly the result of Si from decomposed α-Fe.

  4. An electrochemical investigation of the corrosion behavior of Al-Si-Cu hypereutectic alloys in alcoholic environments

    Directory of Open Access Journals (Sweden)

    Traldi, S. M.

    2003-12-01

    Full Text Available Al-Si-Cu hypereutetic alloys produced by spray forming are mostly used in the automotive industry, especially for cylinder liners. They have the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties - mainly wear resistance at high temperatures. The corrosion resistance of these alloys in fuels, particularly alcoholic media, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS and potentiodynamic polarisation have been used to evaluate the corrosion resistance of a hypereutectic Al-Si-Cu alloy in alcoholic environments. The EIS tests were carried out in pure ethanol, and ethanol with small additions (1 mM of acid and chloride, to investigate the effect of these contaminants on corrosion resistance. The corrosion resistance of a grey cast iron has also been evaluated in pure ethanol for comparison. The Al-Si-Cu alloy showed high corrosion resistance in pure ethanol, far superior to that of grey cast iron in the same medium.

    Aleaciones hipereutécticas producidas por conformación por spray son muy empleadas en la industria automovilística, especialmente en los revestimientos de los cilindros. Tienen la ventaja de añadir menos peso con bajo coeficiente de expansión térmica y excelentes propiedades mecánicas, sobre todo resistencia al desgaste en altas temperaturas. Todavía, la resistencia a la corrosión de estas aleaciones en combustibles no es conocida. En este estudio fueron utilizadas las técnicas de espectroscopia de impedancia electroquímica y polarización potenciodinámica, para evaluar la resistencia a la corrosión de una aleación hipereutéctica Al-Si-Cu en medio alcohólico. Las pruebas fueron conducidas en etanol puro y etanol con pequeñas adiciones (1 mM de ácido y cloruro, con la finalidad de investigar el efecto de estos contaminantes en la resistencia a la corrosión. Hierro fundido gris, también fue

  5. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.

    2011-01-01

    The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.

  6. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Xiao, Yan-Ping; Pan, Qing-Lin; Li, Wen-Bin; Liu, Xiao-Yan; He, Yun-Bin

    2011-01-01

    Research highlights: → Compared with T6 temper, the alloy under RRA temper is less susceptibility to IGC, EXCO and SCC, which indicating that the susceptibility of the Al-Zn-Mg-Cu alloy to IGC, EXCO and SCC can be decreased by the RRA process. → The exfoliation corrosion susceptibility of the alloy was investigated by means of electrochemical impedance spectroscopy, and the relationship between exfoliation corrosion susceptibility and impedance spectroscopy was established. The appearance of two time constants indicates the onset of the delamination. Hence, the corrosion susceptibility of the alloy can be stated by comparing with the instant of the two time constants. → Simulated EIS parameters are able to quantitatively determine the degree of the exfoliation susceptibility by equivalent circuit analysis. For instance, the polarization resistance of the porous layer (R po ) for the RRA sample is higher than that of the T6 sample, which permits to conclude that the RRA treatment can increase the electrochemical corrosion resistance of the Al-Zn-Mg-Cu alloy. -- Abstract: Influence of retrogression and re-aging treatment on the microstructure, strength, exfoliation corrosion, inter-granular corrosion and stress corrosion cracking of an Al-Zn-Mg-Cu alloy has been investigated by means of optical microscope (OM), transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS). The results show that retrogression and re-aging treatment can increase the size and the distribution discontinuity of the grain boundary precipitates, and lead to the increase of the corrosion resistance without the loss of strength and ductility. In addition, the analysis of electrochemical impedance spectroscopy shows that retrogression and re-aging treatment can enhance the resistance to exfoliation corrosion.

  7. Fatigue crack behavior on a Cu-Zn-Al SMA

    Directory of Open Access Journals (Sweden)

    V. Di Cocco

    2014-10-01

    Full Text Available In recent years, mechanical property of many SMA has improved in order to introduce these alloys in specific field of industry. Main examples of these alloys are the NiTi, Cu-Zn-Al and Cu-Al-Ni which are used in many fields of engineering such as aerospace or mechanical systems. Cu-Zn-Al alloys are characterized by good shape memory properties due to a bcc disordered structure stable at high temperature called β-phase, which is able to change by means of a reversible transition to a B2 structure after appropriate cooling, and reversible transition from B2 secondary to DO3 order, under other types of cooling. In β-Cu-Zn-Al shape memory alloys, the martensitic transformation is not in equilibrium at room temperature. It is therefore often necessary to obtain the martensitic structure, using a thermal treatment at high temperature followed by quenching. The martensitic phases can be either thermally-induced spontaneous transformation, or stressinduced, or cooling, or stressing the β- phase. Direct quenching from high temperatures to the martensite phase is the most effective because of the non-diffusive character of the transformation. The martensite inherits the atomic order from the β-phase. Precipitation of many kinds of intermetallic phases is the main problem of treatment on cu-based shape memory alloy. For instance, a precipitation of α-phase occurs in many low aluminum copper based SMA alloy and presence of α-phase implies a strong degradation of shape recovery. However, Cu-Zn-Al SMA alloys characterized by aluminum contents less than 5% cover a good cold machining and cost is lower than traditional NiTi SMA alloys. In order to improve the SMA performance, it is always necessary to identify the microstructural changing in mechanical and thermal conditions, using X-Ray analyses. In this work a Cu-Zn-Al SMA alloy obtained in laboratory has been microstructurally and metallographically characterized by means of X-Ray diffraction and Light

  8. Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data

    Science.gov (United States)

    Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.

    2017-09-01

    The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.

  9. Mechanical properties and microstructure of laser treated Al-Cu-Mg alloys

    OpenAIRE

    De Hosson , J.; Noordhuis , J.

    1993-01-01

    The mechanical properties and microstructural features of Al-Cu-Mg alloys were investigated, as exposed to laser treatments at various scan velocities. As far as the mechanical property is concerned a striking observation is a minimum in the hardness value at a laser scan velocity of 1/2 cm/s. Usually an increasing hardness with increasing laser scan velocities is reported in the literature. This remarkable property could be explained based on the microstructural features observed by transmis...

  10. Mechanical and microstructural properties of Cu-Al-Ni-Mn-Zr shape memory alloy processed by spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Cava, R.D.; Bolfarini, C.; Kiminami, C.S.; Mazzer, E.M.; Pedrosa, V.M.; Botta, W.J.; Gargarella, P. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: Cu-based shape memory alloys (SMA) presents higher thermal and electrical conductivities, low material cost and combine good mechanical properties with a pronounced shape memory effect [1]. By using rapid solidification methods, their microstructure is refined and detrimental segregations can be avoided, which results in better mechanical properties. Additionally, the microalloying additions as Ti, B, Si and Zr can refine the grains and improve of mechanical and thermal properties of Cu-based SMA alloys [2-4]. In this investigation the Cu81.95Al11.35Ni3.2Mn3Zr0.5 (wt%) SMA alloy has been processed by spray forming in order to investigate the potential of achieving a deposit with adequate microstructure with goal to a SMA part production. The alloy was atomized with nitrogen gas at pressure of 0.5MPa. The microstructure of the deposit was characterized by optical and scanning electron microscopy and X-ray diffraction. The deposit presented homogeneous microstructure consisting of equiaxial grains with martensite microstructure and mean grain size of 30 ?m. The shape memory effect and the temperatures transformation have been evaluated by differential scanning calorimetric. The mechanical properties were evaluated by tensile and compression tests at room and at 220 deg C(T>Af) temperatures. [1] T. Waitz, et al., T, J. of the Mechanics and Physics of Solids, 55, 2007. [2] D. W. Roh, et al., Metall Trans. A, 21, 1990. [3] D. W. Roh, et al., Mat. Sci. and Eng. A136, 1991. (author)

  11. Eutectic crystallization behavior of new Zr48Cu36Al8Ag8 alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Zhang, Q S; Zhang, W; Xie, G Q; Inoue, A

    2009-01-01

    A water quenching method is used to produce as-cast Zr 48 Cu 36 Al 8 Ag 8 rods with diameters from 20 mm to 25 mm. The microstructures of the as-cast samples were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Furthermore, the crystallization behavior of the Zr 48 Cu 36 Al 8 Ag 8 glassy alloy was examined by XRD and transmission electron microscopy. Based on the results obtained one can assume that the simultaneous precipitation of the Zr 2 Cu+AlCu 2 Zr eutectic phases is the possible reason for the high stabilization of the quaternary Zr 48 Cu 36 Al 8 Ag 8 supercooled liquid.

  12. Quasicrystalline phase formation in the mechanically alloyed Al{sub 70}Cu{sub 20}Fe{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, S. N. de, E-mail: snm@dfi.uem.br; Cadore, S.; Pereira, H. A.; Santos, I. A.; Colucci, C. C.; Paesano, A. [Universidade Estadual de Maringa, Departamento de Fisica (Brazil)

    2010-01-15

    In the present work, the formation of the Al{sub 70}Cu{sub 20}Fe{sub 10} icosahedral phase by mechanical alloying the elemental powders in a high-energy planetary mill was investigated by X-ray diffraction and Moessbauer spectroscopy. It was verified that the sample milled for 80 h produces an icosahedral phase besides Al(Cu, Fe) solid solution ({beta}-phase) and Al{sub 2}Cu intermetallic phase. The Moessbauer spectrum for this sample was fitted with a distribution of quadrupole splitting, a doublet and a sextet, revealing the presence of the icosahedral phase, {beta}-phase and {alpha}-Fe, respectively. This compound is not a good hydrogen storage. The results of the X-ray diffraction and Moessbauer spectroscopy of the sample milled for 40 h and annealed at 623 deg. C for 16 h shows essentially single i-phase and tetragonal Al{sub 7}Cu{sub 2} Fe phase.

  13. Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon

    International Nuclear Information System (INIS)

    Jang, Jason S.C.; Jian, S.R.; Chang, C.F.; Chang, L.J.; Huang, Y.C.; Li, T.H.; Huang, J.C.; Liu, C.T.

    2009-01-01

    The amorphous alloy rods of (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x (x = 0.25, 0.5, 0.75, 1) with a diameter of 2-6 mm were prepared by drop casting method in an Ar atmosphere. The thermal properties, including glass forming ability (GFA) and thermal stability during isothermal annealing of these amorphous alloys, and the mechanical properties have been systematic investigated by the combination of DSC, XRD, SEM, TEM, and compression test. The result of X-ray diffraction reveals that these entire (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloy rods exhibit a typical amorphous diffraction pattern with only a broad maximum around 2θ around 40 degree. Both T g (glass transition temperature) and T x (crystallization temperature) of these (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloys increase with the silicon addition. In addition, both the activation energy of crystallization and the incubation time of isothermal annealing these (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x amorphous alloys indicate that the (Zr 53 Cu 30 Ni 9 Al 8 ) 99.25 Si 0.75 alloy possesses the best thermal stability in the (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloy system. In parallel, the result of compression test shows that the yield strength increases with the addition of Si content and reaches to a maximum value about 1750 MPa with 3% plastic strain for the (Zr 53 Cu 30 Ni 9 Al 8 ) 99.25 Si 0.75 amorphous alloy.

  14. Al-Li alloy 1441 for fuselage applications

    Energy Technology Data Exchange (ETDEWEB)

    Bird, R.K.; Dicus, D.L. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Fridlyander, J.N.; Sandler, V.S.

    2000-07-01

    A cooperative investigation was conducted to evaluate Al-Cu-Mg-Li alloy 1441 for long service life fuselage applications. Alloy 1441 is currently being used for fuselage applications on the Russian Be- 103 amphibious aircraft, and is expected to be used for fuselage skin on a new Tupolev business class aircraft. Alloy 1441 is cold-rollable and has several attributes that make it attractive for fuselage skin applications. These attributes include lower density and higher specific modulus with similar strength as compared to conventional Al-Cu-Mg alloys. Cold-rolled 1441 Al-Li sheet specimens were tested at NASA Langley research center (LaRC) and at the All-Russia Institute of Aviation Materials (VIAM) in Russia to evaluate tensile properties, fracture toughness, impact resistance, fatigue life and fatigue crack growth rate. In addition, fuselage panels were fabricated by Tupolev Design Bureau (TDB) using 1441 skins and Al-Zn-Mg-Cu alloy stiffeners. The panels were subjected to cyclic pressurization fatigue tests at TDB and at LaRC to simulate fuselage pressurization/depressurization during aircraft service. This paper discusses the results from this investigation. (orig.)

  15. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  16. Formation of Al15Mn3Si2 Phase During Solidification of a Novel Al-12%Si-4%Cu-1.2%Mn Heat-Resistant Alloy and Its Thermal Stability

    Science.gov (United States)

    Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel

    2018-02-01

    The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.

  17. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sgobba, S. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Kuenzi, H.U. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Ilschner, B. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland))

    1993-11-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.).

  18. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    International Nuclear Information System (INIS)

    Sgobba, S.; Kuenzi, H.U.; Ilschner, B.

    1993-01-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.)

  19. Toxicity assessment and selective leaching characteristics of Cu-Al-Ni shape memory alloys in biomaterials applications.

    Science.gov (United States)

    Chang, Shih-Hang; Chen, Bor-Yann; Lin, Jin-Xiang

    2016-04-06

    Cu-Al-Ni shape memory alloys (SMAs) possess two-way shape memory effects, superelasticity, and damping capacity. Nonetheless, Cu-Al-Ni SMAs remain promising candidates for use in biomedical applications, as they are more economical and machinable than other SMAs. Ensuring the biocompatibility of Cu-Al-Ni SMAs is crucial to their development for biomedical applications. Therefore, this study aimed to assess the toxicity of Cu-Al-Ni SMAs using a Probit dose-response model and augmented simplex design. In this study, the effects of Cu2+, Al3+ and Ni2+ metal ions on bacteria (Escherichia coli DH5α) using Probit dose-response analysis and augmented simplex design to assess the actual toxicity of the Cu-Al-Ni SMAs. Extraction and repetition of Escherichia coli DH5α solutions with high Cu2+ ion concentrations and 30-hour incubation demonstrated that Escherichia coli DH5α was able to alter its growth mechanisms in response to toxins. Metal ions leached from Cu-Al-Ni SMAs appeared in a multitude of compositions with varying degrees of toxicity, and those appearing close to a saddle region identified in the contour plot of the augmented simplex model were identified as candidates for elevated toxicity levels. When the Cu-13.5Al-4Ni SMA plate was immersed in Ringer's solution, the selective leaching rate of Ni2+ ions far exceeded that of Cu2+ and Al3+. The number of Cu2+, Al3+ and Ni2+ ions leached from Cu-Al-Ni SMAs increased with immersion time; however, at higher ratios, toxicity interactions among the metal ions had the effect of gradually reducing overall toxicity levels with regard to Escherichia coli DH5α. The quantities of Cu2+, Al3+ and Ni2+ ions leached from the Cu-13.5Al-4Ni SMA plate increased with immersion time, the toxicity interactions associated with these compositions reduced the actual toxicity to Escherichia coli DH5α.

  20. [Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].

    Science.gov (United States)

    Guastaldi, A C; Adorno, A T; Beatrice, C R; Mondelli, J; Ishikiriama, A; Lacefield, W

    1990-01-01

    This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure.

  1. Tribological Properties of AlSi17Cu5Mg Alloy Modified with CuP Master Alloy with Various Speeds of Friction

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2016-03-01

    Full Text Available The paper presents the influence of modification with phosphorus (CuP10 on the tribological properties of the alloy AlSi17Cu5Mg coupled abrasively with cast-iron EN GJL-350. Tests of coefficient of friction and wear of mass were conducted on tribological tester T-01. An important aspect in the assessment of the tribological properties is the analysis of initial material microstructure in reference to silumin which underwent modification with phosphorus. It was found that the difference in structure of tested materials, mainly sizes of primary silicon crystals significantly influences the tribological properties whereas the speed change of the friction knot does not have such big influence.

  2. Secondary precipitation in an Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Buha, J.; Lumley, R.N.; Crosky, A.G.; Hono, K.

    2007-01-01

    Interruption of a conventional T6 heat treatment at 177 deg. C for the Al-Mg-Si-Cu alloy 6061 after a short period of time (20 min), by inserting a dwell period at a lower temperature (e.g. 65 deg. C), promotes secondary precipitation of Guinier-Preston (GP) zones. As a consequence, a much greater number of precursors to the β'' precipitates are produced so that a finer and denser dispersion of this phase is formed when T6 ageing is resumed. This change in microstructure causes significant and simultaneous improvements in tensile properties and fracture toughness. Secondary precipitation of GP zones occurs through a gradual evolution of a large number of Mg-Si(-Cu)-vacancy co-clusters formed during the initial ageing at 177 deg. C. The precise mechanism of secondary precipitation has been revealed by three-dimensional atom probe microscopy supplemented by transmission electron microscopy and differential scanning calorimetry

  3. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    Science.gov (United States)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  4. Recrystallization textures and microstructures of Al-0.3%Cu alloy after deformation to high strains

    DEFF Research Database (Denmark)

    Li, X.R.; Wakeel, A.; Huang, T.L.

    2015-01-01

    An Al-0.3%Cu alloy was deformed to high strains by cold rolling. The as-deformed samples were annealed at different temperatures until complete recrystallization. The cold rolling textures were determined by X-ray diffraction while the recrystallization textures and microstructures were...

  5. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  6. A comprehensive energy approach to predict fatigue life in CuAlBe shape memory alloy

    International Nuclear Information System (INIS)

    Sameallah, S; Kadkhodaei, M; Legrand, V; Saint-Sulpice, L; Arbab Chirani, S

    2015-01-01

    Stabilized dissipated energy is an effective parameter on the fatigue life of shape memory alloys (SMAs). In this study, a formula is proposed to directly evaluate the stabilized dissipated energy for different values of the maximum and minimum applied stresses, as well as the loading frequency, under cyclic tensile loadings. To this aim, a one-dimensional fully coupled thermomechanical constitutive model and a cycle-dependent phase diagram are employed to predict the uniaxial stress-strain response of an SMA in a specified cycle, including the stabilized one, with no need of obtaining the responses of the previous cycles. An enhanced phase diagram in which different slopes are defined for the start and finish of a backward transformation strip is also proposed to enable the capture of gradual transformations in a CuAlBe shape memory alloy. It is shown that the present approach is capable of reproducing the experimental responses of CuAlBe specimens under cyclic tensile loadings. An explicit formula is further presented to predict the fatigue life of CuAlBe as a function of the maximum and minimum applied stresses as well as the loading frequency. Fatigue tests are also carried out, and this formula is verified against the empirically predicted number of cycles for failure. (paper)

  7. A comprehensive energy approach to predict fatigue life in CuAlBe shape memory alloy

    Science.gov (United States)

    Sameallah, S.; Legrand, V.; Saint-Sulpice, L.; Kadkhodaei, M.; Arbab Chirani, S.

    2015-02-01

    Stabilized dissipated energy is an effective parameter on the fatigue life of shape memory alloys (SMAs). In this study, a formula is proposed to directly evaluate the stabilized dissipated energy for different values of the maximum and minimum applied stresses, as well as the loading frequency, under cyclic tensile loadings. To this aim, a one-dimensional fully coupled thermomechanical constitutive model and a cycle-dependent phase diagram are employed to predict the uniaxial stress-strain response of an SMA in a specified cycle, including the stabilized one, with no need of obtaining the responses of the previous cycles. An enhanced phase diagram in which different slopes are defined for the start and finish of a backward transformation strip is also proposed to enable the capture of gradual transformations in a CuAlBe shape memory alloy. It is shown that the present approach is capable of reproducing the experimental responses of CuAlBe specimens under cyclic tensile loadings. An explicit formula is further presented to predict the fatigue life of CuAlBe as a function of the maximum and minimum applied stresses as well as the loading frequency. Fatigue tests are also carried out, and this formula is verified against the empirically predicted number of cycles for failure.

  8. The Influence of Remelting on the Properties of AlSi6Cu4 Alloy Modified by Antimony

    OpenAIRE

    Medlen D.; Bolibruchova D.

    2012-01-01

    The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eut...

  9. Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold

    Science.gov (United States)

    Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher; Li, Shimin; Apelian, Diran; Shyam, Amit; Allen Haynes, J.; Rodriguez, Andres F.

    2018-06-01

    The hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: "V"-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on the variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.

  10. Multiscale modeling of θ' precipitation in Al-Cu binary alloys

    International Nuclear Information System (INIS)

    Vaithyanathan, V.; Wolverton, C.; Chen, L.Q.

    2004-01-01

    We present a multiscale model for studying the growth and coarsening of θ' precipitates in Al-Cu alloys. Our approach utilizes a novel combination of the mesoscale phase-field method with atomistic approaches such as first-principles total energy and linear response calculations, as well as a mixed-space cluster expansion coupled with Monte Carlo simulations. We give quantitative first-principles predictions of: (i) bulk energetics of the Al-Cu solid solution and θ ' precipitate phases, (ii) interfacial energies of the coherent and semi-coherent θ ' /Al interfaces, and (iii) stress-free misfit strains and coherency strain energies of the θ ' /Al system. These first-principles data comprise all the necessary energetic information to construct our phase-field model of microstructural evolution. Using our multiscale approach, we elucidate the effects of various energetic contributions on the equilibrium shape of θ ' precipitates, finding that both the elastic energy and interfacial energy anisotropy contributions play critical roles in determining the aspect ratio of θ ' precipitates. Additionally, we have performed a quantitative study of the morphology of two-dimensional multi-precipitate microstructures during growth and coarsening, and compared the calculated results with experimentally observed morphologies. Our multiscale first-principles/phase-field method is completely general and should therefore be applicable to a wide variety of problems in microstructural evolution

  11. Microstructural characterization and compression properties of TiC0.61/Cu(Al) composite synthesized from Cu and Ti3AlC2 powders

    International Nuclear Information System (INIS)

    Huang, Zhenying; Bonneville, Joel; Zhai, Hongxiang; Gauthier-Brunet, Veronique

    2014-01-01

    Highlights: • Submicro-layered TiC 0.61 /Cu(Al) nanocomposite. • MAX phase. • High yield stress. • Deformation mechanism. - Abstract: A new submicro-layered TiC 0.61 /Cu(Al) composite has been prepared by hot-pressing a mixture of 50 vol.% Ti 3 AlC 2 and 50 vol.% Cu powders at 1150 °C and 30 MPa. It is shown that the initial reinforcement Ti 3 AlC 2 particles have, after synthesis, an unusual microstructure, which consists of submicron-thick layers of TiC 0.61 and Cu(Al) alloy. Both the width of the TiC 0.61 and Cu(Al) layers are ∼150 nm. Thus, the Ti 3 AlC 2 particles are decomposed into the TiC 0.61 phase, while the additional Al atoms provided by Ti 3 AlC 2 diffuse into the molten Cu matrix at high temperature. Compression tests were performed at constant strain rate in the temperature range 20–800 °C. The new designed TiC 0.61 /Cu(Al) composite has both a high yield stress, σ 0.2 measured at 0.2% strain offset, and a high ultimate compressive strength, σ UCS , which is attributed to strong interface bonding between TiC 0.61 and Cu(Al) phase. For instance, at 20 and 200 °C, σ 0.2 is 770 MPa and 700 MPa, while σ UCS is 1.18 GPa and 1 GPa, respectively. Plastic deformation takes place in the Cu(Al) matrix. Wavy slip lines are observed indicating that cross-slip could be the dominant deformation mechanism

  12. Wetting of molybdenum with molten Cu-O alloys

    International Nuclear Information System (INIS)

    Yupko, V.L.; Garbuz, V.V.; Kryuchkova, N.I.

    1992-01-01

    The Cu-O alloys were prepared from type MOb copper (GOST 859-78) with an oxygen content of 0.001 wt.% and type ChDA cuprous oxide (MRTU 6-09-1451-64), the powder of which was first pressed into briquettes. The weighted portions of Cu 2 O were weighed on an Elektrobalans scale having an absolute error of ±5 · 10 -7 g. The relative error in weighing an approximately 1 · 10 -4 g weighed portion of Cu 2 O for preparation of the alloy with the minimum oxygen content of 0.002% was, therefore, ± 0.5% and consequently for the alloys with a higher oxygen content the accuracy was higher. The alloys were prepared on a ZrO 2 + 5% Y 2 O 3 ceramic at 1,420 K in a vacuum of 6.7 · 10 -3 Pa,d their weight was 1.0-1.5 g, and the melting time 30 sec. The pure type MOb copper was remelted in the same manner. The time relationships of the angle of wetting of molybdenum by molten Cu-O alloys under conditions of combined heating are given. With an increase in oxygen content from 0.004 to 0.005%, wetting drops sharply

  13. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    Science.gov (United States)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  14. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    Science.gov (United States)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  15. Microstructure development and properties of the AlCuFe quasicrystalline coating on near-{alpha} titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Moskalewicz, T., E-mail: tmoskale@agh.edu.pl [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, PL-30-059 Krakow, Al. A. Mickiewicza 30 (Poland); Kot, M. [Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, PL-30-059 Krakow, Al. A. Mickiewicza 30 (Poland); Wendler, B. [Faculty of Mechanical Engineering, Technical University of Lodz, PL-90 924 Lodz, ul. Stefanowskiego 1 (Poland)

    2011-11-01

    A protective quasicrystalline AlFeCu coating was deposited on TIMETAL 834 substrate by nonreactive magnetron sputtering in order to improve resistance of the alloy to oxidation. Microstructure characterisation of the substrate and the coating was performed by analytical scanning- and transmission electron microscopy as well as X-ray diffractometry. Depending on annealing temperature and time, the deposited coating (2.7 {mu}m thick) has a different microstructure. The coating in Specimen 1 (annealed 600 deg. C/4 h in vacuum) consisted of two zones: outer, composed of Al{sub 5}Fe{sub 2} and Al{sub 2}Cu{sub 3} phases and inner, in which only quasicrystalline {psi} phase was present. The coating in Specimen 2 (annealed 600 deg. C/4 h + 700 deg. C/2 h in vacuum) was fully quasicrystalline and consisted of icosahedral {psi} phase. Both coatings exhibit higher microhardness than the substrate material. It was established that the applied surface treatment essentially improves oxidation resistance of the alloy tested at 750 deg. C during 250 h in static air. Sample weight gain was 60% lower than in the case of uncoated sample. Oxide scale spallation occurred for uncoated alloy while the coated one did not show any spallation. It was found that the very brittle scale formed during oxidation on the uncoated alloy was consisting of TiO{sub 2}, while that on the coated one consisted mainly of {alpha}-Al{sub 2}O{sub 3}.

  16. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, J., E-mail: jose.sanjuan@ehu.es; Gómez-Cortés, J. F. [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); López, G. A.; Nó, M. L. [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Jiao, C. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  17. Impact of Annealing Prior to Solution Treatment on Aging Precipitates and Intergranular Corrosion Behavior of Al-Cu-Li Alloy 2050

    Science.gov (United States)

    Ye, Zhi-hao; Cai, Wen-xin; Li, Jin-feng; Chen, Xiang-rong; Zhang, Rui-feng; Birbilis, Nick; Chen, Yong-lai; Zhang, Xu-hu; Ma, Peng-cheng; Zheng, Zi-qiao

    2018-04-01

    The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ' (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.

  18. Investigation and modeling of Al3(Sc, Zr) precipitation strengthening in the presence of enhanced supersaturation and within Al-Cu binary alloys

    Science.gov (United States)

    Deane, Kyle

    Diffuse Al-Sc and Al-Zr alloys have been demonstrated in literature to be relatively coarsening resistant at higher temperatures when compared with commonly used precipitation strengthening alloys (e.g. 2000 series, 6000 series). However, because of a limited strengthening due to the low solubility of scandium and zirconium in aluminum, and owing to the scarcity and therefore sizeable price tag attached to scandium, little research has been done in the way of optimizing these alloys for commercial applications. With this in mind, this dissertation describes research which aims to tackle several important areas of Al-Sc-Zr research that have been yet unresolved. In Chapter 4, rapid solidification was utilized to enhance the achievable supersaturation of the alloy in an effort to increase the achievable precipitate strengthening. In Chapter 5, Additive Friction Stir processing (AFS), a novel method of mechanically combining materials without melting, was employed in an attempt to pass the benefits of supersaturation from melt spun ribbon into a more structurally useful bulk material. In Chapter 6, a Matlab program written to predict precipitate nucleation, growth, and coarsening with a modified Kampmann and Wagner Numerical (KWN) model, was used to predict heat treatment regimens for more efficient strengthening. Those predictions were then tested experimentally to test the validity of the results. And lastly, in Chapter 7, the effect of zirconium on Al-Cu secondary precipitates was studied in an attempt to increase their thermal stability, as much higher phase fractions of Al-Cu precipitates are achievable than Al-Zr precipitates.

  19. Effect of electromagnetic vibration on the microstructure of direct chill cast Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Zuo, Y; Fu, X; Zhu, Q; Li, L; Wang, P; Cui, J

    2016-01-01

    An electromagnetic vibration was achieved by the combined application of an alternating magnetic field and a stationary magnetic field during direct chill (DC) casting process. The ingots with 200 mm in diameter were prepared under the influence of electromagnetic vibration. The effect of electromagnetic vibration on the microstructure of an Al-Zn-Mg-Cu alloy was studied. The results showed that electromagnetic vibration has a significant effect on the solidification behaviour, under the influence of electromagnetic vibration during DC casting process, the microstructure is significantly refined and the uniformity of microstructure is evidently improved. This paper introduces the DC casting technology with the application of electromagnetic vibration, presents these results and gives corresponding discussions. (paper)

  20. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  1. FABRICATION OF Cu-Al-Ni SHAPE MEMORY THIN FILM BY THERMAL EVOPRATION

    OpenAIRE

    Özkul, İskender; Canbay, Canan Aksu; Tekataş, Ayşe

    2017-01-01

    Among the functional, materials shape memory alloysare important because of their unique properties. So, these materials haveattracted more attention to be used in micro/nano electronic andelectromechanic systems. In this work, thermal evaporation method has been usedto produce CuAlNi shape memory alloy thin film. The produced CuAlNi thin filmhas been characterized and the presence of the martensite phase wasinvestigated and compared with the CuAlNi alloy sample. CuAlNi shape memoryalloy thin...

  2. Effects of aluminum and copper chill on mechanical properties and microstructures of Cu-Zn-Al alloys with sand casting

    Science.gov (United States)

    Ardhyananta, Hosta; Wibisono, Alvian Toto; Ramadhani, Mavindra; Widyastuti, Farid, Muhammad; Gumilang, Muhammad Shena

    2018-04-01

    Cu-Zn-Al alloy is one type of brass, which has high strength and high corrosion resistant. It has been applied on ship propellers and marine equipment. In this research, the addition of aluminum (Al) with variation of 1, 2, 3, 4% aluminum to know the effect on mechanical properties and micro structure at casting process using a copper chill and without copper chill. This alloy is melted using furnace in 1100°C without holding. Then, the molten metal is poured into the mold with copper chill and without copper chill. The speciment of Cu-Zn-Al alloy were chracterized by using Optical Emission Spectroscopy (OES), Metallography Test, X-Ray Diffraction (XRD), Hardness Test of Rockwell B and Charpy Impact Test. The result is the addition of aluminum and the use of copper chill on the molds can reduce the grain size, increases the value of hardness and impact.

  3. Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems

    Science.gov (United States)

    Mizutani, U.; Noritake, T.; Ohsuna, T.; Takeuchi, T.

    2010-05-01

    The aim of the present work is to examine if the Hume-Rothery stabilisation mechanism holds across whole solid solution ranges in a series of gamma-brasses with especial attention to the role of vacancies introduced into the large unit cell. The concentration dependence of the number of atoms in the unit cell, N, for gamma-brasses in the Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems was determined by measuring the density and lattice constants at room temperature. The number of itinerant electrons in the unit cell, e/uc, is evaluated by taking a product of N and the number of itinerant electrons per atom, e/a, for the transition metal element deduced earlier from the full-potential linearised augmented plane wave (FLAPW)-Fourier analysis. The results are discussed within the rigid-band model using as a host the density of states (DOS) derived earlier from the FLAPW band calculations for the stoichiometric gamma-brasses Cu5Zn8, Cu9Al4 and TM2Zn11 (TM = Co and Ni). A solid solution range of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga and Ni-Zn alloy systems is found to fall inside the existing pseudogap at the Fermi level. This is taken as confirmation of the validity of the Hume-Rothery stability mechanism for a whole solute concentration range of these gamma-brasses. An exception to this behaviour was found in the Co-Zn gamma-brasses, where orbital hybridisation effects are claimed to play a crucial role in stabilisation.

  4. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  5. Effect of titanium on structure and martensitic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys

    International Nuclear Information System (INIS)

    Dutkiewicz, J.; Czeppe, T.; Morgiel, J.

    1999-01-01

    Alloys of composition Cu-(11.8-13.5)%Al-(3.2-4)%Ni-(2-3)%Mn and 0-1%Ti (wt.%) were cast using the melt spinning method in He atmosphere. Ribbons obtained in this process showed grains from 0.5 to 30 μm depending on the type of alloy and wheel speed. Bulk alloys and most of the ribbons contained mixed 18R and 2H type martensite at room temperature (RT). Some ribbons, crystallizing at the highest cooling rate, retained also β phase due to a drop of M s below RT. The M s temperatures in ribbons were strongly lowered with increasing wheel speed controlling the solidification rate. This drop of M s shows a linear relationship with d -1/2 , where d is grain size. The strongest decrease of M s and smallest grains were found in the ribbons containing titanium due to its grain refinement effect. The cubic Ti rich precipitates, present in both Cu-Al-Ni-Ti and Cu-Al-Ni-Mn-Ti bulk, were dispersed in ribbons cast with intermediate cooling rates of up to 26 m s -1 , but suppressed for higher cooling rates. The transformation hysteresis loop was much broader in ribbons due to presence of coherent Ti rich precipitates and differences in grain size which is particularly important in the ultra small grain size range. (orig.)

  6. Fabrication of Nb{sub 3}Al superconductor by the optimized mechanical alloying method with low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yongzhang@swjtu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Lin, W.J.; Xu, L.Y.; Yang, D.W.; Chen, Y.L. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, P.Y.; Pan, X.F.; Yan, G. [Western Superconducting Technoligies Co., Ltd., Xi' an 710018 (China); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia)

    2016-11-15

    Highlights: • Due to a much better strain tolerance than Nb{sub 3}Sn, Nb{sub 3}Al has been considered as an excellent candidate for making high field magnets. At present, the Nb{sub 3}Al superconducting wires were prepared mainly by the Jelly-roll method combined with a rapid heating and quenching (RHQ) heat treatment at around 2000 °C. In this study, Nb{sub 3}Al superconductor with T{sub c} of 15.6 K is directly prepared with a mechanical alloying method followed by a low temperature annealing at 800 to 900 °C. Our results hint the possibility that Nb{sub 3}Al superconducting wire with high performance can be prepared below the melting point of Cu (1080 °C) by a conventional powder in tube (PIT) method, thus effectively avoiding high temperature heat treatment and RHQ device. - Abstract: Mechanical alloying was used to synthesize Nb{sub 3}Al superconductor successfully, and the process was optimization under various preparation conditions. In the current study, Nb{sub 3}Al superconductor with T{sub c} of 15.6 K was directly prepared from high quality Nb (Al) solid solution by mechanical alloying method and heat treatment at a low temperature of 800 to 900 °C. The results showed that Nb{sub 3}Al superconducting wire with high performance could be prepared after heat treatment below the melting point of Cu (1080°C) and using Nb (Al) solid solution and conventional powder in tube (PIT) method, thus effectively avoiding ultra-high temperature heat treatment and special rapid heating and quenching(RHQ) device.

  7. Smart behaviour in a CuZnAl single crystal alloy

    International Nuclear Information System (INIS)

    Riva, G.; Besseghini, S.; Airoldi, G.

    1995-01-01

    The Step-wise Martensite to Austenite Reversible Transformation (SMART) has been widely investigated in polycrystalline shape memory alloys and its key features are, on the whole, well established. Though some working hypothesis have been put in advance, the full understanding of this ''micromemory'' phenomenon is still open. Specifically, the most probable origin of the SMART, relies on a local relaxation of the elastic energy. In order to clarify the advanced hypothesis, a CuZnAl single crystal alloy, where the elastic energy contribution to the thermoelastic balance is typically smaller than in the case of polycrystalline specimens, has been examined. All the investigated specimens have shown, though at different extent the SMART: results have shown that the larger the elastic energy involved, the more evident the SMART phenomenology is. Thus, the present findings further support the role of the elastic energy in the SMART. (orig.)

  8. Search for promising compositions for developing new multiphase casting alloys based on Al-Cu-Mg matrix using thermodynamic calculations and mathematic simulation

    Science.gov (United States)

    Zolotorevskii, V. S.; Pozdnyakov, A. V.; Churyumov, A. Yu.

    2012-11-01

    A calculation-experimental study is carried out to improve the concept of searching for new alloying systems in order to develop new casting alloys using mathematical simulation methods in combination with thermodynamic calculations. The results show the high effectiveness of the applied methods. The real possibility of selecting the promising compositions with the required set of casting and mechanical properties is exemplified by alloys with thermally hardened Al-Cu and Al-Cu-Mg matrices, as well as poorly soluble additives that form eutectic components using mainly the calculation study methods and the minimum number of experiments.

  9. Thermal description of hypoeutectic Al-Si-Cu alloys using silicon equivalency

    Directory of Open Access Journals (Sweden)

    Mile B. Đurđević

    2012-01-01

    Full Text Available The modeling of casting processes has remained a topic of active interest for several decades, and availability of numerous software packages on the market is a good indication of the interest that the casting industry has in this field. Most of the data used in these software packages are read or estimated from the binary or multi-component phase diagrams. Unfortunately, except for binary diagrams, many of ternary or higher order phase diagrams are still not accurate enough. Having in mind that most of the aluminum binary systems are very well established, it has been tried to transfer a multi-component system into one well known Al-Xi pseudo binary system (in this case the Al-Si phase diagram was chosen as a reference system. The new Silicon Equivalency (SiEQ algorithm expresses the amounts of major and minor alloying elements in the aluminum melts through an 'equivalent' amount of silicon. Such a system could be used to calculate several thermo-physical and solidification characteristics of multi component as cast aluminum alloys. This lends the model the ability to make predictions of solidification characteristics of cast parts, where cooling rates are slow and the solidification process has to be known in great detail in order to avoid problems in the casting. This work demonstrates how the SiEQ algorithm can be used to calculate characteristic solidification temperatures of the multi-component hypoeutectic Al-Si-Cu alloys as well as their latent heats. SA statistical analysis of the results obtained for a wide range of alloy chemical compositions shows a very good correlation with the experimental data and the SiEQ calculations.

  10. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying....

  11. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  12. Fatigue crack micromechanisms in a Cu-Zn-Al shape memory alloy with pseudo-elastic behavior

    Directory of Open Access Journals (Sweden)

    Vittorio Di Cocco

    2015-10-01

    Full Text Available Shape memory property characterizes the behavior of many Ti based and Cu based alloys (SMAs. In Cu-Zn-Al SMAs, the original shape recovering is due to a bcc phase that is stable at high temperature. After an appropriate cooling process, this phase (β-phase or austenitic phase transforms reversibly into a B2 structure (transition phase and, after a further cooling process or a plastic deformation, it transforms into a DO3 phase (martensitic phase. In β-Cu-Zn-Al SMAs, the martensitic transformation due to plastic deformation is not stable at room temperature: a high temperature “austenitization” process followed by a high speed cooling process allow to obtain a martensitic phase with a higher stability. In this work, a Cu-Zn-Al SMA in “as cast” conditions has been microstructurally and metallographically characterized by means of X-Ray diffraction and Light Optical Microscope (LOM observations. Fatigue crack propagation resistance and damaging micromechanisms have been investigated corresponding to three different load ratios (R=0.10, 0.50 and 0.75

  13. Preparation of copper-beryllium alloys from Indian beryl

    International Nuclear Information System (INIS)

    Paul, C.M.; Sharma, B.P.; Subba Rao, K.S.; Rajadhyaksha, M.G.; Sundaram, C.V.

    1975-01-01

    The report presents the results of laboratory scale investigations on the preparation of copper-beryllium and aluminium-beryllium master alloys starting from Indian beryl and adopting the fluoride process. The flow-sheet involves : (1) conversion of the Be-values in beryl into water soluble sodium beryllium fluoride (2) preparation of beryllium hydroxide by alkali treatment of aqueous Na 2 BeF 4 (3) conversion of Be(OH) 2 to (NH 4 ) 2 BeF 4 by treatment with NH 4 HF 2 (4) thermal decomposition of (NH 4 ) 2 BeF 4 to BeF 2 and (5) magnesium reduction of BeF 2 (with the addition of copper/aluminium) to obtain beryllium alloys. The method has been successfully employed for the preparation of Cu-Be master alloys containing about 8% Be and free of Mg on a 200 gm scale. An overall Be-recovery of about 80% has been achieved. Al-8% Be master alloys have also been prepared by this method. Toxicity and health hazards associated with Be are discussed and the steps taken to ensure safe handling of Be are described. (author)

  14. The effect of high-temperature treatment on the formation of nanoscale intermetallic compounds of transition metals in Al-Cu-Mn-Zr alloy

    Science.gov (United States)

    Monastyrska, Tetiana O.; Berezina, Alla L.; Labur, Tetiana M.; Molebny, Oleh A.; Kotko, Andrii V.

    2018-02-01

    The precipitation of intermetallic compounds of transition metals during aging of the Al-5.8%Cu-0.3%Mn-0.1%Zr alloy has been studied using DSC, resistometry, X-ray and transmission electron microscopy. In these age hardenable alloys, the nanoscale metastable Θ″ and Θ' phases of the Al2Cu compound are the main strengthening phases, which are formed at low temperature aging of T stresses, etc.) on the aging with the precipitation of strengthening phases has been investigated.

  15. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    Science.gov (United States)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  16. Studies on Al-Cu-Li-Mg-Ag-Zr alloy processed through vacuum induction melting (VIM) technique

    International Nuclear Information System (INIS)

    Nayan, Niraj; Govind; Nair, K. Suseelan; Mittal, M.C.; Sudhakaran, K.N.

    2007-01-01

    A new technique of lithium addition has been adapted for the processing of Al-Cu-Li-Ag-Mg-Zr alloy, which gives more than 90% recovery of lithium throughout the billet. Processing studies on this alloy include casting, three step homogenization, to avoid incipient melting, and mechanical working particularly forging and rolling. The products in the form of sheets were subjected to various T6 (solution treatment + water quenching + aging) tempers. Mechanical properties were evaluated at room temperature and correlated with microstructure. Characterizations using optical microscope and post-fracture analysis have been carried out using Scanning electron microscope (SEM). Experimental investigation shows highest mechanical properties for the Al-1.3%Li alloy in T6 (500 deg. C/1 h + WQ + 190 deg. C/24 h) condition

  17. Microstructure analysis of the automotive Al-Si-Cu castings

    Directory of Open Access Journals (Sweden)

    M. Krupiński

    2008-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. In the metal casting industry, an improvement of component quality depends mainly on better control over the production parameters.Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. In this work the AC-AlSi7Cu3Mg alloy structure was investigated, of this alloy samples were cut of for structure analysis of the cylinder part as well of crankshaft of a fuel engine. The investigation shows a difference in the (phase structure morphology as a result of cast cooling rate.

  18. Moessbauer spectroscopy of Fe-Mn-Cu alloys

    International Nuclear Information System (INIS)

    Paduani, Clederson; Krause, Joao Carlos; Yoschida, M.I. Soares

    2004-01-01

    Full text: Although a continuous series of solid solutions exists between Cu and Mn, Fe and Cu are miscible only a few percent at higher temperatures. In moderately concentrated Cu-Mn alloys the Mn moments are bound to the long ranged antiferromagnetic order and the perpendicular components form an X-Y spin glass. Copper alloys are largely employed in various industrial applications. In this work we study the magnetic properties of iron-rich disordered Fe-Mn-Cu alloys with the bcc structure with the experimental techniques of X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and thermogravimetry (TGA). We investigate the formation of a solid solution with the bcc structure as well as the effect of the composition on the structural and magnetic properties of these alloys. A Rietveld analysis of the XRD diffractograms indicate that all prepared samples are single phase and are well crystallized with a bcc structure. (author)

  19. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability

    International Nuclear Information System (INIS)

    Sun, Y.J.; Qu, D.D.; Huang, Y.J.; Liss, K.-D.; Wei, X.S.; Xing, D.W.; Shen, J.

    2009-01-01

    Zr-Cu-Ni-Al quaternary amorphous alloy compositions with varying glass-forming ability are developed by an efficient method of proportional mixing of binary eutectics. The critical diameter of the glassy sample is improved from 6 mm for Zr 53 Cu 18.7 Ni 12 Al 16.3 to 14 mm for Zr 50.7 Cu 28 Ni 9 Al 12.3 by straightforwardly adjusting the eutectic unit's coefficients. The drastic improvement in GFA is attributed to balancing the chemical affinities of the Zr, Cu, Ni and Al components in the melt prior to solidification which makes the precipitation of competing crystalline phases more difficult. As the glass-forming ability increases, the concentration of Cu in the alloys exhibits a same trend. Based on synchrotron radiation high-energy X-ray diffraction analysis and Miracle's structural model, it is envisioned that the substitution of additional Cu atoms for Zr atoms in the investigated alloys stabilizes the efficient cluster packing structure of the amorphous alloys, leading to the pronounced increase in their glass-forming ability

  20. The role of Zr and T6 heat treatment on microstructure evolution and hardness of AlSi9Cu3(Fe diecasting alloy

    Directory of Open Access Journals (Sweden)

    Vončina M.

    2017-01-01

    Full Text Available The microstructure features and hardness of AlSi9Cu3(Fe die casting alloy was investigated in the presence of Zr addition. The cast alloys were undergone the solutionizing treatment 2 h at 500°C followed by artificial aging at 180°C for 5 h. Optical microscopy and electron micro-analyzer were used to study the formation of different intermetallic phases. The hardness was tested for all samples at 25°C. The results revealed that the intermetallic phase, based on (Al,Si(Zr,Ti, forms when Zr is added in the investigated alloy, while the T6 heat treatment does not influence on the formation of Zr-bearing phase. Results also indicate that the hardness slightly increases in the AlSi9Cu3 alloy in as-cast state when Zr is added, while after T6 heat treatment increases by 50% in the alloy without Zr and by 61% in the alloy with Zr addition.

  1. Strength and fatigue of an ultrafine-grained Al-Cu-Mg alloy

    Directory of Open Access Journals (Sweden)

    Khafizova Elvira

    2017-01-01

    Full Text Available The dependence of strength and fatigue on microstructure of the Al-Cu-Mg alloy has been investigated. Various microstructures of the alloy were produced: the one with a coarse-grained (CG structure after T6 heat treatment; the one with a homogeneous ultrafine-grained (UFG structure and the one with a bimodal (mixed structure, both processed by equal-channel angular pressing (ECAP. The mean grain size and morphology of precipitates were studied by transmission electron microscopy. The ultimate tensile strength and the fatigue endurance limit were determined using the tensile and fatigue tests of standard specimens. It is established that the formation of a homogeneous UFG structure and of a bimodal (mixed structure alloy contributes to a significant increase in microhardness by 16% and 60%, and an increase of the ultimate tensile strength by 20 and 52%, respectively, as compared to the samples subjected to T6 heat treatment. Fatigue tests show that the alloy with a bimodal (mixed structure has the highest fatigue endurance limit, 45% higher than in the sample subjected to T6 heat treatment. In contrast, the formation of a homogeneous UFG structure enables increasing the fatigue endurance limit by 15% only.

  2. Experimental study of the Cu-Al-Sn phase equilibria, close to the copper zone

    Directory of Open Access Journals (Sweden)

    Soares D.F.

    2017-01-01

    Full Text Available The ternary Cu-Al-Sn phase diagram is the base for several important types of alloys, with relevant industrial interest and applications. The knowledge of the melting/solidification alloys characteristics are determinant for their preparation and properties control. However, there is a lack of experimental information on the ternary phase diagram, at high temperature. In this work, several alloys, with high copper content and additions of Al, up to 10%, and Sn, up to 14% (in wt%, were studied by thermal analysis and by isothermal phase equilibria determination. The alloys liquidus and solidus lines and the binary α + β phase field, at 800°C, are presented for the studied range of compositions.

  3. Solidifying incongruently melting intermetallic phases as bulk single phases using the example of Al{sub 2}Cu and Q-phase in the Al-Mg-Cu-Si system

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Andrea [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Groebner, Joachim; Hampl, Milan [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Engelhardt, Hannes [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Schmid-Fetzer, Rainer [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Rettenmayr, Markus, E-mail: M.Rettenmayr@uni-jena.de [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Samples consisting of pure Al{sub 2}Cu and 95% Q-phase respectively were prepared. Black-Right-Pointing-Pointer The Q-phase composition is Al{sub 17}Cu{sub 9}Mg{sub 44}Si{sub 30}, its solubility range is negligible. Black-Right-Pointing-Pointer The Q-phase peritectic temperature was determined by DSC measurements as 703 Degree-Sign C. Black-Right-Pointing-Pointer A new thermodynamic dataset for the Q-phase has been assessed. - Abstract: Plane front directional solidification experiments were carried out for preparing incongruently melting intermetallic phases in the quaternary alloy system Al-Cu-Mg-Si, particularly the binary Al{sub 2}Cu phase and the quaternary phase ('Q-phase'). By this method, bulk samples that consist of only a single phase are generated. Sample sections consisting of 100% single phase Al{sub 2}Cu and of 95% Q-phase, respectively, were obtained. The composition of the Q-phase was measured by Energy Dispersive X-ray Spectroscopy (EDX). The measured concentrations are close to the Al{sub 3}Cu{sub 2}Mg{sub 9}Si{sub 7} composition that has recently been predicted as most stable by ab initio calculations. A peritectic temperature of 703 Degree-Sign C for the reaction Q {yields} L + Mg{sub 2}Si + (Si) was determined by differential scanning calorimetry (DSC). An optimization of the Calphad database was performed considering the measured composition and peritectic temperature. For validating the optimized database, Scheil calculations were performed and compared with the experimentally determined sequence of solidifying phases.

  4. Investigation of the structure and properties of the titanium alloy of the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system

    International Nuclear Information System (INIS)

    Moiseev, V.N.; Dolzhanskij, Yu.M.; Zakharov, Yu.I.; Znamenskaya, E.V.

    1979-01-01

    The alloys of martensitic type in the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system after heat treatment are investigated. To determine the composition of the titanium alloy methods of mathematical planning of the experiment are applied. Results of mechanical tests of the alloys are presented, as well as coefficients of models for the properties, calculated according to these data. The investigation establishes the composition of a high-strength titanium alloy of a martensitic type, containing 4.5-60 % Al, 2.0-4.0 % Mo, 0.5-1.9 % V, 0.3-1.5 % Fe, 0.3-1.5 % Cu, 1.5-3.0 % Sn, 2.0-4.0 % Zr. The semiproducts, produced by deformation in β-field, after heat treatment have an ultimate strength >=120 kg/mm 2 , satisfactory ductility and reliability. The alloy possesses rather a high heat resistance and can be operated at 400-500 deg C

  5. Cap casting and enveloped casting techniques for Zr55Cu30Ni5Al10 glassy alloy rod with 32 mm in diameter

    International Nuclear Information System (INIS)

    Yokoyama, Yoshihiko; Inoue, Akihisa; Mund, Enrico; Schultz, Ludwig

    2009-01-01

    In order to produce centimetre-sized bulk glassy alloys (BMGs), various cast techniques have been developed. We succeed in the development of cap casting and enveloped casting technique to accomplish the fabrication of centimetre sized BMGs. The former has an advantage to increase cooling rate and the later has an advantage to joint another materials instead of welding. This paper presents the production of a glassy Zr 55 Cu 30 Ni 5 Al 10 alloy rod with a diameter of 32 mm and joined glassy Zr 55 Cu 30 Ni 5 Al 10 alloy parts with another materials for industrial applications.

  6. Interface termination and band alignment of epitaxially grown alumina films on Cu-Al alloy

    Science.gov (United States)

    Yoshitake, Michiko; Song, Weijie; Libra, Jiří; Mašek, Karel; Šutara, František; Matolín, Vladimír; Prince, Kevin C.

    2008-02-01

    Epitaxial ultrathin alumina films were grown on a Cu-9 at. % Al(111) substrate by selective oxidation of Al in the alloy in ultrahigh vacuum. The photoelectron spectra of Al 2p and valence band were measured in situ during oxidation. By analyzing multiple peaks of Al 2p, the interface atomic structure was discussed. The energy difference between the Fermi level of the substrate and the valence band maximum of alumina (band offset) was obtained. The relation between the interface atomic structure and the band offset was compared with the reported first-principles calculations. A novel method for controlling the band offset was proposed.

  7. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Mirmiran, Seyed [Fiat Chrysler Automobiles North America; Glaspie, Christopher [Fiat Chrysler Automobiles North America; Li, Shimin [Worcester Polytechnic Institute (WPI), MA; Apelian, Diran [Worcester Polytechnic Institute (WPI), MA; Shyam, Amit [ORNL; Haynes, James A [ORNL; Rodriguez, Andres [Nemak, Garza Garcia, N.L., Mexico

    2017-01-01

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during casting can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.

  8. Compréhension de la stabilité thermique des alliages d'aluminium Al-Cu-Mg Understanding of the thermal stability of Al-Cu-Mg aluminum alloys

    Directory of Open Access Journals (Sweden)

    Pouget Gaëlle

    2013-11-01

    Full Text Available Les alliages d'aluminium 2xxx (Al-Cu-Mg sont connus pour être performants à chaud et sont par exemple utilisés pour certaines pièces de structure des avions. L'effet de la composition en Cu et Mg sur leur stabilité thermique, ainsi que celui de la précipitation durcissante associée ont été étudiés. Des comportements différents sont observés et trois zones de composition (en poids % identifiées: 3,1–3,7Cu et 1,6–2,0Mg : durcissement par la phase S' (Al2CuMg, limite d'élasticité ∼ 465 MPa à l'état T8 et bonne stabilité thermique jusqu'à 200 ∘C. 4,8–5,4Cu et 0–0,4Mg : durcissement par la phase θ' (Al2Cu, limite d'élasticité ∼ 380 MPa à l'état T8 et bonne stabilité thermique jusqu'à 300 ∘C. 3,7–4,3Cu et 0,9–1,3Mg : durcissement par S'+ θ', limite d'élasticité ∼ 470 MPa à l'état T8 mais stabilité thermique insuffisante à 150 ∘C et au delà; ce vieillissement important est associé à une concentration en Cu en solution solide élevée, ce qui accélère la cinétique de coalescence des précipités. La première zone de composition est donc recommandée pour des applications à température intermédiaire, typiquement 150 ∘C, et la seconde pour des applications à plus haute température, entre 250 et 300 ∘C. La troisième zone est à éviter pour des applications à 150 ∘C et au-delà. 2xxx aluminum alloys (Al-Cu-Mg have a good behaviour at elevated temperature and are used for some aircraft's structural parts. In this study, the effect of Cu and Mg content on the thermal stability and strengthening precipitation has been investigated. Three different behaviours are observed depending on the alloy composition: 3.1–3.7Cu, 1.6–2.0Mg: strengthening by S' (Al2CuMg, yield strength ∼ 465 MPa in T8 temper and good thermal stability up to 200 ∘C. 4.8–5.4Cu, 0–0.4Mg: strengthening by θ' (Al2Cu, yield strength ∼ 380 MPa in T8 and good thermal stability up to

  9. A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihua [Laboratory for Nanobioelectronics and Biosensors, Qingdao Institute of Bioenergy and Bioprocess Technology, and Key Laboratory for Biofuels, Chinese Academy of Sciences, Qingdao 266101 (China); Geng Haoran [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Xu Caixia, E-mail: chm_xucx@ujn.edu.cn [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Qiu Huajun, E-mail: qiuhuajun@gmail.com [Laboratory for Nanobioelectronics and Biosensors, Qingdao Institute of Bioenergy and Bioprocess Technology, and Key Laboratory for Biofuels, Chinese Academy of Sciences, Qingdao 266101 (China)

    2011-10-10

    Highlights: {yields} Nanotubular mesoporous PdCu (NM-PdCu) alloy is facilely fabricated via one-step metal replacement reaction between nanoporous Cu and H{sub 2}PdCl{sub 4}. {yields} The NM-PdCu exhibits remarkably improved structure stability and electrocatalytic activity towards formic acid and hydrogen peroxide oxidation compared with NP-Pd. {yields} When coupled with GOx, the GOx/NM-PdCu electrode can be used for sensitive detection of glucose over a wide concentration range. - Abstract: Nanoporous copper (NPC) obtained by dealloying CuAl alloy is used as both three-dimensional template and reducing agent for the fabrication of nanoporous PdCu alloy with hollow ligaments by a simple galvanic replacement reaction with H{sub 2}PdCl{sub 4} aqueous solution. Electron microscopy and X-ray diffraction characterizations demonstrate that after the replacement reaction, the ligaments become hollow tubular structure and the ligament shell is also comprised of small pores and nanoparticles with a typical size of {approx}4 nm (third order porosity). The as-prepared nanotubular mesoporous PdCu alloy (NM-PdCu) structure exhibits remarkably improved electrocatalytic activity towards the oxidation of formic acid and H{sub 2}O{sub 2} compared with nanoporous Pd (NP-Pd), and can be used for sensitive electrochemical sensing applications. After coupled with glucose oxidase (GOx), the enzyme modified NM-PdCu electrode can sensitively detect glucose over a wide linear range (0.5-20 mM).

  10. A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing

    International Nuclear Information System (INIS)

    Liu Aihua; Geng Haoran; Xu Caixia; Qiu Huajun

    2011-01-01

    Highlights: → Nanotubular mesoporous PdCu (NM-PdCu) alloy is facilely fabricated via one-step metal replacement reaction between nanoporous Cu and H 2 PdCl 4 . → The NM-PdCu exhibits remarkably improved structure stability and electrocatalytic activity towards formic acid and hydrogen peroxide oxidation compared with NP-Pd. → When coupled with GOx, the GOx/NM-PdCu electrode can be used for sensitive detection of glucose over a wide concentration range. - Abstract: Nanoporous copper (NPC) obtained by dealloying CuAl alloy is used as both three-dimensional template and reducing agent for the fabrication of nanoporous PdCu alloy with hollow ligaments by a simple galvanic replacement reaction with H 2 PdCl 4 aqueous solution. Electron microscopy and X-ray diffraction characterizations demonstrate that after the replacement reaction, the ligaments become hollow tubular structure and the ligament shell is also comprised of small pores and nanoparticles with a typical size of ∼4 nm (third order porosity). The as-prepared nanotubular mesoporous PdCu alloy (NM-PdCu) structure exhibits remarkably improved electrocatalytic activity towards the oxidation of formic acid and H 2 O 2 compared with nanoporous Pd (NP-Pd), and can be used for sensitive electrochemical sensing applications. After coupled with glucose oxidase (GOx), the enzyme modified NM-PdCu electrode can sensitively detect glucose over a wide linear range (0.5-20 mM).

  11. Stability of mechanically alloyed vacancy ordered phase in Al{sub 70}Cu{sub 15}Ni{sub 15} alloy during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Thakur Prasad; Tiwari, Radhey Shyam; Srivastava, Onkar Nath [Department of Physics, Banaras Hindu University, Varanasi-221 005 (India); Mukhopadhyay, Nilay Krishna, E-mail: hepons@yahoo.co, E-mail: yadavtp@gmail.co [Department of Metallurgical Engineering, Institute of Technology, Banaras Hindu University, Varanasi-221 005 (India)

    2010-04-01

    A nano {tau}{sub 3} vacancy-ordered phase in the Al-Cu-Ni alloy system has been synthesized with a composition close to Al{sub 70}Cu{sub 15}Ni{sub 15} by mechanical alloying a mixture of elemental powder in a high-energy ball mill by varying milling time from 10 to 100 hours. The stability of nano-crystalline {tau}{sub 3} vacancy-ordered phase has been studied under thermal annealing in vacuum as well as in air. The x-ray diffraction and transmission electron microscopy techniques were employed for characterization of the milled and annealed samples. The powder after 100 h of milling was found to contain mostly nano {tau}{sub 3} phase with the partial ordering, and with crystallite sizes in the range of 10-20 nm along with a lattice strain of {approx}0.67 %. The milled powder, after annealing in vacuum at 700 {sup 0}C for 60 h, revealed the formation of a strain-free and ordered {tau}{sub 3} phase with a crystallite size of 80 nm, indicating grain coarsening. It is interesting to note that the milled powder annealed in air at 700 {sup 0}C for 60 h showed the formation of (Cu,Ni)Al{sub 2}O{sub 4} type spinel phase with the lattice parameter of 8.1 A and the lattice strain as 0.52 %. The average grain size of spinel phase was found to be {approx} 40 nm.

  12. Modification and aging precipitation behavior of hypereutectic Al-21wt.%Si alloy treated by P+Ce combination

    Directory of Open Access Journals (Sweden)

    Liu Pei

    2014-11-01

    Full Text Available In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanism of P+Ce complex modifier on the Si phase of hypereutectic Al-21wt.%Si alloy were studied, and the aging precipitation behavior after modification was characterized by means of tensile strength measurement, OM, SEM and TEM analysis. The results show that the massive primary silicon phase particles are significantly refined after modification, while the needle-like eutectic silicon crystals become fibrous and short. It was found that the mechanism of phosphorus modification on the primary silicon can be attributed to heterogeneous nucleation of AlP, while the modification mechanism of Ce can be explained by adsorbing-twinning theory. In the aged microstructure of the modified hypereutectic Al-21wt.%Si alloy, there existed some strengthening phases such as Al4Cu9, Al2Cu, AlCu3, and Al57Mn12. The P+Ce complex modifier not only affected the size of primary silicon and eutectic silicon, but also the aging behavior of alloys under the heat treatment process. When Al-21wt.%Si alloy was modified using 0.08%wt.P + 0.6wt.% Ce, the aging precipitates were dispersed uniformly in the alloy, and its mechanical properties at room and elevated temperatures are optimized (Rm = 287.6 MPa at RT, Rm = 210 MPa at 300 ℃.

  13. In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys.

    Science.gov (United States)

    Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo

    2014-02-12

    The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e. , strong enough, to avoid hot tear formation.

  14. In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Jean-Marie Drezet

    2014-02-01

    Full Text Available The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e., strong enough, to avoid hot tear formation.

  15. Age hardening and creep resistance of cast Al–Cu alloy modified by praseodymium

    International Nuclear Information System (INIS)

    Bai, Zhihao; Qiu, Feng; Wu, Xiaoxue; Liu, Yingying; Jiang, Qichuan

    2013-01-01

    The effects of praseodymium on age hardening behavior and creep resistance of cast Al–Cu alloy were investigated. The results indicated that praseodymium facilitated the formation of the θ′ precipitates during the age process and improved the hardness of the Al–Cu alloy. Besides, praseodymium resulted in the formation of the Al 11 Pr 3 phase in the grain boundaries and among the dendrites of the modified alloy. Because of the good thermal stability of Al 11 Pr 3 phase, it inhibits grain boundary migration and dislocation movement during the creep process, which contributes to the improvement in the creep resistance of the modified alloy at elevated temperatures. - Highlights: • Pr addition enhances the hardness and creep resistance of the Al–Cu alloy. • Pr addition facilitates the formation of the θ′ precipitates. • Pr addition results in the formation of the Al11Pr3 phase in the Al–Cu alloy

  16. Preparation of CuAlO2 Thin Films by Sol-Gel Method Using Nitrate Solution Dip-Coating

    Directory of Open Access Journals (Sweden)

    Ehara Takashi

    2016-01-01

    Full Text Available CuAlO2 thin films are prepared by sol-gel dip-coating followed by annealing in nitrogen atmosphere using copper nitrate and aluminum nitrate as metal source materials. X-ray diffraction (XRD patterns show (003, (006 and (009 oriented peaks of CuAlO2 at annealing temperature of 800 – 1000°C. This result indicates that the CuAlO2 films prepared in the present work are c-axis oriented. XRD peak intensity increase with annealing temperature and becomes maximum at 850°C. The CuAlO2 XRD peak decreased at annealing temperature of 900°C with appearance of a peak of CuO, and then increased again with annealing temperature until 1000 °C. The films have bandgap of 3.4 eV at annealing temperature of 850°C in which the transparency becomes the highest. At the annealing temperature of 850°C, scanning electron microscope (SEM observation reveals that the films are consist of amorphous fraction and microcrystalline CuAlO2 fraction.

  17. The Influence of Nickel and Tin Additives on the Microstructural and Mechanical Properties of Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Haider T. Naeem

    2014-01-01

    Full Text Available The effects of nickel and nickel combined tin additions on mechanical properties and microstructural evolutions of aluminum-zinc-magnesium-copper alloys were investigated. Aluminum alloys containing Ni and Sn additives were homogenized at different temperatures conditions and then aged at 120°C for 24 h (T6 and retrogressed at 180°C for 30 min and then reaged at 120°C for 24 h (RRA. Comparison of the ultimate tensile strength (UTS of as-quenched Al-Zn-Mg-Cu-Ni and Al-Zn-Mg-Cu-Ni-Sn alloys with that of similar alloys which underwent aging treatment at T6 temper showed that gains in tensile strengths by 385 MPa and 370 MPa were attained, respectively. These improvements are attributed to the precipitation hardening effects of the alloying element within the base alloy and the formation of nickel/tin-rich dispersoid compounds. These intermetallic compounds retard the grain growth, lead to grain refinement, and result in further strengthening effects. The outcomes of the retrogression and reaging processes which were carried on aluminum alloys indicate that the mechanical strength and Vickers hardness have been enhanced much better than under the aging at T6 temper.

  18. The Microstructure And Mechanical Properties Of The AlSi17Cu5 Alloy After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2015-09-01

    Full Text Available In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2 of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda and aging (200ºC/16h/piec are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together. It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment, causes not only increase in concentration in α(Al solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.

  19. Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys

    Science.gov (United States)

    Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji

    Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.

  20. Local structure of disordered Au-Cu and Au-Ag alloys

    International Nuclear Information System (INIS)

    Frenkel, A. I.; Machavariani, V. Sh.; Rubshtein, A.; Rosenberg, Yu.; Voronel, A.; Stern, E. A.

    2000-01-01

    X-ray-absorption fine structure (XAFS) and x-ray-diffraction (XRD) measurements of disordered alloys Au x Cu 1-x and Au 0.5 Ag 0.5 prepared by melt spinning were performed. In the Au 0.5 Ag 0.5 alloy, no significant local deviations of the atoms from the average fcc lattice were detected while in Au x Cu 1-x alloys, significant deviations of atoms from the average fcc lattice were found. Mean-square vibrations of the Cu-Cu distances revealed by the XAFS in Au x Cu 1-x alloys indicate the weakening of contact between Cu atoms in the dilute limit. Our computer simulation for Au x Cu 1-x clusters of 10 5 atoms reproduces the main features of both the XAFS and XRD data

  1. Influence of small additions of Sc and Zr on structure and mechanical properties of Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Kajgorodova, L.I.; Sel'nikhina, E.I.; Tkachenko, E.A.; Senatorova, O.G.

    1996-01-01

    A study was made into Sc and Zr addition effects on grain structure formation, supersaturated solid solution decomposition and mechanical properties of Al-7%Zn-2%Mg-1.2%Cu alloy. It is shown that grain structure is determined by volume fraction and distribution character of disperse particles of Al 3 Sc and Al 3 (Sc 1-x Zr x ). The reason for additives influence on decomposition kinetics during natural and artificial ageing are revealed. The structural factors responsible for the enhancement of mechanical properties on alloying are discussed. 17 refs.; 5 figs.; 2 tabs

  2. Prediction of hardness for Al-Cu-Zn alloys in as-cast and quenching conditions

    International Nuclear Information System (INIS)

    Villegas-Cardenas, J. D.; Saucedo-Munoz, M. L.; Lopez-Hirata, V. M.; Dorantes Rosales, H. J.

    2014-01-01

    This work presents a new experimental and numerical methodology in order to predict the hardness in the as-cast, and solution treated and quenched Al-Cu-Zn alloys. Chemical composition of alloys is located inside two straight lines represented by two equations. Eight different compositions were selected from each line. All the alloys were characterized for light microscope, scanning electron microscope, X-ray diffraction and Rockwell B hardness test. The equilibrium phases were obtained at different temperatures by Thermo-Calc. The microstructure characterization and regression analysis enabled to determine the phase transformations and two equations of hardness assessment. The combination of hardness equations and composition line equations permitted to estimate the hardness of any alloy composition inside this zone. This was verified by calculating hardness with the information reported in other works, with an error lower than 7% in the estimated hardness. (Author)

  3. Microstructure-property relationships in Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 2

    Science.gov (United States)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    The microstructure and mechanical properties of the ultrahigh strength Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049, were studied. Specifically, the microstructural features along with tensile strength, weldability, Young's modulus and fracture toughness were studied for Weldalite (tm) 049 type alloys with Li contents ranging from 1.3 to 1.9 wt. pct. The tensile properties of Weldalite 049 and Weldalite 049 reinforced with TiB2 particles fabricated using the XD (tm) process were also evaluated at cryogenic, room, and elevated temperatures. In addition, an experimental alloy, similar in composition to Weldalite 049 but without the Ag+Mg, was fabricated. The microstructure of this alloy was compared with that of Weldalite 049 in the T6 condition to assess the effect of Ag+Mg on nucleation of strengthening phases in the absence of cold work.

  4. Microscopy modifications in an aged Cu-Al-Ni-Mn alloy; Modificacoes microestruturais em uma liga Cu-Al-Ni-Mn submetida ao envelhecimento

    Energy Technology Data Exchange (ETDEWEB)

    Gama, J.L.L. [Instituto Federal de Alagoas (IFAL), Maceio, AL (Brazil); Ferreira, R.A.S., E-mail: jorgelauriano@gmail.co [Universidade Federal de Pernambuco (DEM/UFPE), Recife, PE (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    An Cu-12Al-4Ni-3Mn shape memory alloy have been manufactured using an induction furnace of 24 KVA. After melting, chemical analyse was performed by X-ray fluorescence (XRF). The phase transformation of this alloy was studied in the different sequences produced during thermomechanic treatments. After homogenization, the ingot was solution treated at 850 deg C. At 750 deg C samples were submitted to a reduction by rolling to about 30% in thickness, followed by water quenching. In sequence, the ingot was cold-rolled at different thicknesses. In deformed state, sample of this alloy was submitted to the thermal analyse-DTA for identification of the phase transformation domains. For each identified domain, ageing was carried out, at different times, to evaluate the presence of the different phases. Samples were characterized ray-X diffraction. The results showed that the microstructural evolutions are of a complex nature. At 425 deg C temperature both recrystallization and precipitation of different phases were simultaneously observed. (author)

  5. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    International Nuclear Information System (INIS)

    Jiang, L.; Li, J.K.; Liu, G.; Wang, R.H.; Chen, B.A.; Zhang, J.Y.; Sun, J.; Yang, M.X.; Yang, G.; Yang, J.; Cao, X.Z.

    2015-01-01

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al 2 Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al 2 Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al 2 Cu particles were precipitated and intragranular θ′-Al 2 Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying effect and the

  6. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, J.K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, R.H. [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Chen, B.A.; Zhang, J.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun, J., E-mail: junsun@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, M.X.; Yang, G. [Central Iron and Steel Research Institute, Beijing 100081 (China); Yang, J.; Cao, X.Z. [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-18

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al{sub 2}Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al{sub 2}Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al{sub 2}Cu particles were precipitated and intragranular θ′-Al{sub 2}Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying

  7. Recent results on the preparation and properties of Li-containing Cu alloys

    International Nuclear Information System (INIS)

    Mendelsohn, M.H.; Gruen, D.M.; Krauss, A.R.

    1986-01-01

    Homogeneous solid solutions of Li in copper have been prepared containing up to 6 to 8 at. % Li. However, the possible metastable nature of these materials has not yet been fully investigated. The existence of a unique intermetallic compound near the composition Cu 4 Li is currently being investigated by single crystal x-ray diffraction and powder neutron diffraction techniques. The copper-lithium binary alloy has demonstrated potential as a means of forming a self-sustaining coating for the reduction of sputtering-induced erosion in fusion applications. The initial performance under high flux conditions is strongly dependent on the lithium content and method of preparation

  8. First Principles Study of Adsorption of Hydrogen on Typical Alloying Elements and Inclusions in Molten 2219 Al Alloy

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2017-07-01

    Full Text Available To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al2O3, MgO and Al4C3, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al4C3 and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al2O3 and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111, the second atomic layer of Mn(111, and the O atom in the third atomic layer of Al2O3, compared with other sites. It was found that alloying elements Cu and Mn and including Al2O3 may increase the hydrogen adsorption in the molten 2219 Al alloy with Al2O3 being the most sensitive component in this regard.

  9. Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM=Fe, Co, Ni or Cu) alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Zhang Tao

    1997-01-01

    Bulk amorphous alloys were prepared for Nd 70 Al 10 TM 20 and Nd 60 Al 10 TM 30 (TM=Fe or Co) alloys by copper mold casting. The maximum sample thickness for glass formation reaches 15 mm for the Nd-Al-Fe alloys and 5 mm for the Nd-Al-Co alloys. A significant difference in the phase transition upon heating is recognized between the Fe- and Co-containing alloys. No glass transition before crystallization is observed for the Nd-Al-Fe alloys, but the Nd-Al-Co alloys exhibit the glass transition. The ΔT x (=T x -T g ) and T g /T m are 40-55 K and 0.65-0.67, respectively, for the latter alloys. The absence of supercooled liquid for the former alloys is different from those for all bulk amorphous alloys reported up to date. The T x /T m and ΔT m (=T m -T x ) are 0.85-0.89 and 88-137 K, respectively, for the Nd-Al-Fe alloys and, hence, the large glass-forming ability is presumably due to the high T x /T m and small ΔT m values. (orig.)

  10. Effect of Y additions on the solidification behavior of a copper mold cast CuZrAl alloy with high oxygen content

    International Nuclear Information System (INIS)

    Coury, F.G.; Batalha, W.; Botta, W.J.; Bolfarini, C.; Kiminami, C.S.

    2014-01-01

    Bulk glassy samples of the CuAlZr system were produced by copper mold casting in the form of wedges with different amounts of yttrium (0 , 0.3 and 2 at%) , the processing conditions led to high oxygen contents on the samples (1000ppm). A reportedly good glass-former composition was chosen as the base alloy, it’s nominal composition is Cu47Zr45Al8. This study aimed to understand the influence of oxygen and yttrium in the solidification of these alloys. The samples were analyzed by scanning and transmission electron microscopy, differential scanning calorimetry and X-Ray diffraction. The sequence of formation of crystalline phases in these alloys was determined as a function of the different cooling rates inherent in the process. It was observed that the formation of CuZr2 phase was inhibited in samples with Y allowing the production of a fully glassy 8mm. (author)

  11. TEM Nanostructural Study of Al-6Si-3Cu-Mg Melt-Spun Ribbons

    Directory of Open Access Journals (Sweden)

    Ismeli Alfonso López

    2008-01-01

    Full Text Available Three quaternary Al-6Si-3Cu-xMg (x = 0.59, 3.80, and 6.78 wt.% alloys were produced by melt-spun and characterized using X-ray diffractometry (XRD, transmission electron microscopy (TEM, and microhardness techniques. Obtained second phases were Al2Cu( for the alloy with 0.59% Mg and Al5Cu2Mg8Si6 (Q for the alloys with 3.80 and 6.78% Mg. These phases are present as 30–50 nm or as 5–10 nm nanoparticles. Alloying elements content in solid solution increased, mainly for Si and Mg. The high alloying elements content in solid solution and the small -Al cell size for melt-spun alloys leads to microhardness values about 2 times higher than those of ingot counterparts. The microhardness increase for melt-spun alloys with 3.80 and 6.78% Mg depends on Mg content in solid solution.

  12. Effects of different casting mould cooling rates on microstructure and properties of sand-cast Al-7.5Si-4Cu alloy

    Directory of Open Access Journals (Sweden)

    Liu Guanglei

    2013-11-01

    Full Text Available In this work, Al-7.5Si-4Cu alloy melt modified by Al-10Sr, RE and Al-5Ti-B master alloys was poured into multi-step moulds made from three moulding sands, including quartz, alumina and chromite, to investigate comparatively the effects of different cooling rates of the casting mould on the alloy's microstructures and mechanical properties. The results show that with an increase in wall thickness, the cooling rate decreases, the dendrite arm spacing (DAS increases significantly and the mechanical properties decrease steadily. The elongation is more sensitive to the cooling rate than the tensile strength. No obvious trend of the effect of wall thickness on hardness of the alloy was found. When the cooling rate is at its greatest, the microstructures and mechanical properties are the best when using chromite sand. The improvement of the properties is mainly attributed to the decrease of the DAS, the grain refinement and the metamorphic effect. Each of the three has a strong impact on the microstructures. Furthermore, a series of fitting models was established based on the data of the DAS to predict the mechanical properties of the multivariate sand-cast Al-7.5Si-4Cu alloy.

  13. Magnetic Properties of Nanocrystalline FexCu1-x Alloys Prepared by Ball Milling

    International Nuclear Information System (INIS)

    Yousif, A.; Bouziane, K.; Elzain, M. E.; Ren, X.; Berry, F. J.; Widatallah, H. M.; Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A.

    2004-01-01

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe x Cu 1-x alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x≥0.8 and x≤0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x≥0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  14. Interfacial properties of immiscible Co-Cu alloys

    DEFF Research Database (Denmark)

    Egry, I.; Ratke, L.; Kolbe, M.

    2010-01-01

    Using electromagnetic levitation under microgravity conditions, the interfacial properties of an Cu75Co25 alloy have been investigated in the liquid phase. This alloy exhibits a metastable liquid miscibility gap and can be prepared and levitated in a configuration consisting of a liquid cobalt-ri...

  15. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    Science.gov (United States)

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  16. Synthesis and characterization of nanocrystalline Cu-Al coatings

    International Nuclear Information System (INIS)

    Lau, M.L.; He, J.; Schweinfest, R.; Ruehle, M.; Levi, C.G.; Lavernia, E.J.

    2003-01-01

    Commercially pure Cu and Al powders were blended in a 90:10 ratio by weight and then mechanically milled in methanol or in liquid nitrogen. The milled powders, as well as as-blended (non-milled) powder, were deposited as coatings using high velocity oxygen fuel thermal spraying. Scanning and transmission electron microscopy techniques were used to investigate the microstructure of the powders and coatings. The results showed that milling of the powders in methanol induced the conversion of most of the Al into amorphous Al 2 O 3 , precluding the desired mechanical alloying. This experimental observation was consistent with available thermodynamic data. In contrast, cryomilling exhibited no significant oxidation and induced mechanical alloying of the powders, albeit incomplete. The non-milled powder generated a coating with a bimodal grain structure consisting of fine Cu grains and coarse Al grains. Amorphous oxide regions and coarse Al grains were observed intermixed with the finer Cu matrix in the coatings sprayed using the powders milled in methanol. Coatings based on cryomilled powders consisted primarily of equiaxed Cu grains and twinned martensite regions, with occasional inclusion of elongated amorphous Al 2 O 3 regions

  17. Superplastic deformation of P/M and I/M Al-Li based alloys

    International Nuclear Information System (INIS)

    Lederich, R.J.; Sastry, S.M.L.

    1984-01-01

    Incremental strain-rate and constant strain-rate cone-forming tests have been carried out at 450-550 C to investigate the superplastic forming characteristics of Al-Li-Cu-Mn, Al-Li-Cu-Mg-Zr, and Al-Li-Zn-Mg alloys processed by powder-metallurgy (P/M) and ingot-metallurgy (I/M) techniques. It is found that P/M Al-Li alloys containing 0.2 pct Zr are inherently superplastically formable without the need for extensive thermomechanical processing. I/M Al-Li alloys containing Zr are also superplastically formable. The mechanical properties of the superplastically formed and solution-treated-and-aged alloys are comparable to those of solution-treated-and-aged alloys before superplastic forming. 6 references

  18. Microstructural characterization and compression properties of TiC{sub 0.61}/Cu(Al) composite synthesized from Cu and Ti{sub 3}AlC{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenying, E-mail: zhyhuang@bjtu.edu.cn [Institute of Material Science and Engineering, School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Institut PPRIME, Département de Physique et Mécanique des Matériaux, CNRS, Université de Poitiers, ENSMA, UPR 3346, SP2MI, Téléport 2 Boulevard Marie et Pierre Curie, BP 30179, F86962 Futuroscope Chasseneuil Cedex (France); Bonneville, Joel [Institut PPRIME, Département de Physique et Mécanique des Matériaux, CNRS, Université de Poitiers, ENSMA, UPR 3346, SP2MI, Téléport 2 Boulevard Marie et Pierre Curie, BP 30179, F86962 Futuroscope Chasseneuil Cedex (France); Zhai, Hongxiang [Institute of Material Science and Engineering, School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Gauthier-Brunet, Veronique [Institut PPRIME, Département de Physique et Mécanique des Matériaux, CNRS, Université de Poitiers, ENSMA, UPR 3346, SP2MI, Téléport 2 Boulevard Marie et Pierre Curie, BP 30179, F86962 Futuroscope Chasseneuil Cedex (France); and others

    2014-07-25

    Highlights: • Submicro-layered TiC{sub 0.61}/Cu(Al) nanocomposite. • MAX phase. • High yield stress. • Deformation mechanism. - Abstract: A new submicro-layered TiC{sub 0.61}/Cu(Al) composite has been prepared by hot-pressing a mixture of 50 vol.% Ti{sub 3}AlC{sub 2} and 50 vol.% Cu powders at 1150 °C and 30 MPa. It is shown that the initial reinforcement Ti{sub 3}AlC{sub 2} particles have, after synthesis, an unusual microstructure, which consists of submicron-thick layers of TiC{sub 0.61} and Cu(Al) alloy. Both the width of the TiC{sub 0.61} and Cu(Al) layers are ∼150 nm. Thus, the Ti{sub 3}AlC{sub 2} particles are decomposed into the TiC{sub 0.61} phase, while the additional Al atoms provided by Ti{sub 3}AlC{sub 2} diffuse into the molten Cu matrix at high temperature. Compression tests were performed at constant strain rate in the temperature range 20–800 °C. The new designed TiC{sub 0.61}/Cu(Al) composite has both a high yield stress, σ{sub 0.2} measured at 0.2% strain offset, and a high ultimate compressive strength, σ{sub UCS}, which is attributed to strong interface bonding between TiC{sub 0.61} and Cu(Al) phase. For instance, at 20 and 200 °C, σ{sub 0.2} is 770 MPa and 700 MPa, while σ{sub UCS} is 1.18 GPa and 1 GPa, respectively. Plastic deformation takes place in the Cu(Al) matrix. Wavy slip lines are observed indicating that cross-slip could be the dominant deformation mechanism.

  19. A study of a stable Al-Cu-Fe quasicrystal in solid and liquid state

    International Nuclear Information System (INIS)

    Chen Lifan; Chen Xishen

    1992-01-01

    A stable Al 65 Cu 20 Fe 15 quasicrystal with an icosahedral structure is studied in solid and liquid state. It is found that the icosahedral phase in Al 65 Cu 20 Fe 15 alloy does not grow directly from the pure liquid state, but rather forms between monoclinic Al 13 Fe 4 and residual liquid state at 865degC. The melting point of the Al 65 Cu 20 Fe 15 icosahedral quasicrystal occurs at 865degC and that of the Al 65 Cu 20 Fe 15 alloy occurs at 1008degC. Moreover, the monoclinic Al 13 Fe 4 is transformed into the icosahedral phase easily at the temperature of 845degC. The icosahedral quasicrystal in Al 65 Cu 20 Fe 15 alloy has a high thermal stability even at 950degC. Above 950degC, the icosahedral structure tends to an amorphous structure. (orig.)

  20. Corrosion performance of Al-Si-Cu hypereutectic alloys in a synthetic condensed automotive solution

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available In this investigation the corrosion resistance of four Al-Si hypereutectic alloys in a solution typical of condensate from automotive fuel combustion products, and referred to here as synthetic condensed automotive solution, has been studied. Three commercial alloys that are used for cylinder liners, and a laboratory made alloy, were studied by electrochemical impedance spectroscopy and measurements were taken after increasing times of immersion in this solution. Comparison of the electrochemical response of the four alloys in the corrosive solution was carried out. Although the mechanisms by which the four alloys corroded were similar, the results indicated differences in corrosion resistances of these alloys, and these differences could be related to their microstructures. The laboratory prepared alloy showed increased susceptibility to pitting corrosion compared to the commercial alloys. The surfaces of the alloys were examined, before and after the corrosion test, by scanning electron microscopy and analyzed by energy dispersive spectroscopy. The results indicated preferential attack of the aluminium matrix phase in all the alloys. The alloy with higher copper content and prepared by spray forming was more susceptible to pitting compared to the other alloys. The EIS response at low frequencies indicated a diffusion-controlled process, probably that of oxygen to the alloy interface.

  1. A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys

    Science.gov (United States)

    Poirier, D. R.; Yeum, K.; Maples, A. L.

    1987-01-01

    A computer model is used to predict the formation and degree of microporosity in a directionally solidified Al-4.5 wt pct Cu alloy, considering the interplay between solidification shrinkage and gas porosity. Macrosegregation theory is used to determine the local pressure within the interdendritic liquid. Results show interdendritic porosity for initial hydrogen contents in the 0.03-1 ppm range, and none below contents of 0.03. An increase in either the thermal gradient or the solidification rate is show to decrease the amount of interdendritic porosity.

  2. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  3. Development the Mechanical Properties of (AL-Li-Cu Alloy

    Directory of Open Access Journals (Sweden)

    Ihsan Kadhom AlNaimi

    2017-11-01

    Full Text Available The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue behaviour comparing with as-cast and other heat treatment alloys. Also, the impact test illustrates that the homogeneous heat treatment alloy gives the highest value.

  4. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin

    2013-12-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  5. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin; Stulí ková , Ivana; Smola, Bohumil; Kekule, Tomá š; Kudrnová , Hana; Daniš, Stanislav; Gemma, Ryota; Očená šek, Vladivoj; Má lek, Jaroslav; Tanprayoon, Dhritti; Neubert, Volkmar

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  6. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Matthew G. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  7. Amorphous phase formation in the Cu_3_6Zr_5_9A_l_5 and Cu_4_8Zr_4_3A_l_9 ternary alloys studied by molecular dynamics

    International Nuclear Information System (INIS)

    Aliaga, L.C.R.; Schimidt, C.S.; Lima, L.V.; Domingues, G.M.B.; Bastos, I.N.

    2016-01-01

    Amorphous alloys presents better mechanical and physical properties than its crystalline counterparts. However, there is a scarce understanding on structure - properties relationship in this class of materials. This paper presents the results of the molecular dynamics application to obtain an atomistic description of melting, solidification and the glass forming ability in the ternary Cu_3_6Zr_5_9A_l_5 and Cu_4_8Zr_4_3A_l_9 alloys. In the study we used the EAM potential and different cooling rates, β = 0.1, 1 and 100 K/ps to form the amorphous phase in a system consisting of 32,000 atoms by using the free code LAMMPS. The solidus and liquidus temperatures, on a heating rate of the 5 K/ps, were obtained. Also, on the cooling down step, it was observed that the glass transition temperature (T_g) decreases as cooling rate increases. The structural evolution was analyzed through the radial distribution functions and Voronoi polyhedra. Furthermore, it was determined the evolution of viscosity upper T_g, as well as the fragility (m) parameter for each amorphous alloy. The thermal parameters of the simulation obtained are compared with those of the experiments. (author)

  8. Study of microstructural evolution in friction-stir welded thin-sheet Al-Cu-Li alloy using transmission-electron microscopy

    International Nuclear Information System (INIS)

    Shukla, A.K.; Baeslack, W.A.

    2007-01-01

    Microstructure evolution in friction-stir welded thin-sheet Al-Cu-Li alloy was studied using transmission-electron microscopy (TEM) and the dissolution and coarsening of T 1 and θ' precipitates were related to the microhardness profile of the weld

  9. The effect of quench rate on the microstructure and properties of AF/C-458 and AF/C-489 Al-Li-Cu-X alloys

    Energy Technology Data Exchange (ETDEWEB)

    Csontos, A.A.; Gable, B.M.; Starke, E.A. Jr. [Virginia Univ., Charlottesville, VA (United States). Dept. of Mater. Sci. and Eng.; Gaber, A.

    2000-07-01

    The air force recently developed two isotropic Al-Li-Cu-X alloys with 1.8{sup w}/oLiLi and 2.1{sup w}/oLi designated AF/C-458 and AF/C-489, respectively. The objective of this investigation was to determine the effect of quench rate on the microstructure and mechanical properties of the AF/C-458 and AF/C-489 alloys. TEM, SEM, microhardness, and tensile testing were utilized to ascertain these microstructure/property relationships for both alloys in the T4, T6, and T86 tempers as a function of quench rate. Subsequent losses in ductility for both alloys in all tempers with decreasing quench rate were determined to be due to the precipitation of the equilibrium Al{sub 2}CuLi (T{sub 1}) phase along subgrain and grain boundaries which promoted intergranular fracture. Furthermore, yield and tensile strengths increased for both alloys in the T4 temper but decreased in the T6 and T86 tempers with decreasing quench rate. The increased strengths for the T4 condition resulted from the heterogeneous precipitation of coarse T{sub 1} and naturally aged {delta}' phases. The decrease in yield and tensile strengths for the T6 and T86 tempers were also due to the coarse heterogeneous precipitation of T{sub 1} which denuded regions of Cu thereby reducing the number density of fine matrix {theta}{sup ''} (T6) and T{sub 1} (T86). Finally, a comparison of the quench sensitivity for both the AF/C-458 and AF/C-489 alloys indicates that the mechanical properties for both alloys were less quench rate sensitive than other typical Al-Li-Cu-X alloys. (orig.)

  10. Investigations in situ des mécanismes de corrosion élémentaires durant le traitement de surface des alliages Al-Cu et Al-Cu-Li

    OpenAIRE

    Gharbi , Oumaïma

    2016-01-01

    This PhD thesis focused on the study of aluminum alloys, particularly the AA2024-T3 and AA2050-T3. The Al-Cu-Mg based alloy (AA2024-T3) are used for decades in the field of aerospace for its lightness and excellent mechanical properties are progressively replaced by and Al-Cu-Li (AA2050-T3) alloys. Nevertheless, they exhibit a highly heterogeneous microstructure, making them sensitive to corrosion. Several surface treatments formulations, such as coatings, have been developed, with the aim of...

  11. Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, G.; Wang, Y.B.; Liao, X.Z.; Duan, Z.C.; Ringer, S.P.; Langdon, T.G.

    2009-01-01

    Processing by equal-channel angular pressing (ECAP) affects the morphology of η precipitates in an Al-Zn-Mg-Cu (Al-7136) alloy. It is shown by transmission electron microscopy that ECAP changes the orientation of precipitates and this influences the atomic configuration and the interfacial energy at the η/α-Al interfaces. Consequently, η precipitates adopt an isotropic growth mode and evolve into equiaxed particles. A three-dimensional atom probe analysis demonstrates that large η precipitates formed in different numbers of ECAP passes are of similar composition. The coalescence of smaller precipitates, rather than the fragmentation of larger precipitates, dominates the precipitate evolution.

  12. Computer simulation of local atomic displacements in alloys. Application to Guinier-Preston zones in Al-Cu

    International Nuclear Information System (INIS)

    Kyobu, J.; Murata, Y.; Morinaga, M.

    1994-01-01

    A new computer program has been developed for the simulation of local atomic displacements in alloys with face-centered-cubic and body-centered-cubic lattices. The combined use of this program with the Gehlen-Cohen program for the simulation of chemical short-range order completely describes atomic fluctuations in alloys. The method has been applied to the structural simulation of Guinier-Preston (GP) zones in an Al-Cu alloy, using the experimental data of Matsubara and Cohen. Characteristic displacements of atoms have been observed around the GP zones and new structural models including local displacements have been proposed for a single-layer zone and several multilayer zones. (orig.)

  13. RESEARCH OF FATIGUE AND MECHANICAL PROPERTIES AlMg1SiCu ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2015-11-01

    Full Text Available The paper is concerned with an analysis of utility and fatigue properties of industrially produced aluminium alloy, specifically EN AW 6061 (AlMg1SiCu, reinforced with the particles of SiC. The following properties were subject to evaluation: microstructure and sub-structure, mechanical characteristics. All of these mechanical properties in pre- and post- equal channel angular pressed (ECAP state have been studied. The hardness was evaluated by Vickers hardness test at the load of HV10. The significant part the thesis was devoted to the fatigue properties at cyclic load in torsion. The presented results demonstrate well that the combination of fractography and microscopy can give a significant contribution to the knowledge of initiation and propagation crack in the aluminium alloy.

  14. Study of Bending Fatigue Properties of Al-Si Cast Alloy

    Directory of Open Access Journals (Sweden)

    Tillová E.

    2017-09-01

    Full Text Available Fatigue properties of casting Al-alloys are very sensitive to the microstructural features of the alloy (e.g. size and morphology of the eutectic Si, secondary dendrite arm spacing - SDAS, intermetallics, grain size and casting defects (porosity and oxides. Experimental study of bending fatigue properties of secondary cast alloys have shown that: fatigue tests up to 106-107cycles show mean fatigue limits of approx. 30-49 MPa (AlSi9Cu3 alloy - as cast state, approx. 65-76 MPa (AlSi9Cu3 alloy after solution treatment and 60-70 MPa (self-hardened AlZn10Si8Mg alloy in the tested casting condition; whenever large pore is present at or near the specimen’s surface, it will be the dominant cause of fatigue crack initiation; in the absence of large casting defects, the influence of microstructural features (Si morphology; Fe-rich phases on the fatigue performance becomes more pronounced.

  15. The effect of major alloying elements on the size of the secondary dendrite arm spacing in the as-cast Al-Si-Cu alloys

    Directory of Open Access Journals (Sweden)

    M. B. Djurdjevič

    2012-01-01

    Full Text Available A comprehensive understanding of melt quality is of paramount importance for the control and prediction of actual casting characteristics. Among many phenomenons that occur during the solidification of castings, there are four that control structure and consequently mechanical properties: chemical composition, liquid metal treatment, cooling rate and temperature gradient. The cooling rate and alloy composition are among them most important. This paper investigates the effect of some major alloying elements (silicon and copper of Al-Si-Cu alloys on the size of the secondary dendrite arm spacing. It has been shown that both alloying elements have reasonable influence on the refinement of this solidification parameter.

  16. On strain-induced dissolution of θ' and θ particles in Al-Cu binary alloy during equal channel angular pressing

    International Nuclear Information System (INIS)

    Liu Zhiyi; Bai Song; Zhou Xuanwei; Gu Yanxia

    2011-01-01

    Research highlights: → θ' particles in Al-Cu binary alloy was found to dissolve more rapidly than θ particles. → The different dissolution behavior of the θ' and θ phase was thermodynamically analysed. → The critical radius and free energy barrier for the strain-induced dissolution were calculated. - Abstract: The deformable θ' particle in Al-Cu binary alloy was found to dissolve more rapidly than the indeformable θ particle due to an additional increasing strain energy accumulated in the deformed θ' plate as well as an increasing interface energy led by the formation of sub-boundary in the θ' plate and fragmentation of the particle during equal channel angular pressing (ECAP). The critical radius and the free energy barrier for the strain-induced dissolution of both θ' and θ particles were calculated.

  17. Possibilities of Fe-RICH phases elimination with using heat treatment in secondary Al-Si-Cu cast alloy

    Directory of Open Access Journals (Sweden)

    L. Hurtalová

    2015-01-01

    Full Text Available The mechanical properties of Al-Si-Cu cast alloy are strongly dependent upon the morphologies, type and distribution of the second phases. The skeleton like – Al15(FeMn 3Si2 and needles - Al5FeSi phases were observed in experimental material AlSi9Cu3. The Fe-rich phases morphology was affected with applying two types of heat treatment, T4 and T6, which caused positive changes of mechanical properties especially ultimate tensile strength, gives that for as cast state was Rm = 211 MPa, than at optimum T4 (515 °C/ 4 hours was Rm = 273 MPa and at optimum T6 (515 °C/ 4 hours with artificial aging 170 °C/ 16 hours was Rm = 311 MPa.

  18. Tensile behaviour at room and high temperatures of novel metal matrix composites based on hyper eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Valer, J.; Rodriguez, J.M.; Urcola, J.J.

    1997-01-01

    This work shows the improvement obtained on tensile stress at room and high temperatures of hyper eutectic Al-Si alloys. These alloys are produced by a combination of spray-forming, extrusion and thixoforming process, in comparison with conventional casting alloys.Al-25% Si-5%Cu. Al-25%Si-5%Cu-2%Mg and Al-30%Si-5%Cu alloys have been studied relating their microstructural parameters with tensile stress obtained and comparing them with conventional Al-20%Si. Al-36%Si and Al-50%Si alloys. Al-25%Si-5%Cu alloy-was tested before and after semi-solid forming, in order to distinguish the different behaviour of this alloy due to the different microstructure. The properties obtained with these alloys were also related to Al-SiC composites formed by similar processes. (Author) 20 refs

  19. Effect of samarium in corrosion and microstructure of Al-5Zn-0.5Cu as low driving voltage sacrificial anode

    Science.gov (United States)

    Pratesa, Yudha; Ferdian, Deni; Ramadhan, Fajar Yusya; Maulana, Bramuda

    2018-05-01

    Sacrificial Anode Low voltage is the latest generation of the sacrificial anode that can prevent the occurrence of Hydrogen Cracking (HIC) due to overprotection. The Al-5n-0.5Cu alloy showed the potential to be developed as the new sacrificial anode. However, the main problem is copper made Al2Cu intermetallic in grain boundary. Samarium is added to modify the shape of the intermetallic to make it finer and make the corrosion uniform. Several characterizations were conducted to analyze the effect of Samarium. Scanning electron microscope (SEM) and Energy dispersive spectroscopy was used to analyzed the microstructure of the alloy. Metallography preparation was prepared for SEM analysis. Corrosion behavior was characterized by cyclic polarization in 3.5% NaCl solution. The results show samarium can change the shape of intermetallic and refine the grains. In addition, samarium makes better pitting resistance and exhibits a tendency for uniform corrosion. It is indicated by the loop reduction (ΔEpit-prot). Current density increased as an effect of samarium addition from 6x10-5 Ampere (Al-5Zn-0.5Cu) to 2.5x10-4 Ampere (Al-5Zn-0.5Cu-0.5Sm). Steel potential protection increased after addition of samarium which is an indication the possibility of Al-Zn-Cu-Sm to be used as low voltage sacrificial anode.

  20. Study of an Al-Si-Cu HPDC alloy with high Zn content for the production of components requiring high ductility and tensile properties

    Energy Technology Data Exchange (ETDEWEB)

    Vicario, Iban; Egizabal, Pedro; Galarraga, Haize; Plaza, Luis Maria; Crespo, Inigo [Fundacion Tecnalia Research and Innovation, Donostia-San Sebastien (Spain). Dept. of foundry processes

    2013-04-15

    Conventional high-pressure die casting aluminium components present certain limitations in terms of mechanical properties attainable due to the intrinsic porosity of the castings as well as the presence of iron-based brittle intermetallic phases. The present work approaches the increase in ductility and tensile strength through the analysis of the effect of the alloying elements of AlSi alloys used for high-pressure die casting. The combination of alloying elements providing the best results in terms of ductility and tensile strength were eventually selected to produce a batch of components that were thoroughly tested. The final alloy had a composition of Si 8.21, Fe 0.78, Cu 1.53, Mn 0.64, Mg 0.46, Ni 0.07, Zn 3.37, Pb 0.34, Sn 0.27, Ti 0.18 and Cr 0.04wt.%. The selected alloy performance was compared to that of the commercial AlSi9Cu3 and Silafont {sup registered} 36 alloys.