WorldWideScience

Sample records for cu ni cr

  1. Corrosion behavior of CuCrNiAl alloy in HCl solutions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The corrosion behavior of a CuCrNiAl alloy in HCl solutions was studied by means of metallograph, XRD, SEM/EDX and TEM methods. The results show that in low concentration of HCl solutions, Cu of CuCrNiAl alloy is more easily subject to corrsion than Cr; the dechromisation of the CuCrNiAl alloy occurs at a certain concentration of HCl solutions, at the same time Al of CuCrNiAl alloy is subject to corrosion also. The dechromisation corrosion occurs initially at the interface between Cr phase and Cu phase, then it gradually extends Cr phase until Cr phase is dissolved completely. It is also revealed that the tendency of dechromisaion of the CuCrNiAl alloy increases with the increase in concentration and temperature of HCl solutions.

  2. Promising Cu-Ni-Cr-Si alloy for first wall ITER applications

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Abramov, V. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Rodin, M. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation)

    1996-10-01

    Precipitation-hardened Cu-Ni-Cr-Si alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of Cu-Ni-Cr-Si alloy at 250-300 C is observed. Mechanical properties of Cu-Ni-Cr-Si alloy neutron irradiated to a dose of {proportional_to}0.2 dpa at 293 C are investigated. Embrittlement of Cu-Ni-Cr-Si alloy can be avoided by annealing. (orig.).

  3. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    Science.gov (United States)

    Wang, Yuechun; Chen, Xiuhua; Ma, Wenhui; Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei

    2017-02-01

    NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO2/Si and NiCrB/Cu/NiCrB/SiO2/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu3Si.

  4. Resistance behaviour and interdiffusion of layered CuNi-NiCr films

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, W. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Schumann, J. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Baunack, S. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Pitschke, W. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Knuth, T. [Microtech GmbH, Teltow (Germany)

    1995-03-15

    On the basis of sputtered NiCr/CuNi/NiCr triple layers and multilayers, investigations of the electrical resistance R and its temperature coefficient TCR, as well as of the concentration depth profiles and of the temperature dependence of the lattice parameter have been carried out to study the influences of the interfaces in the as-deposited state as well as annealed ones. Furthermore, the temperature dependence of the film stress has been considered. As to the resistance, the influence of the diffusion zone can be described by a parallel resistor R{sub i} having {Delta}TCR{sub i}. These quantities are dependent on both deposition and annealing and were determined for the two configurations on silicon wafers in the as-deposited state as well as in the 300 C annealed one. The AES investigations show distinct interdiffusion effects after annealing above 300 C. The Ni impoverishment observed in the CuNi results in a lattice parameter decrease. The film stress is only slightly influenced by interfacial effects. ((orig.))

  5. Magnetic and Structural Properties in Co/Cu/Co Sandwiches with Ni and Cr Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented polycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.

  6. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian, E-mail: chenjian@xatu.edu.cn [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Niu, Pengyun; Wei, Ting [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Hao, Liang [College of Architecture and Civil Engineering, Xi' an University of Science and Technology, Xi' an 710054 (China); Liu, Yunzi [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China); Wang, Xianhui, E-mail: xhwang693@xaut.edu.cn [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an, Shaanxi 710048 (China); Peng, Yuli [School of Materials Science and Chemical Engineering, Xi' an Technological University, Xi' an, Shaanxi 710021 (China)

    2015-11-15

    The AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying and the AlCoNiCrFe high-entropy alloy reinforced Cu matrix composites were subsequently fabricated by powder metallurgy. The phase constituents and morphology of the alloying powders were characterized by X-ray diffractometer and scanning electron microscope, the microstructures of the Cu base composites were characterized by scanning electron microscope and transmission electron microscope, and the compression tests were made as well. The results show that the AlCoNiCrFe high-entropy alloy can form after milling for 24 h. During sintering process, no grain growth occurs and no intermetallic phases present in the AlCoNiCrFe high-entropy alloy in the Cu base composite. Compression tests show that the AlCoNiCrFe high-entropy alloy has a better strengthening effect than metallic glasses and the yield strength of the Cu matrix composite reinforced with the AlCoNiCrFe high-entropy alloy is close to the value predicted by the Voigt model based on the equal strain assumption. - Graphical abstract: AlCoNiCrFe HEA has a better strengthening effect than metallic glasses for particulate reinforced metal matrix composites. The yield strength of the Cu base composite reinforced with the AlCoNiCrFe HEA is close to the upper bound calculated by Voigt model. - Highlights: • AlCoNiCrFe high-entropy alloy was prepared by mechanical alloying. • A novel Cu base composite reinforced with AlCoNiCrFe was fabricated. • No grain growth and no intermetallic phase present in AlCoNiCrFe during sintering. • AlCoNiCrFe has a better strengthening effect than metallic glassy in composites.

  7. The effect of irradiation on tensile properties and fracture toughness of CuCrZr and CuCrNiSi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G.M., E-mail: gmk@nikiet.ru [OJSC ' NIKIET' , P.O.B. 788, Moscow 101000 (Russian Federation); Artyugin, A.S.; Yvseev, M.V.; Shushlebin, V.V.; Sinelnikov, L.P. [OJSC ' IRM' , Zarechnyi, 624250 Sverdlovsk Region (Russian Federation); Strebkov, Yu.S. [OJSC ' NIKIET' , P.O.B. 788, Moscow 101000 (Russian Federation)

    2011-10-01

    This paper deals with the effect of irradiation on tensile properties and fracture toughness of CuCrZr and CuCrNiSi alloys, considered for use in some in-vessel components of ITER, where a combination of high strength and heat conduction is essential. The heat treatments were: -CuCrZr, quenching in water after annealing at 950 {sup o}S, cold worked 40-45%, and aged at 475-500 {sup o}S for 3 h. -CuCrNiSi, quenching in water after annealing at 980 {sup o}S and aged for 4 h at 460 {sup o}S. Specimens were irradiated in the IVV-2 reactor at {approx}200 {sup o}S and with irradiation damage of 0.15 and 0.27 dpa. Post-irradiation tests were carried out to assess the tensile properties and fracture toughness of the materials. The tests results show that CuCrNiSi has better strength and retains higher ductility after irradiation, but has somewhat lower crack resistance than CuCrZr.

  8. Corrosion behavior of a CuCrNiAl alloy in the presence of NaCl deposit

    Institute of Scientific and Technical Information of China (English)

    XU Tao; CHANG Limin; LIU Jianhua

    2006-01-01

    The corrosion behavior of a CuCrNiAl alloy with NaCl deposit at 700 and 900℃ was studied by means of metalloscope, XRD, SEM/EDX, and thermogravimetric analysis. The results indicated that the corrosion of the CuCrNiAl alloy beneath the NaCl deposit is severe; the corrosion production is loose and easy to scale off; the Cr phase is easier to erode than the Cu phase, and the contents of Cu and Cr decrease when the content of Ni increases in the matrix of the alloy beneath the corrosion region. The effects of distortion on the corrosion of the CuCrNiAl alloy were discussed, and the acceleration mechanisms of NaCl on the corrosion were also discussed.

  9. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    Science.gov (United States)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  10. Microstructure and Tribological Behaviour of CrCuFeNiTi High Entropy Alloys

    OpenAIRE

    Sobiyi Kehinde; Bodunrin Michael; Akinlabi Esther; Obadele Babatunde

    2016-01-01

    The microstructure, hardness and wear performance of CrCuFeTiNi high entropy alloy were evaluated. The alloy was produced by mixing constituent elements, consolidated and melted using vacuum arc furnace. The X-ray diffraction analysis confirmed that the alloy is composed of FCC and BCC simple phases. The microstructure contains three regions that were rich in Cu, Cr and Fe which resulted from segregation of constituent elements. The Vickers micro hardness of the alloy was determined as HV0.5 ...

  11. The Effects of Aging Precipitation on the Recrystallization of CuNiSiCr Alloy

    Institute of Scientific and Technical Information of China (English)

    LEI Jingguo; HUANG Jinliang; LIU Ping; JING Xiaotian; ZHAO Dongmei; ZHI Xiao

    2005-01-01

    The interaction between precipitation and recrystallization and its effect on the properties of the Cu-Ni-Si-Cr alloy during aging were discussed.The results show that the deformation results in much more dispersed precipitation of the phases. The precipitations have accelerating or retarding effects on the recrystallization. On the formation and growth of recrystallization, the precipitated phases are coarsed or dissolved in front of grain boundaries following a re-precipitation in the recrystallization area.

  12. Nanoindentation deformation of a bi-phase AlCrCuFeNi{sub 2} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuan [School of Mechanical Engineering, Shanghai Dianji University, 200245 Shanghai (China); Zhao, Guangfeng [Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Wen, Xiyu [Center for Aluminum Technology, University of Kentucky, Lexington, KY 40511 (United States); Qiao, Junwei [Taiyuan University of Technology, Taiyuan, 030024 (China); Yang, Fuqian, E-mail: fyang0@engr.uky.edu [Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)

    2014-09-01

    Highlights: • The AlCrCuFeNi{sub 2} HEA consisted of BCC solid solution and FCC solid solution. • The indentation hardness of the BCC crystals is larger than the FCC crystals. • The contact modulus of the FCC crystals is larger than the BCC crystals. - Abstract: High-entropy alloys (HEA) are multicomponent alloys with lattice structures, which have unique mechanical properties. Using X-ray diffraction, the structure of as cast AlCrCuFeNi{sub 2} HEA was characterized. The AlCrCuFeNi{sub 2} HEA consisted of body centered-cubic (BCC) solid solution and face centered-cubic (FCC) solid solution. Nanoindentation was used to characterize the indentation deformation of the FCC and BCC crystals in the AlCrCuFeNi{sub 2} HEA. Both the indentation hardness and the contact modulus of the FCC and BCC crystals decreased slightly with the increase in the indentation load and became constant for large indentation loads. For the indentation load larger than 500 μN, the contact modulus and the indentation hardness of the BCC crystals are 146 and 4.6 GPa, respectively, and the contact modulus and the indentation hardness of the FCC crystals are 207 and 2.8 GPa, respectively. The plastic energy dissipated in the nanoindentation increased with the indentation load and was proportional to the 1.77 and 1.88 power of the indentation load for the FCC and BCC crystals, respectively. The ratio of the dissipated plastic energy to the total energy in the indentations was a linear function of the ratio of the residual indentation depth to the corresponding maximum indentation depth. The slope of the energy ratio verse the indentation depth ratio for the BCC crystals is larger than that for the FCC crystals.

  13. Metabolismo del Mg, Cu, Zn, Cr, Mn, y Ni en la diabetes melitus

    OpenAIRE

    1995-01-01

    En los últimos años, a los elementos traza y al mg se las ha implicado en la patologenesis de las complicaciones crónicas de la diabetes mellitus (dm). Las alteraciones del estado mineral asociadas a la dm podrían estar influidas, entre otros factores, por el grado de control metabólico y la asociación, o no, de otras patologías metabólicas como la hipertensión arterial (hta), la dislipemia y la obesidad. A pesar de que el mg, cu, zn, cr, mn y ni son cationes de localización principalmente in...

  14. Microstructure and solidification behavior of multicomponent CoCrCu{sub x}FeMoNi high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P.H. [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Liu, N., E-mail: lnlynn@126.com [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Yang, W. [School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063 (China); Zhu, Z.X. [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Lu, Y.P. [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, X.J. [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China)

    2015-08-26

    (Fe, Co, Ni) rich dendrites nucleate primarily in CoCrFeMoNi and CoCrCu{sub 0.1}FeMoNi alloys, followed by peritetic and eutectic reactions. The quasi-peritectic reaction occurs between the primary Mo-rich dendrites and liquids in the CoCrCu{sub 0.3}FeMoNi melts, and transfers to a eutectic coupled-growth at the edge of the quasi-peritectic structure. Subsequently, eutectic reaction happens in the remnant liquids. Liquid-phase separations have occurred in CoCrCu{sub x}FeMoNi alloys when x≥0.5. Meanwhile, some nanoscale precipitates are obtained in the Cu-rich region. Two crystal structures, FCC and BCC, are identified in CoCrCu{sub x}FeMoNi high entropy alloys. Amazingly, a pretty high plastic strain (51.6%) is achieved in CoCrCu{sub 0.1}FeMoNi alloy when the compressive strength reaches to 3012 Mpa. With the increase of Cu content, atomic size difference (ΔR) and electro-negativity difference (ΔX) decrease while valence electron concentration (VEC), mixing enthalpy (ΔH) and mixing entropy (ΔS) increase. Consequently, the valence electron concentration (VEC) values range for the formation of mixture of FCC and BCC structures can be enlarged to 6.87–8.35 based on the study of this paper. It is the positive enthalpies of mixing that causes the liquid-phase separation in CoCrCu{sub x}FeMoNi high entropy alloys.

  15. Optimization of Heat Treatment of CuNiSiCrRE Alloy%CuNiSiCrRE合金热处理工艺的优化

    Institute of Scientific and Technical Information of China (English)

    郭宇航; 支海军; 吕秀芬; 师学礼

    2011-01-01

    By means of Brinell hardness tester and eddy-current conductometer as well as SEM, the effects of solid solution temperature, aging and cold deforming before aging on microstructure and properties of the CuNiSiCrRE alloy were studied, then the optimum heat treatment was detennined The results show that the optimized heat treatment process was solution at 900 ℃ for 1. 5 h with cooling in water, 40% cold-working and aging at 480 ℃ for 2 h with cooling in air. The hardness was 229 HB, electrical conductivity was 45. 6%IACS, tensile strength reached 674 MPa, yield strength was 641 MPa, elongation was 16 % and softening temperature was 540 ℃. Tensile fracture was ductile fracture.%采用布氏硬度计、涡流导电仪和扫描电子显微镜等研究了固溶温度、时效及时效前冷变形量对CuNiSiCrRE合金显微组织和性能的影响,在此基础上确定了其最佳热处理工艺.结果表明:该合金的最佳热处理工艺为900℃×1.5h固溶水冷+40%的冷变形+480℃×2h时效空冷,其相应的硬度为229HB,电导率为45.6%lACS,抗拉强度为674MPa,屈服强度为641MPa,伸长率为16%,软化温度为540℃,拉伸断口为韧性断裂.

  16. Microstructure and Tribological Behaviour of CrCuFeNiTi High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Sobiyi Kehinde

    2016-01-01

    Full Text Available The microstructure, hardness and wear performance of CrCuFeTiNi high entropy alloy were evaluated. The alloy was produced by mixing constituent elements, consolidated and melted using vacuum arc furnace. The X-ray diffraction analysis confirmed that the alloy is composed of FCC and BCC simple phases. The microstructure contains three regions that were rich in Cu, Cr and Fe which resulted from segregation of constituent elements. The Vickers micro hardness of the alloy was determined as HV0.5 = 510 ± 7 MPa. The wear performance of the alloy was also studied using WC balls under two load conditions. The volume loss was evaluated, accompanied by analysis of the wear tracks and debris using SEM images and EDS. The main wear mechanisms were ploughing, adhesion and oxidation-dominated wear.

  17. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    Science.gov (United States)

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  18. Fatigue Property Study of 05Cr17Ni4Cu4Nb Steel Weld Joints%05Cr17Ni4Cu4Nb钢焊接接头的疲劳性能

    Institute of Scientific and Technical Information of China (English)

    刘福广; 李振伟; 冯琳杰; 李太江; 王琦; 王彩侠; 李巍

    2013-01-01

    Fatigue property of 05Cr17Ni4Cu4Nb steel used for last stage rotor blade of steam turbine weld joints was studied by means of four-point-bending fatigue test and S-N curve was obtained, compared with parent material at the same time. Results showed that conditional fatigue limit of o5Cr17Ni4Cu4Nb steel weld joints can reach 90%of parent metal using optimized weld and post weld heat treatment process. SEM observation of fracture surface of fatigue specimen showed that the micro-defect at surface or near surface and microstructure heterogeneity are the main influence factors of 05Cr17Ni4Cu4Nb weld joints fatigue property.%采用四点弯曲疲劳试验方法,研究了05Cr17Ni4Cu4Nb汽轮机低压末级动叶片用钢焊接接头的疲劳性能,绘制了该钢焊接接头的S-N曲线,并与05Cr17Ni4Cu4Nb钢母材进行了对比。研究结果表明,采用优化的焊接、热处理工艺,05Cr17Ni4CuNb钢焊接接头的条件疲劳极限可以达到母材的90%以上。疲劳试样断口的扫描电子显微镜观察发现,焊缝表面或近表面的显微缺陷及接头的组织不均匀性是影响05Cr17Ni4Cu4Nb钢焊接接头接头疲劳性能的主要因素。

  19. Standard Specification for Ni-Fe-Cr-Mo-Cu-N Low-Carbon Alloys (UNS N08925, UNS N08031, UNS N08354, and UNS N08926), and Cr-Ni-Fe-N Low-Carbon Alloy (UNS R20033) Bar and Wire, and Ni-Cr-Fe-Mo-N Alloy (UNS N08936) Wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2016-01-01

    Standard Specification for Ni-Fe-Cr-Mo-Cu-N Low-Carbon Alloys (UNS N08925, UNS N08031, UNS N08354, and UNS N08926), and Cr-Ni-Fe-N Low-Carbon Alloy (UNS R20033) Bar and Wire, and Ni-Cr-Fe-Mo-N Alloy (UNS N08936) Wire

  20. Structure and properties of FeCoNiCrCu0.5Alx high-entropy alloy%FeCoNiCrCu0.5Alx高熵合金的结构和性能

    Institute of Scientific and Technical Information of China (English)

    李宝玉; 彭坤; 胡爱平; 周灵平; 朱家俊; 李德意

    2013-01-01

    Effects of Al content and heat treatment on the structure,hardness and electrochemical properties of FeCoNiCrCu0.5Alx high-entropy alloys were investigated.The phase structure of as-cast alloys evolves from FCC phase to BCC phase with the increase of Al content.The stable phase of FeCoNiCrCu0.5Alx high-entropy alloys will transform from FCC phase to FCC+BCC duplex phases when x value increases from 0.5 to 1.5.The hardness of BCC phase is higher than that of FCC phase,and the corrosion resistance of BCC phase is better than FCC phase in chlorine ion and acid medium.High hardness and good corrosion resistance can be obtained in as-cast FeCoNiCrCu05Al1.0 alloy.%研究Al含量和热处理对FeCoNiCrCu0.5Alx多主元高熵合金的相结构、硬度和电化学性能的影响规律.随着Al含量的增加,铸态合金的相结构由FCC相向BCC相转变.当x从0.5增加到1.5时,FeCoNiCrCu0.5Alx高熵合金的稳定结构由FCC结构向FCC+BCC双相结构转变.BCC相的硬度高于FCC相的,在氯离子及酸性介质中BCC相的耐腐蚀性均优于FCC相的.FeCoNiCrCu0.5Al1.0铸态合金具有高硬度和良好的抗腐蚀性能.

  1. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Haettestrand, Mats; Nilsson, Jan-Olof; Stiller, Krystyna; Liu Ping; Andersson, Marcus

    2004-02-23

    A combination of complementary techniques including one-dimensional and three-dimensional atom probe, energy-filtered transmission electron microscopy and conventional transmission electron microscopy has been used to assess the precipitation reactions at 475 deg. C in a 12%Cr-9%Ni-4%Mo-2%Cu precipitation hardening stainless steel. The continuous hardening up to at least 1000 h of ageing was attributed to a sequence of precipitation reactions involving nickel-rich precipitates nucleating at copper clusters followed by molybdenum-rich quasicrystalline precipitates and nickel-rich precipitates of type L1{sub 0}. An estimate of the relative contributions to the strength increment during tempering based on measurements of particle densities was performed. Nickel-rich precipitates were found to play the most important role up to about 40 h of ageing after which the effect of quasicrystalline particles became increasingly important.

  2. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Wu, P.; Zhou, Y.

    2008-01-01

    In this study fixed-bed sorption filters are filled with an iron based sorbent (ferrosorp plus, FP) and used to remove a range of heavy metals (i.e. As, Cd, Cr, Cu, Ni, and Zn) from polluted water. It is found that FP is very effective at simultaneous removal of the heavy metals, and the magnitud...

  3. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Wu, P.; Zhou, Y.;

    2008-01-01

    In this study fixed-bed sorption filters are filled with an iron based sorbent (ferrosorp plus, FP) and used to remove a range of heavy metals (i.e. As, Cd, Cr, Cu, Ni, and Zn) from polluted water. It is found that FP is very effective at simultaneous removal of the heavy metals, and the magnitud...

  4. Electrochemical corrosion behavior of Cu-40Ni-20Cr alloys with different grain sizes in solutions containing chloride ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The electrochemical corrosion behavior of the two Cu-40Ni-20Cr alloys prepared by conventional casting(CA) and mechanical alloying(MA) with the different grain sizes was studied by using open-circuit potential(OCP), potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) methods in solutions containing chloride ions. The results show that the free corrosion potentials of the two alloys move towards negative values, corrosion currents increase and therefore corrosion rates become faster with the increase of chloride ion concentrations. EIS plots of CACu-40Ni-20Cr alloy are composed of single capacitive loop, while EIS plots of MACu-40Ni-20Cr alloy are composed of double capacitive loops in solution containing lower chloride ion concentrations. EIS plots of the two alloys have Warburg impedance with the increase of chloride ion concentrations.Corrosion rates of MACu-40Ni-20Cr alloy become faster than those of CACu-40Ni-20Cr alloy obviously in solutions containing the same chloride ion concentrations because MACu-40Ni-20Cr alloy is able to produce large concentrations of grain boundaries in the course of reduction in grain size by mechanical alloying.

  5. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  6. Effect of component substitution on the microstructure and mechanical properties of MCoCrFeNiTix (M = Cu,Al) solid-solution alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    MCoCrFeNiTix (M = Cu,Al;x:molar ratio,x = 0,0.5) alloys were prepared using the new alloy-design strategy of equal-atomic ratio and high entropy.By the component substitution of Al for Cu,the microstructure changes from the face-centered cubic solid solution of original CuCoCrFeNiTix alloys to the body-centered cubic solid solution of AICoCrFeNiTix alloys.Compared with original CuCoCrFeNiTix alloys,AICoCrFeNiTix alloys keep the similar good ductility and simultaneously possess a much higher compressive strength,which are even superior to most of the reported high-strength alloys like bulk metallic glasses.

  7. Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a Cl-Containing Environment

    Institute of Scientific and Technical Information of China (English)

    Yanlei Zhou; Jun Chen; Yang Xu; Zhenyu Liu

    2013-01-01

    The effects of Cr,Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl-containing environment were investigated.The results revealed that the corrosion process could be divided into the initial stage in which the corrosion rate increased with accumulation of corrosion products and the later stage in which homogeneous and compact inner rust layers started to protect steel substrate out of corrosion mediums.The results of X-ray diffraction (XRD) indicated that the rust layers of the three-group steels (Cr,Cr-Ni and Cr-Ni-Cu steels) were composed of α-FeOOH,β-FeOOH,γ-FeOOH,Fe3O4 and large amounts of amorphous compounds.The content of amorphous compounds of Cr-Ni-Cu steel was about 2%-3% more than that of Cr-Ni steel.The results of electron probe microanalysis (EPMA) showed that Cr concentrated mainly in the inner region of the rust of Cr-Ni-Cu steel,inner/outer interface especially,whereas Ni was uniformly distributed all over the rust and Cu was noticed rarely after 73 wet/dry cycles.The addition of Cr and Ni was beneficial to the formation of dense and compact inner rust layer,which was the most important reason for the improvement of corrosion resistance of experimental steel.

  8. Effect of Cu on the evolution of precipitation in an Fe-Cr-Ni-Al-Ti maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Schnitzer, Ronald, E-mail: ronald.schnitzer@unileoben.ac.at [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Schober, Michael [Department of Physical Metallurgy and Materials Testing, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Zinner, Silvia [Boehler Edelstahl GmbH and Co KG, Mariazeller Strasse 25, A-8605 Kapfenberg (Austria); Leitner, Harald [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)] [Department of Physical Metallurgy and Materials Testing, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)

    2010-06-15

    The evolution of precipitates in an Fe-Cr-Ni-Al-Ti stainless maraging steel alloyed with Cu was investigated during aging at 525 deg. C. Atom probe tomography was used to reveal the development of precipitates and to determine their chemical composition. Two types of precipitates were observed to form during the aging process. Based on their chemical composition these are assumed to be NiAl B2 and Ni{sub 3}(Ti,Al) ({eta}-phase). The two phases of precipitates were found to develop independently of each other and the addition of Cu was found to accelerate precipitation. However, the effect of Cu on the nucleation of these phases is different: on the one hand, in the case of NiAl, Cu is incorporated and thus reduces the activation energy by reducing the lattice misfit; on the other hand, Cu acts as a nucleation site for the precipitation of Ni{sub 3}(Ti,Al) by forming independent Cu clusters.

  9. Ni-Cr-B-Si+Cu-P-Sn复合钎料真空钎焊金刚石%Vacuum brazing diamond with Ni-Cr-B-Si+Cu-P-Sn composite filler metal

    Institute of Scientific and Technical Information of China (English)

    卢金斌; 贺亚勋; 张旺玺; 刘磊; 李华

    2016-01-01

    采用在镍基钎料中分别添加3%、5%和7%(质量分数)Cu-P-Sn组成新型复合钎料,并进行金刚石磨粒的钎焊实验,利用SEM、EDS和XRD对金刚石焊后的界面碳化物形貌及钎料组织进行测试分析。结果表明:添加5%Cu-P-Sn的复合钎料进行金刚石钎焊时,钎焊温度有所下降,金刚石表面碳化物较规整,并且数量有所下降,降低金刚石的热损伤。新型钎料中形成树枝晶α-Ni基固溶体和枝晶间Ni 31 Si 12、Cr 7 C 3等化合物的组织,不同含量Cu-P-Sn与Ni-Cr-B-Si合金可以较大程度互溶,可以实现钎料性能的调控,降低金刚石的热损伤。%A series of new composite brazing fillers metal were got by adding 3%, 5% or 7% (mass fraction) Cu-P-Sn in the primary brazing filler metal Ni-Cr-B-Si, respectively, then, they were used to braze diamond particles. The interface morphology of diamond carbide and the microstructure of brazing filler metal were tested by SEM, EDS and XRD. The results show that, when the composite brazing filler metal containing 5% Cu-P-Sn alloy, the carbide on the surface of the diamond is more regular and less with brazing temperature decreases, which decreases the thermal damage to the diamond. In the brazing filler alloy, the microstructures, such as dentrite included solid solution of Ni with some carbides like Ni31Si12 and Cr7C3, are formed. As the added component, Cu-P-Sn at different proportions can be dissolved into the primary brazing filler Ni-Cr-B-Si in large degree, which can adjust the properties of the filler and reduce the heat damage to the diamond.

  10. Microstructural and electrical investigation of Cu-Ni-Cr alloys obtained by powder metallurgy method

    Energy Technology Data Exchange (ETDEWEB)

    Carrio, Juan A.G.; Carvalhal, M.A.; Ayabe, L.M.; Monteiro, W.A., E-mail: jgcarrio@mackenzie.br [Universidade Presbiteriana Mackenzie (UPM/CCH), Sao Paulo, SP (Brazil). Centro de Ciencias e Humanidades. Dept. de Fisica; Silva, L.C.E. da; Silva Junior, R.V., E-mail: fisica.cch@mackenzie.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The aim of this work, using the powder metallurgy process, is to synthesize metallic alloys with high mechanical strength and high electric conductivity, after melting optimizing and thermal treatments. The Cu-Ni-Cr (wt%) alloys are characterized in their mechanical and electrical properties as well as the obtained microstructure. Through the process of powder metallurgy, contacts and structural parts can be obtained. The alloys elements are added to copper with the intention to improve their strength, ductility and thermal stability, without causing considerable damages in their form, electrical and thermal conductivity, and corrosion resistance. The metallic powders were mixed for a suitable time and then they were pressed in a cold uniaxial pressing (1000 kPa). Afterwards, the specimens were sintered in temperatures varying from 700 up to 800 deg C under vacuum. At last, the samples were homogenized at 550 deg C under vacuum, for special times. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. The alloys were characterized by optical microscopy, X-rays powder diffraction, electrical conductivity and Vickers hardness. (author)

  11. Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations

    Science.gov (United States)

    Wang, Zining; Li, Jia; Fang, QiHong; Liu, Bin; Zhang, Liangchi

    2017-09-01

    The mechanical behaviors and deformation mechanisms of scratched AlCrCuFeNi high entropy alloys (HEAs) have been studied by molecular dynamics (MD) simulations, in terms of the scratching forces, atomic strain, atomic displacement, microstructural evolution and dislocation density. The results show that the larger tangential and normal forces and higher friction coefficient take place in AlCrCuFeNi HEA due to its outstanding strength and hardness, and high adhesion and fracture toughness over the pure metal materials. Moreover, the stacking fault energy (SFE) in HEA increases the probability to initiate dislocation and twinning, which is conducive to the formation of complex deformation modes. Compared to the single element metal workpieces, the segregation potency of solutes into twinning boundary (TB) is raised due to the decreasing segregation energy of TB, resulting in the stronger solute effects on improving twinning properties for HEA workpiece. The higher dislocation density and the more activated slipping planes lead to the outstanding plasticity of AlCrCuFeNi HEA. The solute atoms as barriers to hinder the motion of dislocation and the severe lattice distortion to suppress the free slipping of dislocation are significantly stronger obstacles to strengthen HEA. The excellent comprehensive scratching properties of the bulk AlCrCuFeNi HEAs are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This work provides a basis for further understanding and tailoring SFE in mechanical properties and deformation mechanism of HEAs, which maybe facilitate the design and preparation of new HEAs with high performance.

  12. Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements

    Institute of Scientific and Technical Information of China (English)

    Aumin LI; Xiyan ZHANG

    2009-01-01

    AlCrFeNiCu high-entropy alloy (THA) was synthesized by the arc melting and casting method. The alloy exhibits simple FCC and BCC solid solution phases rather than intermetallic compounds. The reason is that the Gibbs free energy of mixing of the equimolar A1CrFeNiCu alloy is smaller than that of inter-metallic compounds by calculation according to the Miedema model.

  13. Strengthening effect of Cu-rich phase precipitation in 18Cr9Ni3CuNbN austenitic heat-resisting steel

    Institute of Scientific and Technical Information of China (English)

    Chengyu CHI; Hongyao YU; Jianxin DONG; Xishan XIE; Zhengqiang CUI; Xiaofang CHEN; Fusheng LIN

    2011-01-01

    The Cu-containing austenitic heat-resistant steel 18Cr9Ni3CuNbN, which is being used as superheater and reheater tube material for modern ultra-super-critical (USC) power plants all over the world, has been investigated at 650 ℃ long time aging till 10 000 h. SEM, TEM and 3DAP (three dimensional atom probe) have been used to follow microstructural changes with mechanical property variations. Experimental results show that Cu-rich phase and MX precipitate in the grains as well as M23C6 precipitates at grain boundaries are the main precipitation strengthening phases in this steel. Among them Cu-rich phase is the most important strengthening phase. Homogeneous distribution of very fine nano-size Cu-rich phase has been formed at very early stage of 650℃ aging (less than 1 h). Cu atoms gradually concentrate to Cu-rich particles and the other elements (such as Fe, Cr, Ni etc) diffuse away from Curich particles to γ-matrix with the increasing of aging time at 650 ℃. The growth rate of Cu-rich phase at 650 ℃ long time aging is very slow and the average diameters of Cu-rich phase have been determined by TEM method. Cu-rich phase keeps in about 30 nm till 650℃ aging for 10 000 h. It shows that nano-size Cu-rich phase precipitation strengthening can be kept for long time aging at 650 ℃ because of its excellent stability at high temperatures. According to structure stability study and mechanical properties determination results the Cu-rich phase precipitation sequence and its strengthening mechanism model have been suggested and discussed.

  14. Removal of Cu, Cr, Ni, Zn, and Cd from electroplating wastes and synthetic solutions by vermicompost of cattle manure.

    Science.gov (United States)

    Jordão, Cláudio Pereira; Pereira, Madson de Godoi; Einloft, Rosilene; Santana, Marlete Bastos; Bellato, Carlos Roberto; de Mello, Jaime Wilson Vargas

    2002-01-01

    This study was undertaken to evaluate the retention of Cu, Cr, Ni, Zn, and Cd under laboratory conditions from synthetic solution and electroplating wastes by vermicompost. A glass column was loaded with vermicompost, and metal solutions were passed through it. Metal concentrations were then measured in the eluate in order to evaluate the amounts retained by the vermicompost. Measurements of pH, metal concentrations, moistness, organic matter and ash contents, and infrared and XRD spectroscopy were used for vermicompost characterisation. Vermicompost residues obtained from this process were used for plant nutrition in eroded soil collected from a talus near a highway. Metal retention (in g of metal/kg of vermicompost) from effluents ranged from 2 for Cr and Zn to 4 in the case of Ni. In synthetic solutions, the values for metal retention were 4 for Cd and Zn, 6 for Cu and Ni, and 9 for Cr. The results also showed that metal concentrations in the purified effluents were below the maximum values established for waste discharges into rivers by the Brazilian Environmental Standards. The relatively high available Cd concentration of the vermicompost residue resulted in plant damage. This effect was attributed to the presence of Cd in the synthetic solution passed through the vermicompost. The data obtained do not give a complete picture of using vermicompost in cultivated lands, but such values as are determined do show that it can be suitable to remove heavy metals from industrial effluents.

  15. Influence of Al and Cu elements on the microstructure and properties of (FeCrNiCo)Al{sub x}Cu{sub y} high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Q.C., E-mail: fanqichao@126.com [Institute of Machinery Manufacturing Technology, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Li, B.S. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Y. [Institute of Machinery Manufacturing Technology, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2014-11-25

    Highlights: • Relationship between entropy and enthalpy on phase formation was specified. • Phase changed from fcc to fcc plus bcc and then bcc phase. • Mechanical properties changed from plasticity to brittleness. • Young’s modulus, hardness and yield strength increased with Al element. - Abstract: (FeCrNiCo)Al{sub x}Cu{sub y} high-entropy alloys were designed using the strategy of equiatomic ratio, high entropy of mixing and different mixing enthalpies of atom-pairs. The effects of entropy and enthalpy on phase forming process of the alloys were clearly studied and the influences of Al and Cu elements on the microstructure and mechanical properties were investigated. As long as Al element level increased from 0.5 to 1, the microstructure of the alloy system changed from fcc structure to duplex fcc plus bcc structure and then a single bcc structure. Increase of Al element greatly enhanced the Young’s modulus, hardness and yield strength of these alloys. (FeCrNiCo)Al{sub 0.75}Cu{sub 0.5} alloy got the most excellent comprehensive mechanical properties; its fracture strength and plastic strain were as high as 2270 MPa, and 42.70%, respectively. Cu-rich phase formed in the alloys when Cu element was in high levels. Increase of Cu element greatly decreased fracture strength of the high-entropy alloys when Al element was in the high level of x = 1.

  16. Photocatalytic removal of M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) over new catalyst CuCrO(2).

    Science.gov (United States)

    Ketir, W; Bouguelia, A; Trari, M

    2008-10-30

    The metal ions M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) are potentially toxic. Their electro deposition has been carried out in aqueous air-equilibrated CuCrO(2) suspension upon visible illumination. The delafossite CuCrO(2) is p-type semiconductor characterized by a low band gap (1.28 eV) and a long-term chemical stability. The corrosion rate is found to be 10(-2) micromol m(-2)month(-1) in aqua regia. The oxide has been elaborated through nitrate route where the specific surface area is increased via the surface/bulk ratio. A correlation exists between the dark M(2+) adsorption, the redox potential of M(2+/0) couple and the conduction band of CuCrO(2) positioned at -1.06 V(SCE). Ag(+) cannot be photoreduced because of its positive potential located far above the valence band. By contrast, Zn(2+) is efficiently deposited due to the large driving force at the interface. The improved photoactivity of copper with a deposition percentage (90%) is attributed to the strong dark adsorption onto the surface catalyst. The results indicate a competitive effect with the water reduction; it has been observed that the M(2+) deposition goes parallel with the hydrogen evolution. Such behavior is attributed to the low H(2) over voltage when ultra fine aggregate of M islands are photodeposited onto CuCrO(2) substrate.

  17. Microstructure and properties of Al{sub 2}CrFeCoCuTiNi{sub x} high-entropy alloys prepared by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xing-Wu, E-mail: fallenrain922@163.com [Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China); Liu, Chun-Ge [Department of Transportation and Municipal Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China)

    2013-03-15

    Highlights: ► We use a new method (laser cladding) to prepare Al{sub 2}CrFeCoCuTiNi{sub x} high-entropy alloys. ► We studied the effect of Ni content on alloys’ properties. ► Alloys show high microhardness, excellent corrosion resistance and wear resistance. ► The laser cladding layers play a good protective effect on Q235 steel. -- Abstract: The Al{sub 2}CrFeCoCuTiNi{sub x} high-entropy alloys were prepared by laser cladding. Using metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation and tribometer the structure and hardness, corrosion resistance and wear resistance of Al{sub 2}CrFeCoCuTiNi{sub x} high-entropy alloys were tested. The result shows that, Al{sub 2}CrFeCoCuTiNi{sub x} high-entropy alloy samples consist of the cladding zone, bounding zone and heat affected zone. The bounding zone is between cladding layer and the substrate of a good combination; the cladding zone is composed mainly of axis crystal, nanocrystalline and fine white crystals. The Al{sub 2}CrFeCoCuTiNi{sub x} high-entropy alloys coating phase structure samples (FCC and BCC structure) due to high-entropy effect. The surface microhardness of Al{sub 2}CrFeCoCuTiNi{sub x} high-entropy alloys samples up to 1102 HV, about 4 times as the substrate, and the hardness increases with increasing Ni content. Al{sub 2}CrFeCoCuTiNi{sub x} high-entropy alloys coating has good corrosion resistance in 1 mol/L NaOH solution and 3.5% NaCl solution. With the increase of Ni content, the corrosion resistance first increases and then decreases. The relative wear resistance of Al{sub 2}CrFeCoCuTiNi{sub x} high-entropy alloys coating shows a first increased and then a decreased trend with the increase of Ni content. Both the hardness and ductility are affected by wear resistance. The coating can play a good protective role on substrate Q235 steel.

  18. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites.

    Science.gov (United States)

    Mellem, John J; Baijnath, Himansu; Odhav, Bharti

    2009-05-01

    Phytoremediation is an emerging technology where specially selected and engineered metal-accumulating plants are used for bioremediation. This study was undertaken to evaluate the potential of Amaranthus dubius for phytoremediation of chromium (Cr), mercury (Hg), arsenic (As), lead (Pb), copper (Cu) and nickel (Ni). Locally gathered soil and plants of A. dubius were investigated for the metals from a regularly cultivated area, a landfill site and a waste water treatment site. Metals were extracted from the samples using microwave-digestion and analyzed using Inductively Coupled Plasma-Mass Spectroscopy. The mode of phytoremediation, effect of the metals on the plants, ability of the plant to extract metals from soil (Bioconcentration Factor) and the ability of the plants to move the metals to the aerial parts of the plants (Translocation Factor) were evaluated. The survey of the three sites showed that soils were heavily contaminated with Cr, Hg, Cu and Ni. These levels were far above acceptable standards set for soils and above the standards set for the Recommended Dietary Allowance. Specimens of A. dubius from the three sites showed that they could tolerate Hg, sequester it from the soil, and translocate it to the shoots. Cr could only be removed from the soil and stored in the roots, with limited amounts translocated to the aerial parts. Pb, As, Ni, and Cu have some degree of transportability from the soil to the roots but not to aerial parts. The ability of A. dubius to be considered for phytoremediation has to be viewed with caution because translocation of the metals to the aerial parts of the plant is limited.

  19. Development of a CuNiCrAl Bond Coat for Thermal Barrier Coatings in Rocket Combustion Chambers

    Science.gov (United States)

    Fiedler, Torben; Rösler, Joachim; Bäker, Martin

    2015-12-01

    The lifetime of rocket combustion chambers can be increased by applying thermal barrier coatings. The standard coating systems usually used in gas turbines or aero engines will fail at the bond coat/substrate interface due to the chemical difference as well as the different thermal expansion between the copper liner and the applied NiCrAlY bond coat. A new bond coat alloy for rocket engine applications was designed previously with a chemical composition and coefficient of thermal expansion more similar to the copper substrate. Since a comparable material has not been applied by thermal spraying before, coating tests have to be carried out. In this work, the new Ni-30%Cu-6%Al-5%Cr bond coat alloy is applied via high velocity oxygen fuel spraying. In a first step, the influence of different coating parameters on, e.g., porosity, amount of unmolten particles, and coating roughness is investigated and a suitable parameter set for further studies is chosen. In a second step, copper substrates are coated with the chosen parameters to test the feasibility of the process. The high-temperature behavior and adhesion is tested with laser cycling experiments. The new coatings showed good adhesion even at temperatures beyond the maximum test temperatures of the NiCrAlY bond coat in previous studies.

  20. Effect of Ti content on structure and properties of Al{sub 2}CrFeNiCoCuTi{sub x} high-entropy alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, X.W., E-mail: fallenrain922@163.com [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Sichuan College of Architectural Technology, Deyang 618000 (China); Zhang, Y.P. [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Liu, C.G. [Sichuan College of Architectural Technology, Deyang 618000 (China)

    2014-02-05

    Highlights: • Al{sub 2}CrFeNiCoCuTi{sub x} high-entropy alloy coatings were prepared by laser cladding. • Al{sub 2}CrFeNiCoCuTi{sub x} coatings show excellent corrosion resistance and wear resistance. • Al{sub 2}CrFeNiCoCuTi{sub x} coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al{sub 2}CrFeNiCoCuTi{sub x} high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al{sub 2}CrFeNiCoCuTi{sub x} high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al{sub 2}CrFeNiCoCuTi{sub x} high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al{sub 2}CrFeNiCoCuTi{sub x} high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al{sub 2}CrFeCoCuNiTi{sub x} high-entropy alloy coatings enhanced in 0.5 mol/L HNO{sub 3} solution. Compared with Q235 steel, the relative wear resistance of Al{sub 2}CrFeCoCuNiTi{sub x} high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti{sub 0.0} high-entropy alloy is a kind of soft magnetic materials.

  1. Impact of CrSiTi and NiSi on the Thermodynamics, Microstructure, and Properties of AlCoCuFe-Based High-Entropy Alloys

    Science.gov (United States)

    Wang, Xiao-Rong; Wang, Zhao-Qin; Lin, Tie-Song; He, Peng; Sekulic, Dusan P.

    2016-05-01

    Aiming to solve the problem of spontaneous combustion on titanium via electrospark deposition (ESD), two AlCoCuFe-based high-entropy alloys (HEAs), AlCoCuFe- x ( x = CrSiTi, NiSi), were produced by vacuum arc melting as electrodes in ESD process. The thermodynamic analysis of AlCoCuFe-based HEAs were carried out using the concept of mixing enthalpy matrix and a powerful thermodynamic calculation toolbox (HEA-Thermo-Calcu). The microstructure and mechanical properties of the two alloys were investigated. The AlCoCuFeCrSiTi alloy contains a body-centered cubic (BCC) phase and a face-centered cubic (FCC) phase. The AlCoCuFeNiSi alloy is composed of two BCC phases and an FCC phase. Addition of CrSiTi and NiSi to AlCoCuFe-based alloys makes the enthalpy of mixing to be sizably more negative than for the other AlCoCuFe-based HEAs. Notwithstanding the fact that the thermodynamic parameters do not agree with Yang's proposition, the two alloys form simple solid solutions. The electronegativity difference (Δ χ) favors a formation of the solid solution when Δχ ≤ 14.2. The hardness of AlCoCuFe- x ( x = CrSiTi, NiSi) alloys reaches 935 HV and 688 HV, respectively. The yield strength, fracture strength, and ultimate strain of AlCoCuFeNiSi are larger, i.e., 29, 30, and 45%, respectively, than those of the AlCoCuFeCrSiTi alloy.

  2. Accumulation of Zn, Pb, Cu, Cr and Ni in Sediments Between Roots of the Tagus Estuary Salt Marshes, Portugal

    Science.gov (United States)

    Ca çador, Isabel; Vale, Carlos; Catarino, Fernando

    1996-03-01

    Sediment cores of 60 cm length were collected from two Tagus estuary salt marshes. At each salt marsh, samples were taken from a non-vegetated zone and one from each of areas dominated by Halimione portulacoides, Spartina maritimaand Arthrocnemum fruticosum.Cores were sliced in situand, at each sediment layer, redox potential and pH were measured, and the organic matter content (LOI), grain size, and concentrations of Zn, Cu, Pb, Ni and Cr were determined. Sediment between roots and non-vegetated sediments of the same depth (5 -15 cm) were extracted with several acid solutions, and the metal concentrations were compared. Metal residues were determined in roots of vascular plants. Sediment between roots was more oxidative, more acidic and richer in organic matter than non-vegetated sediment. Profiles of Zn, Pb and Cu concentrations in vegetated sediments differed from those recorded in non-vegetated areas: at subsurface layers (where root density is higher), Zn, Pb and Cu were enriched. The percentages of Zn, Pb and Cu removed by acetic acid, nitric acid and DTPA extractions from sediment between roots were much lower than those from non-vegetated sediments, being preferentially linked to the residual fraction. Chromium and Ni behave differently no subsurface enrichment being found and their associations being similar in the two types of sediment. Furthermore, Ni concentrations in roots were much lower than in bulk sediments, while levels of Zn and Pb were similar and Cu values higher. These results point out that plants are an important feature for metal accumulation in salt marshes.

  3. CuSnNiCr真空钎焊金刚石界面微结构分析%Interfacial Microstructure of Diamond Vacuum Brazing with CuSnNiCr

    Institute of Scientific and Technical Information of China (English)

    卢金斌; 贺亚勋; 张旺玺; 穆云超; 丁文锋; 钟素娟; 马佳

    2016-01-01

    为降低钎焊金刚石的热损伤和制造成本,采用 CuSnNiCr 单质金属粉作为钎料,对金刚石磨粒进行了钎焊实验.采用SEM、EDS及 XRD 对金刚石焊后界面微结构、钎料组织进行了分析.结果表明:适合钎焊金刚石的活性成分为 Cu75 Sn15 Ni5 Cr5,该钎料能与金刚石实现化学冶金结合,熔点适中,润湿性较好.金刚石焊后形貌完整,表面基本光滑,表面生成了连续片状(Cr,Fe)7 C3.钎料凝固过程先结晶出α-Cu枝晶,经包晶转变和共析转变,形成了α-Cu 枝晶、Cu5.6 Sn和共析α-Cu,钎料的显微硬度大约为200~250HV0.2.%In order to reduce the heat damage of diamond and manufacturing cost, using CuSnNiCr metal powder as filler and the experiments of brazing diamond abrasive grain were carried out.SEM,EDS and XRD were used to analyze the microstructure of diamond and brazing filler.The results show that the active component of the brazing diamond is Cu75Sn15Ni5Cr5,the melting point of the brazing filler is suitable for brazing diamond,and it can realize the chemical metallurgical bond-ing with diamond.The morphology of diamond is complete,the surface is smooth,and the surface of the diamond is as (Cr,Fe)7 C3 .The brazing filler solidification process of crystallizedα-Cu dendrite, peritectic transformation and eutectoid transformation,the formation of dendrite,Cu5.6 Sn,α-Cu and eutectoidα-Cu,the microhardness of the brazing filler is about 200~250HV0.2.

  4. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions

    Science.gov (United States)

    Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei

    2016-07-01

    In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.

  5. Microstructure and Shear Strength in Brazing Joint of Mo-Cu Composite with 304 Stainless Steel by Ni-Cr-P Filler Metal

    Science.gov (United States)

    Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang

    2015-07-01

    The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.

  6. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero

    2017-02-01

    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  7. Effect of Element Cobalt on Microstructure and Properties of AlFeCuCrNi High Entropy Alloys%钴对AlFeCuCrNi高熵合金组织和性能的影响

    Institute of Scientific and Technical Information of China (English)

    朱海云; 孙宏飞; 高绪

    2013-01-01

    AlFeCuCrNiCo, (χ=0, 0. 5, 1. 0) high entropy alloys were prepared by vacuum arc furnace. The microstructure and phase structure change of AlFeCuCrNi alloys after addition of element cobalt were investigated by ()M, SEM, EMP, XRD and TEM. And hardness, thermal stability and corrosion resistance of these alloys were also studied. The results show the microstructure of AlFeCuCrNiCo., alloys was typically dendritic structure, the phases of these alloys consisted of simple face-centered cubic (FCC) and body-centered cubic (BCC), and adding of element cobalt reduced the lattice constants both of FCC and BCC. Compositions segregation existed in all alloys, and addition of element cobalt promoted segregation of element copper and homogenization of all the other elements. The hardness and corrosion resistance of the alloys were increased after addition of element cobalt and all alloys possessed good thermal stability.%采用真空电弧熔炼技术制备了AlFeCuCrNiCox(x=0,0.5,1.0)合金体系,通过光学显微镜、扫描电镜、电子探针、X射线衍射仪以及透射电镜研究了在AlFeCuCrNi合金中加入钴元素后显微组织及结构的变化,并对合金系的显微硬度、热稳定性及耐腐蚀性进行了研究.结果表明:AlFeCuCrNiCox(x=0,0.5,1.0)合金的显微组织均为树枝晶;合金的物相组成均为简单的体心立方和面心立方的混合结构,钴元素的加入会使合金中体心立方和面心立方的晶格常数均有所减小;所有合金均存在成分偏析现象,钴元素的加入加剧了合金中铜元素的偏析,但促进了其他元素的均匀化;钴元素的加入使合金显微硬度提高,耐腐蚀性增加;所有合金均具有较好的热稳定性.

  8. Determination of Cr, Cu, Fe, Ni, Pb and Zn by ICP-OES in mushroom samples from Sakarya, Turkey

    Directory of Open Access Journals (Sweden)

    Esra Altıntığ

    2017-06-01

    Full Text Available Russula cyanoxantha, Russula delica, Lactarius salmonicolor, Lactarius deliciosus, Pleurotus eryngii, Pleurotus ostreatus, Agaricus bisporus, Suillus luteus, Pleurotus spp and Boletus edulis were collected from Sakarya-Turkey respectively. Also canned food in the form of the Pleurotus eryngii, Pleurotus ostreatus, and Lactarius salmonicolor mushrooms were used for the examination. Trace metal concentrations found in these mushrooms were determined inductively using coupled plasma optic emission spectrometry microwave processes. The results were obtained for (Cr 0.3-26.65, (Cu 17.38-132.75, (Fe 26.3-225.40, (Ni 2.57-39.28, (Pb 11.52-185.20, and (Zn 22.86-126.84 mg/kg. The accuracy of the method was checked by the standard reference material; tea leaves (INCY-TL-1 and tomato leaves (1573a.

  9. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Mikkelsen, Peter Steen; Ledin, Anna

    2016-01-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd...

  10. Evaluation of Cd, Cr, Cu, Ni, and Pb in selected cosmetic products from Jordanian, Sudanese, and Syrian markets.

    Science.gov (United States)

    Massadeh, A M; El-Khateeb, M Y; Ibrahim, S M

    2017-08-01

    There is no sufficient data that evaluate heavy metal content in cosmetic products in Jordan as well as Sudan and Syria. This study aims to assess metal levels which include Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), and Lead (Pb) in cosmetic products. These elements have draft limits because they are identified as potential impurities and are known to be toxic. This study aims to provide information to the population that may be beneficial to public health. Samples were collected from different brands obtained from markets in Jordan, Sudan, and Syria. Some of the selected cosmetic products were eyeliner, eye pencil, mascara, lipstick, powder, face cream, body cream, sun block, Vaseline, and the traditional eye cosmetic (kohl). The heavy metal content in these samples were determined by atomic absorption spectrometry (AAS). Based on analysis of variance analysis, a significant difference in heavy metal levels was found for samples obtained from Jordanian and Sudanese markets. The acid digestion method used in this study was based on procedures recommended by Nnorom et al. with some modifications as follows. (i) A weight of 2.0 g of cosmetic sample was dissolved in a mixture of 6 mL of high quality concentrated 69% nitric acid (HNO3; Merck, Darmstadt, Germany) and 4 mL of concentrated 37% hydrochloric acid (Scharlau, Spain) in a porcelain crucible and heated on a hotplate to near dryness. (ii) An aliquot of 15 mL HNO3 (1.00 M) was added to the digested sample and filtered through a Whatman No. 40 filter paper. (iii) The digested sample was transferred quantitatively into a 25 mL volumetric flask and then diluted with deionized water. (iv) Each digested sample was evaporated at 70 °C to about 1 mL and transferred into a polyethylene flask and diluted with 25 mL deionized water. (v) Blank was treated in the same procedure. In Jordan the concentration ranges of heavy metals in the collected samples were: Cd (0.03-0.10 μg/g), Cr (0.0-1.00

  11. Extratores para Cd, Cu, Cr, Mn, Ni, Pb e Zn em LATOSSOLOS tratados com biossólido e cultivados com milho Extractants for Cd, Cu, Cr, Mn, Ni, Pb and Zn in biossolid-amanded Oxisols cultivated with corn

    Directory of Open Access Journals (Sweden)

    Ana Rosa Martins dos Anjos

    2001-06-01

    Full Text Available O uso de biossólidos (lodo de esgoto em áreas agrícolas cria uma demanda por informações sobre o extrator mais adequado para se prever disponibilidade de metais pesados, presentes nesse resíduo, para as espécies vegetais cultivadas nessas áreas. A eficiência dos extratores HCl 0,1 mol L-1, Mehlich 3 e DTPA 0,005 mol L-1 pH 7,3 e da água régia na previsão da fitodisponibilidade de metais pesados presentes em solos tratados com biossólido foi avaliada através de um experimento com milho cultivado em LATOSSOLO VERMELHO Distrófico (LVd e LATOSSOLO AMARELO Distrófico (LAd. As parcelas experimentais foram vasos com capacidade para 0,5 m³de terra, distribuídos em blocos ao acaso, em esquema fatorial 4 x 4, quatro tratamentos (LVd+lodo, LVd, LAd+lodo e LAd e quatro métodos de extração com quatro repetições. O biossólido foi aplicado antes do cultivo do milho, numa quantidade total de 388 Mg ha-1, base seca, parcelada em 5 vezes espaçadas de 2 meses cada. Antes de semear o milho foi feita a amostragem da terra a 0-0,20 m, que foi analisada para teor total dos metais presentes com água régia e teores trocáveis removidos pelos extratores: solução 0,1 mol L-1 de HCl, Mehlich 3; DTPA-TEA pH 7,3. As plantas foram separadas em folha diagnose, folhas ao final do ciclo, pendão, colmo, bainha, sabugo, palha e grãos. Apesar da quantidade de biossólido aplicada aos solos, os teores totais dos metais analisados não excederam os limites críticos estabelecidos pela United States Environmental Protection Agency (USEPA e pela Diretriz da Comunidade Européia. As correlações feitas entre teor de metais presentes nas várias partes das plantas e teores dos metais removidos pelos diferentes extratores evidenciaram que Mehlich 3 foi eficiente apenas na previsão da fitodisponibilidade de Cu e Zn. Nenhum dos extratores testados foi eficiente na previsão da disponibilidade de Cd, Cr, Ni e Pb para as plantas de milho.The use of biossolids

  12. PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS%不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变

    Institute of Scientific and Technical Information of China (English)

    吴臣亮; 张松; 张春华; 关锰; 谭俊哲

    2016-01-01

    采用激光高熵合金化技术在2Cr13不锈钢表面制备FeCoCrAlCuNiMox (x=0,0.5,l,摩尔分数)激光高熵合金化层.利用XRD,SEM,EDS及显微硬度计对FeCoCrAlCuNiMox激光高熵合金化层的相转变机制、微观组织形貌及硬度进行研究.结果表明,2Cr13不锈钢基材主元素Fe,Cr在激光辐照条件下参与了表面合金化过程,形成了FeCoCrAlCuNiMox激光高熵合金化层;随着Mo含量的增加,合金化层相结构逐渐由fcc+bcc双相固溶体结构转变为fcc+bcc+hcp三相共存,hcp相主要为Ni3Mo和Co7Mo6,且Ni3Mo相含量高于Co7Mo6相;熔池的凝固温度在激光高熵合金化层相选择过程中起到重要作用.激光高熵合金化层显微组织为典型的枝晶组织;随着Mo含量的增加,枝晶内析出块状Ni3Mo和Co7Mo6相.FeCoCrAlCuNi-Mox激光高熵合金化层的显微硬度在390~490 HV之间,且Mo含量的增加显著提高高熵合金化层的硬度.

  13. Bond strength of W-Cu/CuCr integrated material

    Institute of Scientific and Technical Information of China (English)

    范志康; 梁淑华; 薛旭

    2001-01-01

    The bond strength of W-Cu/CuCr integrated material was investigated. The results show that the fracture of W-Cu/CuCr integrated material often takes place at W-Cu/CuCr interface. Some alloying elements enhance the bond of W and CuCr alloy, which results in the increase of the strength of the W-Cu/CuCr interface. And the fracture of the WCu/CuCr integrated material occurs in the CuCr alloy part, not at the W-Cu/CuCr interface. Chromium in CuCr alloy part of the integrated material can improve Cr diffusing from the CuCr alloy to W-Cu composite and can be alloyed (near the W-Cu/CuCr interface) in the W-Cu composite. Thus the strength of W-Cu/CuCr interface is also increased.

  14. Comparative assessment of the biological tolerance of chernozems in the south of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment

    Science.gov (United States)

    Kolesnikov, S. I.; Yaroslavtsev, M. V.; Spivakova, N. A.; Kazeev, K. Sh.

    2013-02-01

    The biological properties of chernozems in the south of Russia worsen under the impact of contamination with Cr, Cu, Ni, and Pb compounds. The tolerance of chernozems towards contamination decreases in the following sequence: ordinary chernozems > typical chernozems > southern chernozems > leached vertic chernozems. This sequence is specified by the soil reaction and the organic matter content. The high humus content determines the high buffer capacity of chernozems towards contamination with chromium, whereas the high pH values ensure the soil tolerance towards contamination with copper, nickel, and lead. With respect to their adverse effect on the biological properties of the chernozems, the studied heavy metals can be arranged into the following sequence: CrO3 > CuO > PbO ≥ NiO.

  15. Measurement of K-Shell Ionization Cross Sections of Cr, Ni and Cu Atoms by 7.5-25 keV Electron Impact

    Institute of Scientific and Technical Information of China (English)

    安竹; 唐昶环; 罗正明

    2001-01-01

    The K-shell ionization cross sections of Cr, Ni and Cu elements by 7.5-25 keV electron impact have been measured.The experimental data have also been compared with the theoretical predictions of the Hippler and Mayol-Salvat models. In general, it seems that the Mayol-Salvat model can provide a better description to our experimental data.

  16. Spectrophotometric Study of Stability Constants of Cr(III, Ni(II and Cu(II Complexes with a Schiff’s Base in Different Solvents

    Directory of Open Access Journals (Sweden)

    Israel Leka Lere

    2013-12-01

    Full Text Available Complexation of Cr(III, Ni(II and Cu(II with para-dimethylaminoanil of ortho-hydroxyphenylglyoxal Schiff’s base in methanol, ethanol and acetone solvents has been studied spectrophotometrically at room temperature (298K. The stoichiometry and stability of the complexes were determined using mole-ratio method. Stability data shows solvent-wise stability order as methanol > ethanol > acetone.

  17. Microstructure and Mechanical Properties of Co21Cr22Cu22Fe21Ni14 Processed by High Pressure Torsion and Annealing

    Science.gov (United States)

    Park, Nokeun; Li, Xiang; Tsuji, Nobuhiro

    2015-08-01

    The strengthening mechanisms of Co21Cr22Cu22Fe21Ni14 multiple-principal element alloy processed by high pressure torsion (HPT) and annealing were examined. Two face-centered cubic (FCC) phases were observed in the as-cast alloy; one was a Cu-rich phase and the other was a Cu-lean one. In the HPT process, the microhardness increased from 190 HV to 470 HV at a strain of 157 due to strain hardening and grain refinement hardening. X-ray diffraction showed that the lattice parameters of the two FCC phases became closer to each other at higher HPT strain, indicating the alloying of Cu into the Cu-lean matrix. The HPT processed specimens were annealed at 500°C, 550°C, 600°C, and 650°C. The microhardness increased to 540 HV after annealing at temperatures lower than 650°C, whereas it decreased when the specimen was annealed at 650°C. The mean grain size of the specimens annealed at temperatures lower than 650°C was much smaller than 100 nm, and Cu-rich clusters with sizes ranging from 2 nm to 32 nm were distributed homogeneously. The reasons for the formation of the Cu-rich nano-clusters were discussed from a perspective of the positive mixing enthalpy of Cu in the alloy and thermalenergy for Cu diffusion at a given temperature. The dissolution and partitioning of two FCC phases played a key role in strengthening the Co21Cr22Cu22Fe21Ni14 system.

  18. FeCoNiCrCu_(0.5)Al_x高熵合金的结构和性能(英文)

    Institute of Scientific and Technical Information of China (English)

    李宝玉; 彭坤; 胡爱平; 周灵平; 朱家俊; 李德意

    2013-01-01

    研究Al含量和热处理对FeCoNiCrCu0.5Alx多主元高熵合金的相结构、硬度和电化学性能的影响规律。随着Al含量的增加,铸态合金的相结构由FCC相向BCC相转变。当x从0.5增加到1.5时,FeCoNiCrCu0.5Alx高熵合金的稳定结构由FCC结构向FCC+BCC双相结构转变。BCC相的硬度高于FCC相的,在氯离子及酸性介质中BCC相的耐腐蚀性均优于FCC相的。FeCoNiCrCu0.5Al1.0铸态合金具有高硬度和良好的抗腐蚀性能。

  19. Synthesis and Characterization of 2-imino-3–(2-Hydroxylphenyl-1-Thiazolidin-4-one Substituted Ammine Complexes of Cr(III, Co(III, Ni(II and Cu(II

    Directory of Open Access Journals (Sweden)

    Abadi Hadush

    2013-12-01

    Full Text Available Mixed ligand complexes of Cr(III, Co(III, Ni(II and Cu(II synthesized by partial substitution of 2-imino-3–(2-hydroxylphenyl-1-thiazolidin-4-one in respective ammine complexes were characterized by elemental analysis, conductance and magnetic measurements, infrared and uv-visible spectroscopy. Cr(III, Co(III and Ni(II complexes were octahedral whereas Cu(II complex was square planar.

  20. Cu-Mn-Ni-Ag钎料高频感应钎焊2Cr13不锈钢接头的显微组织与性能%Microstructure andperformance of 2Cr13stainless steel joint by high frequency induction brazing usingCu-Mn-Ni-Agfiller alloy

    Institute of Scientific and Technical Information of China (English)

    郑义; 颜家振; 李宁; 曹永同; 帅帆

    2016-01-01

    The characteristic of Cu-Mn-Ni-Ag filler alloy and the microstructure and mechanical properties of the 2Cr13 stainless steel joint brazed by high frequency induction brazing using Cu-Mn-Ni-Ag filler alloywerestudied. The results show that the melting point of the Cu-Mn-Ni-Ag filler alloy is 880℃and it is composed of Ag-rich phase, Cu-Mn-Ni solid solution and a little Ni-Mn-Si compound; a layer of Fe-Mn-Ni-Cr-Cu solid solution forms at the interface between the filler alloy and base metal, and the brazing seam zone is composed of Ag-rich phase, Cu-Mn-Ni solid solution and a little Ni-Mn-Si compound. The brazing jointsfailsin the inside Cu-Mn-Ni solid solution and Ag-rich phase, and the fracture mode of the joints is mainly ductile dimple fracture, the best shear strength of the brazing joint at room temperature is 369 MPa, the high temperature shear strength of the brazing joints at 400℃, 500℃and 600℃are 251 MPa, 208 MPa and 84 MPa,respectively.%采用新型的Cu-Mn-Ni-Ag中温铜基钎料高频感应钎焊2Cr13不锈钢,并对钎料的工艺特性、钎焊接头的显微组织以及测试温度对钎焊接头力学性能的影响进行研究。结果表明:Cu-Mn-Ni-Ag钎料的熔点约为880℃,由富Ag相、Cu-Mn-Ni固溶体以及少量的Ni-Mn-Si化合物组成;钎料与2Cr13不锈钢产生良好的冶金结合,且钎焊接头组织致密;界面反应区的组织为Fe-Mn-Ni-Cr-Cu固溶体,钎缝区组织由富Ag相、Cu-Mn-Ni固溶体和少量的Ni-Mn-Si化合物组成;钎焊接头断裂于钎缝中间的富Ag相和CuMnNi固溶体上,为以剪切韧窝为主的韧性断裂,室温剪切强度最大可达369 MPa,在400℃、500℃和600℃下接头的剪切强度分别为251 MPa、208 MPa和84 MPa。

  1. Analysis and control on forging cracks of steel 0 Cr17 Ni4 Cu4 Nb%0 Cr17 Ni4 Cu4 Nb钢锻造裂纹分析与控制

    Institute of Scientific and Technical Information of China (English)

    郎荣兴; 李贵全; 殷春云

    2016-01-01

    For raw materials and forging technology of stainless steel 0Cr17Ni4Cu4Nb, it was found that the main reason for cracks pro-duced in forging was the excessive amounts of the delta ferrite in material internal microstructure. When the content of delta ferrite excee-ded a certain amount, the forging plasticity of material significantly decreased and the deformation resistance increased. Once deformation gradually increased to a certain amount, the cracks appeared, and became more serious with the increase of deformation. Research results show that check and control the content of delta ferrite in raw materials before using to ensure that the materials still have good plasticity in the hot working process and the ferrite content is less than 20% and meets or above the standard of F7 level of CB/T 1209—1992. At the same time roughness of the blank must achieve above Ra1. 6μm-Ra0. 8μm and the forging tools should be preheated and the forging de-formation of each heat should be strictly controlled to satisfy the requirement of design and quality of forgings.%针对0Cr17Ni4Cu4Nb不锈钢锻造生产过程中产生的锻造裂纹,对原材料和锻造工艺进行分析发现,产生裂纹的主要原因是由于材料内部组织中的δ铁素体含量超过一定量时,会极大地降低材料的锻造塑性,使得变形抗力增大;当变形量逐渐增加到一定量时,裂纹开始出现,并且随着变形量的增加裂纹越来越严重。研究结果表明,在使用该材料时,需要对原材料进行铁素体含量检查并加以控制,铁素体含量要求<20%,符合CB/T 1209—1992 F7级以上标准,保证该材料良好的热加工工艺塑性;毛坯粗糙度要求达到Ra=1.6~0.8μm以上,预热锻造工具,严格控制每一火次的锻造变形量,以满足锻件的设计和质量要求。

  2. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.

    Science.gov (United States)

    Chandra, Ram; Yadav, Sangeeta

    2011-07-01

    A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater.

  3. Removal of Cr(III), Ni(II) and Cu(II) by poly(gamma-glutamic acid) from Bacillus subtilis NX-2.

    Science.gov (United States)

    Yao, Jun; Xu, Hong; Wang, Jun; Jiang, Min; Ouyang, Pingkai

    2007-01-01

    Poly(gamma-glutamic acid) (gamma-PGA) derived from Bacillus subtilis NX-2 was investigated as a sorbent for heavy metal ions in batch adsorption experiments. The results showed that the heavy metal adsorption capacity of gamma-PGA enhanced with the increase of pH, in the following order: Cr(III) > Cu(II) > Ni(II), within the pH range 3-5. The Langmuir sorption model effectively described the metal sorption of y-PGA through the experiments of isotherm sorption, and it was deduced that the affinity of gamma-PGA for metals was following the sequence: Cr(III) > Cu(II) > Ni(II). Gamma-PGA was also used to trap trace amounts of heavy metals from the electroplating wastewater, which were difficult to be entirely removed by the traditional hydroxide precipitation method. The results showed that Cr(III) and Ni(II) in the electroplating effluent decreased from 3.07 and 9.46 mg/l to 0.15 and 1.01 mg/l, respectively, and the treated solutions reached the effluent standard. Therefore, gamma-PGA is satisfactory as a well biosorbent for the removal of heavy metals. The adsorption mechanism of gamma-PGA binding heavy metals was also studied using HyperChem simulation and FT-IR.

  4. Effect of the competition of Cu(II) and Ni(II) on the kinetic and thermodynamic stabilities of Cr(III)-organic ligand complexes using competitive ligand exchange (EDTA).

    Science.gov (United States)

    Cunha, Graziele da Costa; Goveia, Danielle; Romão, Luciane Pimenta Cruz; de Oliveira, Luciana Camargo

    2015-05-01

    The effect of competition of Cu(II) and Ni(II) on the kinetic stability of Cr(III) complexed with natural organic matter (NOM) was characterized using EDTA exchange with single-stage tangential-flow ultrafiltration. For a water sample from Serra de Itabaiana, 3% of spiked Cr(III) was exchanged, while for a sample from the Itapanhaú River, 7, 10, 10, and 21% was exchanged in experiments using Cr(III) alone and in combination with Cu(II), Ni(II), or Cu(II) + Ni(II), respectively. Times required to reach exchange equilibrium with EDTA were less than 360 min. The influence of competition from Ni(II) and Cu(II) on the availability of complexed Cr(III) was low, demonstrating preference of the ligand sites for Cr(III). This was correlated with sample humification, as confirmed by EPR and (13)C NMR analyses. Exchange efficiency was in the order Cu > Ni > Cr, and the process could be readily described by first order kinetics, with average rate constants of 0.35-0.37 h(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Electronic structure and half-metallicity in new Heusler alloys CoYO2 (Y = Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn)

    Science.gov (United States)

    Esteki, S.; Ahmadian, F.

    2017-09-01

    First-principles calculations based on density functional theory (DFT) using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method were applied to study the electronic structures and magnetic properties of new Heusler alloys CoYO2 (Y = Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn). The calculated formation energies of these compounds were negative, therefore, they can be synthesized experimentally. All compounds were stable in ferromagnetic AlCu2Mn-type structure. In AlCu2Mn-type structure, CoScO2, CoFeO2, and CoNiO2 compounds were HM ferromagnets, CoCuO2 was a nearly half-metal, CoZnO2 was a spin gapless semiconductor, and other compounds were conventional ferromagnets. In CuHg2Ti-type structure, CoTiO2 compound had a nearly HM characteristic, CoVO2 was a spin gapless semiconductor, and other compounds were conventional ferromagnets. The origin of the half-metallic band gap for CoScO2 alloy Heusler alloy was well understood. The total magnetic moments of the three HM compounds obeyed Slater-Pauling rules (Mtot = 22-Ztot and Mtot = 32-Ztot). CoScO2 had the widest region of half-metallicity between the three half-metals indicating its high robustness of half-metallicity with respect to the variation of lattice constants.

  6. Effects of Mn and Cu on the Mechanical Properties of a High Strength Low Alloy NiCrMoV Steel

    Institute of Scientific and Technical Information of China (English)

    A.Abdollah-zadeh; M. Belbasy

    2005-01-01

    The present study focuses on the effects of Mn and Cu on the mechanical properties, in particular, strength and toughness of a low alloy steel containing Ni, Cr, Mo and V. Specimens with different amounts of Mn (0.23%~0.85%)and Cu (0.15%~0.45%) were cast and forged, and then austenitized at 870℃ for 1 h, followed by oil quenching. All specimens were tempered at 650℃ for 1 h. The results show that as the amounts of Mn and Cu increase respectively from 0.35% to 0.85% and from 0.15% to 0.45%, the yield and tensile strength increase. The highest impact energies were observed in the specimen with 0.35% Mn and in the specimen with 0.25% Cu. The impact energy decreases with increasing the Mn and Cu from 0.35% to 0.85% and from 0.25% to 0.45%, respectively. Furthermore, the variation of Mn and Cu does not cause a considerable change in the tempered martensite microstructure. The optimum strength and toughness is observed in 0.35% Mn containing steel and in the 0.25% Cu containing steel.

  7. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils.

    Science.gov (United States)

    Asensio, Verónica; Vega, Flora A; Singh, Bal Ram; Covelo, Emma F

    2013-01-15

    Soils at a depleted copper mine in Touro (Galicia, Spain) are physically and chemically degraded and have also polluted the surrounding area. Due to these environmental problems and the large area of these mine soils, the reclamation strategies carried out at Touro have consisted of planting trees (pine or eucalyptus), amending with waste material (sewage sludge and paper mill residues), or using both treatments. Tree planting has been carried out for 21 years and waste amending for 10. Two different zones were selected in the mine (the settling pond and mine tailing) in order to evaluate the effect of the different reclamation practices on the chemical fractions of Cr, Cu, Ni, Pb and Zn. The results showed that soils in the untreated sites were polluted by Cr and Cu. Planting pines and eucalyptus on mine soils decreased the concentration of these heavy metals in non-mobile soil fractions. Amendments also attenuated pollution by Cr and Cu as the wastes that were used had lower concentrations than the untreated mine soils. Planting trees increased Ni, Pb and Zn retention in the non-mobile fractions, preventing them from being leached into surrounding areas. However, caution should be exercised when adding organic wastes, as they can lead to increase concentrations of Ni, Pb and Zn and their phytoavailable form. The results also showed that changes in the chemical fractionation of heavy metals in soils was more influenced by the clay percentage and both dissolved and soil organic carbon (SOC and DOC) than by soil pH or cation exchange capacity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Transient Liquid Phase Bonding of Cu-Cr-Zr-Ti Alloy Using Ni and Mn Coatings: Microstructural Evolution and Mechanical Properties

    Science.gov (United States)

    Venkateswaran, T.; Ravi, K. R.; Sivakumar, D.; Pant, Bhanu; Janaki Ram, G. D.

    2017-08-01

    High-strength copper alloys are used extensively in the regenerative cooling parts of aerospace structures. Transient liquid phase (TLP) bonding of a Cu-Cr-Zr-Ti alloy was attempted in the present study using thin layers of elemental Ni and Mn coatings applied by electroplating. One of the base metals was given a Ni coating of 4 µm followed by a Mn coating of 15 µm, while the other base metal was given only the Ni coating (4 µm). The bonding cycle consisted of the following: TLP stage—heating to 1030 °C and holding for 15 min; homogenization stage—furnace cooling to 880 °C and holding for 2 h followed by argon quenching to room temperature. Detailed microscopy and electron probe microanalysis analysis of the brazed joints were carried out. The braze metal was found to undergo isothermal solidification within the 15 min of holding time at 1030 °C. At the end of TLP stage, the braze metal showed a composition of Cu-17Ni-9Mn (wt.%) at the center of the joint with a steep gradient in Ni and Mn concentrations from the center of the braze metal to the base metal interfaces. After holding for 2 h at 880 °C (homogenization stage), the compositional gradients were found to flatten significantly and the braze metal was found to develop a homogeneous composition of Cu-11Ni-7Mn (wt.%) at the center of the joint. In lap-shear tests, failures were always found to occur in the base metal away from the brazed region. The copper alloy base metal was found to undergo significant grain coarsening due to high-temperature exposure during brazing and, consequently, suffer considerable reduction in yield strength.

  9. Drinking water interlaboratory ring test. Part IV. Results of some cationic analytes. Al, Zn, Cd, Cr, Pb, Ni, Mn, Fe, Cu and V; Circuito interlaboratorio Unichim sulle acque potabili. Parte IV. Risultati di alcuni cationi metallici. Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu e V

    Energy Technology Data Exchange (ETDEWEB)

    Cavaterra, E.; Divo, C.; Bottazzini, N. [Unichim, Milan (Italy); Alava, F. [Bergamo Ambiente e Servizi, Bergamo (Italy); Bettinelli, M. [Electric Power Production Company, Piacenza (Italy); Bonfiglioli, F. [Azienda Mediterranea Gas e Acqua SpA, Genoa (Italy)

    2002-01-01

    In this paper results of statistical treatment of experimental data obtained in some cycles of an interlaboratory ring test of content of Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu and V in drinking water are reported. Means, variances and parameters of precision and accuracy of some analytical techniques and methods employed by laboratories participating to the ring test will be reported and discussed. [Italian] Nel presente lavoro vengono riportati i risultati dell'elaborazione statistica dei dati sperimentali ottenuti in alcuni cicli del circuito interlaboratorio e relativi ai seguenti cationi metallici: Al, Zn, Cd, Co, Cr, Pb, Ni, Mn, Fe, Cu e V. Vengono riportati e discussi i valori medi e la varianza ed infine i dati di accuratezza e precisione delle tecniche o metodi d'analisi impiegati dai laboratori partecipanti al circuito.

  10. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    Science.gov (United States)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  11. Ferromagnetism on a paramagnetic host background: the case of rutile TM:TiO{sub 2} single crystals (TM = Cr, Mn, Fe, Co, Ni, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    Sangaletti, L [Dipartimento di Matematica e Fisica, Universita Cattolica, Via dei Musei 41, 25121 Brescia (Italy); Mozzati, M C [CNISM and Dipartimento di Fisica ' A Volta' , Universita di Pavia, Via Bassi 6, 27100 Pavia (Italy); Galinetto, P [CNISM and Dipartimento di Fisica ' A Volta' , Universita di Pavia, Via Bassi 6, 27100 Pavia (Italy); Azzoni, C B [CNISM and Dipartimento di Fisica ' A Volta' , Universita di Pavia, Via Bassi 6, 27100 Pavia (Italy); Speghini, A [Dipartimento Scientifico e Tecnologico, Universita di Verona, Strada Le Grazie 15, 37134 Verona (Italy); Bettinelli, M [Dipartimento Scientifico e Tecnologico, Universita di Verona, Strada Le Grazie 15, 37134 Verona (Italy); Calestani, G [Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universita di Parma, Parco Area delle Scienze 17/A, 43100 Parma (Italy)

    2006-08-16

    Single crystals of TiO{sub 2} rutile doped with Cr, Mn, Fe, Co, Ni, and Cu were grown with the flux method in a Na{sub 2}B{sub 4}O{sub 7} melt. The samples, checked in their structural and phase homogeneity by x-ray diffraction and micro-Raman spectroscopy, were single-phase needle-shaped crystals several millimetres long. Paramagnetic and ferromagnetic behaviours at room temperature were observed and they are discussed also in connection with the magnetic properties of undoped TiO{sub 2} crystals.

  12. Structural and H2 sorption properties of MgH2-10 wt%ZrCrM (M = Cu, Ni) nano-composites

    Science.gov (United States)

    Agarwal, Shivani; Aurora, Annalisa; Jain, Ankur; Montone, Amelia

    2011-11-01

    Magnesium and its hydride MgH2 are widely regarded as promising candidates for hydrogen storage materials due to its benefits of high gravimetric and volumetric capacity, excellent reversibility, abundance in the earth and a low cost. Much attention has been paid to improve its absorption/desorption kinetics, trying to make it useful for practical applications. To make composite of MgH2 with other hydrogen storage compounds is an effective method to improve the hydrogen storage properties. In this study nano-composite of MgH2 with ZrCrCu alloy was prepared using high energy ball-milling for 5 h under Ar atmosphere. Microstructure and morphology of the composites were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM). XRD patterns show that no alloy formation between MgH2 and elements of the alloys takes place during milling. Different morphology of the powders as-milled and after cycling was observed by SEM. Pressure-composition isotherms of these composites have been obtained in the pressure range 0.1-10 bar at 275 and 300 °C. The absorption/desorption kinetics data have been analyzed using pressure 0.1-5.0 bar at 275 and 300 °C to understand the mechanism of the hydriding/dehydriding reaction processes. A comparison of these results has been attempted with our previous published results of MgH2-10 wt%ZrCrNi in order to find the better composite for storage applications. It is observed by DSC curves that the onset temperature of hydrogen desorption is decreased for MgH2-10%ZrCrNi in comparison to MgH2 which further decreased for MgH2-10%ZrCrCu. However, little loss in hydrogen absorption/desorption capacity is also observed for ZrCrCu composite in comparison to that of ZrCrNi composite.

  13. Fabrication of CuAl1-xMxO2 (M = Fe, Cr)/Ni film delafossite compounds using spin coating and their microstructure and dielectric constant

    Science.gov (United States)

    Diantoro, Markus; Yuwita, Pelangi Eka; Olenka, Desyana; Nasikhudin

    2014-09-01

    The discovery of delafossite compound has encouraged more rapid technological developments particularly in transparent electronic devices. Copper oxide-based transparent thin films delafossite semiconductor recently give much attention in the field of optoelectronic technology, after the discovery of p-type CuAlO2. The potential applications of a p-type semiconductor transparent conductive oxides (TCO) have been applied in broad field of optoelectronics. To explore a broad physical properties interms of magnetic conducting subtitution is understudied. In this work we report the fabrication of delafossite film on Ni substrate and their characterization of CuAl1-xMxO2 delafossite compounds doped with Cr3+ and Fe3+ from the raw material of Cu(NO3)2˙3H2O, Al(NO3)3˙9H2O, Fe(NO3)3˙9H2O and Cr(NO3)3˙9H2O. The films were prepared using spin coating through a sol-gel technique at various concentrations of x = 0, 0.03, 0.04, and 0.05 for chromium and x = 0, 0.02, 0.04, 0.06, and 0.08 for iron doped. Crystal and microstructure were characterized by means of Cu-Kα Bragg-Brentano X-RD followed by High Score Plus and SEM-EDAX. The dielectric constants of the films were characterized using LCR meter. It was found that the CuAl1-xMxO2/Ni delafossite films were successfully fabricated. The CuAl1-xFexO2 compound crystallized with lattice parameters of a = b ranged from 2.8603 Å to 2.8675 Å and c ranged from 16.9576 to 17.0763 Å. The increase of the dopant give rise to the increase of the lattice parameters. Since iron has bigger ionic radius (69 pm) than original site of Al3+ with radius of 53 pm the crystal volume lattice also increase. Further analyses of increasing volume of the crystal, as expected, affected to the decreasing of its dielectric constant. The similar trends also shown by Cr3+ doped of CuAl1-xCrxO2 films with smaller effects.

  14. Structure formation and properties of sputter deposited Nb{sub x}-CoCrCuFeNi high entropy alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Braeckman, B.R., E-mail: bertR.braeckman@ugent.be; Depla, D.

    2015-10-15

    Thin films of the high entropy alloy Nb{sub x}-CoCrCuFeNi with different niobium concentrations were deposited by magnetron sputtering. The film density and the residual stress of the niobium-free (x = 0) thin films clearly decreases at higher pressure-distance products. This behaviour can only be explained by the momentum transfer of the sputtered atoms and the reflected Ar atoms on the growing film as the energy per arriving atom shows little variation. The addition of Nb, which is the heaviest atom of the alloy, amplifies this effect. Hence, thin films with a high Nb content still show a high density at large pressure-distance products. However, as Nb has the largest radius of all constituent elements, the crystallographic structure of the thin films changes from a crystalline face-centred cubic structure at x = 0 to an amorphous (or nanocrystalline) structure for higher Nb fractions. Both trends, i.e. the changing deposition conditions and the niobium content, can be outlined by a study of the thin film microstrain. The trends observed in the intrinsic properties are correlated to a preliminary study of some functional properties (friction coefficient, thermal stability and contact resistance). - Highlights: • Nb{sub x}-CoCrCuFeNi thin films were deposited by sputtering pressed powder targets. • The Nb fraction and deposition conditions influence the intrinsic film properties. • The functional film properties are explained by the momentum transfer concept.

  15. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    Science.gov (United States)

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.

  16. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  17. Cu-Cr Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Need, Ryan F. [Los Alamos National Laboratory

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  18. Erosion-corrosion characteristic of nano-particulates reinforced Ni-Cr-Mo-Cu surface alloying layer in acidic flow and acidic slurry flow

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zhuo, C. [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China)

    2010-01-15

    In order to improve the corrosion and erosion-corrosion resistance of 316L stainless steel in engineering application, two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO{sub 2} predeposited by brush plating, respectively, and a subsequent surface alloying with Ni-Cr-Mo-Cu by double glow process. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were performed on the two kinds of composite alloying layer using 10 wt% HCl solution to assess the corrosion behavior. Erosion-corrosion tests were carried out by erosion-corrosion test rig in acidic flow and acidic slurry flow for test time of 20 h at four different rotational speeds. Results of electrochemical tests indicated that the corrosion resistance of composite alloying layer with brush plating Ni/nano-SiO{sub 2} particles interlayer approximated to that of single Ni-based alloying layer, whereas the corrosion resistance of the composite alloying layer with brush plating Ni/nano-SiC particles interlayer was apparently inferior to that of Ni-based alloying layer in 10 wt% HCl solution at static state. Under the conditions of acidic flow and acidic slurry flow, the mass losses of tested samples increased with increase in the time of erosion-corrosion tests and the rotational speeds of samples. The mass losses of composite alloying layer with brush plating Ni/nano-SiO{sub 2} particles interlayer were lower than that of single Ni-based alloying layer at all rotational speeds, except at 1.88 m/s in acidic flow. The mass losses of composite alloying layer with brush plating Ni/nano-SiC particles interlayer were higher than that of single Ni-based alloying layer at all rotational speeds, but were obviously lower than that of AISI 316L stainless steel. The influences of second phase on the corrosion and erosion-corrosion of the two kinds of composite alloying layer were discussed in this paper. (Abstract Copyright [2010], Wiley

  19. Core-shell heterostructures of SnM (M = (Fe, Ni, and Cr) or Cu) alloy nanowires @ CNTs on metallic substrates

    Science.gov (United States)

    Zhong, Yu; Zhang, Yong; Cai, Mei; Balogh, Michael P.; Li, Ruying; Sun, Xueliang

    2013-04-01

    Sn alloy nanowires encapsulated in carbon nanotubes (SnM (M = (Fe, Ni, and Cr) or Cu) @ CNTs) were prepared in situ by a chemical vapor deposition (CVD) method, in which Sn came from a vaporized precursor while the alloy elements were supplied by the substrate. The heterostructures were grown on two types of substrates including stainless steel with high catalytic effectiveness and Cu substrates with low catalytic effectiveness for generating graphite layers, respectively. Pure Sn powder and C2H4 were employed to provide Sn and carbon precursors. The products were investigated by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) mapping. The morphology, structure and composition of the nanomaterials depended significantly on the surface conditions of the substrates. While SnCu alloy nanowires encapsulated in carbon nanotubes were grown on the Cu substrate, carbon nanotubes filled with alloy nanowires and porous carbon fibers decorated internally with alloy particles were observed on the stainless steel substrate. The growth mechanisms of the heterostructures were proposed.

  20. Microstructure of AIFeCuCoNiCr High-entropy Alloy with Multi-principal Elements%多主元高熵合金AlFeCuCONiCr的微观结构

    Institute of Scientific and Technical Information of China (English)

    郭娜娜; 孙宏飞; 王刚; 牛占蕊; 袁博; 李忠丽

    2011-01-01

    依据多主元高熵合金的设计理念,采用真空电弧炉熔炼等摩尔比多主元高熵合金AlFeCuCoNiCr,研究合金的组织结构。研究发现:A1FeCuCoNiCr合金的铸态组织是典型的树枝晶,并有纳米析出相和非晶相形成;合金存在严重的成分偏析现象,铜偏聚于枝晶间;合金形成了简单的面心立方+体心立方(FCC+BCC)结构和少量金属间化合物。%According to the design concept of high-entropy alloy with multi principal elements, A1FeCuCoNiCr high-entropy alloy was prepared by vacuum arc melting in equimolar ratio to investigate the microstructure. The results showed that the alloy was typical dendritic structure; nanoprecipitates and amorphous phase appeared in alloy; the composition segregation was very serious, Cu gathered in the interdendritic region; the alloy was composed of FCC, BCC and a little intermetallic compounds.

  1. Structural and microstructural comparative analysis on metallic alloys of composition Cu{sub y%}-Ni{sub x%}-Me (Me = Sn, Cr, Al, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, I.M.; Okazaki, A.K.; Silveira, C.R. da; Carvalhal, M.A.; Monteiro, W.A.; Carrio, J.A.G. [Physics Department, CCH, Presbyterian Mackenzie University, Materials Science and Technology Centre, Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: jgcarrio@mackenzie.br

    2010-07-01

    This work presents a comparative study of microstructural and electrical properties of polycrystalline material Cu-Ni alloys synthesized by conventional and powder metallurgy. A sample of Cu{sub 99,33%} Ni{sub 0,23%} Pt{sub 0,43%} was produced in electric furnace with voltaic arc and various samples containing Al, Sn and Cr as third element were produced by powder metallurgy. The microstructure of the samples was studied by optical microscopy, Vickers micro hardness and x rays powder diffraction. Their electrical conductivity was measured with a milliohmeter Agilent (HP) 4338B. Refinements of the crystalline structure of the samples were performed by the Rietveld method, using the refinement program GSAS. The refinement results and Fourier differences calculations indicate that the copper matrix structure presents not significant distortions by the used amounts of the other metal atoms. The refinement of non structural parameters allowed the micro-structural characterization. The dependence of the micro-structure with thermal and mechanical treatments is studied. (author)

  2. Photocatalytic removal of M{sup 2+} (=Ni{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Hg{sup 2+} and Ag{sup +}) over new catalyst CuCrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ketir, W.; Bouguelia, A. [Laboratoire de Stockage et de Valorisation des energies Renouvelables, Faculty of Chemistry (USTHB), BP 32, 16111 Algiers (Algeria); Trari, M. [Laboratoire de Stockage et de Valorisation des energies Renouvelables, Faculty of Chemistry (USTHB), BP 32, 16111 Algiers (Algeria)], E-mail: mtrari@caramail.com

    2008-10-30

    The metal ions M{sup 2+} (Ni{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Hg{sup 2+} and Ag{sup +}) are potentially toxic. Their electro deposition has been carried out in aqueous air-equilibrated CuCrO{sub 2} suspension upon visible illumination. The delafossite CuCrO{sub 2} is p-type semiconductor characterized by a low band gap (1.28 eV) and a long-term chemical stability. The corrosion rate is found to be 10{sup -2} {mu}mol m{sup -2} month{sup -1} in aqua regia. The oxide has been elaborated through nitrate route where the specific surface area is increased via the surface/bulk ratio. A correlation exists between the dark M{sup 2+} adsorption, the redox potential of M{sup 2+/0} couple and the conduction band of CuCrO{sub 2} positioned at -1.06 V{sub SCE}. Ag{sup +} cannot be photoreduced because of its positive potential located far above the valence band. By contrast, Zn{sup 2+} is efficiently deposited due to the large driving force at the interface. The improved photoactivity of copper with a deposition percentage (90%) is attributed to the strong dark adsorption onto the surface catalyst. The results indicate a competitive effect with the water reduction; it has been observed that the M{sup 2+} deposition goes parallel with the hydrogen evolution. Such behavior is attributed to the low H{sub 2} over voltage when ultra fine aggregate of M islands are photodeposited onto CuCrO{sub 2} substrate.

  3. The phase relations in the system In 2O 3 A2BO 4 BO at elevated temperatures ( A: Fe, Ga, or Cr; B: Mg, Co, Ni, or Cu): Part II

    Science.gov (United States)

    Kimizuka, Noboru; Mohri, Takahiko; Nakamura, Masaki

    1990-08-01

    The phase relations in the systems In 2O 3Ga 2MgO 4MgO at 1300°C, In 2O 3Fe 2NiO 4NiO at 1200°C, In 2O 3Ga 2NiO 4NiO at 1200°C, In 2O 3Cr 2NiO 4NiO at 1200°C, In 2O 3Cr 2CoO 4CoO at 1200°C, and In 2O 3Cr 2CuO 4CuO at 1000°C were determined by classical quenching methods. In the system In 2O 3Ga 2MgO 4MgO there exist two ternary phases, namely, InGaO 3(MgO) with the YbFe 2O 4-type crystal structure and InGaO 3(MgO) 2 with the InFeO 3(ZnO) 2-type crystal structure. In the system In 2O 3 A2NiO 4NiO ( A = Fe, Ga, or Cr), there is a spinel solid-solution between In ANiO 4 and A2NiO 4. There is no ternary compound in the systems In 2O 3Cr 2CoO 4CoO and In 2O 3Cr 2CuO 4CuO, respectively. The classification of the phase relations in the system In 2O 3 A2BO 4 BO ( A: Fe, Ga, or Cr; B: Mg, Co, Ni, Cu, or Zn) is made in terms of the crystal structure of the ternary In ABO 4 compound.

  4. Creation of a sharp cube texture in ribbon substrates of Cu-40% Ni- M ( M = Fe, Cr, V) ternary alloys for high-temperature second generation superconductors

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Suaridze, T. R.; Egorova, L. Yu.

    2016-11-01

    The structure and the process of texture formation in ribbons made of Cu-Ni- M ( M = Fe, Cr, V) ternary alloys have been studied upon cold rolling deformation to a degree of 99% and subsequent recrystallization annealing. The possibility of obtaining a perfect cube texture in a thin ribbon made of copper-nickel-based ternary alloys with additives of iron, chromium, and vanadium has been shown, which opens the prospects of the use of these alloys as substrates in the technology of production of tapes of high-temperature second-generation superconductors. Optimal annealing regimes have been determined, which make it possible to obtain a perfect biaxial texture close to single-crystalline one with the content of cube-oriented grains {001}±10° more than 99% on the surface of the textured ribbon.

  5. Assessment of heavy metal (Cu, Ni, Fe, Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus

    OpenAIRE

    Javed, Mehjbeen; Usmani, Nazura

    2013-01-01

    The present study was conducted to examine the contamination of rivulet situated at Kasimpur, Aligarh (27.218° N; 79.378° E). It receives the wastewater of Harduaganj Thermal Power Plant (HTPS) containing fly ash and heavy metals. Among the heavy metals estimated in the rivulet water, Fe (8.71 mgL-1) was present in the highest concentration followed by Cu (0.86 mgL-1), Zn (0.30 mgL-1) Mn (0.21 mgL-1), Ni (0.12 mgL-1), Co (0.11 mgL-1) and Cr (0.10 mgL-1). The values for the heavy metals such a...

  6. Concentrations of Mn, Fe, Cu, Zn, Cr, Cd, Pb, Ni in selected Nigerian tubers, legumes and cereals and estimates of the adult daily intakes.

    Science.gov (United States)

    Akinyele, I O; Shokunbi, O S

    2015-04-15

    This study was designed to determine the levels of microminerals (manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr)) and heavy metals (cadmium (Cd), lead (Pb) and nickel (Ni)) in some tubers, legumes and cereals obtained from the markets in Abeokuta city, South-West Nigeria. The food samples were digested by dry ashing procedure and their minerals were determined by atomic absorption spectrophotometer. The results show mean values of 1.67-32.00, 7.25-61.58, 1.59-10.56, 6.65-46.99, 0.02-0.58, legumes and cereals from various parts of the world. The daily intakes of the metals through tubers, legumes and cereals were found to be lower than the provisional tolerable daily intakes proposed by Joint FAO/WHO Expert Committee on Food Additives.

  7. Cr(III,Mn(II,Fe(III,Co(II,Ni(II,Cu(II and Zn(II Complexes with Diisobutyldithiocarbamato Ligand

    Directory of Open Access Journals (Sweden)

    Mohammad Tarique

    2011-01-01

    Full Text Available The synthesis of sulphur and nitrogen containing dithiocarbamato ligand derived from diisobutylamine as well as its coordination compounds with 3d series transition metals is presented. These synthesized compounds were characterized on the basis of elemental analysis, conductometric measurements and IR spectral studies. The analytical data showed the stoichiometry 1:2 and 1:3 for the compounds of the types ML2 {M=Mn(II, Co(II, Ni(II, Cu(II and Zn(II} and M'L3{M'=Cr(III and Fe(III} respectively. The conductometric measurements proved the non-electrolytic behaviour of all the compounds. The bidentate nature of dithiocarbamato moiety was confirmed on the basis of IR spectral data.

  8. RESISTANCE OF MICROBIAL COMMUNITIES FROM ECUADOR ECOSYSTEMS TO REPRESENTATIVE TOXIC METALS - CrO4(2-), Co2+, Ni2+, Cu2+, Hg2+.

    Science.gov (United States)

    Tashyrev, O B; Prekrasna, Ie P; Tashyreva, G O; Bielikova, O Iu

    2015-01-01

    Microbial communities of the Ecuadorian Andes and volcano Tungurahua were shown to be super resistant to representative toxic metals. Maximum permissible concentrations of toxic metals were 100 ppm of Hg2+, 500 ppm of Co2+ and Ni2+, 1000 and 1500 ppm of Cr(VI), 10000 and 20000 ppm of Cu2+. The effect of metal concentration increasing on the biomass growth, CO2 and H2 synthesis was investigated. Two types of response of microbial communities on the increasing of toxic metals concentrations were discovered. The first type of response is the catastrophic inhibition of microbial growth. The second type of response is the absence of microbial growth inhibition at certain metal concentration gradient. The succession of qualitative structure of Ecuadorian microbial communities was shown for the first time. Bacteria, yeasts and finally fungi consistently dominate in the microbial community at the Cu2+ concentration raising. Microorganisms resistant to ultra-high concentrations of toxic metals (e.g., 3000 ... 20000 ppm of Cu2+) were isolated from Ecuadorian ecosystems. These microorganisms are able to accumulate toxic metals.

  9. Study of environmental contamination in growth tree rings of Copaifera Langsdorfii by SR-TXRF: evaluation of Cr, Ni, Cu, Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Bruna Fernanda; Moreira, Silvana, E-mail: bffaria@yahoo.com.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Saneamento e Ambiente; Vives, Ana Elisa S. de, E-mail: aesvives@unimep.b [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo

    2009-07-01

    Some arboreal species present annual cycles of growth and sleeping, registered in the log by different anatomical structures - the growth rings. With the objective of verifying the industrial activity in the city of Bauru, SP samples were submitted to a quantitative analysis in order to verify the bio-accumulation of metals. For that Synchrotron Radiation Total Reflection X-Ray Fluorescence was used. Samples of Copaifera Langsdorfii (Copaiba) were collected close to Municipal Forest of Bauru, SP located at 200m of distance of a disabled company of energy accumulators (batteries) known by receiving several penalties of CETESB due disagreement with the environmental legislation. Through the quantification of the elements Cr, Ni, Cu, Zn and Pb in the annual growth rings were possible to verify the influence of the battery industry in the local pollution. The temporal variation of Pb showed that after the interdiction of the battery industry the concentrations are close to the reference value, but in the periods previous to the industry interdiction the Pb concentrations were above the reference value. For Cr, 46% of the samples presented superior concentration to the reference value. Zinc presented larger concentration in the period from 1996 to 1998, reaching 1383 mug g{sup -1}. For Cu the concentrations were higher than the reference value in almost all periods analyzed, that is, from 1969 to 2004. On the other hand Ni presented great oscillation in its concentration, and the highest values were observed in the period from 1969 to 1971 and from 1999 to 2001, reaching 87 mug g{sup -1}. (author)

  10. Concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, and Zn in uruguayan rice determined by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mario E. Rivero Huguet

    2011-04-01

    Full Text Available The United Nations General Assembly declared the year 2004 the International Year of Rice and the concept "Rice is life". The largest nutritional problems occurring globally are protein-energy malnutrition, and Ca, Fe, I, Zn, and vitamin A deficiency. In this report, 49 rice samples (Oryza sativa L. were digested by dry ashing in order to determine As, Cd, Cr, and Pb by ETA-AAS; while Ca, Co, Cu, Fe, K, Mg, Mo, Mn, Na, Ni, and Zn were determined by FAAS; and Hg by CV-AAS using microwave-assisted decomposition. The following concentration ranges were obtained for Ca (9.1-15 mg/100 g, Cd (2.30-4.12 µg/kg, Co (41-60 µg/kg, Cu (1.33-180 mg/kg, Fe (4.41-7.15 mg/kg, K (167-217 mg/100 g, Mg (45-121 mg/100 g, Mo (0.52-0.97 mg/kg, Mn (5.45-25.4 mg/kg, Na (0.95-2.50 mg/100g, Ni (0.53-0.72 mg/kg, and Zn (5.86-12.6 mg/kg. Mean recoveries of elements from fortified rice were: 87±12% for As, 95.3±8.9% for Ca, 106.2±7.7% for Cd, 103.3±6.5% for Co, 89.4±8.1% for Cr, 99.3±4.6% for Cu, 103±10% for Fe, 96.3±9.3% for Hg, 95.4±12% for K, 98.3±8.0% for Mg, 93.4±7.8% for Mo, 95.3±9.9% for Mn, 89±12% for Na, 90.3±9.7% for Ni, 91.2±5.5% for Pb and 92.0±9.4% for Zn. The concentrations of the minerals and microelements studied fall within the typical range of rice grown around the world. Potassium was the most abundant mineral, followed by Mg and Ca; among microelements, the concentrations of Cu, Fe, Mo, Mn, Na, and Zn in rice were outstanding. It was also found that the milling process highly affects the K, Mg, Mn, Na, and Zn concentrations, while it has little influence on Ca, Co, Cu, and Fe. On the other hand, there is a loss of Ca, Fe, and Mn during the parboiling process. Recent studies have shown the potential to exploit the genetic variation of rice seeds with regard to the concentration of some minerals (Ca, Fe, Zn, etc. without affecting yield or adding new traits. All rice samples tested showed lower levels of As, Cd, Hg, and Pb in comparison

  11. Mechanical characteristics and swelling of austenitic Fe-Cr-Mn steels irradiated in the SM-2 and BOR-60 reactors. [0. 4C-12Cr-19Mn-2Ni-Mo-N; 0. 4C-12Cr-14Mn-5Ni-Mo-2Al-B; 0. 4C-17Cr-17Mn-Cu-Mo-Nb-N; Fe-Cr-Ni steel: 0. 8C-16Cr-15Ni-3Mo-Nb; 316; 304

    Energy Technology Data Exchange (ETDEWEB)

    Shamardin, V.K.; Bulanova, T.M.; Neustroev, V.S. (Lenin (V.I.) Research Inst. of Atomic Reactors, Dimitrovgrad (USSR)); Ivanov, L.I.; Djomina, E.V.; Platov, Yu.M. (AN SSSR, Moscow (USSR). A.A. Baikov Inst. of Metallurgy)

    Three types of austenitic Fe-Cr-Mn stainless steels were irradiated simultaneously with Fe-Cr-Ni austenitic steel at temperatures from 400 to 800deg C in the mixed spectrum of the high flux SM-2 reactor to 10 dpa and 700 appm of He and in the BOR-60 reactor to 60 dpa without He generation. The paper presents the swelling and mechanical properties of steels irradiated in the BOR-60 and SM-2 as a function of the concentration of transmuted He and the value of atomic displacement. (orig.).

  12. AlCoCrCu0.5 NiFe高熵合金氧化物薄膜光学特性的研究%Optical Properties of Sputtered Oxide Films of AlCoCrCu0. 5 NiFe High-entropy Alloy

    Institute of Scientific and Technical Information of China (English)

    黄元盛; 蔡铭洪; 叶均蔚

    2016-01-01

    目的:制备AlCoCrCu0.5 NiFe高熵合金氧化物薄膜,并对其光学性能进行表征。方法使用磁控溅射设备在单晶硅片和玻璃上制备AlCoCrCu0.5 NiFe高熵合金氧化物薄膜,并对膜进行退火处理。使用椭圆偏振光谱仪对薄膜的光学特性进行分析。结果随着氧含量的增加,折射系数减小。当光波长为633 nm时,折射系数为1.69~2.40。当氧分压为10%,折射率色散曲线在475 nm和600 nm处出现拐点,在600 nm之后折射率随着波长的增大而逐渐减小。当氧分压为30%时,折射率曲线在500 nm和600 nm处出现拐点,在600 nm后折射率趋于稳定。当氧分压为50%时,折射率曲线在525 nm处出现拐点,之后折射率随波长的增大而逐渐增大。在450~550 nm波段内,AlCoCrCu0.5 FeNi氧化物薄膜的吸收系数随氧分压的增加而增加。在550~850 nm波段内,薄膜的吸收系数随工作气压的变化趋势不明显。随着氧分压的增加膜的颜色逐渐变深。经过退火处理后,膜的颜色进一步加深。在相同工艺参数的情况下,氧的分压增加,膜厚减小。结论适当减小氧分压,能获得具有高折射率的AlCoCrCu0.5 FeNi氧化物薄膜。不同的分压下,AlCoCrCu0.5 FeNi氧化物薄膜的吸收系数随波长的增加均存在一个拐点,并且随氧分压的增加,拐点的波长减小。氧含量增加导致氧化物薄膜厚度减小,颜色加深。%Objective To synthesize the oxide films of AlCoCrCu0. 5 NiFe high-entropy alloy and characterize their optical proper-ties. Methods The sputtered oxide films of AlCoCrCu0. 5 NiFe high-entropy alloy were deposited on the silicon wafer and glass using radio frequency sputter system, and were subsequently annealed. Ellipsometer was employed to analyze thickness, refractive index ( n) and absorption index ( k) . Results The refractive index n decreased with the oxygen concentration. When the wavelength was 633 nm, n varied between 1. 69 and 2. 40. At the oxygen

  13. Effect of two-stage isothermal annealing on microstructure CuAl10Fe5Ni5 bronze with additions of Si, Cr, Mo, W and C

    Directory of Open Access Journals (Sweden)

    B. P. Pisarek

    2011-07-01

    Full Text Available The aim of this study was to investigate the effect of a two-step isothermal annealing respectively at 1000 ̊C for 30 min, then at the range of 900÷450 ̊C increments 50 ̊C on the microstructure CuAl10 Ni5Fe5 bronze with additions of Si, Cr, Mo, W and C, cast into sand moulds. The study concerned the newly developed species, bronze, aluminium-iron-nickel with additions of Si, Cr, Mo, W and C. In order to determine the time and temperature for the characteristic of phase transitions that occur during heat treatment of the test method was used thermal and derivation analysis (TDA. The study was conducted on cylindrical test castings cast in the mould of moulding sand. It was affirmed that one the method TDA can appoint characteristic for phase transformations points about co-ordinates: τ (s, t ( ̊ C, and to plot out curves TTT for the studied bronze with their use. It was also found that there is a fiveisothermalannealingtemperatureranges significantly altering the microstructure of examined bronze.

  14. Long term properties and microstructural evolution of 18Cr-10Ni-3Cu-Ti-Nb austenitic stainless steel for boiler tube application

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Y.; Fukui, T.; Ono, T. [TenarisNKK Tubes, Kawasaki, Kanagawa (Japan); Caminada, S. [TenarisDalmine, Dalmine, BG (Italy)

    2010-07-01

    The allowable tensile stress of 0.1C-18Cr-10Ni-3Cu-Ti-Nb steel (TEMPALOY AA-1; ASME C.C. 2512) is more than 30% higher compared with that of ASME SA-213 Grade TP347H in the temperature range 600-700 C. This high creep rupture strength is obtained by the precipitation of MC and M{sub 23}C{sub 6} carbides, and Cu-rich phase. Long term creep rupture tests over 10{sup 5}h enabled to verify the superior creep rupture strength of this steel. The investigation of microstructural evolution on the creep ruptured and aged specimens has shown the high structural stability of this material. Hardness and impact properties after high temperature aging reveal similar performance as conventional 18-8 stainless steels. Excellent steam oxidation resistance can be achieved by a shot-blasting method. The scale thickness of shot-blasted tube after 1000h at 750 C is below a few micron meters. These results have revealed that the mechanical properties and environmental resistance of this steel enable the use of TEMPALOY AA-1 in the latest generation of advanced USC boiler. (orig.)

  15. Assessment of heavy metal (Cu, Ni, Fe, Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus.

    Science.gov (United States)

    Javed, Mehjbeen; Usmani, Nazura

    2013-01-01

    The present study was conducted to examine the contamination of rivulet situated at Kasimpur, Aligarh (27.218° N; 79.378° E). It receives the wastewater of Harduaganj Thermal Power Plant (HTPS) containing fly ash and heavy metals. Among the heavy metals estimated in the rivulet water, Fe (8.71 mgL(-1)) was present in the highest concentration followed by Cu (0.86 mgL(-1)), Zn (0.30 mgL(-1)) Mn (0.21 mgL(-1)), Ni (0.12 mgL(-1)), Co (0.11 mgL(-1)) and Cr (0.10 mgL(-1)). The values for the heavy metals such as Fe, Ni and Mn were beyond the limits set by UNEPGEMS. Bioaccumulation of these heavy metals was detected in tissues such as gills, liver, kidney, muscle and integument of the fish Mastacembelus armatus. Accumulation of Fe (213.29 - 2601.49 mgkg(-1).dw) was highest in all the organs. Liver was the most influenced organ and integument had the least metal load. The accumulation of Fe, Zn, Cu and Mn, observed in the tissues were above the values recommended by FAO/WHO. Biochemical estimation related to blood glucose, liver and muscle glycogen conducted showed significant (p < 0.01) elevation in blood glucose content over control (17.73%), whereas liver glycogen dropped significantly (p < 0.01) over control (-89.83%), and similarly muscle glycogen also decreased significantly (p < 0.05) over control (-71.95%), suggesting enhanced glycolytic capacity to fuel hepatic metabolism. Histopathological alterations were also observed in selected organs (gills, liver and kidney) of Mastacembelus armatus.

  16. Progresses in Electroplating Zn, Cu, Ni,Cr and its Alloys%电镀Zn、Cu、Ni、Cr及其合金的研究进展

    Institute of Scientific and Technical Information of China (English)

    安茂忠; 屠振密

    2001-01-01

    论述了电镀单金属锌、铜、镍、铬及其合金的主要特性、应用和研究进展。 电镀 锌的研究重点是开发低毒、高效的复合添加剂,电镀锌基合金得到广泛应用。电镀铜及铜合 金的研究重点是添加剂作用机理和电镀新技术的开发。电镀镍及镍合金的研究重点是采用新 工艺技术改善镀层性能及电沉积机理的探讨。电镀铬的发展是研制复合促进剂改善六价铬镀 液的性能、研制低毒的三价铬镀液以及代铬合金镀层的开发。%Discuss the important characteristics of zinc, copper,nickel,chromium and its alloys,and also have a discussion on the application and development of these co ating.The focus of the research in electroplated Zn is to develop a compound ad ditive agent with low poison and high effect.The use of the electroplated zinc-i ron group metals alloy is very comprehensive.The emphasis of research in electro plated Cu and its alloy is the mechanism of additive agent and to develop a new technology.The emphasis of research in electroplated Ni and its alloy is to use a new technology to improve the capability of coating and to probe the mechanism of electrodeposition.The development of electroplated Cr is to invent a new add itive agent to improve the performance of electrolyte contained Cr6+ and a new low poisonous electrolyte contained Cr3+,invent a new alloy coating t o substitute the Cr coating.

  17. Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China.

    Science.gov (United States)

    Leung, H M; Leung, A O W; Wang, H S; Ma, K K; Liang, Y; Ho, K C; Cheung, K C; Tohidi, F; Yung, K K L

    2014-01-15

    The major aim of this study was to investigate heavy metal content of edible fish in the PRD. Eleven species of fish (consisting of 711 individuals) [catfish (Clarias fuscus), tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idellus), bighead carp (Aristichthys nobilis), mandarin fish (Siniperca kneri), snakehead (Channa asiatiea), black bass (Micropterus salmoides), mangrove snapper (Lutjanus griseus), star snapper (Lutjanu stellatus), snubnose pompano (Trachinotus blochii) and orange-spotted grouper (Epinephelus coioides)] were collected for the analyses of heavy metals. Overall concentrations (mg/kg, ww) in the fish muscles were: As (0.03-1.53), Pb (0.03-8.62), Cd (0.02-0.06), Ni (0.44-9.75), Zn (15.7-29.5), Cr (0.22-0.65), Cu (0.79-2.26), Mn (0.82-6.91). Significant level of Pb were found in tilapia at all locations. It is recommended that heavy metal concentrations in different fish species must be determined on a regular basis in the future so as to reduce human health risks from acute and chronic food intoxication.

  18. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.

    Science.gov (United States)

    Nehrenheim, E; Gustafsson, J P

    2008-04-01

    Storm water and landfill leachate can both contain significant amounts of toxic metals such as Zn, Cu, Pb, Cr and Ni. Pine bark and blast furnace slag are both residual waste products that have shown a large potential for metal removal from contaminated water. There are however many variables that must be optimized in order to achieve efficient metal retention. One of these variables is the time of which the solution is in contact with each unit of filter material. Metal sorption was studied in two laboratory experiments to improve the knowledge of the effects of contact time. The results showed that pine bark was generally more efficient than blast furnace slag when the metal concentrations were relatively small, whereas blast furnace slag sorbed most metals to a larger extent at increased metal loads. In addition, sorption to blast furnace slag was found to be faster than metal binding to pine bark. A pseudo-second-order kinetic model was able to describe the data well within 1000 s of reaction time.

  19. Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Peng, G.J.; Wen, D.H.; Zhang, T.H., E-mail: zhangth@zjut.edu.cn

    2015-01-05

    A CoCrFeCuNi high-entropy alloy (HEA) film, with thickness of about 1450 nm, was prepared by magnetron sputtering using alloy target. The structure of HEA film was fully relaxed by annealing at temperature of 800 K for one hour. The atomic lattice structures and morphologies of the surface and cross-section were detected in both as-deposited and annealed films by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The results indicate that a simple face-centered cubic (fcc) structure in the as-deposited film and the structure configuration in the annealed one was strongly changed, even a tiny but non-ignorable body-centered cubic (bcc) structure emerged. Furthermore, the creep behaviors of both samples were systematically studied by nanoindentation with a spherical tip. The sample's ability to resist both instantaneous and time-dependent plastic deformation was weakened after annealing. The creep behaviors of both cases were promoted at higher loads. Meanwhile, the effect of loading rate on the steady-state creep was more complicated: creep rate was accelerated in the as-deposited film with the loading rate, however it showed an opponent variation trend in the annealed one. Moreover, strain rate sensitivity was calculated from the steady-state creep and the creep deformation mechanism was discussed.

  20. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Science.gov (United States)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  1. Corrosion behavior of heat-treated low grade duplex stainless steel (type Fe-15Cr-5Ni-1.9Cu) in sweet environments

    Energy Technology Data Exchange (ETDEWEB)

    Ezuber, H. M. [Faculty of Engineering University of Bahrain P.O. Box 32038 Bahrain (Bahrain)

    2004-07-01

    Sweet and/or sour service environments require the use of corrosion resistant materials since conventional steels usually exhibit general corrosion, pitting attack and Stress Corrosion Cracking (SCC) under these conditions. Long term performance and cost effectiveness must be considered when evaluating material selection. Low grade duplex stainless steel may be considered as a useful material under corrosive conditions. These materials are immune to general corrosion and low nickel content is an advantage from a SCC stand point. In this study, the pitting corrosion behavior of low grade duplex stainless steel (type Fe-15Cr-5Ni-1.9Cu) alloys were evaluated in 01 M NaCl solutions saturated with CO{sub 2} (sweet environment) and containing no or little thiosulfate species at 50 deg. C. The effect of inappropriate heat treatment is also studied under such conditions. The results revealed that this alloy is susceptible to chloride pitting corrosion. The intensity of the chloride attack is remarkably increased with the application of inappropriate heat treatment, addition of CO{sub 2} and presence of thiosulfate species. Although chloride solutions containing saturated dissolved CO{sub 2} are more corrosive than those containing thiosulfate species, the presence of both species (CO{sub 2} and S{sub 2}O{sub 3}{sup 2}) has a more negative effect on the chloride pitting resistance than would occur for either component by it self. (authors)

  2. Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, Fatma, E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria); Département de Physique, Faculté des Sciences, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria)

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe–Al–X systems, in order to improve mainly Fe–Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems. - Highlights: • A review of state of the art on binary Fe–Al alloys was presented. • Structural and microstructural properties of MA ternary Fe–Al–X alloys were summerized. • MA process is a powerful tool for producing metallic alloys at the nanometer scale.

  3. Microstructure characterization of AlxCo{sub 1}Cr{sub 1}Cu{sub 1}Fe{sub 1}Ni{sub 1} (x = 0 and 2.5) high-entropy alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.F.; Wang, X.D.; Cao, Q.P.; Zhao, G.H.; Li, J.X. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Zhu, Jian-Jun [Zhejiang Phillips Vehicle Industries Co. LTD., Jiaxin (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-10-01

    Highlights: • High-entropy alloy films were fabricated by sputter technique. • High-entropy films are composed of nanometer-sized grains with lattice distortion. • As-deposited AlCoCrCuFeNi film has an bcc structure and stable upto 873 K. • As-deposited CoCrCuFeNi film has an fcc structure and stable upto 773 K. • AlCoCrCuFeNi film could be used as a potential high-temperature coating material. - Abstract: Co{sub 20}Cr{sub 20}Cu{sub 20}Fe{sub 20}Ni{sub 20} (at.%) (Al-0) and Al{sub 33.35}Co{sub 13.33}Cr{sub 13.33}Cu{sub 13.33}Fe{sub 13.33}Ni{sub 13.33} (at.%) (Al-2.5) high-entropy alloy films with thicknesses less than 500 nm were successfully fabricated by sputter technique using alloy targets. Their microstructures are characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectrometer, transmission electron microscopy and nanoindentation techniques. It is found that compositions for both films are uniformly in depth. The both as-deposited films are composed of nanometer-sized grains with serious lattice distortion. The as-deposited Al-2.5 film, having a hardness of 15.4 GPa and reduced Young’s modulus of 203.8 GPa, exhibits a body-centered cubic structure and remains stable up to 873 K for 20 min whereas the as-deposited Al-0 film, having a hardness of 6.3 GPa and reduced Young’s modulus of 87.9 GPa, exhibits a face-centered cubic structure and remains up to 773 K for 20 min. It seems that due to high temperature structure stability and high hardness, the Al-2.5 film could be used as a potential coating material on high-temperature Ni-based alloys.

  4. Mo-Cu合金与1Cr18Ni9Ti不锈钢真空钎焊接头的组织性能%Microstructure characteristics of vacuum brazed joint for Mo-Cu alloy with lCrl8Ni9Ti stainless steel

    Institute of Scientific and Technical Information of China (English)

    王娟; 郑德双; 李亚江

    2013-01-01

    Mo-Cu alloy and lCrl8Ni9Ti stainless steel were joined by vacuum brazing with Ag-Cu-Ti active filler metal at 910 ℃ for 20 min and a Mo-Cu/lCrl8Ni9Ti joint with a shear strength of 75 MPa was obtained. The microstructure and performance of Mo-Cu/lCrl8Ni9Ti joint were investigated by scanning electron microscope ( SEM ) , energy dispersive spectrometer ( EDS) and microhardness test. The results indicated that Ag-Cu eutectic and Cu-rich phase were produced in the brazed joint. There were few of TiC phases near the side of lCrl8Ni9Ti stainless steel in the joint. The microhardness of brazed seam was lower than that of Mo-Cu alloy and lCrl8Ni9Ti stainless steel. There are no brittle compounds formed in the Mo-Cu/lCrl8Ni9Ti joint. The shear fracture appearance shows shear dimple feature.%采用Ag-Cu-Ti钎料,控制钎焊温度为910℃,保温时间为20 min,可以实现Mo-Cu合金与1Cr1 8Ni9Ti不锈钢的真空钎焊,接头抗剪强度为75 MPa.采用扫描电镜、能谱分析仪和显微硬度计对Mo-Cu/1 Cr18 Ni9Ti接头组织特征及性能进行分析.结果表明,钎焊接头靠近1Cr18Ni9Ti钢一侧,主要形成Ag-Cu共晶组织和少量的TiC相;靠近Mo-Cu合金一侧,Ag,Cu元素在合金与钎缝间相向扩散,共晶组织消失,以富铜相为主.钎缝的显微硬度明显低于Mo-Cu合金和1Cr18Ni9Ti不锈钢母材,无脆性化合物生成,剪切断口呈现剪切韧窝的形貌特征.

  5. Fabrication of a NiCrAl pressure cell and the application to a two-leg ladder compound Sr{sub 2}Ca{sub 12}Cu{sub 24}O{sub 41}

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, N; Hisada, A [Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Kyoto 606-8501 (Japan); Matsumoto, T; Koyama-Nakazawa, K; Uwatoko, Y [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Fujimaki, Y; Uchida, S [Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan)], E-mail: naokif@mbox.kudpc.kyoto-u.ac.jp

    2008-07-15

    A hybrid NiCrAl pressure cell was fabricated to measure magnetic quantities above 3 GPa. A pressure of 4 GPa was achieved and the pressure cell was found to be reusable even after pressurizing trial up to 4GPa. The inner diameter of the cylinder expanded 2.5% at 4 GPa. The pressure cell was applied to the {sup 63}Cu-NMR measurement at an optimum pressure of 3.8 GPa in a pressure-induced superconductor Sr{sub 2}Ca{sub 12}Cu{sub 24}O{sub 41}.

  6. Composite Coating Prepared by Plasma Alloying AlCoCrCuFex MnNiCx High-entropy Alloy on the Surface of HT250 Cast Iron%HT250铸铁表面等离子合金化AlCoCrCuFex MnNiCx高熵合金复合涂层

    Institute of Scientific and Technical Information of China (English)

    卢金斌; 彭竹琴; 马明星; 李俊魁; 齐振东; 贺亚勋

    2015-01-01

    Objective To improve the abrasion resistance of the surface on cast iron by plasma alloying high entropy alloy coat-ing process. Methods High entropy alloy coating was prepared on the surface of HT250 cast iron by plasma alloying Al, Co, Cr, Cu, Mn and Ni powders in equal molar ratio. The microstructure of the coating was studied by SEM, EDS, XRD, and its micro-hardness distribution was tested by the microhardness tester. Results Due to melting of a small amount of iron, the atoms such as Fe and C dissolved into the coating to get AlCoCrCuFexMnNiCx, the thickness of which was about 0. 2 mm. The mixing entropy of both the composition and the microstructure of the coating distributed in a high-medium-low gradient. The microstructure of the coating was mainly composed of high-entropy alloy dendrite and interdendrite cementite andσphase etc, and the coating contained mainly FCC, BCC, Fe3 C and σ phase. The microhardness of the coating was about 350 ~600HV0. 2, which was significantly higher than that of the matrix (200 ~230HV0. 2). Conclusion The composite coating including high entropy alloy and carbide could be formed on the surface of cast iron by plasma alloying, which improved the microhardness of the cast iron, and thus helped to improve the abrasion resistance of the surface on cast iron.%目的:通过等离子合金化高熵合金涂层,提高铸铁表面耐磨性。方法采用等离子合金化法,以等摩尔比的Al,Co,Cr,Cu,Mn,Ni单质金属粉在HT250铸铁表面制备高熵合金复合涂层。通过SEM, EDS,XRD等分析涂层的组织,测试涂层的显微硬度分布。结果由于铸铁基体少量熔化,基体中的Fe和C元素进入涂层,形成了厚度约为0.2 mm的AlCoCrCuFexMnNiCx 高熵合金涂层。从涂层表面到基材,体系的混合熵呈高熵-中熵-低熵的梯度变化。涂层主要由高熵合金的枝晶和枝晶间渗碳体、σ相等组织构成,主要有FCC,BCC,Fe3 C及σ相。涂层的显微硬度大约为350~600HV0.2,

  7. HEAVY METALS (Hg, Cu, Mn, Cr e Ni CONTENTS IN THE RIO DAS PEDRAS LAGOON, MOJI-GUAÇU RIVER BASIN (SÃO PAULO STATE, BRAZIL = HISTÓRICO DA PRESENÇA DE METAIS PESADOS (Hg, Cu, Mn, Cr e Ni NA LAGOA RIO DAS PEDRAS, BACIA DO RIO MOJI-GUAÇU -SP, BRASIL

    Directory of Open Access Journals (Sweden)

    Claudinéia Raquel de Oliveira

    2003-01-01

    Full Text Available The presence of heavy metals in a sediment profile from the Rio das Pedras lagoon, located at the Moji-Guaçu river floodplain, São Paulo, was investigated. Samples were stratified at each 1 cm, sieved in 63 m m and digested in a strong acid solution (HNO3 + HF + HClO4 in PTFE bomb. The extracts were analyzed by emission plasma spectrometry (ICP-AES for Al, Cu, Mn, Cr and Ni contents. For Hg, the direct pyrolysis of samples and atomic fluorescence spectrometry detector AFS were employed. By using Al as a normalizer agent, an enrichment of metals concentration, with exception for Mn was observed. Average concentration for Cu (0.12 mg g-1 and Mn (1.12 mg g-1 were considered high in comparison to those concentrations in an unpolluted environment. Probably, these data are related to the agricultural activity (sugarcane plantation around the lagoon, or to the Moji-Guaçu river transport in the flood season. Hg, Cr and Niconcentrations were similar the those verified in unpolluted areas. The chronology inventigation, determined by the 210Pb technique, indicated that the 25 cm long sediment profile shows a 135 years of deposition history of the suspended material in this lagoon. = A presença de metais pesados em perfil de sedimento coletado na Lagoa Rio das Pedras, localizada na planície de inundação do rio Moji-Guaçu, São Paulo, foi investigada. Amostras estratificadas a cada 1 cm foram peneiradas a 63 m m e digeridas através de ataque ácido (HNO3 + HF + HClO4 em bombas de PTFE. Os extratos obtidos foram analisados quanto aos teores de Al, Cu, Mn, Cr e Ni por espectrometria de emissão de plasma (ICP-AES. Para Hg, empregou-se a pirólise direta da amostra e detecção por AFS. Utilizando-se Al como elemento normalizador, observou-se enriquecimento nos teores de metais pesados para anos recentes, exceto para Mn. As concentrações médias de Cu (0,12 mg g-1 e Mn (1,12 mg g-1 para amostras de sedimentos foram elevadas, em comparação

  8. A study on the use of nano/micro structured goethite and hematite as adsorbents for the removal of Cr(III, Co(II, Cu(II, Ni(II, and Zn(II metal ions from aqueous solutions.

    Directory of Open Access Journals (Sweden)

    Hala Hafez

    2012-06-01

    Full Text Available Numerous adsorbents for the removal of heavy metals from aqueous solutions are in various stages of research. The main goal for most of this research is to develop low-cost and environmentally friendly materials for the removal of heavy metals from contaminated groundwater, surface water, and drinking water. Materials that have ion exchange sites are expected to be able to efficiently remove heavy metals from water. Iron oxides, especially in the micro/nano structured forms, are good candidates for the removal of toxic heavymetal ions from water due to their structural properties. In the present work the efficiency of synthesized micro/nano particles of goethite and hematite for the removal of Cr(III, Co(II , Cu(II, Ni(II and Zn(II ions from water was compared. The absorbent capability of goethite as a function of pH, contact time, and initialmetal ion concentration was studied. The results showed that maximum absorption for all metal ions using goethite occurred at a pH=5.3, which was a common trend for all metal ions. At this pH and after one hour contact time goethite was able to adsorb about 100% of the Cu ions (50mg/g, 85% (42.5 mg/g of the Ni ions, 70% (35mg/g of the Cr and Co ions and 60% (30 mg/g of Zn ions from the solutions. Whereas and under the same conditions hematite was able to adsorb 20% (10mg/g of the Cu ions, 85% (42.5mg/g of the Ni ions, 95% (47.5mg/g of the Cr ions, 80% (40mg/g of the Zn ions, and 70% (35mg/g of the Co ions. Both oxides are equally efficient for the removal of Co(II and Ni(II from water. However, goethite is a much more efficient candidate than hematite for the removal of Cu(II,while hematite is more efficient adsorbent for Zn(II and Cr(III. The adsorption affinity of the five metallic cations to goethite is Cu > Ni > Co ~ Cr > Zn, whereas the adsorption affinity of the cations to hematite is Cr > Ni > Zn > Co > Cu. Under the conditions used in the batch experiments (mass of goethite 2g/l maximumadsorption of

  9. 复合污染下Cu、Cr、Ni和Cd在水稻植株中的富集特征%Enrichment of Heavy Metals in Rice under Combined Pollution of Cu, Cr, Ni and Cd

    Institute of Scientific and Technical Information of China (English)

    林华; 张学洪; 梁延鹏; 刘杰; 黄海涛

    2014-01-01

    掌握水稻对污染土壤中重金属的吸收和富集特征,为科学认识水稻中重金属的残留问题、健康风险提供理论依据。采用田间试验,研究了4个不同处理量Cu、Cr、Ni、Cd复合污染下水稻的富集特征及其随生育期的变化规律。结果表明,重金属在水稻植株各部位中吸收富集系数的大小依次为:Cd>Cu>Ni>Cr,根部重金属吸收富集系数是地上各部位的吸收富集系数的2~100倍。各重金属在水稻植株不同部位的积累分布明显不同,成熟期水稻植株中Cu在水稻不同部位的质量分数为根>茎≥叶>米粒>谷壳,Ni的分布规律为根>叶>茎>米粒>谷壳,Cr的分布规律为根>叶>谷壳≥茎>米粒,Cd的分布规律为根>茎>叶>米粒>谷壳;且随着重金属处理量的增加,水稻植株不同部位的重金属质量分数也呈上升趋势。成熟期米粒中Cu、Ni、Cr和Cd的质量分数范围分别为:4.50~6.19、1.86~4.63、0.72~0.76和0.08~0.39 mg·kg-1,与无公害食品标准(GB15199-94、GBT2762-2005)相比,米粒中Cu和Cr的质量分数均未超标,而Ni和Cd(Cd高剂量处理时)的质量分数均超标,存在食用安全风险。重金属在水稻植株不同部位的质量分数随生育期均呈现先升后降的趋势,灌浆中期达到最大,而到成熟期又明显降低。不同重金属在水稻植株中的富集能力和分布规律均呈现明显差异,不同生育期水稻植株中重金属的质量分数明显不同但其质量分数变化呈明显规律性。%Absorption and Accumulation Characteristics of heavy metals by rice in the heavy-metal polluted soils were analyzed to provide theoretical basis for recognizing heavy metals residue in rice, health risk. The enrichment characteristics and changes of Cu, Cr, Ni and Cd integrated effects in rice during their growing were studied through field experiment. The results showed that the enrichment sequence of four heavy metals

  10. Effect of Annealing on Microstructure and Properties of AICrFeCoNiCu High-Entropy Alloy%退火对AlCrFeCoNiCU高熵合金组织与性能的影响

    Institute of Scientific and Technical Information of China (English)

    李安敏; 张喜燕; 刘乐林; 郑良杰

    2012-01-01

    AlCrFeCoNiCu high-entropy alloy was prepared in a vacuum arc furnace, and the microstructure and properties of as-cast and annealed alloys were studied. The results show that the as-cast microstrueture of the alloy was dendritic, and it was comprised of solides with face-centered cubic(FCC) structure and body-centered cubic(BCC) structure. The interdendrite phase enriched Cu appeared net shape with the increase of the annealing temperature. The intermetallic compounds began to being found in the alloy after annealing at 600℃, and the microstructure was not complete solide solution. The hardness of as-cast alloy was higher than annealed alloys. The compressive strength of as-cast alloy was 1.71 GPa and that of the alloy annealed at 800℃ was 1.63 GPa, and their compressive fractures all were brittle fracture.%利用真空电弧炉制备了AlCrFeCoNiCu高熵合金,研究了铸态与退火态合金的组织与性能。结果表明:合金的铸态组织是树枝晶,由具有面心立方(FCC)结构和体心立方(BCC)结构的固溶体组成;随着退火温度的升高,合金中富铜的枝晶间相连成网状,600℃退火后开始有金属间化合物生成,组织不再是完全的固溶体;铸态合金硬度均高于退火态的;铸态合金的抗压强度为1.71GPa,800℃退火后的抗压强度为1.63GPa,断口均属于脆性断口。

  11. Evaluation of the air quality regarding total suspended particles and heavy metals (Pb, Cd, Ni, Cu, Cr) in the Hermosillo city, Sonora, Mexico, during a yearly period; Evaluacion de la calidad del aire respecto de particulas suspendidas totales y metales pesados (Pb, Cd, Ni, Cu, Cr) en la Ciudad de Hermosillo, Sonora, Mexico, durante un periodo anual

    Energy Technology Data Exchange (ETDEWEB)

    Cruz C, M. E.; Quintero N, M. [Universidad Autonoma de Baja California, Instituto de Ingenieria, Campus Mexicali, Calle de la Normal s/n, y Blvd. Benito Juarez, Col. Insurgentes Este, Mexicali, Baja California (Mexico); Gomez A, A.; Varela S, J., E-mail: martincruzcampas@hotmail.com [Universidad de Sonora, Departamento de Ingenieria Quimica y Metalurgia, Blvd. Rosales y Luis Ensina s/n, Edificio 5B, Col. Centro, 83000 Hermosillo, Sonora (Mexico)

    2013-07-01

    In the present study, the air quality of the city of Hermosillo, Sonora, Mexico was assessed considering total suspended particulates (tsp) and heavy metals (Pb, Cd, Ni, Cu, Cr) from June 2001 through May 2002 in three monitoring sites Centro (Mazon), Nor este (CESUES) and Noroeste (CBTIS). The filter-samples used for that purpose were provided by the Air Quality Evaluation and Improvement Program (PEMCA) of the municipality of Hermosillo. The sampling method was based on high volume sampling frequency set every 6 days with non-simultaneous sampling among the three sampling sites. Filters were dissolved for metal determination by acidic-extraction, and then analyzed by flame atomic absorption spectrophotometry. Results indicate that tsp concentrations at Centro and Noroeste sites were frequently higher than the maximum daily permissible level (260 {mu}g/m{sup 3}), while in the three sites the annual average was higher than the maximum annual permissible level (75 {mu}g/m{sup 3}) both established in the standard NOM-024-Ssa-1993 (Ssa 1994a). According to the Air Quality Standard Index (US EPA 1992a), used in Mexico by Air Quality Metropolitan Index (IMECA) the results indicate that the air quality in the city of Hermosillo regarding tsp was placed between no satisfactory and poor. In regard to heavy metals (Pb, Cd, Ni, Cu, Cr), concentrations detected were below the maximum permissible levels and/or criteria taking into account the standard NOM-026-Ssa-1993 (Ssa 1994b), the Who criterion (2000), the European Union criterion (Cec 2003), and the European Environmental Agency criteria (EEA 2004). Such findings would mean that airborne metals are of no concern; however, air quality is still classified as no satisfactory due to high particulate matter concentrations. Keeping air quality parameters monitoring is recommended in order to get extensive data for use in risk studies of air quality and health (morbidity/mortality), as well as topographic conditions

  12. ALLOYING EFFECT OF Ni AND Cr ON THE WETTABILITY OF COPPER ON W SUBSTRATE

    Institute of Scientific and Technical Information of China (English)

    X.H.Yang; P.Xiao; S.H.Liang; J.T.Zou; Z.K.Fan

    2008-01-01

    By the sessile drop technique, the wettability of Cu/W systems with the additions of Ni and Cr has been studied under vacuum atmosphere. Effects of Ni and Cr contents and wetting temperatures on the wettability and the wetting mechanisms of copper on W substrate have been investigated in detail. The results show that the wetting angles of Cu on the W substrate are decreased with an increase in the content of Ni or Cr, and also decrease with raising the wetting temperatures. SEM, EPMA, and X-ray diffraction have been used to analyze the interracial characteristics of the CuNi/W and CuCr/W systems. The results reveal that there is a transition layer about 2-3 μm in the interface of Cu-4.0 wt pet Ni/W, in which the intermetallic phase Ni4W is precipitated. As to CuCr/W system, no reaction occurs at the interface. The two factors are that the contents of Cr and Ni and the infiltration temperature must be chosen appropriately in order to control the interfacial dissolution and reaction when the Cu-W alloys are prepared by the infiltration method.

  13. Structure and magnetic properties of nanostructured Ni{sub 0.77}Fe{sub 0.16}Cu{sub 0.05}Cr{sub 0.02} (Mumetal) powders prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K.S. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue S639798 (Singapore); Gheisari, Kh. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)], E-mail: ahledel227@yahoo.com; Oh, J.T. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue S639798 (Singapore); Javadpour, S. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, 7134851154 (Iran, Islamic Republic of)

    2009-02-15

    Ni-Fe based alloy powders are interesting materials for their application as soft magnetic material with low coercivity and high permeability. In this study, nanocrystalline Ni{sub 0.77}Fe{sub 0.16}Cu{sub 0.05}Cr{sub 0.02} (Mumetal) alloy powders were synthesized by mechanical alloying process using planetary high-energy ball mill under argon atmosphere. The alloy formation and different physical properties were studied as a function of milling time (h), ranging from 0 h to 96 h, using X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and the vibrating sample magnetometer (VSM). The complete phase formation of {gamma}-(Fe, Ni, Cu, Cr) is observed after 12 h milling time. Powder morphology at different stages was examined by SEM and different particle shape was observed. Saturation magnetization and coercivity derived from the hysteresis curves are discussed as a function of milling time and showed that saturation magnetization increases and coercivity decreases with milling time. Increase in milling time, led to reduction in crystallite size and increase in lattice parameter , thus inducing a higher magnetization and lower coercitivity.

  14. EVALUACIÓN DE LA CALIDAD DEL AIRE RESPECTO DE PARTÍCULAS SUSPENDIDAS TOTALES (PST) Y METALES PESADOS (Pb, Cd, Ni, Cu, Cr) EN LA CIUDAD DE HERMOSILLO, SONORA, MÉXICO, DURANTE UN PERIODO ANUAL

    OpenAIRE

    Martín Eusebio CRUZ CAMPAS; Agustín GÓMEZ ÁLVAREZ; Margarito QUINTERO NÚÑEZ; Jaime VARELA SALAZAR

    2013-01-01

    En el presente estudio se evaluó la calidad del aire para la ciudad de Hermosillo, Sonora, México, respecto de partículas suspendidas totales (PST) y metales pesados (Pb, Cd, Ni, Cu, Cr) durante el período junio de 2001 a mayo de 2002, en los sitios de monitoreo Centro (Mazón), Noreste (CESUES) y Noroeste (CBTIS). Los filtros muestra usados para ese propósito fueron proporcionados por el Programa de Evaluación y Mejoramiento de la Calidad del Aire (PEMCA) del Ayuntamiento de Hermosillo. El mu...

  15. Microstructure of AlCoCrCuFeNiMnV0.2Cx high-entropy alloy by plasma transferred arc cladding%等离子熔覆AlCoCrCuFeNiMnV0.2Cx高熵合金的组织结构

    Institute of Scientific and Technical Information of China (English)

    王智慧; 王兴阳; 贺定勇; 崔丽; 周正; 赵秋颖

    2015-01-01

    利用等离子熔覆技术在Q235钢板上制备AlCoCrCuFeNiMnV0.2Cx(x=0,0.02,0.05,0.1,0.2,摩尔比)高熵合金熔覆层,采用XRF、OM、SEM、XRD、显微硬度计等分析了熔覆层的合金成分、微观组织、物相结构以及显微硬度.结果表明,熔覆层基体组织均为典型的树枝晶结构,由FCC+ BCC固溶体组成,枝晶为BCC相,枝晶间为FCC相.当x为0.05 ~0.2时,熔覆层组织中有大量VC相在枝晶内析出,其形态多呈十字状和多边形颗粒状.由于碳的固溶强化作用和VC的析出相强化作用,随着碳含量的增加,熔覆层显微硬度呈增大的趋势,当x=0.2时,显微硬度达到572.4 HV.

  16. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: masataka-hakamada@aist.go.j [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimosihidami, Moriyama, Nagoya 463-8560 (Japan); Mabuchi, Mamoru [Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501 (Japan)

    2009-10-19

    Nanoporous Ni, Ni-Cu and Cu with ligament sizes of 10-20 nm were fabricated by dealloying rolled Ni-Mn, Cu-Ni-Mn and Cu-Mn alloys, respectively. Unlike conventional Raney nickel composed of brittle Ni-Al intermetallic compounds, the initial alloys had good workability. Ni and Cu atoms formed a homogeneous solid solution in the nanoporous architecture. The ligament sizes of nanoporous Ni and Ni-Cu were smaller than that of nanoporous Cu, reflecting the difference between the surface diffusivities of Ni and Cu.

  17. Microstructure and properties of AlCoCrCuFexMnNi high-entropy alloy coating prepared by plasma surface alloying%等离子合金化AlCoCrCuFexMnNi高熵合金涂层的组织与性能

    Institute of Scientific and Technical Information of China (English)

    卢金斌; 彭竹琴; 李俊魁; 马明星; 齐振东; 贺亚勋; 龚正

    2016-01-01

    在45#钢基体上采用等离子束合金化法制备AlCoCrCuFexMnNi高熵合金涂层。采用SEM,EDS,XRD等研究高熵合金涂层的组织,利用显微硬度计测试涂层的显微硬度分布。结果表明:采用等离子束合金化Al,Co, Cr,Cu,Mn和Ni等摩尔单质金属粉,在等离子束作用下45#钢基材中的Fe元素参与表面合金化,形成了厚度约为1 mm的AlCoCrCuFexMnNi七主元高熵合金涂层,涂层主要由BCC结构的枝晶和FCC结构的枝晶间组织组成。另外,还有σ相主要分布在枝晶间,涂层从表面到基材,体系的混合熵呈高熵−中熵−低熵梯度变化。涂层的维氏显微硬度(HV0.2)达到670~400的梯度分布。%The AlCoCrCuFexMnNi high-entropy alloy (HEA) coating was prepared on 45# steel substrate by plasma alloying method. Microstructure of the HEA coating was analyzed by SEM, EDS and XRD. The microhardness distribution of coating was tested by microhardness tester. The results show that the principal element of Fe in the 45# steel substrate participates in surface alloying process during the plasma irradiation alloying. The microstructure of the AlCoCrCuFexMnNi HEA coating with a thickness of 1 mm is mainly composed of dendritic structure and interdendritic structure. The alloy mainly composes of FCC, BCC andσ phases. From the surface of high entropy alloying coating to substrate, there is a gradual distribution of the mixing entropy from high entropy, medium entropy to low entropy. The microhardness of the coating reaches 670−400 HV0.2.

  18. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    Science.gov (United States)

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%.

  19. Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations

    Energy Technology Data Exchange (ETDEWEB)

    Divrikli, Umit [Pamukkale University, Faculty of Arts and Science, Department of Chemistry, 20020 Denizli (Turkey)]. E-mail: udivrikli@pamukkale.edu.tr; Kartal, Aslihan Arslan [Pamukkale University, Faculty of Arts and Science, Department of Chemistry, 20020 Denizli (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Arts and Science, Department of Chemistry, 38039 Kayseri (Turkey); Elci, Latif [Pamukkale University, Faculty of Arts and Science, Department of Chemistry, 20020 Denizli (Turkey)

    2007-07-16

    A method for separation-preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions by membrane filtration has been described. The method based on the collection of analyte metal ions on a cellulose nitrate membrane filter and determination of analytes by flame atomic absorption spectrometry (FAAS). The method was optimized for several parameters including of pH, matrix effects and sample volume. The recoveries of analytes were generally in the range of 93-100%. The detection limits by 3 sigma for analyte ions were 0.02 {mu}g L{sup -1} for Pb(II), 0.3 {mu}g L{sup -1} for Cr(III), 3.1 {mu}g L{sup -1} for Cu(II), 7.8 {mu}g L{sup -1} for Ni(II) and 0.9 {mu}g L{sup -1} for Cd(II). The proposed method was applied to the determination of lead, chromium, copper, nickel and cadmium in tap waters and RM 8704 Buffalo River Sediment standard reference material with satisfactory results. The relative standard deviations of the determinations were below 10%.

  20. Estudo de metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn na Bacia do Tarumã-Açu Manaus (AM Heavy metal (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn study in the Tarumã-Açu Basin Manaus (AM

    Directory of Open Access Journals (Sweden)

    Genilson Pereira Santana

    2007-01-01

    Full Text Available Os resíduos gerados em domicílios incluem diversos produtos, como pesticidas, produtos farmacêuticos, detergentes, óleos de cozinha, metais pesados contidos em baterias e outros utensílios. Esses resíduos são lançados continuamente em aterro sanitário ou lixões em cidades como Manaus. O chorume produzido nesses aterros, quando não tratados, contamina recursos hídricos superficiais e subterrâneos. Neste estudo foi feita uma avaliação das conseqüências da liberação do chorume no sistema hídrico da bacia do Tarumã-Açu. Amostras de água e sedimento foram coletadas nos igarapés Matrinxã, Acará, Bolívia, bacia do Tarumã-Açu e dentro do aterro sanitário (Manaus - Amazonas - Brasil em março 2001. As amostras de água foram filtradas em filtro Milipore (0,45 mm de poro e, em seguida, tratadas com HNO3 concentrado. As amostras de sedimento foram peneiradas em malha de 0,053 mm e digeridas com HCl:HNO3 (1:3 a 150ºC. As concentrações de alguns metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn foram determinadas nas amostras de água e sedimento por espectrometria de absorção atômica de chama. Os resultados revelaram que a concentração dos metais pesados é muito acima dos permitidos pela resolução 357/2005 do CONAMA em praticamente todos os locais amostrados, mostrando que o Aterro Sanitário é um dos principais responsáveis pelo impacto ambiental observado nos corpos hídricos estudados. As análises dos componentes principais (PCA e hierárquica de cluster (HCA, revelam que os pontos de coleta localizados dentro do aterro sanitário apresentam características diferentes dos outros locais amostrados. Além disso, o HCA e PCA mostraram que existe uma similaridade entre os pontos de coleta localizados fora do aterro o que permite afirmar que o chorume do aterro se dissolve por todo corpo hídrico estudado.Domestic sewage involves several products, such as pesticides, pharmaceutics products, detergents, soybean oil

  1. Investigations of the corrosion fatigue behaviour at a super pure martensitic stainless steel X5CrNiCuNb 17 4 PH in comparison to the soft martensitic stainless steel X4CrNiMo 16 5 1 ESR in chloride containing aqueous media. Pt. 2. Corrosion fatigue tests and crack initiation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Thomas, K.G.; Happle, T.; Wunderlich, R.

    1989-07-01

    The following report concerns the study of the corrosion fatigue behaviour of the soft martensitic steel X4CrNiMo 16 5 1 ESR and the precipitation hardened X5CrNiCuNb 17 4 PH in sodium solution in the temperature range between 20/sup 0/ and 150/sup 0/C and the determination of their general corrosion properties and the mechanism of crack propagation. Their corrosion fatigue limits were compared with each other. A comparison was also made between an electro-slag-remelted soft martensitic steel and a charge without an ESR aftertreatment. Microfractographical fracture and crack path investigation were carried out for interpretation of the experimental results. It was observed that in both super pure steels (soft martensitic and precipitation hardened) the oxidic inclusions are not responsible for the crack initiation, as it was found in the non ESR treated steels. In the 17-4 PH steel copper containing inclusions in the crack initiation areas were observed. In concentrated sodium solution pitting corrosion was found at both steels. (orig.).

  2. AlFeCuCoNiCrTix高熵合金的退火组织及硬度变化%Study on Behaviors of Annealed Microstructure and Hardness Development in AlFeCuCoNiCrTix High-entropy Alloys

    Institute of Scientific and Technical Information of China (English)

    刘贵仲; 李伟; 罗晓艳; 郭景杰

    2009-01-01

    利用XRD、SEM和DSC方法研究了AlFeCuCoNiCrTix(x=0、0.5、1)高熵合金退火态的微观组织、相结构以及相转变,同时利用洛氏硬度仪测量了各退火温度下的硬度变化.结果表明,随着退火温度的逐渐升高,TiO合金的相组成大约在636℃以后会逐渐由原来的fcc+bcc结构变为fcc1+fcc2+bcc结构,其硬度在636℃会略微增加,在636~1112℃之间下降明显,在1112℃以后基本维持不变;对于Ti0.5合金,退火时其相组成基本没有影响,一直保持fcc+bcc1+bcc2的结构,其硬度在607℃会略微增加,在607~1092℃之间下降明显,在1092℃以后基本维持不变;而对于Til舍金,当退火温度达到800℃时,会有Fe2Ti型的Laves相析出,这有助于提高材料的硬度,当退火温度达到1200℃时,其硬度可以提高到51.3HRC.

  3. Explosive compaction of CuCr alloys

    Institute of Scientific and Technical Information of China (English)

    李金平; 罗守靖; 龚朝晖; 牛玮; 纪松

    2002-01-01

    The production of CuCr alloys utilizing explosive compaction was studied. Mixture powders of CuCr alloys placed in tubes with a dimension of d14.0mm×21.4mm can be compacted using explosive pads of 16.5mm or 22.5mm. Thicker pads of explosive make the compacts more porous. The effects of the ratio of me/mp, ratio of me/(mp+mt) and impact energy on the density of compacts were similar, they were chosen to control explosive compaction, respectively. When adequate value of the parameters me/mp, me/(mt+mp) and impact energy of unit area of tube was chosen, high density(7.858g/cm3), high hardness(HB189) and low conductance (13.6MS/m) of CuCr alloys could be made by explosive compaction. The general properties of CuCr alloys by explosive compaction are similar to those of CuCr alloys by traditional process.

  4. The Microstructural Evolution of Vacuum Brazed 1Cr18Ni9Ti Using Various Filler Metals

    Directory of Open Access Journals (Sweden)

    Yunxia Chen

    2017-04-01

    Full Text Available The microstructures and weldability of a brazed joint of 1Cr18Ni9Ti austenitic stainless steel with BNi-2, BNi82CrSiBFe and BMn50NiCuCrCo filler metals in vacuum were investigated. It can be observed that an interdiffusion region existed between the filler metal and the base metal for the brazed joint of Ni-based filler metals. The width of the interdiffusion region was about 10 μm, and the microstructure of the brazed joint of BNi-2 filler metal was dense and free of obvious defects. In the case of the brazed joint of BMn50NiCuCrCo filler metal, there were pits, pores and crack defects in the brazing joint due to insufficient wettability of the filler metal. Crack defects can also be observed in the brazed joint of BNi82CrSiBFe filler metal. Compared with BMn50NiCuCrCo and BNi82CrSiBFe filler metals, BNi-2 filler metal is the best material for 1Cr18Ni9Ti austenitic stainless steel vacuum brazing because of its distinct weldability.

  5. Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

  6. Spectroscopic and thermal degradation behavior of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with thiopental sodium anesthesia drug

    Science.gov (United States)

    Refat, Moamen S.

    2013-04-01

    A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized with thiopental sodium anesthesia drug. The elemental analyses of the complexes are confined to stoichiometry of the formulas [M(TPL)3]ṡnH2O (M = Cr(III) or Fe(III); n = 6 or 5), [M(TPL)2(H2O)2]ṡnH2O (M = Mn(II), Co(II) or Ni(II); n = 0 or 4), and [M(TPL)2] (M = Cu(II) or Zn(II); n = 2 or 0) respectively, where TPL is thiopental chelating agent. Structures have been discussed and suggested upon elemental analyses, infrared, Raman, electronic, electron spin resonance, 1H NMR spectral data and magnetic studies. The X-ray powder diffraction (XRD) was performed of metal complexes. The XRD patterns indicate crystalline nature for the complexes. The measured low molar conductance values in dimethylsulfoxide indicate that the complexes are non-electrolyte nature. Spectroscopic discussion refer that coordination take place through three types: Cdbnd N (pyrimidine moiety) nitrogen and C2sbnd S (2-thiolate group) for Cr(III), Mn(II) and Fe(III), C6dbnd O (amido group) oxygen and C2sbnd S (2-thiolate group) for Co(II) and Ni(II), and Cu(II) and Zn(II) ions coordinated via Cdbnd N (pyrimidine moiety) nitrogen, C2dbnd S (2-thiolate group) and C6dbnd O (amido group) oxygen, respectively. The thermal behavior (TG/DTG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The thiopental and its complexes have been screened for their antimicrobial (G+ and G-) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans) activities by minimum inhibitory concentration (MIC) method.

  7. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: residual effect of sewage sludge and organic compost application.

    Science.gov (United States)

    Moretti, Sarah Mello Leite; Bertoncini, Edna Ivani; Vitti, André César; Alleoni, Luís Reynaldo Ferracciú; Abreu-Junior, Cassio Hamilton

    2016-03-01

    Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.

  8. Study on the behavior of the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and {sup 137}Cs in an estuarine ecosystem using Mytilus galloprovincialis as a bioindicator species: the case of Thermaikos gulf, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Catsiki, Vassiliki-Angelique [Hellenic Centre for Marine Research, Mavro Lithari, 46.7 Km Athens-Sounio, Anavyssos Attikis 19013 (Greece)]. E-mail: cats@ath.hcmr.gr; Florou, H. [National Centre for Scientific Research ' Demokritos' , Ag. Paraskevi 153 10, Athens (Greece)

    2006-07-01

    Mussels are worldwide recognized as pollution bioindicators and used in Mussel Watch programs, because they accumulate pollutants in their tissues at elevated levels in relation to pollutant biological availability in the marine environment. The present study deals with the use of Mytilus galloprovincialis as a local bioindicator of heavy metal and {sup 137}Cs contamination in an estuarine ecosystem (Thermaikos gulf, Greece in Eastern Mediterranean). M. galloprovincialis samples were collected monthly from two aquaculture farms during the period April to October 2000. Analyses for the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and {sup 137}Cs showed that the concentrations measured were low and similar to those from other non-polluted Mediterranean areas. In terms of the two sampling stations, there were no statistically significant differences between them. On the contrary, the seasonal evolution of either heavy metals or {sup 137}Cs levels presented high variation. The levels were found to increase during the cold period of the year, especially for Cu, Zn, Mn and Cr which are essential for life. Stable metals were positively inter-related and moreover, metals more involved in biochemical activities seem to present more correlations than others with less significant role in the metabolism of the organisms.

  9. Surface Quality Multicriteria Optimization of Flat Parts from 06Cr14Ni6Cu2MoVaTi-SH Steel While Grinding by Varigrain High Porosity CBN Wheels

    Science.gov (United States)

    Soler, Y. I.; Nguyen, M. T.

    2016-04-01

    The grinding of flat parts from 06Cr14Ni6Cu2MoVaTi-SH high-strength corrosion-resistant steel was made by the highly porous wheel (HPW) of CBN30 (B76, B107, B126, V151) 100 OVK27-KF40 (GOST R 53922-2010, GOST R 53923-2010). As input variables for fuzzy logic modeling in the Matlab the following description of the surface quality is chosen: the microrelief parameters (GOST 25142-82) - Ra1, Rmax1 in the cross-feed direction, Sm2 in the length feed direction, flatness deviation (GOST 24642-81) are introduced with the EFEmax , EFEa and EFEq ; microhardness HV. Every parameter at the model input is presented with position measures (medians) and scattering measures (quartile latitude). The Matlab modeling has shown that the best quality of the part surfaces is provided with HPW CBN30 B151 during the multicriteria optimization.

  10. Nucleation and growth kinetics of La0.7Sr0.3Cr0.4Mn0.6O3-δ SOFC perovskite: Symmetry alteration evolution induced by Cu2+ and Ni2+ impregnation

    Directory of Open Access Journals (Sweden)

    A. Concha-Balderrama

    2016-12-01

    Full Text Available La0.7Sr0.3Cr0.4Mn0.6O3-δ perovskite nanoparticles have been synthetized using an ethylene glycol modified sol-gel method and impregnated by Cu0.75Ni0.25 nanoparticles. The phase transitions and nucleation kinetics were studied by time resolved x-ray diffraction, Rietveld, Raman spectroscopy and high resolution transmission electron microscopy. Findings have shown that, an atomic disorder dominates from room temperature to 400 °C. Nanoparticles with crystal size <26 nm start through nuclei formation of La0.7Sr0.3Cr0.4Mn0.6O3-δ and SrCrO4 solid solutions with Pm3¯m cubic and P21/n monoclinic symmetry respectively in the range of 600–650 °C. Symmetry reduction from the Pm3¯m⟶R3¯c space group had been obtained at a lower temperature (750 °C than those reported in the literature in oxygen atmosphere and it was confirmed by an octahedral distortion, which takes place in the crystallographic direction[22̅1]/(12̅2. The Johnson-Mehl-Avrami model had described the whole process, where the existence of two phases was shown before it reached its complete D3d6 point group symmetry.

  11. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    Science.gov (United States)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  12. Calorimetric Investigation of Thermal Stability of 304H Cu (Fe-17.7Cr-9.3Ni-2.95Cu-0.91Mn-0.58Nb-0.24Si-0.1C-0.12N-Wt Pct) Austenitic Stainless Steel

    Science.gov (United States)

    Tripathy, Haraprasanna; Subramanian, Raju; Hajra, Raj Narayan; Rai, Arun Kumar; Rengachari, Mythili; Saibaba, Saroja; Jayakumar, Tammana

    2016-12-01

    The sequence of phase instabilities that take place in a Fe-17.7Cr-9.3Ni-0.58Nb-2.95Cu-0.12N (wt pct) austenitic stainless steel (304H Cu grade) as a function of temperature has been investigated using dynamic calorimetry. The results obtained from this investigation are supplemented by Thermocalc-based equilibrium and Scheil-Gulliver nonequilibrium solidification simulation. The following phase transformation sequence is found upon slow cooling from liquid: L → L + γ → L + γ + MX → γ + MX + δ → γ +MX + M23C6 → γ + MX + M23C6 + Cu. Under slow cooling, the solidification follows austenite + ferrite (AF) mode, which is in accordance with Thermocalc prediction and Scheil-Gulliver simulation. However, higher cooling rates result in skeletal δ-ferrite formation, due to increased segregation tendency of Nb and Cr to segregate to interdendritic liquid. The solidification mode is found to depend on combined Nb + Cu content. Experimental estimates of enthalpy change associated with melting and secondary phase precipitation are also obtained. In addition a semi-quantitative study on the dissolution kinetics of M23C6 type carbides has also been investigated. The standard solution treatment at 1413 K (1140 °C) is found to be adequate to dissolve both Cu and M23C6 into γ-austenite; but the complete dissolution of MX type carbonitrides occurs near the melting region.

  13. Dissolution and Interfacial Reactions of (Cu,Ni)6Sn5 Intermetallic Compound in Molten Sn-Cu-Ni Solders

    Science.gov (United States)

    Wang, Chao-hong; Lai, Wei-han; Chen, Sinn-wen

    2014-01-01

    (Cu,Ni)6Sn5 is an important intermetallic compound (IMC) in lead-free Sn-Ag-Cu solder joints on Ni substrate. The formation, growth, and microstructural evolution of (Cu,Ni)6Sn5 are closely correlated with the concentrations of Cu and Ni in the solder. This study reports the interfacial behaviors of (Cu,Ni)6Sn5 IMC (Sn-31 at.%Cu-24 at.%Ni) with various Sn-Cu, Sn-Ni, and Sn-Cu-Ni solders at 250°C. The (Cu,Ni)6Sn5 substrate remained intact for Sn-0.7 wt.%Cu solder. When the Cu concentration was decreased to 0.3 wt.%, (Cu,Ni)6Sn5 significantly dissolved into the molten solder. Moreover, (Cu,Ni)6Sn5 dissolution and (Ni,Cu)3Sn4 formation occurred simultaneously for the Sn-0.1 wt.%Ni solder. In Sn-0.5 wt.%Cu-0.2 wt.%Ni solder, many tiny (Cu,Ni)6Sn5 particulates were formed and dispersed in the solder matrix, while in Sn-0.3 wt.%Cu-0.2 wt.%Ni a lot of (Ni,Cu)3Sn4 grains were produced. Based on the local equilibrium hypothesis, these results are further discussed based on the liquid-(Cu, Ni)6Sn5-(Ni,Cu)3Sn4 tie-triangle, and the liquid apex is suggested to be very close to Sn-0.4 wt.%Cu-0.2 wt.%Ni.

  14. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings

    Science.gov (United States)

    Zhou, Wuxi; Zhou, Kesong; Li, Yuxi; Deng, Chunming; Zeng, Keli

    2017-09-01

    A novel Cr3C2-WC-NiCoCrMo and commercial Cr3C2-NiCr thermal spray-grade powders with particle size of -45 + 15 μm were prepared by an agglomeration and sintering process. Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr coatings were deposited by high velocity oxygen fuel (HVOF) spraying. The fundamental properties of both coatings were evaluated and friction wear test against Al2O3 counterbodies of both coatings at high temperatures (450 °C, 550 °C, 650 °C) were carried out ball-on-disk high temperature tribometer. All specimens were characterized by optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and 3D non-contact surface mapping profiler. The results have shown that the Cr3C2-WC-NiCoCrMo coating exhibited lower porosity, higher micro-hardness compared to the Cr3C2-NiCr coating. The Cr3C2-WC-NiCoCrMo coating also exhibited better wear resistance and higher friction coefficient compared to the Cr3C2-NiCr coating when sliding against the Al2O3 counterpart. Wear rates of both coatings increased with raising temperature. Both coatings experienced abrasive wear; hard phase particles (WC and Cr3C2) with different sizes, distributed in the matrix phase, will effectively improve the resistance against wear at high temperatures.

  15. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  16. Determinación de factores de enriquecimiento y geoacumulación de Cd, Cr, Cu, Ni, Pb, y Zn en suelos de la cuenca alta del río Lerma

    Directory of Open Access Journals (Sweden)

    Pedro del Aguila Juárez

    2005-01-01

    Full Text Available Se determinó el índice degeoacumulación regional (Igeo y el factor deenriquecimiento (EF en suelos irrigados de lacuenca alta del río Lerma, Estado de México.Se colectaron 55 muestras de suelo de cincolocalidades: Tlachaloya, Ixtlahuaca,Atlacomulco, Temascalcingo y Amealco. Laspropiedades químicas analizadas fueron pH,capacidad de intercambio catiónico, arcilla,materia orgánica, concentración de Cr, Cu, Cd,Ni, Zn, y Pb; así como el Igeo y FE. Los suelosse consideraron excelentes para su usoagrícola en cuanto a los valores de pH ymateria orgánica (MO. Las concentraciones demetales pesados se encontraron por debajo delos límites permisibles. De acuerdo con elfactor de enriquecimiento, el Pb se considerócomo un contaminante moderado con unorigen tanto geológico como antropogénico.El índice de geocumulación mostró que el Pby el Ni son los mayores contaminantes del suelo.

  17. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    Science.gov (United States)

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The formation model of Ni-Cr oxides on NiCoCrAlY-sprayed coating

    Energy Technology Data Exchange (ETDEWEB)

    Liang, G.Y., E-mail: gyliang@mail.xjtu.edu.cn [Department of Material Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China); Zhu, C.; Wu, X.Y.; Wu, Y. [Department of Material Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-05-15

    The atomic arrangement and distribution of oxides (Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and NiO) on the sprayed-NiCoCrAlY coating after oxidation are analyzed. The formation and the growth model of Ni-Cr oxide phases are discussed according to the matching relationship between atoms. The outline character and a scale of spinel NiCr{sub 2}O{sub 4} are discussed. The results show that Cr atoms can form two close-packed arrangements in the crystal plane of Cr{sub 2}O{sub 3} perpendicular to <0 0 1> orientation. The atomic spacing in the first arrangement corresponds to double that of Ni/Ni{sub 3}Al in {l_brace}1 1 1{r_brace} crystal face. This suggests that Ni/Ni{sub 3}Al is the substrate for Cr{sub 2}O{sub 3} to grow along <0 0 1> direction. The lattice mismatch between Cr{sub 2}O{sub 3} and Ni/Ni{sub 3}Al is less than that of Al{sub 2}O{sub 3}, which indicates that Cr{sub 2}O{sub 3} is easier to form than Al{sub 2}O{sub 3} during the oxidation process. The atomic spacing in another close-packed arrangement of Cr{sub 2}O{sub 3} perpendicular to <0 0 1> orientation is approximately equal to that of Ni or Cr in the plane of NiCr{sub 2}O{sub 4} and NiO perpendicular to <1 1 1> orientation. So Cr{sub 2}O{sub 3} can be the substrate for NiCr{sub 2}O{sub 4} and NiO to grow in the <0 0 1> direction. NiCr{sub 2}O{sub 4} and NiO can grow directly along the <1 1 1> orientation on each other. NiCr{sub 2}O{sub 4} can grow outward in the planes of Cr{sub 2}O{sub 3} perpendicular to <0 0 1> and grow inward along <1 1 1> orientation of NiO.

  19. Electrodeposited NiCu Alloy Catalysts for Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Park, Hansoo; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Jang, Jong Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-07-15

    NiCu alloys have been suggested as potential candidates for catalysts in glucose oxidation. In this study, NiCu alloys with different compositions were prepared on a glassy carbon substrate by changing the electrodeposition potential to examine the effect of Ni/Cu ratios in alloys on catalytic activity toward glucose oxidation. Cyclic voltammetry and chronoamperometry showed that NiCu alloys had higher catalytic activity than pure Ni and Cu catalysts. Especially, Ni{sub 59}Cu{sub 41} had superior catalytic activity, which was about twice that of Ni at a given oxidation potential. X-ray analyses showed that the oxidation state of Ni in NiCu alloys was increased with the content of Cu by lattice expansion. Ni components in alloys with higher oxidation state were more effective in the oxidation of glucose.

  20. Microstructure of directionally solidified Cu-Cr composites

    Institute of Scientific and Technical Information of China (English)

    毕晓勤; 李金山; 胡锐; 耿兴国; 朱琦; 傅恒志

    2004-01-01

    Cu-Cr composites were prepared by self-made directional solidification equipment with the high temperature gradient and double-zone heating. The microstructural evolution was investigated during the directional solidification with the different solidification rate for Cu-1.0%Cr, Cu-1.7%Cr and Cu-5.6%Cr alloys, respectively. It is shown that for the hypoeutectic Cu-1.0%Cr alloy, the general microstructures consist of primary α(Cu) phase and the rod-like or needle-like (α+β) eutectics, and for the hypereutectic Cu-1. 7%Cr and Cu-5.6%Cr alloys, α(Cu)phase, primary β(Cr) phase and (α+β) eutectics coexist. With the increase of the solidification rate, the morphology evolution of every phase is that, 1st cellular(dendrite) of α(Cu) phase thins and cellular(dendrite) spacing shortens gradually, (α+β) eutectics set in α(Cu) cellular or dendrite, and primary β(Cr) phase distributes unevenly on α (Cu) matrix, whose morphology undergoes the change from dendrite to particle.

  1. WC颗粒对激光熔覆FeCoCrNiCu高熵合金涂层组织与硬度的影响%Effects of WC Particles on the Microstructure and Hardness of FeCoCrNiCu High-entropy Alloy Coating Prepared by Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    黄祖凤; 张冲; 唐群华; 戴品强; 吴波

    2013-01-01

    FeCoCrNiCu high-entropy alloy coating with WC particles was prepared by the continuous wave CO2 laser. The effects of WC particles on the microstructure and hardness were investigated. Results show that the high entropy alloy coatings with different WC content are all composed of face-centered cubic (FCC) and body-centered cubic (BCC) solid solution phases. With the increase of WC content, BCC phase content increases and FCC phase content decreases. During the process of laser cladding, WC particles dissolved into the FCC and BCC phases, however, the addition of WC does not cause the formation of complex carbide phases. The microstructure of coatings with different WC content is typical dendrite. Element segregation between the dendrite and interdendrite can be effectively inhibited by laser cladding with rapid solidification. The increase of WC content lead to grain refinement and microhardness increasing.%采用CO2横流激光器制备添加WC颗粒的FeCoCrNiCu高熵合金涂层,研究WC含量对涂层的组织结构及硬度的影响.结果表明:不同WC含量的高熵合金涂层均由简单的面心立方结构(FCC)和体心立方结构(BCC)两相组成.随着WC含量的提高,涂层中FCC相含量不断减少,BCC相含量不断增加.WC颗粒在激光熔覆过程中发生溶解并完全溶入FCC相和BCC相中,并未引起复杂碳化物相的生成.不同WC含量的涂层均为树枝晶组织.激光熔覆过程中的快速凝固条件有利于抑制枝晶和枝晶间的成分偏聚.WC含量的提高使枝晶细化,硬度提高.

  2. Creep behavior of plasma sprayed NiCr and NiCrAl coating-based systems

    Institute of Scientific and Technical Information of China (English)

    Xiancheng ZHANG; Changjun LIU; Fuzhen XUAN; Zhengdong WANG; Shan-Tung TU

    2011-01-01

    The creep behavior of the plasma sprayed NiCr and NiCrAl coating/Nickel alloy 690substrate systems at 1033 K was investigated. Results showed that there was almost no difference in the creep lives between the NiCr and NiCrAl coated specimens at a given stress level, since the contents of Cr used in the NiCr and NiCrAl powders are almost same. The relationship between the minimum creep rate and the applied stress followed the well-known Norton's power law, εmin=Aσn, with the values of A=2.66× 10-16 Mpa-n.h-1 and n=6.48. The relation between the applied stress and time to rupture of the coated specimens can be estimated by using Larson-Miller equation. The θ projection method can be used to accurately characterize the creep behavior of the coated specimens.

  3. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  4. Synthesis and characterization of Cu-Cr-O nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LI Wei; CHENG Hua

    2007-01-01

    Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a Cu/Cr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.

  5. Statistical theory of diffusion in concentrated bcc and fcc alloys and concentration dependencies of diffusion coefficients in bcc alloys FeCu, FeMn, FeNi, and FeCr

    Energy Technology Data Exchange (ETDEWEB)

    Vaks, V. G.; Khromov, K. Yu., E-mail: khromov-ky@nrcki.ru; Pankratov, I. R. [National Research Center “Kurchatov Institute,” (Russian Federation); Popov, V. V. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-07-15

    The statistical theory of diffusion in concentrated bcc and fcc alloys with arbitrary pairwise interatomic interactions based on the master equation approach is developed. Vacancy–atom correlations are described using both the second-shell-jump and the nearest-neighbor-jump approximations which are shown to be usually sufficiently accurate. General expressions for Onsager coefficients in terms of microscopic interatomic interactions and some statistical averages are given. Both the analytical kinetic mean-field and the Monte Carlo methods for finding these averages are described. The theory developed is used to describe sharp concentration dependencies of diffusion coefficients in several iron-based alloy systems. For the bcc alloys FeCu, FeMn, and FeNi, we predict the notable increase of the iron self-diffusion coefficient with solute concentration c, up to several times, even though values of c possible for these alloys do not exceed some percent. For the bcc alloys FeCr at high temperatures T ≳ 1400 K, we show that the very strong and peculiar concentration dependencies of both tracer and chemical diffusion coefficients observed in these alloys can be naturally explained by the theory, without invoking exotic models discussed earlier.

  6. Influence of the small substitution of Z=Ni, Cu, Cr, V for Fe on the magnetic, magnetocaloric, and magnetoelastic properties of LaFe{sub 11.4}Si{sub 1.6}

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Arjun K., E-mail: pathak@siu.ed [Department of Physics, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL 62901 (United States); Basnyat, Prakash; Dubenko, Igor [Department of Physics, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL 62901 (United States); Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Ali, Naushad [Department of Physics, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL 62901 (United States)

    2010-03-15

    We have studied the magnetic, magnetocaloric, and magnetostriction properties of LaFe{sub 11.4}Si{sub 1.6} and La(Fe{sub 0.99}Z{sub 0.01}){sub 11.4}Si{sub 1.6} (Z=Ni, Cu, Cr, V) compounds using magnetization and strain gauge techniques. It was found that substitution of 1% of the Fe by Z-elements results in an increase in the Curie temperature (T{sub C}), and affects the magnetostriction and magnetocaloric properties of the parent compound, LaFe{sub 11.4}Si{sub 1.6}. A maximum shift in T{sub C} of about 11 K, and significantly smaller hysteresis losses in the vicinity of T{sub C} compared with those of the base compound, were found for Z=V. The maximum magnetovolume coupling constant was estimated to be n{sub dd}approx2.7x10{sup -3} (mu{sub B}/Fe atom){sup -2} for the parent compound. The changes in the volume magnetostriction, the magnetovolume coupling constant, and the magnetocaloric properties are strongly correlated with composition. The relative effects of the variation in cell parameters and electron concentration on the magnetostriction, T{sub C}, and the magnetocaloric properties are discussed.

  7. Electrodeposition of Ni-Cr alloy on aluminum substrate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ni-Cr alloys with mass fraction of 1.4%-23.9 %Cr, 76.1%-98.6 % Ni, and hardness of 70.5-80.5HR were electrodeposited on aluminium substrate from the trivalent chromium sulphate-chloride solution using citric acid as complexing agent. The aluminium was pretreated by means of degreasing and eroding, polishing and twice chemicai immersion of zinc. The effects of electrodeposition parameters such as current density, temperature, pH value and bath concentration on the composition and hardness of deposits were investigated. The results show that the Cr content increases with the increase of current density and the decrease of temperature, and that it increases with the increase of pH value to a maximum and then decreases. The increase of Cr content leads to the increase of hardness of the Ni-Cr layers. The deposits with high Cr content are of good corrosion resistance. Good adherence of Ni-Cr deposits to aluminium substrate is obtained. The Ni-Cr alloys are the Ni-Cr solid solution with fcc crystalline structure. The Ni-Cr alloy deposits are fine, bright and smooth and compact.

  8. Experimental Study on Edge-cracking in Austenitic Stainless Steel Cr15Mn9Cu2NiN during Hot Rolling%奥氏体不锈钢热轧边裂实验研究

    Institute of Scientific and Technical Information of China (English)

    朱亮; 魏鹏; 侯国清; 苏婷婷

    2012-01-01

    Austenitic stainless steel Crl5Mn9Cu2NiN is prone to suffer from edge cracking during hot rolling. Hot rolling test is conducted on an experimental hot rolling device, which is designed cooperate with thermal simulator. Formation mechanism of edge cracks is researched through this test. The resuks show thai, when press quantity reaches to a certain amount, samples will crack on edge at all test temperatures. All the edge cracks propagate along austenitic grain boundaries. In the range of 1000~l 1 50℃ deformation, cracking tendency of samples are severe, which is related to the reduction of ductility in austenitic stainless steel. The characteristic of microstructures in hot rolled specimens is deformation substructures and twins boundaries in coarse grains in this temperature range. But at 1200℃ deformation, the grain size of specimens is smaller, and all substructures and twins boundaries disappear in the grains.%奥氏体不锈钢Cr15Mn9Cu2NiN在热轧过程中容易产生边裂.在热模拟试验机上开发出热轧实验装置,进行热轧实验,分析该不锈钢边部裂纹产生的原因.结果表明,压下量达到一定程度时,在所有变形温度下,试样边部均会产生裂纹,裂纹均沿奥氏体晶界扩展.在1000~1150℃变形时裂纹倾向较大,分析认为这与奥氏体不锈钢在此温度区间内的延性下降有关.在该温度区间内,轧后试样的微观组织具有晶粒租大和晶粒内部变形亚结构与孪晶共同存在的特征,而在1200℃变形时,晶粒尺寸较小,晶粒内部的变形亚结构和孪晶全部消失.

  9. Densities of molten Ni-(Cr, Co, W) superalloys

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; YANG Ren-hui; FANG Liang; LIU Lan-xiao; ZHAO Hong-kai

    2008-01-01

    In order to obtain more accurate density for molten Ni-(Cr, Co, W) binary alloy, the densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys were measured with a sessile drop method. It is found that the measured densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys decrease with increasing temperature in the experimental temperature range. The density of alloys increases with increasing W and Co concentrations while it decreases with increasing Cr concentration in the alloy at 1 773-1 873 K. The molar volume of Ni-based alloys increases with increasing W concentration while it decreases with increasing Co concentration. The effect of Cr concentration on the molar volume of the alloy is little in the studied concentration range. The accommodation among atomic species was analyzed. The deviation of molar volume from ideal mixing shows an ideal mixing of Ni-(Cr, Co, W) binary alloys.

  10. Cr-Ni ALLOY ELECTRODEPOSITION AND COMPARISON WITH CONVENTIONAL PURE Cr COATING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    M. Moniruzzaman

    2012-12-01

    Full Text Available Cr coating is widely used as the outer surface of precision parts due to its attractive appearance and superior corrosion resistance properties. It is obtained by electrodeposition via a conventional bath with hexavalent Cr ions. This manufacturing technique has many drawbacks, such as very low efficiency and high operating temperature and it is hazardous to health. In this work, we studied a Cr-Ni alloy deposition technique and compared the alloy coating properties to those with conventional Cr coating. Sequential two-step alloy electrodeposition was also compared. We took varying concentrations of Cr, Ni and complexing agents for the electrodeposition of Cr-Ni alloy and sequential Cr-Ni alloy coating on mild steel. Operating parameters, i.e. current density and temperature, were varied to examine their effects on the coating properties. The coatings thus obtained were characterized by visual observation, corrosion test, microhardness measurement, morphology and chemical analysis. The Cr-Ni alloy coating was found to be more corrosion resistant in 5% NaCl solution and harder than the pure Cr coating obtained by conventional electrodeposition. Toxic gas was produced in a much lower extent in the alloy coating than the conventional Cr coating technique. Again, the two-step Cr-Ni alloy coating was found better in terms of corrosion resistance as well as hardness compared to the Cr-Ni alloy coating. The process was also found to be much more environmentally friendly.

  11. Effects of Cr and Ni on interdiffusion and reaction between U and Fe-Cr-Ni alloys

    Science.gov (United States)

    Huang, K.; Park, Y.; Zhou, L.; Coffey, K. R.; Sohn, Y. H.; Sencer, B. H.; Kennedy, J. R.

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe-15 wt.%Cr or Fe-15 wt.%Cr-15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe-Cr-Ni exhibited a similar temperature dependence, while the U vs. Fe-Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases - lower growth rate at lower temperature but higher growth rate at higher temperature.

  12. Effect of temperature on mechanical alloying of Cu-Zn and Cu-Cr system

    Institute of Scientific and Technical Information of China (English)

    ZUO Ke-sheng; XI Sheng-qi; ZHOU Jin-gen

    2009-01-01

    Cu-Zn and Cu-Cr powders were milled with an attritor mill at room temperature, -10, -20 and -30 ℃, respectively. Phase transformation and morphology evolution of the alloyed powder were investigated by X-ray diffractometry(XRD), X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy(SEM). The results show that lowering temperature can delay mechanical alloying(MA) process of Cu-Zn system with negative mixing enthalpy, and promote MA process of Cu-Cr system with positive mixing enthalpy. As for Cu-Cr and Cu-Zn powders milled at -10 ℃, lamellar structures are firstly formed, while fewer lamellar particles can be found when the powder is milled at -20 ℃. When the alloyed powder is annealed at 1 000 ℃, Cu(Cr) solid solution is decomposed and Cr precipitates from Cu matrix, whereas Cu(Zn) solid solution keeps stable.

  13. 新型Cr-Ni-Mo和Cr-Ni-Co堆焊合金空蚀性能%Cavitation Erosion Resistance of Novel Cr-Ni-Mo and Cr-Ni-Co Overlaying Alloys

    Institute of Scientific and Technical Information of China (English)

    徐桂芳; 秦敏明; 雷玉成; 陈希章; 李涛

    2012-01-01

    New type Cr-Ni-Mo and Cr-Ni-Co overlaying alloys were prepared by argon tungsten-arc welding (TIG) on 304 stainless steel, and tested by cavitation vibrating device. The cavitation erosion resistance of alloys was compared through the analysis of mass loss. The alloy layer was analyzed by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and microhardness tester. Results indicate that the cavitation erosion resistance of Cr-Ni-Mo and Cr-Ni-Co overlaying alloys is better than that of 304 stainless steel, and the resistance of Cr-Ni-Co is better than Cr-Ni-Mo. In the process of cavitation the damage is preferred to appear in grain boundary. Phase transformation from austenite to martensite happens in the cavitation process of Cr-Ni-Co alloy, and it is helpful to absorb the energy and delay the process of cavitation erosion, and enhance the cavitation erosion resistance effectively. The cavitation erosion resistance of overlaying alloys is related to hardness and work hardening ability.%采用钨极氩弧焊(TIG)将新型Cr-Ni-Mo和Cr-Ni-Co合金堆焊于304不锈钢表面进行空蚀试验,通过失重比较不同合金的抗空蚀性能.采用扫描电镜(SEM)、X射线衍射(XRD)仪和显微硬度计对合金层进行分析.结果表明:Cr-Ni-Mo和Cr-Ni-Co合金的耐空蚀性能均优越于304不锈钢,其中Cr-Ni-Co优于Cr-Ni-Mo;空蚀破坏优先出现在堆焊层的晶界处;Cr-Ni-Co合金在空蚀过程中发生了因奥氏体向马氏体的转变,有利于能量吸收,延缓了空蚀的进行,提高其耐空蚀性能;堆焊合金的抗空蚀能力与合金本身的硬度和加工硬化能力有关.

  14. Microstructure and mechanical properties of thermal sprayed nanostructured Cr3C2-Ni20Cr coatings

    OpenAIRE

    Cecilio Alvares da Cunha; Nelson Batista de Lima; Jose Roberto Martinelli; Ana Helena de Almeida Bressiani; Armando Guilherme Fernando Padial; Lalgudi Venkataraman Ramanathan

    2008-01-01

    Cr3C2-Ni20Cr coatings have been used for corrosion and wear resistant applications. However, one of the shortcomings of these coatings is its low hardness, and consequent low wear resistance, for long term high temperature applications. Nanostructured coatings of many materials have exhibited higher hardness and strength compared with conventional coatings of the same material. Consequently, nanostructured coatings of other materials, including Cr3C2-Ni20Cr have been attempted to enhance over...

  15. Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia)

    Science.gov (United States)

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-06-01

    Fluxes of suspended particulate matter (SPM) and their associated metals were performed off the Mejerda River Delta during both the wet (March) and the dry (July) seasons in 2012, using sediment traps at study stations at depths of 10, 20 and 40 m. Fluxes nearest to the Mejerda outlet were more significant, especially during winter (36 g m-2 day-1), but dissipated further offshore, 24.5-6 g m-2 day-1 at the 20 m and 21.8-4.8 g m-2 day-1 at the 40 m stations. Many variations observed in seasonal and spatial metal fluxes are similar to those of SPM, in particular Pb and Zn, probably because they are associated with the mining activity characteristic of the Mejerda catchment. Chemical speciation reveals that most of the metals (20-100%) are bound to the residual fraction. The most toxic metals (Pb, Zn) are bound in part to the exchangeable fraction (20-50% for Pb and 5-15% for Zn) making them relatively bioavailable and therefore potentially toxic. While Cu and Cd fluxes are not always clearly established according to season, both metals are apparently sequestered deep in the sediment, bound especially to clays (40-80% for Cd and up to 100% for Cu).

  16. Oxidation Behaviour of Sputtered Ni-3Cr-20Al Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900°C in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20Al coating after 200 h oxidation.However, owing to the segregation of Ni3Al during oxidation Focess at high temperature, the spinel NiAl2O4 was also formed in the Al2O3 layer. It was found that the formation of NiAl2O4had no detrimental effect on the oxidation resistance of the sputtered Ni-3Cr-20Al coating due to the excellent adhesion shown by the Al2O3 and NiAl2O4 complex oxide scale.

  17. Interatomic potential to study the formation of NiCr clusters in high Cr ferritic steels

    Science.gov (United States)

    Bonny, G.; Bakaev, A.; Olsson, P.; Domain, C.; Zhurkin, E. E.; Posselt, M.

    2017-02-01

    Under irradiation NiSiPCr clusters are formed in high-Cr ferritic martensitic steels as well as in FeCr model alloys. In the literature little is known about the origin and contribution to the hardening of these clusters. In this work we performed density functional theory (DFT) calculations to study the stability of small substitutional NiCr-vacancy clusters and interstitial configurations in bcc Fe. Based on DFT data and experimental considerations a ternary potential for the ferritic FeNiCr system was developed. The potential was applied to study the thermodynamic stability of NiCr clusters by means of Metropolis Monte Carlo (MMC) simulations. The results of our simulations show that Cr and Ni precipitate as separate fractions and suggest only a limited synergetic effect between Ni and Cr. Therefore our results suggest that the NiCrSiP clusters observed in experiments must be the result of other mechanisms than the synergy of Cr and Ni at thermal equilibrium.

  18. Combustion Synthesis of Ti-2B-Cu/Ni and 3Ti-2BN-Cu/Ni Bilayered Cermets

    Institute of Scientific and Technical Information of China (English)

    Weiping SHEN; Wenbin CAO; Changchun GE; E.H.Grigoryan; A.E.Sytschev; A.S.Rogachev

    2003-01-01

    The effects of Cu and Ni (x=0, 10, 20 and 40 wt pct) and compaction pressures (12, 24, 84 and 108 MPa)on combustion wave velocity and wave front shape for Ti-2B-Cu/Ni and 3Ti-2BN-Cu/Ni bilayered cermets were investigated by a video camera. Since the boiling point of Cu is lower, the wave velocities of specimens are slower.Due to the higher specific heat of Ni than that of Cu, the wave velocities of specimens was slowed down a lot with increasing the Ni diluent. The wave velocity differences of the specimens containing Ni are more than that of the bilayered specimens containing Cu. Wave velocities of the specimens containing Ni increased more than that of the specimens containing Cu when higher pressure was employed for green mixture. The more the wave velocity difference of the bilayer, the more curved the specimen.

  19. Magnetic and charge ordering properties of Bi{sub 0.2}Ca{sub 0.8}Mn{sub 0.9}X{sub 0.1}O{sub 3} (where X = Ti, Cr, Fe, Co, Ni, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Kamlesh [Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Vaithyanathan, V.; Inbanathan, S.S.R. [Post Graduate and Research Department of Physics, The American College, Madurai 625002 (India); Varma, G.D., E-mail: gdvarfph@iitr.ernet.in [Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2012-08-25

    Highlights: Black-Right-Pointing-Pointer Structural, magnetic and transport properties of Bi{sub 0.2}Ca{sub 0.8}Mn{sub 0.9}X{sub 0.1}O{sub 3} (where X = Ti, Cr, Fe, Co, Ni, Cu) have been studied. Black-Right-Pointing-Pointer T{sub CO} decreases by {approx}10 K and {approx}33 K, in Ni{sup 2+} and Cu{sup 2+} doped samples, while it increases by 42 K in Ti{sup 4+} doped sample. Black-Right-Pointing-Pointer In case of Fe{sup 3+}, Co{sup 3+} and Cr{sup 3+} doped samples charge-ordering (CO) completely disappears. Black-Right-Pointing-Pointer Furthermore, the enhancement in resistivity in all the doped samples with respect to undoped one has been observed. Black-Right-Pointing-Pointer The magnetic exchange interactions between Mn and doped ions explain magnetic and electrical properties. - Abstract: Structural, magnetic and transport properties of Bi{sub 0.2}Ca{sub 0.8}Mn{sub 0.9}X{sub 0.1}O{sub 3} (where X = Ti, Cr, Fe, Co, Ni, Cu) have been investigated. The parent sample Bi{sub 0.2}Ca{sub 0.8}MnO{sub 3} (BCMO) exhibits robust charge-ordered antiferrromagnetic (COAFM) phase with charge ordering temperature (T{sub CO}) {approx}155 K and AFM Neel temperature (T{sub N}) {approx}105 K. T{sub CO} decreases by {approx}10 K and {approx}33 K, respectively, in Ni{sup 2+} and Cu{sup 2+} doped samples, while it increases by 42 K in Ti{sup 4+} doped sample. In case of Fe{sup 3+}, Co{sup 3+} and Cr{sup 3+} doped samples charge-ordering (CO) completely melts. The paramagnetic (PM) to ferromagnetic (FM) transition temperatures (T{sub C}) of doped samples have lower values as compared to undoped one. In addition, a spin glass (SG) state is observed in all the samples and the magnetic state at T < T{sub C} is akin to a cluster glass (CG) for undoped and Ni, Cu, Ti doped samples formed due to the presence of FM clusters in COAFM matrix. Furthermore, the enhancement in resistivity in all the doped samples with respect to undoped one has been observed. Based on the present study it has

  20. Effects of Cr and Ni on Interdiffusion and Reaction between U and Fe-Cr-Ni Alloys

    Energy Technology Data Exchange (ETDEWEB)

    K. Huang; Y. Park; L. Zhou; K.R. Coffey; Y.H. Sohn; B.H. Sencer; J. R. Kennedy

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe–15 wt.%Cr or Fe–15 wt.%Cr–15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe–Cr–Ni exhibited a similar temperature dependence, while the U vs. Fe–Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases – lower growth rate at lower temperature but higher growth rate at higher temperature.

  1. Electroplating process of amorphous Fe-Ni-Cr alloy

    Institute of Scientific and Technical Information of China (English)

    何湘柱; 夏畅斌; 王红军; 龚竹清; 蒋汉瀛

    2001-01-01

    A novel process of electroplating amorphous Fe-Cr-Ni alloy in chloride aqueous solution with Fe( Ⅱ ), Ni ( lⅡ ) and Cr( Ⅲ ) was reported. Couple plasma atomic emission spectrometry (ICP-AES), X-ray diffractometry(XRD),scanning electronic microscopy(SEM), microhardness test and rapid heating-cooling method were adopted to detect the properties of the amorphous Fe-Ni-Cr deposit, such as composition, crystalline structure, micrograph, hardness, and adherence between deposit and substrate. The effects of the operating parameters on the electrodeposit of the amorphous FeNi-Cr alloy were discussed in detail. The results show that a 8.7 μm thick mirror-like amorphous Fe-Ni-Cr alloy deposit,with Vicker's hardness of 530 and composition of 45%~55% Fe, 33%~37% Ni, 9%~23% Cr was obtained by electroplating for 20 min at room temperature( 10 30 C ), cathode current 10~16 A/dm2, pH = 1.0~3.0. The XRD pat terns show that there only appears a broad hump around 2θ of 41 °~47 °for the amorphous Fe-Ni-Cr alloy deposit, while the SEM micrographs show that the deposit contains only a few fine cracks but no pinholes.

  2. Density of Ni-Cr Alloy in the Mushy State

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of Ni-Cr alloy in the mushy state has been measured using the modified sessile drop method. The density of Ni-Cr alloy in the mushy state was found to decrease with increasing temperature and Cr concentration in alloy.The molar volume of Ni-Cr alloy in the mushy state therefore increases with increasing the Cr concentration in alloy.The ratio of the difference of density divided by the temperature difference between liquidus and solidus temperatures decreases with increasing Cr concentration. The density of the alloy increased with the precipitation of a solid phase in alloy during the solidification process. The temperature dependence of the density of alloy in the mushy state was not linear but biquadratic.

  3. CO2 activation on bimetallic CuNi nanoparticles☆

    Institute of Scientific and Technical Information of China (English)

    Natalie Austin; Brandon Butina; Giannis Mpourmpakis⁎

    2016-01-01

    Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs) in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds). This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  4. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  5. Effect of Cr content on mechanical and electrical properties of Ni-Cr thin films

    Energy Technology Data Exchange (ETDEWEB)

    Danisman, M., E-mail: muratdan@gmail.co [Yildiz Technical University, Faculty of Chemistry-Metallurgy, Metallurgical and Materials Engineering Department, Esenler 34220, Istanbul (Turkey); Cansever, N. [Yildiz Technical University, Faculty of Chemistry-Metallurgy, Metallurgical and Materials Engineering Department, Esenler 34220, Istanbul (Turkey)

    2010-03-18

    NiCr has been a popular choice for strain gage and electrical resistance application in various fields of engineering and science. Therefore, the phases at this binary system have been thoroughly investigated in the last decade. For Ni-Cr thin film production, sputtering from alloy targets is mostly discussed as a deposition method. However, Cr content in Ni-Cr alloy has major influence on different properties of the NiCr thin films. In order to investigate the effect of Cr content in Ni-Cr system, Ni over Cr thin films with a total thickness of 500 nm was deposited on glass substrates with different Cr/Ni thickness ratios as 0.1, 0.25 and 0.6. After deposition, thin films were annealed at 600 {sup o}C for 180 s in a Rapid Thermal Process (RTP) system to investigate the effect of different Cr contents on phase formation. The phase formations and lattice parameters were analyzed with low glancing angle X-ray Diffraction (XRD) and the Cr content in the thermally treated thin films was calculated with Energy Dispersive Spectrometry (EDS). Also, film composition along depth was also calculated by EDS analysis from the cross-section view of the annealed samples. Field Emission Scanning Electron Microscope (FESEM) images were taken from the cross-section view of the samples in order to observe the final film thicknesses and structures. Sheet resistance of each sample was measured with linear four point probe technique and resistivity of each phase was calculated. Furthermore, nanohardness and Young's Modulus of each sample was calculated by using nanoindentation method.

  6. Reactions in Electrodeposited Cu/Sn and Cu/Ni/Sn Nanoscale Multilayers for Interconnects

    Directory of Open Access Journals (Sweden)

    Pay Ying Chia

    2016-05-01

    Full Text Available Miniaturization of electronic devices has led to the development of 3D IC packages which require ultra-small-scale interconnections. Such small interconnects can be completely converted into Cu-Sn based intermetallic compounds (IMCs after reflow. In an effort to improve IMC based interconnects, an attempt is made to add Ni to Cu-Sn-based IMCs. Multilayer interconnects consisting of stacks of Cu/Sn/Cu/Sn/Cu or Cu/Ni/Sn/Ni/Sn/Cu/Ni/Sn/Ni/Cu with Ni = 35 nm, 70 nm, and 150 nm were electrodeposited sequentially using copper pyrophosphate, tin methanesulfonic, and nickel Watts baths, respectively. These multilayer interconnects were investigated under room temperature aging conditions and for solid-liquid reactions, where the samples were subjected to 250 °C reflow for 60 s and also 300 °C for 3600 s. The progress of the reaction in the multilayers was monitored by using X-ray Diffraction, Scanning Electron Microscope, and Energy dispersive X-ray Spectroscopy. FIB-milled samples were also prepared for investigation under room temperature aging conditions. Results show that by inserting a 70 nanometres thick Ni layer between copper and tin, premature reaction between Cu and Sn at room temperature can be avoided. During short reflow, the addition of Ni suppresses formation of Cu3Sn IMC. With increasing Ni thickness, Cu consumption is decreased and Ni starts acting as a barrier layer. On the other hand, during long reflow, two types of IMC were found in the Cu/Ni/Sn samples which are the (Cu,Ni6Sn5 and (Cu,Ni3Sn, respectively. Details of the reaction sequence and mechanisms are discussed.

  7. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bates, MK; Jia, QY; Ramaswamy, N; Allen, RJ; Mukerjee, S

    2015-03-12

    We report a Ni-Cr/C electrocatalyst with unpreeedented massactivity for the hydrogen evolution reaction (HER). in alkaline electrolyte. The HER Oietics of numerous binary and ternary Ni-alloys and composite Ni/metal-euride/C samples were evaluated in aquebus 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni-Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to munerous binary dor ternary Ni-alloys, inCluding Ni Mg materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a, sink for the H-ads, intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiO content and that the Cr2O3 appears to stabilize the composite NiO component-under HER conditions (where NiOx would typically be reduced to metallic Ni-0). Furthermore, in contrast to Pt, the Ni(O-x)/Cr2O3 catalyst appears resistant to poisoning by the anion.exchange ionomer (AEI), a serloua consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a: detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI.

  8. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu nanowires

    Indian Academy of Sciences (India)

    R S Liu; S C Chang; I Baginskiy; S F Hu; C Y Huang

    2006-07-01

    Highly ordered composite nanowires with multilayer Ni/Cu and NiFe/Cu have been fabricated by pulsed electrodeposition into nanoporous alumina membrane. The diameter of wires can be easily varied by pore size of alumina, ranging from 30 to 100 nm. The applied potential and the duration of each potential square pulse determine the thickness of the metal layers. The nanowires have been characterized by transmission electron microscopy (TEM), magnetic force microscopy (MFM), and vibrating sample magnetometer (VSM) measurements. The MFM images indicate that every ferromagnetic layer separated by Cu layer was present as single isolated domain-like magnet. This technique has potential use in the measurement and application of magnetic nanodevices.

  9. Electrochemical behavior of Co-Cr and Ni-Cr dental cast alloys

    Institute of Scientific and Technical Information of China (English)

    Viswanathan S. SAJI; Han-Cheol CHOE

    2009-01-01

    The cast structures influencing the electrochemical corrosion behavior of Co-Cr and Ni-Cr dental alloys were studied using potentiodynamic polarization and AC impedance in 0.9% (mass fraction) NaCl solution at (37±1) ℃. The phase and microstructure of the alloys that were fabricated using two different casting methods viz. centrifugal casting and high frequency induction casting, were examined using X-ray diffraction analysis, scanning electron microscopy and energy dispersive spectroscopy. The roles of alloying elements and the passive film homogeneity on the corrosion resistance of Co-Cr-Mo and Ni-Cr-Mo dental cast alloys were reviewed. The results of electrochemical study show that the dependence of corrosion resistance on the microstructure associated with the casting methods is marginal. The Co-Cr alloy exhibits more desirable corrosion resistance properties than the Ni-Cr alloy. There is severe preferential dissolution of Ni-rich, Cr and Mo depleted zones in the Ni-Cr alloy.

  10. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-08-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  11. Low-cost Fe--Ni--Cr alloys for high temperature valve applications

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan

    2017-03-28

    An Fe--Ni--Cr alloy is composed essentially of, in terms of weight percent: 1 to 3.5 Al, up to 2 Co, 15 to 19.5 Cr, up to 2 Cu, 23 to 40 Fe, up to 0.3 Hf, up to 4 Mn, 0.15 to 2 Mo, up to 0.15 Si, up to 1.05 Ta, 2.8 to 4.3 Ti, up to 0.5 W, up to 0.06 Zr, 0.02 to 0.15 C, 0.0001 to 0.007 N, balance Ni, wherein, in terms of atomic percent: 6.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.10, 0.33.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.065, 4.ltoreq.(Fe+Cr)/(Al+Ti+Zr+Hf+Ta).ltoreq.10, the alloy being essentially free of Nb and V.

  12. Impact strength of GX8CrNi12, GX5CrNi18-9 and GX5CrNiMo19-11-2 cast steel at - 30 °C

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2016-10-01

    Full Text Available The results of impact tests carried out at - 30 °C on cast alloyed GX8CrNi12, GX5CrNi18-9 and GX5CrNiMo19-11-2 steel grades are reported. It has been shown that at - 30 °C, the addition of 1 % Ni to cast GX8CrNi12 steel does not provide the required impact strength of 35 J/cm2. In contrast, other tested materials containing 8 ÷ 9 % Ni can easily reach exceeding 50 J/cm2. Numerous non-metallic inclusions present in the microstructure of cast GX5CrNi-Mo19-11-2 steel resulting from, among others, the miscalculated refining process were found to be one of the main causes of reduced impact strength as compared to the cast GX5CrNi18-9 steel.

  13. Analysis of precipitation in a Cu-Cr-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    Zhao Mei; Lin Guobiao; Wang Zidong; Zhang Maokui

    2008-01-01

    Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). After the solid solution was performed at 980℃ for 2 h, water-quenched and aged at 450℃ for 20 h, the precipite had a bimodal distribution of precipitate size. The coarse precipitates are pure Cr and Cu5Zr, the dispersed fine precipitate is CrCu2(Zr, Mg) and pure Cr ranging from 1 to 50 nm. The coarse phases formed during solidification and were left undissolved during solid solution. The fine precipitates are the hardening precipitates that form due to decomposition of the supersaturated solid solution during aging.

  14. Analysis of precipitation in a Cu-Cr-Zr alloy

    Directory of Open Access Journals (Sweden)

    Wang Zidong

    2008-11-01

    Full Text Available Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM, energy dispersive X-ray spectroscopy (EDXS and transmission electron microscope (TEM. After the solid solution was performed at 980 ℃ for 2 h, water-quenched and aged at 450 ℃ for 20 h, the precipite had a bimodal distribution of precipitate size. The coarse precipitates are pure Cr and Cu5Zr, the dispersed fine precipitate is CrCu2(Zr,Mg and pure Cr ranging from 1 to 50 nm. The coarse phases formed during solidifi cation and were left undissolved during solid solution. The fi ne precipitates are the hardening precipitates that form due to decomposition of the supersaturated solid solution during aging.

  15. Mixing behaviors in Cu/Ni and Ni/V multilayers induced by cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. [Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706 (United States); Perepezko, J.H., E-mail: perepezk@engr.wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706 (United States); Larson, D.; Reinhard, D. [CAMECA Instruments Inc., 5500 Nobel Drive, Madison, WI 53711 (United States)

    2015-09-15

    Highlights: • The composition profiles of Cu/Ni and Ni/V multilayers were investigated. • A compositional oscillation was observed in the Cu/Ni composition profile. • The Ni/V composition profile varies smoothly and continuously between end members. • The effective diffusion coefficients were enhanced by about 30 order of magnitudes. • The effective temperature were estimated as 946 K for Cu/Ni and 936 K for Ni/V. - Abstract: Multilayers of Cu60/Ni40 and Ni70/V30 foil arrays were cold rolled in order to study the transformation reactions and mixing behaviors induced by deformation. Upon cold rolling, the layer thicknesses were refined to about 20 nm and solid solution phases were induced from pure end members (i.e. Cu, Ni and V) in both cases. The composition profiles for Cu/Ni and Ni/V multilayer samples at the deformation level where the solid solution phases coexist with end members were investigated by means of atom probe tomography and electron energy loss spectrum, respectively. An oscillation in the composition of Cu–Ni solid solution phase was observed, however the composition profile of Ni/V shows a smoothly varying curve between the end members. The effective diffusion coefficients were promoted by about 30 orders of magnitude for both Cu/Ni and Ni/V compared to room temperature diffusion. The effective temperature for Cu/Ni multilayers after 36 passes and Ni/V after 60 passes are estimated as 946 K and 936 K respectively.

  16. FMR measurements on CoCr/NiFe double layers

    OpenAIRE

    Stam, M.T.H.C.W.; Gerritsma, G.J.; Lodder, J. C.; Popma, Th.J.A.

    1988-01-01

    CoCr/NiFe double layers were measured by ferromagnetic resonance (FMR) for different angles of the applied field. Several resonance curves were observed for CoCr, which are attributed to the different layers of a magnetically stratified CoCr. This was investigated by carrying out FMR measurements on a single CoCr sample and removing successive layers by ion beam milling. The origin of some of the curves is still unclear. One resonance curve is attributed to the top or bulk layer and another t...

  17. Cu/W-Ni/Ni多中间层的钨/钢扩散连接%Tungsten/steel diffusion bonding using Cu/W-Ni/Ni multi-interlayer

    Institute of Scientific and Technical Information of China (English)

    杨宗辉; 沈以赴; 王志阳; 成家林

    2014-01-01

    采用铜箔/90W-10Ni(质量分数)混合粉末/镍箔多中间层,在加压5 MPa、连接温度1150°C、保温60 min的工艺条件下,对纯钨(W)和0Cr13Al铁素体不锈钢进行真空扩散连接。利用SEM、EDS、电子万能试验机及水淬热震实验等手段研究接头的微观组织、成分分布、断口特征、力学性能及抗热震性能。结果表明,连接接头由钨母材/Cu-Ni合金层/W-Ni复合材料层/镍层/钢母材五部分组成。接头中的W-Ni复合材料层由90W-10Ni混合粉末固相烧结而生成,其组织均匀、致密。W-Ni复合材料层与钨母材以瞬间液相扩散连接机制来实现良好结合。接头剪切强度达到256 MPa,断裂均发生在W-Ni复合材料层与镍层的结合区域,断口形貌呈现为韧性断裂。经过60次700°C至室温的水淬热震测试,接头无裂纹出现。%Diffusion bonding between tungsten and 0Cr13Al stainless steel using a Cu/90W-10Ni powder mixtures/Ni multi-interlayer was carried out in vacuum at 1150 °C with a pressure of 5 MPa for 60 min. The microstructures, composition distribution and fracture characteristics of the joint were studied by SEM and EDS. Joint properties were evaluated by shear experiments and thermal shock tests. The results showed that the joints comprised tungsten/Cu-Ni sub-layer/W-Ni composites sub-layer/Ni sub-layer/0Cr13Al stainless steel. The W-Ni composites sub-layer with a homogeneous and dense microstructure was formed by solid phase sintering of 90W-10Ni powder mixtures. Sound bonding between tungsten base material and W-Ni composites sub-layer was realized based on transient liquid phase (TLP) diffusion bonding mechanism. Joints fractured at bonding zone of W-Ni composites sub-layer and Ni sub-layer during shear testing, and the average strength was 256 MPa. Thermal shock tests showed that joints could withstood 60 thermal cycles quenching from 700 °C to room temperature.

  18. Oxidation of two-phase Cu-Cr alloys with different microstructures

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The oxidation of PM Cu-50Cr, MA Cu-40Cr and MS Cu-40Cr alloys at 800  ℃ in 0.1  MPa O2 was studied. The most important difference of their oxidation behaviors is the formation of an exclusive chromia scale on the surface of the MS Cu-40Cr alloy and a continuous chromia layer beneath an outer CuO layer corresponding MA Cu-40Cr alloy, while a complex scale composing of CuO, Cu2O, Cu2Cr2O4 and Cr2O3 formed on the PM Cu-50Cr alloy. This result implies that alloy microstructure affects their oxidation behaviors largely. Microcrystalline structure provides numerous diffusion paths for reactive component chromium, shorter diffusion distance and rapid dissolution of Cr-riched second phase. All these favor the exclusive formation of the most stable oxide.

  19. The Hot Corrosion Performance of NiCr-Cr3 C2 Cermet Coating to Boiler Tube

    Institute of Scientific and Technical Information of China (English)

    DINGZhang-xiong; TUGuo-fu

    2004-01-01

    Three kinds of NiCr-Cr3 C2 cermet coatings were designed and deposited by the subsonic velocity flame spraying, and their performances of hot corrosion performance were evaluated in comt)arison with 102G,20G boiler tube steel, FeCrAl, NiCrTi, Ni5OCr and NiCrAIMoFe-Cr3 C2 coatings, which are widely used at present for protection of boiler tubes. Meanwhile, the influence of sealer on the hot corrosion resistance of warious coatings and the mechanisms of coating corrosion were explored.

  20. Influence of electronic structure on Compton scattering through comparing Cu-Ni alloys with Cu-Ni powder mixtures

    Institute of Scientific and Technical Information of China (English)

    Guang LUO; Xianquan HU; Guangyu XIAO; Chunyang KONG

    2012-01-01

    The application fields of Compton scattering have been further broadened through the studies of theories and experiments as well as the electronic structure of the scatters.The relationship between the contents of binary alloys (also binary powder mixtures) and the number of Compton scattered photons has been thoroughly examined.The linear expression of the relationship has been obtained approximately according to the Compton scattering theory.And the relationship has been validated well through the Compton scattering experiments with the scatters of Cu-Ni binary alloys or Cu-Ni binary powder mixtures.Furthermore,it is found that the slope of Cu-Ni powder mixture series is steeper than that of Cu-Ni alloy series,and through the pseudopotential plane wave theory of DFT the microscopic principles of Compton scattering of Cu-Ni alloy and Cu-Ni powder mixture series have been discussed and compared with each other.The results show that the electronic structure is the main reason for the difference of the linear slopes,and the line slope of Cu-Ni powder mixtures series is steeper than that of Cu-Ni alloy series.

  1. Cr-Ni ALLOY ELECTRODEPOSITION AND COMPARISON WITH CONVENTIONAL PURE Cr COATING TECHNIQUE

    OpenAIRE

    Moniruzzaman, M; M.M. Rakib; F.T. Matin

    2012-01-01

    Cr coating is widely used as the outer surface of precision parts due to its attractive appearance and superior corrosion resistance properties. It is obtained by electrodeposition via a conventional bath with hexavalent Cr ions. This manufacturing technique has many drawbacks, such as very low efficiency and high operating temperature and it is hazardous to health. In this work, we studied a Cr-Ni alloy deposition technique and compared the alloy coating properties to those with conventional...

  2. Study on improvement of conductivity of Cu-Cr-Zr alloys

    Institute of Scientific and Technical Information of China (English)

    LI Huaqing; XIE Shuisheng; WU Pengyue; MI Xujun

    2007-01-01

    The influence of alloying, heat treatment, and plastic working on the performance of Cu-Cr-Zr alloys was investigated. The precipitated phases were characterized as Cr, Cu51Zr14 and Cu5Zr. Cu-Cr-Zr alloys demonstrate combination properties of high strength and high conductivity after solution treatment, aging treatment, and plastic deformation. Precipitation course of Cr is the main factor that influences the conductivity of Cu-Cr-Zr alloys, while adding Zr in the alloys adjusts the orientation relationship between Cr and matrix, and tends to increase the conductivity of aged Cu-Cr-Zr alloys after deformation.

  3. Characterization of Electrodeposited Nanoporous Ni and NiCu Films

    Science.gov (United States)

    Koboski, Kyla; Hampton, Jennifer

    2013-03-01

    Nanoporous thin films are interesting candidates to catalyze certain reactions because of their large surface areas. This project focuses on the deposition of Ni and NiCu thin films on a Au substrate and further explores the catalysis of the hydrogen evolution reaction (HER). Depositions are created using controlled potential electrolysis. Samples are then dealloyed using linear sweep voltammetry. Before and after the dealloying, all the samples are characterized using multiple techniques. Electrochemical capacitance measurements allow comparisons of sample roughness. HER measurements characterize the reactivity of the sample with respect to the specific catalytic reaction. The Tafel equation is fit to the data to obtain information about the kinetics of the HER of the samples. Other methods for characterizing the samples include scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The use of SEM allows images to be taken of the deposition to determine the change in the structure pre- and post- dealloy of the sample. EDS allows the elemental composition of the deposition to be determined before and after the dealloy stage. This material is based upon work supported by the National Science Foundation under RUI Grant DMR-1104725, MRI Grant CHE-1126462, MRI Grant CHE-0959282, and ARI grant PHY-0963317.

  4. Reaction diffusion in the NiCrAl and CoCrAl systems

    Science.gov (United States)

    Levine, S. R.

    1978-01-01

    The paper assesses the effect of overlay coating and substrate composition on the kinetics of coating depletion by interdiffusion. This is accomplished by examining the constitution, kinetics and activation energies for a series of diffusion couples primarily of the NiCrAl/Ni-10Cr or CoCrAl/Ni-10Cr type annealed at temperatures in the range 1000-1205 C for times up to 500 hr. A general procedure is developed for analyzing diffusion in multicomponent multiphase systems. It is shown that by introducing the concept of beta-source strength, which can be determined from appropriate phase diagrams, the Wagner solution for consumption of a second phase in a semiinfinite couple is successfully applied to the analysis of MCrAl couples. Thus, correlation of beta-recession rate constants with couple composition, total and diffusional activation energies, and interdiffusion coefficients are determined.

  5. Characterization of NiCrAlC PTA coatings

    OpenAIRE

    2012-01-01

    Surface tailoring with plasma transferred arc (PTA) hardfacing involves the deposition of powder mixtures to produce coatings with an almost unlimited chemical composition. PTA hardfacing is particularly important for processing low weldability alloys, such as those for high-temperature applications, of which NiCrAlC is an example. This study analyzed NiCrAlC coatings processed by PTA using a mixture of elemental powders. Deposition on AISI316L plates was carried out with currents of 100 A an...

  6. Structural Investigations of Nanocrystalline Cu-Cr-Mo Alloy Prepared by High-Energy Ball Milling

    Science.gov (United States)

    Kumar, Avanish; Pradhan, Sunil Kumar; Jayasankar, Kalidoss; Debata, Mayadhar; Sharma, Rajendra Kumar; Mandal, Animesh

    2017-02-01

    Cu-Cr-Mo alloy could be a suitable candidate material for collector electrodes in high-power microwave tube devices. An attempt has been made to synthesize ternary Cu-Cr-Mo alloys by mechanical alloying of elemental Cu, Cr, and Mo powders, to extend the solid solubility of Cr and Mo in Cu, using a commercial planetary ball mill. For the first ternary alloy, a mixture of 80 wt.% Cu, 10 wt.% Cr, and 10 wt.% Mo was mechanically milled for 50 h. For the second ternary alloy, a mixture of 50 wt.% Cr and 50 wt.% Mo was mechanically milled for 50 h to obtain nanocrystalline Cr(Mo) alloy, which was later added to Cu powder and milled for 40 h to obtain Cu-20 wt.%Cr(Mo) alloy. Both nanocrystalline Cu-Cr-Mo ternary alloys exhibited crystallite size below 20 nm. It was concluded that, with addition of nanocrystalline Cr(Mo) to Cu, it was possible to extend the solid solubility of Cr and Mo in Cu, which otherwise was not possible by mechanical alloying of elemental powders. The resulting microstructure of the Cu-20 wt.%Cr(Mo) alloy comprised a homogeneous distribution of fine and hard (Cr, Mo) particles in a copper matrix. Furthermore, Cu-20 wt.%Cr(Mo) alloy showed better densification compared with Cu-10 wt.%Cr-10 wt.%Mo alloy.

  7. Photocatalytic hydrogen evolution over CuCrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, S.; Bouguelia, A.; Trari, M. [Laboratoire de Stockage et de Valorisation des Energies Renouvelables, Faculte de Chimie, U.S.T.H.B BP 32 Algiers (Algeria)

    2006-03-15

    We have been studying the technical feasibility of a photochemical H{sub 2} evolution based on a dispersion of CuCrO{sub 2} powder in aqueous electrolytes containing various reducing agents (S{sup 2-}, SO{sub 3}{sup 2-} and S{sub 2}O{sub 3}{sup 2-}). The title oxide combines a fair resistance to corrosion with an optimal band gap E{sub g} of 1.32eV. The intercalation of a small amount of oxygen should be accompanied by a partial oxidation of Cu{sup +} into Cu{sup 2+} implying a p-type semiconductivity. The S{sup 2-} oxidation inhibits the photocorrosion and the H{sub 2} evolution increases parallel to polysulfides S{sub n}{sup 2-} formation. Most of H{sub 2} is produced when p-CuCrO{sub 2} is connected to n-Cu{sub 2}O formed in situ. H{sub 2} liberation proceeds mostly on CuCrO{sub 2} while the oxidation of S{sup 2-} takes place over Cu{sub 2}O surface and the hetero system Cu{sub 2}O/CuCrO{sub 2} is optimized with respect to some physical parameters. The photoactivity is dependent on preparation conditions and lowering the synthesis temperature through nitrate route leads to an increase in specific surface area S{sub sp}. The photoelectrochemical H{sub 2} production is a multistep process where the rate determining step is the arrival of electrons at the interface because of their low mobility. Prolonged irradiation (>80min) leads to a pronounced decrease of the photoactivity; the tendency toward saturation is due to the undesired back reduction of polysulfides S{sub n}{sup 2-} in a closed system and to their strong absorption in the visible region (l{sub max}=520nm). (author)

  8. Electrochemical Behavior of Ion-Plated TiN and Cu-Cr Coatings

    Science.gov (United States)

    1993-09-01

    results show that Cu-Cr alloys containing up to about 25 atomic percent CR consist of single phase FCC structure . The alloys containing more than 60...19), curve 4 for CuCr(40), and curve 5 for Cu-Cr(85)]. Note that Curves 1, 2, and 3 are from FCC structure , curve 4 from dual-phase structure, and

  9. Microstructures and properties of Cr-Cu/W-Cu bi-layer composite coatings prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaping; Feng, Xiaomei; Shen, Yifu; Chen, Cheng; Duan, Cuiyuan [Nanjing Univ. of Aeronautics and Astronautics (China). Dept. of Materials Science and Technology

    2016-06-15

    Cr-Cu/W-Cu bi-layer coatings with composite structures were fabricated by means of mechanical alloying. The Cr-Cu layer and the W-Cu layer were deposited successively and the as-synthesized bi-layer coating was made up of an inner Cr-Cu layer and an outer W-Cu layer. Microstructures, chemical and phase compositions of the as-prepared coatings were characterized. The results indicated that the bonding between the inner coating and the substrate was improved with the increase of Cu in the raw powder. The annealing treatment of the inner Cr-Cu layer was beneficial to the bonding between the inner Cr-Cu coating and the outer W-Cu coating layer. Mechanical properties such as microhardness, friction and wear resistance were tested. The as-synthesized coating could effectively improve the hardness and wear resistance of the Cu substrate.

  10. [Effect of aurum coating on corrosion resistance of Ni-Cr alloy].

    Science.gov (United States)

    Chen, Zhi-hong; Liu, Li; Mao, Ying-jie

    2007-02-01

    To evaluate the effect of aurum coating on corrosion resistance of Ni-Cr alloy in artificial saliva environment. The corrosion potential (E(corr)), self-corrosion current density (I(corr)), and polarization resistance (R(p)) of three alloys were measured using electrochemical methods to compare the difference of corrosion resistance between aurum-coated Ni-Cr alloy and Ni-Cr alloy or Au alloy. Meanwhile, microstructural and phase diffraction was examined with field scanning electromicroscopy (FSEM) and surface chemical analysis was performed by energy diffraction X-ray (EDX). The I(corr) of aurum-coated Ni-Cr alloy was (0.70 +/- 0.20) x 10(-6) A/cm2, which was significantly higher than that of Au alloy (P Cr alloy (P coated Ni-Cr alloy was (34.77 +/- 12.61) KOmega.cm2, which was higher than that of Ni-Cr alloy (P Cr alloy coated with aurum was better than that of Ni-Cr alloy. The results of EDX indicated that released Ni and Cr of Ni-Cr alloy coated with aurum after test were less than those of Ni-Cr alloy (P coated Ni-Cr alloy is higher than that of Ni-Cr alloy.

  11. Effects of extrusion on chromium precipitation in Cu-Cr alloy

    Institute of Scientific and Technical Information of China (English)

    范志康; 杨红旺; 梁淑华; 肖鹏

    2003-01-01

    Cu-Cr alloys containing Cr from 0.14% to 2.0% in mass were prepared as foils for TEM observation before and after being extruded. The results show that before extrusion, the spheroid or short bar chromium disperse in copper matrix of the Cu-Cr alloy, and the relationship between Cu and Cr follows the Nishiyama-Wasserman (NW) relationship, I.e. [110]Cu∥[001]Cr. After the Cu-Cr alloy was extruded at 860℃, dark field image along (224)Cu clearly shows that there are precipitated chromium particles in copper matrix. However, the SADP comprises only (112)Cu zone.

  12. Interfacial Reactions in the Ni/Sn- xZn/Cu Sandwich Couples

    Science.gov (United States)

    Yen, Yee-Wen; Lin, Chung-Yung; Lai, Mei-Ting; Chen, Wan-Ching

    2016-01-01

    The interfacial reactions in Ni/Sn- xZn/Cu sandwich couples which were reflowed at 270°C for 1 h and then aged at 160°C for 1-1000 h were investigated. When the 1000- μm-thick Sn-Zn alloy reacted with Ni and Cu in this couple, the results indicated that the (Ni, Cu)3Sn4, (Ni, Cu)5Zn21, and Ni5Zn21 phases were formed at Sn-1Zn/Ni, Sn-5Zn/Ni, and Sn-9Zn/Ni interfaces for 1 h reflowing, respectively. After 1000 h aging, each intermetallic compound (IMC) was converted to (Cu, Ni, Zn)6Sn5, (Ni, Cu, Sn)5Zn21/Ni5Zn21, and Ni5Zn21 (two layers) phases in the related couples. On the Cu side, the Cu6Sn5 phase in the Sn-1Zn/Cu interface and the Cu5Zn8 phase in the Sn-5Zn/Cu and Sn-9Zn/Cu interfaces were observed when the couple was reflowed at 270°C for 1 h. After 100 h aging, the (Cu, Ni, Zn)6Sn5, Cu5Zn8/(Cu, Zn)6Sn5, and Cu5Zn8 phases were formed at the Sn-1Zn/Cu, Sn-5Zn/Cu and Sn-9Zn/Cu interfaces. When the Sn-Zn alloy thickness was decreased to 500 μm, the (Cu, Ni, Zn)6Sn5 phase at the Sn-1Zn/Ni interface and the (Ni, Cu, Sn)5Zn21 phase at the Sn-5Zn/Ni and Sn-9Zn/Ni interfaces were observed after 1 h reflowing. When the couple was aged at 160°C for 1000 h, each IMC was converted to (Cu, Ni, Zn)6Sn5 and Cu5Zn8/(Cu, Ni, Sn)Zn/Ni5Zn21 phases at the Sn-1Zn/Ni and Sn-(5, 9)Zn/Ni interfaces. (Cu, Ni, Zn)6Sn5 and Cu5Zn8 were, respectively, formed at the Sn-1Zn/Cu and Sn-(5, 9)Zn/Cu interfaces for 1 h reflowing. After 100 h aging, the IMCs were converted to (Cu, Ni, Zn)6Sn5 and Cu5Zn8/(Cu, Zn)6Sn5 phases. This current study reveals that the IMC formation in Ni/(Sn- xZn)/Cu sandwich couples are very sensitive to the Zn concentration and thickness in Sn- xZn alloys.

  13. Mechanical properties of Cr-Cu coatings produced by electroplating

    Science.gov (United States)

    Riyadi, Tri Widodo Besar; Sarjito, Masyrukan, Riswan, Ricky Ary

    2017-06-01

    Hard chromium coatings has long been considered as the most used electrodeposited coating in several industrial applications such as in petrochemistry, oil and gas industries. When hard coatings used in fastener components, the sliding contact during fastening operation produces high tensile stresses on the surface which can generate microcracks. For component used in high oxidation and corrosion environment, deep cracks cannot be tolerated. In this work, a laminated structure of Cr-Cu coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and copper electrolyte solutions were prepared to deposit Cr as the first layer and Cu as the second layer. The effect of current voltages on the thickness, hardness and specific wear rate of the Cu layer was investigated. The results show that an increase of the current voltages increased the thickness and hardness of the Cu layer, but reduced the specific wear rate. This study showed that the use of Cu can be a potential candidate as a laminated structure Cr-Cu for chromium plating.

  14. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties

    Science.gov (United States)

    Wang, Xiaoxia; Dong, Lifeng; Zhang, Baoqin; Yu, Mingxun; Liu, Jingquan

    2016-03-01

    Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu2+ and Ni2+, the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

  15. Novel CuCr2O4 embedded CuO nanocomposites for efficient photodegradation of organic dyes

    Science.gov (United States)

    Mageshwari, K.; Sathyamoorthy, R.; Lee, Jeong Yong; Park, Jinsub

    2015-10-01

    Novel photocatalyst based on CuO-CuCr2O4 nanocomposites was synthesized for different Cr3+ concentration by reflux condensation method, and their photocatalytic activity was evaluated by monitoring the photodegradation of methyl orange (MO) and methylene blue dyes (MB) under UV light irradiation. Phase evolution by X-ray diffraction showed monoclinic CuO and tetragonal CuCr2O4 as the components of the prepared nanocomposites. Morphological analysis by scanning electron microscope and transmission electron microscope revealed that the incorporation of Cr3+ in CuO lattice alters the morphology of CuO from microsphere to cluster shape. Photoluminescence spectra of CuO-CuCr2O4 nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. As expected, the CuCr2O4 loaded CuO showed enhanced photocatalytic activity for MO and MB dyes, and the kinetic studies suggest that the degradation follows pseudo-first-order kinetics. The enhanced photocatalytic activity of CuO-CuCr2O4 nanocomposites can be attributed to the presence of CuCr2O4 as an electron acceptor, which improves the effective charge separation in CuO.

  16. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    Science.gov (United States)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  17. 界面耦合作用对Cu(Ni)/Sn-Ag-Cu/Cu(Ni)BGA 焊点界面IMC形成与演化的影响%EFFECT OF THE CROSS-INTERACTION ON THE FORMATION AND EVOLUTION OF INTERMETALLIC COMPOUNDS IN Cu(Ni)/Sn-Ag-Cu/Cu(Ni) BGA STRUCTURE SOLDER JOINTS

    Institute of Scientific and Technical Information of China (English)

    李勋平; 周敏波; 夏建民; 马骁; 张新平

    2011-01-01

    研究了焊盘材料界面耦合作用对Cu(Ni)/Sn-3.0Ag-0.5Cu/Cu(Ni)BGA(Ball Grid Array)结构焊点焊后态和125℃等温时效过程中界面金属间化合物(IMC)的成分、形貌和生长动力学的影响.结果表明,凸点下金属层(UBM)Ni界面IMC的成分与钎料中Cu含量有关,钎料中Cu含量较高时界面IMC为(Cu,Ni)6Sn5,而Cu含量较低时,则生成(Cu,Ni)3Sn4;Cu-Ni耦合易导致Cu/Sn-3.0Ag-0.5Cu/Ni焊点中钎料/Ni界面IMC异常生长并产生剥离而进入钎料.125℃等温时效过程中,Sn-3.0Ag-0.5Cu/Cu界面IMC的生长速率常数随钎料中Cu含量增加而提高,Cu-Cu耦合降低一次回流侧IMC生长速率常数;Cu-Ni耦合和Ni-Ni耦合均导致焊点一次回流Ni侧界面IMC的生长速率常数增大,但Ni对界面IMC生长动力学的影响大于Cu;Ni有利于抑制Cu界面Cu3Sn生长,降低界面IMC生长速率,但Cu-Ni耦合对Cu界面Cu3Sn中Kirkendall空洞率无明显影响.%The formation and evolution of interfacial intermetallic compounds (IMCs) in Cu(Ni)/Sn-3.0Ag-0.5Cu/Cu(Ni) BGA (Ball Grid Array) structure solder joints both in the asreflowed state and undergoing isothermal aging at 125 C were investigated. The results show that there exists a significant cross-interaction effect of the solder pad/under bump metal (UBM) on the composition, morphology and growth kinetics of interfacial IMCs in solder joints. The reactions of solder/Ni UBM strongly depends on the Cu content of the solder, for a high Cu content, a continuous (Cu, Ni)6Sn5 layer forms at the interface, while for a low Cu content, a continuous (Ni, Cu)3Sn4 layer appears at the interface. The cross-interaction of Cu and Ni in Cu/Sn-3.0Ag-0.5Cu(SAC)/Ni solder joints has obvious influence on the composition and morphology of the interfacial IMC; and the IMC spalling phenomenon occurs at the interface of Ni side. During isothermal aging at 125 ℃, the growth rate constant of the interfacial IMC layer in SAC/Cu and Cu/SAC/Cu joints increases with

  18. within the Selebi Phikwe Ni-Cu mine area, Botswana

    African Journals Online (AJOL)

    are on going nickel-copper (Ni-Cu) mining and smelting activities. Through the administration of ..... Ekosse G. Heavy metals concentrations in the biophysical environment around ... Totolo O. Mineralogy of tailings dump around. Selebi Phikwe ...

  19. Texture of deformed Cu-Cr-Zr alloys

    Institute of Scientific and Technical Information of China (English)

    Huaqing Li; Shuisheng Xie; Xujun Mi; Pengyue Wu; Yanfeng Li

    2008-01-01

    The influences of plastic deformation, aging treatment, and alloying elements on the texture of Cu-Cr-Zr alloys were explored. The texture component and intensity of Cu-Cr-Zr alloys under various working conditions after aging treatment were characterized using the orientation distributing function (ODF). The influence of Zr content on the texture of Cu-Cr-Zr alloys was also analyzed. The reduction pass and deformation level were primary factors influencing the texture. Rolling texture appeared in a rolled plate and the fibrous textures of {111} and {001} were detected after 80% deformation. Fibrous texture with a main constituent of {111} improved the tensile strength of the alloy wire. The texture contents of {110} and {110} were predominated, whereas, those of {113} and {112} were in the minority in the Cu-Cr-Zr alloy with a higher Zr content (>0.5wt%).However, in the samples with a lower Zr content (, {112}, and {111} were in the majority.

  20. Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Choi, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Hwang, Chanyong; Qiu, Z.

    2010-06-09

    Magnetic domain evolution at the spin reorientation transition (SRT) of (Fe/Ni)/Cu/Ni/Cu(001) is investigated using photoemission electron microscopy. While the (Fe/Ni) layer exhibits the SRT, the interlayer coupling of the perpendicularly magnetized Ni layer to the (Fe/Ni) layer serves as a virtual perpendicular magnetic field exerted on the (Fe/Ni) layer. We find that the perpendicular virtual magnetic field breaks the up-down symmetry of the (Fe/Ni) stripe domains to induce a net magnetization in the normal direction of the film. Moreover, as the virtual magnetic field increases to exceed a critical field, the stripe domain phase evolves into a bubble domain phase. Although the critical field depends on the Fe film thickness, we show that the area fraction of the minority domain exhibits a universal value that determines the stripe-to-bubble phase transition.

  1. Hydrogen storage properties of nano-composites of Mg and Zr-Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Ciureanu, M.; Roberge, R. [H Power Enterprises of Canada, 1069 Begin Street, St. Laurent, Quebec (Canada)

    2000-05-01

    Mg and Zr-Ni-Cr alloy nano-composite hydrogen storage materials have been prepared by high energy mechanical milling (MM) of Mg powders with either crystalline ZrNiCr and ZrNi{sub 1.6}Cr{sub 0.4} powders or mechanically milled amorphous ZrNiCr and ZrNi{sub 1.6}Cr{sub 0.4} powders. Nano-composites of amorphous Zr-Ni-Cr alloy and Mg have better desorption kinetics compared to crystalline Zr-Ni-Cr alloy and Mg nano-composites. Amorphous ZrNi{sub 1.6}Cr{sub 0.4} and Mg nano-composites desorb larger amount of H{sub 2} much faster than amorphous ZrNiCr and Mg nano-composites. The nano-composite of 35 wt.% amorphous ZrNi{sub 1.6}Cr{sub 0.4} and Mg releases 4.3 wt.% H{sub 2} at 300C in 30 min. X-ray diffraction revealed that there are no reactions between Mg and Zr-Ni-Cr alloys in the milling, activation, and subsequent cycling processes, proving that amorphous ZrNi{sub 1.6}Cr{sub 0.4} is an effective hydrogen absorption and desorption catalyst.

  2. PREPARATION AND PROPERTIES OF Ni-Cr AND Fe-Cr-Al FILMS BY VACUUM EVAPORATION

    Institute of Scientific and Technical Information of China (English)

    X. W. Shi; Z.Y. Liu; D.C. Zeng; C.M. Li

    2003-01-01

    Ni-Cr and Fe-Cr-Al films deposited on the Al2O3 substrate are studied by a method of vacuum evaporation in this paper. Influence of resistance value on density and evaporation parameters of the films reveals that the resistance of films and the adhesion of films to substrates are determined by the evaporation time and the substrate temperate under the condition of the maximum vacuity of 6.2×10-4 pa, respectively.

  3. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    Science.gov (United States)

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application.

  4. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Science.gov (United States)

    Briggs, Samuel A.; Barr, Christopher M.; Pakarinen, Janne; Mamivand, Mahmood; Hattar, Khalid; Morgan, Dane D.; Taheri, Mitra; Sridharan, Kumar

    2016-10-01

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni4+ ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy.

  5. Laser clad AlSiCuNi functionally graded coatings

    NARCIS (Netherlands)

    Pei, Yutao; de Hosson, J.T.M.; Brebbia, CA

    2001-01-01

    This paper presents an exploration of laser clad AlSiCuNi-alloy FGCs on cast Al-alloy substrates. SEM microstructure observations indicate that, besides Si primary particles, hard Al3Ni2 compounds also exhibits a continuous increase in both particle sizes and volume fractions from the bottom to the

  6. Laser clad AlSiCuNi functionally graded coatings

    NARCIS (Netherlands)

    Pei, Yutao; de Hosson, J.T.M.; Brebbia, CA

    2001-01-01

    This paper presents an exploration of laser clad AlSiCuNi-alloy FGCs on cast Al-alloy substrates. SEM microstructure observations indicate that, besides Si primary particles, hard Al3Ni2 compounds also exhibits a continuous increase in both particle sizes and volume fractions from the bottom to the

  7. Preparation of ~(64)Ni-Gd-Cu Target

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The three-layer-sandwich targets of 64Ni-Gd-Cu needed in the physics experiment were prepared. The middle layers are thin ferromagnetic Gd layers of about 1.7 mg/cm2, recoil stopper layers are thick crystallized and defect-free Cu layers of about 12

  8. Vibrations on Cu surfaces covered with Ni monolayer

    Science.gov (United States)

    Sklyadneva, I. Yu.; Rusina, G. G.; Chulkov, E. V.

    1999-08-01

    Vibrational modes on the Cu(100) and Cu(111) surfaces covered with a Ni monolayer have been calculated using the embedded-atom method. A detailed discussion of the dispersion relations and polarizations of adsorbate modes and surface phonons is presented. The dispersion of the Rayleigh phonon is in good agreement with the experimental EELS data. The changes in interatomic force constants are discussed.

  9. Oxidation - Nitridation of Ni-Cr-Al alloys

    Directory of Open Access Journals (Sweden)

    Han Susan

    2004-01-01

    Full Text Available A series of alloys containing 24-36 wt pct Cr and 13.5 - 25.0 wt pct Al was reacted with air at 1100°C for 260 h. The products of isothermal reaction were scales of a-Al2O3 plus small amounts of Cr2O3. These grew according to parabolic kinetics, interrupted by episodic weight losses caused by partial spallation. No nitridation occurred during the isothermal exposures. Reaction during thermal cycling for up to 260 one hour cycles was much more severe. Repeated scale spallation led to subsurface alloy depletion in aluminium and, to a lesser extent, chromium. This caused transformation of the prior alloy three-phase structures (a-Cr+b-NiAl+g-Ni to single-phase g-nickel solution. Destruction of the external scale allowed gas access to this metal which was able to dissolve both oxygen and nitrogen. Inward diffusion of the two oxidants led to development of a complex internal precipitation zone: Al2O3 and Cr2O3 beneath the surface, then Al2O3 then AIN, then AIN + Cr2N and finally AIN alone in the deepest region. Diffusion-controlled kinetics were in effect initially, but mechanical damage to the internal precipitation zone led to more rapid gas access and approximately linear kinetics in the long term.

  10. Thermomechanical behavior of rapidly solidified Fe-25Cr-20Ni

    Energy Technology Data Exchange (ETDEWEB)

    Draissia, M.; Boukhris, N.; Debili, M.Y. [LM2S, Dept. de Physique, Faculte des Sciences, Univ. Badji-Mokhtar, Annaba, Algerie (Turkey)

    2004-07-01

    The thermomechanical treatment at 1050 C under a stress of about 30 MPa, of milled ribbons from Fe-25Cr-20Ni (0.060%Ni-0.1%Ti) refractory stainless steel, leads to a recrystallisation of the as-melt-spun structure which is intermediate between cellular and columnar dendritic. The mean grain size in the relatively high density zones (85%) may be considered as low and do not exceed 10{mu}m. Other grains appear abnormally large and reach 30 {mu}m. The origin of these grains, must be researched in an exaggerate growth phenomenon under a local deformation near the critical work hardening. (orig.)

  11. Third order elastic constants of bcc Cu-Al-Ni

    OpenAIRE

    Gonzàlez Comas, Alfons; Mañosa, Lluís

    1996-01-01

    We have measured the changes in the ultrasonic wave velocity, induced by the application of uniaxial stresses in a Cu-Al-Ni single crystal. From these measurements, the complete set of third-order elastic constants has been obtained. The comparison of results for Cu-Al-Ni with available data for other Cu-based alloys has shown that all these alloys exhibit similar anharmonic behavior. By using the measured elastic constants in a Landau expansion for elastic phase transitions, we have been abl...

  12. Analysis of Breaking Characteristics of CuCrTa Contact Material%Cu Cr Ta触头材料的开断性能分析

    Institute of Scientific and Technical Information of China (English)

    王季梅

    2001-01-01

    文章介绍了真空灭弧室触头材料的发展方向和正在开发的Cu Cr Ta触头材料的金相结构和性能分析.对Cu Cr Ta触头材料与Cu W Al Fe、Cu Cr50触头材料进行了对比开断试验.从对比开断试验结果说明Cu Cr Ta触头材料能提高现有Cu W Al Fe和Cu Cr50触头材料的1.28~1.51倍.

  13. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    Science.gov (United States)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  14. Modified Ni-Cu catalysts for ethanol steam reforming

    Science.gov (United States)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-01

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N2 adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  15. Magnetron sputtered Cu{sub 3}N/NiTiCu shape memory thin film heterostructures for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Choudhary, Nitin [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Goyal, Rajendra N. [Indian Institute of Technology, Roorkee, Department of Chemistry (India); Viladkar, S. [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Matai, I.; Gopinath, P. [Indian Institute of Technology, Roorkee, Centre for Nanotechnology (India); Chockalingam, S. [Indian Institute of Technology, Guwahati, Department of Biotechnology (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India)

    2013-03-15

    In the present study, for the first time, Cu{sub 3}N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu{sub 3}N with thickness {approx}200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-{mu}m-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu{sub 3}N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu{sub 3}N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 Degree-Sign C) of Cu{sub 3}N. Cu{sub 3}N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu{sub 3}N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu{sub 3}N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu{sub 3}N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

  16. Role of oxygen diffusion at Ni/Cr2O3 interface in intergranular oxidation of Ni-Cr alloy

    Science.gov (United States)

    Medasani, Bharat; Sushko, Maria; Schreiber, Daniel; Rosso, Kevin; Bruemmer, Stephen

    Certain Ni-Cr alloys used in nuclear systems experience intergranular oxidation and stress corrosion cracking when exposed to high-temperature water leading to their degradation and unexpected failure. To develop a mechanistic understanding of grain boundary oxidation processes, we proposed a mesoscale metal alloy oxidation model that combines quantum Density Functional Theory (DFT) with mesoscopic Poisson-Nernst-Planck/classical DFT. This framework encompasses the chemical specificity of elementary diffusion processes and mesoscale reactive dynamics, and allows modeling oxidation processes on experimentally relevant length scales from first principles. As a proof of concept, a preliminary model was previously employed that limited oxygen diffusion pathways to those through the oxide phase and did not allow oxygen diffusion in the alloy or across oxide/alloy interfaces. In this work, we expand the model to include oxygen diffusion pathways along Ni/Cr2O3 interfaces and demonstrate the increasing importance of such pathways for intergranular oxidation of Ni-Cr alloys with high Cr content. This work is supported by the U.S. Dept. of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Simulations are performed using PNNL Institutional Computing facility.

  17. Moessbauer Investigation of Electrodeposited Sn-Zn, Sn-Cr, Sn-Cr-Zn and Fe-Ni-Cr Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E.; Stichleutner, S. [Eoetvoes University, Department of Nuclear Chemistry and Research Group of Nuclear Methods in Structural Chemistry HAS (Hungary); El-Sharif, M.; Chisholm, C. U. [Glasgow Caledonian University (United Kingdom); Sziraki, L.; Homonnay, Z.; Vertes, A. [Eoetvoes University, Department of Nuclear Chemistry and Research Group of Nuclear Methods in Structural Chemistry HAS (Hungary)

    2002-06-15

    {sup 57}Fe and {sup 119}Sn CEMS, XRD and electrochemical measurements were used to investigate the effect of the preparation parameters and the components on the structure and phase composition of electrodeposited Fe-Ni-Cr alloys in connection with their corrosion behavior. XRD of the electrodeposits reflect an amorphous-like character. {sup 57}Fe CEM spectra of Fe-Ni-Cr electrodeposited samples, prepared in a continuous flow plating plastic circulation cell with variation of current density, electrolyte velocity and temperature, can be evaluated as a doublet associated with a highly disordered paramagnetic solid solution phase. This phase was identified earlier in Fe-Ni-Cr electrodeposits that were prepared by another plating method and contained both ferromagnetic and paramagnetic metastable phases. This is the first time that we have succeeded to prepare Fe-Ni-Cr alloys containing only the metastable paramagnetic phase. The effect of the plating parameters on the structure is also analysed by the quadrupole splitting distribution method. {sup 119}Sn CEM spectra of all Sn-containing plated alloys show a broad line envelop which can be decomposed at least into two components. One can be associated with {beta}-tin. The other one can be assigned to an alloy phase. The structure and distribution of microenvironments of these phases depends on the plating parameters especially on the parameters of the reverse pulse applied.

  18. Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms

    Science.gov (United States)

    Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.

    2015-05-01

    Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.

  19. Properties of CuCr contact materials with low chromium content and fine particles

    Institute of Scientific and Technical Information of China (English)

    曹辉; 王亚平; 郑志; 冼爱平

    2003-01-01

    The voltage withstanding capability and electric conductivity of CuCr contact materials with low chromium content and fine Cr particles were studied. The results show that the withstanding voltage has little relation with the Cr content for the melted-casting CuCr alloy within 15%-29% Cr content, and that the electric conductivity of the alloy increases with the decreasing of Cr content.

  20. Magnetic Properties of Grain Boundaries of Nanocrystalline Ni and of Ni Precipitates in Nanocrystalline NiCu Alloys

    Science.gov (United States)

    Wolf, H.; Guan, Z.; Li, X.; Wichert, Th.

    2001-11-01

    Perturbed γγ-angular correlation spectroscopy (PAC) was used to investigate nanocrystalline Ni and NiCu alloys, which are prepared by pulsed electrodeposition (PED). Using diffusion for doping nanocrystalline Ni with 111In four different ordered grain boundary structures are observed, which are characterized by unique electric field gradients. The incorporation of 111In on substitutional bulk sites of Ni is caused by moving grain boundaries below 1000 K and by volume diffusion above 1000 K. The nanocrystalline NiCu alloys prepared by PED are microscopically inhomogeneous as observed by PAC. In contrast, this inhomogeneity cannot be detected by X-ray diffraction. The influence of the temperature of the electrolyte, the current density during deposition, and the optional addition of saccharin to the electrolyte on the homogeneity of nanocrystalline NiCu alloys was investigated.

  1. Preparation and Properties of Amorphous NiFe/Cu/NiFe Thin Films

    Institute of Scientific and Technical Information of China (English)

    YE Yun; JIANG Ya-dong; HU Wen-cheng; ZENG Hong-juan

    2004-01-01

    The amorphous of Permalloy on the copper subtract was studied using composite electroplating method. A portion of hydrogen brings the counteraction on the surface of cathode leading nickel-iron alloys to be anomalous in the process of co-depositing. The results of X-ray diffraction (XRD) show that the Ni-Fe alloys layer is amorphous. The Giant Magneto -Impedance (GMI) effect of Ni-Fe alloys was obtained under the optimal conditions, dependence on the soft magnetic property of Ni-Fe amorphous thin film. As a result, the ratios△ Z/Z of NiFe/Cu/NiFe amorphous thin film are 30% at 40 kHz which is in low frequency. Furthermore, the GMI value of NiFe/Cu/NiFe amorphous thin film with a sandwich structure is higher than that of single-layer ferromagnetic films of the same thickness.

  2. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    Directory of Open Access Journals (Sweden)

    DU Ji-yu

    2017-09-01

    Full Text Available Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is prepared; the increase of bond coating thickness can lead to increase of functional coating porosity in the bottom and speed up the process of porosity attenuating in the vertical direction.SEM analysis found that the increase of bond coating thickness results in the droplet deposition morphology change in the bending interface with the functional coating. The defects of bond coating have genetic influence on composite functional coating. Bond tensile test results show that excessive bond coating thickness will cause fracture in the interface between bond coating and functional coating during the stretching process; in different grinding surfaces, Vickers hardness of test blocks with a certain bood coating thickness attenuates slowly in the vertical direction. NiCrBSi-Mo/Ni coating not only maintains high surface hardness, but also increases the coating thickness to repair surface damage.

  3. Magnetic behaviour investigation on symmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co

    Institute of Scientific and Technical Information of China (English)

    李铁; 沈鸿烈

    2002-01-01

    In this paper, we have obtained and investigated the magnetic behaviours of the ferromagnetic layer in thesymmetric spin valves of Co/Cu/NiFe and NiFe/Cu/Co by measuring with a vibrating sample magnetometer andanalysing in terms of the multi-domain Ising models. It has been found that some magnetic layer can have quitedifferent magnetic behaviours in different structures of spin valves, depending on the properties of the under-layer. Inour investigation, we have found that the magnetic behaviour of a Co layer depends mainly on the magnetization of theunder-layer, whereas this is not the case for the NiFe layer.

  4. THE EFFECT OF RARE EARTH ELEMENTS ON Cr PRECIPITATIONS IN A Cu-0.8WT%Cr ALLOY

    Directory of Open Access Journals (Sweden)

    Gewang Shuai

    2011-05-01

    Full Text Available The microstructural evolution of Cu-based alloys during aging was studied using a quantitative metallographic method. Samples were cut from ingots of Cu-0.8wt%Cr and Cu-0.8wt%Cr-RE alloys. These were solution treated at 1000 ºC for 1.5h and subsequently quenched in water, then separately aged at 480 ºC for different durations. The microstructures were observed by optical microscope, and the characteristic geometric parameters of precipitated Cr phase, including volume fraction VV, face density NA, mean diameter and roundness, were measured. These data provided more details about the process of aging. The results showed that precipitation of Cr phase occurred in the form of particles during aging. Rare earth elements promoted the precipitation of Cr phase and dispersed Cr particles. The phenomenon of overaging came earlier in Cu-Cr-RE than in Cu-Cr. In the present work, the optimal aging time at 480 ºC was 2 hrs for the Cu-0.8wt%Cr-RE alloy and 3 hours for the Cu-0.8wt%Cr alloy.

  5. Aging Behavior of Cu-Cr-Zr-Ce Alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; LIU Ping; SU Juan-hua; TIAN Bao-hong; LI Wei

    2004-01-01

    The aging properties of Cu-0.35Cr-0.038Zr-0.055Ce alloy are studied. The results show that can obtain higher electrical conductivity and microhardness after solutioned at 920℃for lh, and aged at 500℃. The process of precipitation of the secondary phase can be accelerated with cold deformation before aging, so properties of the alloy are improved.Upon aging at 500℃ for 30 minutes after 60% cold deformation, the values of electrical conductivity and microhardness are69.0%IACS and 152HV respectively, but they are only 66.2%IACS and 136HV upon directly aging after solution. With the addition of a trace of rare earth element Ce, the value of microhardness of Cu-0.35Cr-0.038Zr alloy increases 18~25HV,while the value of electrical conductivity drops a little.

  6. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    Science.gov (United States)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  7. Microstructure and Corrosion Behavior of Ni-Alloy/CrN Nanolayered Coatings

    Directory of Open Access Journals (Sweden)

    Hao-Hsiang Huang

    2011-01-01

    Full Text Available The Ni-alloy/CrN nanolayered coatings, Ni-Al/CrN and Ni-P/CrN, were deposited on (100 silicon wafer and AISI 420 stainless steel substrates by dual-gun sputtering technique. The influences of the layer microstructure on corrosion behavior of the nanolayered thin films were investigated. The bilayer thickness was controlled approximately 10 nm with a total coating thickness of 1m. The single-layer Ni-alloy and CrN coatings deposited at 350∘C were also evaluated for comparison. Through phase identification, phases of Ni-P and Ni-Al compounds were observed in the single Ni-alloy layers. On the other hand, the nanolayered Ni-P/CrN and Ni-Al/CrN coatings showed an amorphous/nanocrystalline microstructure. The precipitation of Ni-Al and Ni-P intermetallic compounds was suppressed by the nanolayered configuration of Ni-alloy/CrN coatings. Through Tafel analysis, the corr and corr values ranged from –0.64 to –0.33 V and 1.42×10−5 to 1.14×10−6 A/cm2, respectively, were deduced for various coating assemblies. The corrosion mechanisms and related behaviors of the coatings were compared. The coatings with a nanolayered Ni-alloy/CrN configuration exhibited a superior corrosion resistance to single-layer alloy or nitride coatings.

  8. STUDY ON MORPHOLOGY OF CHROMIUM IN CHILLED Cu-0.14%-2.0%Cr ALLOYS

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; Z.K.Fan

    2004-01-01

    The morphology of chromium in chilled Cu-Cr alloys with 0.14%-2.0% Cr has been studied. The results showed that eutectic Cr phase takes a fibrous shape, and pre-eutectic Cr is dendritic in the studied chilled Cu-Cr alloy. During solute treatment of the eutectic and super-eutectic Cu-Cr alloys, only part of chromium particles dissolved in copper phase,some fiber and dendritic chromium still remained. Forging before solute treatment can reduce the size of primary Cr particles, which benefits the aging structure.

  9. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of Cu(II on the Adsorption Behaviors of Cr(III and Cr(VI onto Kaolin

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-01-01

    Full Text Available The adsorption of Cr(III or Cr(VI in the absence and presence of Cu(II onto kaolin was investigated under pH 2.0–7.0. Results indicated that the adsorption rate was not necessarily proportional to the adsorption capacity. The solutions’ pH values played a key role in kaolin zeta potential (ζ, especially the hydrolysis behavior and saturation index of heavy metal ions. In the presence of Cu(II, qmixCr(III reached the maximum adsorption capacity of 0.73 mg·g−1 at pH 6.0, while the maximum adsorption capacity for the mixed Cr(VI and Cu(II system (qmixCr(VI was observed at pH 2.0 (0.38 mg·g−1. Comparing the adsorption behaviors and mechanisms, we found that kaolin prefers to adsorb hydrolyzed products of Cr(III instead of Cr3+ ion, while adsorption sites of kaolin surface were occupied primarily by Cu(II through surface complexation, leading to Cu(II inhibited Cr(VI adsorption. Moreover, Cr(III and Cr(VI removal efficiency had a positive correlation with distribution coefficient Kd. Cr(III and Cr(VI removal efficiency had a positive correlation with distribution coefficient Kd and that of adsorption affinities of Cr(III or Cr(VI on kaolin was found to be Kd Cr(III Kd Cr(VI-Cu(II.

  11. Characteristics of centrifugally cast GX25CrNiSi18-9 steel

    Directory of Open Access Journals (Sweden)

    R. Zapała

    2011-07-01

    Full Text Available The paper presents the results of microstructural examinations of the industrial heat-resistant centrifugally cast GX25CrNiSi18-9 steel characterised by increased content of Cu. The study included changes in the microstructure of base cast steel respective of the steel held at a temperature of 900 and 950°C for 48 hours. Based on the results obtained, an increase in microhardness of the examined cast steel matrix with increasing temperature was stated, which was probably caused by fine precipitates enriched in Cr, Mo, and C forming inside the matrix grains.The layer of scale formed on the tested cast steel oxidised in the atmosphere of air at 900 and 950°C was characterised by an increased tendency to degradation with increasing temperature of the conducted tests.

  12. Evaluation of hot corrosion protection of Cr-Al and CoNiCrAlY on IN-738LC

    Energy Technology Data Exchange (ETDEWEB)

    Khajavi, M.R. [Niroo Research Institute - Chemistry and Materials Research Center - Metallurgy Dept. End of Pounak-e-Bakhtari, P.O.Box 14665-517, Post Code 1468617151, Blvd., Shahrak-e-Gharb, Tehran (Iran)]|[Shiraz University - Materials Science and Engineering Department, Engineering School, Shiraz University, Shiraz (Iran); Pasha, A. [Niroo Research Institute - Chemistry and Materials Research Center - Metallurgy Dept. End of Pounak-e-Bakhtari, P.O.Box 14665-517, Post Code 1468617151, Blvd., Shahrak-e-Gharb, Tehran (Iran); Shariat, M.H. [Shiraz University - Materials Science and Engineering Department, Engineering School, Shiraz University, Shiraz (Iran)

    2004-07-01

    A program was conducted to evaluate the relative corrosion resistance of CoNiCrAlY and Chromium modified Aluminide on IN738-LC, used for turbine blades. The corrosion experiments were performed in a laboratory tube furnace. The microstructure of coatings was characterized by using optical and scanning electron microscopy techniques. The results indicated that at a temperature of 800 deg. C the CoNiCrAlY is more protective than Cr-Al coating. (authors)

  13. Spin state and orbital ordering in CuCr2O4 investigated by NMR

    Science.gov (United States)

    Jo, Euna; Kang, Byeongki; Kim, Changsoo; Kwon, Sangil; Lee, Soonchil

    2013-09-01

    63,65Cu and 53Cr nuclear magnetic resonance spectra for CuCr2O4 were measured at various magnetic fields and temperatures. The microscopic evidence of orbital ordering in CuCr2O4 was obtained from a dipolar hyperfine field, NQR, and magnetic anisotropy analysis of the linewidth broadening of the Cu and Cr NMR spectra measured in the external magnetic field. The energy gap in the dispersion relation of the spin wave excitation was measured from the temperature dependence of the resonance frequency of Cu and Cr ions in CuCr2O4. The energy gap of the Cu ions is about 10 K (± 5 K), and that of the Cr ions is about 40 K (± 5 K). These values imply that the spin-orbit coupling of Cr ions is stronger than that of Cu ions related to the orbital ordering in CuCr2O4. The magnetic field dependence of the Cr NMR frequency shows that the angle between the Cr3+ magnetic moment and the Cu2+ magnetic moment is about 98∘ (± 2∘).

  14. Hot corrosion performance of a NiCr coated Ni-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D. [Indian Institute of Technology, Roorkee (India)

    2006-07-15

    The hot corrosion performance of high velocity oxy-fuel sprayed Ni-20Cr wire coating on a Ni-based superalloy is evaluated for 1000 h at 900{sup o}C under cyclic conditions in a coal-fired boiler. The performance of bare and Ni-20Cr coated Superni 75 is assessed via thermogravimetric data, metal thickness loss corresponding to the corrosion scale formation, scale thickness loss and the depth of internal corrosion attack. The better hot corrosion resistance of the coated alloy is mainly attributed to the formation of a thick band of chromium oxide just above the scale-substrate interface and chromium oxide stringers along the splat boundaries, as well as to the nickel oxide and the dense and uniform fine grain structure of the as sprayed coating.

  15. First principles calculations on Ni impurities in Cu clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo-Chavez, J.L. [Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite Paul Sabatier, 31062 Toulouse (France)]. E-mail: ricardo@irsamc.ups-tlse.fr; Pastor, G.M. [Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite Paul Sabatier, 31062 Toulouse (France)

    2005-07-15

    Structural and magnetic properties of small NiCu{sub N-1} clusters are determined in the framework of Kohn-Sham density-functional theory (DFT). Besides some changes in bond length, the calculated structures for N=<5 atoms are similar to those of pure Cu{sub N}. For the optimal NiCu{sub N-1} geometry the Ni ion occupies the most-coordinated atomic position and the ground-state corresponds to a minimum-spin configuration (S{sub z}=0 or 12). Interesting correlations between cluster structure and magnetism are revealed by varying the total spin. The possible consequences of electron correlations and finite-temperature effects are briefly discussed.

  16. Biosorption of Cr(III), Cr(VI), Cu(II) ions by intact cells of Spirulina platensis

    OpenAIRE

    Gelagutashvili, E.; Bagdavadze, N.; Rcheulishvili, A.

    2017-01-01

    The absorption characteristics of Cr(III), Cr(VI), Cu(II) ions on intact living cells Spirulina platensis (pH9.6) were studied by using a UV-VIS spectrophotometer. Also biosorption of these ions with cyanobacteria Spirulina platensis were studied using equilibrium dialysis and atomic absorption analysis.It was shown, that the absorption intensity of Spirulina platensis decreases, when Cr(III), Cr(VI), Cu(II) ions are added. Significant difference between the absorption intensity for Cu(II) Sp...

  17. Grain boundary segregation in FeCrNi model alloys; Korngrenzensegregation in FeCrNi-Modellegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, B.; Schneider, F.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Muraleedharan, P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Div. of Metallurgy

    1998-12-31

    P and S segregate at the grain boundaries and thus increase susceptibility to intergranular corrosion at those sites. This could be proven by means of nitric acid-chromate tests and potentiostatic etching tests. There is a direct connection between loss in mass, mean depth of intergranular corrosion attacks, dissolution current density, and level of segregation-induced concentration of P and S at the grain boundaries. The segregation effect at these sites was found to be most evident in specimens of the examined Fe-Cr-Ni steel which had been heat-treated for 1000 hours at 550 C. However, segregation occurs also in materials that received a heat treatment of 400 C/5000 hours, while intergranular corrosion is observed only after heat treatment of 500 C/1000 hours. Apart from segregation of P, formation of Cr-rich phosphides is observed, which leads to depletion of Cr at the precipitates. (orig./CB) [Deutsch] P und S segregieren an die KG und erhoehen dort die IK-Anfaelligkeit. Dies konnte mit Hilfe von Salpetersaeure-Chromat- und Potentiostatischem Aetztest nachgewiesen werden. Es besteht ein direkter Zusammenhang zwischen Masseverlust, mittlerer IK-Angriffstiefe, Aufloesungsstromdichte und Hoehe der segregationsbedingten Anreicherungen von P und S an den KG. Der KG-Segregationseffekt am untersuchten Fe-Cr-Ni-Stahl ist im Waermebehandlungszustand 550 C/1000 h am deutlichsten ausgepraegt. Aber auch bereits bei 400 C/5000 h findet Segregation statt. IKSpRK tritt nur im Waermebehandlungszustand 550 C/1000 h auf. Neben der P-Segregation wird die Bildung Cr-reicher Phosphide beobachtet, die zur Abreicherung von Cr an den Ausscheidungen fuehrt. (orig.)

  18. Effects of helium injection mode on void formation in Fe-Ni-Cr alloys

    Science.gov (United States)

    Kimoto, T.; Lee, E. H.; Mansur, L. K.

    1988-09-01

    The effect of the helium injection mode on void formation during ion irradiation of the pure solution-annealing alloys Fe-15Ni-7Cr, Fe-35Ni-7Cr, Fe-45Ni-7Cr, Fe-10Ni-13Cr, Fe-40Ni-13Cr, Fe-45Ni-15Cr was examined. Ion irradiation was carried out with 4 MeV Ni ions at 948 K to doses of 30 to 100 dpa with: (1) no helium injection, (2) simultaneous helium injection and (3) helium preinjection and aging. Swelling variation with helium injection differed among the 7Cr alloys and 13-15Cr alloys. Only the simultaneous helium injection mode produced a bimodal cavity size distribution in the high Ni alloys. The critical radius, as estimated from the cavity size distributions appears to have increased with increasing dose, but no clear variation of the critical radius with composition was observed. Helium preinjection and one-hour aging at 948 K formed helium bubbles along the residual dislocations, while subsequent Ni irradiation caused void formation along the dislocation lines. The calculated helium concentration deduced from observable helium bubbles was low compared with the injected helium concentration in the alloys containing higher Ni and lower Cr.

  19. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanjin; Zhao, Chaoqian [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Guo, Sai; Gan, Yiliang [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Wu, Songquan; Lin, Junjie; Huang, Tingting [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Lin, Jinxin, E-mail: franklin@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China)

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr{sub 2}O{sub 3}, CrO{sub 2}, WO{sub 3}, Cu{sub 2}O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;.

  20. Synthesis of CuNi/C and CuNi/γ-Al2O3 Catalysts for the Reverse Water Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Maxime Lortie

    2015-01-01

    Full Text Available A new polyol synthesis method is described in which CuNi nanoparticles of different Cu/Ni atomic ratios were supported on both carbon and gamma-alumina and compared with Pt catalysts using the reverse water gas shift, RWGS, reaction. All catalysts were highly selective for CO formation. The concentration of CH4 was less than the detection limit. Cu was the most abundant metal on the CuNi alloy surfaces, as determined by X-ray photoelectron spectroscopy, XPS, measurements. Only one CuNi alloy catalyst, Cu50Ni50/C, appeared to be as thermally stable as the Pt/C catalysts. After three temperature cycles, from 400 to 700°C, the CO yield at 700°C obtained using the Cu50Ni50/C catalyst was comparable to that obtained using a Pt/C catalyst.

  1. Sliding wear behaviors of electrodeposited Ni composite coatings containing micrometer and nanometer Cr particles

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-gang; ZHOU Yue-bo; ZHANG Hai-jun

    2009-01-01

    Micrometer and nanometer Cr particles were co-deposited with Ni by electroplating from a nickel sulfate bath containing a certain content of Cr particles. Cr microparticles are in a size range of 1-5 (m and Cr nanoparticles have an average size of 40 nm. The friction and the wear performance of the co-deposited Ni-Cr composite coatings were comparatively evaluated by sliding against Si3N4 ceramic balls under non-lubricated conditions. It is found that the incorporation of Cr particles enhances the microhardness and wear resistance of Ni coatings. The wear resistance of Ni composite coating containing Cr nanoparticles is higher than that of the Ni composite coating containing Cr microparticles with a comparable Cr particle content. The co-deposition of smaller nanometer Cr particles with Ni effectively reduces the size of Ni crystals and significantly increases the hardness of the composite coatings due to grain-refinement strengthening and dispersion-strengthening, resulting in a significant improvement of wear resistance of the Ni-Cr nanocomposite coatings.

  2. Growth and electronic structure of Cu on Cr sub 2 O sub 3 (0001)

    CERN Document Server

    Xiao Wen De; Guo Qi; Wang, E G

    2003-01-01

    The deposition of Cu at room temperature on a Cr sub 2 O sub 3 (0001) substrate is studied by x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and low-energy-electron diffraction. The results indicate that at RT Cu is highly dispersed on the substrate at initial deposition. X-ray induced Auger spectra, Auger parameter and ultraviolet photoelectron spectroscopy show that at the initial coverage the deposited Cu is in the Cu(I) state due to the interaction of Cu with the Cr sub 2 O sub 3 substrate; Cu becomes metallic at Cu coverages of > 4 monolayer equivalent. The formation of Cu two-dimensional or quasi-2D patches is followed by the formation of Cu three-dimensional clusters. Cu grows epitaxially on the Cr sub 2 O sub 3 (0001) films as Cu(111)R 30 deg. as observed by low-energy-electron diffraction.

  3. Effect of Cr and Ni on diffusion bonding of Fe3Al with steel

    Indian Academy of Sciences (India)

    Wang Juan; Li Yajiang; Ma Haijun

    2005-02-01

    Microstructure at the diffusion bonding interface between Fe3Al and steel including Q235 low carbon steel and Cr18–Ni8 stainless steel was analysed and compared by means of scanning electron microscopy and transmission electron microscopy. The effect of Cr and Ni on microstructure at the Fe3Al/steel diffusion bonding interface was discussed. The experimental results indicate that it is favourable for the diffusion of Cr and Ni at the interface to accelerate combination of Fe3Al and steel during bonding. Therefore, the width of Fe3Al/Cr18–Ni8 interface transition zone is more than that of Fe3Al/Q235. And Fe3Al dislocation couples with different distances, even dislocation net occurs at the Fe3Al/Cr18–Ni8 interface because of the dispersive distribution of Cr and Ni in Fe3Al phase.

  4. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    Science.gov (United States)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  5. Sintering behaviour and mechanical properties of Cr3C2–NiCr cermets

    Indian Academy of Sciences (India)

    A Özer; Y K Tür

    2013-10-01

    Cr3C2–NiCr cermets are used as metal cutting tools due to their relatively high hardness and low sintering temperatures. In this study, a powder mixture consisting of 75 wt% Cr3C2–25 wt% NiCr was sintered at four different temperatures and characterized for itsmicrostructure and mechanical properties. The highest relative density obtained was 97% when sintered at 1350 °C. As the relative density increased, elastic modulus, transverse rupture strength, fracture toughness and hardness of the samples reached to a maximum of 314 GPa, 810 MPa, 10.4 MPa.m1/2 and 11.3 GPa, respectively. However, sintering at 1400 °C caused further grain growth and pore coalescence which resulted in decreasing density and degradation of all mechanical properties. Fracture surface investigation showed that the main failure mechanism was the intergranular fracture of ceramic phase accompanied by the ductile fracture of the metal phase which deformed plastically during crack propagation and enhanced the fracture toughness.

  6. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, Ken (Naperville, IL); Baxter, David J. (Woodridge, IL)

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  7. Effect of Cr/C Ratio on Microstructure and Corrosion Performance of Cr3C2-NiCr Composite Fabricated by Laser Processing

    Science.gov (United States)

    Lou, Deyuan; Liu, Dun; He, Chunlin; Bennett, Peter; Chen, Lie; Yang, Qibiao; Fearon, Eamonn; Dearden, Geoff

    2016-01-01

    The present study focuses on the effect of different Cr/C ratios on the microstructure, microhardness, and corrosion resistance of Ni-based laser clad hardfacings, reinforced by in situ synthesized chromium carbide particles. Cr3C2-NiCr composites have been laser processed with graphite/Cr/Ni powder blends with varying Cr/C ratios. Following phase analysis (x-ray diffraction) and microstructure investigation (scanning electron microscopy; energy dispersive x-ray analysis; transmission electron microscopy), the solidification of laser melt pool is discussed, and the corrosion resistances are examined. Several different zones (planar, dendritic, eutectic and re-melt zone) were formed in these samples, and the thicknesses and shapes of these zones vary with the change of Cr/C ratio. The sizes and types of carbides and the content of reserved graphite in the composites change as the Cr/C ratio varies. With the content of carbides (especially Cr3C2) grows, the microhardness is improved. The corrosive resistance of the composites to 0.2M H2SO4 aqueous solution decreases as the Cr/C ratio reduces owing to not only the decreasing Cr content in the NiCr matrix but also the galvanic corrosion formed within the carbide and graphite containing Ni matrix.

  8. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo

    Energy Technology Data Exchange (ETDEWEB)

    Niu, C.; Zaddach, A. J.; Oni, A. A.; Sang, X.; LeBeau, J. M.; Koch, C. C.; Irving, D. L., E-mail: dlirving@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Hurt, J. W. [Department of Physics, Furman University, Greenville, South Carolina 29613 (United States)

    2015-04-20

    Spin-driven ordering of Cr in an equiatomic fcc NiFeCrCo high entropy alloy (HEA) was predicted by first-principles calculations. Ordering of Cr is driven by the reduction in energy realized by surrounding anti-ferromagnetic Cr with ferromagnetic Ni, Fe, and Co in an alloyed L1{sub 2} structure. The fully Cr-ordered alloyed L1{sub 2} phase was predicted to have a magnetic moment that is 36% of that for the magnetically frustrated random solid solution. Three samples were synthesized by milling or casting/annealing. The cast/annealed sample was found to have a low temperature magnetic moment that is 44% of the moment in the milled sample, which is consistent with theoretical predictions for ordering. Scanning transmission electron microscopy measurements were performed and the presence of ordered nano-domains in cast/annealed samples throughout the equiatomic NiFeCrCo HEA was identified.

  9. The effect of pressure on the nuclear quadrupole resonance and ruby fluorescence in a NiCrAl pressure cell

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, N [Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Koyama-Nakazawa, K [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Matsumoto, T [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Hisada, A [Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Uwatoko, Y [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2007-10-24

    A pressure of 4.0 GPa was achieved using a piston-cylinder-type NiCrAl pressure cell which possesses a large sample space of 4.4 mm diameter x 15 mm length at ambient pressure. As monitors of the pressure, the {sup 63}Cu nuclear quadrupole resonance (NQR) of Cu{sub 2}O and ruby fluorescence were studied at the same time. The relation between the NQR frequency and the R1 line of the ruby fluorescence was investigated at pressures below 3.2 GPa.

  10. Improvement of tensile properties of pure Cu and CuCrZr alloy by cryo-rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Ihira, Ryota; Gwon, Hyoseong; Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp; Konishi, Satoshi

    2016-11-01

    Highlights: • We investigated the effect of cryo-rolling process to Cu and CuCrZr alloy by tensile test and EBSD. • Cryo-rolling process simaltaneously increased strength and ductility of Cu as previously reported. • Cryo-rolling process increased strength of CuCrZr alloy without loss-of-ductility compared with conventional cold-rolling process. • We observed heterogeneous grain size distribution in cryo-rolled Cu but not in cryo-rolled CuCrZr alloy. • We found temperature-transition of texture formation in the rolled CuCrZr alloy. - Abstract: The present study investigates the effect of cryo-rolling process, i.e. cold-rolling at liquid-nitrogen temperature followed by heat treatment, on tensile properties of pure copper and precipitation-hardened CuCrZr alloy. The cryo-rolling process resulted in a simultaneous improvement of strength and ductility of pure copper. On the other hand, a cryo-rolled CuCrZr alloy showed higher tensile strength but comparable ductility with a conventional cold-rolled CuCrZr alloy. Microstructural analysis indicates that the drastically-beneficial effect of cryo-rolling on pure copper may be due to its heterogeneous size distribution of grains which consist of cryo-rolled fine grains, residual cryo-rolled grains and recrystallized coarse grains. The modest but certain benefit of cryo-rolling on CuCrZr alloy can be explained by different texture formation compared with conventional cold-rolling. Effect of neutron irradiation on tensile properties of cryo-rolled CuCrZr alloy is also examined.

  11. Crystal structure and magnetic properties of the off-stoichiometric compounds CeNi sub 3 Cu sub 3 and CeNi sub 4 Cu sub 2

    CERN Document Server

    Moze, O; Brück, E; Buschow, K H J

    1998-01-01

    The crystallographic properties of the compounds CeNi sub 3 Cu sub 3 and CeNi sub 4 Cu sub 2 have been investigated by time-of-flight neutron diffraction. A Rietveld profile refinement of the data shows that these compounds crystallize in the hexagonal TbCu sub 7 -type structure and that Ni atoms have a greater preference as compared with Cu atoms for occupying the 2e dumb-bell site. A site preference of Cu atoms for the 2c sites is observed. Magnetic measurements made on these compounds show that the trivalent character of the Ce atoms increases with Cu concentration. (author)

  12. Effects of Cr and Ni on interdiffusion and reaction between U and Fe–Cr–Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.; Park, Y.; Zhou, L.; Coffey, K.R. [Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL (United States); Sohn, Y.H., E-mail: Yongho.Sohn@ucf.edu [Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL (United States); Sencer, B.H.; Kennedy, J.R. [Fundamental Fuel Properties Department, Nuclear Fuel and Materials Division Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe–15 wt.%Cr or Fe–15 wt.%Cr–15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U{sub 6}Fe and thin UFe{sub 2} phases were observed to develop with solubilities: up to 2.5 at.% Ni in U{sub 6}(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr){sub 2}, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni){sub 2}. The interdiffusion and reactions in the U vs. Fe and U vs. Fe–Cr–Ni exhibited a similar temperature dependence, while the U vs. Fe–Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases – lower growth rate at lower temperature but higher growth rate at higher temperature.

  13. Microstructures and properties of cold drawn and annealed submicron crystalline Cu-5%Cr alloy

    Institute of Scientific and Technical Information of China (English)

    HE Wen-xiong; YU Yang; WANG Er-de; SUN Hong-fei; HU Lian-xi; CHEN Hui

    2009-01-01

    The microstructures and properties after cold drawing and subsequent annealing of submicron crystalline Cu-5%Cr (mass fraction) alloy were investigated. The results show that, the microstructure of submicron crystalline Cu-5%Cr can be further refined by cold drawing. After cold drawing, the grains of Cu-5%Cr alloy with grain size of 400-500 nm can be refined to be cellular structures and subgrains with size of 100-200 nm. Both strength and ductility of Cu-5%Cr alloy can be enhanced by cold drawing, and the optimal mechanical properties can be achieved with drawing deformation increasing. It is suggested that dislocation glide is still the main mechanism in plastic deformation of submicron crystalline Cu-5%Cr, but grain boundary slide and diffusion may play more and more important roles with drawing deformation increasing. When the cold drawn Cu-5%Cr wires are annealed at 550 ℃, fine recrystal grains with grain size of 200-300 nm can be obtained. Furthermore, there are lots of fine Cr particles precipitated during annealing, by which the recrystallization softening temperatures of the cold drawn Cu-5%Cr wires can be increased to 480-560 ℃. Due to the fact that Cr particles have the effect of restricting Cu grains growth, a favorable structural thermal stability of the submicron crystalline Cu-5%Cr can be achieved, and the submicron grained microstructure can be retained at high temperature annealing.

  14. Bonding Ni-Cr alloy to tooth structure with adhesive resin cements.

    Science.gov (United States)

    Penugonda, B; Scherer, W; Cooper, H; Kokoletsos, N; Koifman, V

    1992-01-01

    This study was to determine the shear bond strengths of Ni-Cr alloy to Ni-Cr alloy (Group I), Ni-Cr alloy to enamel (Group II), and Ni-Cr alloy to dentin (Group III) using Imperva Dual, DC Metabond, All-Bond, Geristore, and Panavia. All bonded specimens were thermocycled 2000 x (5 degrees C-55 degrees C) after 24 hours and subjected to shear bond testing on a Universal Instron Testing Machine. In all groups of the study, Imperva Dual and CB Metabond had significantly (p bond values than Panavia.

  15. Morphological, structural, microhardness and corrosion characterisations of electrodeposited Ni-Mo and Cr coatings

    National Research Council Canada - National Science Library

    Lima-Neto, Pedro de; Correia, Adriana N; Vaz, Gustavo L; Casciano, Paulo N. S

    2010-01-01

    The corrosion resistance of electrodeposited Cr and Ni-Mo coatings and the influence of heat treatment on the crystallographic structure, morphology and microhardness properties were investigated here...

  16. A thermodynamic analysis of the system Fe-Cr-Ni-C-O

    OpenAIRE

    Luoma, Rauno

    2002-01-01

    A thermodynamic database for the system Fe-Cr-Ni-C-O has been built using previously assessed binary and ternary systems. Six ternary systems, Fe-Cr-O, Fe-C-O, Fe-Ni-O, Cr-Ni-O, Cr-C-O, and Ni-C-O, have been assessed. Quaternary and quinary systems were calculated using only interpolation models. This method of building a database is known as the Calphad method and it is widely used in modern thermodynamics. An associated solution model with a non-ideally interacting species, namely 'Fe',...

  17. Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy

    Science.gov (United States)

    Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente

    2015-12-01

    We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.

  18. Cu-Ni nanoparticle-decorated graphene based photodetector

    Science.gov (United States)

    Kumar, Anil; Husale, Sudhir; Srivastava, A. K.; Dutta, P. K.; Dhar, Ajay

    2014-06-01

    We report a simple and straight forward approach for the synthesis of Cu-Ni graphene hybrid nano-composites. These nano-composites have been characterized using AFM, XRD, FTIR spectroscopy and HRTEM. The characterization data clearly shows uniform decoration of Cu-Ni nanoparticles on graphene layers. A thin film of these nano-composites was found to exhibit unique electrical and photoresponse properties, which may be attributed to photothermoelectric and photovoltaic effects. The photocurrent measurements indicate superior light absorption and long lifetime of this device.We report a simple and straight forward approach for the synthesis of Cu-Ni graphene hybrid nano-composites. These nano-composites have been characterized using AFM, XRD, FTIR spectroscopy and HRTEM. The characterization data clearly shows uniform decoration of Cu-Ni nanoparticles on graphene layers. A thin film of these nano-composites was found to exhibit unique electrical and photoresponse properties, which may be attributed to photothermoelectric and photovoltaic effects. The photocurrent measurements indicate superior light absorption and long lifetime of this device. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00916a

  19. Unusual strain relaxation in Cu thin films on Ni(001)

    DEFF Research Database (Denmark)

    Rasmussen, F.B.; Baker, J.; Nielsen, M.;

    1997-01-01

    Surface x-ray diffraction has been used to study the growth of thin Cu films on Ni(001). We give direct evidence for the formation of embedded wedges with internal {111} facets in the film, as recently suggested by Muller et al. [Phys. Rev. Lett. 76, 2358 (1996)]. The unusual strain distribution...

  20. Investigation on the Microstructure, Interfacial IMC Layer, and Mechanical Properties of Cu/Sn-0.7Cu- xNi/Cu Solder Joints

    Science.gov (United States)

    Yang, Li; Ge, Jinguo; Zhang, Yaocheng; Dai, Jun; Liu, Haixiang; Xiang, Jicen

    2016-07-01

    Sn-0.7Cu- xNi composite solder has been fabricated via mechanical mixing of different weight percentages of Ni particles with Sn-0.7Cu solder paste, and the effect of the Ni concentration on the microstructure, wettability, and tensile properties of Cu/Sn-0.7Cu- xNi/Cu solder joints investigated. The results show that refined dot-shaped particles of intermetallic compounds (IMCs) are uniformly dispersed in a primary β-Sn matrix in the Cu/Sn-0.7Cu-(0.05-0.1)Ni/Cu solder joints. The interfacial IMC layer thickness increased slightly when adding Ni content to 0.05 wt.%, then rapidly when further increasing the Ni concentration to 0.4 wt.%. Excellent wettability with bright appearance was obtained for the Sn-0.7Cu-0.05Ni solder due to diminished interfacial tension. The tensile properties improved after adding Ni content to 0.05 wt.% due to the presence of the refined dot-like IMC particles, in agreement with theoretical predictions based on the combination of dispersion and grain-refinement strengthening mechanisms. Refined microstructure and enhanced mechanical properties were obtained for the Cu/Sn-0.7Cu-0.05Ni/Cu solder joint.

  1. Effect of Cross-Interaction between Ni and Cu on Growth Kinetics of Intermetallic Compounds in Ni/Sn/Cu Diffusion Couples during Aging

    Science.gov (United States)

    Hong, K. K.; Ryu, J. B.; Park, C. Y.; Huh, J. Y.

    2008-01-01

    The solid-state, cross-interaction between the Ni layer on the component side and the Cu pad on the printed circuit board (PCB) side in ball grid array (BGA) solder joints was investigated by employing Ni(15 μm)/Sn(65 μm)/Cu ternary diffusion couples. The ternary diffusion couples were prepared by sequentially electroplating Sn and Ni on a Cu foil and were aged isothermally at 150, 180, and 200°C. The growth of the intermetallic compound (IMC) layer on the Ni side was coupled with that on the Cu side by the mass flux across the Sn layer that was caused by the difference in the Ni content between the (Cu1- x Ni x )6Sn5 layer on the Ni side and the (Cu1- y Ni y )6Sn5 layer on the Cu side. As the consequence of the coupling, the growth rate of the (Cu1- x Ni x )6 Sn5 layer on the Ni side was rapidly accelerated by decreasing Sn layer thickness and increasing aging temperature. Owing to the cross-interaction with the top Ni layer, the growth rate of the (Cu1- y Ni y )6Sn5 layer on the Cu side was accelerated at 150°C and 180°C but was retarded at 200°C, while the growth rate of the Cu3Sn layer was always retarded. The growth kinetic model proposed in an attempt to interpret the experimental results was able to reproduce qualitatively all of the important experimental observations pertaining to the growth of the IMC layers in the Ni/Sn/Cu diffusion couple.

  2. Rapid dechlorination of chlorophenols in aqueous solution by [Ni|Cu] microcell

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lifeng, E-mail: yinlifeng@gmail.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Dai, Yunrong, E-mail: daiyunrong@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Niu, Junfeng, E-mail: junfengn@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Bao, Yueping, E-mail: baoyueping@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Shen, Zhenyao, E-mail: zyshen@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Rapid dechlorination of chlorophenols in aqueous solution can be achieved by [Ni|Cu] mixture. Black-Right-Pointing-Pointer The decomposition rates of chlorophenols by [Ni|Cu] were decuple of that by [Fe|Ni], [Fe|Cu], [Zn|Cu], or [Sn|Cu]. Black-Right-Pointing-Pointer Ni{sup 0} acts as an indirect reductant and catalyst in dechlorination reaction. Black-Right-Pointing-Pointer The H* corridor mechanism from Ni to Cu is proposed based on hydrogen spillover. - Abstract: The [Ni|Cu] microcell was prepared by mixing the Ni{sup 0} and Cu{sup 0} particles. The composition and crystal form were characterized by X-ray diffraction (XRD) and scanning electron microscope. The results evidenced the zero-valence metals Ni and Cu were exposed on the surface of particles mixture. The [Ni|Cu] microcell was employed to decompose chlorophenols in aqueous solution by reductive dechlorination. The dechlorination rates of chlorophenols by [Ni|Cu] were >10 times faster than those by [Fe|Cu], [Zn|Cu], [Sn|Cu], and [Fe|Ni] mixtures under the same conditions. [Ni|Cu] is different from other zero valent metals (ZVMs) in that it performed the best at neutral pH. The main products of chlorophenol dechlorination were cyclohexanol and cyclohexanone. The reduction kinetics was between pseudo zero-order and first-order, depending on the pH, concentration, and temperature. These results, combined with electrochemical analysis, suggested that Ni{sup 0} acted as a reductant and catalyst in dechlorination reaction. The H* corridor mechanism from Ni{sup 0} to Cu{sup 0} was also proposed based on hydrogen spillover. The inhibition on the release of Ni{sup 2+} by adding natural organic matters and adjusting pH was investigated.

  3. Influence of deformation and heat treatment on electrical conductivity of CuMoCr alloy

    Institute of Scientific and Technical Information of China (English)

    XIONG Xue-hui; LIU Lin; YUE Xue-qing; LIU Jian-hua; ZHANG Rui-jun

    2009-01-01

    The solution heat treatment, cold deformation and subsequent aging were performed on CuMoCr al-loy. And the influence of deformation and aging treatment on the electrical conductivity of CuMoCr alloy was studied through metallograph, transmission electron microscopy (TEM) and electrical conductivity measure-ment. Results show that deformation without subsequent aging can reduce the electrical conductivity of CuMoCr alloy, but deformation followed by the optimum aging treatment can effectively improve the electrical conductivi-ty of CuMoCr alloy. Aging at 500℃ for 4 h after 80% deformation, the much better electrical conductivity of CuMoCr alloy can be obtained. Reduction of Cr content in the Cu matrix could be the reason for the enhance-ment of electrical conductivity.

  4. Dealloying Behavior of NiCo and NiCoCu Thin Films

    Directory of Open Access Journals (Sweden)

    Benjamin E. Peecher

    2016-01-01

    Full Text Available Porous metals and alloys, such as those fabricated via electrochemical dealloying, are of interest for a variety of energy applications, ranging from their potential for enhanced catalytic behavior to their use as high surface area supports for pseudocapacitor materials. Here, the electrochemical dealloying process was explored for electrodeposited binary NiCo and ternary NiCoCu thin films. For each of the four different metal ratios, films were dealloyed using linear sweep voltammetry to various potentials in order to gain insight into the evolution of the film over the course of the linear sweep. Electrochemical capacitance, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used to examine the structure and composition of each sample before and after linear sweep voltammetry was performed. For NiCo films, dealloying resulted in almost no change in composition but did result in an increased capacitance, with greater increases occurring at higher linear sweep potentials, indicating the removal of material from the films. Dealloying also resulted in the appearance of large pores on the surface of the high nickel percentage NiCo films, while low nickel percentage NiCo films had little observable change in morphology. For NiCoCu films, Cu was almost completely removed at linear sweep potentials greater than 0.5 V versus Ag/AgCl. The linear sweep removed large Cu-rich dendrites from the films, while also causing increases in measured capacitance.

  5. Rapid solidification of Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Baricco, M.; Bosco, E.; Acconciaioco, G.; Rizzi, P.; Coisson, M

    2004-07-15

    Cu{sub 80-x}Ni{sub x}Fe{sub 20} (x=0, 5 and 20) alloys have been rapidly solidified by planar flow casting. X-ray diffraction (XRD) analysis of as-quenched ribbons shows bcc-Fe precipitates embedded in an fcc phase (x=0), two co-existing fcc solid solutions (x=5) and a complete solid solution of the parent elements (x=20). Thermal treatments in the temperature range between 400 and 600 deg. C give precipitation and spinodal decomposition reactions. These phase transformations have been evidenced from a variation of lattice constants, from a broadening of diffraction peaks and from TEM observations. The role of Ni content on competition between precipitation and decomposition reactions during rapid solidification and annealing is discussed in terms of thermodynamic arguments. Recent CALPHAD assessment of thermodynamic properties for Cu-Fe-Ni system has been used for an estimation of composition and volume fraction of equilibrium phases.

  6. NiCrAl/Ni3Al微叠层材料的断裂韧度测算%Measurement and Calculation for Fracture Toughness of NiCrAl/Ni3Al Microlaminates

    Institute of Scientific and Technical Information of China (English)

    关春龙; 左宏森; 祁颖; 马李

    2008-01-01

    利用电子束物理气相沉积技术(EB-PVD)制备了NiCrAl/Ni3Al微叠层复合材料.建立了具有中心穿透裂纹有限宽NiCrAl叠层的Ⅰ型裂纹扩展模型,推导出它的断裂韧度表达式,并利用带预制裂纹的NiCrAl/Ni3Al叠层试样的四点弯曲断裂数据,估算出NiCrAl的断裂韧度,叠层后增强Ni3Al单体的断裂抗力.实验结果表明,制备态NiCrAl/Ni3Al微叠层复合材料试样的拉伸断口呈现出裂纹扩展和裂纹瞬断两个区域;随着温度的升高,塑性增加.

  7. Effect of Age-Hardening Treatment on Microstructure and Sliding Wear-Resistance Performance of WC/Cu-Ni-Mn Composite Coatings

    Science.gov (United States)

    Liu, Jun; Yang, Shuai; Liu, Kai; Gui, Chibin; Xia, Weisheng

    2017-06-01

    The Cu-Ni-Mn alloy-based hardfacing coatings reinforced by WC particles (WC/Cu-Ni-Mn) were deposited on a steel substrate by a manual oxy-acetylene weld hardfacing method. A sound interfacial junction was formed between the WC particles and the Cu-Ni-Mn alloy metal matrix binder even after the age-hardening treatment. The friction and wear behavior of the hardfacing coatings was investigated. With the introduction of WC particles, the sliding wear resistance of the WC/Cu-Ni-Mn hardfacing coatings was sharply improved: more than 200 times better than that of the age-hardening-treated Cu-Ni-Mn alloy coating. The sliding wear resistances of the as-deposited and the age-hardening-treated WC/Cu-Ni-Mn hardfacing coatings were 1.83 and 2.26 times higher than that of the commercial Fe-Cr-C hardfacing coating, which is mainly ascribed to the higher volume fraction of carbide reinforcement. Owing to the precipitation of the NiMn secondary phase in the Cu-Ni-Mn metal matrix, the age-hardening-treated coating had better wear resistance than that of the as-deposited coating. The main sliding wear mechanisms of the age-hardening-treated coatings are adhesion and abrasion.

  8. Hydroxyapatite coating on pretreated CoNiCrMo prosthesis

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; A. Dorner-Reisel

    2005-01-01

    In order to improve the quality of the bio-active coating on medical grade CoNiCrMo substrate, hydroxyapatite(HA) coatings were produced via low-temperature dip-coating route on substrates treated using various surface pre-treating methods. The surface and cross-sectional morphologies of HA coatings were observed by SEM, as well as the bonding strength between coatings and substrates after different pre-treatments were characterized according to ASTM C633. The low-temperature HA dip-coating method with the substrate merely oxidized at 600℃ can provide a high quality HA coating for CoNiCrMo, of which the bonding strength reaches (58±5)MPa, higher than that of the clinically used HA coatings on Ti-alloys produced via plasma spray route, as well as a HA coating with full crystallinity and high phase-purity, which is more in-vivo stable than plasma sprayed HA coating.

  9. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    Science.gov (United States)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  10. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    Science.gov (United States)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  11. Magnetic properties of CuCr2Se4 and CuCr1.5Ti0.5Se4

    Science.gov (United States)

    Behera, P. Suchismita; Bhobe, P. A.; Nigam, A. K.

    2016-05-01

    CuCr2Se4 is a potentially attractive versatile material, from the point of view of spintronics application. It shows characteristics of a ferromagnetic conductor at room temperature and with suitable doping it is proposed to show half-metallicity. With an aim to understand the effect of doping at Cr-site by a non-magnetic ion, we carried out investigation of magnetic and crystal structure properties of polycrystalline CuCr2Se4 and CuCr1.5Ti0.5Se4 spinel. These materials were prepared by solid state synthesis and characterized using room temperature powder XRD and measurement of magnetic properties. The XRD patterns were analyzed using Rietveld technique and lattice constants were estimated. Formation of a small amount of Cr3Se4 phase was identified from the XRD profiles. However, the magnetic properties do not seem to be affected much by it. Compared to parent compound, CuCr2Se4, the ferromagnetic Curie temperature TC in CuCr1.5Ti0.5Se4 was found to decrease to 208 K. But its magnetic moment (μB/f.u.) determined from the saturation magnetization value measured at 5 K, differed only slightly from that of CuCr2Se4. Our preliminary results are presented here.

  12. Nickel-stabilized hexagonal (Cu, Ni){sub 6}Sn{sub 5} in Sn-Cu-Ni lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nogita, Kazuhiro [Materials Engineering, University of Queensland, Brisbane, QLD 4072 (Australia)], E-mail: k.nogita@uq.edu.au; Nishimura, Tetsuro [Nihon Superior Co., Ltd., NS Building, Suita 564-0063 (Japan)

    2008-07-15

    Cu{sub 6}Sn{sub 5} is an important intermetallic compound (IMC) in lead-free solder alloys. Cu{sub 6}Sn{sub 5} exists in two crystal structures with an allotropic transformation from monoclinic {eta}'-Cu{sub 6}Sn{sub 5} at temperatures lower than 186 deg. C to hexagonal {eta}-Cu{sub 6}Sn{sub 5}. A detailed analysis by transmission electron microscopy (TEM) in Sn-0.7 wt.% Cu-0.06 wt.% Ni reveals that when the Ni content in (Cu, Ni){sub 6}Sn{sub 5} is {approx}9 at.% Ni, the hexagonal allotrope of (Cu, Ni){sub 6}Sn{sub 5} becomes stable at room temperature.

  13. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3

    Science.gov (United States)

    Yahia, H. Ben; Essehli, R.; Avdeev, M.; Park, J.-B.; Sun, Y.-K.; Al-Maadeed, M. A.; Belharouak, I.

    2016-06-01

    The new compounds NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 crystallize with a stuffed α-CrPO4-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structures of NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 a statistical disorder Ni2+/Cr3+ was observed on both the 8g and 4a atomic positions, whereas in NaCoCr2(PO4)3 the statistical disorder Co2+/Cr3+ was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 delivered specific capacities of 352, 385, and 368 mA h g-1, respectively, which attests to the electrochemical activity of sodium in these compounds.

  14. Epitaxial Cu(001) films grown on a Cr/Ag/Fe/GaAs(001) buffer system

    Energy Technology Data Exchange (ETDEWEB)

    Gottlob, Daniel M., E-mail: d.gottlob@fz-juelich.de [Peter Grünberg Institut, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47048 Duisburg (Germany); Jansen, Thomas [Peter Grünberg Institut, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Jülich-Aachen Research Alliance, Fundamentals for Future Information Technology (JARA-FIT), Forschungszentrum Jülich, 52425 Jülich (Germany); Hoppe, Michael [Peter Grünberg Institut, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Bürgler, Daniel E. [Peter Grünberg Institut, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Jülich-Aachen Research Alliance, Fundamentals for Future Information Technology (JARA-FIT), Forschungszentrum Jülich, 52425 Jülich (Germany); and others

    2014-07-01

    We present a procedure to prepare single-crystalline, high-purity Cu(001) films (templates) suitable as substrates for subsequent epitaxial thin-film growth. The template films were grown in a dedicated molecular-beam epitaxy system on a Cr/Ag/Fe/GaAs(001) buffer layer system. Low-energy electron diffraction and X-ray diffraction were applied to determine the surface orientation and the epitaxial relationship between all layers of the stack. Post-annealing at moderate temperatures enhances the quality of the film as shown by low-energy electron diffraction and atomic force microscopy. X-ray photoemission and Auger electron spectroscopy confirm that no atoms of the buffer layers diffuse into the Cu film during the initial preparation and the post-annealing treatment. The completed Cu(001) template system can be exposed to air and afterwards refurbished by Ar{sup +}-ion bombardment and annealing, enabling the transfer between vacuum systems. The procedure provides suitable conductive thin film templates for studies of epitaxial thin films, e.g. on the magnetic and magnetotransport properties of Co and Ni based films and multilayers. - Highlights: • Preparation of epitaxial Cu(001) template films on an insulating substrate • Characterization of template structure, orientation, cleanness, and roughness • Template films can be exposed to air and refurbished in different vacuum system. • Template films are suitable for further thin film growth at up to 570 K.

  15. Environmentally Assisted Cracking of Commercial Ni-Cr-Mo Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2004-11-09

    Nickel-Chromium-Molybdenum alloys (Ni-Cr-Mo) are highly resistant to general corrosion, localized corrosion and environmentally assisted cracking (EAC). Cr acts as a beneficial element under oxidizing acidic conditions and Mo under reducing conditions. All three elements (Ni, Cr and Mo) act synergistically to provide resistance to EAC in environments such as hot concentrated chloride solutions. Ni-Cr-Mo alloys may suffer EAC in environments such as hot caustic solutions, hot wet hydrofluoric acid (HF) solutions and in super critical water oxidation (SCWO) applications. Not all the Ni-Cr-Mo alloys have the same susceptibility to cracking in the mentioned environments. Most of the available data regarding EAC is for the oldest Ni-Cr-Mo alloys such as N10276 and N06625.

  16. Effects of deformation on microstructures and properties of submicron crystalline Cu-5%Cr alloy

    Institute of Scientific and Technical Information of China (English)

    HE Wen-xiong; WANG Er-de; CHEN Hui; YU Yang; LIU Jing-lei

    2007-01-01

    Warm extrusion of submicron crystalline Cu-5%Cr from 100 ℃ to 600 ℃ was investigated. The effects of different extrusion ratios and different extrusion temperatures on microstructures and properties of submicron crystalline Cu-5%Cr were studied. The microstructures of the extruded Cu-5%Cr were characterized by backscattered electron images(BSE) and transmission electron microscopy(TEM). The mechanical properties of the extruded Cu-5%Cr were measured by means of microhardness and tension test. The results show that, the deformation, dynamic recovery and dynamic recrystallization of the extruded Cu-5%Cr are mainly produced in Cu matrix. The higher extrusion ratio leads to more uniform microstructure and finer Cu grains. When being extruded in the range of 100-600 ℃, dynamic recovery of Cu is the dominant process, and dynamic recrystallization of Cu occurred above 300 ℃ is far from end. The most part of microstructure of as-extruded Cu-5%Cr is subcrystallines produced by dynamic recovery, only a few recrystallines exist, and the average size of these grains is not larger than 400 nm. With extrusion temperature rising, the tensile strength and microhardness of Cu-5%Cr decrease, and elongation increases gradually.

  17. Laser Remelting of Plasma Sprayed NiCrA1Y and NiCrAlY-A12O3 Coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two types of plasma sprayed coatings (NiCrAIY and NiCrAIY-AI2O3) were remelted by a 5 kW cw CO2 laser. With increasing laser power and decreasing traverse speed in the ranges of 200~700 W and 5~30 mm/s respectively, the melted track grew in width and depth. In the optimum range of laser parameters, a homogeneous remelted layer without voids, cavities, unmelted particles and microcracks was formed. On the surface of remelted layers, AI2O3 and YAIO3 were detected.As a result of isothermal oxidation tests, weight gains of laser remelted coatings were obviously lower than that only plasma sprayed, especially laser remelted NiCrAIY-AI2O3 coatings. The effects of laser remelting and incorporation of Al2O3 second phase in NiCrAIY matrix on high temperature oxidation resistance were discussed.

  18. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and Inconel 600 Alloy with Two Ag-Cu-Ti Active Braze Alloys

    Science.gov (United States)

    Shiue, Ren-Kae; Wu, Shyi-Kaan; Yang, Sheng-Hao

    2017-02-01

    Infrared brazing of Ti50Ni50 SMA and Inconel 600 alloy using Cusil-ABA and Ticusil filler metals has been investigated. The joints were dominated by Ag-Cu eutectic with proeutectic Cu in the Cusil-ABA brazed joint and with proeutectic Ag in the Ticusil one. A continuous curved belt composed of a Ni3Ti layer and a (Cu x Ni1- x )2Ti layer formed in the brazed Ti50Ni50/Ticusil/Inconel 600 joint. On the Ti50Ni50 SMA side, an intermetallic layer of (Cu x Ni1- x )2Ti formed in all joints, with x values around 0.81 and 0.47. Layers of (Cu x Ni1- x )2Ti, Ni3Ti, and mixed Ni3Ti and Ni2Cr intermetallics were observed next to the Inconel 600 substrate in the brazed Ti50Ni50/Cusil-ABA/Inconel 600 joint. The maximum shear strengths of the joints using the Cusil-ABA filler metal and the Ticusil filler metal were 324 and 300 MPa, respectively. In the Cusil-ABA brazed joint, cracks with cleavage-dominated fracture propagated along the (Cu x Ni1- x )2Ti interfacial layer next to the Ti50Ni50 SMA substrate. In the Ticusil brazed joint, ductile dimple fracture occurred in the Ag-rich matrix near the Inconel 600 alloy substrate. The absence of a detrimental Ti-Fe-(Cu) layer on the Inconel 600 substrate side can effectively improve the shear strength of the joint.

  19. Microstructural Evolution of Infrared Brazed CP-Ti Using Ti-Cu-Ni Brazes

    Institute of Scientific and Technical Information of China (English)

    C.T.Chang; T.Y.Yeh; R.K.Shiue; C.S.Chang

    2011-01-01

    Microstructural evolution of infrared vacuum brazed CP-Ti using two Ti-based braze alloys, Ti-15Cu-15Ni and Ti-15Cu-25Ni, has been investigated. The infrared braze d joint consisted of eutectic Ti2Cu/Ti2Ni intermetallic compounds and Ti-rich matrix. The eutectic Ti2Cu/Ti2Ni intermetallic compounds disappeared from the joint after being annealed at 900℃ for 1 h. In contrast, the depletion rate of both Cu and Ni from the braze alloy into CP-Ti substrate at 750℃ annealing was greatly decreased as compared with that annealed at 900℃. Blocky Ti2Cu/Ti2Ni phases were observed even if the specimen was annealed at 750℃ for 15 h. Because the Ni content of the Ti-15Cu-25Ni braze alloy is much higher than that of the Ti-15Cu-15Ni alloy, the amount of eutectic Ti2Cu/Ti2Ni phases in Ti-15Cu-25Ni brazed joint is more than that in Ti-15Ci-15Ni brazed joint. However, similar microstructural evolution can be obtained from the infrared brazed joint annealed at various temperatures and/or time for both filler metals.

  20. Wear resistance of a Cr3C2-NiCr detonation spray coating

    Science.gov (United States)

    Wang, Jun; Wang, Jun; Sun, Baode; Guo, Qixin; Nishio, Mitsuhiro; Ogawa, Hiroshi

    2002-06-01

    Coatings can be applied to surfaces to improve the surface characteristics over those of the bulk properties and are widely used in tribological applications either to reduce wear and/or to modify friction during contact. One of the foremost coating methods for combating wear is thermal spraying. To prolong the life of steel slab continuous casting rolls, Cr3C2-NiCr detonation spray coating was processed on the roll surface in a steelmaking plant in China. This article studies the mechanical properties and wear resistance of this coating. The abrasive and dry frictional wear testing were performed using a pin-on-disk tester. Experimental results show that the wear resistance of the coated samples, i.e., coating reduces the risk of seizure compared to uncoated samples, is much better than those of the uncoated steel at room and elevated temperatures with any load and sliding velocity. The coating wear mechanisms under different test conditions are discussed.

  1. Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Hyoung; Park, Sang-gyu [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Nuclear Materials Research Division, KAERI, Daejeon 305-353 (Korea, Republic of); Kim, Min-Chul, E-mail: mckim@kaeri.re.kr [Nuclear Materials Research Division, KAERI, Daejeon 305-353 (Korea, Republic of); Lee, Bong-Sang [Nuclear Materials Research Division, KAERI, Daejeon 305-353 (Korea, Republic of); Wee, Dang-Moon [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2011-11-25

    Highlights: {yields} We offer information for determining optimum alloying contents of SA508 Gr.4N steel. {yields} This study shows improvement of toughness with increasing Ni and Cr contents. {yields} Ni content is more effective on the impact toughness than on the fracture toughness. {yields} Cr content is more effective on the fracture toughness. {yields} We offer detailed information on relationship between toughness and microstructure. - Abstract: SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial reactor pressure vessel (RPV) steels, may be a candidate RPV material with the improved strength and toughness due to its tempered martensitic microstructure. This study aims at assessing the effects of microstructural factors with alloying element contents on the transition properties of Ni-Cr-Mo low alloy steels. Model alloys with different Ni and Cr contents were fabricated and their Charpy impact toughness and fracture toughness were examined in the transition region according to ASTM E23 and E1921 standard procedures, respectively. The test results showed extensive improvements of both impact toughness and fracture toughness with increasing Ni and Cr contents. However, Ni content was more effective on the impact toughness than on the fracture toughness, while Cr content was more effective on the fracture toughness. In order to identify a difference in effects of alloying elements contents on the fracture toughness and impact toughness, the relations between the transition properties and the scale of the microstructural features such as packets and carbides are discussed in detail.

  2. Arc Erosion Characteristics of Nanocrystalline CuCr50 Contact Material%纳米CuCr50触头材料电弧侵蚀特性

    Institute of Scientific and Technical Information of China (English)

    赵来军; 李震彪; 王珂; 邱安宁; 李慧杰

    2012-01-01

    近年来,纳米CuCr触头材料在截流水平、耐压能力等方面的表现优于微晶CuCr触头材料.笔者利用真空触点模拟装置和基于虚拟仪器的电器电寿命测试系统,研究了直流低电压、小电流下的纳米CuCr50触头材料的电孤侵蚀量与分断燃弧时间和触头表面形貌之间的关系,同时采用两种微晶CuCr50触头材料作为对比.利用电光分析天平纳米CuCr50触头材料的侵蚀量,利用电子扫描显微镜测量触头表面形貌.结果表明:纳米CuCr50触头材料的平均分断燃孤时间和侵蚀量均高于两种微晶CuCr50触头材料.纳米CuCr50触头表面Cr颗粒细化及均匀分布,有利于分散电弧.纳米CuCr50阴极触头表面电弧烧蚀比较均匀,而两种微晶CuCr50触头阴极表面电弧局部烧蚀严重,出现明显的凹坑侵蚀.%In recent years, nanocrystalline copper-chromium(Cu-Cr) contact material performed well in high withstand voltage, low chopping current, and so forth. Therefore, it has a big potential application in vacuum switches. The objective of this paper was to investigate vacuum arc erosion characteristics of a nanocrystalline CuCr (Cr50 wt.%) contact material. The vacuum contact simulation device was used to conduct contact materials arc erosion tests, and voltage waveforms of making and breaking arcs between the electrodes were recorded with LabVTEW. Using electric-light analytical balance and scanning electron microscopy, the mass loss and the surface structure of CuCr contact materials were obtained. Experiments indicated that the average break arcing time and the contact mass loss of nanocrystalline CuCr50 material were higher than those of two microcrystalline CuCr50 materials. The eroded contact surface structure showed a clear difference that the cathode contact surface of nanocrystalline CuCr50 contact material was uniform, while each cathode contact surface of two microcrystalline CuCr50 materials had an obvious arc erosion pit.

  3. Synthesis and Characterization of NiCr Self-assembled Nanorings

    NARCIS (Netherlands)

    Serdio, Victor M.; Gracia-Pinilla, Miguel A.; Velumani, S.; Perez-Tijerina, Eduardo G.; Wiel, van der Wilfred G.

    2010-01-01

    Formation of NiCr nanorings out of 2-3 nm NiCr nanoparticles prepared by DC magnetron sputtering with inert gas condensation is reported. An RF quadrupole mass filter has been used to get the particle size distribution and control the particle size in the plasma stream of grown material. The deposit

  4. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NARCIS (Netherlands)

    Bojack, A.; Zhao, L.; Morris, P.F.; Sietsma, J.

    2016-01-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stage

  5. Ferromagnetic resonance studies and magnetization curvesof Co-Cr and Co-Cr/Ni-Fe thin films

    NARCIS (Netherlands)

    Stam, Maria Theresia Helena Clasina Wilhelmina

    1989-01-01

    In this thesis CoCr and CoCr/NiFe double layers are studied by ferromagnetic resonance. The coercivity and the initial susceptibility of these layers are measured. An approximation of the Kooy and Enz model which is suitable for calculating the initial suceptibility is presented [3.36]. A theoretica

  6. Tribological Properties of WC-Co/NiCrBSi and Mo/NiCrBSi Plasma Spray Coatings under Boundary Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2017-06-01

    Full Text Available The tungsten carbide based WC-Co/NiCrBSi (50/50 and molybdenum based Mo/NiCrBSi (75/25 coatings were investigated under boundary lubricated sliding conditions, and their tribological properties were analysed and compared. These two coatings are in service for a long time, but there are very few papers dealing with their tribological properties, especially in lubricated sliding conditions. The NiCrBSi self-fluxing alloy is one of the popularly used materials for thermal sprayed coating, with relatively high hardness, reasonable wear resistance and high temperature corrosion. Tungsten carbide (WC is one of the most widely used commercial hard coating materials, and is added to the NiCrBSi coating to improve its hardness and wear resistance. Molybdenum (Mo is added to the NiCrBSi coating to reduce its coefficient of friction, i.e. to improve its dry sliding wear resistance. The results showed that WC-Co/NiCrBSi coating was more wear resistant, but caused higher wear of the counter-body material. Coefficients of friction were similar for both coatings.

  7. Correlation effects in Auger spectra of Ni and Cu nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Troyan, V.I.; Borisyuk, P.V.; Kashurnikov, V.A. [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation); Krasavin, A.V., E-mail: avkrasavin@gmail.com [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation); Borman, V.D.; Tronin, V.I. [National Research Nuclear University (MEPhI), 31 Kashirskoye shosse, 115409, Moscow (Russian Federation)

    2013-01-17

    Results of experimental research of exciton-like two-hole states in nanoclusters of narrow-band metals (Ni, Cu) on surface of high-oriented pyrolitic graphite by X-ray photoelectron and Auger electron spectroscopy are presented. It was found that the evolution of the electronic structure in Ni nanoclusters with the decreasing of their sizes can lead to appearance of long-living two-hole states in the valence band. One-particle and two-particle density of states are analyzed, and the Auger-electron spectra confirming the presence of the bound and localized states are obtained.

  8. NiCr thin film strain gauges fabricated on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Danisman, Murat [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Engineering Dept.; Cansever, Nurhan [Gedik Univ., Istanbul (Turkey). Electronic Engineering Dept.

    2013-10-01

    In order to investigate the strain gauge characteristics of NiCr thin films, 500 nm NiCr (80 wt.-% and 20 wt.-%, respectively) thin films were deposited on glass substrates by DC magnetron sputtering. After deposition, NiCr thin films were characterized by using X-Ray diffraction analysis, scanning electron microscope and four-point probe techniques inview of crystallization, phases, film structure and electrical resistivity. After characterization, NiCr thin films were shaped into strain gauges by photo lithography and wet etching techniques. Strain gauges were tested with different loads, and strain values were calculated by comparing the results with commercial NiCr strain gauges with the same surface area. Resistivity change vs. strain was plotted, and the gauge factor of fabricated thin film strain gauges was evaluated as 1.23. (orig.)

  9. Emittance of TD-NiCr after simulated reentry

    Science.gov (United States)

    Clark, R. K.; Dicus, D. L.; Lisagor, W. B.

    1978-01-01

    The effects of simulated reentry heating on the emittance of TD-NiCr were investigated. Groups of specimens with three different preconditioning treatments were exposed to 6, 24, and 30 half-hour simulated reentry exposure cycles in a supersonic arc tunnel at each of three conditions intended to produce surface temperatures of 1255, 1365, and 1475 K. Emittance was determined at 1300 K on specimens which were preconditioned only and specimens after completion of reentry simulation exposure. Oxide morphology and chemistry were studied by scanning electron microscopy and X-ray diffraction analysis. A consistent relationship was established between oxide morphology and total normal emittance. Specimens with coarser textured oxides tended to have lower emittances than specimens with finer textured oxides.

  10. Diffusive Interaction Between Ni-Cr-Al Alloys

    Science.gov (United States)

    Tkacz-Śmiech, Katarzyna; Danielewski, Marek; Bożek, Bogusław; Berent, Katarzyna; Zientara, Dariusz; Zajusz, Marek

    2017-05-01

    In high-temperature coatings, welded parts, and a range of other applications, components in the contact zone interdiffuse at elevated temperatures and may react to change the phase composition. The diffusion zone can be complex and can consist of sequential layers of intermediate phases, solid solutions, and in the case of multicomponent systems also of multiphase layers. In this work, the interdiffusion in Ni-Cr-Al alloys is studied experimentally and modeled numerically. The diffusion multiples were prepared by hot isostatic pressing and post-annealing at 1473 K (1200 °C). The concentration profiles were measured with wide-line EDS technique which allowed obtaining high-accuracy diffusion paths. The experimental profiles and diffusion paths were compared with numerical results simulated with application of very recent model of interdiffusion in muticomponent-multiphase systems. The calculated and experimental data show good agreement.

  11. Density of liquid NiCoAlCr quarternary alloys measured by modified sessile drop method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHANG Shu-fang; XIAO Feng; YANG Ling-chuan; DONG Jian-xin; CAO Chun-lan; TAO Zai-nan; K. MUKAI

    2006-01-01

    The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni)-x(Co)-x(Al)≈73-12-15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and the mass fraction of chromium changes from 0 to 9% were measured by a modified sessile drop method. It is found that with increasing temperature and chromium concentration in the alloys, the densities of the liquid NiCoAlCr quaternary alloys decrease, whereas the molar volume of the liquid NiCoAlCr quaternary alloys increases. And the liquid densities of NiCoAlCr quaternary alloys calculated from the partial molar volumes of nickel, cobalt, aluminum and chromium in the corresponding Ni-bases binary alloys are in good agreement with the experimental ones, i.e. within the error tolerance range the densities of the liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state. The molar volume of liquid NiCoAlCr binary alloy shows a negative deviation from the ideal linear mixing and the deviation changes small with the increase of chromium concentration at the same temperature.

  12. Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

    Directory of Open Access Journals (Sweden)

    M. Jafari Fesharaki

    2015-07-01

    Full Text Available Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4.6H2O, Co(SO4.7H2O, Cu(SO4 and H3BO3 using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX  analysis confirmed the purity of deposited samples. The morphology of the samples was estimated by scanning electron microscope (SEM. Magnetoresistance (MR measurements were carried out at room temperature for the Ni-Co/Cu multilayers by measuring the resistivity in a magnetic fields varying between ±6kOe as a function of the Ni-Co and Cu layer thicknesses; (1 dCu(nm 4 and 3 dNi-Cu(nm 5. The Maximum value of giant magnetoresistance (GMR was obtained when the Ni-Co and Cu thicknesses were 4.0nm and 4.0nm respectively. The hysteresis loop of the samples at room temperature was studied using an alternating gradient force magnetometer (AGFM. Finally, the temperature dependence of magnetization for Ni-Co/Cu multilayers; (dNi-Cu(4nm/dCu(2nm and dNi-Cu(3nm/dCu(3nm measured by Faraday balance and decreasing the magnetization with increasing the temperature discussed according to electron scattering due to spin fluctuation.

  13. Inter-Diffusion between NiO Coating and the Oxide Scale on Fe-22Cr Alloy

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Mogensen, Mogens Bjerg; Linderoth, Søren;

    2003-01-01

    The effect of Ni and NiO coatings on Fe-22Cr during oxidation at 1173K in 1% H2O was examined with respect to scale microstructure for oxidation times between 0 and 504 hours. Upon oxidation of the as pre-treated Fe-22Cr, Cr2O3 and a spinel developed. Oxidation and inter-diffusion between the Ni...... coating and Fe-22Cr occurred simultaneously. The scale consisted of NiO, a Fe-Ni spinel and Cr2O3. For the NiO coated alloy, a thin spinel layer developed between the NiO coating and the Cr2O3 scale. The microstructures of the scales are discussed with respect to calculated isotherms in the Fe-Cr-O, Cr-Ni-O...

  14. Low temperature interdiffusion in Cu/Ni thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lefakis, H.; Cain, J.F. (IBM General Technology Division, Endicott, NY (USA)); Ho, P.S. (IBM Watson Research Center, Yorktown Heights, NY (USA))

    1983-03-18

    Interdiffusion in Cu/Ni thin films was studied by means of Auger electron spectroscopy in conjunction with Ar/sup +/ ion sputter profiling. The experimental conditions used aimed at simulating those of typical chip-packaging fabrication processes. The Cu/Ni couple (from 10 ..mu..m to 60 nm thick) was produced by sequential vapor deposition on fused-silica substrates at 360, 280 and 25/sup 0/C in 10/sup -6/ Torr vacuum. Diffusion anneals were performed between 280 and 405/sup 0/C for times up to 20 min. Such conditions define grain boundary diffusion in the regimes of B- and C-type kinetics. The data were analyzed according to the Whipple-Suzuoka model. Some deviations from the assumptions of this model, as occurred in the present study, are discussed but cannot fully account for the typical data scatter. The grain boundary diffusion coefficients were determined allowing calculation of respective permeation distances.

  15. Austempering kinetics of Cu-Ni alloyed austempered Ductile Iron

    Science.gov (United States)

    Cekic, Olivera Eric; Sidjanin, Leposava; Rajnovic, Dragan; Balos, Sebastian

    2014-11-01

    The aim of the paper was to investigate the effect of austempering parameters (time and temperature) on the microstructure and mechanical properties of ADI alloyed with 1.5% Cu and 1.6% Ni (in wt.%) in order to establish the optimal processing window. It was shown that the strength, elongation and impact energy strongly depend on the amounts of ausferritic ferrite and retained austenite. A processing window was established according to the results of the kinetics of the isothermal transformation. The results show that the processing window for ADI alloyed with Cu and Ni at 350 °C was relatively wide, while the processing window for the isothermal transformation at 400 °C becomes narrower and shifted to the left. The processing window of ADI austempered at 300 °C is also narrower, but shifted to the right towards the longer times compared to the processing window of ADI austempered at 350 °C.

  16. PREFERENTIAL SPUTTERING OF Cu76Ni15Sn9

    Institute of Scientific and Technical Information of China (English)

    王震遐; 王传珊; 等

    1995-01-01

    Using collection film technique combined with Auger electron spectroscopy is analysis,the preferential sputtering of the ternary alloy Cu76Ni15Sn9 bombarded with 27keV Ar+ at normal incidence is studied.After bombardment,the target surface is examined with SEM,and the surface composition of different topographical feature areas is measured with electron probe micro-analyser(EPMA),The experiment results show that Cu atoms are preferentially ejected compared with Ni atoms,and Sn atoms come third within the ejection angle range from 0°to 60°.The results are discussed from the viewpoint of sputtering from a very rough surface.

  17. Hydrogen evolution reaction measurements of dealloyed porous NiCu

    Science.gov (United States)

    Koboski, Kyla R.; Nelsen, Evan F.; Hampton, Jennifer R.

    2013-12-01

    Porous metals are of interest for their high surface area and potential for enhanced catalytic behavior. Electrodeposited NiCu thin films with a range of compositions were electrochemically dealloyed to selectively remove the Cu component. The film structure, composition, and reactivity of these samples were characterized both before and after the dealloying step using scanning electron microscopy, energy-dispersive spectroscopy, and electrochemical measurements. The catalytic behavior of the dealloyed porous Ni samples towards the hydrogen evolution reaction was measured and compared to that of the as-deposited samples. The dealloyed samples were generally more reactive than their as-deposited counterparts at low overpotentials, making the dealloying procedure a promising area of exploration for improved hydrogen evolution catalysts.

  18. Hot Corrosion Behavior of Bare, Cr3C2-(NiCr) and Cr3C2-(NiCr) + 0.2wt.%Zr Coated SuperNi 718 at 900 °C

    Science.gov (United States)

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2015-01-01

    Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.

  19. Short-range Ferromagnetism in Alloy Ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    DEFF Research Database (Denmark)

    Thanh, P. Q.; Hoa, N. Q.; Chau, N.

    2014-01-01

    We have studied the magnetic properties of two amorphous alloy ribbons Fe72Cr6Si4Nb5B12Ag1 (FCSNB-Ag) and Fe72Cr6Si4Nb5B12Cu1 (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic...

  20. Crack Free Tungsten Carbide Reinforced Ni(Cr) Layers obtained by Laser Cladding

    OpenAIRE

    Amado Paz, José Manuel; Tobar Vidal, María José; YAÑEZ CASAL, ARMANDO JOSE; Amigó Borrás, Vicente; Candel Bou, Juan Jose

    2011-01-01

    The development of hardfacing coatings has become technologically significant in many industries A common approach is the production of metal matrix composites (MMC) layers. In this work NiCr-WC MMC hardfacing layers are deposited on C25 steel by means of laser cladding. Spheroidal fused tungsten carbides is used as reinforcement phase. Three different NiCr alloys with different Cr content were tested. Optimum conditions to obtain dense, uniform carbide distribution and hardness close to nomi...

  1. Protective Aluminide Coatings for NiCr Alloys in Combustion Environments

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL; Maziasz, Philip J [ORNL; Schauer, J [TRW; Levin, V [TRW

    2008-01-01

    Laboratory exposures that simulated the oxidation-related attack in natural gas-fired reciprocating engines were conducted on Ni-Cr alloys with and without aluminide coatings. Exposure of uncoated Ni-Cr alloy specimens to humid air at 800 C resulted in a mass loss due to CrO{sub 2}(OH){sub 2} evaporation and internal oxidation. Both model and commercial aluminide coatings reduced the amount of attack. The reaction products and Al interdiffusion were evaluated.

  2. The Strengthening of Cu-15Ni-8Sn Alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-hui; WANG Ming-pu; HONG Bin

    2004-01-01

    The microstructure, property and relation between them of Cu-15Ni-8Sn alloy are studied by means of TEM and the measurement of hardness. The results show that γ ' metastable phase strengthens alloy because of its ordering structure.The ordering structure includes two types of DO22 and L12 ordering. Their strengthening for the alloy is much stronger than that of spinodal decomposition.

  3. Hot Corrosion Performance of AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa Coatings Deposited by Atmospheric Plasma Spraying

    Science.gov (United States)

    Tao, Chong; Wang, Lei; Cheng, Nailiang; Hu, Hengfa; Liu, Yang; Song, Xiu

    2016-04-01

    AlO-CrO/NiCoCrAlYTa and AlO/NiCoCrAlYTa coatings were deposited on 316L stainless steel substrate using atmospheric plasma spraying, respectively, in order to improve the oxidation and corrosion resistance. The hot corrosion performance of the coatings at 700 and 900 °C were studied, and the detailed microstructures and phase composition of the coatings were analyzed using x-ray diffraction, scanning electron microscope with energy dispersive spectrometer, and transmission electron microscope. The results show that both coatings are structurally featured by slatted layers, consisting of amorphous phase, Cr2O3, Ni3Al, and Al2O3. The hot corrosion resistance of AlO-CrO/NiCoCrAlYTa coating is better than that of AlO/NiCoCrAlYTa coating. This improvement is attributed to lower porosity and more compact Cr2O3 in AlO-CrO/NiCoCrAlYTa coating which performs better than Al2O3 in blocking further inward progress of corrosion and oxidization.

  4. Electronic, Magnetic, and Redox Properties of [MFe(3)S(4)] Clusters (M = Cd, Cu, Cr) in Pyrococcus furiosus Ferredoxin.

    Science.gov (United States)

    Staples, Christopher R.; Dhawan, Ish K.; Finnegan, Michael G.; Dwinell, Derek A.; Zhou, Zhi Hao; Huang, Heshu; Verhagen, Marc F. J. M.; Adams, Michael W. W.; Johnson, Michael K.

    1997-12-01

    The ground- and excited-state properties of heterometallic [CuFe(3)S(4)](2+,+), [CdFe(3)S(4)](2+,+), and [CrFe(3)S(4)](2+,+) cubane clusters assembled in Pyrococcus furiosus ferredoxin have been investigated by the combination of EPR and variable-temperature/variable-field magnetic circular dichroism (MCD) studies. The results indicate Cd(2+) incorporation into [Fe(3)S(4)](0,-) cluster fragments to yield S = 2 [CdFe(3)S(4)](2+) and S = (5)/(2) [CdFe(3)S(4)](+) clusters and Cu(+) incorporation into [Fe(3)S(4)](+,0) cluster fragments to yield S = (1)/(2) [CuFe(3)S(4)](2+) and S = 2 [CuFe(3)S(4)](+) clusters. This is the first report of the preparation of cubane type [CrFe(3)S(4)](2+,+) clusters, and the combination of EPR and MCD results indicates S = 0 and S = (3)/(2) ground states for the oxidized and reduced forms, respectively. Midpoint potentials for the [CdFe(3)S(4)](2+,+), [CrFe(3)S(4)](2+,+), and [CuFe(3)S(4)](2+,+) couples, E(m) = -470 +/- 15, -440 +/- 10, and +190 +/- 10 mV (vs NHE), respectively, were determined by EPR-monitored redox titrations or direct electrochemistry at a glassy carbon electrode. The trends in redox potential, ground-state spin, and electron delocalization of [MFe(3)S(4)](2+,+) clusters in P. furiosus ferredoxin are discussed as a function of heterometal (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Tl).

  5. Blanching resistant Cu-Cr coating by vacuum plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, K.T. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.; Krotz, P.D. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.; Yuen, J.L. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.

    1995-11-01

    Copper alloy rocket engine combustion chamber linings have been found to deteriorate when exposed to cyclic reducing oxidizing (redox) environments, which are a consequence of the combustion process. The deterioration, known as blanching, can be characterized by increased roughness and burn-through sites in the wall of the combustion chamber lining and can seriously reduce the operational lifetime of the combustion chamber. A Cu-30 vol.%Cr coating produced by vacuum plasma spraying was effective in protecting the copper alloy substrate against blanching. The coating properties were characterized after cyclic oxidation exposure to 650 C in air followed by high pressure hydrogen charging. When exposed to an oxidizing environment at high temperatures, the coating formed a protective chromia scale that was substantially unreduced by high pressure hydrogen. (orig.)

  6. The Effect of Diffusion Barrier and Bombardment on Adhesive Strength of CuCr Alloy Films

    Institute of Scientific and Technical Information of China (English)

    WANGJian-feng; SONGZhong-xiao; XUKe-wei; WANGYuan

    2004-01-01

    A novel co-sputtering method that combined magnetron sputtering (MS) with ion beam sputtering (IBS) was used to fabricate CuCr alloy films without breaking vacuum after depositing diffusion barrier with IBS. Different bombardment energies were used to improve the comprehensive properties of Cu alloy film. The results indicated that the effects of diffusion barriers and bombardment energy on adhesive strength could be evaluated by a rolling contact fatigue adhesion test. Diffusion barrier can enhance the adhesive strength, and the adhesion of CuCr/CrN was higher than that of CuCr/TiN. When bombarding energy was higher, the adhesive strength of CuCr/TiN films was higher due to the broader transition zone.

  7. Structure and flaws of CuCr alloys by explosive compaction

    Institute of Scientific and Technical Information of China (English)

    LI Jin-ping; MENG Song-he; HAN Jie-cai

    2005-01-01

    CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractured surface displays ductile characteristics. In the metallurgical structure, CuCr alloys are composed of two phases of uniform distribution; the SEM morphology is like thin strips with an end arrangement that is bonded to each other and the two-phase distribution of CuCr alloys is more homogenous. It is in only in a very small zone that formation of Cu-rich and Cr-rich phases take place. The flaws of the compaction samples are mainly central-holes and cracks.

  8. Synchrotron X-Ray Study on Structures of Ni80Fe20/Cu Superlattices

    Institute of Scientific and Technical Information of China (English)

    XU Ming; LUO Guang-Ming; CHAI Chun-Lin; YANG Tao; MAI Zhen-Hong; LAI Wu-Yan; WU Zhong-Hua; WANG De-Wu

    2001-01-01

    We have shown that, in contrast to the results in the literature, the Bragg peak intensity of Ni80Fe20/Cu superlattices is enhanced at the incident x-ray energy slightly higher than the absorption edge of the heavier element (Cu). The atomic density at Ni80Fe20/Cu interface was analysed by the diffraction anomalous fine structure technology with the incident angle of x-ray fixed at the first Bragg peak. Our results demonstrate the epitaxy growth of Ni80Fe20/Cu superlattices. Upon annealing, the epitaxity of Ni80Fe20/Cu multilayers becomes poor but the local crystallinity in each layer is improved.

  9. Perpendicular magnetic anisotropy and structural properties of NiCu/Cu multilayers

    Science.gov (United States)

    Ruotolo, A.; Bell, C.; Leung, C. W.; Blamire, M. G.

    2004-07-01

    Perpendicular magnetic anisotropy (PMA) was studied at low temperature (T=30 K) in dc-magnetron sputtered Ni60Cu40/Cu multilayers. PMA has been observed in many multilayer structures for ferromagnetic layer thicknesses less than a certain thickness t⊥. In general cases t⊥ is less than a few nanometers, making such structures unsuitable for low-cost fabrication techniques. Our results show a strong perpendicular easy direction of magnetization for NiCu layer thickness between 4.2 nm and 34 nm. The thickness t⊥ at which the multilayers change the preferential orientation from perpendicular to in-plane is estimated to be 55 nm. Structural studies show that the low magnetostatic energy density is likely to be the main reason for the large t⊥ value obtained in this system.

  10. Behavior of NiCrAlY coating on the TC6 titanium alloy

    Institute of Scientific and Technical Information of China (English)

    Changqing Xia; Xiaomin Peng; Jia Li

    2008-01-01

    A NiCrAlY coating was deposited on the TC6 titanium substrate by arc ion plating (AIP). The structure and morphologies of the NiCrAlY coating were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the influence of vacuum heat treatment on the element diffusion behavior was studied. The results showed that the γ'-Ni3Al phase was precipitated on the NiCrAlY coating after heat treatment. The Ni3(Al,Ti), TiNi, and Ti2Ni intermetallic layers appeared at the interface from the outside to the inside at 700℃, and the thickness of the intermetallic layers increased with the increase in temperature. At 700℃ Ti and Ni were the major diffusion elements, and the diffusion of Cr was observed when the heat treatment temperature increased up to 870℃. The violent inward diffusion of Ni at 950℃ resulted in the degradation of the NiCrAlY coating.

  11. Cu-Ni core-shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study

    Science.gov (United States)

    Wang, Qiang; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui

    2017-02-01

    Bimetallic core-shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu-Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu12@Ni42 is more stable than two-shell Cu13@Ni42, while two-shell Ni13@Cu42 is more stable than three-shell Cu@Ni12@Cu42. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu-Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core-shell catalysts.

  12. Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings

    Science.gov (United States)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.

    2003-01-01

    Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.

  13. Room-temperature ferromagnetism in Mn-doped CuCrO2 nanopowders

    Directory of Open Access Journals (Sweden)

    DENG Linyan

    2015-08-01

    Full Text Available (Cu1-xMnxCrO2 (0≤x≤6 at% and Cu(Cr1-yMnyO2 (0≤y≤6 at% nanopowders were prepared by combining solid-state reaction and ball milling.It is found that all the samples have a pure 3R-CuCrO2 delafossite structure.The lattice expansion supports the Mn entrance into the Cu and Cr sublattices,respectively,in (Cu1-xMnxCrO2 and Cu(Cr1-yMnyO2,which is further proved by X-ray photoelectron spectroscopy to some degree.Room-temperature ferromagnetism is achieved in B-site Mn-doped samples,originating from the hole-mediated Cr3+-Mn3+ double-exchange interaction.The saturation magnetization of this CuMO2 delafossite (M=Cr,Mn is about an order of magnitude higher than literature values,and gradually decreases with the Mn addition due to the combined influence of the number of the M-M pairs,the M-M distances and the hole density.

  14. Mechanical properties and microstructure of vaccum plasma sprayed Cr3C2 - 25(Ni20Cr) coatings

    OpenAIRE

    MRDAK MIHAILO R.

    2015-01-01

    This paper analyzes vacuum plasma spray VPS - Cr3C2 - 25(Ni20Cr) coatings. Commercial powder marked Sulzer Metco Woka 7205 is used. The powder is deposited with a plasma gun F4 at a distance of 340 mm from the substrate. The main objective of the study was to eliminate, at the reduced pressure of inert gas Ar, the degradation of primary Cr3C2 carbide into Cr23C6 carbide which significantly reduces the microhardness and mechanical properties of the coating. The coating is deposited with a thic...

  15. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  16. Mechanical Properties and Microstructures of Ni20Cr Micro-wires with Abnormal Plastic Deformation

    Science.gov (United States)

    Zhou, Xiuwen; Liu, Xudong; Qi, Yidong; Wu, Weidong

    2017-05-01

    Ni80Cr20 (Ni20Cr, wt%) micro-wires were fabricated by the cold-drawing method with single die. Abnormal engineering strains were approximately 17.3-46.6 % for each pass. The relationship between mechanical properties and microstructures of Ni20Cr micro-wires were investigated under different engineering strains and annealing conditions. Experiment results indicate that the as-drawn NiCr micro-wires present obviously brittle fractures. The ultimate tensile strength (UTS) significantly increases from 781 to 1,147 MPa and the elongation decreases from 17.2 % to 1 % with engineering strains increasing. The deformed microstructures of Ni20Cr micro-wire were analyzed in detail including two-phase (solid solution/amorphous phase), edge dislocations and twins. With the annealing temperature increasing, specimens had experienced three stages and their mechanical properties were improved. After annealing at 890 °C (with 6.5 g stress) for 7.3 s in N2, the Ni20Cr micro-wires benefited for the second drawing pass. The results are very importance in fabricating Ni20Cr micro-wire with the diameter from 25 to 10 μm.

  17. Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr

    Science.gov (United States)

    Whittenberger, J. D.

    1972-01-01

    Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.

  18. Preparation and Investigation of Electrodeposited Ni-NANO-Cr2O3 Composite Coatings

    Science.gov (United States)

    Jiang, Jibo; Feng, Chenqi; Qian, Wei; Yu, Libin; Ye, Fengying; Zhong, Qingdong; Han, Sheng

    2016-12-01

    The electrodeposition of Ni-nano-Cr2O3 composite coatings was studied in electrolyte containing different contents of Cr2O3 nanoparticles (Cr2O3 NPs) on mild steel surfaces. Some techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness, the potentiodynamic polarization curves (Tafel) and electrochemical impedance spectroscopy (EIS) were used to compare pure Ni coatings and Ni-nano-Cr2O3 composite coatings. The results show that the incorporation of Cr2O3 NPs resulted in an increase of hardness and corrosion resistance, and the maximum microhardness of Ni-nano-Cr2O3 composite coatings reaches about 495 HV. The coatings exhibit an active-passive transition and relatively large impedance values. Moreover, the effect of Cr2O3 NPs on Ni electrocrystallization is also investigated by cyclic voltammetry (CV) and EIS spectroscopy, which demonstrates that the nature of Ni-based composite coatings changes attributes to Cr2O3 NPs by offering more nucleation sites and less charge transfer resistance.

  19. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La-Al-Cu(Ni) metallic glasses

    Science.gov (United States)

    Li, Peiyou

    2016-02-01

    The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La-Al-Cu(Ni) metallic glasses (MGs) was studied by differential scanning calorimetry (DSC). The experimental results have shown that the DSC curves obtained for the La-Al-Cu and La-Al-Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La-Al-Cu and La-Al-Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al-Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La-Al-Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La-Al-Cu(Ni) MGs.

  20. Molecular Dynamics Study on Interfacial Energy and Atomic Structure of Ag/Ni and Cu/Ni Heterophase System

    Institute of Scientific and Technical Information of China (English)

    Haijiang LIU; Shaoqing WANG; An DU; Caibei ZHANG

    2004-01-01

    The results of molecular dynamics calculations on the interfacial energies and atomic structures of Ag/Ni and Cu/Ni interaces are presented. Calculation on Ag/Ni interfaces with low-index planes shows that those containing the (111) plane have the lowest energies, which is in agreement with the experiments. Comparing surface energy with interracial energy, it is found the order of the interfacial energies of Ag/Ni and Cu/Ni containing the planes fall in the same order as solid-vapor surface energies of Ag, Cu and Ni. In this MD simulation, the relaxed atomic structure and dislocation network of (110)Ag||(110)Ni interface are coincident to HREM observations.

  1. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Danaee, I.; Jafarian, M.; Forouzandeh, F.; Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran)

    2008-08-15

    Nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetery (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of {beta}/{beta} crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. In CV studies, in the presence of methanol NiCu alloy modified electrode shows a significantly higher response for methanol oxidation. The peak current of the oxidation of nickel hydroxide increase is followed by a decrease in the corresponding cathodic current in presence of methanol. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of methanol was found to be 2 x 10{sup -6} cm{sup 2} s{sup -1} in agreement with the values obtained from CV measurements. (author)

  2. Electrochemical Behavior and Hydrophobic Properties of CrN and CrNiN Coatings in Simulated Proton Exchange Membrane Fuel Cell Environment

    Directory of Open Access Journals (Sweden)

    JIN Jie

    2016-10-01

    Full Text Available The CrN and CrNiN coatings were prepared on the surface of 304 stainless steel by closed field unbalanced magnetron sputtering.X ray diffraction and field emission scanning electron microscopy were used to characterize the structure and morphology of the coatings.The electrochemical corrosion properties under the simulated proton exchange membrane fuel cell(PEMFC environment, interfacial contact resistance and hydrophobic properties of the two kinds of different coatings were investigated by electrochemical methods,contact resistance test and hydrophobic test,respectively.The results indicate that CrN coating mainly consists of CrN and Cr2N phase,CrN and Cr2N phases in the CrNiN coating are less compared to CrN film, and Ni exist as element in CrNiN coating; dynamic polarization tests show the coating is of better corrosion resistance,whereas the corrosion resistance of CrNiN coating is worse than that of CrN coating,constant potential polarization test shows the corrosion current density of CrN and CrNiN coatings are equivalent; CrN and CrNiN coatings significantly reduce the interfacial contact resistance of the 304 stainless steel,among which CrN coating has the smallest contact resistance; and CrNiN coating which has better hydrophobicity than that of CrN coating is more beneficial for the water management in proton exchange membrane fuel cell.

  3. Effect of heat treatments on precipitate microstructure and mechanical properties of a CuCrZr alloy

    DEFF Research Database (Denmark)

    Edwards, D.J.; Singh, Bachu Narain; Tähtinen, S.

    2007-01-01

    The precipitate microstructure of prime aged CuCrZr was coarsened by overaging to see if the larger precipitates could prevent the initiation of plastic flow localization in irradiated CuCrZr. A number of tensile and fracture toughness specimens of prime aged CuCrZr alloy were given overaging...

  4. Hardness and wear properties of laminated Cr-Ni coatings formed by electroplating

    Science.gov (United States)

    Riyadi, Tri Widodo Besar; Masyrukan

    2017-04-01

    In this work, a laminated structure of Cr-Ni coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and nickel electrolyte solutions were prepared to deposit laminated Cr and Ni layers. Chrome was firstly plated on a steel substrate in constant routes whereas nickel was subsequently electroplated on the Cr coating using varied plating times. The effect of Ni plating time on the thickness, hardness and wear specific of the Ni layer was investigated. The results show that an increase of plating times increased the thickness and hardness of the Ni layer, but reduced the wear specific. This study showed that Ni can be a potential candidate as a material replacement for chromium plating maintenance.

  5. Short-Range Order in Liquid Al-Cu-Ni-Ce Alloy

    Institute of Scientific and Technical Information of China (English)

    孙民华; 边秀房

    2002-01-01

    The liquid and amorphous structures of Al85Ni10Ce5 and Al85Cu5Ni5Ce5 alloy were studied by X-ray diffraction. The position of the first peak shifts to bigger Q-values as the concentration of Cu increases. Gaussian decomposition of first peak in radical distribution function (RDF) was applied to Al-Ni(Cu)-Ce system. The bond lengths of Al-Al, Al-TM(Transition metal) and TM-TM increase with the substitution of Ni by Cu. Viscosity measurement shows that viscosity of Al-Ni-Ce alloy increases faster than that of Al-Ni-Cu-Ce alloy. The addition of Cu can decrease the interaction between atoms, so it is unfavorable to Al-based glass formability.

  6. Structure and electrochemical characteristics of LaNi_5-Ti_(0.10)Zr_(0.16)V_(0.34)Cr_(0.10)Ni_(0.30) composite alloy electrode

    Institute of Scientific and Technical Information of China (English)

    王艳芝; 赵敏寿

    2010-01-01

    Composite LaNi5+x wt.% Ti0.10Zr0.16V0.34Cr0.10Ni0.30 (x=0, 1, 5, 10) alloys were prepared by two-step re-melting. X-ray diffractometer (XRD), scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS), inductively coupled plasma (ICP) and electrochemical impedance spectroscopy (EIS) analyses showed that the matrix phase of LaNi5 alloy with CaCu5 structure remained unchanged after additive alloy was added, the amount of the second phase increased with increasing x. The synergetic effect withi...

  7. Nanocomposite coatings based on Ti-N-Cr/Ni-Cr-B-Si-Fe, gained by two technologies

    Directory of Open Access Journals (Sweden)

    N.K. Erdybayeva

    2009-01-01

    Full Text Available The first results of manufacturing and investigations of a new type of nanocomposite protective coatings are presented. They were manufactured using a combination of two technologies: plasma-detonation coating deposition with the help of plasma jets and thin coating vacuum-arc deposition. We investigated structure, morphology, physical and mechanical properties of the coatings of 80-90 μm thickness, as well as defined the hardness, elastic Young modulus and their corrosion resistance in different media. Grain dimensions of the nanocomposite coatings on Ti-N-Cr base varied from 2.8 to 4 nm. The following phases and compounds formed as a result of plasma interaction with the thick coating surface were found in the coatings: Ti-N-Cr (200, (220, y-Ni3-Fe, a hexagonal Cr2-Ti, Fe3-Ni, (Fe, NiN and the following Ti-Ni compounds: Ti2Ni, Ni3Ti, Ni4Ti, etc. We also found that the nanocomposite coating microhardness increased to H = 31.6 ± 1.1 GPa. The Young elastic modulus was determined to be E = 319 ± 27 GPa – it was derived from the loading-unloading curves. The protective coating demonstrated the increased corrosion resistance in acidic and alkaline media in comparison with that of the stainless steel substrate.

  8. The change of NiCrBSi alloys’ phase composition after plasma spraying

    Directory of Open Access Journals (Sweden)

    A. Dudek

    2008-08-01

    Full Text Available Material for investigations was NiCrBSi powder for components’ coatings which improve their corrosion resistance as well as resistance to friction wear and erosion. Plasma spraying method was used to produce a coating with thickness of 300 μm on low-alloy steel which was then remelted with the base material. Using X-ray quality analysis, phase composition was determined for: NiCrBSi powder, obtained coating and the alloyed surface layer. Crystallinity degree was also calculated for NiCrBSi layer sprayed on the base material.

  9. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    Science.gov (United States)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-07-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  10. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    Science.gov (United States)

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-10-01

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration, which led to the HDO of furfural on Ni/Cu(111). The ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).

  11. Influence of Cerium and Yttrium on Cu-Cr-Zr Alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Testing results shows that alloying with Ce and Y improves the hardness and softens temperature of cold worked Cu-Cr-Zr alloys obviously, while the conductivity was fluctuant with the variation of RE content. Observation and analysis indicate that micro-dosage RE elements helps to refine microstructure and morphology of Cu-Cr-Zr-RE alloys, suppress microstructure coarsening and improves homogeneous level of Cu-Cr-Zr alloys. Alloying with 0.01% Ce causes about 1% IACS increment of conductivity, and reduces about 2%~3.5% IACS conductivity after alloying with 0.03%~0.04% RE (Ce or Ce+Y) for Cu-Cr-Zr alloys. The microstructure of as-cast Cu-Cr-Zr alloy is refined after alloying with 0.01% Ce while the plasticity is improved slightly. Alloying with 0.01%~0.04% RE improves the softening temperature of deformed Cu-Cr-Zr alloys about 20~40 K; hardness is also improved about 20~35 HV. Test data indicate that alloying with Ce+Y raises softening temperature and hardness of Cu-Cr-Zr alloys more notably than alloying with pure Ce.

  12. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    Science.gov (United States)

    Ellis, D. L.; Michal, G. M.; Dreshfield, R. L.

    1995-01-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  13. The Influence of Composition upon Surface Degradation and Stress Corrosion Cracking of the Ni-Cr-Mo Alloys in Wet Hydrofluoric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Crook, P; Meck, N S; Rebak, R B

    2006-12-04

    At concentrations below 60%, wet hydrofluoric acid (HF) is extremely corrosive to steels, stainless steels and reactive metals, such as titanium, zirconium, and tantalum. In fact, only a few metallic materials will withstand wet HF at temperatures above ambient. Among these are the nickel-copper (Ni-Cu) and nickel-chromium-molybdenum (Ni-Cr-Mo) alloys. Previous work has shown that, even with these materials, there are complicating factors. For example, under certain conditions, internal attack and stress corrosion cracking (SCC) are possible with the Ni-Cr-Mo alloys, and the Ni-Cu materials can suffer intergranular attack when exposed to wet HF vapors. The purpose of this work was to study further the response of the Ni-Cr-Mo alloys to HF, in particular their external corrosion rates, susceptibility to internal attack and susceptibility to HF-induced SCC, as a function of alloy composition. As a side experiment, one of the alloys was tested in two microstructural conditions, i.e. solution annealed (the usual condition for materials of this type) and long-range ordered (this being a means of strengthening the alloy in question). The study of external corrosion rates over wide ranges of concentration and temperature revealed a strong beneficial influence of molybdenum content. However, tungsten, which is used as a partial replacement for molybdenum in some Ni-Cr-Mo alloys, appears to render the alloys more prone to internal attack. With regard to HF-induced SCC of the Ni-Cr-Mo alloys, this study suggests that only certain alloys (i.e., those containing tungsten) exhibit classical SCC. It was also discovered that high external corrosion rates inhibit HF-induced SCC, presumably due to rapid progression of the external attack front. With regard to the effects of long-range ordering, these were only evident at the highest test temperatures, where the ordered structure exhibited much higher external corrosion rates than the annealed structure.

  14. The Influence of Composition upon Surface Degradation and Stress Corrosion Cracking of the Ni-Cr-Mo Alloys in Wet Hydrofluoric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Crook, P; Meck, N S; Rebak, R B

    2006-12-04

    At concentrations below 60%, wet hydrofluoric acid (HF) is extremely corrosive to steels, stainless steels and reactive metals, such as titanium, zirconium, and tantalum. In fact, only a few metallic materials will withstand wet HF at temperatures above ambient. Among these are the nickel-copper (Ni-Cu) and nickel-chromium-molybdenum (Ni-Cr-Mo) alloys. Previous work has shown that, even with these materials, there are complicating factors. For example, under certain conditions, internal attack and stress corrosion cracking (SCC) are possible with the Ni-Cr-Mo alloys, and the Ni-Cu materials can suffer intergranular attack when exposed to wet HF vapors. The purpose of this work was to study further the response of the Ni-Cr-Mo alloys to HF, in particular their external corrosion rates, susceptibility to internal attack and susceptibility to HF-induced SCC, as a function of alloy composition. As a side experiment, one of the alloys was tested in two microstructural conditions, i.e. solution annealed (the usual condition for materials of this type) and long-range ordered (this being a means of strengthening the alloy in question). The study of external corrosion rates over wide ranges of concentration and temperature revealed a strong beneficial influence of molybdenum content. However, tungsten, which is used as a partial replacement for molybdenum in some Ni-Cr-Mo alloys, appears to render the alloys more prone to internal attack. With regard to HF-induced SCC of the Ni-Cr-Mo alloys, this study suggests that only certain alloys (i.e., those containing tungsten) exhibit classical SCC. It was also discovered that high external corrosion rates inhibit HF-induced SCC, presumably due to rapid progression of the external attack front. With regard to the effects of long-range ordering, these were only evident at the highest test temperatures, where the ordered structure exhibited much higher external corrosion rates than the annealed structure.

  15. Novel CuCr{sub 2}O{sub 4} embedded CuO nanocomposites for efficient photodegradation of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Mageshwari, K. [Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); PG & Research Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029, Tamilnadu (India); Sathyamoorthy, R., E-mail: rsathya59@gmail.com [PG & Research Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029, Tamilnadu (India); Lee, Jeong Yong [IBS, Center for Nanomaterials and Chemical Reactions, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Park, Jinsub, E-mail: jinsubpark@hanyang.ac.kr [Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-10-30

    Graphical abstract: - Highlights: • Novel CuO–CuCr{sub 2}O{sub 4} nanocomposites synthesized by reflux condensation method. • Methyl orange and methylene blue dye degradation studied under UV light irradiation. • Nanocomposites characterized by XRD, FESEM, TEM, EDX, UV–vis DRS and PL. • CuCr{sub 2}O{sub 4} loading effectively enhanced the catalytic activity of CuO. - Abstract: Novel photocatalyst based on CuO–CuCr{sub 2}O{sub 4} nanocomposites was synthesized for different Cr{sup 3+} concentration by reflux condensation method, and their photocatalytic activity was evaluated by monitoring the photodegradation of methyl orange (MO) and methylene blue dyes (MB) under UV light irradiation. Phase evolution by X-ray diffraction showed monoclinic CuO and tetragonal CuCr{sub 2}O{sub 4} as the components of the prepared nanocomposites. Morphological analysis by scanning electron microscope and transmission electron microscope revealed that the incorporation of Cr{sup 3+} in CuO lattice alters the morphology of CuO from microsphere to cluster shape. Photoluminescence spectra of CuO–CuCr{sub 2}O{sub 4} nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. As expected, the CuCr{sub 2}O{sub 4} loaded CuO showed enhanced photocatalytic activity for MO and MB dyes, and the kinetic studies suggest that the degradation follows pseudo-first-order kinetics. The enhanced photocatalytic activity of CuO–CuCr{sub 2}O{sub 4} nanocomposites can be attributed to the presence of CuCr{sub 2}O{sub 4} as an electron acceptor, which improves the effective charge separation in CuO.

  16. Mechanical properties and electrical conductivity of Cu-Cr and Cu-Cr-4% SiC nanocomposites for thermo-electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Suhrit, E-mail: suhritmula@gmail.com [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695 (United States); Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769008, Orissa (India); Sahani, Pankajini [Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769008, Orissa (India); Pratihar, S.K. [Department of Ceramic Engineering, National Institute of Technology, Rourkela 769008, Orissa (India); Mal, Siddhartha; Koch, Carl C. [Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695 (United States)

    2011-05-25

    Highlights: {yields} Ball-milled Cu-Cr and Cu-Cr-SiC nanopowders successfully consolidated by microwave sintering. {yields} Addition of nanosize SiC in Cu-Cr leads to enhanced sintered density, wear and hardness. {yields} A good combination of wear resistance, hardness and electrical conductivity resulted in Cu{sub 94}Cr{sub 6}-4% SiC. {yields} Microwave suscepting SiC particles played a pivotal role in good densification retaining matrix grains <200 nm. - Abstract: The present work investigates the feasibility of microwave sintering to produce bulk metal-based nanocomposites having blend composition of Cu{sub 99}Cr{sub 1}, Cu{sub 94}Cr{sub 6}, Cu{sub 99}Cr{sub 1}-4 wt.% SiC and Cu{sub 94}Cr{sub 6}-4 wt.% SiC (average particle size {approx}30 nm). The 50 h ball-milled samples were uniaxially pressed, and then pellets were sintered at 800 deg. C, 900 deg. C and 1000 deg. C for a constant soaking period of 30 min by microwave sintering technique. Microstructural characterization was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Sintered compacts resulted a highly densified compacts ({approx}95% relative density) while retaining ultra-fine grains (100-200 nm) in the matrix. The mechanical properties, namely, hardness and wear resistance, and electrical conductivity of the sintered specimens were also evaluated. The best combination of mechanical properties (e.g. hardness {approx}2.4 GPa) and electrical conductivity (60.3% of IACS) were obtained for Cu{sub 94}Cr{sub 6}-4 wt.% SiC sintered at 900 deg. C. This is possibly due to presence of ultra-fine grains in the bulk samples, good densification and proper bonding between particles. The results were analyzed in the light of interactions of microwaves between metallic matrix and microwave susceptive SiC particulates.

  17. Crack Free Tungsten Carbide Reinforced Ni(Cr) Layers obtained by Laser Cladding

    Science.gov (United States)

    Amado, J. M.; Tobar, M. J.; Yáñez, A.; Amigó, V.; Candel, J. J.

    The development of hardfacing coatings has become technologically significant in many industries A common approach is the production of metal matrix composites (MMC) layers. In this work NiCr-WC MMC hardfacing layers are deposited on C25 steel by means of laser cladding. Spheroidal fused tungsten carbides is used as reinforcement phase. Three different NiCr alloys with different Cr content were tested. Optimum conditions to obtain dense, uniform carbide distribution and hardness close to nominal values were defined. The effect of Cr content respect to the microstructure, susceptibility for cracking and the wear rate of the resulting coating will also be discussed.

  18. ICP-MS Determination of Cr, Cd, Ni, Cu, Pb and Zn in Atmospheric Dust Fall%电感耦合等离子体质谱法测定大气降尘中铬、镉、镍、铜、铅和锌

    Institute of Scientific and Technical Information of China (English)

    彭萌; 诸堃; 陈莲红; 魏春蓉

    2012-01-01

    用电感耦合等离子体质谱法测定大气降尘中铬、镉、镍、铜、铅和锌等有害元素的含量。试样于敞开的聚四氟乙烯坩埚中用氢氟酸和硝酸消解,运用干扰方程校正质谱干扰。方法的测定下限(10s)在0.039-0.87μg·g-1之间。通过分析1个地质标准物质(GBW 07404)对所提出方法的准确度和精密度做了考核,所得测定结果与标准物质的认定值相吻合,各元素测定结果的相对标准偏差(n=11)均小于5.0%。%A method of ICP-MS for the determination of harmful elements, i. e. , Cr, Cd, Ni, Cu, Pb and Zn in atmospheric dust fall was proposed. Samples were digested with HF and HNO3 in an open PTFE crucible. The mass spectrometry interferences were corrected by using interference equations. Lower limits of determination (10s) found for the 6 elements were in the range of 0. 039--0. 87μg·g-1. Accuracy and precision of the proposed method were tested by analyzing a geological CRM (GBW 07404), giving results in consistency with the certified values and values of RSD's (n=11) less than 5.0%.

  19. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    Science.gov (United States)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  20. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn.

    Science.gov (United States)

    Mufarrege, M M; Hadad, H R; Di Luca, G A; Maine, M A

    2015-01-01

    The tolerance and removal efficiency of Typha domingensis exposed to high concentrations of Cr, Ni, and Zn in single and combined treatments were studied. Sediment and two plants were disposed in each plastic reactor. The treatments were 100 and 500 mg L(-1) of Cr, Ni, and Zn (single solutions); 100 mg L(-1) Cr + Ni + Zn (multi-metal solutions) and 500 mg L(-1) Cr + Ni + Zn (multi-metal solutions); and a control. Even though the concentrations studied were extremely high, simulating an accidental metal dump, the three metals were efficiently removed from water. The highest removal was registered for Cr. The presence of other metals favored Cr and did not favor Ni and Zn removal from water. After 25 days, senescence and chlorosis of plants were observed in Ni and Comb500 treatments, while Cr and Zn only caused growth inhibition. T. domingensis accumulated high metal concentrations in tissues. The roots showed higher metal concentration than submerged parts of leaves. Cr translocation to aerial parts was enhanced by the presence of Ni and Zn. Our results demonstrate that in the case of an accidental dump of high Cr, Ni, and Zn concentrations, a wetland system dominated by T. domingensis is able to retain metals, and the macrophyte is able to tolerate them the time necessary to remove them from water. Thus, the environment will be preserved since the wetland would act as a cushion.

  1. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    Science.gov (United States)

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  2. Preparation and crystal structure characterization of CuNiGaSe3 and CuNiInSe3 quaternary compounds

    Indian Academy of Sciences (India)

    G E Delgado; A J Mora; P Grima-Gallardo; S Durán; M Muñoz; M Quintero

    2010-10-01

    Samples of the quaternary chalcogenide compounds, CuNiGaSe3 and CuNiInSe3, prepared by direct fusion and annealing method, were characterized by X-ray powder diffraction. In each case, the crystal structure was refined using the Rietveld method. Both compounds were found to crystallize in the tetragonal system, space group $\\bar{4}$2 (N°112), with unit cell parameter values = 5.6213(1) Å, = 11.0282(3) Å, = 348.48(1) Å3 and = 5.7857(2) Å, = 11.6287(5) Å, = 389.26(3) Å3 for CuNiGaSe3 and CuNiInSe3, respectively. These compounds have a normal adamantane structures and are isostructural with CuFeInSe3.

  3. Effect of NiCrAlY Content on Mechanical and Dielectric Properties of NiCrAlY/Al2O3 Composite Coatings%NiCrAlY含量对NiCrAlY/Al2O3涂层机械性能及介电性能的影响

    Institute of Scientific and Technical Information of China (English)

    武志红; 周万城; 罗发; 朱冬梅

    2013-01-01

    采用大气等离子喷涂技术,以镍基合金(NiCrAlY合金)粉为吸收剂、氧化铝(Al2O3)为基体,制备出NiCrAlY/Al2O3(NA)复合涂层.分析了复合涂层的相组成及显微结构,研究了 NiCrAlY含量变化对复合涂层的机械性能及介电性能的影响.结果表明:喷涂后的涂层中出现了刚玉、铬刚玉等非金属相及唯一的金属相Ni.随着NiCrAlY含量的增加,复合涂层的抗弯强度、断裂韧性逐渐增强;在8.2~12.4 GHz频率范围内,涂层的介电常数实部与虚部值都随着NiCrAlY含量的变化而明显变化,且在NiCrAlY含量为25%时达到最高值,这主要与喷涂过程中分离出金属Ni的含量、冷却后的形状及分布状态有关.%NiCrAlY/Al2O3 (NA) composite coatings were fabricated by a plasma spraying method with nickel-based (NiCrAlY) par-tides as an absorber and A12O3 as a matrix. The phase composition and microstructure of these coatings were characterized by X-ray diffraction and scanning electron microscopy, respectively. The mechanical and dielectric properties of the NA composite coatings with different NiCrAlY contents were investigated. The results indicate that the non-metallic phases (i.e., corundum and chromium corundum) and the metal phase nickel generate in the composite coatings. The bending resistance and fracture toughness all increased with increasing NiCrAlY content. The real part and the imaginary part of permittivity both changed in the frequency range of 8.2-12A GHz, and they reached the maximum values at NiCrAlY content of 25% mainly due to various amounts, solidified shapes and distributions of nickel in the composite coatings.

  4. Effect of NaOH on the vitrification process of waste Ni-Cr sludge.

    Science.gov (United States)

    Chou, I-Cheng; Wang, Ya-Fen; Chang, Cheng-Ping; Wang, Chih-Ta; Kuo, Yi-Ming

    2011-01-30

    This study investigated the effect of NaOH on the vitrification of electroplating sludge. Ni, the major metal in the electroplating sludge, is the target for recovery in the vitrification. Sludge and encapsulation materials (dolomite, limestone, and cullet) were mixed and various amounts of NaOH were added to serve as a glass modifier and a flux. A vitrification process at 1450 °C separated the molten specimens into slag and ingot. The composition, crystalline characteristics, and leaching characteristics of samples were measured. The results indicate that the recovery of Ni is optimal with a 10% NaOH mass ratio; the recoveries of Fe, Cr, Zn, Cu, and Mn all exhibited similar trends. The results of the toxicity characteristic leaching procedure (TCLP) show that leaching characteristics of the slag meet the requirements of regulation in Taiwan. In addition, a semi-quantitative X-ray diffraction analysis revealed that the main crystalline phase of slag changed from Ca(3)(Si(3)O(9)) to Na(4)Ca(4)(Si(6)O(18)) with a NaOH mass ratio of over 15%, because the Ca(2+) ions were replaced with Na(+) ions during the vitrification process. Na(4)Ca(4)(Si(6)O(18)), a complex mineral which hinders the mobility of metals, accounts for the decrease of metal recovery.

  5. Crystallization behavior of Zr62Al8Ni13Cu17 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Jo Mi Sun

    2017-06-01

    Full Text Available The crystallization behavior has been studied in Zr62Al8Ni13Cu17 metallic glass alloy. The Zr62Al8Ni13Cu17 metallic glass crystallized through two steps. The fcc Zr2Ni phase transformed from the amorphous matrix during first crystallization and then the Zr2Ni and residual amorphous matrix transformed into a mixture of tetragonal Zr2Cu and hexagonal Zr6Al2Ni phases. Johnson-Mehl-Avrami analysis of isothermal transformation data suggested that the formation of crystalline phase is primary crystallization by diffusion-controlled growth.

  6. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al Part II: Scale Microstructures

    Science.gov (United States)

    Raj, Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  7. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 2; Scale Microstructures

    Science.gov (United States)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  8. [Effect of different heat treatment on mechanical properties and microstructure of laser welding CoCr-NiCr dissimilar alloys].

    Science.gov (United States)

    Liang, Rui-ying; Li, Chang-yi; Han, Ya-jing; Hu, Xin; Zhang, Lian-yun

    2008-11-01

    To evaluate the effect of heat treatment and porcelain-fused-to-metal (PFM) processing on mechanical properties and microstructure of laser welding CoCr-NiCr dissimilar alloys. Samples of CoCr-NiCr dissimilar alloys with 0.5 mm thickness were laser-welded single-side under the setting parameters of 280 V, 10 ms pulse duration. After being welded, samples were randomly assigned to three groups, 10 each. Group1 and 2 received heat treatment and PFM processing, respectively. Group 3 was control group without any treatment. Tensile strength, microstructure and element distribution of samples in the three groups were tested and observed using tensile test, metallographic examinations, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS) analysis. After heat treatment and PFM processing, tensile strength of the samples were (537.15 +/- 43.91) MPa and (534.58 +/- 48.47) MPa respectively, and elongation rates in Group 1 and 2 were (7.65 +/- 0.73)% and (7.40 +/- 0.45)%. Ductile structure can be found on tensile fracture surface of samples and it was more obvious in heat treatment group than in PFM group. The results of EDS analysis indicated that certain CoCr alloy diffused towards fusion zone and NiCr side after heat treatment and PFM processing. Compared with PFM processing group, the diffusion in the heat treatment group was more obvious. Heat treatment and PFM processing can improve the mechanical properties and microstructure of welded CoCr-NiCr dissimilar alloy to a certain degree. The improvements are more obvious with heat treatment than with porcelain treatment.

  9. Electrical conductivity of Cu/(10NiO-NiFe2O4) cermet inert anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cu/(10NiO-NiFe2O4) cermets containing mass fractions of Cu of 5%, 10%, 15% and 20% were prepared, and their electrical conductivities were measured at different temperatures. The effects of temperature and content of metal Cu on the electrical conductivity were investigated especially. The results indicate that the metallic phase Cu distributes evenly in 10NiO-NiFe2O4 ceramic matrix. The mechanism of electrical conductivity of Cu/(10NiO-NiFe2O4) cermets obeys the rule of electrical mechanism of semiconductor, the electrical conductivity for cermet containing 5% Cu increases from 2.70 to 20.41 S/cm with temperature increasing from 200 to 900 ℃. The change trend of electrical conductivity with temperature is similar with each other and it increases with increasing temperature and content of metal Cu. At 960 ℃, the electrical conductivity of cermet increases from 2.88 to 82.65 S/cm with the content of metal Cu increasing from 0 to 20%.

  10. 等离子喷涂NiCrAl涂层工艺优化研究%Optimization of process parameters for plasma spraying of NiCrAl

    Institute of Scientific and Technical Information of China (English)

    纪朝辉; 郑广智; 邹慧; 王志平

    2010-01-01

    采用Metco443NS(成分NiCrAl)粉末和PARXAIR-3710等离子喷涂系统制备NiCrAl涂层,为了使NiCrAl等离子喷涂涂层获得优良的涂层性能,选择涂层结合强度为判据,通过正交试验对NiCrAl等离子喷涂工艺进行了优化.利用扫描电镜, Axio Imager.A 1 m金相图像分析系统等手段对涂层界面形貌和孔隙率进行分析,同时对涂层的结合强度以及显微硬度进行测试.确定优化后的喷涂工艺参数为: 喷涂电流为700 A,喷涂距离140 mm,主气流量56.6 L/min,辅气流量28.3 L/min.研究结果表明, 喷涂电流、喷涂距离、主气流量、辅气流量对NiCrAl涂层结合强度具有不同的影响,在优化的喷涂工艺参数条件下, NiCrAl涂层结合强度为59.23 MPa,显微硬度为268HV, 孔隙率为4.97%.

  11. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  12. Surface tension of molten Ni-(Cr, Co, W) alloys and segregation of elements

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; LIU Lan-xiao; YANG Ren-hui; ZHAO Hong-kai; FANG Liang; ZHANG Chi

    2008-01-01

    Surface tension of molten Ni-(Cr, Co, W) alloys was measured at the temperature of 1 773-1 873 K in an Ar+3%H2 atmosphere using an improved sessile drop method. The segregation of Cr, Co and W in alloy was calculated and analyzed using Butler's equation. The results show a good agreement between measured and calculated data. The surface tension of molten Ni-(Cr,Co, W) alloys decreases with increasing temperature. In Ni-(Cr, Co, W) alloys, the element with lower surface tension tends to segregate on the surface of molten alloy while that with higher surface tension tends to segregate inside of the molten alloy. The larger the differences in surface tension, atom radius and electron configuration between solvent and solute are, the more significant the segregation is. As a result, Ni segregates onto the surface and Co and W segregate inside the alloys.

  13. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy

    Science.gov (United States)

    Zhang, F. X.; Zhao, Shijun; Jin, Ke; Xue, H.; Velisa, G.; Bei, H.; Huang, R.; Ko, J. Y. P.; Pagan, D. C.; Neuefeind, J. C.; Weber, W. J.; Zhang, Yanwen

    2017-05-01

    Multielement solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the local structural characteristics. The local structure of a NiCoCr solid solution alloy is measured with x-ray or neutron total scattering and extended x-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis does not exhibit an observable structural distortion. However, an EXAFS analysis suggests that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) may make an important contribution to the low values of the electrical and thermal conductivities of the Cr-alloyed solid solutions. In addition, an EXAFS analysis of Ni ion irradiated samples reveals that the degree of SRO in NiCoCr alloys is enhanced after irradiation.

  14. An index to PGE-Ni-Cr deposits and occurrences in selected mineral-occurrence databases

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The data in Ni_Cr_PGE shapefile was obtained by compiling records of sites containing nickel, chromium, or one of the platinum group elements from published...

  15. Improving Corrosion Resistance of Q235 Steel by Ni-Cr Alloyed Layer

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; ZHANG Pingze; WU Hongyan; BI Qiang

    2012-01-01

    Ni-Cr alloyed layer was formed on surface of Q235 steel by double glow plasma surface metallurgy to improve the corrosion resistance of substrate.The composition and microstructure of alloyed layer was analyzed by SEM and XRD.Potentiodynamic polarization and electrochemical impedance spectroscopy was applied to evaluate the corrosion resistance of the alloyed layer.The results showed working pressure had a great effect on structure of Ni-Cr alloyed layer,and the dense and smooth alloyed layer was prepared at 50 Pa working pressure.Compared with substrate,Ni-Cr alloyed layer exhibited higher corrosion potential,lower corrosion current density and larger charge transfer resistance,which indicated that Ni-Cr alloyed layer significantly modified the corrosion resistance of Q235 steel.

  16. Research and fabrication of NiCrAlY thin-film strain gauges%NiCrAlY薄膜应变计的研制

    Institute of Scientific and Technical Information of China (English)

    张洁; 杨晓东; 蒋书文; 蒋洪川; 赵晓辉; 张万里

    2015-01-01

    NiCrAlY thin film strain gauges are deposited on the nickel-based superalloy by radio-frequency magnetron sputtering. The effects of stabilized heat treatment at 1 000℃ on structure and surface morphology of NiCrAlY thin films are investigated and the electromechanical properties of NiCrAlY thin film strain gauges are measured. After stabilized heat treatment at 1 000℃,a layer of Al2 O3 is formed on the surface of NiCrAlY thin film,which is important cause for excellent high-temperature oxidation resistance. The variation of strain gauge resistance with temperature is linear in the temperature range from room temperature to 800℃. The temperature coefficient of resistance( TCR) is about 290 × 10-6/℃,and gauge factor( GF) is about 2. 1 at room temperature.%采用射频磁控溅射法在Ni基高温合金拉伸件上制备NiCrAlY薄膜应变计。研究了热稳定处理对NiCrAlY薄膜结构、表面形貌的影响,并且测试了NiCrAlY薄膜应变计的电学与应变性能。结果表明:热稳定处理后 NiCrAlY 薄膜应变计由于在表面形成了一层 Al2 O3膜,具有抗高温氧化的特性,在室温~800℃范围内,应变计电阻同温度呈线性变化,电阻温度系数( TCR)约为290×10-6/℃,室温下的应变计系数( GF)为2.1。

  17. Defect properties of CuCrO2: A density functional theory calculation

    Institute of Scientific and Technical Information of China (English)

    Fang Zhi-Jie; Zhu Ji-Zhen; Zhou Jiang; Mo Man

    2012-01-01

    Using the first-principles methods,we study the formation energetics properties of intrinsic defects,and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO2.Intrinsic defects,some typical acceptortype,and donor-type extrinsic defects in their relevant charge state are considered.By systematically calculating the formation energies and transition energy,the results of calculation show that,Vcu,Oi,and OCu are the relevant intrinsic defects in CuCrO2; among these intrinsic defects,VCu is the most efficient acceptor in CuCrO2.It is found that all the donor-type extrinsic defects have difficulty in inducing n-conductivity in CuCrO2 because of their deep transition energy level.For all the acceptor-type extrinsic defects,substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO2.Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO2.

  18. PROPERTIES OF POLYMER SUPPORTED Ni-Cu BIMETALLIC CATALYSTS PREPARED BY SOLVATED METAL ATOM IMPREGNATION

    Institute of Scientific and Technical Information of China (English)

    WU Shihua; ZHU Changying; HUANG Wenqiang

    1996-01-01

    D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.

  19. A DFT Study on the Structure and Properties of Cu/Cr2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    张敏华; 李如珍; 余英哲

    2012-01-01

    Using DFT method, the stable adsorption configurations of Cu4 cluster on Cr2O3 (0001) surface were investi- gated. The regular tetrahedron structure and the planar structures were considered as the initial adsorption configu- ration of Cu4 cluster, respectively. The adsorption energies of the two structures were also calculated. The simulation result indicated that the adsorption energy of the regular tetrahedron structure was higher than that of the planar structure, and thus the regular tetrahedron structure was confirmed to be the stable adsorption configuration for Cu4 cluster on Cr2O3 (0001) surface. Moreover, it was observed that the Cu4 cluster showed the definite stable adsorption sites on Cr2O3 (0001) surface, namely 3-fold O sites. During the adsorption process of Cu4 cluster onto Cr2O3 (0001) surface, the Cu4 cluster could bond with more Cr or O atoms on the surface, and the apparent charge transfer also occurred correspondingly. Meanwhile, the Cu4 cluster and Cr2O3 (0001) surface would bond in the form of local polarization to enhance the stability of adsorption configuration.

  20. Characterization of transparent superconductivity Fe-doped CuCrO{sub 2} delafossite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taddee, Chutirat [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak, E-mail: teekam@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Effect of Fe substitution on the physical properties in CuCrO{sub 2} is studied. • The substitution of Cr{sup 3+} by Fe{sup 3+} produces a mixed effect on the magnetic properties. • CuCr{sub 1−x}Fe{sub x}O{sub 2} delafossite oxides show transparent superconductivity. - Abstract: Delafossite CuCr{sub 1−x}Fe{sub x}O{sub 2} (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr{sub 1−x}Fe{sub x}O{sub 2} slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV–visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO{sub 2} samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe{sup 3+} for Cr{sup 3+} produced a mixed effect on the magnetic properties of CuCrO{sub 2} delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr{sub 1−x}Fe{sub x}O{sub 2} with a superconducting transition up to 118 K.

  1. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  2. Formation of NiCrAlY laser cladding with preplaced method; Funtai tofu reza kuraddingu ho ni yoru NiCrAlY himaku no keisei

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, H. [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)] Sumikawa, T. [Isuzu Motors Ltd., Tokyo (Japan)] Nishida, K. [Ehime Univ., Ehime (Japan). Graduate School; Nishida, M.; Araki, T. [Ehime Univ., Ehime (Japan). Faculty of Engineering

    1997-05-05

    Cladding technique on the surface of structure materials using high corrosion resistance and wear resistance materials has been used in many fields as compared to conventional one. The heat source for cladding was mainly arc welding, however, these recent years, laser cladding where laser having special characteristics like high control, high output density and so forth is used as a heat source, has been studied. In this report, in order to cope with the change in composition of base material, coating layer formation with preplaced method was studied systematically using NiCrAlY powder formed by mixing mechanically commercial metal powder with raw material powder and low power (1200W) CO2 laser. As a result, good NiCrAlY cladded layer with good composition and with no defect was achieved using basic powder formed by mixing mechanically the metallic powder and commercial organic binder. Cladding of broad area was possible by weaving method even at low power (1200W) CO2 laser. Cladded layer with lower dilution ratio and higher cross sectional area was achieved with smaller powder particle diameter. 9 refs., 11 figs., 4 tabs.

  3. Magnetic properties and hyperfine interactions in Cr8, Cr7Cd, and Cr7Ni molecular rings from 19F-NMR

    Science.gov (United States)

    Bordonali, L.; Garlatti, E.; Casadei, C. M.; Furukawa, Y.; Lascialfari, A.; Carretta, S.; Troiani, F.; Timco, G.; Winpenny, R. E. P.; Borsa, F.

    2014-04-01

    A detailed experimental investigation of the 19F nuclear magnetic resonance is made on single crystals of the homometallic Cr8 antiferromagnetic molecular ring and heterometallic Cr7Cd and Cr7Ni rings in the low temperature ground state. Since the F- ion is located midway between neighboring magnetic metal ions in the ring, the 19F-NMR spectra yield information about the local electronic spin density and 19F hyperfine interactions. In Cr8, where the ground state is a singlet with total spin ST = 0, the 19F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the 19F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state ST = 1. In the heterometallic rings, Cr7Cd and Cr7Ni, whose ground state is magnetic with ST = 3/2 and ST = 1/2, respectively, the 19F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the 19F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F--Ni2+ and the F--Cd2+ bonds. The values of the hyperfine constants compare well to the ones known for F--Ni2+ in KNiF3 and NiF2 and for F--Cr3+ in K2NaCrF6. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F- ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  4. Structural features of Ni-Cr-Si-B materials obtained by different technologies

    Science.gov (United States)

    Kornienko, E. E.; Nikulina, A. A.; Belousova, N. S.; Lazurenko, D. V.; Ivashutenko, A. S.; Kuz'min, V. I.

    2016-11-01

    This study considers the structural features of Ni-Cr-Si-B (Ni - base; 15.1 % Cr; 2 % Si; 2 % B; 0.4 % C) materials obtained by different methods. The self-fluxing coatings were deposited by plasma spraying on the tubes from low carbon steel. Bulk cylinder specimens of 20 mm diameter and 15 mm height were obtained by spark plasma sintering (SPS). The structure and phase composition of these materials were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The major phases of coatings and sintered materials are γ-Ni, Ni3B, CrB and Cr7C3. We demonstrate that the particle unmelted in the process of plasma spraying or SPS consist of γ-Ni-NEB eutectic and also CrB and Cr7C3 inclusions. The prolonged exposure of powder to high temperatures as well as slow cooling rates by SPS provide for the growth of the structural components as compared to those of plasma coatings materials. High cooling rates at the plasma spraying by melted particles contribute to the formation of supersaturated solid solution of Cr, Si and Fe in γ-Ni. The structure of the melted particles in sintering material has gradient composition: the core constituted of Ni grains of 10 μm with γ-Ni-Ni3B eutectic on the edges. The results of the experiment demonstrate that the sintering material has a smaller microhardness in comparison with plasma coatings (650 and 850 MPa, respectively), but at the same time the material has higher density (porosity less than 1 %) than plasma coatings (porosity about 2.. .3 %).

  5. Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode

    Energy Technology Data Exchange (ETDEWEB)

    Danaee, I.; Jafarian, M.; Forouzandeh, F.; Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, PO Box 15875-4416, Tehran (Iran); Gobal, F. [Department of Chemistry, Sharif University of Technology, PO Box 11365-9516, Tehran (Iran)

    2009-01-15

    The electro-oxidation of methanol on nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) in a 1 M NaOH solution at different concentrations of methanol was studied by the method of ac-impedance spectroscopy. Two semicircles in the first quadrant of a Nyquist diagram were observed for electro-oxidation of methanol on GC/Ni corresponding to charge transfer resistance and adsorption of intermediates. Electro-oxidation of methanol on GC/NiCu shows negative resistance in impedance plots as signified by semi-circles terminating in the second quadrant. The impedance behavior shows different patterns at different applied anodic potential. The influence of the electrode potential on impedance pattern is studied and a mathematical model was put forward to quantitatively account for the impedance behavior of methanol oxidation. At potentials higher than 0.49 V vs. Ag/AgCl, a pseudoinductive behavior is observed but at higher than 0.58 V, impedance patterns terminate in the second quadrant. The conditions required for this behavior are delineated with the use of the impedance model. (author)

  6. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    Science.gov (United States)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  7. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    Science.gov (United States)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2016-12-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  8. Properties of Cr3C2-NiCr Cermet Coating Sprayed by High Power Plasma and HVOF Processes

    OpenAIRE

    Otsubo, Fumitaka; Era, Hidenori; Kishitake, K; Uchida, T.

    2000-01-01

    The structure, hardness and shear adhesion strength have beeninvestigated in Cr3C2-NiCr cermet coatings sprayed onto a mild steelsubstrate by 200 kW high power plasma spraying (HPS) and high velocityoxy-fuel (HVOF) processes. Amorphous and supersaturated nickel phasesform in both as-sprayed coatings. The hardness of the HVOF coating ishigher than that of the HPS coating because the HVOF coating containsmore non-melted Cr3C2 carbide particles. On heat-treating at 873 K, theamorphous phase deco...

  9. CFCC-SiC基底NiCr/NiSi薄膜热电偶制备及性能研究%Fabrication and Characteration of NiCr-NiSi Thin Film Thermocouples on CFCC-SiC Substrate

    Institute of Scientific and Technical Information of China (English)

    马旭轮; 苑伟政; 马炳和; 邓进军

    2014-01-01

    在碳纤维增韧补强碳化硅陶瓷复合材料( CFCC-SiC)表面制备了NiCr/NiSi薄膜热电偶。传感器结构自下而上依次为CFCC-SiC陶瓷基底、SiO2过渡层,Al2 O3绝缘层及NiCr/NiSi热电偶层。对所制备传感器进行了静态标定,其在300℃~700℃范围内具有稳定的热电动势输出,平均Seebeck系数为41.71μV/℃,传感器极限使用温度约为750℃。%NiCr/NiSi thin film thermocouples were fabricated on the surface of carbon fiber reinforced silicon carbide ceramic composites(CFCC-SiC). Structure of the sensor from bottom to top is sequentially CFCC-SiC ceramic substrate, SiO2 buffer layer,Al2 O3 insulated layer and NiCr/NiSi thin film thermocouple layer. The static calibration result of the thin film thermocouples shows that the sensor has a stable thermal electromotive force output from 300℃ to 700℃. The average Seebeck coefficient of the sensor is about 41. 71μV/℃,and its ultimate-use temperature is about 750℃.

  10. Low temperature growth of graphene on Cu-Ni alloy nanofibers for stable, flexible electrodes

    Science.gov (United States)

    Liu, Zheng-Dong; Yin, Zong-You; Du, Ze-Hui; Yang, Yang; Zhu, Min-Min; Xie, Ling-Hai; Huang, Wei

    2014-04-01

    Here, we report a facile approach to grow graphene on Cu-Ni alloy NFs at a temperature as low as 450-500 °C, in which solid polystyrene (PS) carbon source and two-temperature-zone furnace were used to prepare graphene. The graphene coated Cu-Ni (designated as G-coated Cu-Ni) NFs were fully characterized by Raman spectra, XPS, FESEM and TEM. The G-coated Cu-Ni NFs exhibited excellent anti-oxidation, anti-corrosion and flexibility properties. The anti-corrosion of G-coated Cu-Ni NFs was examined through cyclic voltammetry measurements by using sea water as the electrolyte solution. Finally, using crossed arrays of G-coated Cu-Ni NF composite electrode thin films (sheet resistance is ~10 Ω sq-1) as the flexible electrode, an alternating current (AC) electroluminescent (EL) device with a configuration of G-coated Cu-Ni/active layer (ZnS : Cu phosphor)/dielectric layer (BaTiO3)/front electrode (CNT) has been fabricated. Under an AC voltage of 200 V and frequency of 1300 Hz, the ACEL device emitted blue light at 496 nm with a brightness of 103 cd m-2.Here, we report a facile approach to grow graphene on Cu-Ni alloy NFs at a temperature as low as 450-500 °C, in which solid polystyrene (PS) carbon source and two-temperature-zone furnace were used to prepare graphene. The graphene coated Cu-Ni (designated as G-coated Cu-Ni) NFs were fully characterized by Raman spectra, XPS, FESEM and TEM. The G-coated Cu-Ni NFs exhibited excellent anti-oxidation, anti-corrosion and flexibility properties. The anti-corrosion of G-coated Cu-Ni NFs was examined through cyclic voltammetry measurements by using sea water as the electrolyte solution. Finally, using crossed arrays of G-coated Cu-Ni NF composite electrode thin films (sheet resistance is ~10 Ω sq-1) as the flexible electrode, an alternating current (AC) electroluminescent (EL) device with a configuration of G-coated Cu-Ni/active layer (ZnS : Cu phosphor)/dielectric layer (BaTiO3)/front electrode (CNT) has been fabricated. Under

  11. EFFECT OF VACUUM HEAT TREATMENT ON OXIDATION BEHAVIOR OF SPUTTERED NiCrA1Y COATING

    Institute of Scientific and Technical Information of China (English)

    M.H.Li; X.F.Sun; Z.Y.Zhang; H.R.Guan; W.Y.Hu; Z.Q.Hu

    2002-01-01

    A bond coat for thermal barrier coating (TBC), NiCrAlY coating, is subjected to vac-uum heat treatment in order to remove internal stress before ceramic top coat is de-posited. The effect of vacuum heat treatment on the oxidation behavior of the sputteredNiCrAlY coating has been investigated. The as-sputtered NiCrAlY coating consists ofγ-Ni and β-NiAl phases. After vacuum heat treatment, the sputtered NiCrAlY coatingmainly consists of γ-Ni3Al, β-NiAl, γ-Ni, and trace of α-Al2O3 phases. The isother-mal oxidation of sputtered NiCrAlY coating with and without vacuum heat treatmenthas been performed at 1000C. It is shown that α-Al2O3 formed during vacuum heattreatment acts as nuclei for the formation of α-Al2O3, and the protective α-Al2O3scale is formed more rapidly on the vacuum heat treated NiCrAlY coating than thatformed on the untreated coating. Also the α-Al2O3 scale has a better adherence to thevacuum heat treated NiCrAlY coating. Therefore the vacuum heat treatment improvesthe oxidation resistance of sputtered NiCrAlY coating.

  12. High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines

    Science.gov (United States)

    Mann, B. S.

    2014-06-01

    The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.

  13. Ni-Cr thin film resistor fabrication for GaAs monolithic microwave integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak, Seema [Solid State Physics Laboratory, Lucknow Road, Delhi-110054 (India)]. E-mail: seema_vinayak@rediffmail.com; Vyas, H.P. [Solid State Physics Laboratory, Lucknow Road, Delhi-110054 (India); Muraleedharan, K. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad-500058 (India); Vankar, V.D. [Indian Institute of Technology Delhi, Hauz Khas, New Delhi- 110016 (India)

    2006-08-30

    Different Ni-Cr alloys were sputter-deposited on silicon nitride-coated GaAs substrates and covered with a spin-coated polyimide layer to develop thin film metal resistors for GaAs monolithic microwave integrated circuits (MMICs). The contact to the resistors was made through vias in the polyimide layer by sputter-deposited Ti/Au interconnect metal. The variation of contact resistance, sheet resistance (R {sub S}) and temperature coefficient of resistance (TCR) of the Ni-Cr resistors with fabrication process parameters such as polyimide curing thermal cycles and surface treatment given to the wafer prior to interconnect metal deposition has been studied. The Ni-Cr thin film resistors exhibited lower R {sub S} and higher TCR compared to the as-deposited Ni-Cr film that was not subjected to thermal cycles involved in the MMIC fabrication process. The change in resistivity and TCR values of Ni-Cr films during the MMIC fabrication process was found to be dependent on the Ni-Cr alloy composition.

  14. Structure and magnetic properties of Ni/Cu/Fe/MgO(001) films.

    Science.gov (United States)

    Lauhoff, G; Vaz, C A F; Bland, J A C

    2009-04-15

    The structural and magnetic properties of thin Ni films grown on Cu/Fe/MgO(001) and Cu/MgO(001) buffer layers are investigated and compared to those grown on Cu/Si(001). The use of an Fe seed layer a few monolayers thick leads to the epitaxial growth of high surface quality Cu(001) buffer layers on MgO(001), while Cu growth on the bare MgO(001) substrate results in polycrystalline films. Magneto-optic Kerr effect magnetometry shows that Ni films grown on Cu/Fe/MgO(001) exhibit dominant perpendicular magnetic anisotropy up to ∼90 Å, which is similar to that of Ni films grown on Cu/Si(001). The polycrystalline Ni films also exhibit perpendicular magnetic remanence, but with a dominant in-plane magnetization component.

  15. Structure and magnetic properties of Ni/Cu/Fe/MgO(001) films

    Energy Technology Data Exchange (ETDEWEB)

    Lauhoff, G; Vaz, C A F; Bland, J A C [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)], E-mail: georglauhoff@georglauhoff.com, E-mail: carlos.vaz@cantab.net

    2009-04-15

    The structural and magnetic properties of thin Ni films grown on Cu/Fe/MgO(001) and Cu/MgO(001) buffer layers are investigated and compared to those grown on Cu/Si(001). The use of an Fe seed layer a few monolayers thick leads to the epitaxial growth of high surface quality Cu(001) buffer layers on MgO(001), while Cu growth on the bare MgO(001) substrate results in polycrystalline films. Magneto-optic Kerr effect magnetometry shows that Ni films grown on Cu/Fe/MgO(001) exhibit dominant perpendicular magnetic anisotropy up to {approx}90 A, which is similar to that of Ni films grown on Cu/Si(001). The polycrystalline Ni films also exhibit perpendicular magnetic remanence, but with a dominant in-plane magnetization component.

  16. Effect of alloying elements on mechanical properties in Cu-15%Cr in-situ composites

    Institute of Scientific and Technical Information of China (English)

    H. G. Suzukit; J. Ma; K. Mihara; S. Sakai; S. Sun

    2004-01-01

    The effects of alloying elements on the mechanical properties as well as electrical conductivity in Cu-15 %Cr(mass fraction) in-situ composites were systematically studied and high strength and high electrical conductive Cu base in-situ composites have been developed. The best combination is the addition of 0.1% to 0.2% Zr, Ti, or Sn in Cu 15 %Cr in-situ composite, thermomechanical treatment to refine the microstructure and optimizing the precipitation of second phase. The strength is controlled by high density of dislocations in the Cu matrix, the lamellar spacing of the second phase, and the fine Cr precipitates. The aging treatment to reduce solute atoms has a beneficial effect on the increase of electrical conductivity. The addition of Zr, or Ti of about 0.15% to 0.2% promotes the precipitation of Cr particles.

  17. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    Science.gov (United States)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  18. Microstructural evidence of presence of beryllium in Ni-Cr alloys for dental prostheses; Evidencia microestrutural da presenca de berilio em ligas Ni-Cr para proteses dentarias

    Energy Technology Data Exchange (ETDEWEB)

    Alkmin, L.B.; Nunes, C.A., E-mail: lba@ppgem.eel.usp.b [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Coelho, G.C. [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Santos, C. [Protmat Materiais Avancados, Guaratingueta, SP (Brazil)

    2010-07-01

    This study aimed to characterize the microstructure of commercial Ni-Cr alloys for dental prosthesis, with special focus on those containing Be. For this, the materials were characterized in terms of chemical composition, phases and melting point temperature. The following techniques were used: X-ray fluorescence, ICP-OES, scanning electron microscopy, electron probe microanalysis, X-ray diffraction and differential thermal analysis. The results clearly showed the presence of a typical eutectic, formed by the Ni{sub ss} and NiBe phases in those alloys containing Be, which can be considered a 'fingerprint' of the presence of this element in these alloys. (author)

  19. Investigations on Cu2+-substituted Ni-Zn ferrite nanoparticles

    Science.gov (United States)

    Amarjeet; Kumar, Vinod

    2016-11-01

    CuxNi(1-x)/2Zn(1-x)/2Fe2O4 (x = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700∘C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz-5 MHz. Temperature dependence of the dielectric constant of Cu0.1Ni0.45Zn0.45Fe2O4 was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz-5 MHz. It was found that the electrical conductivity decreases with increasing Cu2+ ion content while it increases with the increase in temperature.

  20. Corrosion behavior of NiCr alloys in HCl-containing oxidation atmosphere at 700-800 ℃

    Institute of Scientific and Technical Information of China (English)

    张轲; 牛焱; 潘太军; 吴维(山文)

    2004-01-01

    Corrosion behaviors of pure Ni and three NiCr alloys were investigated in an HCl-containing oxidizing atmosphere at 700 ℃ and 800 ℃. All materials suffer from accelerated corrosion at both temperatures. NiCr alloys show an initial mass loss due to the formation of volatile CrCl3 and CrO2Cl2. Some chlorides are detected at the scale/substrate interface and many voids are also found there. NiCr alloys with higher chromium content have better corrosion resistance. However, Ni50Cr is inferior to Ni25Cr due to its two-phase structure, which makes it easy for chlorine to diffuse along grain boundary and to occur inner oxidation. The relevant corrosion mechanism was also discussed.

  1. Sputtered Ni-Zn under bump metallurgy (UBM) for Sn-Ag-Cu solders

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Jin; Kim, Young Min [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Young-Ho, E-mail: kimyh@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ni-Zn UBM can effectively suppress the growth of IMCs and the consumption of UBM. Black-Right-Pointing-Pointer The growth of (Ni, Cu){sub 3}Sn{sub 4} was retarded at the SAC305/Ni-Zn interface after aging. Black-Right-Pointing-Pointer Only a single (Cu, Ni){sub 6}Sn{sub 5} formed at the SAC107/Ni-Zn interface after aging. Black-Right-Pointing-Pointer Segregated Zn atoms on IMC layers retarded the interdiffusion of Cu, Ni, and Sn. Black-Right-Pointing-Pointer Sputtered Ni-Zn UBM is promising for Pb-free solder flip chip applications. - Abstract: We developed a new sputtered under bump metallurgy (UBM) based on Ni-20wt% Zn thin films for Pb-free solders. This study focuses on the interfacial reactions between two Pb-free solders (Sn3.0Ag0.5Cu and Sn1.0Ag0.7Cu) and a Ni-Zn alloy UBM. By adding Zn to Ni UBM, Zn is incorporated into intermetallic compounds (IMCs) to form a quaternary Cu-Ni-Zn-Sn phase at the solder/Ni-Zn interface after reflow and subsequent isothermal aging. The Ni-Zn UBM sufficiently reduces the interfacial reaction and IMCs formation rates as well as UBM consumption rates compared to a Ni UBM. In particular, the formation of (Ni, Cu){sub 3}Sn{sub 4} IMC was significantly retarded by adding Zn into UBM.

  2. Electron Microscopy Characterization of Ni-Cr-B-Si-C Laser Deposited Coatings

    NARCIS (Netherlands)

    Hemmati, I.; Rao, J. C.; Ocelik, V.; De Hosson, J. Th. M.

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy

  3. Toughening mechanism for Ni-Cr-B-Si-C laser deposited coatings

    NARCIS (Netherlands)

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    2013-01-01

    Laser deposited coatings were made from Colmonoy 69 Ni-Cr-B-Si-C alloy and Nb-modified Colmonoy 69 using laser cladding with powder injection. Addition of Nb was done to decrease the structural scale of Cr boride precipitates by providing Nb-rich nucleation agents. The purpose of the study was to ev

  4. Fabrication and efficiency evaluation of a hybrid NiCrAl pressure cell up to 4 GPa.

    Science.gov (United States)

    Fujiwara, Naoki; Matsumoto, Takehiko; Koyama-Nakazawa, Kazuko; Hisada, Akihiko; Uwatoko, Yoshiya

    2007-07-01

    A hybrid NiCrAl pressure cell was fabricated to measure magnetic quantities under high pressure above 3 GPa. A pressure of 4.0 GPa was achieved and the pressure cell was found to be reusable even after a pressurizing trial up to 4.0 GPa. Pressure was monitored using (63)Cu nuclear quadrupole resonance of Cu(2)O and ruby fluorescence. The pressure efficiency of a fresh cell was maintained at 96%, and no appreciable deformation was observed at pressures below 3 GPa; on the other hand, the efficiency after pressurizing trials decreased gradually and reached 75% at 4 GPa accompanied by a maximum expansion inside the cylinder of 2%.

  5. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys; Estudio cinetico de las reacciones de recocido en aleaciones de Cu-Ni-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2014-07-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi{sub 3} phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi{sub 3} phase. (Author)

  6. Investigation of vacuum properties of CuCrZr alloy for high-heat-load absorber

    Science.gov (United States)

    Shueh, C.; Chan, C. K.; Chang, C. C.; Sheng, I. C.

    2017-01-01

    The Taiwan Photon Source (TPS) uses high-heat-load (HHL) absorbers to protect downstream ultrahigh-vacuum chambers from overheating. In this work, we propose to use the CuCrZr alloy (ASTM C18150) for the HHL absorber body and the ConFlat flanges. We use the throughput method to measure the thermal outgassing rate and a helium leak detector to verify the vacuum seal between the CuCrZr alloy and stainless-steel flanges. The measured outgassing rate of the CuCrZr alloy was 5.8×10-10 Pa m/s after 72 h of pumping and decreased to 2.0 × 10-10 Pa m/s after 100 h of pumping. The leak rate through the vacuum seal between a CuCrZr flange and a stainless-steel flange was less than 1 × 10-10 Pa m3/s even after mounting and unmounting the flanges ten times and baking them at 250 °C. These results indicate that CuCrZr alloy is suitable for integrating HHL components with ConFlat CuCrZr flanges for the absorption of the synchrotron radiation generated by the TPS.

  7. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn

    DEFF Research Database (Denmark)

    Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernandez Calviño, David;

    2014-01-01

    % for Pb2+, 83-84% for Cu2+, 78-84% for Cd2+, 77-83% for Zn2+, and 70-75% for Ni2+, and it was faster for low concentrations, with Pb suffering the highest retention, followed by Cu, Cd, Ni and Zn. The fitting to the Freundlich and Langmuir models was satisfactory. Desorption increased in parallel...

  8. Selective recovery of Cu, Zn, and Ni from acid mine drainage.

    Science.gov (United States)

    Park, Sang-Min; Yoo, Jong-Chan; Ji, Sang-Woo; Yang, Jung-Seok; Baek, Kitae

    2013-12-01

    In Korea, the heavy metal pollution from about 1,000 abandoned mines has been a serious environmental issue. Especially, the surface waters, groundwaters, and soils around mines have been contaminated by heavy metals originating from acid mine drainage (AMD) and mine tailings. So far, AMD was considered as a waste stream to be treated to prevent environmental pollutions; however, the stream contains mainly Fe and Al and valuable metals such as Ni, Zn, and Cu. In this study, Visual MINTEQ simulation was carried out to investigate the speciation of heavy metals as functions of pH and neutralizing agents. Based on the simulation, selective pH values were determined to form hydroxide or carbonate precipitates of Cu, Zn, and Ni. Experiments based on the simulation results show that the recovery yield of Zn and Cu were 91 and 94 %, respectively, in a binary mixture of Cu and Zn, while 95 % of Cu and 94 % of Ni were recovered in a binary mixture of Cu and Ni. However, the recovery yield and purity of Zn and Ni were very low because of similar characteristics of Zn and Ni. Therefore, the mixture of Cu and Zn or Cu and Ni could be recovered by selective precipitation via pH adjustment; however, it is impossible to recover selectively Zn and Ni in the mixture of them.

  9. Microstructure, texture and magnetic properties of Ni-Cu-W substrates for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Andersen, Niels Hessel

    2013-01-01

    The microstructure, texture, hardness and magnetization have been investigated in a series of strongly cube-textured (Ni95W 5)100-xCux samples with x=0, 5, 10 and 15 at% Cu. It is found that the addition of 5 at% Cu to the Ni-5 at% W alloy results in a substantial decrease of the Curie temperatur...

  10. Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide

    Science.gov (United States)

    Taddee, Chutirat; Kamwanna, Teerasak; Amornkitbamrung, Vittaya

    2016-09-01

    Delafossite CuCr1-xFexO2 (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr1-xFexO2 slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV-visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO2 samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe3+ for Cr3+ produced a mixed effect on the magnetic properties of CuCrO2 delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr1-xFexO2 with a superconducting transition up to 118 K.

  11. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray diffr......Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X...

  12. High-temperature oxidation studies of cold-sprayed Ni-20Cr and Ni-50Cr coatings on SAE 213-T22 boiler steel

    Science.gov (United States)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya

    2009-05-01

    The high-temperature oxidation behavior of cold-sprayed Ni-20Cr and Ni-50Cr coatings on SAE 213-T22 boiler steel has been investigated at 900 °C in air under cyclic heating and cooling conditions for 50 cycles. The kinetics of oxidation of coated and bare boiler steel has been established with the help of weight change measurements. It was observed that all the coated and bare steels obeyed parabolic rate law of oxidation. X-ray diffraction, FE-SEM/EDAX and X-ray mapping techniques were used to analyse the oxidation products of the coated and uncoated boiler steel. The uncoated steel suffered corrosion in the form of intense spalling and peeling of its oxide scale, which was perhaps due to the formation of unprotective Fe 2O 3 oxide scale. Both the coatings showed better resistance to the air oxidation as compared to the uncoated steel. The Ni-50Cr coating was found to be more protective than the Ni-20Cr-coated steel. The formation of oxides and spinels of nickel and chromium may be contributing to the development of air oxidation resistance in the coatings.

  13. Cr20Ni80镍铬合金电热丝的热处理%Heat treatment of Cr20Ni80 alloy heating wire

    Institute of Scientific and Technical Information of China (English)

    潘丽霞; 杨燕

    2013-01-01

    通过研究固溶温度和时效温度对Cr20Ni80镍铬合金电热丝硬度、电阻率和线膨胀系数的影响,以确定Cr20Ni80合金的固溶及时效工艺.结果表明,最佳处理工艺为1150℃固溶处理+930℃×10h时效,电热丝的线膨胀系数明显下降,而电阻率无明显变化.%By studying the influence of solid solution temperature and aging temperature on hardness,resistivity,and linear expansion coefficient of Cr20Ni80 alloy heating wire,solid solution and aging process of Cr20Ni80 alloy were determined.The results show that after solid solution at 1150 ℃ and aged at 930 ℃ for 10 h,the linear expansion coefficient decreases significantly,electrical resistivity no change,hardness decreases slightly.

  14. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  15. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  16. Effect of Partial Substitution of Ni by Cu in LaNiO3 Perovskite Catalyst for Dry Methane Reforming

    Institute of Scientific and Technical Information of China (English)

    G.R.MORADI; F.KHOSRAVIAN; M.RAHMANZADEH

    2012-01-01

    A series of ternary perovskite type oxides LaNi1-xCuxO3 (x =0.2,0.4,0.6,0.8,and 1.0) were synthesized via the sol-gel method in propionic acid.Partial substitution of Ni by Cu showed higher activities and selectivities towards syngas products.LaNi0.8Cu0.2O3 was the most active toward the CH4 and CO2 conversions,and was selective for syngas products.Temperature-programmed reduction results showed that the addition of Cu facilitates the reduction of Ni3+ to Ni0,which is the main reason for the higher performance of this catalyst.

  17. Interfacial reactions and compound formation of Sn-Ag-Cu solders by mechanical alloying on electroless Ni-P/Cu under bump metallization

    Science.gov (United States)

    Kao, Szu-Tsung; Duh, Jenq-Gong

    2005-08-01

    Electroless Ni-P under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. In this study, the mechanical alloying (MA) process was applied to produce the SnAgCu lead-free solder pastes. Solder joints after annealing at 240°C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with various Cu concentrations ranging from 0.2 to 1.0 wt.%. After detailed quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of intermetallic compounds (IMCs) at SnAgCu solder/electroless Ni-P interface was evaluated. When the Cu concentration in the solder was 0.2 wt.%, only one (Ni, Cu)3Sn4 layer was observed at the solder/electroless Ni-P interface. As the Cu content increased to 0.5 wt.%, (Cu, Ni)6Sn5 formed along with (Ni, Cu)3Sn4. However, only one (Cu, Ni)6Sn5 layer was revealed, if the Cu content was up to 1 wt.%. With the aid of microstructure evolution, quantitative analysis, and elemental distribution by x-ray color mapping, the presence of the Ni-Sn-P phase and P-rich layer was evidenced.

  18. Diffusional transport during the cyclic oxidation of gamma + beta, Ni-Cr-Al(Y, Zr) alloys

    Science.gov (United States)

    Nesbitt, J. A.; Heckel, R. W.

    1988-01-01

    The cyclic oxidation behavior of several cast gamma + beta, Ni-Cr-Al(Y, Zr) alloys and one low-pressure plasma spraying gamma + beta, Ni-Co-Cr-Al(Y) alloy was studied. Cyclic oxidation was found to result in a decreasing Al concentration at the oxide-metal interface due to a high rate of Al consumption coupled with oxide scale cracking and spalling. Diffusion paths plotted on the ternary phase diagram showed higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption and the highest Al content underwent breakaway oxidation following 500 1-hr cycles at 1200 C.

  19. Obesidad y enfermedad renal crónica en niños y adolescentes

    OpenAIRE

    Pérez Clemente, Lourdes María

    2015-01-01

    La obesidad y la enfermedad renal crónica forman parte de las grandes epidemias del siglo XXI. El objetivo fue confirmar que los niños obesos tienen un riesgo mayor de enfermedad renal crónica que los que no lo son. Se realizó un estudio observacional, analítico y transversal que incluyó a niños y adolescentes con obesidad exógena. Para comparar los resultados obtenidos en los obesos se seleccionó un grupo de niños normopesos. Se determinaron variables emográficas, antropométricas, clínica...

  20. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    OpenAIRE

    2016-01-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dis...

  1. Diffusional transport during the cyclic oxidation of gamma + beta, Ni-Cr-Al(Y, Zr) alloys

    Science.gov (United States)

    Nesbitt, J. A.; Heckel, R. W.

    1988-01-01

    The cyclic oxidation behavior of several cast gamma + beta, Ni-Cr-Al(Y, Zr) alloys and one low-pressure plasma spraying gamma + beta, Ni-Co-Cr-Al(Y) alloy was studied. Cyclic oxidation was found to result in a decreasing Al concentration at the oxide-metal interface due to a high rate of Al consumption coupled with oxide scale cracking and spalling. Diffusion paths plotted on the ternary phase diagram showed higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption and the highest Al content underwent breakaway oxidation following 500 1-hr cycles at 1200 C.

  2. Heat treatment and effects of Cr and Ni in low alloy steel

    Indian Academy of Sciences (India)

    Mohammad Abdur Razzak

    2011-12-01

    The effects of Cr and Ni on low carbon steel was observed. Undissolved carbide particles refine the austenite grain size. In the presence of nickel, chromium carbide is less effective in austenite grain refinement than chromium carbide in absence of nickel at temperature below 975°C. Nickel does not produce any austenite grain refinement but presence of nickel promotes the formation of acicular ferrites. It was also found that Ni and Cr as chromium carbide also refines the ferrite grain size and morphology. Cr as chromium carbide is more effective in refining ferrite grain size than nickel.

  3. Resiliencia en niños enfermos crónicos: aspectos teóricos

    OpenAIRE

    Castro, Elisa Kern de; Moreno-Jiménez, Bernardo

    2007-01-01

    El presente trabajo examina cuestiones relacionadas a la enfermedad crónica, el desarrollo infantil y la resiliencia. La resiliencia es un concepto evolutivo y de la salud que se refiere a la capacidad de adaptación positiva de niños, jóvenes y adultos frente a circunstancias adversas y de riesgo, como es la enfermedad crónica pediátrica. Actualmente existen pocos estudios sobre el tema, pero las evidencias revelan que niños enfermos crónicos se adaptan de una manera superior a la que se espe...

  4. 溅射Ni16Cr2.5Al微晶涂层及其氧化行为%An Investigation of Deposition Structure of Ni16Cr2.5Al Microcrys Tauine and Its Oxidation Behavisor

    Institute of Scientific and Technical Information of China (English)

    曹硕; 邱巍

    2004-01-01

    NiCrAl是NiCrAlY型包覆涂层的主要成分,对NiCrAl涂层的沉积形态及其氧化行为的研究具有重要科学意义.磁控溅射在不锈钢Fe18Cr9Ni0.1Ti基体上制备出Ni16Cr2.5Al微晶涂层(基体分倾斜45°和竖直90°两种方式悬挂),使用SEM/EDAX,X-ray,对Ni16Cr2.5Al微晶涂层及其氧化膜进行了分析,以探索高温合金用涂层形成及其氧化膜形成机制.

  5. An optimized interatomic potential for Cu-Ni alloys with the embedded-atom method.

    Science.gov (United States)

    Onat, Berk; Durukanoğlu, Sondan

    2014-01-22

    We have developed a semi-empirical and many-body type model potential using a modified charge density profile for Cu-Ni alloys based on the embedded-atom method (EAM) formalism with an improved optimization technique. The potential is determined by fitting to experimental and first-principles data for Cu, Ni and Cu-Ni binary compounds, such as lattice constants, cohesive energies, bulk modulus, elastic constants, diatomic bond lengths and bond energies. The generated potentials were tested by computing a variety of properties of pure elements and the alloy of Cu, Ni: the melting points, alloy mixing enthalpy, lattice specific heat, equilibrium lattice structures, vacancy formation and interstitial formation energies, and various diffusion barriers on the (100) and (111) surfaces of Cu and Ni.

  6. Giant Magnetoresistance Effect of [bcc-Fe(M)/Cu](M=Co,Ni)Multilayers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/Cu], and at 1.6 nm Fe(Ni) and 1.4 nm Cu layer thickness in [Fe(Ni)/Cu]. Under the optimum annealing condition, the MR ratio increases up to 50% and 38% for Fe(Co) and Fe(Ni) systems, respectively. The origin of the increase of GMR is discussed, taking the progress of preferred orientation of Fe(Co)[100] or Fe(Ni)[100] by annealing into account.

  7. Biosorption study of Ni2+ and Cr3+ by Sargassum filipendula: kinetics and equilibrium

    Directory of Open Access Journals (Sweden)

    A. A. Seolatto

    2014-03-01

    Full Text Available In this work, the biosorption of Cr3+ and Ni2+ by Sargassum filipendula pre-treated with CaCl2 was studied. Kinetic and equilibrium experiments were carried out for mono- and multi-component solutions in a batch reactor at pH 3.0 and 30 ºC. The results from the kinetic experiments showed that Cr3+ adsorbs slower than Ni2+. This behavior was explained by means of a mechanistic analysis, which showed that Cr3+ uptake presented three adsorption stages, whereas Ni2+ adsorption presents only two. The mono-component equilibrium data, along with binary kinetic data obtained from mono-component experiments, showed that, although the kinetics for Cr3+ removal are slower, the biomass had a stronger affinity for this ion. Almost all Ni2+ is desorbed from the biomass as Cr3+ adsorbs. The binary equilibrium data also presented this behavior. The binary data was also modeled by using modified forms of the Langmuir, Jain and Snoeyink, and Langmuir-Freundlich isotherms. However, the prediction obtained presented low accuracy. An alternative modeling with artificial neural networks was presented and the results showed that this technique could be a promising tool to represent binary equilibrium data. The main contribution of this work was to obtain experimental data for Cr3+/Ni2+ adsorption, which is a system rarely found in the literature and that provides information that could be used in process modeling and simulation.

  8. Synthesis Of NiCrAlC alloys by mechanical alloying; Sintese de ligas NiCrAlC por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M., E-mail: alissonkws@gmail.co [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil)

    2010-07-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni{sub 3}Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  9. Structure and surface composition of NiCr sputtered thin films

    Directory of Open Access Journals (Sweden)

    Petrović S.

    2006-01-01

    Full Text Available Thin films of nichrome were deposited by d.c. sputtering of a target (80%Ni 20%Cr w.t by Ar+ions at a working pressure of 10-1 Pa and at room temperature. The phase composition and grain size were studied by X-ray Diffraction (XRD, while the surface chemical composition was determined by Low Energy Ion Scattering (LEIS. Analysis of phase composition showed that the NiCr thin films were a solid solution of chromium in a nickel matrix with increased nickel lattice parameters. LEIS analysis showed the presence of Ni Cr and O in the first atomic layer. There is a strong suspicion that surface passivation occurred by forming Cr2O3 oxide at the surface.

  10. The kinetics of Cr layer coated on TiNi films for hydrogen absorption

    Indian Academy of Sciences (India)

    M Singh; Vaibhav Kulsherstha; Anil Kumar; N K Acharaya; Y K Vijay

    2007-01-01

    The effect of hydrogen absorption on electrical resistance with temperature for TiNi and TiNi–Cr thin films was investigated. The TiNi thin films of thickness 800 Å were deposited at different angles ( = 0°, 30°, 45°, 60° and 75°) under 10−5 Torr pressure by thermal evaporation on the glass substrate at room temperature. A layer of Cr of thickness 100 Å was coated on the TiNi thin films. The changing rate of hydrogen absorption increases after Cr layer coating because Cr enhances the catalytic properties of hydrogen absorption in thin films. The rate of hydrogen absorption increases with temperature at lower range but at higher range of temperature it was found to decrease and also it was found that the hydrogen absorption increases with angle of deposition.

  11. Interfacial layers in high-temperature-oxidized NiCrAl

    Science.gov (United States)

    Larson, L. A.; Browning, R.; Poppa, H.; Smialek, J.

    1983-01-01

    The utility of Auger electron spectroscopy combined with ball cratering for depth analysis of oxide and diffusion layers produced in a Ni-14Cr-24Al alloy by oxidation in air at 1180 C for 25 hr is demonstrated. During postoxidation cooling, the oxide layers formed by this alloy spalled profusely. The remaining very thin oxide was primarily Cr2O3 with a trace of Ni. The underlying metal substrate exhibited gamma/gamma-prime and beta phases with a metallic interfacial layer which was similar to the bulk gamma/gamma-prime phase but slightly enriched in Cr and Al. These data are compared to electron microprobe results from a nominally identical alloy. The diffusion layer thickness is modelled with a simple mass balance equation and compared to recent results on the diffusion process in NiCrAl alloys.

  12. 制备邻苯基苯酚的Ni-Cu催化剂研究%Study on Ni-Cu catalysts for preparing o-phenylphenol

    Institute of Scientific and Technical Information of China (English)

    丁洁莲; 曾崇余

    2006-01-01

    采用浸渍法制备了用于合成邻苯基苯酚的Ni-Cu催化剂,考察了浸渍方法、载体种类、助催化剂种类等对催化剂性能和活性的影响,并对催化剂进行表征.研究结果表明,分步浸渍Ni、Cu、Cr优于共浸渍;以γ-Al2O3为载体有利于活性组分分散,催化剂催化活性明显优于硅胶;在Ni-Cu/γ-Al2O3加入助催化剂Cr与K盐,调节了载体的酸碱度,促进了NiO的分散,催化活性明显提高.制备的Ni-Cu-Cr-K/γ-Al2O3催化剂在液相时空速度为0.12 h-1、H2流量22mL/min、380℃下双聚物的转化率达到96%,OPP的收率达到75%.

  13. Effects of heat treatment on toughness of austempered ductile cast iron with Cu and Ni; Cu-Ni tenka osutenpa chutetsu no jinsei ni oyobosu netsushori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, M.; Takatsu, M.; Takagi, H

    1998-08-25

    The alloying of ductile cast iron with Cu and Ni is effective for the structural control in austemper heat treatment. Use of this type of cast iron is provided to produce cast iron materials with extremely high toughness and strength. In this study, the effects of austempering conditions and the addition of Cu and Ni on toughness of ductile cast iron are investigated. In austemper heat treatment, impact absorbed energy is increased by raising the austempering temperature. However, at high austempering temperatures exceeding 3.6 ks at 673K, the formation of fine pearlite proceeded, resulting in a marked decrease in the impact absorbed energy. Addition of Cu-Ni in the cast iron resulted in greater impact absorbed energy and tensile strength at any temperature during the austempering treatment. It depends on the suppression of precipitation beginning of fine pearlite and the stabilization of retained austenite. Furthermore, this cast iron alloy reduced the change in impact absorbed energy and tensile strength, induced during the austempering time. 15 refs., 12 figs., 1 tab.

  14. Change in the properties of Fe-Cr-Ni and Fe-Cr-Mn austenitic steels under mixed and fast neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shamardin, V.K. [State Sci. Centre of Russian Federation, Dimitrovgrad (Russian Federation). Res. Inst. of Atomic Reactors; Bulanova, T.M. [State Sci. Centre of Russian Federation, Dimitrovgrad (Russian Federation). Res. Inst. of Atomic Reactors; Golovanov, V.N. [State Sci. Centre of Russian Federation, Dimitrovgrad (Russian Federation). Res. Inst. of Atomic Reactors; Neustroyev, V.S. [State Sci. Centre of Russian Federation, Dimitrovgrad (Russian Federation). Res. Inst. of Atomic Reactors; Povstyanko, A.V. [State Sci. Centre of Russian Federation, Dimitrovgrad (Russian Federation). Res. Inst. of Atomic Reactors; Ostrovsky, Z.E. [State Sci. Centre of Russian Federation, Dimitrovgrad (Russian Federation). Res. Inst. of Atomic Reactors

    1996-10-01

    Detailed investigations are performed on mechanical properties, swelling and structure of different types of Fe-Cr-Ni and Fe-Cr-Mn austenitic stainless steels irradiated in the SM-2 high-flux research reactor and BOR-60 fast reactor. Steel irradiation temperatures are ranging from 100 up to 800 C and the maximum achieved level of damage doses is 60 dpa for Fe-Cr-Mn steel (with 4-5% of Ni) and 30 dpa for steels of the C-12Cr-20Mn-W-T type. Presented are dose dependencies of swelling and mechanical properties of Fe-Cr-Ni and Fe-Cr-Mn steels. It is shown that at temperatures below 530 C the investigated Fe-Cr-Mn steel systems are less susceptible to swelling as compared to Fe-Cr-Ni ones. Fe-Cr-Mn steels showed a lower value of irradiation embrittlement after irradiation in the mixed spectrum at temperatures from 100 up to 400 C and much higher embrittlement after irradiation from 350 up to 400 C in the fast spectrum in comparison with Fe-Cr-Ni steels. Higher hardening rate of Fe-Cr-Mn steels after their irradiation in BOR-60 is attributed to the presence of dislocation loops and defects of high density in the structure. The structural change features in Fe-Cr-Mn steels under irradiation are considered taking into account austenite stabilization in the initial state. (orig.).

  15. Disordering and grain boundaries of (Ni,Fe)Cr2O4 spinels from atomistic calculations.

    Science.gov (United States)

    Chartier, Alain; Golovchuk, Bogdan; Gossé, Stéphane; Van Brutzel, Laurent

    2013-10-07

    A novel empirical potential has been developed to evaluate the thermodynamic stability of Ni(1-x)Fe(x)Cr2O4 spinels. The simulations confirm the hypothesis that the NiCr2O4-FeCr2O4 pseudo-binary has normal structure spinel up to 1000 K and stabilizes as a solid solution. However, the disordering energy (normal to inverse spinel) is found higher for FeCr2O4 than for NiCr2O4 spinel. The formation energies of tilt, twist, and random grain boundaries have been calculated in pure NiCr2O4 and FeCr2O4. The same behavior has been found for both spinels. Detail analysis of the grain boundaries structure shows that the cation coordination number is a key parameter for the stability of the grain boundaries. With this criterion, we evidenced that the structural and energetic differences are caused only by nickel and iron cations.

  16. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses; Estudos do desenvolvimento e caracterizacao das ligas Cu-Ni-Pt e Cu-Ni-Sn para fins eletro-eletronicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis Carlos Elias da

    2006-07-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  17. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    Science.gov (United States)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  18. Transient Oxidation of a γ-Ni-28Cr-11Al Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L; Hovis, D B; Heuer, A H [Case Western

    2012-04-02

    γ-NiCrAl alloys with relatively low Al contents tend to form a layered oxide scale during the early stages of oxidation, rather than an exclusive α-Al2O3 scale, the so-called 'thermally grown oxide' (TGO). A layered oxide scale was established on a model γ-Ni-28Cr-11Al (at.%) alloy after isothermal oxidation for several minutes at 1100 °C. The layered scale consisted of an NiO layer at the oxide/gas interface, an inner Cr2O3 layer, and an α-Al2O3 layer at the oxide/alloy interface. The evolution of such an NiO/Cr2O3/Al2O3 layered structure on this alloy differs from that proposed in earlier work. During heating, a Cr2O3 outer layer and a discontinuous inner layer of Al2O3 initially formed, with metallic Ni particles dispersed between the two layers. A rapid transformation occurred in the scale shortly after the sample reached maximum temperature (1100°C), when two (possibly coupled) phenomena occurred: (i) the inner transition alumina transformed to α-Al2O3, and (ii) Ni particles oxidized to form the outer NiO layer. Subsequently, NiO reacted with Cr2O3 and Al2O3 to form spinel. Continued growth of the oxide scale and development of the TGO was dominated by growth of the inner α-Al2O3 layer.

  19. First-Principles Study of Substitution of Cu and Au for Ni in Ni3Sn2

    Science.gov (United States)

    Tian, Yali; Wu, Ping; Lu, Zhengxiong

    2016-09-01

    The effects of substitution of Cu and Au for Ni on the mechanical, thermodynamic and electronic properties of two different Ni3Sn2 structures are investigated by first-principles calculations. Cu atom at Ni2 site and Au atom at Ni1 site of the η phase lead to the thermodynamic stable structure. For the λ phase, Au atom can only replace the Ni1 site. Substitution causes the decrease of the polycrystalline elastic modulus and the Debye temperature. The degree of anisotropy along Z axis decreases dramatically for η phase, but it increases along Y axis for λ phase after substitution. The Ni3Sn2-based intermetallics are all ductile; the η phase is more ductile than the λ phase. The electronic density of states manifest an energy gap appearing in η phase and the effective mass of the η phase is lower than λ phase.

  20. First-Principles Study of Substitution of Cu and Au for Ni in Ni3Sn2

    Science.gov (United States)

    Tian, Yali; Wu, Ping; Lu, Zhengxiong

    2017-01-01

    The effects of substitution of Cu and Au for Ni on the mechanical, thermodynamic and electronic properties of two different Ni3Sn2 structures are investigated by first-principles calculations. Cu atom at Ni2 site and Au atom at Ni1 site of the η phase lead to the thermodynamic stable structure. For the λ phase, Au atom can only replace the Ni1 site. Substitution causes the decrease of the polycrystalline elastic modulus and the Debye temperature. The degree of anisotropy along Z axis decreases dramatically for η phase, but it increases along Y axis for λ phase after substitution. The Ni3Sn2-based intermetallics are all ductile; the η phase is more ductile than the λ phase. The electronic density of states manifest an energy gap appearing in η phase and the effective mass of the η phase is lower than λ phase.

  1. Monoligated monovalent Ni: the 3d(Ni)9 manifold of states of NiCu and comparison to the 3d9 States of AlNi, NiH, NiCl, and NiF.

    Science.gov (United States)

    Rothschopf, Gretchen K; Morse, Michael D

    2005-12-22

    A dispersed fluorescence investigation of the low-lying electronic states of NiCu has allowed the observation of four out of the five states that derive from the 3d(Ni)9 3d(Cu)10 sigma2 manifold. Vibrational levels of the ground X2delta(5/2) state corresponding to v = 0-11 are observed and are fit to provide omega(e) = 275.93 +/- 1.06 cm(-1) and omega(e)x(e) = 1.44 +/- 0.11 cm(-1). The v = 0 levels of the higher lying states deriving from the 3d(Ni)9 3d(Cu)10 sigma2 manifold are located at 912, 1466, and 1734 cm(-1), and these states are assigned to omega values of 3/2, 1/2, and 3/2, respectively. The last of these assignments is based on selection rules and is unequivocal; the first two are based on a comparison to ab initio and ligand field calculations and could conceivably be in error. It is also possible that the v = 0 level of the state found at 912 cm(-1) is not observed, so that T0 for the lowest excited state actually lies near 658 cm(-1). These results are modeled using a matrix Hamiltonian based on the existence of a ground manifold of states deriving from the 3d9 configuration on nickel. This matrix Hamiltonian is also applied to the spectroscopically well-known molecules AlNi, NiH, NiCl, and NiF. The term energies of the 2sigma+, 2pi, and 2delta states of these molecules, which all derive from a 3d9 configuration on the nickel atom, display a clear and understandable trend as a function of the electronegativity of the ligands.

  2. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    Science.gov (United States)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  3. Annealing effect on the electrical properties and composition of a NiCrAl thin film resistor

    Science.gov (United States)

    Chuang, Nai-Chuan; Lin, Jyi-Tsong; Chen, Huey-Ru

    2015-12-01

    The composition of NiCrAl thin film resistors, under different annealing conditions in a N2 atmosphere, was investigated. The Auger electron spectrum (AES) has been used in studying the composition of NiCrAl thin films. The concentration ratio of Cr to Ni decreases when the annealing temperature increases. The electrical properties of a NiCrAl thin film resistor are affected by the concentrations of Cr and Ni, which lead to a higher temperature coefficient of resistance (TCR) and a lower sheet resistivity. The TCR of a NiCrAl thin film resistor is -5 ppm/°C at a 250 °C annealing temperature.

  4. Removal of Ni (II and Cr (VI ions from aqueous solution using by-product from the production of aluminium

    Directory of Open Access Journals (Sweden)

    A. Štrkalj

    2015-01-01

    Full Text Available In this paper comparative adsorption equilibrium studies of Ni (II and Cr (VI ions on commercial activated carbon (CAC and carbon anode dust (CAD are presented. The equilibrium studies confirmed that Freundlich model best describes the adsorption systems CAC + Cr (VI, CAD + Ni (II and CAD + Cr (VI. The Dubinin-Radushevich isotherm can be used to describe system CAC + Ni (II.The results indicate that the intra-particle diffusion model is applicable for adsorption system CAC + Cr (VI and pseudo-second kinetic model is applicable for adsorption systems CAC + Ni (II, CAD + Cr (VI and CAD + Ni (II. Obtained results indicate that adsorption of Ni (II and Cr (VI ions on CAC and CAD depends on the temperature.

  5. Cr, Cu, Mn, Mo, Ni, and Steel Price Drivers

    Science.gov (United States)

    Papp, John F.; Corathers, Lisa A.; Edelstein, Daniel L.; Fenton, Michael D.; Kuck, Peter H.; Magyar, Michael J.

    2007-01-01

    Summary This report contains the 55 slide images from a presentation made by the author at the meeting of the Metal Powder Industries Federation held in Denver, CO, on May 15, 2007. The Metal Powder Industries Federation (MPIF) invited the U.S. Geological Survey (USGS) to speak at their annual meeting about the price drivers for chromium, copper, manganese, molybdenum, nickel, and steel. These metals are of interest to MPIF because the prices of these raw materials used by their industry were at historically high levels. Because the USGS closely monitors, yet neither buys nor sells, metal commodities, it is an unbiased source of metal price information and analysis. The authors used information about these and other metals collected and published by the USGS (U.S. production, trade, stocks, and prices) and about consumption and stocks internationally by country from industry organizations that publish such information, because metal markets are influenced by activities and events over the entire globe. By seeking a common cause for common behavior among the various metal commodities, the authors found that major price drivers on metal commodities were inflation, major international events such as wars and recessions, and major national events such as the dissolution of the Soviet Union in 1991 and economic growth in China, which started with the open door policy in the 1970s but did not have significant market impact until starting in the 1990s. Metal commodity prices also responded to commodity-specific events.

  6. Creep Behavior of Lead-Free Sn-Ag-Cu + Ni-Ge Solder Alloys

    Science.gov (United States)

    Hidaka, N.; Watanabe, H.; Yoshiba, M.

    2009-05-01

    We developed a new lead-free solder alloy, an Sn-Ag-Cu base to which a small amount of Ni and Ge is added, to improve the mechanical properties of solder alloys. We examined creep deformation in bulk and through-hole (TH) form for two lead-free solder alloys, Sn-3.5Ag-0.5Cu-Ni-Ge and Sn-3.0Ag-0.5Cu, at elevated temperatures, finding that the creep rupture life of the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy was over three times better than that of the Sn-3.0Ag-0.5Cu solder at 398 K. Adding Ni to the solder appears to make microstructural development finer and more uniform. The Ni added to the solder readily combined with Cu to form stable intermetallic compounds of (Cu, Ni)6Sn5 capable of improving the creep behavior of solder alloys. Moreover, microstructural characterization based on transmission electron microscopy analyses observing creep behavior in detail showed that such particles in the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy prevent dislocation and movement.

  7. Growth and characterization of Ni sub x Cu sub 1 sub - sub x alloy films, Ni sub x Cu sub 1 sub - sub x /Ni sub y Cu sub 1 sub - sub y multilayers, and nanowires

    CERN Document Server

    Kazeminezhad, I

    2001-01-01

    few nm and the full width of the wire. The actual length and diameter of the wires were measured to be approx 5 mu m and (80+-5)nm respectively. The chemical compositions of the nanowires were obtained by EDX analysis. sub 4 sub 8 and Ni sub 0 sub . sub 6 sub 2 CU sub 0 sub . sub 3 sub 8 films showed that they become much more strongly ferromagnetic at low temperatures. Evidence for blocked -superparamagnetic behaviour above a blocking temperature (T sub B) of the films was obtained from zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements. Ni sub x Cu sub 1 sub - sub x /Ni sub y Cu sub 1 sub - sub y alloy/alloy multilayer films with short repeat distance were successfully fabricated using this method. Up to third order satellite peaks observed in HAXRD showed that the interface is sharp. Room temperature longitudinal magnetoresistance measurements showed that Ni sub x Cu sub 1 sub - sub x /Ni sub y Cu sub 1 sub - sub y multilayers with certain layer thicknesses and compositions ...

  8. The fcc-bcc crystallographic orientation relationship in AlxCoCrFeNi high-entropy alloys

    NARCIS (Netherlands)

    Rao, J. C.; Ocelik, V.; Vainchtein, D.; Tang, Z.; Liaw, P. K.; De Hosson, J. Th. M.

    2016-01-01

    This paper concentrates on the crystallographic-orientation relationship between the various phases in the Al-Co-Cr-Fe-Ni high-entropy alloys. Two types of orientation relationships of bcc phases (some with ordered B2 structures) and fcc matrix were observed in Al0.5CoCrFeNi and Al0.7CoCrFeNi alloys

  9. Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Y.X., E-mail: yxzhuang@epm.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Liu, W.J.; Chen, Z.Y.; Xue, H.D.; He, J.C. [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2012-10-30

    FeCoNiCuAlX (X refers to Si, Cr, Ti, Zr and Nd) alloys were prepared using a suck-casting method. The effect of various elements on phase constituents, microstructures and mechanical properties of the alloys was investigated using X-ray diffraction (XRD), scanning electron microscopy, and compressive tests. It has been found that the microstructure and phase constituents remain unchanged when the Si, Cr and Ti are added into the FeCoNiCuAl alloy, which have a typical cast dendrite microstructure consisting of a dominated body-centered-cubic (BCC) solid solution and a face-centered-cubic (FCC) solid solution. However, the intermetallic compounds are formed in the alloys with the addition of Zr or Nd element. The compressive strength and plasticity of the alloys are enhanced by the addition of the Si, Cr and Ti, and retarded by the addition of the Zr or Nd element. The results have been discussed in aspects of atomic size difference, electronegativity difference, valance electron concentration and the mixing enthalpy among the elements in the alloys.

  10. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Science.gov (United States)

    Mahmoodi, S.; Moradi, M.; Mohseni, S. M.

    2016-12-01

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism.

  11. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  12. Mechanism of intergranular corrosion of NiCu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Zhang, J. [Univ. of Toronto, Dept. of Chemical Engineering and Applied Chemistry, Toronto, Ontario (Canada)

    2006-07-01

    The objective of this study is to simulate intergranular corrosion (or intergranular attack, IGA) of Monel 400 (70Ni-30Cu) tubes that occurs occasionally in practice. In general the hypothesized factors of IGA for Monel 400 tubing could be crevices, dissolved oxygen, low pH, reduced sulfur species, and precipitation of impurities at grain boundaries. Electrochemical techniques including cyclic polarization and long-term potentiostatic polarization were used to test two heats of Monel 400 tubing that had behaved differently in practice. To simulate the situation within a crevice or under a deposit, cupric ions were added to the base solution, which was either neutral or acidic in pH. The effect of thiourea as a representative reduced sulfur compound was investigated. The results show that in neutral solution IGA occurs with little sensitivity to metallurgy and does not require thiourea, but in acid solution it only occurs with thiourea addition, and particular grain boundary microstructures are more susceptible. (author)

  13. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  14. Formation and stability of small well-defined Cu- and Ni oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Thalinger, Ramona [Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck (Austria); Heggen, Marc; Stroppa, Daniel G. [Ernst Ruska Zentrum und Peter Grünberg Institut, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Stöger-Pollach, Michael [University Service Facility for Transmission Electron Microscopy (USTEM), Vienna University of Technology, A-1040 Vienna (Austria); Klötzer, Bernhard [Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck (Austria); Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck (Austria)

    2013-12-16

    Well-defined and -structured Cu/Cu{sub 2}O and Ni/NiO composite nanoparticles have been prepared by physical-vapor deposition on vacuum-cleaved NaCl(001) single crystal facets. Epitaxial growth has been observed due to the close crystallographic matching of the respective cubic crystal lattices. Distinct particle morphologies have only been obtained for the Ni/NiO particles, comprising truncated half-octahedral, rhombohedral- and pentagonal-shaped outlines. Oxidation of the particles in the temperature range 473–673 K in both cases led to the formation of well-defined CuO and NiO particles with distinct morphologies. Whereas CuO possibly adopts its thermodynamical equilibrium shape, NiO formation is accompanied by entering a Kirkendall-like state, that is, a hollow core–shell structure is obtained. The difference in the formation of the oxides is also reflected by their stability under reducing conditions. CuO transforms back to a polycrystalline mixture of Cu metal, Cu{sub 2}O and CuO after reduction in hydrogen at 673 K. In contrast, as expected from theoretical stability considerations, the formation of the hollow NiO structure is reversed upon annealing in hydrogen at 673 K and moreover results in the formation of a Ni-rich silicide structure Ni{sub 3}Si{sub 2}. The discussed systems present a convenient way to tackle and investigate various problems in nanotechnology or catalysis, including phase transformations, establishing structure/activity relationships or monitoring intermetallic particles, starting from well-defined and simple models. - Highlights: • Preparation of epitaxial Cu/Cu{sub 2}O and Ni/NiO composite nanoparticles on NaCl(001). • Distinct Ni/NiO particle morphologies. • Formation of well-shaped CuO and NiO particles upon oxidation. • Reversal of Kirkendall-NiO-state upon reduction/annealing in hydrogen.

  15. Brazing of Be with CuCrZr-bronze using copper-based filler metal STEMET

    Directory of Open Access Journals (Sweden)

    B.A. Kalin

    2016-12-01

    Optimization of the composition of the Cu–Ni–Sn–P system filler metals and comparative tests of filler metals of various compositions have been carried out in this paper to reduce the brazing temperature of beryllium with CuCrZr. Alloys of the following compositions Cu–6.4Ni–9.2Sn–6.3P (STEMET 1105 and Cu–9.1Ni–3.6Sn–8.0P (STEMET 1101 were made in the form of rapidly quenched ribbons with a thickness of 50µm and a width of 50mm. They were used to perform furnace brazing by Joule heating (with a rate of 15K/min of beryllium with CuCrZr (Be/CuCrZr at temperatures of 650, 700 and 750°C for 15min. Metallographic investigations of the zone of brazing and mechanical shear tests of joints before and after the heat treatment at 350°C for 30h have been conducted. It was found that the joints of Be/CuCrZr brazed at 650°C using STEMET 1105 (τs=230MPa and at 750°C using STEMET 1101 (τs=260MPa had the best shear strength properties. However, there is a significant decrease of the microhardness of CuCrZr from 1570 to 1140MPa at 750°C, which indicates a significant loss of its strength. The results obtained suggest that the brazing of beryllium with CuCrZr using STEMET 1105 at 650–700°C will not adversely affect the CuCrZr.

  16. Microhardness of Ni-Cr alloys under different casting conditions Microdureza de ligas de Ni-Cr fundidas sob diferentes condições

    Directory of Open Access Journals (Sweden)

    José Roberto de Oliveira Bauer

    2006-03-01

    Full Text Available This study evaluated the microhardness of Ni-Cr alloys used in fixed prosthodontics after casting under different conditions. The casting conditions were: (1-flame/air torch flame made of a gas/oxygen mixture and centrifugal casting machine in a non-controlled casting environment; (2-induction/argon electromagnetic induction in an environment controlled with argon; (3-induction/vacuum electromagnetic induction in a vacuum environment; (4-induction/air electromagnetic induction in a non-controlled casting environment. The 3 alloys used were Ni-Cr-Mo-Ti, Ni-Cr-Mo-Be, and Ni-Cr-Mo-Nb. Four castings with 5 cylindrical, 15 mm-long specimens (diameter: 1.6 mm in each casting ring were prepared. After casting, the specimens were embedded in resin and polished for Vickers microhardness (VH measurements in a Shimadzu HMV-2 (1,000 g for 10 s. A total of 5 indentations were done for each ring, one in each specimen. The data was subjected to two-way ANOVA and Tukey's multiple comparison tests (alpha = 0.05. The VH values of Ni-Cr-Mo-Ti (422 ± 7.8 were statistically higher (p 0.05 and lower than the values obtained in the conditions induction/air and flame/air torch (p 0.05. The microhardness of the alloys is influenced by their composition and casting method. The hardness of the Ni-Cr alloys was higher when they were cast with the induction/air and flame/air torch methods.Este estudo avaliou a microdureza de ligas de Ni-Cr usadas em prótese fixa fundidas sob diferentes condições. As condições de fundição foram: (1-maçarico chama composta por uma mistura de gás/oxigênio e centrífuga sem o controle do ambiente de fundição; (2-indução/argônio indução eletromagnética com o ambiente controlado com argônio; (3-indução/vácuo indução eletromagnética com o ambiente sob vácuo; (4-indução/ar indução eletromagnética sem o controle da atmosfera. Foram utilizadas três ligas: Ni-Cr-Mo-Ti, Ni-Cr-Mo-Be e Ni-Cr-Mo-Nb. Foram realizadas 4

  17. Structural, mechanical, thermo-physical and electronic properties of η‧-(CuNi)6Sn5 intermetallic compounds: First-principle calculations

    Science.gov (United States)

    Yang, Jian; Huang, Jihua; Fan, Dongyu; Chen, Shuhai; Zhao, Xingke

    2016-05-01

    First-principle calculations have been performed to investigate the structural, mechanical, thermo-physical and electronic properties of η‧-(CuNi)6Sn5 intermetallic compounds. The results indicated that, the doped Ni atom can not only enhance the stability of the η‧-Cu6Sn5, but also improve the mechanical and thermo-physical properties, which are more dependent on the Ni atom doping number than the doping position. In all the η‧-(CuNi)6Sn5, Cu3Ni3Sn5 (Cu1+Cu3 site) shows the best stability, the most excellent deformation resistance and the highest hardness. The Cu6Sn5, Cu3Ni3Sn5, Cu4Ni2Sn5, Cu1Ni5Sn5 and Ni6Sn5 are ductile while the Cu5Ni1Sn5 and Cu4Ni2Sn5 are brittle. The anisotropies of η‧-(CuNi)6Sn5 are all mainly due to the uneven distribution of Young's modulus at (001) planes, moreover, the anisotropy of Cu1Ni5Sn5 (Cu1+Cu2+Cu4 site) is the strongest while that of Ni6Sn5 is the weakest. The calculated Debye temperature and heat capacity showed that Cu4Ni2Sn5 (Cu2 site) possesses the best thermal conductivity (ΘD = 356.9 K) and Cu2Ni4Sn5 (Cu1+Cu2 site) possesses the largest heat capacity. From the electronic property analysis results, the Ni s and Ni p states can replace the Cu s and Cu p states to hybridize with Sn s states at -7.98 eV. Moreover, with the increasing number of the doped Ni atom, the hybridization between Cu d states at different positions is receded, while that between Ni d states is enhanced gradually.

  18. Electrical and Structural Properties of Ni-60%Cr Thin Film in an Embedded Resistor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Yoo; Son, Hwa-Jin; Lim, Seung-Kyu; Lee, Kwang-Keun; Suh, Su-Jeong [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-02-15

    The NiCr alloy has relatively large resistivity, good resistant to oxidation and low temperature coefficients of resistance (TCR) compared to other resistor metarials. These properties of NiCr thin films are dependent on the processing conditions including the deposition environment and subsequent annealing treatments. To establish optimizing conditions, Ni-60%Cr thin films were deposited by a sputtering method to control the resistivity and TCR. The experiments were carried out under various process pressures to determine the optimum conditions to achieve a high resistivity and low TCR. The thermal stability of Ni-60%Cr thin films at various heat treatment temperatures was also evaluated. The electrical properties of the sputtered Ni-60%Cr thin films were investigated by probe station and their crystal structures were observed by X-Ray Diffraction (XRD). The surface morphology was observed by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). As a result, a stable resistivity and TCR was respectively observed at 3-15 mTorr and 3-7 mTorr. The heat treatment results revealed an increase in thermal resistance with increasing temperature with a concomitant decrease in the TCR, and a near-zero TCR was obtained at 673 K.

  19. Annealing effect on the electrical properties and microstructure of embedded Ni-Cr thin film resistor

    Energy Technology Data Exchange (ETDEWEB)

    Lai Lifei [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); NingBo University of Technology, Ningbo 315016 (China); Zeng Wenjin; Fu Xianzhu [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Sun Rong, E-mail: rong.sun@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Du Ruxu [Chinese University of Hong Kong, Shatin, Hong Kong (Hong Kong)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Annealing effect on the properties of embedded Ni-Cr thin film resistor. Black-Right-Pointing-Pointer A good annealing condition was achieved. Black-Right-Pointing-Pointer The rarely observed hexagonal Ni (0 1 1), (0 0 2) and (1 0 3) were found. Black-Right-Pointing-Pointer The segregation of chromium in thin film can affect the resistivity and TCR. Black-Right-Pointing-Pointer The results obtained would be helpful in achieving a good embedded resistor. - Abstract: Ni-Cr (80/20 at.%) alloy was deposited on the copper foil substrate as embedded thin film resistor (ETFR) materials by DC magnetron sputtering method. Electrical properties and microstructure of Ni-Cr ETFR under different annealing conditions were investigated. Results indicated that the ETFR exhibited the smallest temperature coefficient of resistance (TCR) after annealing at 250 Degree-Sign C for 540 s in N{sub 2}. The structure, stress, composition and surface morphology of ETFR materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The rarely reported hexagonal Ni (0 1 1), (0 0 2) and (1 0 3) in Ni-Cr thin film were found in Ni-Cr (80/20 at.%) ETFR materials. The chemical states on the surface of the ETFR materials after annealing were mainly Cr{sub 2}O{sub 3}. The segregation of chromium during annealing can affect the resistivity and temperature coefficient of resistance (TCR). The different surface morphology of ETFR in annealing will affect the resistivity.

  20. Effect of surface structure on the catalytic behavior of Ni:Cu/Al and Ni:Cu:K/Al catalysts for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    S.Tajammul Hussain; Sheraz Gul; Muhammed Mazhar; Dalaver H.Anjum; Faical Larachi

    2008-01-01

    Methane decomposition using nickel, copper, and aluminum (Ni:Cu/Al) and nickel, copper, potassium, and alu-minum (Ni:Cu:K/Al) modified nano catalysts has been investigated for carbon fibers, hydrogen and hydrocarbon production. X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectrometry (SSIMS), thermal gravimetric analysis (TGA),Fourier transform infrared (FT-IR), secondary electron microscopy/X-ray energy dispersive (SEM-EDX), and temperature pro-grammed desorption (TPD) were used to depict the chemistry of the catalytic results. These techniques revealed the changes in surface morphology and structure of Ni, Cu, Al, and K, and formation of bimetallic and trimetallic surface cationic sites with sifferent cationic species, which resulted in the production of graphitic form of pure carbon on Ni:Cu/Al catalyst. The addition of K has a marked effect on the product selectivity and reactivity of the catalyst system. K addition restricts the formation of carbon on the surface and increases the production of hydrogen and C2, C3 hydrocarbons during the catalytic reaction whereas no hydrocarbons are produced on the sample without K. This study completely maps the modified surface structure and its re-lationship with the catalytic behavior of both systems. The process provides a flexible route for the production of carbon fibers and hydrogen on Ni:Cu/Al catalyst and hydrogen along with hydrocarbons on Ni:Cu:K/Al catalyst. The produced carbon fibers are imaged using a transmission electron microscope (TEM) for diameter size and wall structure determination. Hydrogen produced is COx free, which can be used directly in the fuel cell system. The effect of the addition of Cu and its transformation and interaction with Ni and K is responsible for the production of CO/CO2 free hydrogen, thus producing an environmental friendly clean energy.

  1. Precipitation sequence of Cu-Cr-Zr-Mg alloy during early aging stage%Cu-Cr-Zr-Mg合金早期时效析出贯序

    Institute of Scientific and Technical Information of China (English)

    余方新; 程建奕; 沈斌

    2013-01-01

    The precipitation process in Cu-0.69Cr-0.10Zr-0.02Mg alloy during the early aging stage at 450 ℃ was investigated by transmission electron microscopy and high resolution transmission electron microscopy. The precipitation sequence in the Cu-Cr-Zr-Mg alloy aged at 450 ℃ is supersaturated solid solution→solution segregation→GP zone (Ⅰ) (FCC Cr-rich phase)→GP zone (Ⅱ) (ordered FCC Cr-rich phase)→ordered BCC Cr-rich phase. In the evolution of decomposition, the interface between the precipitates and the Cu matrix changes from the full coherent one to the coherent-partial coherent one, and the orientation relationship changes from the cube-on-cube to Nishiyama-Wassermann. The coherent interface between the FCC Cr-rich precipitates and Cu matrix facilitates the formation of the FCC precipitates. The ordering of Cr-rich precipitates accelerates the precipitation process, which facilitates the formation of the BCC precipitates and promotes the development of Nishiyama-Wassermann orientation relationship.%通过透射电镜和高分辨透射电镜研究 Cu-0.69Cr-0.10Zr-0.02Mg 合金在450℃早期时效的析出贯序。研究表明:合金在450℃早期时效的析出贯序为过饱和固溶体→溶质偏聚→FCC富Cr的GP区(Ⅰ)→FCC有序富Cr的GP区(Ⅱ)→BCC有序富Cr相。在脱溶演变过程中,析出相和基体之间的界面由完全共格界面向共格-半共格界面转变,位向关系由立方-立方向Nishiyama-Wassermann位向关系转变。共格界面的形成有利于FCC富Cr相的形成。富Cr析出相的有序化加速析出进程,并有利于BCC相的形成,促进了Nishiyama-Wassermann位向关系的发展。

  2. Morphological, structural, microhardness and corrosion characterisations of electrodeposited Ni-Mo and Cr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lima-Neto, Pedro de; Correia, Adriana N.; Vaz, Gustavo L.; Casciano, Paulo N.S., E-mail: pln@ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica

    2010-07-01

    The corrosion resistance of electrodeposited Cr and Ni-Mo coatings and the influence of heat treatment on the crystallographic structure, morphology and microhardness properties were investigated here. The characterisations were carried out using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) techniques. Corrosion tests were performed at room temperature in 10{sup -1} mol dm{sup -3} NaCl solutions and by potentiodynamic linear polarization technique. The Mo content in the layer and current efficiency increased with the molybdate ion concentration in the plating solution, while the surface morphology evolved from rough and homogeneous to cracked surface with the increase of the amount of Mo in the layer. The electrochemical corrosion tests showed that the Cr coatings have better corrosion resistance than the Ni-Mo coatings in chloride medium and that all the studied coatings corrode in chloride medium. Ni-13Mo coating has the nobler corrosion behavior among the studied Ni-Mo coatings. The microhardness of the Ni-13Mo coatings increased as the annealing temperature increased which is related with the precipitation of Ni, Ni{sub 4}Mo and NiMo phases during the heat treatment of this coating. Ni-13Mo coating is a potential substitute for chromium coating in industrial applications when operating at temperatures higher than 100 deg C and good microhardness properties are required. (author)

  3. 20CrNi2Mo渗碳轴承钢的变形抗力%Deformation resistance of carburizing bearing steel 20CrNi2Mo

    Institute of Scientific and Technical Information of China (English)

    李彬周; 张建; 李长生; 李忠之; 乔兵

    2014-01-01

    Using the MMS‐300 thermal mechanical simulator ,the deformation resistance of 20CrNi2Mo steel with strain 0~0.8 and strain rate 0.01s-1 ~10s-1 at 850℃ ~1 150℃ in single pass axial compression process is tested and studied ,and the relation‐ship among deformation temperature ,strain rate ,degree of deformation and deformation resistance has been determined .The re‐sults show that the deformation resistance is affected remarkably by both strain rate and deformation temperature ,the deformation resistance decreases with the increase of temperature ,and it increases with the increase of strain rate .In addition ,the interaction of deformation temperature ,strain rate and degree of deformation affects the deformation resistance together .Through multiple non-linear regression analysis ,the deformation resistance model for the 20CrNi2Mo steel is established ,and this model proved to have good curve fitting characteristics and relatively high precision .%利用M M S‐300热/力模拟实验机,在变形温度850℃~1150℃、应变量0~0.8和应变速率0.01 s-1~10s-1条件下对20CrNi2Mo钢进行高温单道次压缩实验,分析变形温度、变形速率和变形程度对变形抗力的影响。结果表明,变形温度和变形速率对20CrNi2Mo钢变形抗力的影响最为强烈:20CrNi2Mo钢变形抗力随变形温度的升高而减小,随变形速率的提高而增大;且变形温度、变形速率和应变量3个因素之间相互作用,共同影响变形抗力。利用多元非线性回归建立了20CrNi2Mo钢高温变形抗力数学模型,与实测值比较表明,模型拟合程度较好。

  4. Microstructure and magnetic properties of FePt film with combined MoC/(Mg-X)O (X=Cu, Ni, Co) intermediate layers

    Science.gov (United States)

    Tsai, Jai-Lin; Tzeng, Jie-Lin; Hu, Keng-Chun; Li, Hsu-Kang; Pan, Zu-Yu; Chang, Yuan-Shuo; Liao, Chang-Chun

    2017-01-01

    The magnetic properties and microstructure of FePt films grown on MoC layer and MoC/(Mg-X)O (X=Cu, Ni, Co) combined intermediate layers were studied. The (Mg-X)O (X=Cu, Ni, Co) layer with thickness of 5 nm was deposited on CrRu seed layer at 395 °C. The CrRu (200) texture was enhanced which may due to well grains growth in specific orientation and small lattice mismatch with (Mg-X)O (X=Cu, Ni, Co). Finally, the FePt/MoC layers were deposited on (Mg-X)O layer at 425 °C. Using MoC/MgCuO combined intermediate layers, the rocking width of FePt (001) and CrRu (200) diffraction peak were changed from 7.1° to 6.1°, and 5.7° to 3.8°, respectively. For MoC/MgCoO dual intermediate layers, the rocking width of FePt (001) and CrRu (200) diffraction peak were 6.7° and 4.1°. The FePt/MoC/MgCoO film illustrates perpendicular magnetic anisotropy with out-of plane coercivity of 9.3 kOe which is higher than FePt film deposited on MoC layer (8.5 kOe) and the in-plane loops is linear. From microstructure, the FePt grains were more separated on MoC/(Mg-X)O (X=Cu, Ni, Co) combined intermediate layers.

  5. Electrochemical studies of copper, nickel and a Cu55/Ni45 alloy in aqueous sodium acetate

    Directory of Open Access Journals (Sweden)

    Gonçalves Reinaldo Simões

    2001-01-01

    Full Text Available This paper discusses the electrochemical behavior of copper, nickel and a copper/nickel alloy in aerated aqueous 0.10 and 1.0 mol L-1 sodium acetate. The data obtained from different electrochemical techniques were analyzed to determine the influence of Ni and Cu on the electrochemical processes of the alloy electrode. The shapes of the potentiodynamic I(E curves of the alloy were found to be quite similar to those of the Ni voltamograms. Although the anodic current densities of Ni and the alloy increased with greater concentrations of acetate, the opposite effect occurred in Cu. The impedance measurements taken at the open circuit potential revealed that the polarization resistance (R P of the electrodes decreased in the following order: Ni > Alloy > Cu. With increasing concentrations of acetate, the R P of the alloy and the Cu increased while that of the Ni electrode decreased.

  6. Synchrotron X—Ray Study on Structures of Ni80Fe20/Cu Superlattices

    Institute of Scientific and Technical Information of China (English)

    杨涛; 麦振洪; 赖武彦; 吴忠华; 王德武; XUMing; 罗光明; 柴春林

    2001-01-01

    We have shown that,in contrast to the results in the literature,the Bragg peak intensity of Ni80Fe20/Cu superlattices is enhanced at the incident x-ray energy slightly higher than the absorption edge of the heavier element(Cu).The atomic density at Ni80Fe20/Cu interface was analysed by the diffraction anomalous fine structure technology with the incident angle of x-ray fixed at the first Bragg peak.Our results demonstrate the epitaxy growth of Ni80Fe20/Cu superlattices.Upon annealing,the epitaxity of Ni80Fe20/Cu multilayers becomes poor but the local crystallinity in each layer is improved.

  7. Structural and magnetic properties of Cr-substituted NiZnCo ferrite nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le-Zhong, E-mail: lezhongli@cuit.edu.cn; Tu, Xiao-Qiang; Wang, Rui; Peng, Long

    2015-05-01

    Cr-substituted NiZnCo ferrite nanopowders, Ni{sub 0.5−x}Zn{sub 0.5}Cr{sub x}Co{sub 0.1}Fe{sub 1.9}O{sub 4} (0≤x≤0.20), were synthesized by sol–gel auto-combustion method. The effect of Cr substitution on the structural and magnetic properties have been investigated. Differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), Fourier transform infrared spectro-scopy (FT-IR) and vibrating sample magnetometer (VSM) measurements were used to characterize chemical, structural and magnetic properties. The DTA-TG results indicate that there are three steps of combustion process. FT-IR spectra confirm the formation of spinel structure during the self-propagation combustion. XRD results indicate that the lattice parameter and the X-ray density decrease, and the average crystallite size increase with increasing Cr substitution. And Fe{sub 2}O{sub 3} secondary impurity phase formed with excess Cr substitution. The saturation magnetization increases with the increase of Cr substitution when x≤0.05, and decreased when x>0.05. Meanwhile, the coercivity monotonically decreases with the increase of Cr substitution. - Highlights: • Effects of substitution of Ni{sup 2+} by Cr{sup 3+} on structural and magnetic properties of NiZnCo ferrite nanopowders are studied. • There is a Fe{sub 2}O{sub 3} impurity phase formation when x>0.10. • Maximum saturation magnetization is achieved at x=0.05. • Coercivity decreases with the increase of Cr substitution.

  8. Tensile and electrical properties of unirradiated and irradiated Hycon 3HP{trademark} CuNiBe

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The unirradiated tensile properties of two different heats of Hycon 3HP{trademark} CuNiBe (HT Temper) have been measured over the temperature range of 20-500{degrees}C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for both heats. Both heats exhibited a very good combination of strength and conductivity at room temperature. The strength remained relatively high at all test temperatures, with a yield strength of 420-520 MPa at 500{degrees}C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250{degrees}C, due to flow localization adjacent to grain boundaries. Fission neutron irradiation to a dose of {approximately}0.7 dpa at temperatures between 100 and 240{degrees}C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of {approximately}3.3% observed at 240{degrees}C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. The data indicate that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250{degrees}C, and may be suitable for certain fusion energy structural applications.

  9. Multilevel programming in Cu/NiO y /NiO x /Pt unipolar resistive switching devices

    Science.gov (United States)

    Sarkar, P. K.; Bhattacharjee, S.; Barman, A.; Kanjilal, A.; Roy, A.

    2016-10-01

    The application of a NiO y /NiO x bilayer in resistive switching (RS) devices with x > y was studied for its ability to achieve reliable multilevel cell (MLC) characteristics. A sharp change in resistance brought about by sweeping the voltage, along with an improved on/off ratio (>103) and endurance (104) were achieved in the bilayer structure as compared to the single NiO x layer devices. Moreover, it was found that nonvolatile and stable resistance levels, especially the multiple low-resistance states of Cu/NiO y /NiO x /Pt memory devices, could be controlled by varying the compliance current. All the multilevel resistance states of the Cu/NiO y /NiO x /Pt bilayer devices were stable for up to 500 consecutive dc switching cycles, as compared to the Cu/NiO x /Pt single layer devices. The temperature-dependent variation of the high and low resistance states of both the bilayer and single layer devices was further investigated to elucidate the charge conduction mechanism. Finally, based on a detailed analysis of the experimental results, comparisons of the possible models for RS in bilayer and single layer memory devices have also been discussed.

  10. The structural and electro-optical characteristics of AZO/Cr:Cu/AZO transparent conductive film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Chai [Department of Electrical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Huang, Wen-Chang, E-mail: wchuang@mail.ksu.edu.tw [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Tsai, Fu-Chun [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China)

    2015-08-31

    A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO (ACCA), was presented in the paper. The structural and electro-optical properties of the ACCA film were discussed. The thickness of the middle metal layer was constant and those of the AZO layers were varied. The ACCA film shows an obvious ZnO (002) c-axis preferential growth. No diffraction peaks related to Cr and Cu were observed through x-ray diffraction analysis. The middle Cr:Cu layer showed a thickness of 8.16 nm with a continuous and amorphous structure by the observation of a high-resolution transmission electron microscopy (HR-TEM). For the electro-optical characteristic, a best figure of merit (FOM) value of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85% was obtained at the thickness of 116 nm of ACCA film. The high FOM value of the film is due to the improvement of conductivity and small sacrifices of transparency. - Highlights: • A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO is developed. • Chromium is added to copper to reduce the oxidation–reduction reaction. • The film has a FOM of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85%. • The Cr:Cu layer shows a continuous and amorphous structure.

  11. Cu-Cr-O Functionalized ETS-2 Nanoparticles for Hot Gas Desulfurization.

    Science.gov (United States)

    Yazdanbakhsh, Farzad; Alizadehgiashi, Molen; Bläsing, Marc; Müller, Michael; Sawada, James A; Kuznicki, Steven M

    2016-01-01

    Engelhard Titanium Silicate-2 (ETS-2), a sodium nanotitanate, was surface functionalized by ion exchanging the solid with copper and chromium ions. The ability of this bi-metallic adsorbent to remove H2S at elevated temperatures was assessed using a dynamic breakthrough system and contrasted against an analogous mixed metal oxide, Cu-Cr-O. Unlike Cu-Cr-O, the H2S capacity for Cu-Cr-ETS-2 remains unchanged from 350 °C up to 950 °C. Using ETS-2 as a support for the metals increased the adsorbents surface area and improved its sulfur capacity from 35 mg H₂S/g for Cu-Cr-O to 61 mg H₂S/g adsorbent for CuCr-ETS-2. The consistent presence of Cu₉S₅ on the sulfided adsorbents suggests that chromium effectively stabilizes the copper against reduction to metallic copper up to temperatures as high as 950 °C.

  12. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xing-Wu, E-mail: qiuxingwu@126.com [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China); Zhang, Yun-Peng; He, Li [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Liu, Chun-ge [Department of Transportation and Municipal Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China)

    2013-02-05

    Highlights: Black-Right-Pointing-Pointer We use a new method (laser cladding) to prepare high-entropy alloy. Black-Right-Pointing-Pointer We gained small microstructure under rapid solidification condition. Black-Right-Pointing-Pointer We studied corrosion resistance of AlCrFeCuCo high-entropy alloy in two different liquids. - Abstract: The AlCrFeCuCo high-entropy alloys were prepared by the laser cladding method. The microstructure and corrosion resistance property of AlCrFeCuCo high-entropy alloy were researched by scanning electron microscopy, X-ray diffraction and electrochemical workstation. The results show that, under the rapid solidification small microstructure gained, the morphology of AlCrFeCuCo high entropy alloy is simple, the phase mainly compose of FCC and BCC; elements segregated in the alloys; the alloy shows excellent corrosion resistance, along with the increase of the scanning speed, alloy corrosion resistance performance shows a enhancement in the first and then weakened trend. The corrosion resistance performance of AlCrFeCuCo high-entropy alloys in 1 mol/L NaCl solution is better than in 0.5 mol/L H{sub 2}SO{sub 4} solution.

  13. Development of Cr{sub 3}C{sub 2}-25(Ni20Cr) nanostructured coatings; Desenvolvimento de revestimentos nanostruturados de Cr{sub 3}C{sub 2}-25(Ni20Cr)

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Cecilio Alvares da

    2012-07-01

    This study is divided in two parts. The first part is about the preparation of nanostructured Cr{sub 3}C{sub 2}-25(Ni20Cr) powders by high energy milling followed by characterization of the milled and the as received powder. Analyses of some of the data obtained were done using a theoretical approach. The second part of this study is about the preparation and characterization of coatings prepared with the nanostructured as well as the as received Cr{sub 3}C{sub 2}-25(Ni20Cr) powders. The high temperature erosion-oxidation (E-O) behavior of the coatings prepared with the two types of powders has been compared based on a technological approach. The average crystallite size of the Cr{sub 3}C{sub 2}-25(Ni20Cr) powder decreased rapidly from 145 nm to 50 nm in the initial stages of milling and thereafter decreased slowly to a steady state value of around 10 nm with further increase in milling time. This steady state corresponds to the beginning of a dynamic recovery process. The maximum lattice strain ({epsilon} = 1,17%) was observed in powders milled for 16 hours, and this powders critical crystallite size was 28 nm. In contrast, the lattice parameter attained a minimum for powders milled for 16 hours. Upon reaching the critical crystallite size, the dislocation density attained a steady state regime and all plastic deformation introduced in the material there after was in the form of events occurring at the grain boundaries, due mainly to grain boundary sliding. The deformation energy stored in the crystal lattice of the Cr{sub 3}C{sub 2}-25(Ni20Cr) powders milled for different times was determined from enthalpy variation measurements. These results indicated that the maximum enthalpy variation ({delta}H = 722 mcal) also occurred for powders milled for 16 hours. In a similar manner, the maximum specific heat variation ({delta}C{sub p} = 0,278 cal/gK) occurred for powders milled for 16 hours. The following mechanical properties of Cr{sub 3}C{sub 2}-25(Ni20Cr) coatings

  14. On the evolution of Cu-Ni-rich bridges of Alnico alloys with tempering

    Science.gov (United States)

    Fan, M.; Liu, Y.; Jha, Rajesh; Dulikravich, George S.; Schwartz, J.; Koch, C. C.

    2016-12-01

    Tempering is a critical step in Alnico alloy processing, yet the effects of tempering on microstructure have not been well studied. Here we report these effects, and in particular the effects on the Cu-Ni bridges. Energy-dispersive X-ray spectroscopy (EDS) maps and line scans show that tempering changes the elemental distribution in the Cu-Ni bridges, but not the morphology and distribution of Cu-bridges. The Cu concentration in the Cu-Ni bridges increases after tempering while other element concentrations decrease, especially Ni and Al. Furthermore, tempering sharpens the Cu bridge boundaries. These effects are primarily related to the large 2C44/(C11-C12) ratio for Cu, largest of all elements in Alnico. In addition, the Ni-Cu loops around the α1 phases become inconspicuous with tempering. The diffusion of Fe and Co to the α1 phase during tempering, which increases the difference of saturation magnetization between the α1 and α2 phases, is observed by EDS. In summary, α1, α2 and Cu-bridges are concentrated with their major elements during tempering which improves the magnetic properties. The formation of these features formed through elemental diffusion is discussed via energy theories.

  15. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Mackey, D.B.; Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States); Schwenk, E.B. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction.

  16. Microstructural characterization of Ni-22Fe-22Cr-6Al metallic foam by transmission electron microscopy.

    Science.gov (United States)

    Kim, Hyung Giun; Lee, Taeg Woo; Lee, Jae Young; Lee, Eui Sung; Oh, Kwon Oh; Lee, Chang Woo; Lim, Sung Hwan

    2012-01-01

    Ni-22Fe-22Cr-6Al metallic foam, prepared using a thermomechanical treatment and alloying elements, was studied via transmission electron microscopy (TEM) in order to clarify the relationship between the mechanical properties and the nanoscale microstructural characteristics. Due to the unique porous structure of the metallic foam, TEM specimens were prepared using an embedding-process-assisted-ion-milling technique and a focused-ion-beam method. The Cr-, Fe- and Al-clustered regions around the surface of the metallic foam were investigated using elemental maps. The Ni(3)Al (γ') precipitates, which can affect the mechanical properties of the Ni-Fe-Cr (γ) matrix, were characterized in the metallic foam.

  17. Effect of thermal spray processes on microstructures and properties of Ni-20%Cr coatings

    Directory of Open Access Journals (Sweden)

    Pittaya Kuntasudjai

    2006-05-01

    Full Text Available Ni-20%Cr coatings were produced using different thermal spray techniques, which were spray and fuse, flame spray and arc spray. The Ni-20%Cr powder was sprayed onto a mild steel substrate using the spray and fuse and the flame spray systems, while the Ni-20%Cr wire was sprayed using the arc spray system. SEM microstructures of the coatings suggested the spraying conditions used were able to produce dense microstructures. However, the microstructure of the arc sprayed coatings showed fine lamellar characteristics compared to the coatings prepared by the spray and fuse and the flame spray techniques. Chemical elements and oxide were quantified by EDS-SEM technique. Differences in microstructure and coating characteristics such as content of porosity and oxide due to different processing techniques significantly affected the coating properties such as adhesion strength, hardness and wear rate.

  18. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  19. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  20. Microstructure of Steel 5Cr21Mn9Ni4N Alloyed by Rare Earth

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure, composition and shape of precipitated phase under as-cast and finished product state of 5Cr21Mn9Ni4N steel with different rare earth (RE) amount were studied. Mechanical properties of 5Cr21Mn9Ni4N steels withont RE addition and with RE added by 0. 2 % in mass percent were tested respectively. The results indicate that the solid solution amount of RE is about 10-6 -10-5 order of magnitude in 5Cr21Mn9Ni4N steel. Dendrite of as-cast condition is refined obviously and dimension of interstitial phase is shortened when RE is added by 0. 10%-0. 20%. But the microstructure will be coarser if surplus RE is added. Precipitated phase under finished product state distributes evenly in nearly same size with RE added by 0.2% which leads to a largely improved high temperature mechanical property.

  1. Facile synthesis and characterization of magnetic NiCr ferrospinel embedded in conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ai Lunhong, E-mail: ah_aihong@163.co [Laboratory of Applied Chemistry and Pollution Control Technology, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002 (China); Jiang Jing, E-mail: 0826zjjh@163.co [Laboratory of Applied Chemistry and Pollution Control Technology, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002 (China)

    2009-11-13

    Conducting polymer/NiCr-ferrospinel nanocomposites were synthesized by in situ polymerization of aniline in the presence of NiCr{sub 0.5}Fe{sub 1.5}O{sub 4} nanoparticles via a reverse microemulsion route. The structure, morphology and magnetic properties of products were characterized by powder X-ray diffraction (XRD), infrared spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and magnetic measurements. Structure and morphology analysis indicated that the NiCr{sub 0.5}Fe{sub 1.5}O{sub 4} particles with the crystallite size in the range of 12-18 nm were embedded in the polymer matrix. The magnetization under applied magnetic field for nanocomposites exhibited a clearly hysteretic behavior. The formation mechanism of nanocomposites was proposed as well.

  2. Corrosion and oxidation properties of NiCr coatings sprayed in presence of gas shroud system

    Energy Technology Data Exchange (ETDEWEB)

    Morks, M.F., E-mail: mhanna@swin.edu.au [Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 (Australia); Berndt, C.C. [Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 (Australia)

    2010-04-15

    The oxidation of a NiCr bond coat during air plasma spraying was controlled by designing a gas shroud system attached to the plasma torch nozzle. Two nozzles, termed as 'normal' and 'high-speed' nozzles examined the effect of nozzle internal design on the microstructure and phase structure of coatings. X-ray diffraction and SEM morphologies showed that the shroud system reduced the oxidation of NiCr particles during the spray process. Compared with conventional air plasma spraying, the argon gas shroud reduced the coating hardness because the volume fraction of partially melted particles increased. The high-speed nozzle reduced the oxidation and hardness of NiCr coatings due to the increase of partially melted particles in the coatings.

  3. Oxidation protection of NiCoCrAlY coatings on γ-TiAl

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-min; GUO Ming-hu; KE Pei-ling; GONG Jun; SUN Chao; WEN Li-shi

    2005-01-01

    The effect of NiCoCrAlY overlay coatings on the oxidation resistance of γ-TiAl was studied at 900 ℃ in static air. To hinder the interdiffusion of the elements, the Al/Al2O3 layer was added between the coating and the alloy. The results show that the TiAl alloy exhibits poor oxidation resistance. NiCoCrAlY coating can not effectively protect the γ-TiAl substrate from high temperature oxidation because of the serious interdiffusion between the coating and the substrates. With Al/Al2O3 diffusion barrier, the NiCoCrAlY coating exhibits excellent oxidation protection on γ-TiAl alloy.

  4. Development of WELDABLE12CR stainless steel seamless pipe with superior weldability and corrosion resistance for linepipe application; Yosetsusei oyobi taishokusei ni sugureta linepipe yo stainless keimokumukokan WELDABLE12CR no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Y.; Kimura, M.; Toyooka, T.; Nakano, Y.; Murase, F. [Kawasaki Steel Corp., Tokyo (Japan)

    1998-06-20

    Severe corrosive circumstance of oil wells and gas wells including high temperature, high CO2 partial pressure, high chlorine ion concentration, and further H2S are becoming more and more serious in recent years. Measures to prevent CO2 corrosion and sulfide stress crack are necessary for pipelines called flowlines and gathering line for transporting oil or gas which has severe corrosivity before treatment. WELDABLE12CR steel pipe which is seamless martensite stainless steel with excellent weldability and corrosion resistance is developed by the present authors. There two kinds of such steel pipes, one is 11Cr steel (0.01C-11Cr-1.5Ni-0.5Cu-0.01N-based steel) that is superior in corrosion resistance to 13Cr steel for oil well so that it can be used in CO2 circumstance, and the other one is 12Cr steel (0.01C-12Cr-5Ni-2Mo-0.01N-based steel) that has excellent SSC-resistance thus being used in the circumstance containing CO2 and a trace quantity of H2S. 5 refs., 4 figs., 3 tabs.

  5. Effect of Nb on the Microstructure and Mechanical Properties of Cast NiAl-Cr(Mo) Eutectic Alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure and mechanical behaviors of NiAl-28Cr-5Mo-1Nb eutectic alloy were investigated by using scanning electron microscopy, X-ray diffraction, transmission electron microscopy and compression tests, respectively. The alloy is mainly composed of three phases, which are the gray lamellar Cr(Mo) plate, black NiAl matrix and semicontinuously distributed Cr2Nb-type Laves phase. Through Nb addition, NiAl-Cr(Mo)/Nb alloy exhibits a reasonable balance of high temperature strength and room temperature compression ductility and its mechanical behaviors are superior to the NiAl-28Cr-6Mo eutectic alloy at all temperature. The elevated temperature compression deformation behavior of NiAl-Cr(Mo)/Nb alloy can be properly described by power-law equation.

  6. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Hiroshi, E-mail: nishi.hiroshi88@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Enoeda, Mikio [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  7. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    DEFF Research Database (Denmark)

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi

    2008-01-01

    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  8. Cu-Sn-Ni-Si-Zn系銅合金の析出

    OpenAIRE

    二塚, 錬成; 千葉, 俊一; FUTATSUKA, Rensei; CHIBA, Shunichi

    2000-01-01

    It is generally known in the brass mill industry in Japan that CDA Copper Alloy C64740 (Cu-Sn-Ni-Si-Zn system copper alloy) is used for copper-leadframe material which satisfies high quality requirements corresponding with miniaturization of semiconductor devices.Many studies on precipitation of Cu-Ni-Si system copper alloy have been performed in the past seventy years since M.G. Corson invented it in 1927. However, the precipitation ofCu-SnNi-Si-Zn system copper alloy containing a small cont...

  9. Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Li Pan-Pan; Wang Jing-Min; Jiang Cheng-Bao

    2011-01-01

    This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Ni50-x:CuxMn31Ga19 (x=2-10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.

  10. Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater

    Institute of Scientific and Technical Information of China (English)

    毛向阳; 方峰; 蒋建清; 谈荣生

    2009-01-01

    Cu-30Ni-xRE(x=0-0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...

  11. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    Energy Technology Data Exchange (ETDEWEB)

    Gargarella, P., E-mail: piter@ufscar.br [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo (Brazil); Pauly, S.; Stoica, M.; Kühn, U. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities, BP 220, 38043 Grenoble (France); Afonso, C. R. M. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo (Brazil); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  12. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    Science.gov (United States)

    Gargarella, P.; Pauly, S.; Stoica, M.; Vaughan, G.; M. Afonso, C. R.; Kühn, U.; Eckert, J.

    2015-01-01

    The structural evolution of Ti50Cu43Ni7 and Ti55Cu35Ni10 metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  13. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    Directory of Open Access Journals (Sweden)

    P. Gargarella

    2015-01-01

    Full Text Available The structural evolution of Ti50Cu43Ni7 and Ti55Cu35Ni10 metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  14. Influence of Ni Additions on the Viscosity of Liquid Al2Cu

    Science.gov (United States)

    Mudry, S.; Vus, V.; Yakymovych, A.

    2017-07-01

    The viscosity of the liquid Al-Cu-Ni alloys has been studied by means of an oscillating crucible method. The activation energy of viscous flow was estimated from temperature dependences of the viscosity. The analysis of concentration dependence of the viscosity across a section Al67Cu33-Ni reveals its negative deviation from the linear dependence. Such behaviour of the viscosity coefficient upon additions of Ni into the liquid Al67Cu33 alloy could be caused by change of the interaction parameters between different structural units in the investigated melts.

  15. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    Science.gov (United States)

    Liu, Xingguang; Iamvasant, Chanon; Liu, Chang; Matthews, Allan; Leyland, Adrian

    2017-01-01

    CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of 'self-replenishing' silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  16. Experimental Study on HSM 40CrNiMoA%高速铣削硬态40CrNiMoA的试验研究

    Institute of Scientific and Technical Information of China (English)

    查文炜

    2006-01-01

    针对硬态40CrNiMoA(47 HRC),在干切和空气油雾环境下,选用黛杰整体硬质合金(K30)涂层(涂层材料为TiNlN)立铣刀在Mikron UCP 710高速加工中心上作了试验研究.并通过试验结果对两种铣削环境下的铣削力作了比较,得出不同铣削参数和铣削环境下高速铣削硬态40CrNiMoA(47 HRC)铣削力的变化规律.

  17. Characteristics of the Energetic Igniters Through Integrating Al/NiO Nanolaminates on Cr Film Bridge.

    Science.gov (United States)

    Yan, YiChao; Shi, Wei; Jiang, HongChuan; Xiong, Jie; Zhang, WanLi; Li, Yanrong

    2015-12-01

    The energetic igniters through integrating Al/NiO nanolaminates on Cr film bridges have been investigated in this study. The microstructures demonstrate well-defined geometry and sharp interfaces. The depth profiles of the X-ray photoelectron spectroscopy of Al/NiO nanolaminates annealed at 550 °C with a bilayer thickness of 250 nm show that the interdiffusion between the Al layer and NiO layer has happened and the annealing temperature cannot provide enough energy to make the diffusion process much more complete. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 40 V show that the flame duration time is about 700 μs, and an excellent explosion performance is obtained for (Al/NiO)n/Cr igniters with a bilayer thickness of 1000 nm.

  18. XPS study of Cu-Ni bimetallic catalyst%Cu-Ni双金属催化剂的XPS研究

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    采用XPS方法研究了以不同方式引入Ni的Cu-Ni/Al2O3双金 属催化剂的表面结构及不同处理条件对催化剂表面结构的影响。发现催化剂表面存在表面铝 酸盐物种,且Ni的存在会促进表面铝酸盐物种的生成。催化剂经H2还原处理或经CO2加 氢反应后均要发生表面重构。Ni的存在会影响表面重构过程从而影响催化剂的活性和选择性 ,在所研究的含Ni催化剂上,CO2加氢反应经历了生成双齿表面吸附中间物的过程。%The surface structure of Cu-Ni bimetallic catalysts and its variation with diff erent treatment conditions were studied by XPS techique.The effect of the chemi cal state of Ni before the impregnation of Cu in catalyst preparation on the sur f ace structure and its variation were also investigated.It is found that Cu atom approaches the surface of Al2O3 when it is supported.Surface aluminates a re formed on the surface of the catalysts and the presence of Ni favorites the f ormation of surface aluminates.The surface content of Cu is increased when Ni e x isted in reduced form before the introduction of Cu,while the opposite is true w hen Ni existed in oxidized form before introduction of Cu.Surface reconstructio n is observed when the samples studied are reduced in H2 or treated under CO 2 hydrogenation condition.The hydrogenation of CO2 enriches the surface c ontenrt of Cu species comparing to reduction.After CO2 hydrogenation treat ment,Cu species is observed to migrate to the surface of the catalyst in the abs ence of Ni,while in the presence of Ni surface is remarkably decreased.Bidentat e CO2 adsorptive species with the two O of CO2 cooordinated to metal atom s is a possible intermediate in the hydrogenation of CO2 over Ni containing c atalyst studied.

  19. Structural features of Ni-Cr-Si-B materials obtained by different technologies

    OpenAIRE

    Kornienko, E. E.; Nikulina, A. A.; Belousova, N. S.; Lazurenko, D. V.; Ivashutenko, Alexander Sergeevich; Kuzmin, V. I.

    2016-01-01

    This study considers the structural features of Ni-Cr-Si-B (Ni - base; 15.1 % Cr; 2 % Si; 2 % B; 0.4 % C) materials obtained by different methods. The self-fluxing coatings were deposited by plasma spraying on the tubes from low carbon steel. Bulk cylinder specimens of 20 mm diameter and 15 mm height were obtained by spark plasma sintering (SPS). The structure and phase composition of these materials were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmissio...

  20. The research of axial corrosion fatigue on 10Ni3CrMoV steel

    Science.gov (United States)

    Xie, Xing; Yi, Hong; Xu, Jian; Xie, Kun

    2017-09-01

    Fatigue life had been studied with 10CrNi3MoV steel at different load ratios and in different environmental medias. The microstructure and micro-topography had been observed and analyzed by means of SEM, EDS and TEM. Our findings indicated that, the fatigue life of 10Ni3CrMoV steel in seawater was shorter than in air, the difference in longevity was larger with the decreasing of axis stress. Corrosion pits had a great influence on corrosion fatigue life.

  1. Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni

    Energy Technology Data Exchange (ETDEWEB)

    Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.

    2010-08-03

    We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.

  2. Adherent Al2O3 scales formed on undoped NiCrAl alloys

    Science.gov (United States)

    Smialek, James L.

    1987-01-01

    Changes in the spalling behavior of Al2O3 scales formed on an undoped NiCrAl alloy are described. Two samples of Ni-15Cr-13Al (wt pct), one a control and the other sanded, were subjected to 25 oxidation cycles. It is observed that adherent scales formed on the sanded sample; however, the control sample had speckled, spalled scales. The data reveal that the adherent scales are caused by repeated removal of surface layers after each oxidation cycle. It is determined that interfacial segregation of sulfur influences spallation and sulfur removal increases bonding. The effect of moisture on scale adhesions is investigated.

  3. Using Alloys of Cr-Ni-Co system as metallic bond in powder metallurgy products

    Directory of Open Access Journals (Sweden)

    A. M. Gazaliyev

    2015-10-01

    Full Text Available There is studied the possibility of using alloys of the Cr-Ni-Cо system as a metallic bond in producing ceramet. As the basic material there was used titanium carbide. There were measured such mechanical properties as bending strength, tensile strength, impact viscosity. There is considered a possibility of using ceramet with a metallic bond of the Cr-Ni-Co system as a refractory material. As a heat resistance indicator there was estimated the limit of long durability. It is established that in the studied range of temperatures the material properties are the function of the bond content.

  4. Investigation of Ion Release from Ni-Cr Alloy in Various Acidity Conditions

    OpenAIRE

    Stipetić, J.; Ćatić, A.; A. Čelebić; Baučić, I.; Rinčić, N.; Rajić-Meštrović, S.

    2002-01-01

    Cytotoxicity is in direct correlation to the level of ion release, with non-precious alloys having higher ion release than that of precious alloys. The most often used non-precious dental alloy is Ni-Cr alloy. The aim of the investigation was to determine the type and quantity of ions released from Ni-Cr alloy (Wiron 99(r), Bego, Germany), in acid solutions with different pH values, and to determine the influence of the type of acid solution, its pH value, and duration of interaction on io...

  5. STUDY ON Ni-Cr SYSTEM SOLAR SELECTIVE THIN FILMS PREPARED BY MAGNETRON REACTIVE SPUTTERING PROCESS

    Institute of Scientific and Technical Information of China (English)

    B.W. Wang; H. Shen

    2002-01-01

    Ni-Cr System solar selective thin solid films were prepared by d.c. magnetron reactivesputtering under the atmosphere of O2 and N2. Ni-Cr alloy was chosen as targetmaterial and copper sheets as substrate. Using SEM, Spectrophotometer and Talystepto analyze the relations between the selective characteristic and the structure, theformation and the thickness of the thin films. The aim is to obtain good solar selectivethin films with high absorptance and low emittance, which is applied to flat plate solarheat collectors.

  6. Fabrication of conventional and nanostructured NiCrC coatings via HVAF technique

    Institute of Scientific and Technical Information of China (English)

    TAO Kai; ZHANG Jie; CUI Hua; ZHOU Xiang-lin; ZHANG Ji-shan

    2008-01-01

    The conventional and nanostructured NiCrC (with chemical composition of 80%NiCr-20%CrC) coatings with high quality were fabricated via high velocity air-fuel(HVAF) spraying technique. The microstructures of these coatings were characterized by means of metallographic microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. A Vickers microhardness tester was used to determine the mechanical properties of the as-sprayed coatings. The single-line approximation(SLA) method was employed to calculate the grain size and microstrain of as-sprayed nanostructured coating based on the XRD data. The results show that nanostructured NiCrC coating possesses a more uniform and denser microstructure, much higher microhardness and better fracture toughness than its conventional counterpart. Both TEM observation and calculation results based on XRD profile show that as-sprayed nanostructured NiCrC coating has a homogeneous nanocrystalline microstructure with an average grain size of 40 nm.

  7. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    Science.gov (United States)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  8. Microstructural design of hardfacing Ni-Cr-B-Si-C alloys

    OpenAIRE

    Hemmati, I.; Huizenga, R. M.; Ocelik, V.; De Hosson, J.Th.M.

    2013-01-01

    This work reports the procedure for selection of alloying elements to refine the microstructure of hardfacing Ni-Cr-B-Si-C alloys by providing in situ formed nucleation agents. It is concluded that the refining element should be able to spontaneously produce precipitates at high temperatures with little solubility in their Cr-rich counterparts. After exploring the theoretical backgrounds on how to select the refining element, Nb and Zr were selected and the phase formation reactions of Zr- or...

  9. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    Science.gov (United States)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  10. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Ke-Chuan [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Wang, Y. K., E-mail: kant@ntnu.edu.tw [Center for General Education and Department of Physics, National Taiwan Normal University, Taipei 106, Taiwan (China)

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  11. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    T. S. Tripathi

    2016-04-01

    Full Text Available We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD from Cu(thd2, Cr(acac3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  12. Review of Ni-Cu Based Front Side Metallization for c-Si Solar Cells